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ABSTRACT (Continued)

Several simulations are used to evaluate the algorithm. Estimated natural
freguencies and damping ratios are compared with simulation values. The
algorithm is also applied to wind tunnel data in an off-line mode. The
results are used to develop preliminary guidelines for effective use of
the algorithm.
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a, Aij arrays of coefficients (i,j=1,2)"

AO,Al,AZ dyngmical quation spring? damper, and mass coef-
ficient matrices, rTespectively

b vector array of instrumental variable elements

B dynamical equation control input matrix

C system random disturbance coefficient matrix

CY rotor support damping

CC rotor lag damping

E expected value operator

F (1) system state matrix, (2) shaker input forcing
function

g gust input vector

G system control matrix

H system observation matrix

I inertia

j /1

MY rotor support mass

n model order or time derivative of degree n

p (1) wing torsion mode and degree of freedcm;
(2) transfer function pole (complex)

P matrix array of instrumental variables coefficients

aq wing vertical heading mode and degree of freedom

q, wing chordwise bending mode and degree of freedom
matrix array of system inputs and measurements

R autocorrelation function

S Laplace transform variable

vi



At

o

<

TIP

NOMENCLATURE (Continued)

(1) inertia; (2) power spectrum
length of sampling interval
time

(1) total length of data sample, (2} measured
transfer function

system input vector
array of time derivatives of input vectors
airspeed, knots, true airspeed at sea level

vector of generalized variables of dynamical
equation

wingtip longitudinal displacement, positive aft

(1) measurement vector; (2) rotor lateral hub
motion

transfer function zero (complex)
wingtip vertical displacement, positive up

instrumental variables matrix uncorrelated with
noise

gradient operator

rotor pylon angle, 0° = cruise, 90° = hover
rotor blade flapping degree of freedom
rotor longitudinal flapping degree of freedom

rotor lateral flapping degree of freedom
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NOMENCLATURE (Continued)

collective flappingvmode

high frequency rotor flapping mode

low frequency rotor flapping mode
system disturbance matrix

flaperon deflection

system characteristic polynomial (A(s))
zero-mean white noise function

(1) damping ratio; (2) rotor blade inplane degree
of freedom

collective inplane mode

high frequency inplane node

low fregquency inplane mode

rotor cyclic inplane degree of freedom
rotor cyclic inplane degree of freedom
rotor collective pitch

collective pitch cosine harmonic coefficient
collective pitch sine harmonic coefficient
system random disturbance vector

rotor blade inplane natural frequency

wingtip longitudinal and vertical deflection
constants T

product operator
time delay parameter
rotor RPM mode and degree of freedom

frequency, per rev.
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NOMENCLATURE (Continued)

W, natural frequency of mode
my rotor support natural frequency
Q rotor rotational speed

ABBREVIATIONS

ARMA Auto-Regressive Moving Average

LS Least Squares

v Instrumental Variable

DOF Degree of Freedom

RMS Root Mean Square

FFT Fast Fourier Transform

Im(-) imaginary part of (-)

BV Balance Vertical mode and degree of freedom
BL Balance Longitudinal mode and degree of freedom
BY Balance Yaw mode and degree of freedomn

BS Balance Side mode and degree of freedom

SL Strut Longitudinal mode and degree of freedom
5SS Strut Side mode and degree of freedom

PY Pylon Yaw mode and degree of freedom
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NOMENCLATURE (Continued)

SUBSCRIPTS

i index of time derivatives and their coefficients,
ar of transfer function singularities

o denotes zeroth-order time derivative

P (1) denotes tramsfer function resonant peak;
(2) denotes dimension of array

n denotes natural frequency

(+) denotes (+) vector formed from generalized dy-
namical equation

SUPERSCRIPTS

(n) denotes time derivative of degree n

T denotes transpose of vector or matrix

j exponent of Laplacé transform variable(s)

. denotes time derivative

-1 " denotes matrix inverse

~ denotes estimated quantity

* denotes complex conjugate






CHAPTER I
INTRODUCTION AND SUMMARY

1.1 INTRODUCTION

The XV-15 is an advanced tilt rotor research aircraft
(Figure 1.1) currently under development by the National Aecro-
nautics and Space Administration and the U.S. Army Air Mobility
R§D Laboratory. An important element of the alrcraft develop-
ment is an extensive full-scale wind tunnel test to be conducted
in the Ames Research Center 40- by 80-foot wind tuﬁnel. Since
wind tunnel scale model and full-scale tests of the tilt rotor
concept have been effective in previous years, it is desired
to conduct the forthcoming XV-15 tésts in a comprehensive
manner and to continue to minimize uncertainties in system
' characteristics. A previous study evaluated specific test
‘Tequirements which impact the conduct of these tests [1].

Figure 1.1 The NASA/Army XV-15



The present study describes a parameter identification
method by which the dynamic stability characteristics of the
XV-15 may be calculated on-iine, during a wind tunnel test run.
This is accomplished through the use of an advanced parameter
identification algorithm, developed specifically for this
application. The development of this algorithm and its appli-
cation to several simulations and cantilever wing wind tunnel
test data are the subjects of this report.

1.2 BACKGROUND

It is now recognized that the use of comprehensive soft-
ware for aircraft wind tunnel and flight test data reduction
can significantly enhance vehicle usefulness by producing
the following results:
(1) improvement in knowledge of vehicle static and dynamic
characteristics: comprehensive software, accounting
for typical disturbances in the data, can provide

more accurate definition of the desired test objec-
tive parameters (e.g. stability);

(2) reduction of test costs: more engineering results
can be obtained with less test and analysis time and
specialized personnel; and

(3) enhancement of test safety: for real time software,
rapid determination of test system status allows
faster response to problems.

The testing of advanced rotorcraft, such as the XV-15, is
a current requirement for such software. This vehicle sets a
particularly stringent data reduction requirement for many

reasons including the following:

(1) Previous tunnel experience of a similar configuration,
the XV-3, demonstrated fundamental phenomena whose
subsequent successful analysis has led to the cur-
rent XV-15 design [2-8]. This experience indicates
the importance of the analysis of the tunnel test
data analysis.




(2)

(3)

Extensive tunnel testing of the XV-15 is planned to
thoroughly investigate regimes of the subsequent
flight tests, and also provide a basis for evaluation
of the flight test data reduction system. This
requires a data reduction capability which is not
only comprehensive (e.g. applicable to many flight
phenomena), but may be applicable to flight data

as well.

The advanced configuration of the XV-15 requires an
advanced multivariable data reduction technique for
on-line estimation of modal frequency and damping.
This is a requirement for a new technique, compatible

-with existing Ames 40- by 80-foot wind tunnel

computers.

Several previous analytical developments have been made

to aid the wind tunnel tests. Some of the important develop-

ments are:

(1)

(2)

(3)

a comprehensive XV-15 analysis has been developed and
used for study of partial and full-scale models [5-8]7,
simulation of transient responses [1], and linear
stability analysis [1,5-8];

investigations of input and instrumentation require-
ments for the XV-15 tunnel test, based on the model
of (1) [11; and

study. of various off-line data reduction techniques
for determining stability estimates from tunnel test
data, including: (&) time series analysis techniques,
and (b) maximum likelihood identification techniques

[1].

To complete the XV-15 tunnel test requirement, it was

considered necessary to develop a new algorithm to extract

the most information from the wind tunnel test data.

1.3 METHOD OF APPROACH

The requirements of the previous section demand a data

processing algorithm with many special features. The algorithm

should produce accurate estimates of damping ratios and fre-

guencies of various lightly damped modes, should require small



computation time and storage, should account for measure-
ment and process noise, and should require minimum a priori

information.

To meet these requirements, the dynamic model of the
XV-15 tilt rotor is written in a continuous time, autoregres-
sive moving-average (ARMA)} form. The ARMA representation is
equivalent to a state variable form or a generalized state
form (see Appendix A).

The estimates of the ARMA model parameters are obtained
using a time domain instrumental variable technique. The
instrumental variables technique minimizes the effects of
process and measurement noise and provides a computationally
efficient technique which does not require any a priori esti-
mates. This time domain formulation is converted into a fre-
quency domain formulation for ease of implementation.

1.4 PRINCIPAL CONTRIBUTIONS

The contributions of this work include basic theoretical
developments and applications study. The theoretical develop-
ments lead to a modal estimation algorithm and the application

results develop procedures for using the algorithm effectively.
New theoretical contributions include the following:

(1) A special autoregressive moving average (ARMA) form
is developed for dynamic systems, with general model
structure, for the purpose of measuring dynamic
stability. The coefficients of the system are
directly obtained from the autoregressive part of
the model.

(2) An instrumental variables algorithm is developed
for estimating the pdrameters of the ARMA model.
The identification procedure gives the transfer
function numerator and denominator polynomials
directly. The algorithm can use a multi-input,
multi-output data efficiently and minimizes the



effects of measurement and process noise. The fre-
quency range over which the model is required may
be specified.

(3) A heuristic approach for model order determination
is developed based on approximate cancellation of
identified poles and zeros.

The application study has lead to the following major
contributions:

(1) Tentative procedufes have been developed for set-

ting'vgrious algorithm parameters for the most
effective use of the algorithm.

(2) Procedures for obtaining good numerical conditioning
in the application of the algorithm, particularly
with many degrees-of-freedom.

- These contributions have established the superiority of
this system identification-bdsed algorithm over classical
approaches, Further work is required, however, in maximizing
its effectiveness in on-line application to measure stability
in the Ames 40- by 80-foot Wind Tunnel.

1.5 SUMMARY

Subsequent chapters of this report are organized as
follows. Chapter II describes qualitatively approaches to
estimating stability parameters of aeroelastic modes. Chapter
IIT discusses the problem, the choice of models, and the
methodology used in the development of the parameter estimation
algorithm. The algorithm is applied to ground resonance and »
cantilever wing simulations. The algorithm is further studied
using XV-15 simulations in Chapter IV. Chapter V describes
the appliication of the algorithm to a scaled-model wind tunnel

test. The conclusions are given in Chapter VI.



Appendix A describes the relationship between various
forms of dynamic models. A detailed derivation of the algo-
rithm is given in Appendix B. Appendix C shows the salient
features of the XV-15 simulation used in Chapter IV.



CHAPTER II ' ‘
APPROACHES TO DYNAMIC STABILITY MEASUREMENT

Z.1 INTRODUCTION

Interest in damping ratios and natural frequencies of
modes is as old as linear dynamic models. Damping ratios
determine the extent of stability and the natural frequencies
determine the "speed" of a system. Early work in the deter-
" mination of dynamic stability paraméters from test data was
performed to evaluate handling qualities of airplanes. This
work can be traced back to Milliken [32], who made important
observations not only from the viewpoint of data processing
but test design as well. Prony's response function methods,
and-analog matching techniques, were used extensively with
- 1limited success. The development of high speed digital com-
puters in the early 1960's comnsiderably advanced the computa-
tional capabilities without a parallel development in estima-
-tion techniques, Only in the last five years has sufficient
work been done to enable accurate estimation of dynamic stabil-
ity parameters from limited noisy test data. A qualitative
review of current approaches to the problem of determining
stability (i.e., modal damping ratio) from experimental meas-
urements is presented in the following, as background to the
new parameter identification algorithm discussed in the
remainder of this report.

2.2 PREVIQUS APPROACHES

Estimates of modal frequency and damping ratio have been
chtained using well-understood methods of spectral amalysis.
and known dynamic characteristics of second-order systems
[10-13]. These methods generally give good results: (a) when



modes are not closely coupled, (b) when noise levels are low
(i.e., when the second-order characteristics of a mode are
discernible), and (c) with subjective interpretation of an
experienced analyst. Several methods that have given accept-
able results are discussed in Ref. 9 and are reviewed in the
following. These methods include: (1) transient decay,

(2) moving block analysis of transient decay, (3) the method
of random decrement signatures; (4) spectral analysis, and
(5) transfer function analysis.

Transient decay methods [13] determine damping ratio from
the envelope of a decaying oscillation. If the oscillation
is assumed to be second-order, damping ratio may be deter-
mined from response amplitudes at two points, one or more
cycles apart. This method is susceptible to error from noise
and extraneous modes which cause the appearance of the signal
to deviate from that of a second-order system. In some cases,
filters can be used to make the mode of interest more promin-
ent, and careful input selection can often avoid exciting
other modes.

