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A NUMERICAL INVESTIGATION OF THE FINITE ELEMENT METHOD IN 

COMPRESSIBLE PRIMITIVE VARIABLE NAVIER-STOKES FLOW
 

By 

C. H. Cooke
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SUMMARY
 

The results of a comprehensive numerical investigation of the basic
 

capabilities of the finite element method (rEM) for numerical'solution of
 

compressible flow problems governed by the two-dimensional and axis-symmetric
 

Navier-Stokes equations in primitive variables are presented. The strong and
 

weak points of the method as a tool for computational fluid dynamics are
 

considered. The relation of the linear element finite element method to
 

finite difference methods (FDM) is explored.
 

The calculation of free shear layer and separated flows over 

aircraft boattail afterbodies with plume simulators indicate the strongest 

assets of the method are its capabilities for reliable and accurate
 

calculation employing variable grids which readily approximate complex
 

geometry and capably adapt to the presence of diverse regions of large
 

solution gradients without the necessity of domain transformation. In all
 

cases, numerical results have been in excellent agreement with those
 

obtained by finite difference solution of the same physical problems, for
 

diverse flows (some with embedded shocks) and a wide range of Reynolds
 

numbers.
 

However, for sufficiently complex equations, finite element time marching
 

schemes as presently conceived do not appear able to compete economically with
 

the better finite difference methods of comparable accuracy. Greater over­

head may be expected with the method in terms of both computer resources and
 

man-year effort. The outstanding weakness of the finite element methodology
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is the amount of computer time required to produce acceptable problem 

solutions. The greatest future of the method in Navier-Stokes flows 

appears to be with the approach of seeking at the outset the solution of the 

steady state equations, where the high overhead per iterative step is offset by 

rapid convergence with a minimum of iterations. 

INTRODUCTION
 

During the past three decades fluid dynamics in the aerospace industry
 

has provided a major impetus to the development of methods for the numerical
 

solution of partial differential equations. Finite difference methods (FDM)
 

have been extensively investigated, to the point that the flexibility, versa­

tility, and adequacy of the various FDM techniques have firmly established it
 

as the leading method for the numerical modeling of complex fluid dynamic
 

problems. Somewhat more recently studies have been directed to the investigation
 

of the finite element method (FEM) as an alternative tool. The method is
 

unquestionably well respected in the fields of structural and solid mechanics,
 

where the dynamic interactions in complex configurations such as perhaps
 

an aircraft wing frame with many easily identifed component parts may be
 

modeled by considering each structural member as an element of the finite
 

element system, logically as well as physically connected at the nodes of
 

the problem.
 

However, the modeling of a near inviscid fluid continuum by small
 

subcontinuua suitably joined at certain points, lines, or planes, does not
 

appear as intuitively natural as does the near inelastic solid continuum
 

model. Of perhaps greater significance is the general tendency to cumber­

someness experienced in the application of the FEM technique, which exhibits
 

less flexibility towards individual innovation in general and in particular
 

in the differencing of specific equation terms than is allowed by the
 

customary FD1 methods. Indeed, the general manner in which FEM computational
 

results have been reported have led some to believe the method has been
 

.oversold. As Roache (ref. 1) phrases the call for a more exacting critique
 

of the method, "Perhaps it is time for someone to comment on the emperor's
 

new clothes."
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Here we do not intend to imply that accurate computational results are
 

difficult to achieve; this is the rule rather than the exception, and
 

represents one of the major strong points of FEM. However, to quote Sabir
 

(ref. 2): "While considerable attention has been given in the published
 

literature to efficiency and speed of (linear system) solution routines,
 

little or no attention is given to the total time taken by computers in
 

producing acceptable solutions." Although the characteristics of the method
 

have not been thoroughly assessed, it appears predictable that, aside from
 

possibly potential flow calculations (ref. 3) or in some boundary layer
 

problems (ref. 4), in general FEM results can only be obtained at excessive
 

costs. The hindrance of associated time-consuming computer runs
 

exorbitantly demanding of core storage, auxiliary devices, etc., is
 

particularly hard to abide in batch-oriented computer systems fine tuned
 

for rapid processing of myriad small jobs. Moreover, it does not seem
 

that this deficiency.will be remedied by the next generation of advanced
 

computer technology, since the method is in many respects not highly
 

vectorizable.
 

Perhaps more specifically, it does not appear that in their present
 

conception the FEM time marching schemes for asymptotic calculation of
 

steady high speed flows governed by the compressible Navier-Stokes equations
 

in primitive variable form will ever be economically feasible, in comparison
 

to the relatively greater economy provided by the better FDM methods,
 

together with stretching transformations to simplify complex geometry.
 

For problems whose simplification requires shearing as well as stretching
 

in domain transformation, or for problems whose solution is sought at
 

the outset by resort to the steady governing equations, the future of the
 

method may not be as dark. It has been pointed out that the economic
 

difficulties characteristic of the method are perhaps due in some respects
 

to the tendency to the frontal attack on computational problems by FEM
 

practitioners, as customary in the FDM approach. It may be that more success
 

with the method in the future will result from taking another look at analytic
 

methods such as quasi-linearization or local Prandtl-Glauert approximation
 

(refs. 7, 8) together-with iterating nonlinearities, which have in the past
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not been considered feasible. Certainly for those cases in which the high
 

overhead per iterative step is compensated by accelerated convergence rates
 

requiring few computational steps to convergence the comparative economy of
 

the method is yet to be decided (refs. 3 to 10). However, the FDM
 

practitioners are making rapid progress in these areas as well (refs. 11, 12),
 

and FDM could again overstride the FEM results--for-the same reasons, the
 

cumbersomeness. of the approach. It could be there are special classes of
 

problems such as in transonic flows (ref. 13) or large .scale meteorological
 

studies (refs. 6, 13, 14, 16) where FDM practice is not sufficently advanced
 

or the mathematical intricacies of the physical problem not well under­

stood that FEM technology in the hands of an able practitioner will make a
 

contribution. In general, these special cases are not too well known or
 

as yet await recognition:
 

A CRITIQUE OF THE FINITE ELEMENT METHOD (FEM)
 

A comprehensive investigation of the FEM method, applied to com­

pressible flows governed by the two-dimensional Navier-Stokes equations has
 

been undertaken by the author. Four distinct primitive variable codes have
 

been developed. Flow calculations are performed for several problem classes:
 

free shear layer flows at Re = 1000 , for fully supersonic (M = 3) and 

mixed subsonic-supersonic (M = 1.68 tc M = 3) jet mixing; a uniform flow with 

embedded oblique shock but no recirculation, at Re = 80 and Re = 80,000
 

and the mixing and recirculating flow with weak shock (at Re = 12,365)
 

represented by the boattail afterbody problem.
 

For the free shear layer flow problems in rectangular coordin&tes the
 

constant total temperature assumption employed allowed the energy equation
 

to be replaced with an algebraic relationship. The governing equations then
 

correspond to mass conservation and momentum conservation in two components. 

Higher order elements (the C' cubic on triangles) were employed with two
 

algorithm classes:
 

(a) Implicit time marching code for the unsteady equations (ref. 17),
 

and
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(b) Block iterative solution of nonlinear systems of algebraic
 

equations arising from FEM models of the steady governing equations
 

(ref. 5).
 

Linear triangular element quasi-explicit time marching schemes were
 

applied to the full Navier-Stokes equations for the following cases:
 

(c) (Perhaps) academic calculation in rectangular coordinates of an
 

oblique shock in otherwise uniform flow, using inconsistent (lumped) linear
 

element schemes, and
 

(d) Calculations in axis-symmetric cylindrical coordinates of the
 

boattail afterbody problem with embedded weak shocks and recirculation.
 

