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SUMMARY

A new approach to the design of multivariable control systems using
the Multivariable Nyguist Array method has been developed. The_technique
utilizes a conjugate direction fugction minimization algorithm to achieve
a diagonal dominant condition over the extended frequency range of the
control system. The minimization is performed on the ratio of the moduli
of the off-diagonal terms to the moduli of the diagonal terms of either the
inverse or direct open loop transfer function matrix.

In addition to the ability to achieve diagonal dominance with a mini-
mum of designer intervention, several new feedback design concepts and
eviluative measures are introduced. These include:

1. Dominahce control parameters for each control loop.

2. Compensator normalization to evaluate open loop

cdnditﬂons for alternative design configurafiohs.
3. An interaction index to determine.the degree aqd type

of sSystem interaction when all feedback loops are

closed gimultaneously.

This new design capability has been implemented on an IBM 360/75 in a
batch mode but-can be easily adapted to an interactiye computer fability.
The design method rep¥esents a significant contribution.to the design and
analysiélof quitivariable’control systems in the frequency domain and has

been applied to the.-Pratt and Whitney F100 turbofan engine with three

inputs and three outputs.
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SECTION 1.
INTRODUCTION

0§er the past several decades, considerable effort has been expended
in the development and synthesis of linear multivariable feedback control
theory and its applicatién to the design of multivariaﬁle control systems.
Initially the analysis of automatic control systems utilized time
functions usually expressed in differential or integral forn. Maxwell,
more famous for his ﬁgrk in field theory, presented the first mathematical
treatment of a control mechanism in 1868 [1]. During the two decades
preceding World War II, important contributions took placé in aviation,
ele&tronics and cireuit theory. For example, Nyquist's classic work in-
1932 [2] on sFability-of linear feedback systems was prompted not by sta-
bility problems in control theory but by a desire to better understand the

characteristics of certain communication networks. During World War II

these concepts were rediscovered by control people aﬁd ﬁave since played an-
iﬁpoétanﬁ role in the control field. -

By lQﬁS the’theory of linear servomechanisms and the fundamentals of
mafhematical modeling were ﬁell déveloped. The concept of steady staﬁe
transfer functions had been introduced by Harris [31 and incorporated into
the earlier work of Nyquist to further the understanding of the dynamic

‘sehavior and design of servgmechanisms. This mathematical concept was popu-
‘larized by Gardner and Barnes [4] with the introduction of transfbrm-
caléqlus. By the end of the forties, the analysis aqd synfhesis of linear'
continuous sys&ems was basically limited to trial and é?ror methods.

Arougd 1950, Bvans [5] introduced the Root Locus method, which for the

_fifsr ‘time provided a means for +the direct synthesis of control systems.



These techniques have since been further developed and still represent one
of th? most useful synthesis techniques available for linear systems.

In the mid-1950's, control engineering sees an unprecedented growth
rate. Analog, digital and hybrid computers have reached high levels of
Perfection and more important, become universally available. The sinéle
iﬁput single output frequency domain techniques of Bode, Nyquist gnd Evans’
can now be coded for computer generated plots and the world of computer
gided system design is created.

With the.computational speed and numerical ac;uracyjnow available and
inspired by the work of Russian and American research teams, the field of
control enters a new era referred to as "modern control theory" encompass-
ing the general areas of optimal and adaptive control. Vector space methods
provide the mathematical foundations for the time domain synthesis of multi
input mulﬁi'ouﬁput control systems. In 1960, Kalman [6] provided a defini—‘
tive treatment of the linear case with a quadratic cosf function and showed
that the optimal feedback control is determined by ihe-unique positive semi
definite solu?ion of the matrix Riccati differential équation. A special
issue of‘the IEEE Transactions on Automatic Control Theory (1971) on the
Linear Quédiqtic:Gaussian (IQG) problem reflects the tremendous breadth -and
depth of this field.

The modern control era is often characterized as the "algorithmic era.
The system description, deéign goals and parameter copstraints are in many
cases manipula%qd and massaggd until the problem format -fits a description
for which there is an algorithmic solution. " The resulting controls are
usualiy highly interéctive, require full state feedback and generally resﬁlt
in low iIntegrity systems. Ofteﬁ the problem has beén so narrowly defined

that the final control configuration is unique.



In general, the success of linear optimal control theory (and other
pole placement algorithms), when viewed from the freduency domain, is that
full state feedback ensures adequate gain and phase mNargins in each of
‘the feedback'loops; If all system states are not available for measure-
ment, severe penalties in terms of phase lag may be incurred. Techniques
have therefore been developed to provide estimates of the inaccessible
states £7,8]. This, in turn, leads to a dynamic feedback controller.

In the late 1960's, it became clear to Rosenbrock, MacFarlane and
others that the vector time response methods leading to the LQR problem
and associated regulator solution methods were not the panacea long pro-
mised. Optimal control design techniques although suitable for multi input
multi output system analysis did not possess many of the design capabili-
ties 'of the classical methods. By a suitable genéralization of the
frequency response methods, originally introduced by Bode, Nyquist and
Weiner, to the multi input multi output system, new dimensions in the
classical design concepts were created. '

An algebraic théory, based on Rosenbrock's work, defines the struc-
tural relationships in terms of which feedback systems may be manipulated
into a variety of feedback forms. The generalization of Nyquist's funda-
mental criterion, the concept of integrity and Bode's sensitivity results
were.extended to vector forms. A survey of the major results in linear
multivariable feedback theory from the vector frequency response viewpoint
was outlined by MacFarlane [9-11]. Of those techniques presently available,
the Inverse Nyquist Array [12] introduced by Rosenbrock and the Charac;eri—
stic Locus Method [13]. introduced by MacFarlane have surféced as two of the
most ruseful frequenéy domain design techniques for a wide range of practi-

cal multivariable feedback systems. Both methods require a computer-aided



design facility with an interactive graphic display unit upon which the
apﬁropriate loel are computed and displayed.

After an initial inquiry into the design capabilities, mathematical
dependencies and computational requirements of the multivariable frequency
domain techniques, it becomes apparent that the basic p;inciples and tﬁe
governing philosophy of the Inverse Nyquist Array (INA) provide for the
maximum utility of the single loop classical design theories. The INA
extends Nyquist's stability criterion to inverse polar plots and multi in-
put multi output systems. IE provides the mechanism to reduce system
iﬁteraction to & degree wherein each feedback loop can be independently
designed. It utilizes the theorems of Gershgorin and Ostrowski to deli-
neate the bounds‘of the eigenvalues of the transfer matrix at each fre-
quency and thereby define the degree of both the open loop and closed lood
interactive effects. These basic céncepts and the underlying components
associated with an INA design are further cutlined in section 2.

The single most detracting feature of the INA design philoscphy is
the uﬁreasonaﬁly—high degree of designer intervention to. secure the condi-
tion of "diagonai dominance". Since this condition is crucial to the
success of an INA design, a principal objective of this research project

was to develop an alternative method to search for the dominant condition.

In section -3, of this report, a new algorithm utilizing a conjugate direc-
tion function minimization technique is presented. In fact, the algorithm
is sufficiently versatile so as to be appropriate to the design of a.-multi
input multi output system usiﬁg the Direct Nyquist Avray (Dﬁﬁ) in addition _
to the INA.

 In addition to the tremendous versatility and flexibility of the pro-

posed algorithm, several new design concepts ave introduced in section 3.



These new concepts respond to the concerns pertaining to the level of
-dominance required to complete the design on a single loop basis, the de-
gree;and type of closed loop interaction which will fesult'upon simultane-
ous closure of all feedback loops when each loop has been designed inde-
pendently and‘a method of comparing system compensators each of which
produce the desired dominance condition.

In section 4, several\exaﬁpies are presented to demonstrate the compu-
tational efficiency anﬁ'éffgctiveness of the proposed téchnique. The

principal example of this section is the analysis and design for the Pratt

-and Whitney F100- turbofan engine at sea level static conditions.



SECTION 2
MULTIVARIABLE NYQUIST ARRAY

The Multivariable Nyquist Array (MNA) design method is herein pro-
posed as the union of two mutually exclusive design techniques: the
Inverse Nyquist Array (INA) and the Direct Nyquist Array (DNA) methods.
"Both methods have identical design objectives and are founded upon a com-
mon mathematical structure. The methods are mutually exclusive in the
sense that the INA utilizes inverse polar plots while the DNA-uées direct
polar plots. The principal point of departufe is the use and interpreta-
tion of the multivariable Nyquist stability criterion in achieving the
final system design.

The fundamental objective of the MNA design methods is-to decrease
system interaction to suéh an extent that the closed loop system degign
.probiem reduces .to a setlof independent single loop design problems.
Althgugh simplj stated, the actual reduction procedure proposed by
Rosenbrock [12,141 requires a high degree of designer intervention and is
fundamentall& a trial and error procedure. .The algorithm developed in
éubsequent sections of this report considerably reduces this designer
dependency thus making the MNA design method a more viable design tool.

Histoficaliy, the first atteﬁpt to eliminate system interaction was
proposed by Boksenbom and Hood [15]. Their procedure was to completely
decoupie system input output'pairs through the appropriate design of pre
and post compensator matrices. The resulting compensator fbrms are
necéssarily'complicated and in many cases unstable an@/or physically un-
realizable. It did, however, provide for single loop closure on a

completely non-interactive basis. Furthen attempts at system decoupling



are reported in [16] and [17].

The Multi#ariable Nyquist Array method adopts a considerably more ‘
sophisticated viewpoint in an attempt to achieve a similar design condi-
tion. The MNA recognizes that the extreme degree of decoupling theory is
‘not really neéessary to establish the desired design conditions. Compen-
sator designs should be stable and realizable and preferably as simple as
possible for ease of implementation. It further recognizes that some
degree of system interaction may actually be desirable in the event of
sensor or actuator failures.

In the vemaining pértshof thig section, the mathematical foundations
of the MNA are: briefly intgoduced followed by an outline of the INA and
DNA design methods. The section concludes with a discussion of the advan-
tages and limitations of MNA design philosophy as originally proposed by
Rosenbrock.

A. Mathematical Perspectives

In Figure 2.1, G(s) is an mxm transfer matrix representing the coup-

Ting of the m inputs to the m outputs. The pre and post compensator
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Figure 2.1 Multivariable System Configuration.



matrices, K(s) and L(s), fespectively, are each of dimension mxm. The
feedpack gain matrix F(s) is assumed to be diagonal of'similar dimgnsions.
‘Clearly, if -
Q(s) = L(s)G(s)K(s)
is diégonal, loop closure'may proceed on an individual loop basis with a
guarantee of zero system interaction. It 4s this premise upon which the
MNA is based. However, the adherence to strict diagonalization ié relaxed
with the substitution and exploitation of the conéept of diagonal dominant
matrices.
Definition A matrix is said to be diagonal dominant when the moduli of
"its diagonal elements are greater than the sum of the moduli
of the.corresponding off-diagonal elements, taken by row or
by column.

That is, if Z is a mxm complex matrix then

a. Z is diagonally réw dominant if

T
Jz |—_Z Izijl >0 for all 1 =1,2,...,m

ii

e =

]
i#
b. Z is diagonally column -dominant if
m -
-I |z
j’:

if

Iziil jil >o foralli-=1,2...,m

|_l

It is importaﬁt fo note that to satisfy the definition Z must be entirely
row dominant or entirely column dominant. The definition does not provide
for a mixture of vrow and column dominance for different diagonal elements.

Quite aparf from the‘cqncept of dominance is a theorem by Gershgofin
which states that ;ll eigenvalués of a domplex matrix 7 are located in the
union of the circular discs defined by

|A - Zii] f_ri i=1,2,...,m



with-center at Zys and radii given by

m
r. = I |z,.| (by rows)
i 521 4
i#j
or
m -
c, = .f ]zjil _ ‘(by columms)
J=1
13

The latter vadil follow from the fact that the eigenvalues of ZT are egual

to theleigenvalues of Z.

Now let Z be a function of the complex variable s, i.e.

- 1

le(?) | zlg(s) . . . Zlm(s)
20 (8) . ozmy(s) ... zy(s)

Z(s) = . . - ’ 2.1
_zml(s) zm2(s)A ... me(S).