In the method of "moving block" analysis, portions of
the response signal are Fourier-analyzed at successive points
in time. The damping ratio is then calculated as in the
transient decay method, but using the magnitude of the spectral
line at the fundamental frequency of the mode of interest
rather than the measured signal amplitude. This method has
the advantage of filtering out a portion of noise, if there
is a reasonable frequency separation between the noise and
the signal. Damping ratio calculation may be mechanized rela-
tively easily, an advantage over the transient decay method.
In practice, a fast Fourier transform (FFT)} method may be
used, but three or four periods should be included in each

block to achieve sufficient accuracy. The method is thus



applicable only to low damped modes such as are encountered
in aeroelastics.

The method of random decrement (RANDOMDEC) signatures
£17,18] is 2 technique for determining the impulse response
of a linear system from measurements of its response to random
disturbances. When the system is under random excitation,
as from wind tunnel turbulence or a specific random input,
measurements are taken at times which have identical initial
conditions on the system states. In taking repeated measure-
ments in this manner, random effects cancel out, leaving in
principle the system response to initizl conditions. The
method as developed by Cole [17] may be easily mechanized on
a digital computer. The drawbacks of the method are:

(a) the presence of coupling modes reduces the effectiveness
of the fechnique, (b) it is difficult to achieve the sane
initial condition on every state variable (not only omn

every output) in each run, {(c) most of the data cannot be
used because of the requirement of the same initial condi-
tion, therefore the test time is too high, and (d) the
errors in triggering are not averaged out.

Analysis of the power spectrum of the measured signal
can be used to estimate the natural frequency of z mode by
the location of its resonant peak. For this purpose, the sys-
tem exciting function spectrum should be relatively "flat"
near the resonant frequency {[14]. By relating measured
spectra, which may be averaged over successive measurements,
to the'spectrum cf a second-order system, estimates of damping
ratio can be obtained. The presence of system zeros or other
poles near the root of interest makes the comparison to a
"second-order system invalid and reduces the accuracy of the
damping ratio caiculatiom.



Closely related to this method is a method based on a
measured transfer function, calculated from cross- and power-
spectra of the input and the measurement [14,15]. By analogy
to the transfer function of a pure second-order system near
the resonant peak, the damping ratio may be expressed as [9]:

bl 2
/ In(T)w dw

£ = 1 0

where T = T(jw) 1is the measured transfer function. In
practice, the transfer function often has other zeros and poles,
therefore the limits of integration have to be limited about
the natural frequency. If the damping ratio is small (0.01-
0.05), the resonant peak frequency may be treated as the
natural frequency. The integration limits 0.8 w to 1.2 w
~are often adequate, and can be further reduced if necessary
to lessen the effects of nearby roots or noise [1]; with

100 spectral lines in the range 0.8 mp to 1.2 mp, good
damping values can be obtained by integrating from 0.95 ®

to 1.05 wp. With 10-15 spectral lines between 0.8 wp to 1.2@
the integration range 0.90 wp to 1.10 wp is adequate. Damp-
ing ratio is thus given approximately by:

P

’

.lwp

‘lz
In(T)w dw

n 1.1(Dp
[ IT|? 0° do

10



The principal effect of nearby modes is to shift the phase
angle of the measured tranfer function. This effect can be
minimized 1f, before computing ¢ by the above formula, the

'phase of the measured transfer function is changed by setting

T
= - -3 P
Thew = T J Tp{

where Tp is the measured transfer function at the resonant
peak.

Other methods of identifying transfer functions attempt

. to determine numerator and denomerator polynomials in jo

by matching the experimentaliy determined maghitude and phase
data [16]. The factored denominator then shows the system
modes, and the damping of the mode of interest may be calcu-
lated. These methods require specification of overall model
order, however, and often fail to converge if the data contains
noise,

2.3 ADVANCED SYSTEM IDENTIFICATION TECHNIQUES

System identification is a broad technology which may be
used to verify system simulations or develop new mathematical
models of static or dynamic systems based on experimental
data. These techniques are based on sound mathematical and
. statistical principles such that the resulting models and the
estimated model parameter possess desirable statistical charac-
teristics. The classical techniques based on heuristic ap-
proaches are, therefore, being slowly replaced by more system-
atic system identificaticn methods.

The overall system identification approach is divided

. into pretest evaluation and algorithm verification and post-test

11



data processing. The post-test data processing consists of
data conditioning, model structure estimation, parameter esti-
mation and model verification (see Figure 2.1). The data
conditioning involves filtering and removing undesirable
characteristics from data (e.g., spikes, outliers). The

model order and the important linear and nonlinear terms are
estimated in the model structure determination phase. The
parameters of the selected model are identified in the next
stage. The model verification stage applies several statisti-
cal techniques to validate the overall model. A detailed
description of the system identification process 1is given in
Ref. 19. Other parameter identification methods are discussed
in Refs. 20-27.

Model order determination techniques select the simplest
system which can explain the measured response adequately.
The criteria for determining model adequacy include: (a) pre-
diction error, (b) Akaike information criteria, (c) fit error,
(d) F-ratio and several others. A detailed description 1is

given in Refs., 30 and 31.

The parameter estimation methods may be divided into two
broad classes, the off-1line approaches and on-line approaches.
Several methods have been developed for off-line application
but the maximum lieklihood method has been the most successful.
The likelihood function of the output with respect to the
parameters is maximized by selecting the parameter values.

For numerical purposes, the negative logarithm of the likeli-
hood function is minimized. The method optimally treats both

the state disturbance noise and the measurement noise. Ac-

curate estimates of all required parameters are obtained at

the cost of high computation time and storage requirements.

One of the more successful on-line parameter identifica-

tion techniques is the instrumental variables approach. It

12
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is an extension of classical least squares techniques, but
accounts for all noise sources. It is discussed in more
detail in the next chapter.

System identification techniques determine all unknown
parameters of the system directly and can therefore estimate
frequencies and dampings of all modes. Therefore, modes that
are close to each other in frequency may be isclated and the
effects of noise in the process and the measurements are mini-

mized,
2.4 SUMMARY

This chapter reviewed methods which have been used or
attempted in the on-line determination of the stability
of dynamic systems. Some are capable of being automated,
while others require substantial subjective interpretation
by the analyst. All except parameter identification
methods place considerable weight on analogies to classical,
well-understood, second-order dynamics, and are hampered by
experimental conditions which obscure this analogy, such as
noise or the presence of nearby modes. Parameter identifica-
tion methods, on the other hand, can resolve these problems
effectively, but they must be specialized to the problem
of on-line dynamic stability measurement.

The next chapter describes a new on-line parameter iden-
tification algorithm, based on the instrumental variables
method, that overcomes these problems. Its derivation and
initial evaluation are discussed in the remainder of this

report.

14



CHAPTER III
A NEW REAL TIME TECHNIQUE FOR MODEL IDENTIFICATION

3.1 INTRODUCTION

From the previous discussion, it is clear that current
. approaches have several deficiencies. To obtain reliable esti-
mates of frequencies and dampings of various modes from a
limited wind tunnel test time, it is desirable to have an
algorithm which can extract the maximum information from the
data. Such an algorithm must be able to handle multi-input,
multi-output responses, must correct for measurement errors
(errors in instrumentation) and process noise errors (random
wind tunnel turbulence), and must consider interaction between
many modes. An on-line or real time technique is required
‘and it should be able to handle modes with low damping ratios
(0.01 to 0.10), characteristic of structural modes near regions
of aeroelastic instability.

3.2 PROBLEM DISCUSSION AND MODEL REPRESENTATION

The dynamic relationships between the inputs and the out-
puts may be expressed in several forms. For the purpose of
measuring dynamic stability in the 40- by 80-foot wind tunnel,
a general model is most suitable since the mode shapes are not
known a priori and may change with test condition. The model
may be either: (a) modal state variable or autoregressive
moving average (Appendix A), (b) discrete time or continuous
time, and (¢} in time domain or in frequency domain., The ARMA
representation is better than the state variable form because
approximéte values of natural frequencies and dampings

(required in parameter estimation in model state variable rep-

resentations) of the modes are not available. The comtinuous



time representation is used, in spite of discrete measurements,
mainly for improved numerical conditioning, when the damping
ratios are small (less than 0.10). The algorithm is developed
in time domain and is subsequently converted into frequency
domain for covenience of implementation.

For the multi-input/multi-output systems, there are sever-
al forms of the continuous ARMA representation (see Hanman [29]

for corresponding discrete ARMA representations). We use the
following

n N Ry

s aly™ =z pu™ ez oo v (g
i=0 i=0 i=0

0<t<T

a =1, C, =1 (3.1)

where ysRP, uaRq, vaRp, BistXq, CistXp, aisR and (-)(i)
denotes the ith differential of (*). The order of the model

n 1is twice the number of modes. ng is the number of zeros

of the transfer function between the outputs and the inputs and
n, is the number of zeros of the transfer function between the
cutputs and noise. ny and n, are usually equal to or less
than n. Since ai's are scalars, the poles of the system

are roots of the equation

n
z a.s" = 0 (3.2)

which depends only on parameters a; (that is why we use
the form of Eq. (3.1)). Matrices Bi together with a; deter-
mine the input/output transfer functions, i.e.

16



n .
v (s) A(s) § B.s u(s) . (3.3)

where
A(S) n nfl n-2

il
t
l_
Nl
=

N
+
o
th
+
.l..
o

(3.4)

3.3 PARAMETER ESTIMATION

As mentioned in the previous section, the input/output
transfer function depends only on coefficients a; and matrices
Bi' Therefore, in the measurement of dynamic stability it is
of major interest to estimate these parameters accurately.
Matrices Ci give the noise-output transfer function and need
not be estimated. The presence of correlated noise terms,
however, precludes straightforward application of the least
squares method.

Instrumental variables is an ideal techunique for such,
application. Developed initially by econometricians, it was
studied in detail by Wong and Polak [23] and recently applied
to vehicle estimation problems by Gupta and Hall [Z28]. To
explain the technique, let us comnsider a static system, where
the p outputs y are related to the pxm independent

variables X and m parameters © by the equation
y = X8 + g (3.5)

where & 1S a zero mean white noise with unit covariance. If

e and X are uncorrelated, an efficient estimate (one with

the smallest mean square error) is

b = ()7t xTy (3.6
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The mean and covariance of eLS are

E[E(6, o) - 0] [E(® o) - 8] = (x'x)7}

{3.73
where E{(+) 1is the expected value of (.). However, if e and
X are correlated, the least square estimator is biased

1

E( -0+ (xX'x ! s xTey (3.8)

OLs)
An instrumental variables estimator could give unbiased esti-
mates. In this method, we select a pxm matrix, Z, which

is uncorrelated with . Then,

1 .T

.. = zixy 1 2Ty - (3.9)

IV
This estimator i1s unbiased. The accuracy of the estimate
depends upon the choice of Z.

The application of the instrumental variables technique
to the estimation of ARMA parameters is described in Appendix
B and shown schematically in Figure 3.1. The following high-
lights of the algorithm are especially pertinent:

(1) The estimation of parameters using the instrumental
variables approach requires the solution of a set
of linear equations. These equations have a very
specific form for the multi-input, multi-output
case. This specific structure must be utilized to
save computation time and storage.

(2) The elements of the matrix in the linear equations
depend upon the Fourier transforms of inputs and
outputs. A fast Fourier transform should be used

for this purpose and, if feasible, 2% data points
should be collected, where o 1s an integer.
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(3) The algorithm is flexible in that the frequency range
of interest may be selected a priori.

(4) The inputs and outputs may be scaled for better
numerical conditioning without affecting pole and
zero locations.

3.4 MODEL ORDER DETERMINATION

In real time estimation of dynamic stability, the number
of important modes is not known, particularly in complex aero-
elastic models. Therefore, it is often necessary to estimate
the number of significant modes in the output measurements.
Methods to determine model order have been described by
Akaike [30] and Tse and Weinert [31]. These techniques are
applicable for systems driven by unknown random inputs.

We propose here a fundamentally different approach to the
probiem of estimating the order of the model based on input/
output measurements. The basic idea is as follows. If the
specified model order is lower than the true model order, the
identification algorithm in this chapter will give incorrect
estimates of poles and zeros. If the specified model order
is the same as the true model order, correct poles and zeros
will be identified. However, if the specified model order is
higher than the true model order, there will be many superflu-
ous poles and zeros in addition to the true poles and zeros.
The superfluous poles must approximately cancel out the super-
fluous zeros. Therefore, if we specify a maximal model order
in the algorithm of this chapter, the true model order could
be obtained after the transfer function is simplified by
cancelling the poles and zeros which are very close to each

other.

