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ABSTRACT 

Frettixig wear experiments were conducted with uncoated AISI 9310 

mating surfaces,  and with combinations incorporating a se lec ted  coat ing 

t o  one of the  mating surfaces.  Wear measurements and SEM observations 

indicated t h a t  surface fa t igue ,  a s  made evident by spa l l a t i on  and surface 

crack formation, is an important mechanism i n  promoting f r e t t i n g  wear t o  

uncoated 9310. Increasing humidity r e su l t ed  i n  accelerated f r e t t i n g ,  and 

a very not iceable  d i f fe rence  i n  na ture  of t he  f r e t t i n g  debr i s .  Of t he  

coat ings evaluated, aluminum bronze with a polyester addi t ive  was most 

e f f e c t i v e  at reducing wear and minimizing f r e t t i n g  damage t o  the  mating 

uncoated surface, by means of a se l f - lubr ica t ing  f i lm  t h a t  developed on 

the  f r e t t i n g  surfaces.  Chromium p l a t e  performed a s  an e f f e c t i v e  protec- 

t i v e  coating, i t s e l f  r e s i s t i n g  f r e t t i n g  and not acce lera t ing  damage t o  the  

uncoated surface. 

INTRODUCTION 

Fre t t ing  is commonly observed on the  assembly in t e r f aces  of mechan- 

i c a l  power transmission components. Typical examples include sp l ine  

couplings ( r e f .  1)  , bearing hous ing  in t e r f aces  ( r e f .  2), and gearlf  lange 

in te r faces .  The f r e t t i n g  ac t ion  can be caused by sha f t  misalignments a s  



i n  t he  case of s p l i n e  wear, o r  by mechanical s t r a i n  d i f fe rences  between 

mating components, as f o r  gearlf lange in te r faces .  I n  any event,  t he  

occurrence of f r e t t i n g  is marked by surface damage t h a t  may include 

crack i n i t i a t i o n  ( r e f .  3), p i t t i n g  (ref .  4), and deb r i s  generation. The 

consequences of ten  include degradation of canponent f a t i gue  l i f e ,  l o s s  of 

c r i t i c a l  assembly tolerance,  and foul ing of moving components by debris .  

Both t h e  extent  of f r e t t i n g  damage and the mechanisms of f r e t t i n g  a r e  

affected by a number of f a c t o r s  including s l i p  amplitude, r e l a t i v e  humid- 

i t y ,  temperature, f r e t t i n g  frequency, normal load, and the  mater ia l s  c m -  

pr i s ing  the  f r e t t i n g  pa i r .  

Increasing s l i p  amplitude invariably r e s u l t s  in increased f r e t t i n g  

wear, with a t r a n s i t i o n  amplitude iden t i f i ed  above i n  which g rea t ly  accel- 

erated wear is observed ( r e f s .  5 and 6) ,  and c h a r a c t e r i s t i c s  of unidirec- 

t i o n a l  s l i d ing  wear mechanisms predominate. Under f r e t t i n g  condit ions i n  

which f a t igue  crack i n i t i a t i o n  is a concern, a c r i t i c a l  s l i p  amplitude 

(lower than the  wear t r a n s i t i o n  amplitude) t h a t  causes a maximum degra- 

dat ion i n  f a t i gue  l i f e  of the f r e t t i n g  components is a l s o  reported ( r e f s .  7 

and 8). 

Relat ive humidity is  known t o  inf luence the  f r e t t i n g  of s t e e l  com- 

ponents, a s  i l l u s t r a t e d  by the  experimental r e s u l t s  of Feng and Uhlig 

( r e f .  9) .  Waterhouse ( re f .  10) suggests t ha t  r e l a t i v e  humidity inf lu-  

ences t h e  oxidation of i ron  wear debr i s ,  r e su l t i ng  i n  s o f t e r  deb r i s  for 

higher l eve l s  of humidity and reduced f r e t t i n g  damage. 

Feng and Uhlig a l s o  studied the influence of f r e t t i n g  frequency on 

wear of mild s t e e l ,  and observed reduced wear with increased frequency 



up t o  about 17 Hz. ;or higher frequencies,  l i t t l e  change i n  f r e t t i n g  Gear 

w a s  observed. Feng and Uhlig a t t r i b u t e  t h e i r  r e s u l t s  t o  a sur face  corro- 

s ion  mechanism. Hurricks ( re f .  11) po in ts  out  t h a t  o the  : f a c t o r s  may be 

s i g n i f i c a n t  i n  frequency experiments, including s t r a i n  r a t e  s e n s i t i v i t y  of 

adhering junctions,  and stress corrosion associated with sur face  f a t i gue  

cracks. 

