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the resulting signatures also became more robust and the decision
 
threshold value became less significant. Multiclass boundary pixels
 
and the use of too few signatures to represent the class "other" con­
tributed heavily to observed recognition errors and proportion esti­
mation biases.
 

The simulated Landsat wheat canopy radiances were qualitatively
 
analyzed to determine the effects of the various levels of the factor
 
which characterize the canopy and the atmospheric conditions. Varia­
tions in the canopy characteristics are most noticeable in the longer
 
wavelength bands and variations in the atmospheric characteristics
 
are most noticeable in the shorter wavelength bands. Brighter back­
grounds increase path radiance and brighter soils increase,total
 
radiance, the amount of this latter increase depending on the partic­
ular canopy characteristics. Within a particular spectral band, the
 
effect of variations in canopy density is determined by the relative
 
brightness of crop and soil, and the effect of different scanner view
 
angles is determined by the variation in path radiance and bidirec­
tional canop4 reflectance. Although a common overall trend is evi­
dent, substantial differences do exist in the temporal trajectories
 
of the simulated radiances for various combinations of canopy density
 
and soil brightness. All these factors can affect the multitemporal
 

recognition of wheat.
 

Initial analyses of the ancillary field measurement data indi­
cated that the measured optical thicknesses of the atmosphere were
 
nearly all thinner than those used in the simulation, and that these
 
thicknesses exhibited substantial temporal changes, both short-term
 
and long-term. Also, the spe&tral patterns of wheat reflectances
 
were consistent with those obtained by simulation, on a qualitative
 
basis.
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PREFACE
 

This document reports processing and analysis efforts ,on one task
 

of a comprehensive and continuing program of research in multispectral
 

remote sensing of the environment.-'The research is being carried out
 

for NASA's Lyndon B. Johnson Space Center, Houston, Texas, by the
 

Environmental Research Institute of Michigan (ERIM). The basic objec­

tive of this program is to develop remote sensing as a practical tool
 

for obtaining extensive environmental information quickly and economi­

cally.
 

The specific focus of the work reported herein was the modeling
 

and analysis of the wheat signatures for purposes of establishing
 

improved training statistics for the inventory of wheat and of pro­

viding insight for other improvements of recognition procedures.
 

The research covered in this report was performed under Contract
 

NAS9-14123 during the period 15 May 1975 to 14 May 1976. Dr. Andrew
 

Potter (TF3) served as the NASA Contract Technical Monitor. At ERIM,
 

work was performed within the Infrared and Optics Division, headed by
 

Richard R. Legault, Vice-President of ERIM, in the Information Systems
 

and Analysis Department, headed by Dr. Jon D. Erickson. Mr. Richard
 

F. Nalepka, Head of the Multispectral Analysis Section served as
 

Principal Investigator.
 

The authors wish to acknowledge the assistance of other members
 

of the ERIM staff in addition to those cited above. Dr. R. E. Turner
 

was consulted on the adaptation and use of his atmosphere radiative
 

transfer model, and contributed the analysis of optical thickness
 

measurements presented in Sec. 7.1. Dr. G. H. Suits was consulted on
 

the adaptation and use of his vegetation bidirectional reflectance
 

model. R. J. Kauth assisted in the specification of simulation para­

meters. Dr. J. E. Colwell provided measurements of wheat-component
 

reflectance and transmittance spectra and assisted in defining the
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wheat canopy characteristics for the various stages of growth. A. P.
 

Pentland implemented our suggested modifications of his multispectral
 

data clustering program. Others provided assistance during various
 

stages of the analysis and report preparation, including E. R. Kent
 

and R. A. DeBacker. We especially wish to acknowledge Miss Darlene
 

Dickerson who ably and steadfastly typed and prepared this report and
 

earlier materials.
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SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS
 

In this investigation, the spectral, 9patial, and temporal char­

acteristics of wheat and other signatures in Landsat multispectral
 

scanner data were examined through empirical analysis and simulation.
 

Several agronomic characteristics which influence winter wheat reflec­

tances were established through analysis and comparison of spectral
 

signatures from fields with known characteristics in two LACIE (Large
 

Area Crop Inventory Experiment) intensive test sites (ITS's) in Kansas;
 

data sets acquired in May and June 1974 were analyzed. The objective
 

of these efforts was to gain sufficient understanding of the spectral
 

and physical characteristics and variability of the populations that are
 

being recognized spectrally in LACiE, so that improved criteria could
 

be established for determining the amount and type of data required
 

for training recognition computers for the inventory of wheat.
 