The identified transfer function may be simplified as fol-
lows. First, poles and zeros which are very close to each other
may be eliminated reducing the order of the transfer function.
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Second, the poles and zeros outside the frequency range of in-
terest may be removed. Let the identified transfer function be

n
z
G I (s-zi)

TF = —i=t (3.10)
n
Hp ( )
S-Pp-
i=1 t
Let the first j -zeros and j~ poles be at o << w_. ~ and
the last k zeros and k° poles be at w >> C—. Then the
above transfer function may be simplified to
R nz-k
Il (-z.) (s-z.)
i=n_-k+1 1 _g =
. s z i=j+1
TF % Gsd 7] 1 XK
P P
il (-p;) I (s-p;)
i=n_-k’+1 i=j +1
n_-k
I (S'Zi)
- rod-i o i=yrl
G’s " (3.11)
_H (S—pi)
i=j +1

3.5 APPLICATION OF THE MODAL ESTIMATION ALGORITHM TO GROUND
RESONANCE SIMULATION DATA

A simplified model for the ground -resonance phenomenon

is

21



where

} 1 an
I, 0 se 1[81c Con 2L 0
0 I, 0 U0 IR 3 P 0
S, 0 My || 0 0 M 2C
I, (vZ-1) C 0 ¢
£ ¢ /% 1c
2
o Crpg T (VERL) 0 ¢

Clc’ £1s are cyclic lag modes;
y is lateral hub motion;

F 1is the shaker input;

IC’ S§’ lag inertias = 1;
My, support mass = 30

Cy’ support damping = 0.05
wy, 'support frequency = 5 Hz
VC, lag frequency = 0.25

CC’ lag damping; and

©Q, the rotor speed = 10 Hz.

li
<o
1

(3.12)

Time has been nondimensionalized with the rotor speed. A linear

simulation was conducted at 10 Hz rotor speed with the lag damp-

ing of 31.4. Using Eqs. (3.12), the poles and zeros of the trans-

fer function between the lag modes and lateral motion vs. the

shaker input are shown in Table 3.1.

A sine sweep input is



Table 3.1
Poles and Zeros of the Ground Resonance Simulation

POLES
NATURAL DAMPING
MODE EIGENVALUE FREQUENCY FACTOR
Upper-Lag -.287 + 1.164] - 1.20 .239
Lower-Lag -.224 + 8675 | .896 .250
Lateral Hub -.0230 + .503j .503 .0457

QUTPUT 2, OUTPUT &y, LATERAL HUB POSITION, ¥
-1.25 -.25 -.271 + 1.00j
ZEROES .75 0.0 -.229 + 1.00j
- 0.0 0.0
0.0
GAIN .0345 .069 .0345

applied and 512 measurements arc taken at intervals of 0.5.

The algorithm of Section 3.3 is azapplied to determine the effects
of: (a) time delay parameter t in the instrumental variables
approach, (b) output noise level, (c) outputs used in estima-
tion, (d) number of data points, and {(e) discrete frequency
noise, on poles and zeros estimation accuracy. In the applica-
~tion of the algorithm, the nondimensional frequency range of
interest is limited to 0.4 < w < 1.2 and the numbers of poles
and zeros in each transfer function zre specified to be six

and five, respectively.



Effect of Time Delay Parameter 1

Table 3.2 shows the estimated poles and zeros between
ocutputs Clc’ gls and y and the shaker input as a function
of the time delay parameter t when each output is contamin-
ated by 10% random noise. Since the system is of order 6, the
instrumental variables approach requires a value of t exceed-
ing 12 sample points or 6 seconds. The estimates of the poles
are shown in Figure 3.2. Note that the estimates of the poles

are most accurate at t = 10 sec. As explained before, the
estimated transfer functions for +t = 10 may be simplified to:
€1¢5)  o4325%(s - .513)
F(s) A
815(5)  0117s(s +.589)(s .667 * .205j) :
T(s) A (3.13)
y(s) .0291(s + .245 * .937§)(s + .202 * 1.05j)
F(s) A

A= {s+.0233+%.503j)(s+.221 +.854j) (s +.267 *1.15j)
(3.14)

Note that the estimates of poles are more accurate than those
of the zeros. This is because all three outputs contain in-
formation regarding the poles while the information about the
zeros of any particular transfer function is contained only in
one output.

Effect of Output Noise Level

Keeping the time delay parameter fixed at 10, the output
noise level is varied. Table 3.3 shows the poles and zeros
for variocus noise levels up to 100% (see also Figure 3.3).
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Table 3.2

Effect of Time Delay Parameter t on Estimates of
Poles and Zeros
SIMULATION T=10 T =2 T =10 T =20
-.287 + 1,164 | -.124 + t.0983) -.149 + 1935 | - (267 + 1,155 | -.285 * 1.124;
POLES -.228 ¥ 867 | -.122 + .87S] 151 8713 | -.221 + .8645 | -.223 + .854j
-.0230 + 5033 | -.0245 + .504j | -.0244 + .5043] -.0233 + .503j | -.0232 + .5033
2 (s) -1.25 -.218 + 1.02j 330 + 1,115 | -1.64 + 1.48) | -.896
Te
“Fis] | ZERGES .75 .285 + .439j .302 + 4013 .513 . +.698, 175.7
0.8, 0.0 -.581 - .481 - .0138, ,114 | ~-.0167+.0687j
GATN .0345 .0359 .0308 .00307 -.000191
- .25 -.202 + .9883 .334 + 1,025 | .667 *+ .205j .266
=1s(3) | zeroes 0.0 109 + 333§ .108 + 361§ | -.589, -.n387 | -.191 + .780§
F(s] 0.0 a0 4.56 7.47 -2.93, 2.83
GAIN .069 -.0113 -.00847 -, 00156 -.00605
-.229 + 1.00§ | -.0867 +1.005]| -.112 £+ 1,10 | -.262 + 1.05] | -.18 + 1.04j
F(:) ZEROES | -.271 + 1.00 | -.103 + .882j 132 + .889j | -.245 + 937; -.287 + .891j
21.0 20.2 15.0 1.8
GAIN .0345 -.00141 -.00146 -.00194 -.0023
16 '
e S
{184
07
SIMULATION POLE 1.0
LOCATTON }
10
W IMAGINARY
20 5 2 1 PART
]
{ ! 1
-.30 .20 -.10
REAL PART
NOTE: The scale on the x-axis is five times larger than the scale on the y-axis ‘

Figure 3.2

Effect of 1

Conjugate Poles Not Shown)
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Table 3.3

Estimates of Poles and Zeros for Various Output Noise Levels

Figure 3.3

NOTE:

The scale on the x-axis is five times larger than on the y-axis.

SIMILATION | 0% NOTSE 5% NDISE 108 NOISE 20% NOISE 507 NOTSE 1001 HO1SE
-.0230+ 5034 { -.0230 + .5034| ~.0231£.503] | -.0233+.503] | -.0237 ¢ 5025 | -.0251+ .5025 | -.0277+ 5001
-.220%.867) |-.226%.867) | -.2244.8655 | -.22V+¢ 8645 [ -.210%.865) | -.190+.8735 | -.185+.861}
POLES - 287+1.1641 | -.28940.16) | -.2825 1,165 | -.26747.185 | -.22740.185 | 125+ 0045 | -.074441.13f
-1.25 L0834 -.0514 -.0130 L0338 .0620 .252
.75 -.0815 L0885 14 .251+.145§ | .188+.3223 109 + . 362§
Erefs) | zenoes 6.0 .730 .636 .514 -804+ .48 | <0s9e1.21y |- .0769+1.16)
Fis) 0.0 -L22 -1.543 -1.6441.443
18.24 -9.63
GAIN .0345 -, 00156 .an2s7 60907 0213 L9514 0651
7
0.0 -.0937 L3¢ .18 J667+.208] [ .0897+.2973 [ 0026+ 3845 | 0869+ .03
0.0 .0889 -39 R -1.392.8220 | -.283+0.26] {-.122+1.19)
yels) | zenees -.245 -5.5] -.0387 -28.07 -5.35 .3.94
Fis] 5.745 5.563 7.47
-8.72
GAIN L0689 -.00109 -. 00165 -.00156 .C00531 .00683 .01zt
- 271£1.00§ (-.272%.975) | -.2634.983f | -.245+.9375 | -.204% 921 | -.124+.504) | -.0583 ¢ .085)
5t ZEROES | -.22941.00§ |-.225+1.02) | -.21421.033 | -.202%1.08] | -.17431.08f | -.827+ .11y | -.0350+1.09)
12.27 13.1 15.0 25.98 18,6 -6.28
GAIN L0348 -.00234 -.00222 -.00194 -.00113 00166 00559
0 10 20
50 100
7 —
SIMULATION POLE ~ 1.0
LOCATION
0 10 20 50 100 % NOISE IN OUTPUT
IMAGIRARY
PART
wo M
] i 1
-.30 -.20 -.10 0
REAL PART

Effect of Noise Level of Estimates of Pole

Locations (Complex Conjugate Poles Not Shown})
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Many of the estimated transfer functions may be simplified as
- shown before. '

Effect of Outputs Used in Estimation

» For a2 10% noise in outputs and 1 = 10, Table 3.4 shows
the effect of outputs on the estimation accuracy of poles and
zeros. Note that none of the outputs can individually estimate
211 the poles accurately. However, a combination of ocutputs,
particularly Clc’ Cls and y, gives excellent estimates of
all poles and a reasonable estimate of the zeros.

Effect of Number of Data Points

The estimates of poles and zeros obtained using 512 points
are compared with the estimates obtained using only 128 and
256 points in Table 3.5. The sampling interval is kept fixed
at 0.5, the noise level is 10% and t is 10. The estimate of
the damping factor for the lateral hub mode deteriorates quite
significantly when the estimate is based only on 128 points.

Effect of Discrete Freguency Noise

Table 3.6 gives the estimates of poles and zeros when the
outputs have various levels of one per rev noise in addition
to the 10% random noise. Again t is set at 10 and the fre-
quency range of interest is set at 0.4 < o< 1.2. A 10% omne
per rev noise causes a large error in the estimates of the fre-
quencies and dampings of the system modes.

Next, the frequency range of interest is reduced ta
0.4 < < 0.95 and 1.05< w< 1.20 to reject the one per
rev noise. The new estimates are shown in Table 3.7. ' These

estimates are more accurate than the estimates of Table 3.6.

[AN]
-1



v6100° - 26E00°- £6100° - She0” NIV9
0°6l SL°¢ 894t $)4
£50°L + 202°- | el L+ 2Ll - fol"1+0s200°~ £00°L + 622°- | S3o¥3z s
fL€6° + sv2°- | f916° + £02°- fv98° + £620° - foo't + 1L -
96100° - 285000° - £900" - 8GO - 690° NIV
't 59" (-
18€0° - 1.°82- 625"~ [8ES" + 109" (s)4
685°- | fOE"L + 00°L- 951" vig - 00 3037 | ()51,
(502" + L99° £00E" + 6260° 9£80 " - rgeb" + 602" - 0°0
1Le 62°-
L0600 + 06£00°+ ¥1600° - SbED” NIVD
fob L + v9°1- 85°L- 50"y~ 0°0 (s)4
v1S® ‘vLL” Foee" + 219°- fiz-1+o00°L 00 SIUIZ | (571,
0£10°- f1zz° + goc° fLve +6010° SL°
gz 1-
fsi 1+ 292~ foz"L+z6l - fpr-t+¢e2°- | FLL" L+ 910" fbo L ve92"- | foe-L+s59c"- | Cpot-1+482°-
v9g-¥122°- | fers vecl- | fees 71tz - | fese  F1ov0°- | fzor Fovz'- | fowe Fsc2°- | fro8 Tvazz - $3104
fe0s" +€£20°- | Feos°+8220°- | Fyos” +€£20°~ | feos” Feez0 - | FL0S° ¥9120°- |Foos” +0220°- | Feog" F€20°-
: S A

Jo

uotrlewrlsg ul psasn sanding
s195 Sutkiep J10JF SuoTldUN] I9FSUBRL] JO SO0Id7 pue SI[O0J FO SOIBUTISH