At each value of s on a specified contour D in the s-plane, Z(s) is a com-
plex matrix and the preceding definition and theorems apply at each and
every point on D. Thus the eigenvalues of %Z(s) are functions of s and the

concept of diagonal dominance can be reformulated as

m
|zii(s)|~.2 lzij(S)I > o - {row dominance) 2.2
. jzl
i#]
and
m -
|Zii(s)|-.§ ]zji(s)l > 0 (column dominance) 2.3
B 3_1
i#]

Let D be a large contour in the complex s-plane consisting of the



imaginary axis from s = -jR to s = +JR together with a semicircle of
radius R in the right half plane as indicated in Figure 2.2. As s tra-

verses the D contour in a clockwise direction, Zii(s) will generate a

IMae | - S PLANE

R+ oo

RenL

Figure 2.2 The D contour in the s-plane

-curve Fi_for i=1,2,..,,m in-the éomplex plane. Frém’the application of
Gershgorin's theorem at each point on D, a band of circles centered about
Pi will similarly be generated as in Figure 2.3. If a separate figure is
constructed for each loci, then the collection of figures represent a set

of "fuzzy" Nygquist (or inverse Nyquist) diagrams, one for each input-output

pair,

Figure 2.3 Gershgorin band centered about I.,. REAT,

10



Clearly, the eigenvalues of Z(s) are captureé Within the union of
the Gershgorin bands since the eigenvalues at each point lie within the
, corresponding union of discs. If the matrix Z(s) is diégonal for all s
on D, then the Gershggrin band reduges to zevo width and the P; are the
characteristic loci of Z(s). Thus the width of the Gershgorin band pro-
vides a qualitative measure of'the departure from the diagonal condition.
In é control'system setting this departure would reflect the degree of
open loop system interaction. |

A further interpretation of Gershgorin's theoreﬁ states that the
eigenvalues of.Z(s) lie in the intersection of the union of Gershgorin -
bands by row and by column, This follws immediately from the eigenvalues
of ZT(S)~being equal to those of Z(s). Thus if the intersection excludes
lthe origin then theAdeterminant of 2{s) cannot be zero, i.e., if Z(s) is
diagonal dominant then detlZ(s)I#o. With this corollary %he Tollowing
theorem results tlu].
Theorem 2.1 'pet Z{s) be aﬂ mxm rational matrix and let D'be a closedgeleﬁ_
mgntar& Epntoug_égying‘on it no pole of zii(s), i=1,2,...,m, Let there

exist €»0 such that for each s on D either °

n ;
Izii(S)J-.illzij(S)l > i=1,2,...,m

ij
or
m ) i
Izii(s)|—.2_|zji(s)| >e i=1,2,...,m
1=l -
i#]
Let Zii(s) map D into Fi i=1,2,...,m, and let det{Z(s)| map C into
T_. Let I, encircle the origin N, times, and let‘Pz encircie the origin

Nz times. Then

1t



This theorem provideg for a number of stability conditions for the control
problem depending ﬁpon ﬁhich matrices are dominant: Purther considerations
are given in the individual discussions of the MNA methods.

In review, it is the Gershgorin theorem bounding the -eigenvalues of a
complex matrix and the boncept‘of’diagonal dominance which provide the
necessary foundations for the MNA methods., Theorem 2.1 will form the basis
for closed loop stability considerations. Final system design will then

proceed on an individual loop basis.

B. Inverse Nyquist Array

»

To introduce the Inverse Nyquist Array, consider Figure 2.1 to repre-
_sent a‘bloék diagrém for a single inmput-single output feedback control
system. For tﬂis system, the open loop transfer function is
' Q(s) = L(s)G(s)K(s) ' 2.4
Let F(s) be a consfant scalar feedback gain with closed loop system trans-
fer function H(s), given by .

Q(s) ' )
H(s) m ’ 2.5

The INA method uses inverse relationships for a variety of reasons, one
of which is the simplification of equation 2.5, i.e.,

1

‘H_ (s) 1+Q(s)F

Q(s)

=qls) + F 2.6

'Here the inverse .closed loop transfer function is simply, a linear transla-

tion, in the complex -plane of the inverse open loop transfer function.
For notational convenience and to avoid confusion atjlater stages of the

development the following definitions are made

12



H(s) = H *(s)
as) = Qs 2.7
ﬁ(s) = K_l(S)
" Thus, (2.6) becomes
H(s) = Q(s) +F 2.8

Now let Q(s) map the D contour (in the s-plane) into Pq which encircles

the origin Nq times clockwise. Also let H(sg) in (2.8) map D into Ty

which encircles the origin ﬁh times clockwise. Here D is the usual
Nyquist contour in the sﬁplaﬁe and is sufficiently 1arge'to include all
finite poles and zeros of 6(8) and ﬁ(s) in the closed right half plane,

For the system of equation (2.8), ﬁh is the number gf times §q encipr~
cles the point

(- F, o)
and the following statement of the Nyquist Stability Criterion for the INA
fe&ults: ' ' .
‘Theopem 2.2 Let the open loop system, Q(s), have Po poles in the closed
right half plane. Then the closed loop system is asymptoticaily stable if
and.only if ‘ ‘
Nq - Nh = po

Figure 2.4 ?epreseéts a typical INA polot of Eé. Each crossing of Pq
by the critical point‘repreéents the entry of a pole of the plosed loop l
system into the right half plane if the crossing is from."left to right'.
A '"pight to left" crossing represents the removal of a pole from the

right half plane. All directional crossings are relative to an observer

on Pq in the direction of increasing frequency.

13
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Figure 2.4 Typical INA plot of Tq.

Some important observations regarding the INA plot §f Figure 2.4 can now
be made:

1. The INA begins at zero frequency and terminates at infinite

frequency. This characteristic provides for an Immediate display of

low frequency information essential to most design problems.

2. With F=0, the origin (0,0) represents the open loop situation.

Thus if the system is open loop stable, then any gain in the vicinity
of the origin which does mnot cross ;q’ represents a stable closed loop
system operation.

3. The closed loop inverse transfer function ﬁ(s) is given by the same
diagram with the origin shifted to (-F,0). .

4, Only positive frequency is plotted with the negative frequency
range inferred. _ Thus if the‘feedback gain were such that the critical-

point was at point A, then two poles are about to cross into the right

half plane at the gain crossover frequency(uﬂ.

in



5. The ratio DA to OB is the gain margin of the closed loop system
qith gain F.-

6. The phase margin of the closed Joop systep-is Y when a ggin of F
is introduced into the feedback path.

7. The steady étate offset is given by the ratio.atb)/ﬁ(O) and is
obtained from the INA plot directly as the ratio of OC to BC. As F
increases, the offset decreases.

8. The effective bandwidth -of the closed loop system is given by the

value of ® for which

v

[BGWY | = 1.8 FC50)|

9. Feedback compensation procedures for the INA are'concep%aually
similar to the direct Nyquist array. TFor example, to Eﬁovide more phase
advance a phase lead compensator could be introduced into the feedback
path. In Figure 2.4, this compensator would shift-the INA plot up and

away from the origin with gain crossover occurring at point E.

Cleafly, the Inverse NYquist.Array for sipgle—input.single*output systems
ig at least aé:bersatile a design tool as the direct Nyquist method. Many
authors contend that the simplification of the closed ioop transfer func-
tion coupled with the lowufrequency profile make the INA diagram a more
useful design mechanism for single loop design. A more detailed study of
inverse polar plots is contained in Rosenbrock [141 and éaven f1s1.

The design'of feedback control units for multi input multi-output'systéms
using the Inverse Nyguist array is relatively straightforward once the con-
dition of diagonal dominance has been achieved. Fundaﬁentally, ?his condi~'
tion suggests that system interaction has been reduced to such an extent
that each control léop can be closed separately and independently from the

" remaining loops ﬁsing:single léop theory.

15



Let Figure 2.1 represent a feedback control system with m inputs and
m outputs. The system transfer matrix G(s) is mzm with each element
_gij(s) consisting of a numerator and denominator polynomial representing
the transmittance between input j and output i. In general, GCS).OP
.a(s) will not be doﬁinqnt over the frequency range of interést and there~
fore must be modified to confoﬁm to the requirements of the multivariable
array methods.

For the INA méthdd, the pre and post compensator.maérices (each mxm)
must be selected such that

As) = K(s)G(s)L(s) 2.9

is diagonally dominant over the D contour. Using the definitions of

(2.2) and (2.3), Q(s) is diagonal dominant if

- -
a. z |qij(s§|/[qii(s)| < 1 (row dominant) . 2.10
i=1 . .
Etal
or
m -
b, . j§l|qji(s)[/|gii(s)| < 1 (column dominant) 2.11
373 '

for ail i = 1,2,...,m. From Gershgorin's Theorem, all eigenvalues of
6(5) are captured within the union of the Gershgorin bands centered about
Ei with radius as the sum ?f_the moduli of the off'diagonal terms taken
by row or by columm.

. Assume, for tﬁé momeﬁt;rthat a(s) is diagonal .dominant by rows over the
D contour as iq Pigure 2.5 for m=2. If the system is'OPen loop stable then.

the closed loop system will be guaranteed asymptotically stable for all

feedback gains on the real axis in the vicinity of the origin and bounded by
the Gershgorin bands. This étability criterion (Theorem 2.l) can now be

restated as follows:

16



a. ‘Row 1 b. Row 2

Figure 2.5 Q(s) diagonal dominant with m=2,

Theorem 2.3 Let each of the Gershgorin bands based on the diagonal ele-

ments qii(S) of Q(s) exclude the origin and the point (—fi,O). Let these

bands encircle the origin Nqi times and encircle the point (—fi,O), Nhi
times. Then the closed-loop system is asymptotically stable if and.only if

m'. = om . .
I N.~- ¥ N.=p 2.12
sz =1 hi 0 )

where p is the number of open loop poles of Q(s) in the right half plane.
Here the Gershgorin bands are defined by the radii of (2.10) or (2.11).

Theorem 2.3 is stated in its most useful form for application purposes

since Nqi and Nhi are evaluated from the same set 6f Gershgorin bands.

The theorem could be stated in a more general form wherein new bands would
be recalculated for each set of fi.

-
Note that theorem 2.3 specifically states band encirclements and not just

17
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encirclements of the .. Thus the theorems and corollaries for the INA
apply only for feedback gain values located outside the Gershgorin bands.
The stability theorertis simply do mot apply for any gain values located
within a band and‘ho inferences regarding stability or instabilify can be
made. -

For the syétem in Figure 2.5, each feedback loop could be independently
closed using the innér most envelope of the Gershgorin band for gain margin
and phase margin assessment. In general, the Gershgorin band provides a
conservative estimate of the stable gain space and is most useful as a
preliminary design tool.

To provide further insight into the INA design mechanism, assume'a(s)
diagonal dominant and all feedback gains fi chosen in acco?dance with
Theorem 2.3. Let hii(s) be the transmittance ffom input i to output i when
all feedback loops are closed i.e. fi¢o, i=1,2,...,m. Define ri(s)-as the
transmittance from input i to output i when all feedback'loops, except the

ith loop, are closed, i.e. fi=0. From standard feedback relationships

hii(s) ri(s)/(l+ri(s)f£) . 2.1?

h;y (s)

1!

ri(s) + fi 2,14

Hence, to complete a .set of single loop designs by opening one feedback
path at a %ime,“it is the quantity ;i(s) which goverms the systém behavior
and not qii(s). Rosenbrock exploited this relationshiﬁ to demonstrate that
;i(s) is %ocateq Within the Gershgorin band for all stabilizing feedbagk
gains. He further demonstrated that when all gains except fi are specified,
the transmittances ;i(s) for i=1,2,..., ﬁ are located within a narrower set
of bands. This new set'of bands is based upon a théoﬁem by Ostrowski and
are ;ppropriately labeled the Ostrowski bands. For the iNA method, the

Ostrowskl bands are always located within the Gershgorin bands.