The selection of training data is a sampling process. An empiri­

cal study was made to determine the effects of varied training sample
 

size on wheat recognition performance. Landsat data acquired 26 May 74
 

over the Finney Kansas test site were classified with signatures
 

derived from different amounts of training data. An attempt was made
 

to incorporate LACIE Analyst-Interpreter constraints and procedures
 

into the three selection rules examined.
 

A major simulation effort then was undertaken to generate an exten­

sive and consistent set of synthetic spectral radiance data for a vari­

ety of winter wheat fields (63 in number) at seven different stages of
 

growth, as observed under a variety of observation conditions repre­

sentative of Landsat. Effective inband radiance was computed for each
 

Landsat spectral band, as well as calculations of inband reflectance,
 

atmospheric transmittance and path radiance, and irradiance values.
 

The results are concisely summarized and briefly analyzed in this
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report and are presented in full in a limited-distribution supple­

ment [1]. These calculations are intended for general use by LACIE
 

investigators.
 

The limited amount of data from the LACIE Field Measurement
 

Project which was made available for analysis during the performance
 

period of this investigation was examined and initial comparisons
 

made with the simulated data.
 

1.1 CONCLUSIONS
 

(1) An analysis of 1973-74 agronomic data for the Kansas ITS's
 

indicated a number of differences which potentially could affect the
 

spectral signatures of wheat and/or other aspects of recognition pro­

cessing:
 

(a) Irrigation patterns varied widely within the State and
 

among ITS's; 88% of wheat acreage in the Finney ITS was
 

irrigated and 24% in the Morton ITS, as opposed to less
 

than 3% for the western 2/3 of Kansas.
 

(b) Many different wheat varieties are planted in the State,
 

and different ones predominated in the various ITS's.
 

(c) Field size limitations were not a major problem in the
 

Kansas sites; average field sizes for wheat were large,
 

averaging 40 acres or more for the Finney and Ellis ITS's;
 

other fields were somewhat smaller on the average.
 

(d) In other regions with smaller fields, the necessity of
 

moving pixel selection lines inward from field boundaries
 

could create a serious problem because it precludes the
 

selection of pixels from many fields; also, the number
 

of multiclass pixels would be greater.
 

(2) An analysis of Landsat signal statistics (from data acquired
 

over the Finney ITS, '26 May 74) and their relationship to agronomic
 

factors showed that:
 

2
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(a) the irrigation practice was definitely correlated with
 

the observed spectral response,
 

(b) wheat variety differences produced observable spectral
 

differences due to leaf coloration and different dates
 

of maturation,
 

(c) between-field differences were generally greater than
 

within-field differences, and
 

(d) boundary pixels produced spectral features distinct from
 

those within field centers.
 

(3) The amount of data used for training definitely affected
 

recognition performance, both 'for classification of field-center pixels
 

and for estimating the proportion of wheat in the site analyzed (Finney
 

ITS, 26 May 74):
 

(a) Multiclass boundary pixels contributed much of the
 

observed bias in proportion estimates.
 

(b) Multimodal class signatures were required, and use of
 

too few signatures to represent class 'other' contributed
 

to the observed recognition errors; it is important to
 

obtain a good representation of those specific other
 

crops which can be confused with wheat.
 

(c) The variability between signatures obtained by different
 

draws of training data decreased as the sample size
 

became -larger; also, the resulting signatures became
 

more robust and the particular decision threshold value
 

became less important.
 

(4) The qualitative analysis of the simulated Landsat wheat
 

canopy radiances has revealed that:
 

(a) the effects of variations in the canopy characteristics
 

are most noticeable in the longer-wavelength bands and
 

the effects of variations in the atmospheric characteris­

tics are most noticeable in the shorter-wavelength bands,
 

3 
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(b) the effect of variations in atmosphere visibility in
 

any spectral band is determined mainly by the relative
 

changes in atmospheric transmittance and path radiance
 

in that band,
 

(c) the effect of a brighter background is to increase the
 

path radiance component,
 

(d) the effect of a brighter soil in the wheat canopy is to
 

increase radiance, the exact amount depending on the
 

canopy density and leaf transmittance, the latter being
 

a function of spectral band,
 

(e) the effect of different scanner view angles is deter­

mined in any spectral band by the variations in path
 

radiance and bidirectional canopy reflectance,
 

(f) the effect of variations in canopy density is determined
 

in any particular spectral band by the relative bright­

ness of crop and soil, and
 

(g) although a common overall trend is evident, substantial
 

differences do exist in the temporal trajectories of the
 

simulated radiances for various combinations of canopy
 

density and soil brightness, which will affect results
 

obtained with multitemporal processing techniques.
 