V¢ S19elL

28



Table 3.5

Effect of Length of Data Estimates of Poles and Zeros of
Transfer Function

SIMULATION | 128 POIHTS 256 POINTS | 512 POINTS
-.0230 + .503] | ~.0385 + .4965 | -.0232+ 5033 | -.0233+ .503;
POLES -.224% .867] | -.223+.855) | -.235+.8625 | -.221+.86¢
-.287+1,168§ | -.308+1.135 | -.307+1.13] | -.267+1.15]
-1.25 -.0445 -.185 -.0130
gcls) | zeroes | .75 -.3824.337; | .238 114
#(s) 0.0 967 507 513
0.0 4.95 -23.3 -1.62+1.48]
BATN 0345 -.ale .00241 00907
o .25 .34 .264 667 £ .205;
“18'%/ | zEroes | 0.0 -.208+.433f | -.200+.273 | -.589
Fis) 0.0 1.97 -2.91 -.0387
a.27 3.15 7.47
GAIN 069 -.00862 -.00871 -.00158
‘ -.271+1.00f |-.218+.8195 | -.297+.8%0] | -.265+ 637
¥is) ZEROES | _ oog 4 . 1 ones -
e 2294700 {-.118+1.08] | -.135+71.08; | -.202+1.055
_ 1.78 1.32 15.0
GAIN .0345 -.0308 0124 -.00194
Table 3.6

Effect of 1/Rev Discrete Frequency Noise on Estimates of

Poles and Zeros (Random Noise 10%, t =10,

A< w<1.2)

. 502 1/REV 20% 1/REV 102 1/REY 12 1/REV
SIMULATION NOTSE NOISE NOISE KOISE
-.0230 * .503j | -.0350 + .4975 | 113 -.0232 + 5021 | -.0233 + .503]
POLES -.220 + 867§ | -.0621 +1.00§ | -.0286 + .497j| -.416 + .726) | -.227 + .@543
-.287 + 1.1643 | -.868 -.184 + 988§ | -.213 % .9935 | -.278 % 1.14]
1.17. -.693
N -1.25 71 + 561 .0748 .31 + 3245 | -.0120
57| RO |7 307 + 9685 | -.806 + 2235 | .3i0: .222; | .10
0.0 1.79 .250 + .593j | -7.91 .520 :
0.0 -2.16 + 1.06
GATH [0315 0817 ~0430 00826 00727
£ (s) -.25 -.300 211 #4925 | -.176 + .276] 531 + 174
| zmoes | 0.0 208 + 6195 | -.m@+ .47 | .33 -.473
0.0 -.348 + .987; 2.9 -.759 -.354
Lo - 5.12
GATH 069 148 -.0za1 -.0315 -.00264
_ -.271 + 1.00] 0514 + 9185 | .217 -.550 + .689] | -.269 + .963]
(s} | zemoes | -.229 + T.00f | -.849 0514 + .9425 | 101 + 9865 | -.198 + 1.01j
Fle) .986 + 1.58] | -.942 -37.8 16.17
-77.16
G | .0305 -.0165 000385 000733 -.00180

29




Table 3.7

Effect of 1/Rev Discrete Frequency Noise on Estimates of
Poles and Zeros (Random Noise 10%, t =10,
A< o< 95, 1.05 < o< 1.20)

50% 1/REV 202 1/REV 101 1/REV 12 1/REV
SIMILATION NGISE HOISE NOISE ROISE
0230 + .503] | -.0223 + .504] | -.0232 + .503] | -.0234 + .5033 | -.0235 v .603]
POLES ~.224 + .867) | -.182 + .660j | -.240 + .8025 | -.223 + .8345 | -.207 + .850]
287 + 11645 | -.184 £ V.02 | -.238 4 1.065 | -.207 # 105 | -.237 & 1144
1,25 130 + 542 366 + 2815 | 354+ 1795 | -.191
¢, (s) | ZERoEs | .75 297 + .506] | -.350 + 3885 | -.351- 344 + 1325
Tl 0.0 -1.28 6.75 -.863 -1.29 + 1.213
0.0 : -3.56
GAIN 0345 0197 00654 00831 “20
_.25 150 + .3445 | -.0516 0463 L0883 + 1793
“15'8) | zeroes | 0.0 367+ 618 | 275 RE] -.953 + .495;
FsT~ 0.0 1.65 488 + 5195 | -.666 + 4745 | 3.28
1.46 2.00
GAIN 069 -.0373 -.0253 -.0153 -.00706
-.270 + 1.00] | -.185 + .605§ | -.358 + 7843 | -.347 + .910§ | -.172 ¢ .940§
s ZEROES | -.229 + 1.00j | -.0183 + .9403 | -.0768 + .9673 | -.115 + .973] | -.254 + 1.06]
Fis 5.43 7.22 14.98 -246.8
GAIN 0345 -.0800 -.00452 -.00193 000109

3.6 APPLICATION OF THE MODAL ESTIMATION ALGORITHM TO SIMULA-
TION DATA OF A CANTILEVER WING WITH ROTORS AT EACH WING
TIP

The symmetric motions of a cantilever wing with rotors
at each wingtip are approximately described by a 9-DOF model
discussed by Johnson [5]. Of the four possible inputs, we will
restrict our discussion to the collective pitch input, 0,
Two outputs which will be considered are the vertical wing
bending, Ay and chordwise wing bending, q,. The poles of
the system and the zeros between the outputs a4 and q, and
the collective pitch input are shown in Table 3.8. Note that
in the ql/eo transfer function, four complex zero pairs

approximately cancel four pole pairs, while in the q7/9O

30



Table 3.8

Symmetric Modes of a Cantilever Wing

NATURAL DRMFING
HODE POLE FREQUENCY* | FACTCR, ¢
Caning (8,) -0.2095 +2.5548] 2.5633 .08174
Upper Inplane (Cﬂ) -.07283 + 2.4345j 2.4355 .0299
Uppé§+?”t‘°f‘FTa“e -.3016 * 1.8545] 1.3788 1605
Wing Tarsion (p) -.07785 + 1.344j 1.3462 .0578
. o
‘1"%qcn§”d“‘se -.02838 + .66GT] 6667 0426
W2
e i
M1n%qve§t1ca1 -.01974 + 39855 .398 .04798
W
‘[-
L”“?E i?“ ane . -.08328 + .3386] .3em .255
aneg ?L)‘t'af'mane -.312 + 17633 .358 871
5 ' -. 1845
v -.04313
OUTPUT g QUTPUT g,
-.0758 = 2.435] | -.328 * 8.73]
L0117 £ 2.05j 0673 * 2.43
-.297 + 1.338f -.303 + 1.85]
ZEROES | -.141 + 1.06%3 -.0760 + 1.34]
.0762 + 6213 -3 + L1735
-.320 + .145] -.0196 + .399]
-.0939 + .323 -.0890 + .33€]
-.0159 -.00308
1.0 ‘ 0.0
GAIN | -.0121 .00198

*Per rev

transfer functibn, six zerc pairs approximately cancel siXx
pole pairs. In fact, in the frequency range of interest,
0.2 < w < 0.75, the transfer functions qlfeo and qz/eD
may be written as (see Egs. (3.10) and. (3.11))

q, (s) 00498 (s - .0762 + .6217)

8, (s) T T (s +.0284 + .[666j)(s +.0191 + .359857)
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als) L0230
eo(s) (s +.0284s + .666j)

A simulation was conducted using a sine sweep collective
pitch input. The outputs q, and q, and the input 80 were
sampled at intervals of 0.5. 512 samples are used in the iden-
tification. The frequency range of interest is 0.2 < w < 0.75
and a 5-DOF model is specified. The identified poles and zeros
for two cases are given in Table 3.9. It is clear that many
estimated poles are close to estimated zeros. When output

Table 3.9

Identified Poles and Zeros for Cantilever
Wing Simulation Data
5 Modes, t = 10, 512 Points, 0.5 Sec Sampling
0.2 < w<0.75

QUTPYTS USED IN SSTIMATION
SIMULATION 4, a4 AND ay
-.0284 + 666 -.0257 + .5663 -.0283 + .861j
=.0131 + .398] .0068 + .437] -.0137 + .385]
POLES -.0885 + .335§
=312+ 178§ -.038 + .158]
-.144 . -0t & L 129]
-.0432
0.0 + .694] -.002 + .691]
01+ 6165 015 = 5325
-.0196 + .39¢j -2.72 -2.81
-.0311 3 173§ 0.0 + .691] -.905 + .637j
qz(s) zeRoEs | --0889 £ .336]
W 0.0 .010 + .615] L0119 + 532
0.0 L0028 + .435j -.0193 * ,393]
0.0 + .155] 0318 + 154§
GAIN .00793 .00799
.0762 + .621) -2.08
-.340 + .745j -.0037 + .6923
91(s) | zeroEs | -.0939 & .323j 0671 + 5233
W -.013% .Q154 = ,538]
g.Q .0382 = .150]
GAIN -.002086




‘qz is used in estimatiOn, the estimated transfer function is
approximately

AL .0216
6,(s) ~ (5+.0257 + .6663)

When the outputs Qq and q, are used in estimation, .the
transfer functions may be simplified to

a;(s) .00424(s - 0671 + .623})
§_T5) (S+.0285 = .061J) (S * . 0137 ¥ - 3957
a;(s) 0225

GO(S) - (s +.0283+.6613)

This shows that when the specified model order is much higher
than necessary, enough poles and zeros cancel out to give a
low order transfer function. Also, the estimate of the chord-
wise wing bending mode improves when both outputs aq and q,

are used in estimation.

3.7 CONCLUSIONS

A new algorithm based on the instrumental variables ap-
proach is developed for dynamic stabhility estimation from
input/output signals. A preliminary evaluation of the algo-
rithm on simulation data of low order models demonstrates 1its
effectiveness in estimating frequencies and damping factors of
important modes.
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CHAPTER IV
APPLICATION TO XV-15 SIMULATION MODEL

4.1 INRODUCTION

The on-line modal identification algorithm of Chapter III
was demonstrated on low-order models. This chapter describes
the application of this algorithm to high-order simulated data
from an XV-15 math model and examines both algorithm character-
istics per se, as applied to this model, and its ability to
identify XV-15 aeroelastic modes of interest across the air-
craft's flight envelope.

The following sections present a description of the XV-15
math model used in this investigation, and discuss the ability
of the algorithm to identify prominent XV-15 structural modes
from measurements of the model states or, altermatively, from
measurements (obtained from a typical wind tunnel test) com-
prised of one or several model states. The math model is con-
sidered in Section 4.2. The application of the algorithm to
time histories of symmetric and antisymmetric motions 1is
described in Sectiomns 4.3 and 4.4., respectively, and a sum-
mary of results is given in Sectiom 4.5.

4.2 XV-15 ANALYTIC MODEL

The XV-15 model used in this study is a linear simulation
of the elastic airplane mounted on the model support system of
the NASA full-scale (40- x 80-ft) wind tunnel. The model,
furnished by NASA and described in Ref. 5, utilizes predicted
XV-15 structural characteristics and configuration parameters,
and contains a total of 13 degrees-of-freedom: ten of the
aircraft and three of the support system, in each of a set of

symmetric equations and a set of antisymmetric equations.

FRECEDING PAGE BLANK NOT FILMiz
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These degrees of freedom, and their associated modes, are
identified in Appendix C, Table C.1. Since each equation set
contains 13 modes, it has a characteristic equation of 26th
order. This model has produced, in previous investigations,
results showing very good agreement with experimental data
[3-5].

Typical XV-15 dynamic characteristics are shown by the
symmetric roots plotted in Figure 4.1. A number of low-damped
oscillatory roots are seen along the Jw-axis; these roots
include the wing bending and torsion and wind tunnel balance
modes. Higher-damped rotor modes are seen farther left of the
jw-axis. Typical damping ratios of the former are on the order
of 1 to 2%. These roots change with airspeed and airplane
configuration (pylon angle), and as illustrated by arrows in
this figure, tend to move toward the jw-axis with increasing

speed.

NASA-derived dynamic model data used here consists of
the coefficient matrices of the dynamical equation, in NASA

formulation,

Azi * Ajx + Ajx = Bu (4.1)
where x and u are described in Table C.2Z (Appendix C), the
AO, Al’ and Az matrices contain system aerodynamic, struc-
tural, and inertial characteristics, and B is a control or

disturbance input effectiveness matrix. The elements of these

matrices vary according to flight condition.

This equation may be easily rewritten to treat the degrees

of freedom as state variables:
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[#5
I

Fx + Gu + T'g
(4.2)
y = Hx
where x, ¥y, u, and g are defined in Table C.2 (Appendix
C), and F, G, I', and H are the system, control, gust
disturbance, and observation matrices, respectively. From this

analytic formulation are computed the system eigenvalues,
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transfer functions, and time histories used in this study.
The analytic results are, of course, identical to those from
the NASA equation formulation.