18



Theorem 2.4 (Oétrowski [19]) Let D be the closed Nyquist contour in the
s-plane and let Z(s) be row dominant on D with no pole of Zii(S)
i=1,2,...,m on D._ Then_if 5, is a point on D, Z(so) has an inverse
Z(So) sﬁch Fhat for iﬁl,z,..u,m

.[Zii(so) - ziinl(so)l < ¢ dy (so) < d. (s ) .

when

m
d;(s ) = z |zij(so)] i=1,2,...,m
i1
J#L
are the Gershgorin radii and ¢i are a set of "shrinking factors" defined

by

dj(so)
¢i(so) = max
j | :JJE o]
j#i
For the IﬁA,-%(s) = ﬁ(s) = é(s) + F, hence
n ) - TF, + qy, ()] < $y(s)a,(s) 2.15
for row dominance, and
Ih,."He) = (£, + .. (s))]< ¢T(e)a (s) 2,16
ii 17 Y45 iy ‘

For column dominance. The shrinking factors thus become

d.(s)

$.(s) max ] 2,17
1 s#1 151745501

and
d%(s)

max -
- -+ P 2.18
fj qJJ(S)

¢i(s)

Using (2.1%), (2.15) and (2.16) become

-1

2,7 - g ()] < 85()a (sY < ay(e) 2.19

for row dominant-H(s) and

. /
1 - 1, ..1 1
- qii(s)| < ¢$;(s)d;(s) < d;(s) 2,20

lri

19


http:2.14),.(2.15

for column dominant H(s).
L5

The Ostrowski bands serve two useful functioﬂs. First they locate
the transmittances ;i within a narrower set of bands when all loops Except
the i?h-are closed. As the fj j#1 are varied, ;i will also vary so that
the ith Ostrowski band depends upon fj:j#i: Seconq, they provide a more
accurate measure of phase and gain margin for the ith control loop and
fhus reduce the prob}em to the design of fi' %n extremely important feature
of theorem 2.4 is that once the fi i#j are specified to obtain the Ostrpwski
band for loop j, the band for loop j will gontinue to shrink ghen the
fi i#i increaﬁe; That is, if the feedback control in loops i#j are in-
creased to improve the .control'in the respective loops, thg feedback design
For loop j is unaffected.

The Inverse Nyquist Avray method consist of the folléwing fundamental
‘operations:

1. Design ﬁ(s} and ﬁ(s) such that a(s) is dominant by row or column

using (2.10) or (2.11). L

2. Plot the Gershgorin Bands for each control lcop. '

3. Evaluate stability for thé‘diagonal dominant'a(s) using theoreﬁ

2.3,

b, Finalize tﬁe design‘using the Ostrowski Bands and singlé loop

c&ntrol ‘theory.

Clearly, the apgliéatioﬁ of the INA method is predicated upon the
ability of the system designer to'achieve an adequate degree of system
dominance. The degpee of dominance attainable is primarily governed by two
factors:

1. The structural sophistication and realization of pre and post com-

pensator forms;.
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2. The ability of the designer to manipulate the compensator para-
meters to achieve, maintain or improve dominance in each row (or
column of a(s).

Current methods avqiléble for compensafor design require a high degree
of designer interaction and are therefore best suited for interactive
computer facilities. Often success in achieving dominance is based upon
the exﬁerience and intuition of the system designer in the application of
these trial and error methods. In addition the methods are restricted,
for the most part, to the design of constant compensators although attempts
. at more sophisticated structural forms has been reported [14].

One of the first methods suggested beyond a total trial aﬁd error
approach was to diagonalize é(s) at s=0 [12] by setting

1A<" = Le(oy
If c(0) is non—siﬁgular, a(s) will be dominant near thHe origin of the com-
plex plane but not necessariiy over the extended dynamic frequency range
of tﬂe system. -In either event, however, no ggneral guidelines exist for
improving dominance in any given row (or column) of 6(8) since any modi-
fic%tion of the coefficients of ﬁ (or i) translate to- vector addition when
forming

Q(s) = K&(s)L
Similar conditions exist for high frequency diagonalization using

K = LG(w)
Th;refbre diagonalization at either end of the frequency spectrum provides,
at best, a startiﬁg point for the trial and error approach.

The pseudodiagonalization method developed by Hawkins [20] and genera-
" lized by Rosénbrock [14] formulates the dominance objective as an eigen-

value~eigenvector problem. The method is best suited for constant compen-
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sator design but could be used for polynomial forms of E(s). Briefly,
pseudodiagonalization determines the set of row elements of ﬁ (for row
dominance) or column elements of ﬂ (for column dominance) which "most
nearly" diagonalizes a(s) at specified frequencies. For the eigenvalue-
eigenvector problem this translates to minimizing the weighted sum of
squares of the off diagonal elements of a(s) at the N specified frequenc-
ies, -
N m
Min Z yr{ E

r=1 3=1
i

. © 2 i
Iqij(jwr)l‘ } 1= 1,2,0..,m 2,21

(S

where m is the dimension of G(s) and Y, are designer specified weighting
factors. -The minimization in (2.21) is subject to either a constraint on

the elements {for row dominance)

m -
z = 1 2.22

or a constraint on the diagonal element

Iqjj(jm)[ = 1 w specified 2.23

A

If the constraint in (2.22) is used, qjj yay vanish since it does not

appear in the problem formulation. If N=1 in (2.21) and constraint (2.23)
i; used, problems analogous to the case when w=o may reéult. The additional
feature here, however, is that the eigenvalue-eigenvector problem may be
resolved at any frequency within the range of interest. The solution at the
selected frequency is then tested at other frequencies for domimance. For
N>2, the eigenvalue-eigenvector problem resulting from the minimization-

of (2.21) subject to (2.22) (or (2.23)) further complicates the dominance

issue since w in (2.23), N values of w, and N values for Y in (2.21) must

be selected a priori. If either pseudodiagonalization scheme yields domi~
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nance over the frequency spectrum then the designer may resort to trial
and error methods to improve the degree of dominance: ﬁowever, if domi-
nance does not prevail, conclusions concerning the non-existence of con-
'stant compensators may be erroneous. This would be the case, for example,
when constant compensators exist which yield dominance over the D contour
in the sense of (2.10) or (2.11) but did not satisfy (2.21) for any combi-

nation of W_, A and N.
r’ "p.

C. Direct Nygquist Array

The direct Nyquist Array (DNA) method for single-input single-output
systems is well established in the controi literature. Fundamentally, it
is a polar plot of the open loop transfer function as s traverses the
familiar Nyquist contour.

If Piéure 2.2 represents & single input single output feedback systeﬁ,
then the open loop #ransfer funetion is -

s} = L(s)6(s)K(s) 2,2y

with the closed loop transfer function as

- Q(s)
H(s) = m - 2.25

Let ¢(s) be the characteristic polynomial of H(s), i.e.,
$p(s) = 1 + Q(s)F(s) ' 2,26

and let ¢(s) map D into a closed contour I', as s traverses D in a clock~

¢

wise direction. From the Nyquist stability criterion, if T', encirecles the

¢
origin N¢ times clockwise then the closed loop system is asymptoticall&
stable if and only if
N, = 0O 2.27
9

An equivalent but more convenient form of the Nyquist criterion is

available using (2.24). Let Q(s) map D into the closed contour P¢ and let
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F(s) be a constant different from zero. Taking the usual precautions to
insure that D encloses every finite pole and zero of ¢(s) in the right

half plane, (2.26) can be rearranged to

Ws) = F L als) 2.28
and the following theorem results [14]
Theorem 2.5 Let F be constant and- let the open loop system have Pe poles
in the eclosed right half plane. Let Q(s) map ﬁ into rq making Nq clock~
wise encirclements of the point (- %30)- Then the closed loop system of
Figure 2.1 is asymptotically stable if and only if

N = -p 2.29

where Z_ is the number of finite zeros of p(s) in the closed right half
plane. However, the system is stable if and only if Zé=q thus (2.29) re-
sults. A typical Nyquist polar plot is indicated in Figure 2.6‘fbrvposi—
tive frequenq}§§; The. closed loop system design can now be completed using

gain margin, phase margin, etec. as the criteria and - % as the critical

Figure 2.6 Nyquist polar plot.
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_ pboint., Further deéign considerations for the single input single output
case can be found in [18] and [211].

The extensicn of the above design concept and inupartibular theorem
2.5 to multi input multi output systems will require the-diagonal dominant

condition imposed on Q(s).” Therefore, let Q(s) be diagonal dominant, i.e.,

m - N

lqii(s)| > I Iqij(s)l Row dominant ) 2.30
3=1 i=1,2,...,m
i#3 .

or
. m
la. (=) > % |q.,(s)] Column dominant | 2.31
11 . . J1i . . .

j=1 1= 1,2,...,m
14 -

for all s on D. Let f—l (or equivalently F) be a diagonél constant matrix,
_{hen';he off diagonal elements of ¥(s), |
¥s) = F T4+ Qs): 2.32 -
are equal to the off diagonal elements of Q(s). The diagonal element?
of 2.32 are -

-
V;5(8) = £y

51 T qii(s) i=1,2,0..,m 2.33

1

Now let £.5 + qii(s) map I into a closed curve T and let qii(s)

Trags

map D into Pqi' From Gershgorin's Theorem, all eigenvalues of F-l‘+ Q(s)
are captured within the union of the Gershgorin bands centered about

Te q with radius equal to the sum of the moduli of the off diagonal
B & 1 ' |

terms taken by row or by column. But the Gershgorin radii for T + Q(s)

are equal to the radii for Q(s). Therefore exclusion of the origin by a

band centered about Pf +q is equivalent to the exclusion of the point
. il

(-f;l,o) by a band centered about Pq_. The following theorem summarizes
- i
this thought [iul.
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Theorem 2.6 Let ‘each of the Gershgorin bands centered about Pq exclude
—_— i

the peint (—f;i,o) i=1,2,...,m. Let these bands encircle the point

(_f;§°0j’ N, times, i=1,2,...,m. Then the closed loop systenm is

asymptotically stable if and only if

m
I N, = -p . 2.34
421 © o

Theorem 2.5 provides the necessary criteria to complete the DNA de-
sign on a Singie loop hasis. To improve the design capability through the
redﬁction of the_Gershgorin band, a theorem analogous to the Ostrowski
theorem for the IﬁA is available [1u].
Theorem 2.7 -Let F be a diagonal constant watrix, and let F*1+Q(s) be
dominant on D. Let hii(s) represent the transfer function from input i
to output i when all feedback loops except the ith loop are closed. Then

for each s om D,

la5;(59 - By(9)| < (s)di(s) < di(s) | 2.35

for row dominance and

|qii(s) - hi(s)I < ¢i(s)di(s) < di(s) 2.36

for column dominance where

¢, = max d,(s) 2.37
3 -1
3. | E .
i#] | 1] qjj(s)l
N : al(s)
$;(s) = max —2 2.38
i !fjjtqjj(SJI
j#i

-

. 1 )
and the dj(s) and dj(s) are the appropriate Gershgorin radii.

Extreme care must be exercised in using theorem 2.7 in a DNA applica—

J . .
tion. This is evident, for example, in the row dominant conditions of
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(2.35) and (2.37). Here it is observed that the shrinking factors in

(2.37) decrease as the fjj decrease, as they must since
‘qii(s)l = Ihi(s)[ 2?39‘

in the open locop condition. Therefore, in contrast to the INA, the
Ostrowski bands increase as the feedback gains in the remaining loops in
crease. This condition may cause some difficulty if the feedback design
for loop j is based upon the set {fi i#j} and some of the fi increase as
a result of later design modifications. The increase in value of some of
the fi will cause the Ostrowski band for loop j to increase which in some
cases may be sufficiently large so as to encircle the design point in loop
3e. %f‘this situation prevails, the entire DNA degigﬁ is voided, since the
critical design point in every loop must remain outside the corresponding
Ostréwski band for Theorem 2.6 to be valid. Hence the feedback design in
each loop must be reevaluated whenever significant positive increments are
made in the remaining feedback loops. -

The above situation is cited by Rosenbrock [14] as the single most

determining factor for choosing the INA method over‘the DNA method. How-
ever, the graphical interpretation of theorem 2.7 is not quite as grim as
Rosenbrock may suggest. The following reasons are cited:
1. For any specified set-of feedback gains [fi,i#j], the transfer
function from input j to output j is contained within the jth
Gershgorin band (Theorem 2.6). Thus if the Gershgorin bands are
sufficiently narrow then single loop closure can be completed without
invoking theorem 2.7.
‘é. Theorem 2,7 can be used in precisely the same sense as theorem 2.4
was used in an INA design, if the feedback gains {fi,i#j} are un-

. usually large (and outside the respective Gershgorin Bands), then as
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the fi‘are reduced under single loop closure,-the Ostrowski bands
in theorem 2.7 will shrink.
3. Examination of (2.37) {or {2.38)) suggests that if all fi i£3

are infinite, then the largest value of §(s) (or ¢l(s)) is given

by
_dj(s)
max 2.40
5 133501

i#j
-But this expression is simply the maximum degree of dominance

attained in the remaining Gershgorin bands. Therefore each Gersh-

éorin band may Be_immediately reduced by fhe appropriate factor in

.{2.40). This importént concept is used in the algorithm proposed in

section 3 of this report.