There is considerable debate as t o  t h e  r e l a t i onsh ip  between f r e t t i n g  

wear experimellrs and f r e t t i n g  f a t i g u e  s tud ies .  It is conroonly held t h a t  

f r e t t i n g  accelerated f a t i gue  is  brought on by the  e a r l y  i n i t i a t i o n  of sur- 

face  cracks where s l i p  is occurring. Nichio'ka and Hirakawa ( re f .  12) a t -  

t r i b u t e  crack i n i t i a t i o n  t o  t h e  combination of contact  s t r e s s e s  superim- 

posed on the  a l t e r n a t i n g  f a t i g u e  stresses, with cracks being i n i t i a t e d  

where f r i c t i o n  induced stresses a r e  highest.  Where p i t t i n g  and nonpropa- 

gat ing cracks a r e  observed, i n i t i a l  crack growth under f r e t t i n g  conditions 

is in su f f i c i en t  t o  provide c r i t i c a l  s ized  cracks t h a t  may propagate under 

the  a l t e rna t ing  f z t t gue  s t r e s s  a f t e r  growing outs ide  t h e  s t r e s s  concentra- 

t i on  zone of t t e  contact  region. This s t rongly  suggests  t h a t  t he  p i t t i n g  

and subsurface crack propagation leading t o  f r e t t i n g  wear of many mate- 

r i a l s  ( r e f .  4 and 13) is r e a l l y  t h e  same mechanism a s  t h a t  leading t o  t he  

format ion of propagating f a t i gue  cracks when a l t e rna t ing  microscopic 

f a t i gue  s t r e s s e s  a r e  superimposed on the  contact s t r e s s  s t a t e .  

The purpose of t h i s  inves t iga t ion  Is t o  evaluate  some sur face  t r e a t -  

ment and coating combinations p a r t i c u l a r l y  appl icable  t o  f r e t t i n g  encoun- 

tered a t  gear l f lange In te r faces .  While a major concern is the  po t en t i a l  

for  i n i t i a t i n g  f a t i gue  cracks,  t he  inves t iga t ion  is pr imari ly  a f r e t t i n g  



wear s tudy.  However, t h e  f r e t t i n g  wez- measurements a r e  h e a v i l y  supple- 

mented bv microscopy s t u d i e s  t o  determine t h e  e x t e n t  t o  which p i t t i n g  and 

crack i n i t i a t i o n  and propagation con t r ibu ted  t o  t h e  wear. The b a s e l i n e  

m a t e r i a l  w a s  un t rea ted  AISI 9310, a s tandard gear  s t e e l .  Surface  n i t r i d e  

and s u r f a c e  ca rbur ize  t r ea tments  were evaluated,  and t h e  c o a t i n g s  exam- 

ined included e l e c t r o p l a t e d  C r ,  e l e c t r o p l a t e d  Ag, plasma sprayed Al-bronze 

a d  polyimide. 

APPARATUS 

A schematic diagram of t h e  f r e t t i n g  r i g  is shown i n  f i g u r e  1. Linear 

o s c i l l a t o r y  motion is provided by an e lec t romagne t ica l ly  d r i v e n  v i b r a t o r  

wi th  t h e  frequency c o n t r o l l e d  by a v a r i a b l e  o s c i l l a t o r .  Peak t o  peak 

f r e t t i n g  amplitude is monitcred by means of a capaci tance proximit]  probe. 

The load is app l ied  t o  t h e  specimens by p lac ing  p rec i s ion  weights  on a pan 

which is hung from t h e  load arm. 

The f r e t t i n g  specimens c o n s i s t  of an  upper, s t a t i o n a r y ,  4.76- 

mil l imeter- radius ,  hemispkerical  t i p  i n  con tac t  wi th  a lower f l a t  s u r f a c e  

which is d r i v e n  oy t h e  v i b r a t o r .  

A d ry  a i r  environment was provided by flowing a i r  through an absorp- 

t i o n  d r i e r  and then i n t o  t h e  experimental  chamber. In  t h i s  way moisture 

content  was kept i n  t h e  range 10 t o  100 p a r t s  per m i l l i o n .  When a 

moisture-saturated envi~onment  was d e s i r e d ,  t h e  a i r  was bubbled through 

a wa te r - f i l l ed  column and then blown I n t o  t h e  chamber. In termediate  

humidity Levels a r e  achieved by combining dry a i r  and s a t u r a t e d  a i r  f lows,  

and monrtoring r e l a t i v e  humidity. 