4.3 APPLICATION TO XV-15 SIMULATION MODEL: SYMMETRIC MODES

Six flight conditions representative of XV-15 free-air or
wind tunnel testing are selected as test points at which the
XV-15's dynamic characteristics would be computed and the
algorithm's effectiveness in identifying roots investigated.

The six flight conditions are shown in Table 4.1. This exercise
applies the algorithm to time history data containing thirteen
dynamic modes and is representative of the application for

which the algorithm was developed.

The approach taken here in generating and identifying
XV-15 dynamic characteristics is illustrated in Figure 4.2,
indicating that simulation time histories are computed as a
substitute for experimental data. The objective of this
exercise is twofold: (1) to investigate the basic character-
istics of the algorithm per se and the effects of algorithm

Table 4.1
Selected XV-15 Flight Conditions

CONGITION VKTS aP(°) £, RPM
1 0 90 565
4 80 82.3 . 565
3 100 60 565
4 120 30 565
5 160 0 458
6 200 0 458
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Figure 4.2 XV-15 Simulation Mode Identification Procedure

modifications on mode identifications, when applied to high-
order data; and (2) to investigate the algorithm's ability

to identify specific XV-15 modes that would be of interest in
a test situation. 1In each case, the results of interest are
the accuracy of identification of frequency and damping ot
critical modes and the overall placement of transfer function
poles and zeros, judged by comparison to the analytical Toots
determined from the state equations. In the first part,
measurements of airplane states are used directly for identi-
fication; in the second, the time histories of horizontal

and vertical wingtip deflections are computed and used as
measurements, more realistically simulating experimentally
available data.

To evaluate basic algorithm characteristics, the simula-
tion model at flight condition 3 is excited by a random
collective pitch input and the resulting time histories of
wing rertical and chordwise bending motions [ql and Pr

respectively) are used as measurements. The random control
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input is white noise, filtered with a low pass Martin-Graham
filter having a constant response up to 0.94 rad/sec and
1.57 rad/sec cutoff frequency. The measured input frequency
spectrum is shown in Figure 4.3; the corresponding autocor-

" relation characteristics of the input time history are shown
in Figure 4.4; and an example of this time history is shown
in Figure 4.5.

It should be noted that all frequencies in this study are
non-dimensionalized with respect to rotor RPM; thus, a fre-
quency of 1 rad/sec actually represents a frequency of

Q (RPM) 2n0
60 12 T Hg

The effects of the following algorithm parameters are

rad/sec, true scale.

investigated: (1) assumed model order; (2) time delay para-
meter, 1; (3) specified number of zercs; (4) the use of two
measurements; (5) the effect of specified frequency range; and
(6) the effect of various forms of scaling within the algorithm.
The results obtained are as follows:

(1) Model Order. Altering the number of poles and zerocs
specified for the algorithm (i.e., altering the
number of degrees-of-freedom) changes the locations
of all the roots. Figure 4.6 shows the effect of
assumed model order on the damping of modes identified
from q; and q, measurement time histories. Best

identification of this system was obtained with modal
orders of 8 to 12.

(2) Time delay parameter. The recommended value of =
- depends on model order and sampling interval, as

1T = 2%n*At,

Figure 4.7 shows that using values smaller than
recommended may lead to large errors in damping.

{(3) Number of zeros. The number of zeros specified is
generally equal to, or one less than, the number of
poles. The damping values are sensitive to this
parameter, as seen in Figure 4.8, and different modes
may be affected in different ways.
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Frequency range. Restricting the frequency range
over which the algorithm identifies a model may im-
prove the identification by eliminating extraneous
frequencies, but it also reduces the amount of infor-
mation available. The specified range is thus a
compromise; in general, a wide range (e.g.,

0.1 < w< 0.9) 1is desirable, and frequency scaling
in some Instances yields improved results. This s
discussed next.

Scaling. Because of several numerical operations
performed in the algorithm, the magnitudes of the
quantities considered can affect identification
accuracy due to computer roundoff and program trunca-
tions. Specific conclusions are:

(a) Scaling FFT output within the algorithm by a
large multiplicative constant may be required to
ensure convergence of external equation-solving
and rooting routines used by the algorithms
implying the need to '"tailor" the algorithm to
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the computer system it is run on. Further,
scaling the measurement and control input FFT's
by their respective RMS values was found to
lead to a substantial increase in accuracy in
the two-measurement case, as seen in Table 4.2.

(b) Scaling the frequency range such that the maxi-
mul value is unity leads to better mode identi-
fication in some cases through computational
improvement.

{c) Scaling FFT output to give a higher weighting
to data near the natural frqeuency of modes
improves identification accuracy. This is il-
lustrated by comparing the root predictions of
Figure 4.9, without scaling, to those of Figure
4.23 (which will be discussed below) with such
scaling.

Figures 4.10 through 4.17 show a series of trial identifi-
cation runs using the q, measurement and varying the para-
meters discussed in items (1), (2), and (4) above, illustrate
that, in this case (where the poles are well separated from
other poles or zeros): (a) decreasing the frequency range
improves the pole identifications, and (b) successive reduc-
tions in assumed model order yield nearly equivalent pole
position estimates until the sixth-order model (three degrees-
of-freedom) is reached, at which point the roots become poorly

identified.

- Table 4.2
Effect of Measurement Scaling

MEASUREMENT ORDER 5 a, St
g, UNSCALED 16 | -.0033#.295] | -.0080+.5513 | -.0088+.392]
a, SCALED -.0035+.295] | -.0092¢.591j | -.0092+.392j
ay + 2, UNSCALED 12 -.0085+. 291 -- -
4y * a4, SCALED -.0095+.2945 | -.0031+.5495 | -.0069+.395]
ANALYTIC VALUE -.0097+.2925 | -.0106+.573 | -.0098+.397;
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From these and a large number of additional trial identi-
fication runs, it is concluded that the assumption of a large
model order, e.g., 10 or 12, represents a good starting point
for identifying modes of this system. Reductions in model
order and selection of frequency range are somewhat dependent on

the particular root locations of a given flight conditiocn, and
different simplifications may be obtained in different flight

conditions. The application of the algorithm for greatest
accuracy is thus empirical to the extent of requiring engineer-
ing judgment in the selection of these algorithm parameters.
Additional development effort is being directed toward removing
the need for this operator interaction.

The algorithm was next applied to simulated time histor-
ies of symmetric wingtip deflection, of which horizontal and
vertical components were computed from the values of state
variables using the equations and constants described in
Table C.3, Appendix C. The actual states, as defined in this
study, cannot be measured directly in an experimental situa-
tion, whereas wingtip deflections may be calculated using
accelerometers or strain gage instrumentation on the wing.

The model was excited by random inputs to either collective
pitch or flaperon deflection, using the same random noise and
filter as above. This 1s, again, representative of an experi-
mental condition. Mode identifications were performed in each
of the six flight conditions identified in Table 4.1.

The symmetric XV-15 modes of most interest during wind
tunnel testing are the wing vertical and chordwise bending,
wing torsion and longitudinal support strut modes. The root
locations of these and other modes are plotted in Figures 4.18
to 4.28, with system zeros shown for each of the collective
pitch and flaperon input cases. The movements of poles and

zeros due to changing flight conditions and configurations
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may be noted. Complete tabulations of the transfer function

poles and zeros are shown in Appendix C, Tables C.4 to C.9.

The roots identified by the algorithm from the X
and ZTIP
tical roots in Figures 4.18 to 4.28. Again, only roots in the

TIP
time histories are shown superimposed on the analy-

low frequency range of interest are shown. The algorithm
contains a wide frequency range specification (0.1 < w < 0.9)
and utilizes scaling as discussed in items 5(a) and 5(c)
above. In nearly all cases, good accuracy is seen in the pole
locations for the modes of greatest interest, while somewhat

more scatter is seen in the zeros.
4.4 XV-15 MODEL IDENTIFICATION: ANTISYMMETRIC MODES

The roots of the antisymmetric modes at each of the six
selected flight conditions are shown plotted in Figures 4.29
to 4.39, for the frequency range of interest. Complete
tabulations of transfer function poles and zeros are given in
Appendix C, Tables C.10 to C.15.

The antisymmetric roots of most interest are the wing
vertical and chordwise bending, wing torsion, and strut lateral
(side) deflection. As in the symmetric case, these roots tend
to become less stable as airspeed increases.

Figures 4.29 to 4.39 show the identification of these
roots by the algorithm, superimposed as before on the analyti-
cal roots.

4.5 SUMMARY
This chapter considers the ability of the algorithm dis-
cussed in Chapter III to identify specific modes from time

history data containing many degrees of freedom (in this case,
13). An analytical model of the XV-15 aircraft mounted in the
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40- by 80-foot wind tunnel is used to provide representative

simulated time history data. The conclusions from the work

of this chapter are:

(1)

(2)

(3)

(4)

(3)

In most of the flight conditions examined, important
aeroelastic modes are identified with good accuracy
from time history measurements of wingtip deflection.

The algorithm can accurately identify modes in widely
differing flight conditions without modification of
algorithm parameters.

Certain pole-zero characteristics of the system are
poorly identified and require interaction by the
analyst to modify controlling parameters of the
algorithm, such as assumed model order or frequency
range.

In general, the number of modes assumed in the model
should be equal to or exceed the number of modes
actually present, for greatest accuracy.

The general "rules'" described in Chapter III for

selecting algorithm parameters give generally the
best results with XV-15 data.
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CHAPTER V
APPLTICATION TO CANTILEVER WING WIND TUNNEL DATA

5.1 INTRODUCTION

Tests were conducted by the government on a scaled canti-
lever wing model in the M.I.T. wind tunnel for the purpose
of measuring dynamic stability. Runs were made at four tunnel

speeds and four inputs (SF, flap deflection; € longitudinal

cyclic; 60, collective and elc, lateral cyclic%swere applied
successively (see Table 5.1). At each speed and for each
applied input, the output measurements are chordwise bending,
95 vertical bending, PP and the first two rotor flapping
modes, 51c and ﬁls' In addition, runs were made without
any applied input, where the model was excited by random

- tunnel turbulence. The sampling interval was 0.02 sec. The
data was Fourier transformed and averaged on the basis of
abhout 20 runs. The averaged autospectrum and cross spectrum
of the inputs and outputs were supplied by the government for
evaluation of the algorithm developed in Chapter IITI. A typical
transfer function obtained by dividing the autospectrum- of
the input into the cross spectrum of the input and output

are shown in Figure 5.1. 1In spite of the averaging, the
transfer functions are quite noisy. The following sections
describe the results.

5.2 SINGLE INPUT, SINGLE OUTPUT

The collective pitch input, 90, excites primarily the
wing chordwise motion, 4y, and the flaperon input, 5gs
excites primarily the wing vertical motiomn, qis at all
speeds. Therefore, these input-output pairs are used to eval-

uate the_algdrithm.
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Table 5.1

Summary of Wind Tunnel Test Points

POINT NUMBER V/QR INPUT
5 None
6 S¢
7 > 0.3 0

S
8 ER
9 6‘lc
14 None
16 B¢
16 0.47 8
17 ER
18 / 0.
23 None
24 8¢
25 0.58 6,
26 6,
27 01c
32 None
33 Bf
34 > 0.69 01,
35 90
36 LI
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Several runs are made using input § and output a4

to study the effect of various algorithm garameters on estima-
tion accuracy. The highest frequency used for this input
output pair is 10 Hz, and the model order is set to two (one
DOF). The minimum acceptable value of the delay parameter

t 1is therefore (2x2)/(10x2) = 0.2 sec. With a t of 0.3
and 7 < w< 10, a two-pole, one-zero model gave the results
shown in Table 5.2. Except when going from a nondimensional
speed of 0.47 to 0.58, the damping ratio increases with speed.
If the same model is used except without any zeros, the esti-
mates obtained are again shown in Table 5.2. The estimates

when the delay parameter, t, 1is set equal to zero with and

Table 5.2 .
Estimate of the q Mode from Input g and Output 4y
(Two Pole Model Assumed)
v NATURAL DAMP ING
OR FREQUENCY RATIO ZERQ GALN
a. t = 0.3 0.34 8.29 0.0167 13.1 -0.123
0.47 8.23 0.0212 11.0 -0.269
7<o<10 45 8.20 0.0198 | 9.54 -0.446
ONE ZERO 0.69 8.16 0.0250 12.2 -0.579
b. t = 0.3 0.34 8.29 0.0157 — 1.61
0.47 8.23 0.0192 _—- 2.90
/7 <w< 10 0.58 8.21 0.0182 - 2.21
NO ZEROS 0.69 8.16 0.0226 ——- 7.03
c. 7<w< 10 0.34 8.30 0.0108 13.2 -0.121
00 0.47 8.24 0.0151 11.0 -0.268
tEY 0.58 8.21 0.0148 9.67 -0.440
ONE ZERQ 0.69 8.16 0.0195 12.6 -0.561
d. 7<w< 10 0.34 8.27 0.00656 --- 1.53
- 0.0 0.47 8.19 0.00723 --- 2.78
rEu 0.58 8.16 0.00642 --- 4.08
NO ZEROS 0.69 8.11 0.0103 - 6.78
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without a zero in the transfer function are also given in
Table 5.2. A comparison of these results shows that the esti-
mates of natural frequencies, zero locations and gains do not

depend upon the value of t or the absence of zero from the
transfer function. The estimate of the damping ratio, however,

-depends strongly on the correct choice of t and the number

of zeros in the transfer function (see Fig. 5.2).