The purpose of this paper is to discuss some of the assets and
 

liabilities of FEM in fluid dynamic application; to summarize sofie of the
 

findings of this investigation; and to report more fully upon the phase of
 

the investigation concerning linear elements and the complete Navier-Stokes
 

equations, codes (c) and (d).
 

The Advantages of FEM
 

Before consideration of the adverse features of FEM, we consider
 

briefly some of its so-called advantages; these are generally considered in
 

the literature to be:
 

(a) Variable gridworks, allowing economy of grid point allocation;
 

(b) Possible triangular elements, allowing complex (non-linear) boundaries
 

to be fit readily;
 

(c) Higher order elements, allowing greater accuracy;
 

(d) Typically easier handling of boundary conditions; and
 

(e) Accurate and reliable results from algorithms which leave little
 

choice of the way in which individual equation terms are differenced.
 

The survey paper of Roache (ref. 1) provides a fairly unbiased
 

examination of these characteristics of FEM methods, some points of which
 

may be repeated here, together with some additional observations based on
 

results included in the present paper.
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Variable grid capability and fitting of curved boundaries together with 

accurate final results appear to be the greatest assets of rEM. There may be 

classes of particular problems where the cost of these assets is reasonable; 

but such probably do not include the class with geometry amenable to reform 

by means of stretching transformations in one or more variables. Even so, 

to make use of this asset, in addition to the costs already discussed some 

device for automatic choice of the grid point placement is necessary in order 

to eliminate enormous manual labor and human error. The stretching trans­

formation utilized by Holst (ref. 18) which maps a uniform grid in the computa­

tional plane into an irregular grid in the physical plane can be considered ideal 

for such: The nonuniform grid so devised is, of course, topolegically equiv­

alent to a rectangular grid for which a mesh generator is particularly simple to 

code. Thus, the grid point selection device is readily automated-and parameters 

easily adjustable to position the grid points where they are required for 

resolution. If such a device is needed to assure proper placement of nodes, we 

are a small step from transforming the equations and obviating the advantages 

(a) and (b). 

The advantage of higher order elements is not as real as is often claimed
 

in FEM literature, since the additional computation induced offsets the reduction
 

in grid points. Moreover-, this reduction is not as monumental as one might
 

perceive (going from linear to cubic elements might cut a 1000-point grid
 

to one having 600-700 nodal variables without much difference in accuracy).
 

However, from personal experience the cubic element code can be around a
 

factor of six or eight times slower than the linear element code.
 

Finally, boundary conditions are usually no easier to treat unless
 

higher -order elements which carry derivatives as nodal point variables are
 

used. If such is the case, derivative boundary conditions are no different
 

from function boundary conditions, in some cases. Depending upon the
 

finite element algorithm involved, some computational boundary conditions which
 

are fairly easy to implement in FDM may now cause difficulties in the FEM imple­

mentation. For example, if we are implicit time marching with symmetric
 

positive definite matrices to invert, the application of computational
 

boundary conditions such as linear or quadratic extrapolation destroys the
 

matrix symmetry and thus leads to more troublesome equation solving.
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The Adverseness of Finite Elements in Fluid Dynamics
 

Perhaps it may be useful to enumerate some difficulties which are to be
 

expected in'computational fluid dynamics. For problems governed by the Navier-


Stokes equations, several coupled second order partial differential equations
 

in two or more space dimensions are to be solved. The calculation of mixing
 

or separated flows with recirculation and possible embedded shocks and boundary
 

layer regimes in regions with curved boundaries require for economy
 

irregular grids. As is usually the case, the several sets of dependent flow
 

variables coupled with mesh refinement sufficient for problem resolution
 

demands from several hundred to several thousand nodal point variables.
 

(For example, a coarse mesh for the boattail afterbody problem discussed
 

herein requires 1681 grid points (41 x 41 mesh) and 6724 nodal variables
 

(4 equations) to be time marched to steady state.) Furthermore, for problems
 

with chemical reactions involved, the number of governing equations increases
 

still more, and the equation set of the numerical model is usually stiff.
 

For such huge calculations, applications experience seems to promote a
 

tendency to the axiom of simplicity: the more complicated the problem from
 

the viewpoint of number of equations, number of grid points necessary, etc.,
 

the less likely is an economically successful solution by means of the
 

more refined numerical model (the implicit schemes with high order of
 

accuracy), due simply to the shear mass of calculations involved, computer ,
 

storage requirements, and complexity of the coding.
 

Indeed, the advent of the vector computer has indicated that for certain
 

problem size ranges the simple explicit time marching schemes with restrictive
 

stability limitations surpass the theoretically unconditionally stable implicit
 

schemes in overall machine economy. Consequently, for time asymptotic marching
 

implicit schemes have of late fallen more out of favor, although this is not
 

the case for one-space coordinate marching as for the parabolized Navier-Stokes
 

flows (ref. 19).
 

It appears from the present study that in general time marching even the
 

simpler finite element schemes are more cumbersome to implement and in turn less
 

economical than is the average finite difference scheme of comparable accuracy.
 

This is due largely to the global nature of the function approximation as well
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as to the more general scope of the FEM method in terms of gridwise applicability
 

(even with regular grids the method of programming generally does not deviate 

a great deal from that for the irregular grid), as well as the averaging 

process the FEM employs in discretizing space derivative terms (ref. 20). 

Further time-consuming function evaluations result from the need to evaluate 

finite element area integrals by means of quadrature schemes (ref. 15) when 

nonlinear terms are present. Some of the adverseness of the finite ,element
 

method will now be further elucidated.
 

Relationship Between FEM and FDM Discretizations
 

The Linear Element Model. Consider the problem of modeling the
 

vorticity transport equation (u and v assumed constant)
 

q u q + vq = (a 2 q + 92q\ 
x2at\ ax By2 / 

employing a linear element finite element model. 

Let {%.(xy):J = 1, 2, ..., N) be the triangular element piecewise
 

linear shape functions associated with the nodes of a triangulated domain
 

(see figure 1). These shape functions are defined on a triangle with 

vertices at points (xp, yp) , (xQ, y ) , (x R , yR) by the equations 

p =a, + bpx + cpy
 

ap = 1 - (bpx1 + cpyp) 

(2)
 
bp = Ya -YR YQR
 

ap x -x xQ
cP = x Q =XQR 

The finite element model equation at node point J as produced by the
 

Galerkin technique is 

a 



f dA =t-ff IY , x Sx ax0 q JQ(3Y aax ]} 
r a- -dX
 

FEM Equations on a Nonuniform Grid. Expanding q in terms of nodal
 

values q. in the form
 

N
 

q = E qj(t)4¢(x,y)
 

and substituting in equation (3) we obtain the interior point discretized
 

finite element equation associated with node point J which will now be
 

indicated (refer to figure, ). Here
 

-( 

C) = 3 
-( 

<( )> = the corresponding finite element discretization of term
 

( ) of equation (1), and
 

A. = area of triangle i
 

The contributions to the equation at node J are
 

Time term
 

= qaj(A 1 + A2 + A3 + A4 + A5 + A6 ) + q A + A1 

++qB P Al( + A2) +.(A+C - Y2i- 12(412- 2 + A 3 )+ qD ( A, + A,,) (4) 

0 A 4 :+A5 +QF (A5+ A6 
+E T2 + q
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X-diffusion term 

72 72 2 2 2
 
a q= j j Al BC
<x7WT LAUAJW A3 D + DE - F +FI\A-tAS A-7-

A YFAJTF YAEBJi qBIAB JA + BCYCJ
+ 4 A6.A4I 	 + A2 

(5) 

7 7BCOJB 	 yCDyDJ 1 qD F+C C EE
LAZ - + 3 J +- 4 LA3 A4 

7 7 A.+ ++ 	 ] "- A' + I+ q4 

Y-diffusion term
 

In equation (5) replace x by y and maintain subscripts, 

q values as written. Here ypQ = yp - yQ etc. (6) 

X-convection term
 

<u 	 = 6- qj(Y +B + Yc +D + + YFA ) 

I qA(YJF + yBJ) + B (yJA + yCj) + qC(yjB + yDJ) (7) 

+ qD(YJC 	 + YEJ ) + q(YJD + Y J) + q (Y + Y )l 

Y-convection term
 

Rewrite equation -(7) with x and y interchanged, but
 

(8)retaining all qj and all subscripts as at present. 