PROCEDURE 

The preparation of the  specimen sur faces  before  a f r e t t i n g  experi-  

ment depended on the  type of coat ing o r  sur face  treatment appl ied t o  t he  

surface.  

The bare  AISI 9310 surf  aces  were hand lapped with lev iga ted  alumina 

and then washed i n  t ap  water with a pol ishing c l o t h  t o  remove t h e  alumina. 

Pollowing the  washing, t h e  specimens w e r e  r insed i n  abso lu te  e thanol ,  

r insed i n  d i s t i l l e d  water,  and then set a s i d e  t o  dry. 

The f l a t  plasma-sprayed sur faces  were machine lapped, with approxi- 

mately 75 t o  i05  micrometers (3 t o  5 mi l s )  of coa t ing  being removed ir, 

t he  process. In  t h i s  way the  very rough as-sprayed coat ing was smoothed 

s o  t h a t ,  disregarding t h e  surface pores, t h e  root-mean-square roughness 

of t h e  coat ing was about 0.5 micrometer (20 uin.). The lapped sur face  was 

then u l t r a son ica l ly  cleaned i n  abso lu te  e thanol ,  r insed i n  e thanol ,  r insed 

i n  d i s t i l l e d  water, and allowed t o  dry. 

The sur faces  with polymer-bonded coa t ings  and :hose with t he  var ious 

surface treatments were washed i n  tap  water, r i m e d  i n  e thanol ,  and r insed 

i n  d i s t i l l e d  water before being subjected tr, f r e t t i n g .  

Following the  sur face  preparation treatment,  t he  specimens were as- 

sembled i n t o  the  g r i p s  according t o  t h e  des i red  combination. The t e s t  

chamber was then purged with t h e  selected atmosphere f o r  15 minutes. 

The f r e t t i n g  exposure was i n i t i a t e d  by adding the  required weight t o  

the  load pan t o  ' . r ing t he  contact force  t o  the desired l e v e l ,  usua l ly  

1.47 newtons. The amplitude of t he  f r e t t i n g  motion was 35 micrometers 

(0.0014 i n . ) ,  and the  frequency of the  f r e t t i n g  motion was 16351 hertz. 

The standard durat ion of the  f r e t t i n g  exposure w a s  l o6  cycles.  



Following each f r e t t i n g  experiment, t h e  f r e t t i n g  s c a r s  on both  sur-  

f a c e s  were photomicrographed t o  record t h e  s i z e  and f e a t u r e s  of t h e  wear 

s c a r s  and t h e  d e b r i s  accumulation. The loose  d e b r i s  xas  then r i n s e d  o f f  

wi th  e t h y l  a lcohol ,  and a l igh t - sec t ion  microscope w a s  used t o  measure 

t h e  maximum depth  and diameter  of t h e  wear s c a r s  on both  su r faces .  Wear 

volumes were ca lcu la ted  by applying s p h e r i c a l  cap approximations t o  t h e  

wear s c a r  geometry. 

I n  p r i n c i p l e ,  t h e  l igh t - sec t ion  measurement technique c o n s i s t s  of 

d i r e c t i n g  a p lane beam of l i g h t  ob l ique ly  (wi th  a 45' ang le  of incidence)  

a t  t h e  specimen sur face .  The r e f l e c t e d  l i g h t  beam is viewed through an  

o p t i c a l  microscope. I f  a plane s u r f a c e  is viewed, t h e  l i g h t  beam appears  

a s  a s t r a i g h t  l i n e  a c r o s s  t h e  f i e l d  of view; i f  a hemispher ical  s u r f a c e  

is viewed, t h e  l i g h t  beam appears  a s  a smooth curve.  Wear o r  s u r f a c e  

d i s t r e s s  due t o  f r e t t i n g  a c t i o n  shows up a s  d e v i a t i o n s  from t h e  smooth 

p r o f i l e  of t h e  surrounding sur face .  With t h e  surrounding sur f a c e  p r o f i l e  

used a s  t h e  datum, wear depth  measurements may be made by means of a 

b u i l t - i n  c r o s s h a i r  system. The diameter of t h e  wear a r e a  may be measured 