The response of the output q, teo input 60 is used to
estimate the q mode. A two-pole, omne-zerc model is used and
T is set to 0.3. Two cases are tried with 5 < w < 15 and
11 < w < 15. The results are shown in Table 5.3 and Figure 5.3.
In all but one case, the algorithm indicates the presence of
a zero in the transfer functiomn.

% ONE ZERO, t = 0.3

O Mo ZERO, t = 0.3

O QNE ZERO, ¢ = 0
0.g25 = & N0 ZERO, t = 0
0.020 ~

0.015 -

0.010 —

ESTIMATED DAMPING RATIO OF 9 MODE

0.005 —

.34 .47 .88 .69
V/QR

Figure 5.2 Estimate of the Damping Ratio of the qyq Mode
Obtained from the Output aq and Input Sf
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Table 5.3

Estimate of the a, Mode from Input 90 and Output q,
v NATURAL DAMPING
OR | FREQUENCY RATIO LERO. | GAIR
a. TWO POLE 0.34 12.9 0.0396 -137 0.201
ONE ZEROQ 0.47 12.5 0.0327 -18.3 1.61
7 <w< 15 0.58 12.4 0.0250 -17.5 1.90
1 = 0.3 0.69 12.4 0.0238 -9.84 1.09
b. TWO POLE 0.34 12.9 0.0347 148 -0.154
ONE ZERO 0.47 12.6 0.0308 -45.6 0.594
l1l<w<15 0.58 12.5 0.0269 -43.9 0.319
1 =0.3 0.69 12.4 0.0257 -23.3 0.555
O 5<w< 15
fll<w< 15
o 0-04F
E 0.02p-
l 1 [ i

Figure 5.3

V/QR

Estimate of the Damping of the
e
o)

Output

4;

and Input
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5.3 SINGLE OUTPUT, MULTI-INPUT

The algorithm is applied to measurements of qq resulting
from inputs SF and Gis. Figure 5.4 shows the estimate of
the damping ratio of the qq mode based on the selection of
different model orders, for é%-= 0.47. The value of the .
time delay parameter is set to the minimum value corresponding
to the modellorder selected in the estimation. It is clear
from Figure 5.4 that the estimate of the damping is relatively
independent of the model order. When the degrees of freedom
arec set to two or three, all but a pair of complex poles cancel

out complex zero pairs.

The effect of t on the estimate of the damping ratio is
shown in Fig. 5.5. Note that the estimate is essentially
constant for © > 0.6 (the minimum acceptable value). Figure
5.6 shows the estimate of ay damping ratic at various speeds
and compares the results with single input, single output cases
presented in the previous section.

- _
§ OUTPUT g,

INPUTS 'SF’ 815
= ZEROS OME FEWER THAN POLES, MINIMUM :
= Vo _g.47
= R :
-
=
S
g o.022 -
- o
=
=
£
=
=
=
=
w 9.0z L— ! ! -

1 2 3

NG. OF MCDES

Figure 5.4 Effect of Model Order on the Estimate
of ay Damping
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5.4 MULTI-INPUT, MULTI-OUTPUT

The responses of the measurements qq> Blc and ﬁis to
inputs SP and 8. are used to estimate the modes of the
cantilever wing. A six-pole, five-zero model is used and
T 1is set at 0.6. The estimate of the damping ratioc of the
a1 mode is shown in Figure 5. 7 for various speeds. These
results agree quite closely with the case when only output
a; is used. This indicates that Blc and Bls are not use-
ful in estimating the qq mode. They may, however, be able

tc estimate other rotor modes.

0.030
OUTPUT qy, INPUTS 8, @,
" FIVE ZERQS, SIX POLES, t = 0.6
3
= g.025
=
L
=
« 0.020 |- QUTPUTS a1, Byes Bygs
= INPUTS B¢, 8,
= FIVE ZEROS, SIX POLES, t =0.6
-_
< 0.015
=
=
[=1
=% b
k.
£ 0.c10 |-
—
W
wl
0.050 L

V/QR

Figure 5.7 Estimate of a1 Damping from Multi-input,
Multi-output Data
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5.5 SUMMARY

The estimates of the various modes, obtained from the
wind tunnel data through the application of the algorithm
developed in Chapter III, are quite reasonable. The basic
trends of actual frequencies and damping ratios agree with
analytical results and results based on other techniques.
Further processing of more wind tunnel data is required to
establish the best procedure for using the algorithm.
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CHAPTER VI
CONCLUSIONS

6.1 ALGORITHM DEVELOPMENT

This study develops an on-line algorithm based on advanced
system identification technology for real time measurement of
dynamic stability in the Ames 40- by 80-foot Wind Tunnel.

The algorithm is a four-step procedure requiring: (1) Fourier
transforming the time history data, (2) setting up a set of
linear equations, (3) solving these equations, and (4) computing
toots of characteristic polynomials to find poles and zeros.

The entire procedure is computationally efficient and appears

to meet the requirements of the wind tunnel test. In addition,
the algorithm can handle multi-input, multi-output data in a
statistically optimal manner and minimizes the effects of pro-
cess and measurement noise sources. Application of the algo-
rithm to ground resonance simulation data indicated the follow-

ing important features of the algorithm:

(1) The algorithm provides good estimates of natural
frequencies of all modes under every conditicn used
in the simulation. The damping ratio estimates are
excellent up to 20% random noise in the output, when
a theoretically derived value of the time delay para-
meter t© is used in the algorithm. The estimates of
the damping ratio degrade with increasing output
noise and with nonoptimal .

(2) The accuracy of the estimates improves when more cut-
puts are used in identification. Imn fact, with the
measurement of the lateral deflection alone, the rotor
modes cannot be estimated.

(3) The sampling interval and the data length are import-
ant variables in determining estimation accuracy.
The data record should be long enough to provide good
frequency rescolution in the region of the modes of
interest. '
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(4) Discrete frequency noise (e.g., 1/rev noise) could
degrade estimation accuracy significantly if it is
not properly accounted for. However, the algorithm
can be modified such that discrete frequency noise
does not affect parameter estimates significantly.

The application of the algorithm to the cantilever wing

model indicated, in addition to the above, that:

{1) 1If a high order model is specified in the estimation
algorithm, several estimated poles are very close
to estimated zeros. If pole-zero cancellation is
performed, the correct number of poles and zeros
are identified.

(2) The computation time increases with the model order
specified in identification, the number of outputs
and the number of inputs. The dependence on the
model order is the strongest.

(3) Scaling of inputs and outputs may be required for
improved numerical conditioning.

6.2 XV-15 MODE IDENTIFICATION

Applying the new algorithm to 13 DOF simulated XV-15
time history data leads to the following conclusions:

(1) The algorithm achieves excellent results identifying
the frequencies of significant aeroelastic XV-15
modes, and generally very good results in the iden-
tification of damping ratios. Cases of reduced
accuracy in the estimated damping ratio are generally
those in which multiple roots--poles and zeros--
occur at the same damped natural frequency in the
basic system, a situation which changes with flight
condition.

(2) Good mode identifications are achieved over a wide
range of flight conditions with no changes in the
algorithm. Improvements can, in scme cases, be
obtained through specific changes made by the amalyst
in certain model parameters, such as assumed model
order and frequency range, and in some cases, scaling.



(3) In general, assuming a model with a greater number
of modes than actually anticipated gives much-improved
accuracy in the identification of the most important
modes, with "excess' roots being placed by the algo-
rithm either well outside the frequency-damping
range of interest or in self-cancelling pole-zero
pairs. Attempting to use too low & model order
generally gives poor damping predictions.

(4) The benefits obtained from using multiple measure-
ments appear to depend on the degree to which the
measurements are related. With essentially independ-
ent measurements, no improvement in identification
was found using two measurements instead of one.

(5) The basic "rules" on algorithm parameter specifica-
tion developed on smaller models are valid for high-
order models. Particularly careful attention must be
paid to the effects of scaling.

6.3 APPLICATION TO WIND TUNNEL DATA

The algorithm of this study is successfully applied to
data from the wind tunnel test of a cantilever wing model
(Chapter V). The identification is performed off-line through
on-line conditions are simulated as much as possible. The
following conclusions may be drawn from this limited processing:

(1) Zeros play an important role in accurate estimation

of damping ratios. Neglecting a neighboring zero
could significantly alter the identified value of the

damping ratio. 1In addition, a proper selection of
the time delay parameter <t 1is important.

(2) Estimates of damping ratios, from different sets of

inputs and outputs, are close to each other. This
verifies the results of the algorithm.
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6.4 RECOMMENDATIONS

Based on the studies completed thus far, the following

recommendations are made regarding the direction of future

development work:

(1

(2)

(3)

(4)

(3)

Additional independence from judgments on the part
of the analyst should be sought; e.g., selection of
model order, scaling, etc.

Improved resclution of close pole-zero groupings
should be sought.

Direct measurements of rotor degrees-of-freedom are
important in many cases. Methods to extract these
time histories from single blade measurements 1is
required.

The algorithm must be further tested to derive opera-
tional procedures for effective use of the algorithm.

The approach should be thoroughly tested on real
wind tunnel data before it can be finally accepted
as a method for flutter analysis.
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| APPENDIX A
STATE, GENERALIZED STATE, AND ARMA MODELS

This appendix discusses briefly the relationships between
- the generalized state and state variable formulation of the
equations of motion, and shows that the state variable formula-
tion is equivalent to the autoregressive moving average (ARMA)
formulation used in the parameter identification method of

this study.

The generalized state equations are written in the form,
Azx + Alx + on = Bu

where AO, Al, AZ and B are coefficient matrices and x
is a vector whose n elements are the degrees of freedom of
the physical system. This set of equations may be transformed

uniquely to state variable form by solving for X and defining

E
I
prom—iem——
Kot M
|——I—-J

hence,
0 } I 0
X = |-------- - X + )=-=-=-- u
B -1 P_aml N -1
-AZ AO :-Az Al AZ B
(2n x 2mn) (Znxq)
= Fx + Gu

The inverse transformation is, however, not unique. From the
state variable form we obtain,
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1 1 -1

A,X + CA_ A x = CA, Bu,

Cx + CA2 1 2

where C 1s any nonsingular matrix. If it is known that
C=4,, the original generalized state equation is obtained.

The ARMA form describes the output, vy, where
y = Hx + Du
Taking successive time derivatives of this expression yields

y = Hx + Du = HFx + HGu + Du

$ = HFx + HGu + Dii

2

= HF“x + HFGu + HGu + D

2

lgu + HE® %ga + ... + pu(™

y (™) = HEPx + HFY
The characteristic polynomial of F 1is
_ .1 n-1 _
N(AY = A7 + an_lh .o ta =0,

hence, by the Cayley-Hamilton theorem, we may write

no_ n-1 _ n-2 _ _ _
F© = an_lF an_ZF . alF @
Therefore,
(n) n-1 i n-1 n-2 .. (n)
b4 =- Z aiHF x + HF Gu + HF Gu +...+ Du
i=0
n-1 (1) oi-1 (i), on-1 (n)
= Z ai(y -HF Gu-...-Du ) +HF Gu+...+Du
i=0
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orT

n-1 - n-1 . . .
ey =5 o mFt  lou s art e+ Dut))
i=0 i=0

n-1

+ g gy +. ..+ pu(™

(n) (n-1)
Bnu +Bn_1u ...t Bou,

which is the ARMA model upon which the new algorithm was based.
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APPENDIX B
ON-LINE PARAMETER ESTIMATION USING THE
INSTRUMENTAL VARIABLES APPROACH

This appendix describes an algorithm for estimating the
parameters of the autoregressive moving average model (Eq.
(3.1)) using the instrumental variables approach.