Apart from the graphical interpretation and use of Ostrowski's Theorem,
the DNA and the INA methods are similar in concept. For every theorem,
definition and.design concept pertaining to the INA method there exists an
analogous . theorem, dgfinition and design concept for the DNA method. The °
methods” are mutually exclusive in the sense that a design initiated using
‘the IQA method cannot be completed using DNA éesign concepts and vice versa.
The main point of-departure lies in the-graphicai-interpretation of the
fundamental theérems, wherein the DNA method utilizes polar plo%s to
‘interpret the design objectives and the INA utilizes the inverse polar plot.

Clearly, the DNA method (as well as the INA method) is critically
dependent upon the ability of the system designer to achieve a diagonal
dominant condition. All methods appropriate to the INA method to achieve

a dominant condition are also suitable to the DNA desipgn method.

The DNA method can be summrarized as follows:

28



1. Design K(s) and L(s) for diagonal dominance of Q(s) by row or by
column.

‘2.‘ Plot the Gershgorin bands.

3. Evaluate system stability using theorem 2.6.

4. Complete the design using single loop control theory within the

limitations of theorém 2.7.

C. Discussion

The multivariable Nyquist array is a very useful and versatile design
“technique for multi input multi output systems. The principal feature of
the MNA ;s the utilization of the mathematical foundatioﬁs of complex
matrices to reduce system interaction to the extent.that each feedback
loop can be in&ependently désigned. The Gershgorin and Ostrowskl -thecrems
are easy to apply and the final_closed loop design concepts are well docu-
mented in the control literature.

The utility of the MNA design philosophy is totally dependent uﬁon the
ability of the sfstem designer to achieve an adequate degree of systeﬁ
dominance. It is %herefore in the interests of the designer to have avail-
able new methods of acﬁieving the dominant condition and thus brovide
greaéer fle%ibilit& in the use of the MNA design methods.

Ideally, any new dominance method should be sufficiently flexible to
address the following issues:

1. Design of constant compensators for either row or column domi-

nance,

2. Design of frequency dependent compensators with fixed structural

form for row or column dominance.

3. Eliminate the need for designer oriented trial and error methods

- to improve dominance.
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4. Provide a measure for the comparison of two or more compensator
ypairs each yielding a dominant condition.
5. Utilize the degree of dominance in the remaining rows or columns

to improve the design in a particular row or column.

6. ‘Be appropriate for both the INA and the DNA methods.

This 1list highlights several major concerns regarding the use of the
MNA which has not.been treated in the literature to date. The concerns
are primavrily directed toward the degree of dominance required in a
particular desigh, the utilization of dominance to further improve the
design base for any given row or column element and the degree and type of
system interaction resulting from the simultaneous closure of all feedback
loops;

A new technique to generate diagonal dominant compensator pairs is
described‘in the.fbiloﬁing gections. The method addresses each of the
concerns cited above and is suitable for implementation‘in either an

interactive or batch .computer mode.
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SECTION 3
NEW DOMINANCE ALGORITHM

In this section, a new dominance algorithm for the Multivariable
Nyquist Array is deveioped. The algorithm utilizes the explicit defini-
tion of diagonal dominance of section 2 to minimize a'non-analytic
function of the pre and post compensator matrix parameters. A conjugate
direction function minimization technique applied over the dynamic fre-
quency range of interest is used to achieve the desired dominant condition.

In its most general form, the new dominance algorithm is characterized
by four specific phases:

a. Parameter initialization

b. -Dominance evaluation

c. Parémeter optimization

d. Design considerations
The most unigue features of the algorithm are the non-interactive nature of
phases b and ¢ and the increased degree of flexibility and designer inter-
action in phase d. In addition, the algorithm is sufficiently general so
as-tQ be appropriate to the.batch computer mode deéign of.both the Inverse
Nyquist Array and %he Direct Nyquist Array.

The algorithm is developed in the following manner: First, the con-
cept of domiﬁance is reviewed from a computaticnal and structural vigwpoint.
The ﬁain computational unit, which performs phase b and phase c¢ above, is
then introduced followed by the program control unit. Finally, closed loop
system design concepts new to the MNA design philosophy ére presented and

discussed.
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A, Dominance Obserwvations’

The 'general concept of diagonal ‘dominance was presented in section 2.
It is' now of interest to carefully examine :the detailed structure of thé
dominance condition and to identify the points of simiiarity for row and
column dominaﬁcg determination.
Consider a general complex matrix Z{(s) to be m x m and the square
matrices A and B to be coﬁstant. Let P(s) be the matrix product
P(s) = A Z(s) B ‘ 3.1

with diégonal dominance of P(s} defined as

i1 a3

; - lpij(s)l/lpii(-s)"l <8, <1 121,2,0..,m 3.2
1

e te

“H.
(N

for row dominance and

El ]pji(s)]/lpii(s)l <6, <1 i5,2,....m 3.3
i#]
for column dominance. In (3.2) and (3.3), 8; represent a specified set of
- constants contained in the semi-open interval (0,1] and will be defined in
part D of this section.
tUsing (38.2) as the definition of row dominance and assuming B to be

specified, the following observations can be made:

0BS 1

Diagonal dominance for row i of P(s) is determined exclusively by the
elements of the ith row of A.

0BS 2

Dominance of vrow i of P(s) is unaffected by a scaling of .row i of A.
OBS 1 states that the elements of row i of the A matrix (aij j=1.2,

.++,m) do not enter into the consideration of dominance for any other row
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j#i. Hence, only m parameters in the A matrix need be determined for each
row dominant condition. OBS é suggests that the row elements of A can be
multiplied by a common factor with a guarantee of dominance preservation.
This observation is used in part D to provide a mode of comparison of
compensation forms and is fundamentally a scaling or normalization opera-
tiom.

OBS 3

Using (3.3) with B specified, column dominance of {3.1) may be ob-
tained only if all elements of matrix A are manipulated simultaneously.

This observation %ollows immediately upon noting that all elements of
A, aij’ influences the behavior of every column of P(s). As a result of
OBS 3, the method of pseudodiagonalization cannct be used to search for
column dominance when B is specified.

The transpose of P(s) in (3.1) provides a simila? set of condifions
fof‘the B matrix when A is specified. Specifically, let

T

P (s) = Pl(s) = BL Z(s) AT = A

= BT, Zl(s? = ZT(S) and B, = AT. Hence, observations 1-3

1 Zl(s) Bl 3.4

In (3.4), A

are now appropriate to (3.4) and are summarized as follows

0BS5S 4

If A is specified in (3.1), then column dominance of P(s) may be
attained via the manipulation of the elements of B wherein the elements of
the jth column of B only influence the dominance condition in the jth
column of P(s).

OBS 5

If A is specified in (3.1), then row dominance of P(s) may be obtained

. 2 - .
only if the m elements of B can be simultaneously manipulated.
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The above observations are clarified upon examinmation of P(s) in

(3.1) when m=2

ay1P1%11(8) + 21,b,425, () 211019771 (8) + 2y,5b 535, (5)
: a11Py12)5(8) + a15Dy12p,(8)  + ayyby %1 5(8) + ay5bypZn,(s)
p(s) = '
azlbll?ll(S) t ay,by 125 (8) 391P19%17(8) + 50Dy 52p,(s)
+ A, Dy Byp(8) +aybyyZy(s) ¥ aybyyzy,(8) 4 _‘"‘221’22221(5) |
3.5

Further examination of (3.5) yields

0BS 6

‘If the elements of both A and B are unséecified, no obvious pattern
for bbtaining diagonal dominance of P(s) is identifiable beyond thé simul-
tane;us manipulation of the 2m2 parameters. In additiomn, the elements of
B are, in a sense, competing with the elements of A in the attempt to
secuve dominance of P(s).

In view of 0BS 6, it is apparent that designer intervention may be
required to establish a hierarchial structure to the dominance evaluation
proce&ure. This pafticulaf situation hés not been automated in the pro-
posed algorithm and remains a subject for future research. Several guide-
lines are preseﬂted in the discusgion of the examples of section 4,

Tn the conditions imposed above, it was implicitly assumed that con-
stant compensators were the desired form of system compensation. This
would certainly be true from an implementation perspective and is there-
fore the initial assumption in any MNA design attempt. Héwever, in some
applications, constant compensator matrices may not yield the dominant

condition or satisfactorily meet the closed loop design specifications.
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The alternative is therefore dynamic compensation.

The cbservations made above for constant compensators can bg extended
to include the design of dynamic compensators. To illustrate, consider
the objective to be row d;minance of P(s) in (3.1) with a -specified post-

compensator matrix B(s). A(s) in (3.1) can be generalized to

313f1(8) 215775(8) 31 fim(5)
‘a21?21(3) 39500 (s) A om(S)

A(s) = X E ' E . . E 3.6
amif@l(s) amthz(s) ammfmm(sy

where fij(s) are specified by the system designer and the a;; are to be
determined for dominance of P(s). With respect to the aijis, 0BS 1-6 are
retained, A special case of (3.6) is the pre-compensator form

A(s) = [AO + Hl/S] 3.7

X

0BS 7

In an INA,&esign using dynamic compensation, it may be desirable from
an impleméntation viewpoint to structurally define the Eompensator in the
inverse démain.

This'observation is explored more fully in part D, but serves as a
reminder that if A(s) in (3.7) is the precompensator form for the INA, then
2"1(s) could have poles and zeros in the open right half plane. This

situation arises from the general observation that
a.. £..(8) # [Ar. £..(8)1L 3.8
iy Tij ij "ij
and thus could be avoided with the precompensator form

As) = [A_ + Al/sq"l 3.9
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Here OBS 3 would be imposed for both row and column dominance attempts.
With this insight into the structural and computational form of
dominance evaluation, it is quite evidenf that (3.1) could represent
either the ?NA or the DNA open loop design format. Thus a computational
unit devoted to the search for diégonal—dominantﬁfbrming\compensatbr

parameters can be developed.

B. Generalized Optimization Unit

The main unit of the domiﬁance algorithm is constructed in a gener-
alized setting éna is founded upon the observations in part A.

Let C represent a vector formed by consolidating thé unknown compen-—
sator parameters into a single array. In some applications, such as row
dominance of PEs)‘With B.specified, C will be an m vector representing‘
the unsﬁecified values in the jth row of A. For other.situations, re-
flected in 0BS 6, C may be of dimension 2m2. Assume further that for any
given C vector, P(s) can be properly reconstructed and evaluated for all

s. The main unit then performs the following functions:

1. Accepts proper coding to identify the MNA design. form and select
the desired performance measure for dominance evaluation.

2. Adjust the elements of C to minimize thé performance measure
gselected using a conjugate direction function minimization technique.
Tpe performanée measure selected is dependent_upon‘the form of domi-

nance desired. Fundamentally, there are two specific forms from which

the selection is made:

- m
a. J,(c,d;) = Max I Ipij(w)l/|pii(m)l 3.10

wefl J=1

i#]
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m
b. J(C,8;) = Max Max [ I |pij(m)[/[pij(m)| - 8,1 3.11

we 1 J=1
j#i

The measure in (3.10) is selected whenever the unspecified coefficients
can be subdivided into mutually exclusive sets. When this situation
occurs m calls to the wain unit will transpire, one call for each value

of i. Altermatively, the measure in (3.11) is used whenever the dominance
seeking coefficients must be simultaneously manipulated. Details are
postponed .to the following subsections.