FEM Equations on Uniform Grid. It is of interest to observe that for a 

uniform 	grid with
 

Xp - XQ 	 =±Ax, yp - yQ = ±Ay, 
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the suitable addition of terms (1-8) produces the discretized finite element
 

(central space differenced) equations
 

1 { 0 0 00 

12 6qIJ I qI-,J+ qI+l,J + qlj-I+q,J+l + qI+l,J+l
 

l 11
+ q1 ,J1 6 Ax) 

+ I,J Ax - j) + A 

(9)
 

-v 
 (ql_1 ,j -q1 _1 ,Ji)+ ('q,,J~l 'hJ-l)
 

- + (+,~ + .lj)+ (qI+lSJ+l %+l 1 j} v( -q1 q1 1
(Ax) 2 

+ (qlj+l - 2q1'J+qIJ-1 

(Ay)2 '
 

Here we see that second space derivatives have been central differenced and,
 

first derivatives approximated with weighted averages of offset centered
 

difference approximations. The inversion of the time derivative coefficient
 

matrix before making the analysis would allow the observation that the space
 

discretizations are all weighted averages of centered differenced terms.
 

Inconsistent FEM
 

Consider Roache's question (ref. 1)--what is a finite element method?
 

Prom equations (4 to 8) we can see in this instance that a Galerkin method
 

employing linear elements produces a space discretized finite difference
 

scheme which,is second order accurate and which possesses arbitrary variability
 

in grid point location. Of course, for good results the triangles should
 

not be too distorted, with in particular large obtuse angles not allowed,
 

although small angle restrictions are not as significant as originally
 

supposed (ref. 21). For uniform grids the method analyzed applies centered
 

space differences to diffusion terms and weighted averages of such differences
 

to convection terms.
 

11 



When applied to transient problems the method is inherently implicit. 

It produces systems of ordinary differential equations coupling nodal
 

variable time derivatives which are of the form 

B dQ =f (-) (10) 
at
 

Should one wish to numerically integrate employing explicit schemes,
 

equation (10) presents a matrix inversion barrier at the outset, since B is 

banded and of significant bandwidth. 

This implicitness can be avoided (observe in equation (4) the result 

of Taylor's expansions about the central point A) by lumping B to obtain 

an easily inverted diagonal matrix, according to the relations
 

D.= B.. ; D..=0 , i j . (1i)
ii 13 13 

On a uniform grid the lumped system 

f(Q
-t D_ (12)dt 

is consistent except near the boundaries. For a nonuniform grid the lumping
 

process globally lowers to first order the accuracy of the transient solution.
 

However, for uniform grids this occurs only near the boundaries. 

This deterioration in accuracy on nonuniform grids is a compelling
 

argument against lumping. For this reason the technique of simplifying
 

geometry by stretching transformations with uniform mesh FEM applied in the 

transformed plane gains some favor. However, why do the discretization with an
 

FEM,. considering its chief advantage is complex geometry capacity and that
 

furthermore it always applies centered differencing to convection terms?
 

Historically, the raison d'etre for the evolvement of the Lax-Wendroff type 

method is to obtain second order accuracy while at the same time preserving 

the stability characteristics of the upwind techniques. As traced by 
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Roache (ref. 22) this historical evolution involved successive improvements
 

over the forward time central space method via DuFort Frankel, the upwind 

methods, Lax-Wendroff methods, in that order. The cumbersomeness of applying
 

upwind differencing with FEM seems to exclude such a similar chain of
 

evolution; this type of differencing does not appear to be naturally
 

inherent in FEM discretizations (ref. 20). 

Extra Stiffness of FEM Systems
 

Consider equation (9) with convection terms omitted. A Von Neuman-Fourier
 

resolution
 

q(x,y,t) = C(t) exp~i(gx + ny)] , i = VT (13) 

then produces the amplitude evolution characterized by
 

dC
 
(14)
dt- aAC . 

Here g , f are frequency related, a results from time derivative coupling, 

Sin2 ( 2Ay) 1x - n2 s ' ) 
X - 4 + V (15)

(Ax) 2 (Ay) 2 

and
 

2 

[ + 1 (cos CAx + cos nAy + cos (CAx + nAy))] (16) 

Letting
 

X' =a X =, Ax = Ay, = AAX, 

we may deduce that
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Max l 28v (17) 

(Ax) 2 

while 

Max S 
-11 (18) 

(Ax) 2 

Hence the time derivative coupling has produced a stiffer system by a 

factor of approximately 3.5 than would an ordinary FDM mdthod with centered 

space differencing. Considering the assumptions of the analysis, this is 

in excellent agreement with the experimental observations of a factor of three 

or four (ref. 23). 

In terms of stability -implications the forward time centered space FDM 

method applied to the diffusion equation is restricted by (Ax = Ay)
 

At 14
 

(Ax)92 


whereas forward time differencing of equation (9) restricts the resulting FEM
 

algorithm according to
 

< 14-- (20) 

Of course, the same considerations apply to equation (1), with extra 

complication.
 

Storage Considerations
 

It is clear the implicitness of FEM methods, if tolerated by avoiding any 

sort of lumping, will require extra storage. What is perhaps not so obvious
 

is the storage cost resulting from the capability of totally irregular grid
 

point location. The shape of triangular elements can be used to advantage in
 

accurate fitting of curved boundaries; hence, transformations are not 
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essential in this respect. However, some penalties for this generality are
 

necessary; most notably, the increased grid disorder requires increased
 

storage of information concerning grid character, such as node coordinates and
 

their triangle associations.
 

For example, on a 41 x 41 grid with 3200 triangular elements the storing 

of 4 bits of information per triangle (node numbers of three,vertices and 

boundary triangle indicator) requires 12800 storage locations. (In contrast, 

on an FDM mesh the reference point at which a difference equation is to be 

written is located by the I,J indices inside a nested DO loop, with index 

incrementation for determining neighbor points; consequently, no storage of 

grid information of the above type is necessary.) Moreover, indication of 

whether each node is unrestricted (is there an equation to be written or 

not?) requires 6724 bits of information, on the 41 x4 grid with4 dependent 

variables per node. 

For the implicit case
 

BQ( = , (21)
at 

with linear triangular elements and the 41 x 41 grid B is a symmetric
 

banded matrix of bandwidth 83, of dimension 1681 x 1681. Moreover, one such
 

system is required for each of the four fluid dynamic dependent variables.
 