(3.1) may be written as

n
y ™)+ 1 ag
i=1

nmMs
<

Define

a, 1y () -

(n-1) . -1
(3,ut™ My« c (P H (1)

T T
uet) = W™ ey, W ey,

a’ = -(al, dys onn an)

T _ T T
Bi = ((Bo)i’ (Bl)i,

(8 )
1

vi(e) = by, Uy, y, (8,

Ty

where yi(t) is the ith element of vector

the ith column of Bj' Let

Yl(t) U(t) 0
Qe) = | Y,(t) 0 u(t)
Yp(t) 0 0
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Equation

(B.1)

(B.2)

is

(B.3)



Then Eq. (B.1) may be written as

a
31

y™W ey = Q| 3, + v (ry (B.4)

1

[ e Rpan

1=0

B
°p

Premultiply both sides of the above equation by P(t,tr) given by

YlT(t-T) YZT[t-T) YPT(t-t)
uT(t) 0 0 ... 0
P(t,T) = B.5
) 0 ul(e) 0 ... 0 (B-3)
0 0 L ol

and take the expected value., For >0, the expected value of"

ol .
P(t, 1) P Civ(n-l)(t)

i=0

is zero. Therefore,

E(eit, o)y (B (2))= E(RCE, Q) | By (B.6)

where E 1s the expected value operator. Let
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R (1) = Eu(t+T)y’ (2))

R (t) = tr(R__(7))
aTa aa

and use the following identities
(a) E(a P (eerynUl(e)) = -1y

(b) R (%) = RL_ (1)

(B.7)

(1+3)
Rab[r), 720

(B.8)

The indicial superscript on Rab(r) implies differentiation with

respect to tv. Then

E(P(t,T)9 Y (t) &

10

G‘lo‘-o‘l
1=

. ) fAS

.
p

a i
b, = | (-1t R (g
Yy

C_l)n—z R(%n-Z)CT)
Yy

R(¥) ()

y v

(-1
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b, = ¢-1)" (=L (o
| )
i=1,2, ...
rEZ8 1) 1o : P (B.10)
)fi (n+l) -elements
(n)
Ry, (0)
“and — —
A A }
E(P(e, Q) & | il 12T 511)
A1 | Agz [}(n+1ipq
n (n+l)pq
g = CDPTREE D oy g8 gy g lp(al) (o
yy yy 7y
GRS ) PR (e
yy y 7 Yy
(-1 %R () (-1 22 (o 1% 5 )
vy Yy y'y |
(B.12)
AlZ = {(Alz) ) (Alz) [Alz) } {B.13)
1 2 yol
() = [en®l el SO ERE A
1d i uy; ‘ uy . (7]
L |
-1 9 p(m) 0 T
SOMENSNG 0% R (1)
(B.14)
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Agp = (As1)

(A1) (B.15)
1
(A )
B 21 3
~ n-1 (Zn 1) (n)
EA21)i = [(-1) uy (0)y ... (-1) R (0)
: (B.16)
(n-1)
_q1y0-1 140
(-1) Ruyi (0) ... (-1) Ruyi(O)
Ay, = Kzz 0 ... 0
0 Kzz.. 0 ' (B.17)
0 0 IZZ
x,, = (-1 (2 (o) o %R
: : (B.18)
_1y0p(n) . 0
(-1)"Ry,” (0 oo (SR, (0)

In the light of Eqs. (B.9) - (B.18), Eq. (B.6) may be written as

o
[
=

(B.19)

vy
)
fa
=
~o
[y
L—
m
+
p =

i=1,2,...p (B.20)
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Equation (B.20) may be solved for Bi
8. = il (b. - (A,;) a) (B.21)
i 22 i 21 ;

Therefore, the equation for determining a 1is
: A gl N ° T-1
bo -'iil( lZ)iAZZ i~ “All ) E (Alz)if\\zz (A'Zl)i}a {(B.22)

This is a set of n 1linear equations in n wunknowns a. If the
zaroes of the transfer function are desired they may be obtained
by substituting a in Eg. (B.22).

Estimation of Differentials of Correlation Functions:

Mattices A's and vectors B's in Eq. (B.22) are functions of
differentials and auto- and cross-correlations of input u and
output vy. These differentials must be estimated from data, which
would typically be discrete input and output time histories (or
eguivalently the corresponding Fourier transforms). There are
two approaches which may be used to estimate differentials cof
the correlation functions. Let the inputs rand outputs be u(i)
and y(i), i=1,2,...N, respectively.

In the direct approach the auto- and cross-correlations of
the inputs and the ocutputs are computed.

N-T

- . -
RYY(rA) = T 151 y(i+r)y (i)
p Not T
RuyCrA) = T iio u(i+r)y (i) (B.23)
1 N-7 T
Ruu(rA) = T ii a(i+r)u (i)
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where A is the sampling interval. <t 1is chosen to be a multiple
of A. The derivatives of the correlation functions are determined

by numerical differentiation, e.g.

(» - L SAY - .
RYY (1) = YN (Ryy[T A) Ryy(f A)
R(Z}CT) S (R__(t+A) + R__(7-A) - 2R__(t) (B.24)
Yy al oYY Yy Yy
etc,.

In the second approach, the differentials of correlation
functions are estimated from the Fourier transforms cf the inputs

and the outputs given by

Y(k) = 2 y(i)e‘jZW(i-l)k/N
i=1
(B.25)
U(k) = ? u(ije J2m(1-1)k/N
i=1 ‘

k = 0,1,2,...N-1

The autospectrum of y and the cross-spectrum of y and u are
given by (for N even)

= 1 ®
Syy(k) = g Y)Y (k)
. (B.26)
=Ly *
S,uk) = § YU (k)
- . N _ N N
k = >+ 1, T+ 2, oo, 0,1, -1
The autocorrelation of y 1is given by
. N/2-1 § j2rtk
YYCT) = S Syy( e “Na (B.27)
k=-5+1
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Therefore,

(n) _ jowk\®  jomtk. 528
RO (o) T S, (LETk)" o LTI (B.28)
N
k= > 1
Similarly,
N/2 -1 . n .
(n) - j2rk j2rtk (B.29)
RUY (z) 2: Suy(k) ( NA ) © NA :
k=- 3+l
and
i2ntk
N/2-1 . an (I )
(n) _ jark ( NA
R (T) ) Sy () ( ﬁﬂ_) < : (B.30)
k=- 3+1

Equations (B.28) - (B.30) are véry filexible. Since the system

is linear, Syyck)’ Suy(k]’ and Suu(k) may be paésed through
the same filter and then used in Egs. (B.28) - (B.30). This

is equivalent to passing the input and output data through the same
filter before identification. It is useful when there 1s discrete
fréquency ncise or a certain frequency range does not contaln much
information about the system modes. A band pass filter can then

be applied to reject these frequencies.
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APPENDIX C

XV-15 MODEL AND.DYNAMIC CHARACTERISTICS

This appendix presents additional information on the XV-15
model and on its predicted aerocelastic characteristics at the
six flight conditions studied in this report (Chapter IV).
These data comprise the analytical sclutions to which the
results of algorithm application were compared. The contents
of this appendix are:

Table C.1: Analytical model degrees of freedom and modes.
Table C.2: State, control, gust, and observation vectors.
Table C.3: Wingtip deflection constants.

Tables C.4 to C.9: Roots of symmetric wingtip deflection/
control input transfer functioms.

Tables C.10 to C.15: Roots of antisymmetric wingtip
deflection/control input transfer functions
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Table C.1
Analytic Model Degrees of Freedom and Modes

DEGREES OF FREEDOM MODES
SYMMETRIC | ANTISYMMETRIC | SYMMETRIC | ANTISYMMETRIC

B, 8, B, By
B1c B1c B Be1
f1s B1s Fo1 51
“1c “1c S+l t+1
“1s “1s °-1 °-1
b, b b b
& o o o

91 9 % 9
92 A 92 9
p p p p

BY BV BY BY
SL S sL sS
BL BS BL BS
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Table C.2
State, Contrael, Gust, and Observation Vectors

T _
AsymveTric = [f1c C1s Bo B1c Bis ¥g BL 9p SL gy p BY o]
X! = [z z,. B 8. B, U_ BY BS SS p al
ANTI- 1c %15 Po P1c P15 ¥s 99 91 =2 P
SYMMETRIC
i, J
xT = X' § X1 (SYMMETRIC AND ANTISYMMETRIC)
T
y = lyp Zyppl
T_
u =8, 8¢ 815 Sl
T _
g = lug vy gl
I
TN LR

NOTE: Vector eiements are defined in "Nomenclature", pp.vi-x.

109



Table C.3
Wingtip Deflection Constants

EQUATIONS:

CONSTANTS:

SYMMETRIC DEGREES OF FREEDOM

i X5 Exi Ezi

1 BL 12.48 0.64
2 q1 -0.16 -11.78
3 SL 11.92 0.58
4 q2 -6.54 -3.58
5 p 3.18 -1.36
6 BY 6.23 -6.15
7 o ~2.46 -0.71

ANTISYMMETRIC DEGREES OF FREEDOM

! X Ex_I gz.i

1 BY -10.15 0.42
2 BS 0.49 -2.74
3 9, 10.80 -1.04
4 94 10.36 9.52
5 SS 1.88 -3.10
6 P -4.,29 -6.36
7 o 1.29 -4.78
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Table C.4
Symmetric Transfer Function Roots

Flight Condition #1: Hover
%, = 90°
V=20
= 565 RPM
ZEROS
POLES

MODE Zrp/®,

REAL IMAGINARY REAL IMAGINARY
¥ -0.023 0o 0 0
be -0.071 0 -0.049 0
BL -0.0021 +0.202 -0.0021 +0.202
94 -0.0087 +0.286 -0.0070 +0.348
SL -0.0067 +0.348 -0.264 +0.107
B.1 -0.264 +0.108 -0.089 +0.465
.1 -0.089 +0.467 -0.0077 +0.573
q4, -0.0082 +0.574 -0.0091 +0.751
P -0.0100 +0.738 -0.0080 +0.817
BY -0.0083 +0.820 -0.0146 +0.933
a -0.0132 +0.952 -0.316 +1.91
B, -0.316 +1.91 -0.0180 +2.53
B -0.225 +2.21 -0.426 +16.6
1 -0.0155 +2.54
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Table C.5
Symmetric Transfer Function Roots

Flight Condition #2

oy = 82.3°
V = 80 kts
= 565 RPM
ZEROQS
POLES
MODE XTIP/eo ZTIP/6F
REAL IMAGINARY REAL IMAGINARY REAL [MAGINARY
e -0.027 +0.022 -0.100 0 -0.0282 0.020
8L -0.0022 £0.202 +0.073 0 -0.0019 £0.202
9 -0.0129 +0.291 -0.192 £0.093 0.0082 *0.325
SL -0.0080 £0.353 -0.0026 +0.213 -0.262 +0.116
B_l -(0.2659 *0.106 -0.0092 £0.319 -0.0725 +(.542
21 -0.0751 £0.549 -0.0746 +0.538 0.0472 £0.617
4 -0.0102 +0.575 -0.0146 0.631 -0.0764 t0.650
p -0.0091 +0.737 ;0.0095 +(.700 -0.0861 *0.807
BY -0.0089 - +0.820 +0.0373 £0.244 0.0621 +0.819
a -0.0142 +0.956 -0.0809 +0.857 -0.311 +1.909
B+1 -0.307 +1.92 -0.363 *1.81 -0.262 $2.235
BO -0.260 £2.26 -0.070 +2.57 -0.0085 +2.653
Ti1 -0.008 +2.63 2.77 0 - ---
-3.81 ¢
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Table C.6
Symmetric Transfer Function Roots

Flight Condition #3

= 80°

Gy = 60

V = 100 kts

Q = 565 RPM

boLES ZEROS
MODE XTIP/eo ZTIP/GF
CREAL | IMAGINARY REAL | IMAGINARY REAL | IMAGINARY
by -0.019 | :0.028 0.0116 0 -0.020 | 0.029
BL | -0.0023 | £0.203 -0.0162 0 -0.0017 | +0.201
g, | -0.0007 | +0.292 -0.0018 | :0.231 +0.0064 | :0.335
st | -o.coss | :0.397 -0.0053 | +0.284 -0.310 | :0.135
8., | -0.310 | +0.126 . | -0.312 | #0.121 | -0.0118 | +0.463
t,| -0.062 | :0.49 -0.05¢ | *0.488 -0.072 | 0.499
9, | -0.0106 | 20.573 -0.0193 | *0.556 -0.0116 | *0.723
p -0.0087 | +0.743 -0.0088 | *0.742 -0.0022 | £0.740
BV | -0.0094 | <0.814 -0.0115 | #0.843 -0.0135 | *0.947
o -0.0134 | *0.938 -0.020 | *0.907 ~0.296 +1.89
B, | -0.298 +1.89 -0.272 *].87 -0.276 +2.25
8 -0.274 £2.26 -0.319 +7.58 -0.0164 £2.61
c,, | -0.0128| :2.58 4.55 0 --- —--
-3.77 0
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Table C.7