The success of any numerical optimization technique in locating the
extrema of a function of many variables is highly dependent upon the-shape
of the contours of the function to be extremized and the convergence pro-
perties of the optimization technique employed. Clearly, these concerns
are imbedded in the successful evaluation of the compensator parameters
in (3.10) or (3.11).

Examination of (3.11) reflects the interesting computa%ional and
numerical aspects of t?e performance measure. FEach of the pij(m)'s are
complex functipng of the compensator parameters from which the definition
of dominant matrices is composed. At each frequency, the rows (or
columns) ave scammed to identify the largest ratio. This arvay is then
scanned (over w) to determine its maximum value. If the largest ratio is
leés»than Bi, thenlﬁhe trial elements generat%ng P(s) yield dominance for all
TOWS ;cr columns) over the frequency range of concern. If the ratio is
greater than ei, then the elements of C must be ﬁdjus#ed to create the désired
condition.

The majority of numerical optimization techniques feguire some form
of localized gradient or second variational calculation. If the perform-

ance-measure is a well defined analytical function, then a gradient
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dependent algorithm is often the most efficient route to pursue. This is
the premise upon which the method of pseudodiagonalization is based,
However, gradient calculations for (3.10) or (3.11) could result in
significant numerical difficulties due, in part, to the extremization over
. For this reason a numerical optimization technique which does not
expli;itly depend on localized gradient calculations is preferred.

The method selected for implementation is the Zangwill-Powell {22,23]
optimization technique. This method is known to be effective when sharp
ridges and narrow valleys are present in the performance contours and is
suitable for application to problems with a large set of variables to be
optimized {22,24,25]. Other methods which do not rvequire gfadient calecu~
lations and therefore might be appropriate for the optimization of (3.10)
or (S.il) are those of Swann [26] (an extension of Rosenbrock [27]),

Smith [28] and Wood [29]. Of the optimization methods which do not ve-
quire derivatives, Fletcher's study [30] suggests that Powell's method may
be computationally the most efficient.

Fundamentally, the optimization unit of the dominance algorithm per-
forms as follows:

"1l. Upon receipt of an initial guess for the C vector, P(s) is
evaluated to determine the ratio of the Gershgorin radii to the
moduli of the corresponding diagonal element in (é.lo) or (3.11)
for all wef.

2. The dominance ratio is appropriately scanned over w +to identify

the largest ratio. The numerical values of J(C,Bi) at subsequent

evaluations are used by the conjugate direction minimization

algorithm to adjust the components of C.

3. Step 2 is repeated until either the desired degree of dominance
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is achieved or internal checks within the optimization method indi~
cate no further improvement in J(C;Bi) is likely with successive

adjustments of C.

This optimization unit forms the nucleus of the dominant seeking al-
gorithm. Accéss to and contrel of this unit is the function of the program

supervisor.

C. Program Supervisor

The program supervisor performs the task of accepting information from
the system designer and properly coding the optimization unit and the de-
sign unit (see next subsection) to perform the requested design. The
supervisQr will accept the Following data for each design attempt:

1. INA or DNA design?

2., System dimension

3. Frequency range

4. TFrequency increment (equal spacing)

5. :Row or column dominance?

6. Identify fixed compensator
i. Precompensator
1i. Postcompensator

iii. None '
iv. Both
7. Numerator and denominator coefficients for each element of G(s)
8. pomingnce gontrol parameters, 0,0 1=1,2,000,m
9. ‘Plot options
i. No plot

ii. Row or column elements superimposed by rows only
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iii;_ Gershgorin band only
iv. (ii) aﬁd (iiiy only
v. GBershgorin and Ostrowski bands
v1.. Ostrowski only
10. Diagonal feedback gain elements for Ostrowski bands
11. Precompensator specifications
i. Dynamic or constant?
ii. If dynamic, specify coefficients of fij(S)
iii. Imitialize coefficients
a. Set to identity matrix
b. Diagonalize at w=e
¢. Elements to be read in
- 12. Post compensator épecifications
i. Dynamic or constant?
ii. "If dynamic, specify coefficients of fijfs)
iii. Initialize coefficients
a. Set to identity matrix
b. Diagonalize at W=
c. Elements to be read in

13, Advance design control parameters

W%th the abéve information the ﬁNA design is completely gpecified and
a search for dominance using the optimization unit may be implemented. In
the following subsection, design concepts new to the MNA design philosophy
are introduced. -Section 4 illustrates the use of these concepts in appli-

cations.
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D. New Design Concepts

The Inverée Nyquist Array as conceived by Rosenbrock and implemented
on a éDP—lO digital computer by Munro at the University of Manchester was
intended to be used in an interactive computer mode. In this mode, the
system designer is an integral part of the computational and evaluative
phase of dominance determination. As a result of this high degree of
deéigner intervention, final design considerations are based upon trial and
error methods which, in most cases, are not systematized. It is the intent
of this subsection to introduce new computer aided design techniques to the

multivariable Nyquist array.

1. Dominance Control Parameters

Theoretically, any degree of system dominance is sufficient for the
application of the MNA design method. The degree of system dominance may
range from the marginally dominant condition (performance measure less than
but near unity) to the decoupled condition (performance measure near zero).
Correspondingly, if the level of system interaction is interpreted in terms
of the width of the Gershgorin bands then there is a direct correlation be-
tween system interaction and dominance.

From a practical viewpoint, the degree and type of system interaction
is an important design consideration in the selection of input-output pairs
and corresponding compensator structures. For this reason it may be
desirable to peduce open loop system interaction befo;e the feedback loops
are closed. This is accomplished through a specification of the "domi-
nance control parameters", ei i=l,...,m in the system performance measures
of (3.2) and (3.3) (or alternatively (3.10) and (3.11)).

In application, the system designer will specify each ei for i = 1,2,

«+ » s Where
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0<6, <1 i=1,2,...,m - 3.12

i.
The unspecified parameters in the compensator matrices are then- adjusted

by the optimization wnit in an attempt to meet this degrée of dominance.

The Bi (selectei in accoréance with (3.12)) is_fundamentaily a request to
the optimization unit to make the largest Gershgorin radius smaller than

100 ai percent of the corresponding diagonal element. If the optimization
unit -can satisfy the Bi reguest in each row (or column), then the prescribed
degree of dominance has been achieved. . .

An interesting observation regarding Ostrowski's theorem can be made

when, the dominance control specifications are satisfied: Recall that the

shrinking factors in .Ostrowski's theorem are

¥

) d.{s) co
. - - ]
(INR) d)i(S)\_ 'gl;}; -lf—j_ljz—j;zgj-r 3.13
ahd‘ .
d.(s)
(DNA) ¢,(s) = max -13 -
jA1 IEE-+zjj(s)

Let'f:.I =0 in an INA design and %j = oo in a DNA design, then

dj(S)

$.(8) = max : 3.15

YU a1y ®] -
Define '

. T d.(s)
Bi = Max ¢i§s) = Max @a% — ) 3.18
s . s j#i 33

hence

for all i = 1,2,...,m.

cbi'(S) < H

But the Bi are nothing other than the largest degree of dominance obtained

for j#1i, therefore
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9., = max 8. 3.17
i e gx i
JFL

Thus for any MNA design, the Gershgorin band may be immediately reduced by
the corresponding Bi factor.

2. Interaction Index [31]

Once a suitable degree of dominance has been obtained, each feedback
control loop may be independently closed using single loop classical con-
trol theory as outlined in section 2 of this report. Application of
Ostrowski's theorem can then be used to further reduce the Gershgorin
bands for each design loop. The corresponding Ostrowski bands can thus be
used as a conservatiée estimate of the design parameters to improve the
overall closed loop system design.

It is important to re-emphasize that each loop is_designed indepen-
dently. Furthermore, the width of the final set of Ostrowski bands, in a
broad sense, reflect the degree of closed loop system interaction in the
finalized design. However, no information regarding the type of interaction
is available from the Ostrowski plots. For this information, the "Inter-
action Index" developed by Davison [31] is employed.

Briefly, the interaction index assumes that m linear time invariant
proporticnal Ffeedback control loops have been independently designed and
are separately applied to the system. Davison considers the questidn of
how much interaction will occur when all m control loops are to be applied

simultaneously to the system,

. Consider the linear time invarient system

(o]
x(t)

1)

A x(t) + B u(t) 3,18

1§

H1) = ¢ x(t) 5.1

In an MNA format, the control law u(t) is
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: u(t)‘ = - KFLCx(t)+ n(t) 3.20
where K and L are the dominance producing compensators, the feedback
gains fi have been determined from the Ostrowski plots and u°(t) are the
input disturbances.tg the system.

Undér the assumption that m control laws have been found so that the
resultant systems are stable and the jth controller satisfactorily con-

trols output Yy the following index of performance is chosen

J. = max fm yj2 (t) 4t 3= 1,2,.0..,m 3.21
o

1. = 23 § = 1,2,...,m 3.22

Here Jj is the value of (3.21) resulting from .the application of uj only

ta

o
"~

and Jj is the value ?f (3.21) when all loops have been closed simultan-
eously. The index in (3.22) thus provides a measure of the relative change
in the control of yj(t) when all feedback loops are simultaneously closed
compared with the jth contrecl law applied independently.

The problem defined by (3.18), (3.19), (3.20) and (3.21) can be re-

formulated in a Lyapunov function:

_ T -
J:.| = mzx X Qj X, = Amax (Qj) _ 3.23
O
X T x = 1
o . O

where A___ (Qj) is the largest eigenvalue of Qj and Qj is the solution to

T : T
A - BKF,LC .+ Q, [4 - . = - C, C, 3.24
£ 5 1 Qs + QL4 BXF.LC] 5 G
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The‘Cj in (3:2#) are the corresponding rows of matrix C. The matrix Fj
in (3.24) has zeros in %ll positions except for fjj’ which is the feed-
back gain for loop j. To evaluate Jj*’ Fj is diagonal with each diagonal
element set to the corresponding design gain.

Uéing (3.23), the interaction index becomes

Amax({?j )

Ij = -r'T—Q-T - 1 3.25%

max j
and will lie between the bounds

- 1< I:.| <o 3.26

d. 1< I, < O
]

ol
" This situation occurs when the performance index for Jj is Jess than

Jj gnd is construed to be a favorable form of system interaction. That is,
the control of output yj iz improved when, all feedback loops are simul-
taneously closed when compared to the control of yj using only input uj.

" The ultimate limit of -1 is obtained when a high degree of system inter-

ot
action exists such that Jj is near zero, l.e.

J., < <-Jj 3.27

This situation occurs when

%
) = J

. 3.28
]

J
and thus implies.thét the closure of the remaining feedback loops has no
effect upon the.control of yj. This case corresponds-to a decoupled condi-
tion. -

c. I.> o9
—_—

Here loop closure has a deleterious effect upon the control of yj when
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compafed to the éingle loop closure of uj. Clearly, this form of system
intgraction 1s undesirable when Ij becomes large. As ij tends toward
infinity, the interaction becomes more severe and implies a tendency -
toward instability (Ij = o),

The interaction igdex thus becomes an important evaluative measure

for closed loop system design and can be applied directly to the MNA.

3. Comparigon of Compensator Designs

In the'appliéation of the Multivariable Nyquist Array design method,
alternate structural forms and different initial guesses for the unspeci-
fied céﬁpensator pdrameters may yield (after optimization) different
compensator designs, eacﬁ of which satisfy the dominant conditioms. It
is therefore of interest to have a means for the comparison of compensators
which may have been generated by different design fofmg._

in particular; consider an INA design with £ specified and R con-
strained to be constant. For row dominance of a(s), each row of i is
mutually exclusive of the elements of the remaining rows. Thus the ith
row of K may be normalized about the diagonal parameter. This procedure
applied to alternate designs for R will provide a direct comparison of
éominant compensator forms and therefore may be used to determine the
suitability and/or supgriority of the alternate pre-compensator design
forms.