Problems of this size necessitate out-of-core solving with associated
 

buffer needs. For this grid the split-band Cholesky method (ref. 24)
 

(see Appendix I) requires a buffer of minimum size 9000 words for inversion
 

of B , with 4 x 1681 = 6724 storage locations for f . Out-of-core 

frontal methods require less storage (refs. 25, 26), but would seem more time
 

consuming on a per step basis since their implementation would necessarily
 

require inversion of the matrices involved every time step. Frontal
 

utilization would appear to have as a corequisite a fully implicit time
 

integration procedure. This appears vastly more complex to implement than
 

the split-band Cholesky method in which B is inverted only once with
 

subsequent front and back solves utilized whenever dQ is needed.
 
dt 

15 



The picture emerging is that finite element implicitness and variable 

grid generality tends to cumbersome application and more heavy core storage
 

requirements than is characteristic of finite difference methods (with ­

MacCormack's method on the lower end of the spectrum and ADI the higher end). 

As regards the cumbersomeness of FEM, the device of time step doubling
 

(ref. 18) which cuts total computer time a factor of 2.5 to 4 with MacCormack's
 

method would be difficult or impossible to apply with quasi-explicit 

nonlumped or fully implicit FEM, due to system nodal variable coupling. 

Time Considerations
 

It is clear from equations (4 to 8) that equation assembly time for the 

variable grid difference scheme probably should exceed by an order of magnitude
 

that of a uniform grid scheme, particularly for the FDM technique-where one
 

numerical coefficient may receive from two to six contributions from
 

separate sources. Furthermore, the estimate represented by this academic 

example is clearly optimistic; for the primitive variable Navier-Stokes 

problems practically every equation term exhibits nonlinearity, often to the 

extent that the algebraic manipulation impedes or the type of nonlinearity
 

prevents a priori tabulation of the simplest form of the expression evaluated. 

Such evaluation is accomplished by calculating area integrals over elements
 

of the geometrical domain by quadrature schemes (which with higher order 

function approximation can involve several quadrature points per element, if
 

one is not to degrade the order of accuracy otherwise expected (ref. 15)). 

Note from equations (4 to 8) that each additive term in an equation
 

coefficient represents a contribution from a separate triangular element.
 

This is the key to the FEM equation assembly concept; one proceeds triangle
 

by triangle computing. contributions to all equations associated with nodes
 

of each triangle, adding each contribution into the proper place. It is
 

this equation assembly process which consumes the greatest relative
 

computation time through function evaluation for the numerous contributions 

to one coefficient.
 

When the governing equations are largely composed of linear terms, 

as for stream function-vorticity formulations or some potential flow
 

situations, with troublesome a priori algebraic manipulation the matrix 
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element contributions can be reduced to simplest possible form for rapid
 

evaluation, as done by Bratanow (ref. 23) and Baker (ref. 4). Such a scheme
 

represents some improvement over the machine quadrature approach; however, it
 

is clearly impractical for higher order elements and/or highly nonlinear
 

equations such as primitive variable Navier-Stokes. In any event this algebraic
 

manipulation represents further cumbersomeness in application.
 

Here one is impressed that even though geometric stretching trans­

formati6ns may increase the number of terms in the governing equation set, 

depending upon the complexity of nonlinear coefficient evaluations the resulting 

FDM application on a uniform grid appears should have much leeway in central 

processor time (due to simpler equation assembly) over FEM applied on the 

original domain. Moreover, the FDM transformation approach exactly accounts 

for boundary curvature, while FEM boundary approximation by triangular 

elements actually introduces possible second order roughness effects. 

FINITE ELEMENT MODEL OF NOZZLE AFTERBODY VISCOUS
 

INTERACTION EFFECTS WITH PLUME SIMULATION
 

Flow separation has serious consequences in many fluid dynamics
 

applications. Once separation occurs at the boundary of a submerged body,
 

the resulting flowfield behavior departs radically from that predicted by the
 

inviscid flow theory, because now the separating stream causes effectively the
 

formulation of a new flow boundary. This added irregularity of the effective
 

body geometry due to flow reversal and recirculation with resulting downstream
 

turbulent wake can produce a relatively large increase in total vehicle drag.
 

Current interest in reducing aircraft drag is evidenced by the appearance
 

in the literature of large amounts of experimental data and investigative
 

study of various features of the problem. The difficulty of experimentally
 

predicting the flow characteristics of a particular body geometry, due to
 

the hot jet exhaust plume and Reynolds number scale effects, points to the
 

need for accurate numerical simulation procedures. Calculations for the most
 

general free plume case are not known to the author. However, for certain
 

nozzle pressure ratios the plume simulator (see figure 2) produces results
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close to free plume results (ref. 18). The simulated flow field contains
 

many of the same features as the free plume flowfield: separation and re­

circulation; separation shock; turbulent boundary layer on the boattail; and
 

a turbulent recirculating region.
 

For the plume simulator MacCormack's FDM method has proven to be a notably
 

successful numerical simulation device (ref. 18). It provides a computation­

ally feasible tool which allows insight into the viscous/inviscid problem
 

interactions, without the encumbrances characteristic of the weak interaction
 

techniques which iteratively calculate separate solutions in the boundary
 

layer and inviscid flow regimes, with consequent matching difficulties at
 

common boundaries. The flow and geometry characteristics of the problem as
 

well as availability of FD4 results make -it a good test case for comparative
 

performance of FEM/FDM technology.
 

The subsequent sections of the present paper are addressed to the develop­

ment of FEM algorithms for the solution of viscous compressible flow problems
 

with possible embedded shocks and recirculation regions. As a logical first
 

step in the development of such a computer code we consider the calculation in
 

Cartesian coordinates of uniform flow on a rectangular region which
 

encounters an embedded.oblique shock with known turning angle. Having control
 

at the boundary of the location at which the shock is introduced allows
 

fairly accurate knowledge of where the shock should form (see figure 3).
 

The code so developed then allows reasonably simple modification for
 

computation of the boattail plume simulator problem, couched in axis­

symmetric cylindrical coordinates. In both cases laminar flow is assumed;
 

however, simple eddy viscosity or two layer turbulence models could be
 

easily introduced.
 

The avier-Stokes Equations
 

The equations governing the flow of a compressible viscous fluid in
 

the absence of body forces and electromagnetic effects can be written in
 

weak conservation law form as follows:
 

au oFr 3
@U + 3F"+ DG + H = 0 
 (22)
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Nondimensionalizing the governing equations using free stream density 

(p.), free stream x-direction velocity (u), boattail exit diameter (De), and 

reference temperature 

U;2 

TRef = (23) 

the following dimensionless equations hold:
 

Cartesian Coordinates
 

P 

Pu
 
U =(24)
 

Pv
 

E 

Pu
 

Pu 2 + P - T 

F xx (25)
 
Puv - T
 

(E + xx )u - TyY
57 ' x 

PO'
 

Puv - "x 

G = u (26) 
pU2 + P- T 

(E+ P - Tyy)U - tXYU + Qy 

0 

0
 

(27)
 
0
 

0­
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Here the viscous stress relations are
 

e 

= xy (@e/ +au (28) 

yy R By ax/ 

e 

and the heat flux components are
 

a_ 
-
Qx= PR ax 

(29)
 

ky 3T
 
S= -PRRe ay 

The nondimensionalized constitutive relationships are sutherlands viscosity
 

law 

3(30) 

the perfect gas law 

P = (y - 1)pT ; (31) 

and the specific total energy definition, 

E = P + 2 v2 (32) 
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Also
 

198.6
 
TRef
 

k = thermal conductivity
 

Re = Reynolds number 

P = Prandtl's number
 

p = density
 

u = x-component of velocity
 

u = y-component of velocity
 

P = static pressure
 

T = temperature
 

y =1.4
 

' = viscosity 

Axis-symmetric Cylindrical Coordinates 

using the previously described nondimensionalization, with x the 

axial and y the radial direction, the equations completing definition 

of the governing equations in axis-symmetric coordinates are given below. 