Symmetric Transfer Function Roots

Flight Condition #4

- 20°
ap = 30
V = 120 kts
= 565 RPM
ZEROS
POLES
MODE 1978, Zrip/SF
REAL IMAGINARY REAL IMAGINARY REAL IMAGINARY

by -0.0320 £0.031 | +0.0073 0 -0.0336 |. +0.032
BL -0.0026 £0.202 -0.0091 0 -0.0022 £0.203
a -0.0056 £0.296 -0.0021 0,239 -0.0535 £0.35
c.y | -0.0645 £0.,353 -0.0044 +0. 302 -0.0034 £0.426
SL -0.0101 0.435 -0.0638 +0.345 -0.325 0. 164
By [ -0.3157 0,138 -0.319 0,131 -0.0375 +0.652
g9, | ~-0.0095 0.566 -0.0096 +0.568 -0.0387 +0.677
p -0.0079 +0.680 -0.0110 0,699 0. 364 +1.15
BV -0.0095 +0.822 -0.0112 0,837 -0.683 £1.09
o -0.0141 +1.004 -0.0186 £0.988 -0.200 +1.81
B+l -0.320 +1.88 -0.2847 +1.87 -0.262 2,16
By -0.253 £2.21 -0.0194 £2.43 1.11 3,07
t,y | -0.0216 £2.44 -0.0809 £8.30 - ---




Table C.8

Symmetric Transfer Function Roots

Flight Condition #5

_ Ao

ap =0

V = 160 kts

& = 458 RPM

ZERDS
POLES
MODE X710/ Zrpp/ 8
REAL | IMAGINARY REAL | IMAGINARY REAL | IMAGINARY

o, | -0.0686 | <0.016 0 0 T0.0606 | +0.016
gL | -0.0031 | =0.250 -0.0016 0 -0.0030 | +0.243
g, | -0.006 | =0.372 -0.0027 | +0.296 -0.309 | *0.136
t, | -0.0933 | =0.a05 ~0.0096 | +0.371 -0.092 | 0.39%¢
8| -0.203 | x0.142 -0.09a | 0.406 +0.0073 | +0.s87
st | -0.0117 | +0.560 -0.292 | +0.141 -0.0176 | +0.627
p -0.0205 | :0.809 -0.165 | *0.776 -0.0176 | +0.840
a, | -0.0111 | <0:838 -0.0103 | *0.816 -0.0021 +1.25
Bv | -0.0124 £1.03 -0.0119 £1.02 -0.0035 +1.51
8, | -0.316 +1.84 -0.306 +1.82 -0.290 +1.8%
a -0.013 2,04 -0.020 £1.96 -0.094 £2.43
B, -0.0866 £2.55 -0.0607 £2.55 -0.20% +2.57
0, | -0.201 £2.57 -0.104 +5.23 - -
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Table C.9
Symmetric Transfer Function Roots

Flight Condition #6

= (°

ap =0

V = 200 kts

Q = 458 RPM

ZEROS
POLES
HODE , 11678 Lrip/OF
REAL IMAGINARY . REAL IMAGINARY REAL IMAGINARY

¥, -0.041 0 0 0 -0.041 0
v, -0.152 0 -0.0032 0 -0.152 0
BL -0.0030 +0.250 -0.0026 £0.296 -0.0028 £0.25
£y | -0.0897 *0.314 -0.090 £0.315 -0.0884 £0.308
a4y -0.0111 £0.372 -0.0118 $0.371 -0.346 +0.188
B_q -0.315 £0.196 -0.315 +0.194 +0.035 +0.576
SL -0.0112 +0.558 -0.0245 0.764 -0.036 +0.602
p -0.0280 £0.791 -0.0076 +0.809 -0.020 +0.839
a, -0.0102 +0.835 -0.0123 £1.02 +0.0038 1,25
BV -0.0130 £1.03 -0.337 £1.77 -0.052 +1.50
Bat -0.351 £1.79 -0.0211 £1.95 -0.317 £1.87
a -0.0118 £2.03 -0.0768 £2.47 -0.104 £2.39
B, | -0-0792 £2.47 -0.108 £5.15 -0.206 +2.51
Tel -0.198 £2.51 --- --- --- ---
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Table C.10

Antisymmetric Transfer Function Roots

Fiight Condition #1

ap = gQ°

V=0

Q = 565 RPM

ZEROS
POLES
MODE Zo1p/8,
REAL TMAGINARY " REAL IMAGINARY

BS -0.0032 £0.281 -0.0012 £0.211
BY -0.0027 £0.228 -0.0018 £0.240
a, -0.0062 £0.330 -0.0054 £0.332
q -0.0114 £0.391 -0.269 +0.113
Z_q -0.0877 £0.467 -0.0064 | =0.462
8 1 -0.264 £0.108 -0.148 +0.686
U -0.0196 +0,577 ~-0.0004 £0.699
D -0.0116 +0.621 +0. 150 +0.683
sS -0.0088 £0.707 -0.0170 +0.999
a -0.0113 £0.908 . -0.312 +1.93
Baq -0.318 £1.914 -0.075 +2.54
8, -0.211 2,364 -2.54 0
cy | -0.0152 +2.53 2.61 0
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Table C.11
Antisymmetric Transfer Function Roots

Flight Condition #2

- o]
up = 82.3
V = 80 kts
= Hh5 RPM
ZEROS
POLES
HoDE 51p7% Ly1p/Sk
REAL | IMAGINARY REAL | IMAGINARY REAL | IMAGINARY

BS -0.0036 | +0.281 -0.0069 | *0.237 -0.0031 | +0.229
BY -0.0030 | *0.229 -0.0030 | +0.281 20,0037 | x0.259
%, -0.0067 | *0.333 -0.0108 | #0.312 -0.0064 | £0.335
q -0.0140 | 0.397 -0.238 | =0.088 -0.272 | +0.109
6, | -0.2670 | +0.106 -0.0081 | +0.538 -0.079¢ | :0.542
.y | -0.0740 | :0.545 -0.0788 | *0.504 -0.0168 | *0.572
i -0.0158 | *0.578 -0.0081 | :0.631 -0.0265 | +0.690
p -0.0099 | *0.630 -0.0008 | #0.704 +0.0135 | *0.711
53 -0.0085 | t0.704 -0.0051 | *0.939 -0.005¢ | %0.861
a -0.0139 | *0.909 -0.386 +1.89 20,3100 £1.92
B -0.307 £1,91 -0.0047 +2.61 -0.230 +2.45
By -0.239 +2.45 5.68 0 -0.0773 £2.59
g, | -0.0101 +2.62 -6.19 0 —-- -
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Table C.12

Antisymmetric Transfer Function Roots

Flight Condition #3

— =]

(Ip = 60

V = 100 kts

@ = 565 RPM

ZEROS
POLES
HoDE ' Xr1p/ 8 Zrip/SF
REAL IMAGINARY REAL IMAGINARY REAL IMAGINARY

BS -0.0032 +0.282 -0.0032 +0.280 -0.0030 £0.230
BY -0.0031 +0.231 -0.0031 +0. 298 -0.0028 +0.270
Ay -0.0053 £0.352 -0.0095 +0.363 -0.0066 +0.361
91 -0.0134 +0.398 -0.0616 £0.491 -0.0611 £0.494
Ty -0.0654 +0.494 -0.315 +0.093 -0.313 +0.121
Ve -0.0079 £0.585 -0.0032 +0.628 -0.0402 0,589
B_1 -0.309 +0.126 -0.0097 £0.665 0.0194 £0.583
35 -0.0110 +0.663 -0.0046 +(.838 -0.0103 +(.658
P -0.0093 +0.702 -0.261 £1.47 -0.0161 £0.918
o -0.0138 +0.918 0.798 +1.34 -0.300 +1.89
By -0.299 +1.89 -1.57 £1.63 -0.267 2.4)
By -0.262 +2.43 -0.0453 +2.63 0.0084 +2.56
Ly -0.0135 £2.58 -—- - - ---
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Table C.13

Antisymmetric Transfer Function Roots

Flight Condition #4

= a0

ap = 30

V= 120 kts

Q = 565 RPM

ZERDS
POLES
MODE X107 % I11p/8F
REAL | IMAGINARY REAL | IMAGINARY REAL | IMAGINARY

By -0.0038 | *0.231 -0.0024 | *0.266 -0.0036 | +0.231
BS -0.0031 | +0.282 -0.0030 | +0.283 -0.0020 | :0.272
% 0.0073 | +0.375 -0.0613 | +0.355 -0.0627 | :0.3%2
a 00177 | +0.392 -0.0083 | *0.378 -0.0081 | %0.376
c., | -0-0080 | <0.357 -0.3111 | +0.129 -0.316 | 0.132
v -0,0146 +0.588 -0.0288 +0.648 -0.0794 +0,634
55 -0.0140 | *0.653 -0.0085 | 0.784 0.053 | £0.629
5 -0.0086 | *0.759 -0.025¢ | +0.914 -0.0228 | +0.993
o 200171 | +0.944 -0.293 £1.96 -0.322 +1.88
By -0.321 +1.88 -0.0201 £2.44 -0.272 £2.30
8, -0.267 2,32 ~11.65 0 -0.0057 +2.44
ryy | -0.0216 £2.44 16.1 0 - -
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Table C.14

Antisymmetric Transfer Function Roots

Fiight Condition #5

cxp =0
V = 160 kts
Q = 458 RPM
ZEROS
POLES
MODE Xr1p/8q Lrip/or
REAL TMAGENARY REAL TMAGINARY REAL IMAGINARY
a, -0.0152 +0.486 0 +0.184 -0.0053 +0.785
BS -0.0041 £0.348 -0.0040 +0.348 -0.0041 +0, 339
a -0.0177 £0.520 -0.0938 +0.401 -0.0931 0. 402
BY -0.0054 s0.282 | -0.205 | .+0.139 -0.0122 10,486
¢y | -0.0029 £0.402 -0.0074 +0.510 -0.293 +0.138
B -0.293 0.140 -0.0136 £0.820 -0.0576 £0.729
b, -0.0624 0,723 -0.114 +1.03 -0.152 £0.773
SS -0.0183 +0.820 -0.0934 £1.03 +0.110 £0.789
P -0.0105 +0.984 -0.314 £1.89 -0.305 £1.87
8,1 -0.320 +1.87 -0.0781 £2.44 -0.0236 £2,47
t, | -0-0975 +2.42 -0.0559 £2.80 -0.237 £2.64
B, 0.240 | t2.65 -8.39 0 -0.117 +3.36
o -0.0405 £2.87 8.26 0 — -
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Table C.15

Antisymmetric Transfer Function Roots

Flight Condition #6

ap =0

V = 200 kts

i = 458 RPM

ZERQS
POLES
MODE *118/% Zyip/ 8¢
REAL | IMAGINARY REAL | IMAGINARY REAL | IMAGINARY

9, | -0.0142 | :0.485 0.0002 | *0.196 Z0.0057 | *0.285
0, | -0.0224 | *0.517 -0.0006 | *0.314 -0.0027 | *0.341
8 | -0.0042 | :0.348 -0.0041 | :0.349 -0.0904 | *0.312
BY | -0.0044 | *0.283 0.317 | +0.194 -0.0117 | *0.484
¢, | -0.0008 | +0.314 -0.0072 | *0.505 -0.316 | *0.189
6., | -0.317 | *0.192 0,075 | :0.813 -0.0793 | *0.726
o | -c.0950 | +0.716 -0.146 +1.03 -0.168 | +0.759
ss | -0.023¢ | *0.812 0.116 +1.08 0.102 | *0.784
p -0.0117 | 0.980 -0.358 £1.87 -0.339 £1.84
B, | -0.362 +1.84 -0.085 .34 -0.034 +2.38
5,y | -0.0398 2.33 -0.0527 +2.80 -0.232 +2.56
By -0.235 +2.56 -8.22 0 -0.118 £3.35
o -0.0423 +2.86 8.08 0 — ---
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