As an illustration, consider an mth order é(s) with £ = I, Assume

~

that m initial guesses for K yield m different normalized compensators

ﬁr r=1,2,...,m each yielding dominance for all'rows.of the corresponding
ar(s). For each row the best design is selected and the corresponding row
of ﬁr identified.- The composite R-matrix is then used to finalize the
design.
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This procedure could also be used for other MNA design forms and thus
provide the desired mode for compariscn.

For dissimilar structural forms each yielding an acceptable design,
the Interaction Index discussed above could be used as the mode for
comparison. Here the comparison of vow versus column designs or designs
using different input-output pairs could be made. Thus any final design
decision could ultimately bg based upon the level of system interaction and

actuator and/or sensor failure accomodation.

E. Discussion

In this séction, a new algorithm to obtain the diagonalldominant con-
dition for the multivariable Nyquist array has been developed. The algo-
rithm is compatible to both the INA and DNA design philosophy with either
constant or dynamic compensation.

Fundamentally, the algorithm is based upon the observations and
generalization of the concept of diagonal dominance. The characterization
of dominance as a function minimization problem provides for a tremendous
degree of design flexibility and eliminates a substantial portion of the
trial.and error aspects of previously used methods. In addition, the pro-
posed algorithm may find dominance conditions when other teéhniques are
inappropriate or have previously failed. This is certainly true whenever
a design attempt is made for which pseudodiagonalization camnot be used,

.i.e., INA design for column dominance with specified L ﬁatrix.

Several advanced design concepts new to the MNA éesign philosophy have
been introduced. These concepts are based upon the availability of a fast
and efficient method to generate the dominance condition. The dominance
control parameters are used in an attempt to secure a specified level of

dominance in each control loop. They are used in the generalized optimi-
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zation unit and‘correspond to the minimization of the largest Gershgofin
radii within the frequency range specified. Since the frequency range is
determined by the-system designer it could vary from a single isclated
point to a fixed interval in the frequency spectrum to the entire spec-
trum. The total impact of this degree of flexibility has yet to be
realized.

Utilization of the interaction index and compensator normalization
methods suggest a means by which the system designer can evaluate a pro-
poged closed iﬁop design -in addition to providing a comparison of coﬁpeting
designs. These techniques could also be used in the assessment of dynamic
feedback component§ and thus provide a quantitative measure of closéd loop
systém response characteristies and intervaction. _ .

In the -next section, the results obtained by the dominance algorithm
are compared with previously reported applications. In addition, an analysié
is performed on the F100 turbofan engine using an INA format. In each
case the primary goal is to either verify the reporteé results and suggest
new alternatives or to simply obtain the dominance condition with little

effort devoted to attaining a final design.
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SECTION &
"APPLICATIONS

The principél objective of this section is to demonstrate the effi-
ciencﬁ of the dlgorithm inm section 3 and +o substantiate the Suitqpility
of the MNA design philosophy of section 2 as a viable—élosed loop design
alternative for air breathing propulsion systems. In each of the appii~
cations consi&ered‘herein, the principal concern has been to achieve the
diagonal dominant condition with little attention devoted‘to any final
design considerations.

fhe section is subdivided into three subsections:

| A, Previous apbiications of MNA

B. F-100 Turbofan Engine
C. Discussion
in part A, the algorithm is-apﬁlied to several test cases with new and
interesting results to be reported. Part B is the application of the MNA
to ailiﬁéarized operating point model of the Pratt and Whitney F100 series
2 engine at‘sea level static conditions. This represents the first attempt
at an MNA design for a sixteenth order F100 model. Part C'provides an analysis

of the application areas and suggests new dimensions for closed loop design of
air breathing propulsion systems.

A. Previous applications of MNA

At the preéénfftime, the control 1iteratu£e cpntainé approximately seven
. or eight reported.applications of the Inverse Nyquist Array. The design
applica%ions using the INA have been primarily conducted at the University
of Manchester Institute of Science and Technology (éMIST) under the au%pices
of Prof._Rosenbrock and performed by his collegues (Munfo, Rutherford, ete.)

and students. Little activity regarding the INA has been reported outside
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UMIST due in pér? to the dependency of the INA on computer-aided graphic
facilities. Since the algoritﬁm Ef section three reduces this dependency,
all previously reported design applications served as test cases for the
new design algorithm. .In every case, the algorithm operating in the
appropriate mode for evaluation purposes either confirmed the reported
design compensator forms and their indicated numerical va;ues; suggested
alternate dominant forms or modified the reported compensator values to
extend the dominant condition to a larger frequency range.

The results of the trial cases were generally obtained in one pass
through the algorithm using % = I op ﬁ = LG(0) as the initial guess with
the specified frequency range subdivided into N equally spaced points.
Depending upon the dynamic frequency range of interest, N could be ‘

selected as any integer value between one and one thousand. On the

average, each test case required 100 CPU seconds on a batch mode IBM 360/

75 to achieve a dominant condition and plot the indicated Gershgorin and/
or Ostréwski bands,

This is in direct contrast to the typical two weeks to nine man-
monihs'of_effort required to achieve dominance using the UMIST computer
aiéed design éuite.

In each of the fo;lowing test cases, fhe doeminance élgoritbm of séc—
tion 3 provided new and intereéting results regarding the specific appli-
‘cétions. |

1. Rosenbrock [14] - Boiler Furnace

In this application, the objective is the control of a boiler

furnace with four inputs and four outputs as represented by
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-1 7 .3 5
144s 1+58 1+58 | 1+58
6 1 R .35
1355 T+4S 1+58 1+5s
G(s), = . n,1
Yo..35 iy 1 .6
1+58 1455 1+4s 1+5s
.2 3 .7 ol
1+5s 1+5s 1+bg 1+Y4s

For this G(s), Rosenbrock has determined that the system is diagonal domi-

nant in the INA sense (&(s))- when

K = L = I 4.2

It is further demonstrated that the dominance condition is improved if.

L=1I and
1 - .7 .3 .2
K= 6(0) = .6 1 U .35 4.3
.35 - 1 .0
.2 - -3 . -7 l

Using pseudo-diagonalization at w = 0.9 for all rows with L = I, the

following precompensator is obtained

1.469° ;9,4u -.148 .050

K = | -.654 ' 1.814 -.2u8  -.229 | .4
, ;.229. . =.249 1.818  -.654
.050 -.148 -.9hk 1.469

The effect of (%.3) is to reduce the Gersﬁgorin band to the point where the

system is essentially non-interacting.'



Using the algorithm of section 3, the following runs were made in
one submission of the computer program:
a. K=I; L=I; INA; No optimization
b. Same as (a) except K=6(0) -
¢. Same as (a) eéceﬁt ﬁ was set equal to Rosenbrock's solution
d. K=I; L=I; INA; optimize with 9i=0, for i=1.2.3,4; seé all
feedback gains to zero aﬁd plot Gershgorin and Ostrowski
Bands
e. Same as (d) except ﬁ=G(0)

f. Same as {d) except K = Rosenbrock Solittion

In runs d and e, the dominance control parameters were set to zero to
determine. the set theé precompensator values which will yield a condition
of maximum dominance.. Runs-a through ¢ were ﬁade to verify the reported
conditions in [1u47. - .

'For each run, system dominance was obtained. The fqllowing table

provides a comparison of the degree of dominance achieved in each case:

Table 4.1
| giiﬁi:nzz Run Run Run Ruﬁ ) ‘Run Run-
Achieved a b ¢ d © £
o, 1 .88041 | .2u899 [.25402 13118 | ;13134 :13117
6, .81731 | .28357 |.2u824 .13841 '_ .iulsu .13865
6, .81731 | .28357 |.2u92u .13814 | ,13846 |.13835
6, .88041 | .24899 | -25402 .1368% | ,13330 |.13471

A‘comparison of columns a through c verify the reported conditions namely

_that pseudodiagonalization (Run ¢) reduced the degree of system interaction
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to a significantly lower level. However, an overview of -Table 4.1 inci-

cates that the proposed algorithm was able to further improve the degree

. of dominance By.approximately fifty percent (runs d and e)}. The final

set of precompensator values are indicated below:

Run d: INA, K=I, L=I, 8,=0.0 desired

.91320 .58078 . 25031 .16693
R - .91399 .33017 .28856
Kd = 4.5
. . 28259 . 32363 .90150 189Uy
1.16965 . 24860 . 58459 90534
Run e: 1INA, K=G(0), L=I, 3i=0.0 desired
j1.10040 . 70007 . 30000 . 20000
~ - 54478 1.01650 .3733 . )
K - ! 37337 32247 46
.34u18 .39708 1.10420 . 59983
.19154 .28148 65139 1.0143
Run £: -<INA, K = Rosenmbrock solutiom, L=I, Gi = 0.0 desired
1..843900 .53952 .23280 .15500
K - |-43153 .79200 .2838Y . 24580 b7
| .23u36 .26755 74215 40187
1..16510 L2471 . 59242 .82996

It is clear from table 4.1 that any one of the preéompensators corre-
sponding to runs d, e or f would be adequate for this application. However,
in other applications'it ﬁay bé necessary to form a composite compensator
based upon the results obtained from different initial guesses for the
unknown-paraméters. fhis ié caused primarily by the inability of the opti-

mization technique to detect and correct for the presence of local minima
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during the optimization phase of the program.

For this case, Table 4.1 would suggest the utilization of row 1 from

~

Kf in (4.7), rows 2 and 3 from Kd in (4.5) and row 4 from Ke in (u.6) to

yield the composite form-

-.84900 °  .53952 .23280 .15500

. .uauuy .91399. .33017 .28856 .
.28259 .32363 .90150 589Ul
19154 28148 65138 1.01430

with corresponding dominance levels as

.13117
.13841

13814

-

. 13684

From Ostrowski's theorem, the transmittance from input i to output i
when all feedback loops are closed (except.for iocop i), can be located
- within a nafrower set of bands within the Gershgorin bands using the
shrinking‘factors

ﬁj(sﬂ
T T
where deS) are éhe Gershgoérin radii, fj the feedback gain in loop j and
qjj(s) the diagonal eleéent in Q(s). For all fj=° the shrinking factors
are boun@ed by .
o ' dj(s)

where Bi are the corresponding dominance levels. In this application, the

9. are
i
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.138%1
L1381y
.13841

.13841

which implies.that the Gershgorin band may be immediately reduced by
approximately 86.2 percent. The Ostrowski band in each loop will shrink
further when the feedback gains are increased.

The results presented above were obtained in one batch mode submis-

sion of the computer program with a total expenditure of 30 CPU seconds

including program compile time.

2. Munro [32] - Aivecraft Autostabilization

In this application, the control unit for a two input two output
model of a delta-winged aircraft is developed using the Inversé Nyquist
Array method with constant pre and post compensation matrices. Here the

authors restricted the post-compensator to the form

L = 2 0 on Lb = 1 0
4,11

Using the Lb form, row dominance was obtained using pseudo diagonalization

with the following results for 0 < u < 4.0

- 12.08 -34.19

K = . 4,12
~ 4,39 2.31
and
L, = 1 0 %.13
0 6.67
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Tt should be noted that pseudodiagonalization does not assist in the
selection of the elements of the postcompensator matrizx when row domi-
nance of a(s) is to be obtained via the manipulation of the ﬁ elements.
Thus to obtain (4.i2) and (4.13) requires a hierarchial approach to para-
meter selection. The results indicated above correspond to a set of domi-
nance contrcol parameters of [.86, .39].