The constitutive relationships are as previously defined, as well as the heat 

flux expressions. However, the following equation changes are necessary: 
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H 

0 

0 

-p 

0 

+ T 

U = yU 

= yG 
= 

F 

(33) 

Viscous stresses 

xx 
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The Galerkin FEM Equations
 

The first step in the FEM discretization of equation (22) is the
 

triangulation of the computational domain D with boundary r . Spatially
 

piecewise linear function approximation is accomplished by associating shape
 

functions of the form indicated by equation (2) with each vertex of a
 

triangle. Trial functions are given by
 

N
 
U(x,y,t) = L Uj(t)4 j(x,y) , (35) 

J-l
 

where U . is the four component vector specifying the value of the vector
 

(23) at the J-th node, and N is the total number of nodes.
 

The value of Uj(t) is determined using the Galerkin technique by
 

forcing for every node at which a component of Uj is not specified
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by a boundary condition the corresponding component of the (Galerkin)
 

equation
 

ff 2 dA = f F - + G - - H dxdy 

(36) 

+f 4) [Gdx - Fdy] 

to hold. This yields four coupled systems of ordinary differential
 

equations
 

[A I] -= f(qi) , i= 1,2, 3, 4 (37)
i. at
 

to be time integrated. Here
 

[A.]jK= ff J4 K d (38)
 

D
 

and qi is the collection of all nodal values of component i of the
 

vector (23) which are allowed to vary with time.
 

The time integration of equation (30) is accomplished using the explicit
 

self-starting maximally stable predictor-corrector algorithms of reference
 

27. For the oblique shock calculations the matrices A. of equation (30)
 

were lumped by the procedure of equation (11) to avoid the inversion.
 

Integrals over a triangle arising from the left member of equation (36)
 

are a priori exactly evaluated as
 

L, J =K
 

ff JK dA J (39)
 

Ti A
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where A is the area of triangle T . The integrals over triangles of 

the right member nonlinearities are evaluated by one point quadratures, with 

two point quadratures applied to the boundary integral terms. For the
 

boattail afterbody calculations on a highly uniform grid (see figure 4) the 

inversion of the matrices in equation (30) is accomplished by developing
 

a special purpose out-of-core equation-solving routine, the split band-


Cholesky solver (see Appendix I).
 

A fourth order damping scheme is used to smooth oscillations resulting
 

from shocks or other large flowfield gradients. The additive damping
 

corrections employed are described in reference 18.
 

Boundary Conditions
 

The computational domain for the oblique shock calculation is shown in
 

figure 3. Uniform flow conditions -are prescribed on the inflow and prior
 

to the point of introduction of the shock between nodes six and seven on the
 

top boundary, including point seven and along the remainder of the top 

boundary altered uniform flow conditions corresponding to the flow having 

been turned by ,a shock at an incidence angle of 23 degrees are prescribed. 

Computational boundary conditions are applied along the bottom and outflow
 

boundary; zero normal gradient (f2 = fl) along the bottom and linear extra­

polation (f3 = 2f2 - fl) on the outflow.
 

The computational domain for the boattail afterbody problem is shown
 

in figure 4. The points of the rectangular appearing grid were obtained as
 

in reference 18,. where-separate stretching in the two coordinate directions
 

was employed in mapping the points in the physical plane (also the
 

computational plane for the FEM calculation) onto the nodes of a uniform grid
 

in the (transformed) computational plane. The parameters of the stretching
 

mappings were chosen to concentrate more points along the wall and in the
 

region of recirculation. The physical plane gridwork so obtained was
 

triangulated for FEMpurposes by drawing in the left-to-right and bottom-to­

top diagonal of each rectangle. Thus, the mapping yields a readily automated
 

grid generation technique.
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The boundary conditions along the upper and outflow boundaries utilize 

linear extrapolation of interior point data for the variables p , u , v 

T with E determined from equation (32). Along the wall pressure is 

linearly extrapolated; the no-slip condition specifies u,v ; and 

T = T is specified; p , E then depend upon P , T as specified by 

equations (31 to 32). (The validity of the linear extrapolation requires 

placement of the top and outflow boundaries sufficiently far removed from
 

the boattail curvature, with the upper boundary essentially in free stream.)
 

The flow conditions on inflow employ profiles obtained from a combination
 

method of characteristics/boundary layer solution as described in
 

reference 18.
 

NUMERICAL RESULTS
 

Oblique Shock Flow
 

The main purpose of the oblique shock calculations is to demonstrate
 

for a problem with known solution the correctness of the finite element
 

code and its applicability to flows involving shocks. Calculations are
 

performed with Mach number M = 3 in the uniform flow, Prandtl number 

PR = 0.72 and Reynolds numbers of 81 and 81,000. Table 1 shows the
 

test conditions used to simulate the introduction of the shock between two
 

grid points on the upper boundary. For the low Reynolds number, weak shock
 

(R = 80.869) convergence was achieved in around 150 steps on a uniform
e 

21 x 31 grid with Ax = .05 , Ay = .0333 and At = .01 . The criterion 

for convergence of calculations herein discussed is 

IU 1 - Z< 10-4 

for all components of U . No artificial viscosity was added. 

For the crisp high Reyn6lds number (Re = 80,869) shock mesh refinement
 

became necessary. Since the shock did not penetrate the bottom half of the
 

previous flow domain, this lower half was truncated and a 31 x 41 grid
 

(Ax = .0333, Ay = .0125) imposed on the top half. Applying artificial 
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Table 1. Conditions for Oblique Shock Simulation. 

Uniform Flow Conditions Post Shock Conditions
 

M = 3.0 M = 2.75799 

p = 1.0 p = 1.29341 

U = 1.0 u = 0.96537 

U = 0.0 1 = -0.08159
 

T = 0.19841 T = 0.22034
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viscosity of strength C = .1 , C = .1 (see reference 18) to damp spurious
 
x I 

oscillations arising from the crispness of the shock, convergence was achieved 

in 1000 steps with At = .001 .
 

Results for the high Reynolds number case are presented in figures 5 (a to d),
 

through comparisons between FEM and MacCormack's FDM method (ref. 18). For the
 

FDM calculation the original 21 x 31 grid was employed; hence, the exaggerated
 

overshoot exhibited in scme'instances by the FDM results should not from the
 

present data be considered a liability of the method, but is probably the result
 

of mesh coarseness. Figure 5(e) shows pressure contours over the computational
 

domain. Note that pressure values have been multiplied by 1000. The roughly
 

one percent error fluctuations in pressure which appear in the uniform flow in
 

front and back of the shock are attributed possibly to the effects of lumping
 

boundary error propagating downstream, or else to the error criterion not being
 

strong enough to assure convergence of the calculation at the time of
 

termination.
 

The introduction of the high Reynolds number shock at the top boundary is
 

accomplished by imposing uniform flow conditions on the inflow and at every
 

top boundary grid point through point six, with post shock values at point
 

seven and thereafter. Hence, due to the linear element model the shock
 

behavior along this boundary did not exhibit actual jump discontinuity; but
 

rather, linear ramp function transition over the interval .1667 < x < .20 .
 