by manipulation of an indexed micrometer s t a g e  t r a n s l a t i o n .  Wear depth  

measurements a r e  accura te  t o  wi th in  0.5 micrometer, and diameter measure- 

ments a r e  accura te  t o  about 20 micrometers. The smal les t  wear s c a r s  ex- 

amined i n  t h i s  i n v e s t i g a t i o n  had a nominal dep th  of about 0.5 micrometer 

and a diameter of roughly 80 nicrometers.  Thus, t h e s e  wear s c a r s  repre-  

sented t h e  p r a c t i c a l  l i m i t  of r e s o l u t i o n  f o r  t h e  l i g h t - s e c t i o n  technique,  

wi th  an uncer ta in ty  i n  wear volume, r e 3 u l t l n g  from measurement of about 

50 percent .  The wear volume uncer ta in ty  due t o  measurement techniques  for 

t h e  t y p i c a l  wear s c a r s  i n  t h i s  i n v e s t i g a t i o n  was of t h e  order of 10 percent .  



MATERIALS 

The primary material  t h a t  served as the  subject of t h i s  investiga- 

t ion  was AISI 9310 steel, the  nominal composition of which is given i n  

t ab le  I. The 9310 steel was in a cold drawn, annealed condition, and 

the  hardness was measured t o  be 12 on the  Rockwell C scale. 

Selection of coatings and surface treatments rptudied i n  t h i s  eval- 

uation q s  based on many considerations. The carburized and n i t r i d e  

surface treatatents were included because they a r e  standard treatment 

often applied t o  gear components, and t h e i r  performance would natura l ly  

be of in teres t .  The surface p la t ings  selected are typica l  of approach- 

es commonly employed t o  reduce f r e t t i n g  wear. Aluminum bronze-polyester, 

and polyimide surface coatings were included because of t h e i r  good per- 

formance i n  f r e t t i n g  wear s tudies  of Ti-6A1-4V surfaces (ref.  14). 

Several of the  AISI 9310 specimens were carburize case hardened t o  

a depth of 500 t o  700 micrometers (0.020 in. t o  0.030 in.) ,  and the  

hardness of the carburized surface was 53 on the Rockwell C scale. A 

surface n i t r i d e  treatment was applied t o  other  specimens, and the af- 

fected depth was approximately 500 micrometers (0.020 in.). The hard- 

ness of the  n i t r ided surface was 42 on the  Rockwell C scale.  

Two electroplated surface coatings were evaluated i n  t h i s  study. 

Chromium pla te  was applied t o  a thickness of 12 t o  25 micrometers 

(0.0005 in .  t o  0.001 in . ) ,  and s i l v e r  p la t e  was applied t o  a thickness 

of roughly 12 micrometers (0.0005 in.).  Both surfaces were cleaned of 

oxides and etched prior  t o  plating. The s i l v e r  p la te  was applied t o  a 

palladium f lash  which was f i r s t  put down on the 9310 s t e e l  surface. 



The aluminum bronze-polyester coating was applied by a plasma spray 

technique. Composition of t h e  aluminum bronze w a s  copper-10 percent 

aluminum, which was cospreyed with 10 percent (by volume) of an aromatic 

polyester.  The thickness of the  coat-, as sprayed, w a s  200 t o  250 

micromet e re  (about 0.010 in. ) . 
The polyimide coating w a s  solution-sprayed onto the  9310 surface 

according t o  the  procedure described in d e t a i l  in  reference 15. Briefly, 

the  coatings were applied t o  a f i n a l  thickness of about 20 micrometers, 

baked fo r  1 hour a t  100' C t o  v o l a t i l i z e  the  thinner, and then baked for  

1 hour a t  300' C t o  cure the  polymer. The choice of polyimide was based 

on its combination of mechanical and low f r i c t i o n  and wear (ref .  16). 

RESULTS AND DISCUSSION 

Fret t ing of AISI 9310 Stee l  

The e f fec t  of amplitude on the  f r e t t i n g  wear of uncoated AISI 9310 

i n  contact with uncoated AISI 9310 is shown in  f igure  2. Up t o  an ampli- 

tude of about 25 micrometers, the  f r e t t i n g  wear volume remains a t  a 

nearly constant, r e l a t ive ly  low value. In the 30 t o  35 micrometer ampli- 

tude range, a t r ans i t ion  is observed beyond which the  wear increases 

l inea r ly  with increased amplitude. This observation is i n  qua l i t a t ive  

agreement with the  r e su l t s  of Halliday and Hirst on mild s t e e l  ( ref .  5 ) ,  

but they observed a t r ans i t ion  t o  occur a t  about 70 micrometers. Mate- 

r i a l ,  frequency, and loading differences might account f o r  t h i s  

disagreement. 