With the algorithm of section 3, the following six cases were pro-

grammed for one batch mode submission:

a. K=1T 112’2 = 1, 5, 10
~ 'b _
b. K = .LG(0) 2 = 1, 5, 10

In each case, the Lb form was selected for comparison with (4.13). Iden-

ticai results would have been achieved if the La form had been used with

a

b
') =
R 1/222

The following results were obtained with Bi = 0.0:

Table 4.2
’ : b
Initial A
A 22
K 1 5 10
I * Dominance Dominance Dominance
Row 2 only Row 2 only Row 1 only
LG{0) Dominance Dominance Dominance
Row "2 only Row 2 only Row 2 only

From Table 4.2, it is clear that the desired condition is obtained From

b

dominance producing row of K as follows
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~

H

1.0 _.8388(10°)

a. initial T final .
-1.8616  .99938
eél = [1l.u24y  ,57973]
" _ .o - ~-1.4625 -3.0661
‘Kinitial = Le(0) Kfinal -

-,37956 -.62166

Bi = [.55472 1.8911]

c. Composite precompensatér
» i - ~1.4625 -3.0661
final
-1.8616 99838

[.55472 .57973]

fout
H

1 0
0 10

This application serves to. demonstrate that for some systems, efforts

to achieve the dominance condition for Q(s) may be dependent upon the
initial starting guess-for‘K. "To explore this further, a parametric study
was performed on Qgg'for the starting conditions of Table 4.2. The results

b

of this study are reflected in figures 4.1 and 4.2, For each value of 222,

the dominanée'controi parameters were sef to zero and the precompensator

valueé optimized. The level of dominance achieved for each case reflects
a local minimum in the performaﬁce index and is indicated in the fig;res

for ‘each row of 5(§).

From figures 4.1 and 4.2 it is clear that a composite precompensator

matrix yielding the-desired compensator values can be obtained for any

b

222 in the range
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2.0

0+

l’z !? ‘6 . ,la —170 ﬁjz ) ,Q,b

. iy = O
Figure 4.1 KINITIAL LG(0)

2.0 4

/04

Figure 4.2 KINI—TIAL = I
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No attempt was made to identify the upper limit for Lb

22"31nce‘thls

value can be deduced from the Gershgorin plots.
Using Lb in (4.13) the vesults of Munro are confirmed using the

procedure indicated above and may be improved to the dominance levels

of [ ,8317 .3887 1 with

% = -14.59 ~30.59
- 4,303  2.31

A

A review of the printout corresponding to X = L = I with no optimiza-
tion reflects. the gréatest departure from dominance occuring in both rows
near = 1. Selecting 232 = 10 and the initial guess for the precom-

pensator as

~

K:i.n:i:t::‘.al = Re Le(31)]
dominance was obtained (via-the algorithm) for both rows simultaneously
with

% - -.13171 -.27822

final

~1.0447 56083

ana dominance levels of

8 = [.55475 .57973]

This result demonstrates that alternate methods of selecting initial

parameter values based upon the syétems characteristics are available.

3. Munro [33] -~ Automotive Gas Turbine

In this application of the INA a two input two output transfer

matrix is used to describe the dynamic characteristics of an automotive .
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.806s + 2.64 -(155+1.42)
8%+1.155+.202 s°+12.85%413.6542. 36

G(g) =
1.955°42:12s#4.9  7.1482425.85+9. 35
£249.155249., 39541.62 S 1+20. 88 +116. 482

+111.65+188

gas turbine engine over the frequency range 0 < w < 25. From [33] °

column diagonal dominance is obtained with L = I and

1.15 -.9175

1.30 415

Column dominance for 6(5) with a fixed postcdompensator requires
continuous monitoriﬂg of both column dominance indices when an& parameter
in i is adjusted. This form of tﬁe algorithm is outlined in section 3 and
the above results were confirmed with an initial guess for R as the
identity matrix for L = T and 0 < w < 25, '

To examing the effectiveness of the algorithm in_section 3, the fol-
lowiﬁg input data was provided t¢ the algorithm:

~a. Row dominance desired

b, L . I specified

¢. K=1 as initial guess

a. o < w < 25 subdivided into two hundpe& equally spaced.péihts

The following row dominant results were cbtained within 30 CPU seconds on

the IBM 360/75:
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http:9.393+1.62
http:2+25.8s+9.35
http:s3+12.8t2+13.6s+2.36
http:15s+1.42

N 2.9730 -4.,24]10
K = . :
12,507 1.0247
with
81 = . 38007
6, = 42557

:representing the-mgximum degree of system dominance in the respective rows.
With this degree of dominance, the Gershgofin bands can be immediately.
reduced by 57.u443% and 61:993%, réspectively, with zero feedback gains.

Recalling the definition of dominance from segtion 2, it is c¢lear that
if thg system is both ToW and column dominant at a particular frequengy,
then ihe smaller rédius can be used for each row or column element in
determihing the appropriate Gershgorin radius. Examination of the computer'
listing correspoﬁding to the row dominant conditions above indicateés that
all(s) is both row and column dominant over the range 0 < w < .5 and
4.0 < w < 25, and &2268) is both row and column dominant over 0 < w < 25.
This condition implies that the smaller radius can be used for both elements
everywhere except .5 < ¢ < 4.0. The remarks above concerning band reduction
will still apply to the new radii.

fhe Gershgorin and Ostrowski bands for the row doﬁinant configuration

possess the same shape and form as those reported in.[33] for column domi-

nance.

4. Sain [34] - Turbofan Engine

In [34], the two input two output transfer matrix representing the

dynamic characteristics of ‘a turbofan engine is presented as
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5 b 3 2

.018s” + .1458s -~ 92.05s° - 396.9s + 29801s + 95,491
Gy,(s) =
’ As)
5 y o 3 2 . -,
G. (s) = LUBs”T + 71..9s3 +°2247s -~ 19438 - 16885s - 12495
12 : A{s)
) 5 o 3 2
L0868 + 31.63s + 3321.5s" + 255008 + 76068.3s + 78277
‘.G (S) =
21 A(s)
’ 5 L 3 2
822(89 = 138" -~ 4378 + B68.2s° + 1703.3s  + .742.9s - 3532.2
As) )
5 4 3 2
A(s) = s + 180.7s + 5337.6s  + 38691s  + 1196905 + 133389

Although the Gershgorin bands are indicated for a column dominant
Q(s) in [3u4], the corresponding compensator matrices were not provided.

However, the authors suggest that column dominance was obtained during

i
4

a search for row domipance using pseudodiagonalization about w = i. Using
this method to aéhieve dominance they conclude that "though our examples
are ... introduc%ory; they do serve to'show that typical jet engine models
do not yield tfivial dominance questions".

With the algorithm of section 3 and G(s) above, row dominance was

obtained for

L = 0 i
1
3 0
1 0
K =
0 1

The corresponding dominance levels are

.6 = [.848051 .406645]
which can be reduced to
[.75328 .36597]

using
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0 1
L =
1
z 0
K= 1.2755 ~.016011
- . 8606 .77641

Setting the feedback gains to zero, the Ostrowski factors are
9 = [.36587 .75329]

wherein the appropriate Gershgorin band can be immediately reduced. A plot
of the corresbogding Ostrowskl band indicates an essentially decoupled
system as all lines are coincident over most of the frequency range con-
sidered._

For this application, six hundred points were used over O < w 5{500.
Beyond 200 radians little dynamic activity oceurs and thus was not used in’
the dominance evaiuati&ns. ;However the above compensator matrices retain

the dominant condition Ffor > 200.

5, Other Cases

The dominance algorithm of section 3 has been used to examine the form
and level of domipance in numerous examples in Rosenbrock's text and‘the
current literature. In each case, the algorithm confirmed the reported
results and improved the level of dominance using the dominance control
parameters. In cases where the system was not dominant beyond a sbecified
frequeney, the algovithm a&justeﬁ the compensator valués.to secure domi-

nance over the entire spectrum.

B. F-100 Turbofan Engine

The engine under consideration is a Pratt and Whitney F1l00-PW~100 after-

burning -turbofan. The F100 is a low bypass ratio, twin spool
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axial flow engine with fhe following components:
1. 'Three stage fan driven by a two stage turbine
2, Ten stage compressor driven by an air cooled two
stage turbiﬁé
3. ﬁain burner with an annular chamber

4, Variable area exhaust nozzle

Using the non-linear dynamic simulation of the F100 engine and the
offset derivative method, a set of linear dynamic equations in state
variable form for each of the thirty seven operating points is reported
in [35]. For this sfudy the sea level sta%ic (81.8) intermediate point was
Selectea. This is in correspondence with zero Mach number, zero altitude
and é power level -angle of 83°. .

The linear model at SLS intermediate is a sixteenth order system with

the following state variables:

%) = Fan Speed

X, = Compressor Speed

Xg = Compressor Discharge Pressure

'x,_F = Interturbine Vélume Pressure

Xy = Augmentor Pressure

%c = Fan Inside Diameter Temperature

X5 = Duct Temperature

Xg = Compressor Discharge Temperature

Xg = Burner Exit Fast Response Temperature -
xlo‘= Burner- Exit Slow Response Temperature

X,y = Burner Exit Total Temperature

Xyp = Fan Turbine Inlet Fast Response Temperature
%4 = Fan Turbine;}q;ét élow Response Temperature
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Xy = Fan Turbine Exit Temperature
X5 = Duct Exit Temperature, Ttﬁc
Xy = Ducﬁ Exit Temperature, Tt?m

The engine inputs and'outputs used for this study are:

a. Two Input - Two Output Model

1nputé: Ul = Main Burner Fuel Flow
- U2 = Nozzle Jet Area
Outpﬁts: Yy 7 Fan Speed
yé = Compressor Speed

b. Three Input ~ Three Output Model

InputSf Ul = Main Burnér Puel Flow
. U2' = Nozzle Jet Area
Uy = Inlet éﬁide Vane Position
Qutputs: y; = Fan Speed
Y, = Compressor Speed
Y3 = Augmentor Pressure

The A and B matrices corresponding to the above models using

Ax+ By

X
vy = Cx

" are contained on Page 65 and 66.of [35]. Application'of Danielevski's
method for computing G(s) yields the following set of transfer functions:

6 () = [~ L0457 + 54,7895 + 45.(10%)s®

8, 12 10

.138u(107)s™% + .2211(0 st

)

+

“20558(1012)slq + .11944(1014)39

+

7, 7

453u¢10%%ys® + L11516(10M7)s

+

65,



9, 5

)s

o+

.197(1018)s§ + .2246(10l

3

+

.1657(10°0)s? + .75166(10%%)s

21) 2

s? ¢+ .2323¢10%D)s

-+

.1923(10
+ .91219(102%)1/ACs)

6, ,(s) = [- 451.657° - .3095(10%)s™ + .2062(10%)13

4+ .1886(10 )82 + L30183(2013)stt

15, 10 7.9
8

+ .2589(10%°)s%0 + L1umi(10t7)s

B 7

+ .5592(1018)s + .1547(1020)8

1, 6 5

)s= + .4115(1022

+ .3035(102 )s

+ .3672(10°%)s" + .1994(102%)s°
+ .5782(20°%)s% + .7456(10°D)s

+ .2988¢102%)/a(s)

G () = [- .1058(10%)s™ - .1135¢10%)s™
- .39m(10%)s%® — L6970(20%0)s1?
. 7280(10")sM _ | ueaa(zoltyst
- .2269(20%%)s® - L725u¢107)s®
- .1622(20™%)s” - .2521(10%%)s°
_ .2663(10°1)s° - .1835(10°%)s"
- .7;03(1022333_- .1771(202%)s?
- .1818(20%°%)s - .6876(1022)]}A(si
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1111570 + 42,915 - Lyowiciotyst?

]
L

Ggy (s)

-~ .2208(20 )s 2 - .8216(10%)s™t

+ .2254(1011

)slo +'.2870(l‘013)s9

6, 7

+ .1579{1012)s8'+ .5023(10l }s

t .1003(1018)36 + .1285(1019)55

20)84 + .5152(1021)53

+ .1044{10

1

+ .1408(102 )52 + .1784(1021)8

+ .7423(102°)]/A(s)

s5u6.157° ~ .4005(10%)s™ - .7166(10%)s1®

il
~
I

G22(s)

- .523(1010)512 - .1456(1012)51l

13, 10

+ 420010750 + 73038020

)Sg

+ .5«::991(1017)5'.-8 + .2193u(107)s’

+ .5989¢10°%)s® + .1032¢10%%)s”

3.4 3

+ .1103020%%)s" + .7002(10%%)s

2

+ 23990207552 + .3520(10%%)s

o .1594¢102*) 1/A(s)

15

.06575s1° = 120,35

- .8978(10%)s™3

It
—t
|

GZS(S)

.0572¢10%)s%? - .s85u(101%)s L

12, -10 u. 9
s

.3658(1077)

- .13759(10l )s

5, 8

)s 7

.3029(10l - .1933(1016)3

.6354¢10°7)s® + ,1416(10%%)s”

+
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Gsl(é) = [
Gyols) = L
Gaa(s) = L

1 ) ) [ [ | !