Similarly, due to the coarser grid the corresponding transition for the FDM 

calculations occurred over the larger interval .15 < x < .20 . Effectively,
 

neither calculation pinpoints shock intersection with the boundary, but both
 

model the proper jump conditions across the smeared transition region
 

corresponding to a shock at 23 degrees angle of incidence.
 

By drawing a straight line at 23 degrees angle of incidence and intersecting
 

the top boundary at x = .1667 , the intersection of this line with the grid
 

lines x = x. should yield a y-value in close proximity to the theoretical shock
 

jump location. The level line on figures 5(a and b) in which pressure and
 

density ratios across the shock are plotted indicates this location. Hence,
 

the calculations appear in good agreement with theoretical shock jump locus
 

to within the limits of the accuracy with which this location can be specified.
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Boattail Afterbody Flow With Separation
 

In reference 18 numerical solutions have been obtained for axis­

symmetric boattail bodies with solid sting plume simulators, for several
 

geometric configurations mostly from the family of boattails with circular arc
 

generators. The accuracy of MacCormack's method has been verified for this
 

class of computations by comparisons with wind tunnel results. Thus, one can
 

confidently prove the FEM calculations by comparison with the corresponding
 

FDM results.
 

The configuration chosen for the present calculation is as follows: the 

streamwise length of the computational domain is -xmar = .688 m ; exit diameter 

is De = .0914 m ; boattail radius of curvature is .894 m;' boattail length is 

.229 m; boattail angle is $ = 14.8 degrees. The inflow boundary is placed one 

maximum diameter of .159 m upstream of the beginning of boattail curvature, to 

escape feedback upstream (through the boundary layer) of-boattail expansion 

effects. Grid point 8 in the x-direction is the first and grid point 26 the 

last grid point associated with boattail curvature. Characteristic parameters 

for the flow calculation are free stream condition M = 1.3 , total temperature 

T = 3400K , y = 1.4 , Prandtl number PR = 0.72 , reference Reynolds 

number R = 12365 , reference-temperature Tre f = 432,883 , wall temperature 

T = 311.40 K , s = .4 
w 

In order to reduce central processor time requirements in the calculation
 

of a typical boattail flowfield the FEM calculation was initialized with output
 

from the MacCormack code which had been allowed to run several hundred steps.
 

Even so, on the coarse mesh (41 x 41) the FEM program -required another 400 steps
 

to converge, with time step .0002. (Further calculations beginning with a flow­

field obtained by reproducing the inflow at all downstream locations are underway,
 

and will be reported if completed in this investigation period.)
 

Figures 6(a to e) exhibit comparisons of density, velocity, pressure and
 

temperature profiles at various downstream stations, for the two computational
 

methods. All profile stations except the first occur within the region of
 

recirculation which is clearly exhibited. The FEM results do not seem to
 

resolve as much of the finer details of the flow as the FDM results, although­

the overall disagreement between the two is not significant. Perhaps it may
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be of interest to note that in the expansion region where the FEM physical
 

plane grid is most irregular the disagreement is not as significant as in that
 

portion of the recirculation region extending onto the plume simulator. Hence,
 

the transformation approach with regular mesh calculations in the transformed
 

plane appears to be able to more uniformly account for significant geometric
 

transition effects. However, these calculations do appear to establish that
 

the FEM method can accomplish well the job required in the original geometry.
 

Hence, the future of the method, if any, in transient calculations, may lie in
 

those areas where the transformation approach encounters difficulty; e.g.,
 

where the simple stretching transformations are not sufficient. Here one could
 

envision channel flows with significant channel curvature and irregularity in
 

cross section which varies with flow direction.
 

Comparisons of Computational Efficiency
 

In this section are presented some efficiency comparisons for cases in
 

which a particular physical problem has been solved numerically by both FEM
 

and FDM algorithms. No claims are made that the respective computer codes
 

were as highly optimized as possible, or that different paths of algorithm
 

design might not have produced varied results. Nor is the data for comparison
 

as extensive as might be desired due to the general expense of generating
 

finite element results. However, one might expect this data to predict
 

the general characteristics typical of FEM/FDM resource economy.
 

Table 2 exhibits comparisons of particular indicators of computational
 

efficiency. The methods studied together with references documenting precise
 

algorithm formulation-are as follows: for free shear layer flows (at
 

R = 000) consistent implicit FEM algorithms for marching solution of thee 

time transient (ref. 17) and nonlinear nontimelike block iterative solution
 

(ref. 5) of the steady Navier-Stokes equations are compared with an alternating
 

direction implicit (ADI) FDM.methcd which.employs upwind differencing of
 

convection terms (ref. 28). Likewise, the consistent linear element FEM
 

algorithm herein discussed is compared with MacCormack's nonsplit method
 

which employed time step doubling (TSTD) (ref. 18), applied to boattail after­

body calculations.
 

In all cases exhibited it may be emphatically concluded the FEM structure
 

is far greater demanding of core storage and time per computational step
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Table 2. Comparison of FEM/FDM Performance Characteristics.
U) 

Total 
Problem 

Unknowns 
Cpu Time 2 

Sec/Step/ 

Number of (Humber of Storage Total Unknowns Apparent 
Equation Governing Flow Nodes* Number K8 (CDC-6600 Maximum Steps to 

Method Dynamics Equations. Class of Equations) Total Unknowns Computer Time Units) Step Size Convergence 

C0 cubic Transient 3 Shear 1884 .0763 .0 150 
Layer 

ADI Transient 3 Shear 3000 	 .00125 .3 30
 
Layer 

C0 Cubic Steady 3 Shear 1084 	 .0545 MA 15
 
Layer 

Consistent Linear Transient 4 Boattail 6724 .033 .00178 .0006
 
Elements
 

Nousplit Transient 4 1oattall' 6724 .011 .000313 .0046 650 coarse
 
MacCormack with, 	 steps
TSTD
 

Lumped linear Transient 4 foattaii 10404 .0134 .00108 NA HA 
Elements
 

I 	Data extrapolated from consistent linear element case by subtracting equation solve time from total step time, o,,d buffer 

storage from total storage, 51 x 51 grid.
 

2 	All boattail calculations were performed on the CYBER 175 computers all others on the CDC-6600 computer. To obtain
 

equivalent cpu times for comparison, CYBER units of time have been converted to CDC-6600 units by employing a multiplicative
 

factor of 2.5.
 

3 Total cpu time to convergence divided by total number of coarse steps required. 



than is the FDM algorithm and appears to require a smaller step size. Of
 

course, the most conclusive efficiency comparison that one can initiate is
 

the measurement of.total problem solution time, as dictated by-maximum
 

step size and number of steps to convergence. In this respect MacCormack's
 

method with TSTD required only 650 coarse steps and 544.5 seconds of Cyber 175
 

computer time for convergence on the (R = 12365) boattail afterbody problem
 

with a 41 x 41 grid. Here one coarse step is equivalent to several fine
 

steps (ref. 18). - Present indications are that the consistent linear element
 

FEM code can run at a step size in the range .0004 to .0006. Knowing that
 

TSTD cannot be used to speed the computation one can at best project an
 

efficiency defect in total computation time of above an order of magnitude.
 

The best showing for the FEM method occurred for the free shear layer
 

code formulated at the outset to solve the steady governing equations. Here
 

the excessive time requirements on a per iterative step basis are offset by
 

only a few steps being needed for convergence. However, even this performance
 

was still not competitive with the ADI performance (ref. 28).
 