SEM studies show tha t ,  though the  wear r a t e  does begin t o  increase 

i n  the 25 t o  35 micrometer amplitude range, the f r e t t i n g  mechanisms 



causing sur face  darnage are still q u a l i t a t i v e l y  s imi l a r  t o  those predom- 

ina t ing  at lower amplitudes. Figure 3 summarizes t he  types of sur face  

damage observed as the  f r e t t i n g  amplitude was increased from 7.5 m i -  

crometers up t o  62 micrometers. The sur faces  examir.ed showed s igns  of 

crack i n i t i a t i o n  and "exfoliation." Thus, f o r  appl ica t ions  i n  which 

one of t h e  mating components is subject  t o  s ign i f i can t  f a t i g u e  loading, 

va r i a t i ons  i n  s l i p  amplitude alone (a t  l e a s t  above 7.5 micrometers) 

would not  be expected t o  have an important e f f e c t  on observed f r e t t i n g  

f a t i gue  l i f e .  F re t t i ng  f a t i g u e  r e s u l t s  genera l ly  show t h a t  f a t i gue  

l i f e  is  i n  f a c t  neg l ig ib ly  a f fec ted  by s l i p  amplitude beyond the  5 t o  

10 micrometer range (ref .  6). 

Measured wear volume a s  a  funct ion of f r e t t i n g  exposure (number of 

cycles)  is shown i n  f i gu re  4. Beyond 3 x 1 0 ~  cycles ,  the  f r e t t i n g  wear 

volume is roughly proport ional  t o  (number of cycles)1/2. This type of 

p ropor t iona l i ty  implies t h a t  t he  instantaneous wear r a t e  is inverse ly  

proport ional  t o  tne  accumulated wear : 

0 

where V is the  wear r a t e ,  V is the instantaneous wear volume, N the 

number of cyc les ,  and t t he  time of f r e t t l n g  exposure. Thus, the  

f r e t t i n g  wear process for  9310 s t e e l  does not follow an Archard type 



wear equation, generally descr ip t ive  of adhesive wear. Rather, it is 

consistent  with a surface fa t igue  mechanism a s  the  wear r a t e  control- 

l i n g  process. Fre t t ing  wear of 9310 s t e e l ,  under the  conditions imposed 

i n  t h i e  study, is  envisioned t o  proceed v i a  fa t igue  induced spal la t ion  

of material  (accelerated by corrosive mechanisms), with the  f r i c t i o n a l  

shear stress a t  the surface a s  the primary driving force. The surface 

f r i c t i o n a l  shear stress is given by 

where L is the  applied load, A the  instantaneous area of contact 

(wear scar surface area) ,  and p is the coefficient  of f r i c t ion .  The 

contact load L is assumed t o  be uniformly d is t r ibuted  over the  e n t i r e  

contact a rea  (with the  assistance of f i n e  accumulated debris) .  The 

number of cycles (NC) required t o  cause a spal la t ion  is approximated by 

I f  each spal la t ion  is  of a shallow depth d, and of approximately the 

same volume , then 

0 f v a -, f = frequency 
Nc 

provided m 1 The approximation m 1 is reasonable s ince  the 

spall.%tions a r e  caused by low cycle fa t igue  with corrosion as  a contr i-  

butory e l fec t .  It should be emphasized tha t  t h i s  argument, not being a 

sol id if-and-only-if argument, does not exclude the poss ib i l i ty  of other 



mechanisms, i n  p a r t i c u l a r  corrosion and th ree  body abrasion. The micro- 

graphs i n  f i gu re s  3 and 5 show s ign i f i can t  sur face  cracking and spa l la -  

t i o n  up t o  a t  l e a s t  lo6 cycles ,  i nd i ca t i ve  of f a t i gue ,  with a f i n e r  

s c a l e  process, possibly corrosion combined with 3 body abrasion (no stri- 

6 a t i ons  o r  sc ra tches  can be seen) a f t e r  12x10 cycles.  