. 7046(

.5667(10 )32

.6916(

.0098s

.6525(106)512

L4313¢(

.5820(

.1860(

L1240 (

.1897(

.3845(

98.39s

.6111¢(

1#051(
.5uBL{

.1706(

.10817(10

.8719¢(
.2935(

.5069s

.3318(10%)st?

.2208(

10

1021

15

10

1013

18, &4

Ys' - .5499(10

2 - .1230(10

)1/8(s)

+10.77s + 37

10)310 + .1901(1

)38 + .12475(1

1016)56 + .1885(10

10

10

l018

15

10

10

10

10

10

1022

15

10

13, 4

)s

19, 2

)s© + .1134(10

Y1/A(s)

- .1032(10%)st

10 12 - .6197(1

l4) 10 _ .1789(1

17 8 - 1151(10

20)86 - .1691(10

22, 4

¥s - .4162(1

22, 2

+ .6614(108

+ .'-}989(10l

20, 3

}s

22y4

79.8313

)sll

012

015)87

17, &

)s
8)53

19)5-

- .35(—31(108)313

012)811

Ole)s9

19 7

21, 5

)s

22

0 )33

Js& - .8677(1022

)1/A(s)

+ 532.981u + .1

12) 10 + ,9625(1
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898(10%)s™®

O)Sll

13
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+ .2873(1015)88 + .5909(1016)37

.8209(10%)s® + .775u(107%) 8"

+

+ 4505107 )s" + .1607(10%0)s®

"5 .30710102%62 + L2881(10%0)s

4+ .9280(10™°)17 (s)

where

A(sﬂ. = 816 + 1063.8315 + .3780(106)3lllL
+ .6691(10%)s*® + .7021(101%)s1?
+'.4777(1012}s11 + .2215¢101 )8t
+ .7205¢0%%)s° + .1658(10%7)s®
+ .2715(1018)s7 + .3i25(1019)56

5

+ .2474(1020)5 + .1297(1021)34

+ .4257(10%%)s8

¥ ,7998(1021)32

+ . 74800107 )s + .2u11(10%%)

1. Two Input - Two Output Model

For the sixteenth order state model with the two inputs and two
outputs indicated above, the transfer matrix becomes -
Gll(s) 812(5)

G(s) = :
GZl(S) G22(s)

Using the dominance algorithm in an INA mode over the frequency range

0'<wx 200 with 200 equally spaced increments, system dominance was achieved for
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.555 0
L =
0 1.0
. 0 3840
¥- =
L 1.0 - 0O

This result was obtainhed when the dominance control parameters were set to
unity. For Bi = 0.0, dominance levels of [.74024, .96677] were obtained
for rows l'and 2, respectively, with

) : .816 2283.0

1.0995 -u7.39

Since the Gershgorin circles provide no information apart from azboﬁnd
~on the eigenvalues of 6(5) {or Q(s) in a DNA), it is only necéssary to
compute the envelope of the Gershgorin and/or Ostrowski bands. For this
purpose, the numerical method developed by Crossley [361 is used to calcu-
late the envelopes centeréd about the correspdnding diagonal element.

Figures .t.3 and 4.4 display, the Gershgorin bands Ffor

o) = KG(sIL
over the frequengy range 0 < w < 200.

Using precompensator K2, the Gershgorin bands in Figures 4.5 and 4.6
are obtained. These‘bands can be immediately reduced using the Ostrowski
shrinking factors with zero feedback gains and are presented in figures
4.7 and 4.8. Note the high degree of band reduction between Figures 4.6
and 4.8 which can be further reduced by increaéing.the féedback gain in the
second loop.

To further examine the Ostrowski band for Qoo the frequency range was

reduced to O E_Q < 50 and is presented in Figure %.9. From this figure it
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is evident that the corresponding feedback gain is restricted to
0 :_fQ £ U40-for stability in the sense of Rosenbrock.

Although no further design attempts were made for the'tﬁo input case,
it is apparent from the Ostrowski bands that dynamic compensatiom in fhe
feedback loop may be required to achieve a step response with minimal

overshoot.

' 2, Three Input - Three Output Model

Using the '‘G(s) matrix as

Gll(s) GlQ(s) Gls(S)

os) = GQl(S) Gzz(s)’Gza(s)

Gsl(s) G32(s) G33(S)

an INA design with constant conpensators was initiated. When the post-
compensator matrix was set to the identity matrix, diagonal dominance
could not be obtained in all rows simultaneously with the algorithm of

seétion 3. The next effort was to constrain the 'L matrix to the form

0 212 . 0
L _ '211 o 0
0 0 £33

symbolizing the desire to control the individual outputs rather than linear
combinations of thé system outputs. With this structural form, row domi-

nance was obtained in two passes through the basic.algorithm with the

results
0 .05 0
L = .01 0 0
0 0 1.0
and
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1.000 1636.43 ~=1.3583

K = . .0001379 1.000 ~-.0B7418

.02308 -206.685 1.000

For this case, the dominance control parametérs were selected as

61 = 0.75 82 = 0.u40 83 = 0.10

The corresponding Gershgorin bands are contained in Figures 4.8 to 4.10
over the frequency range of 0 < w < 50.

Selecting the feedback parameters as

150. o 0

F, = R 5.0 0
0 0 5.0

the Ostrowski bands of Figures 4.10 to L.12 were obtained.

Using the K, L and F matrices indicated above, the interaction indices

become
Il = -0,2703
12 = +0. 002
13 = -.00180

The first index suégests a moderate degree of system interaction in loop 1
resulting from the closure of the remaining loops. This level of inter-
action might have been anticipated from the level of dominance requested
(el = 0,75). The negative sign for Il implies a constrﬁctive form of
interaction in that closure of loops 2 and 3 augment the design efforté of
loop'l in thé cgntrol of output yi(t). 'This design information can not be
obtained from the:Gershgorin 6r Ostrowski plots.

The interaction index for output Yé(t) suggests a low level of inter-

action upon closure of loops 1 and 3. The plus sign for 12, although not
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significant in this case, suggests that loop closure could_ﬁave a deleter-
ious effect on the control of yé(t). Thus, if the magnitu&e of 12 had
suggested a higher level of system interaction, design efforts to de-

couple Yé(t) could be considered. In this example, an alternate approach
might be to restructure the post compensator matrix and re-examine dominance
using the proposed algorithm.

The interaction index for output Ys(t) indicates a decoupled condi-
tion. This result is in correspondence with the level of the dominance
control parameter (83 = 0,1) specified and achieved by the dominance algo-
rithm.

To obtain the step response for the preliminary design above to com-
manded step changes in the system outputs, the block diagram of Figur%

h.16 was used.

~ Ko—G @™ L®

Fs)p=

Figure 4.16 (losed loop system

B6



In state variable form, Figure 4,16 becomes
X = (A-BXFIC)X + BKF YCOMM

y({t) = C x(t}
with Figures 4.17 to 4.19 representing the step responses corresponding to

the following commanded input vector

10.0
Y = -

comt 10.0
' 1.0

In each figure, the step responses have been superimposed to demonstrate
that system interaction has been significantly reduced.

To calculate steady state offsets in the step respoﬁses from the
Ostrowski INA diagrams, Figure 2.4 of Section 2 may be used. From

|

Figures 4.13-4.15

150 o 0

F = 0 5 0
0 0 5
the offsets are - .
. 100 $C . _ 45 _

Row 1: 100 qﬁa% = 155(100)% = 28.2%

row 2: 100 2 = 23006018 = 5.66%
CHK3 5.3
¢c _14.22 _

Row 3: 100 ngﬁ = 19_22(100)% = 74%

Thus the steady state values will be 71.8%, 94.34% and 26% of the commanded
values. These values are easily verified from the step responses of

Figures 4.17 to £.19.
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To demonstrate that the above design for the F100 with three inputs
and three outputs is not structurally unique, a new postcompensator was

selected as

0 .05 0
L = .0 0 2
.01 0 0

The initial guess for the precompensator was selected as the identity ma-
trix with O X @ < 200 as the frequency range of interest subdivided into two
hundred equally spaced points.

Application of the algorifhm provided diagonal dominance in all rows

with
é .50275
g = : 22311
. 30606
and
2.9757 yg3y. 2 -8. 7416
K = 001416 -13.906 . 0696
. 005564 21.099 -1.5824

The Gershgorin bands for 0 < w < 200 are contained in Figures 420 to 4.22.
Figures 0.23 to 4.25 show the same bands over the frequency range 0 < w < 50.
. Once diagonél dpminancé has been obtained, Ostrowski's theorem will
apply for any set of ‘stable feedback gains. Using the information that the.
F100 is open léop stable, all feedback gains were set to zero. Tﬁg corre-
sponding Ostrowski bands are provided in Figurés 4.26 to 4,28, From these
fig?res it is evident that the Gershgorin bands have been significantly

reduced. Using the dominance levels above, the following minimum levels of

9l
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of reduction obtained are

69% reduction of Gershgorin Band # 1

50% reduction of Gershgorin Band # 2

50% reduction of Gershgorin Band # 3
The designer is now in a position wherein the Ostrowski bands can be
further reduced by simply increasing the gains in each loop and recal-
culating the shrinking factors for the selected set of gains. To complete

the design, eigenvalue checks and/or step responses may be used.

C. Discussion

The applications considered in this section demonstrate the versa-
tility and effectiveness of the dominance algorithm described in section 3.
The algorithm is computationally fast and efficient with most applications
requiring 100 CPU seconds or less to achieve the dominance condition.

When the algorithm was tested against previously known results, two
specific conditions were examined. First the reported results for the
dominance producing compensators were implemented and verified for each
case. In every instance, exact duplication of the gain space and Gershgorin
and/or Ostrowski band was achieved. This condition established the accuracy
of the algorithm in a non-optimization mode. The second condition ignoged
the reported parameter values and attempted to achieve diagonal dominance
using altérnate starting values for the compensators and the‘generalized
optimization unit. Many new and interesting solutions were cbtained and are
reported in subsection A above. ‘

As a final test for the dominance algorithm, the six%eenth order state
medel for the F100 turbofan engine was used to generate the appropriate

transfer matrices corresponding to the two input and three input frequency
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domain modelé. The results obtained clearly demonstrate the utility of
the MNA design philosophy as a viable élternative for the design of feed-
back control units for the turbofan engine. Although the -results pre-.

sented are preliminary, it is apparent that acceptable system performance

using the design philosophy of section 3 is easily achieved.
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SECTICN 5

CONCLUDING REMARKS

The Multivariable Nyquist Array as defined in this report is the
union of two mutually exclusive design methods: fhe Invérse Nyquist
Array and the Direct Nyquist Array. The two design ﬁethods are mutually
exclusive in.the sense that a design initiated in the inverse polar
plane cannét in general be completed in the direct polar plane. This
apparent inéonsistancy is due in part to the lack of duality between
the definition of dominaﬁce for the INA and the corresponding definition

for the DNA since

Gy 7Y
However, the methods are structurally similar and thus provide the basis

1

for the proposed design merger.

Exploiting the structural similarities between the two desién methods,
the dominance seeking algorithm of section 3 is appropriate for use in
either the INA or the DNA desigh mode. In addition, constant or frequency
dependent compensators can be evaluated for either row or column dominance
with an indicated degree of preferred dominance.- System interaction is
easily assessed and a means of compensator comparison has been provided.

In its present form the MNA design algorithm performs in a batch com-
puter mode. It is computatiénally efficient as demonstrated in section 4
and provides an effective altermative design for turbofan engine control
sy;tems. In addition, the dominance algorithm’ is ideally suited for imple-
mentation on ﬁn-interactive computer network. In this computer mode, it

is conceivable that a complete design via the MNA could be accomplished

within one working day.
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