The per step cpu time requirement for the consistent linear element
 

code was extrapolated to that needed for a lumped code by subtracting matrix
 

inversion time; notably, forty percent of the total time needed per step.
 

Hence, it appears that a lumped algorithm applied on a stretched domain could
 

be as efficient as the consistent code on the original domain (or better).
 

CONCLUSIONS
 

The results of comprehensive numerical investigation concerning the basic
 

capabilities of the finite element method as a tool for numerical calculations
 

related to compressible flow problems indicate that it provides an accurate and
 

reliable solution technique. However, the inherent ease with which variable
 

grids and complex geometries can be handled is offset in most cases by a
 

cumbersomeness in application which (in comparison to the better FDM methods)
 

hinders economic calculations to the extent of rendering the method unfeasible,
 

particularly for time marching solution of the more complex aerodynamic flow
 

problems.
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Fully explicit FEM algorithms on nonuniform grids are hindered by order
 

of accuracy estimates, while due to spectrum broadening stemming from time
 

derivative coupling quasi-explicit schemes are hampered by more rigid
 

stability restrictions as well as matrix inversion at the outset. Such
 

difficulties can be greatly alleviated by yielding to inherent FEM implicit­

ness through use of implicit numerical integration, at the cost of matrix
 

assembly and inversion each time step. Due to core storage requirements,
 

for larger problems this approach is not at all feasible unless frontal
 

equation assembly and solving is employed. It is hard to believe that
 

such an approach would be competitive with the better finite difference
 

-methods, in particular since it has been observed in shear layer calcu­

lations that implicit methods can be in practice time step restricted to
 

near the explicit CFL limit. However, frontal solution appears the
 

most economical route to follow if the FEM method is employed as a time
 

marching scheme. Of course, one might expect further increases in efficiency
 

by time splitting the equations and applying one-dimensional finite elements
 

to obtain FEM-ADI algorithms. However, the next question to consider is
 

whether by such an approach the variable grid-complex geometry capability
 

might not-be weakened. It thusappears the,greatest future of the method
 

lies in problem areas where solutions of the steady governing equations are
 

sought at the outset. Here the more rapid convergence expected of nonlinear
 

nontimelike mathematical iteration processes appears to offset the high
 

per step overhead of the method tending to more nearly provide economic
 

competitiveness with FDM results.
 

The following major points have been established by this investigation:
 

the strongest assets of the finite element method are its (a) capabilities
 

for reliable and accurate calculation employing variable grids which
 

readily approximate complex geometry and (b) capably adapt to the presence
 

of diverse regions of large solution gradients. Complex flows with embedded
 

shocks and regions of recirculation can be accurately calculated without the
 

necessity of domain transformation. However, for sufficiently complex
 

equations FEM time marching schemes as presently conceived do not appear able
 

to complete economically with the better FDM algorithms of comparable accuracy,
 

due largely to the sheer number of computations involved. Greater overhead
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may be expected in terms of both computer resources and man-year efforts
 

required to produce auxiliary routines such as grid generators and out-of-core
 

solvers. Some inflexibility is associated with the method; e.g., upwind
 

differencing is not naturally achievable with the general element, and time
 

step doubling would be difficult or impossible to perform. Finally, the
 

greatest weakness of the finite element approach is the total computer
 

processing time and storage required for problem solution.
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Figure 1. Finite element irregular triangulated gridwork.
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Figure 2. Boattail plume simulator flow field.
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Figure 3. oblique shock computational domain.
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Figure 4. Boattail computational domain, with irregular triangular element formation.
 



o Inconsistant (lumped) linear element FEM 
El MacCormack's nonsplit FDM 

-Theoretical shock jump location 

1.0 

El 

y r 0 

1.0 1,4 1.8 . 1.4 1.8 LO 1.4 1.8 
P/01 P/PI P/pj 

(a) Pressure jump. 

1.0 

LI 

.5 I. 

1.0 1,2 1.4 1. 1.2 1.4 1.0 1.2 1.4 

P/p1 
(b) Density ratio across shock. 

x --.35 x = . 60 x=90 

Figure 5. oblique shock FEM-FDM computational results (Re = 80,869). 
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Figure 5. continued.
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Figure 6. Boattail afterbody FEM-FDM computational results (Re = 12,365). 
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Figure 6. Continued.
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Figure 6. Continued. 
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APPENDIX I 

A SPLIT BAND-CHOLESKY EQUATION-SOLVING STRATEGY
 

FOR FINITE ELEMENT ANALYSIS OF TRANSIENT FIELD PROBLEMS
 

ABSTRACT 

An efficient strategy is outlined for out-of-core solution of the large 

systems of equations which specify nodal point time derivatives in finite 

element models of transient flow problems. The positive definiteness, 

symmetry, and band structure of the finite element mass matrices, as well as 

the nature of the equation assemblage process, are exploited by the method. 

Computational results are indicated for systems on the order of several 

thousand unknowns in size. 

INTRODUCTION
 

A major drawback of finite element as opposed to finite difference
 

models for transient flow problems is that in order to obtain consistent
 

space discretized equations one invariably introduces time derivative
 

coupling of the state variables. For example, space discretized Galerkin
 

models of fluid dynamic interactions governed by the Navier-Stokes equations
 

lead to coupled initial value problems of the form
 

' 
dt 


(A-1) 

In finite element terminology A is the mass matrix of the system (and 

therefore, symmetric positive definite and time invariant, regardless of 

physical governing equation characteristics or element type); Q is the 

vector of nodal displacements; and f is a nonlinear function of Q and
 

boundary constraints.
 

WPe~igpg ln
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Depending upon the-characteristics of the problem and background of the
 

investigator, the inherent implicitness of equations (A-i) has been treated
 

in various ways. Early proponents of implicit time marching schemes such
 

as the Crank-Nicholson Galerkin method (ref. 29), intuitively reasoning matters
 

cannot be worsened by so doing either attack equations (A-i) directly with
 

implicit numerical integration schemes, or else retreat within the Galerkin
 

integral and time discretize implicitly, with resulting marching equation 

Bn n+l gn ' 'past (A-2) 

In such cases the matrices B need not be positive definite or even
 n • 
symmetric, which complicates the choice of linear system solver.
 

On the other hand, a direct attack on the system (eqs. (A-l)] by
 

application of classical explicit methods for numerical integration or
 

ordinary differential equations is.hampered by the derivative coupling.
 

Assuming lumping is an unacceptable or unworkable alternative (consistency
 

in the transient is desired and/or higher order elements on nonuniform
 

grids are employed) the tandem matrix inversion required results in what
 

shall be termed a quasi-explicit,time marching shceme. Taylor and Davis
 

(ref. 30), possibly motived by the success of MacCotmack's method in numerical
 

fluid dynamics, have experimented with predictor-corrector methods. A typical
 

example is the quasi-explicit modified trapezoidal (lowest order Runge-Kutta
 

scheme)
 

AQn fn 

(A-3)n+l = Qn + Qn, 

Qn+l =Qn 2 ( n7 + fn 

t
where T =tn+l -tn ' n = f(Q ' and f* = f(Q*) . A. J. Baker .(ref. 31) 

has achieved some degree of success with quasi-explicit techniques based upon 
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maximally stable 3-stage one-step self-starting predictor-corrector algorithms
 

(ref. 31).
 

The relative efficiency of implicit versus quasi-explicit approaches
 

is not decided here. Suffice to say it appears the implicit methods should
 

have an edge, since they are usually absolutely stable, hence have no severe
 

time step limitations. However, for hyperbolic or mixed problems the physics
 

of the flow naturally restricts the time step via the Courant condition
 

(CFL-time-step restriction for explicit finite difference schemes (ref. 22)).
 