F re t t i ng  experiments conducted i n  moisture sa tura ted  air produced 

r e s u l t s  d i c t i n c t l y  d i f f e r e n t  from those seen i n  dry  air. F i r s t ,  t he  

wear volume is increased by a f ac to r  of from 5 t o  8 a f t e r  lo6 f r e t t i n g  

cycles. Second, adherent buildups of mater ia l ,  apparent ly  oxidized de- 

b r i s ,  a r e  observed i n  and around the  contact a reas  a s  may be  seen i n  

f fgure  6. It is apparent t h a t  t h e  presence of moisture s i g n i f i c a n t l y  

a l t e r s  t h e  rheological  p roper t ies  of t he  d e b r i s  causing it t o  become 

"sticky" and cohesive, forming t h e  observed layered deposi ts .  Water- 

house ( re f .  10) addresses t he  inf luence of moisture on t h e  oxidat ion of 

i ron  based debr i s ,  with debr i s  generated i n  t he  presence of moisture be- 

ing s o f t e r  than t h a t  generated i n  dry a i r .  I t  is f e l t  t h a t  t he  acceler-  

a ted  wear observed f o r  t h e  case of AISI 9310 s t e e l  when f r e t t e d  i n  s a t -  

urated a i r  is primari ly  t he  r e s u l t  of more rapid corrosion. Experiments 

conducted i n  a i r  a t  a control led 40 percent r e l a t i v e  humidity showed a 

f r e t t i n g  wear volume of 20 t o  25x10-~ m3, s l i g h t l y  higher than tha t  

measured fo r  d ry  a i r .  

Performance of Coatings and Surface Treatments 

The r e s u l t s  of f r e t  t ing experiments involving coated or t r  e a t  ed 

AISI 9310 s t e e l  i n  contact with untreated 9310 a r e  summarized i n  f ig -  

u re  7. F r e t t i ng  was conducted i n  both dry a i r  and moisture sa tura ted  



a i r .  For purposes of performance evaluation, the  f r e t t i n g  wear of un- 

t r ea t ed  9310 s t e e l  against  untreated 9310 s t e e l  i n  dry a i r  and sa tura ted  

air is indicated on the  f igure.  

No wear was measured on the  carburized 9310 sur face  a f t e r  f r e t t i n g  

aga ins t  untreated 9310 steel. However, extensive t r a n s f e r  t o  t he  car- 

burized sur face  took place with the  f i n a l  contact s i t u a t i o n  being one of 

9310 steel aga ins t  9310 steel. Wear t o  t he  untreated sur face  was indis-  

t inguishable  from basel ine wear uuder dry  a i r  conditions.  Figure 8 shows 

the  presence of considerable oxidized deb r i s  embedded In  t he  f r e t t i n g  

surface, with t he  presence of f i n e  sur face  cracks Indicat ing inc ip ien t  

spa l la t ion .  S t r i a t i o n s  a l s o  v i s i b l e  on the  surface suggest t h a t  abra- 

s ion  by embedded deb r i s  p a r t i c l e s  was a l s o  contributory. Under satur-  

a ted a i r  conditions,  wear t o  the  untreated surface was 3 t o  4 times t h e  

baseline. Again, very heavy metallic t r ans fe r  t o  t he  carburized sur face  

occurred. It is proposed tha t  under f r e t t i n g  condit ions the  hard car- 

burized mater ia l  could more r ead i ly  d isp lace  the  pro tec t ive  surf9:e 

oxides i n  the  presence of moisture, and promote more extensive adhesion 

between the  surfaces than took place under dry a i r  condi t i i~ns .  The un- 

t r ea t ed  mater ia l ,  beinb the  weaker of the  two, would then be expected 

t o  t r ans fe r  t o  the  carburized surface. 

The r e s u l t s  obtained with n i t r i ded  9310 s t e e l  i n  contact with un- 

t rea ted  9310 steel a l s o  showed t r ans fe r  of mater ial  t o  t he  n i t r i ded  sur -  

face  i n  a l l  cases  wheu f r e t t i n g  was conducted i n  dry a i r .  Wear t o  t he  

untreated surface was s l i g h t l y  higher than the  dry a i r  basel ine.  Under 

saturated a i r  conditions however, t ransfer  t o  the n i t r i ded  sur face  was 



seen about 50 percent of the the, wfth wear occurring otherPsloe. Fret- 

ting wear t o  the unrreated surface i n  saturated a i r  was much lower than 

the corresponding baselbe.  