This degrades somewhat the advantage of absolute stability usually associated
 

with such schemes. For instance, computational results (ref. 28) indicate the
 

theoretically stable alternating direction implicit (ADI) finite difference
 

method has to be time step restricted to near the explicit CFL limit in order
 

to achieve convergence in the calculation of supersonic compressible free
 

shear flows.
 

As a consequence, it appears the time step advantage of implicit over
 

quasi-explicit methods may not in all cases be as monumental as at first
 

perceived. The question of how much this advantage can be further offset,
 

hinges upon the relative times for assembly of the equations involved, the
 

core storage requirements resulting from program complexity as well as buffers
 

for matrix inversions, and execution speeds for the equation solving. The fact
 

that the mass matrix in equations (A-3) is time invariant and symmetric positive
 

definite enables inversion by the Cholesky method, requiring matrix decomposition
 

only once if auxiliary storage of the triangular components is used, with
 

subsequent front and back solves whenever Qn is required. It thus appears
 

the quasi-explicit method, as regards matrix assembly and inversion, could be
 

far more economical, its competitiveness overall then depending largely
 

upon the number of times Qn is required per time step. 

For the large systems of eauations which appear particularly in fluid 

dynamics applications both classes of methods are further encumbered by the
 

necessity of out-of-core equation-solving strategies. (This may prove to be
 

a greater liability for implicit methods.) The frontal technique of
 

Irons (ref. 25), based on direct Gaussian elimination without pivoting and
 

accomplished with only portions of the matrices assembled at any one time,
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L 

has proved an effective solving strategy for symmetric positive definite
 

systems. However, in many cases the matrices of equations (A-2) are
 

unsymmetric; for such Hood (ref. 26) has generalized the frontal technique 

to allow nonsymmetry and some degree of pivoting. In this section is described
 

an alternate- equation-solving- choice, the: split-Cholesky strategy for banded 

matrices. This method is characterized by much simpler programming, in
 

comparison, and for large systems should further close the gap between
 

implicit and quasi-explicit integration methods. It is particularly well
 

suited in the circumstance that the triangular decomposition of A is stored
 

on disk, with frontsolves and backsolves whenever Qn is needed. For problems
 

governed by the Navier-Stokes equations further economy in storage occurs
 

when boundary conditions allow the same mass matrix for more than one set
 

of dependent variables, such as often happens for the momentum equations in
 

two-dimensional flows.
 

THE SPLIT-CHOLESKY PHILOSOPHY
 

The basic idea involved in the split-Cholesky equation-solving strategy
 

is that for a handed matrix the computation can be carried out in pieces,
 

with only a small portion of the matrix residing in core. The essential
 

concepts will be viewed from the position of the analyst familiar with band
 

matrix terminology.
 

First of all, the band structure inherited by the nonzero portions of
 

the triangular matrices associated with the LU decomposition of a matrix A 

is-identical to the band structure of A This fact and the nature of the 

decomposition sequence permit the decomposition to be stored back on top of 

A as it is performed. Second, if A is symmetric positive definite, then 

is the transpose of U(L = U
TT) p hence, only one triangular component must 

be computed. If U is chosen, only the diagonal and upper triangular portion 

of the matrix A of equations (A-3) must be assembled. The computation 

proceeds in stages, with the elements of A to be modified at stage p 

altered according to the formulas: 
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p ) - )
a =a (P RR
 
ikpp P =l, 2, ... a ; K i>p 

(A-4) 

(P-1)a(P-)
 
R = a (p-i) RRk pk


pp pp pk Rpp
 

If A has bandwidth 2m+l we see that only rows p through p+m
 

of A need be available in order to accomplish stage p of the decomposition
 

(see diagram 1).
 

From these considerations it is clear that the Cholesky decomposition
 

of a band matrix can be split into several passes. At each pass a minimum
 

of p+m rows of A must be available in order to perform stage p of the
 

decomposition, with row p the operating row. After this row p- is no longer
 

needed; it can be placed on auxiliary storage. Of course, depending upon the
 

size of m and the buffer requirements desired, one would normally decompose
 

stages p-Z through p and write 2+1 rows of U into a single record. The
 

value of Z could be related for purposes of convenience to the most logical
 

number of mesh elements to be assembled at one pass, as discussed in the next
 

section. At the same time a record containing several rows of U is completed,
 

the corresponding rows of L(= UT ) which can be made from these rows of U
 

are also assembled, and a record containing several rows of L can also be
 

stored. (As it turns out, portions of the same number of rows of L as there
 

exist available rows of U can be formed.)
 

MESH CONSIDERATIONS
 

In order to complete the formulation of the split band-Cholesky strategy
 

it is perhaps helpful to demonstrate the manner in which the assembly of the
 

finite element equations proceeds. The illustration will be accomplished 

under the assumption of linear trial functions on a triangular mesh. For
 

simplicity the mesh will be obtained from the uniform subdivision of a
 

rectangular region; however, the same ideas hold valid on any mesh whose nodal
 

connections have equivalent topology. (For example, a uniform mesh on a
 

rectangular region can be mapped topologically (and analytically) onto a
 

nonuniform mesh on a nonrectangular region). 
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Such mappings are commonly used in computational fluid dynamics (ref. 18),
 

and provide a workable device for triangulating a nonregular region in a
 

regular manner so that design of the mesh generator for finite element programs
 

becomes less burdensome.
 

Consider the triangulated mesh of diagram 2, possessing NXG C= 8) nodes 

per line of mesh, and leading to mass matrices of semibandwidth m = NXG . 

Normally the finite element assembly procedes triangle by triangle, with all 

matrix contributions associated with the unknown (nodal) variables of a 

triangle to be computed and stored when this triangle is processed. For the 

split-Cholesky method the assembly is to be completed in several passes, with 

NL layers of triangles processed at each pass (NL > 2). Each assembly pass 

is followed by a decomposition pass, in which the decomposition stage (p) is 

completed for as many nodal variables x , as possible, whose equation isp
 
fully sumned (completed assembled) during the assembly pass. (At the end of
 

the assembly pass the level of nodes at the front of the pass is only partially
 

summed and thus cannot be processed on this decomposition pass. The preceding 

level cannot be processed for the same reason, since a decomposition stage
 

at this level must necessarily partially process the nodal equations NXG
 

stages in advance, or in the next level of partially summed nodes.) At the
 

end of the decomposition pass a record containing NL+l rows of U is
 

written disk, together with a record of corresponding rows of L(= UT .
 

(Some shuffling must be done to account for partial rows of L available but
 

not permitted yet to be stored.) Irregular length records occur on the first
 

and possibly on the last pass.
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P > X' x x M\ Decompose rows P-2, P 
P + 1 ) >< X Y on one pass. Rows P + 1, 

P+2 jP + m are only partially
P+ N . x \X\decomposed.P + 3 
2 

,x X1' x x "x 

-P + 4 (=P +m) Xi x ) X 

Diagram One. The reduction of a band matrix.
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NXG = number nodes per­mesh level 

1 2 3 4 5 6 7 8
 

, , - , ,Nodes 
-at 

completely processed
end of decomposition 

pass. _ 

NL (=3) levels 
assembled at 
one pass 

_= r 
Level of nodes partially 
processed at end of 
decomposition passLevel of nodes with 

rparteally summed equation, 
t at end of assembly pass 

Diagram Two. Mesh Processing Considerations. 
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