Low wear t o  the hard c h r d t ? ?  pla te  was observed a f t e r  f re t t ing  in 

dry a i r ,  and some transfer of 9312 s t e e l  t o  the chromlllsl plated surface 

took place. Wear t o  the uncoated surface was slightly higher than the 

dry a i r  baseline. When f r e t t h g  was c d u c t e d  i n  saturated air however, 

the chroeaium plate was observed t o  w e a r ,  aad wear t o  the uncoated sur- 

face was reduced. The f re t ted chrmnillsl plate showed a nearly featureless 

surface, while oa the mating 9310, "Islandsn of transferred c h r d u a  

could be seen (fig. 9). It is hypothesized that the traasferred chram- 

1- w a s  In an d i z e d  form, and be- embedded in the uncoated 9310 

steel surface, promoted a 2-body abrasive a c t i m  t o  the chromitea plate. 

Under dry a i r  f re t t ing conditions, Ag plate performed as a eacri- 

f i c i a l  coating, i t se l f  undergo- wear while the opposing uncoated sur- 

face showed considerably reduced f r e t t b g  damage compared t o  the base- 

line. SEn and x-ray dispersion analysis indicated that  a thio, non- 

uniform deposit of Ag was present on the uncoated 9310 steel surface 

afcer f re t t ing  In dry a i r  a s  may be seen i n  flgure 10. Fretting under 

a moisture saturated a i r  environment did not resul t  in a significant 

difference in the performance of the plate; it still worked a s  a 

sacr i f ic ia l  coating, but more wear t o  the uncoated 9310 s t ee l  surface 

was seen than under dry a i r  conditions. Considerably greater experi- 

mental scat ter  occurred. 



Like the Ag plate, the altlsliwrm bronze-polyester performed a s  a 

s ac r i f i c i a l  coating with results similar t o  those described in refer- 

ence 14 for  the f re t t ing  of Ti-6Al-4V. W e a r  t o  the uncoated 9310 

s t e e l  surface was reduced by nearly an order of amgnitude ia both dry 

iad saturated air. 14icroscopic examhation of the  uncoated surface 

(fig. 11) revealed that  a th in  adherent film a c c d a t e d  most of the 

f re t t ing  action. Based on x-ray dispersion cmalysls of the f re t ted  re- 

e o n  on the uncoated specimen, it was concluded (by e lh lna t lon )  that 

the adherent film nust be mostly polyester. The f re t t ing  damage fea- 

tures vis ible  on e i ther  surface were of a benign nature-absent were 

fatigue spa l l s  and surface cracks. 

The polylmlde coating (evaluated agaiast Ti-6Al-4V In  ref. 15) 

resulted An marginally reduced wear t o  the uncoated AISI 9310 steel 

mating surface, but i t s e l f  a s ac r i f i c i a l  coating, underwent rather rapid 

wear. Microscopic d n a t i o n  of the f re t ted  surfaces revealed oxidized 

debris embedded in the polyLmide coating, and evidence of abrasive wear 

t o  *he uncoated surface. It w a s  thus concluded that  the predominant 

w e a r  laechanism t o  the uncoated surface was 2-body abrasion, with gradual 

disintegration of the coating as it became overloaded with debris. 

mcLUs1ms 

From the f re t t ing  studies conducted on 93-0 s teel ,  and the assess- 

ment of several candidate "anti-f ret" coatings applied t o  one of the 

mating surfaces, the following conclusious a re  d r m :  

6 1. Up t o  a t  leas t  10 cycles, the f re t t ing  of AISI 9310 s t ee l  is  

dominated by a surface spallation mechanism caused by localized fatigue 

in  the contact area. 



2. The presence of moisture s igni f icant ly  increases the  f r e t t i n g  

wear of 9310 steel, and alters the  d is t r ibut ion of f r e t t i n g  debris. 

3. From t h e  standpoint of reduced f r e t t i n g  w e a r  t o  the  uncoated 

surface the  bes t  coatings were s i l v e r  plate, and aluminum bronze with 

polyester, each resul t ing  in roughly an order of magnitude reduction i n  

wear t o  the  uncoated mating surface under a l l  test conditions. 

4. Chraniu~i plate,  i t s e l f  the  -st f r e t t i n g  wear res i s t an t  of the  

coatlags evaluated, markedly reduced f r e t t i n g  wear t o  the  uncoated mating 

surface in saturated air, with no signif icant  change in wear t o  the  un- 

coated surface in dry air. 
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