(5) Initial analyses of the ancillary field measurement data
 

that were available for analysis during the performance period of this
 

investigation showed that:
 

(a) despite calibration uncertainties, the atmosphere optical
 

thicknesses measured were nearly all thinner (exhibited
 

greater visibility) than those simulated,
 

(b) substantial temporal changes in optical thickness were
 

noted on both a short-term (diurnal) and a long-term
 

(day-to-day and month-to-month) basis,
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(c) measured ratios of diffuse to total irradiance supported
 

conclusion 5(a), and
 

(d) spectral patterns of field measurements of wheat reflec­

tances were consistent with patterns of computed reflec­

tances, on a qualitative basis.
 

(6) Data processing and analysis procedures developed during the
 

course of this investigation have been incorporated into other investi­

gations and efforts carried out at ERIM under the parent contract.
 

1.2 RECOMMENDATIONS
 

(1) Based on the analyses of agronomic factors and/or associated
 

spectral characteristics, it is recommended that:
 

(a) agronomic factors, such as planting, irrigation, and
 

fertilization practices be examined in regions of
 

interest to LACIE,
 

(b) field size and shape distributions and field-center
 

pixel availability be investigated in these same regions,
 

(c) further analyses be carried out to better identify and
 

establish more quantitative relationships between the
 

agronomic and spectral characteristics of wheat fields,
 

including analyses of field measurement and simulated
 

data.
 

(2) Based on the work that was completed on the influence of the
 

amount of training data on recognition performance, it is recommended
 

that:
 

(a) the joint effects of decision threshold and signature
 

robustness (sample size) on recognition performance be
 

examined,
 

(b) methods for insuring that analyst-interpreters obtain a
 

representative sample of other (non-wheat) classes in
 

the scene be investigated.,
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(c) additional sites and multiple time periods be considered,
 

and
 

(d) spectral displays, e.g., two-channel ellipse plots, be
 

used where analyst interaction is required.
 

(3) Based on the simulation effort conducted, it is recommended
 

that additional simulations and analyses of Landsat wheat canopy radi­

ances be conducted.
 

(a) A quantitative analysis of the existing data should be
 

conducted as a follow-up to the qualitative analysis
 

already undertaken.
 

(b) Additional data should be generated for more levels of
 

the various factors investigated (particularly clearer
 

atmospheres); effects of changing wheat component reflec­

tances and transmittances should also be examined.
 

(c) Calibration factors should be determined to convert the
 

simulated radiances to their-equivalent Landsat data
 

values.
 

(d) The simulated data should be compared in more detail to
 

actual Landsat data and field measurement data to evalu­

ate their accuracy.
 

(e) Similar simulations should be undertaken for spring
 

wheat and other crops which compete with it in recog­

nition processing.
 

(4) To facilitate the efforts in (3) and enable other analysis
 

efforts, it is recommended that improvements be made to the simulation
 

model to make it more general and readily useable.
 

(a) The capability for generating a covariance matrix for a
 

particular set of canopy and atmospheric conditions
 

should be added to the model.
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(b) The capability for equating the background reflectance
 

spectrum to the actual canopy reflectance spectrum should
 

be added.
 

(c) The capability for generating an entire simulated data
 

set given a particular field pattern and set of condi­

tions for each field should be developed using the model
 

as a basic tool.
 

(5) Analyses of field measurement spectral reflectance data are
 

recommended as soon as these data become available; intercomparisons
 

between simulated and measured data are strongly recommended as an
 

aid to analyses of these types individually, as well as collectively.
 

(6) Generalized models of wheat and other signatures should be
 

developed, incorporating ancillary parameters describing both environ­

mental and ground scene conditions.
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2
 

INTRODUCTION
 

A key step in the successful use of computer-processed remote
 

sensor data for agricultural inventories and other applications is the
 

establishment of signatures to be used by recognition processors. A
 

signature is a statistical description (mean vector and variance­

covariance matrix) of signals from a class or subclass of the scene
 

being studied. As such, the set of signatures employed must adequately
 

represent both the range and variability of signals from the scene of
 

interest, if satisfactory recognition performance is to be achieved.
 

Problems that have received considerable attention under LACIE
 

SR&T investigations are those of extending signatures from one area
 

to another and defining regional partitions within which this exten­

sion can take place most easily. There still remains a considerable
 

problem in extracting adequate signatures for use both locally and in
 

the nonlocal areas through signature extension procedures. The amount
 

of training data required to establish signatures for recognition pro­

cessing directly affects the costs (for both computer and personnel)
 

of training the processor, whether these fields be identified by direct
 

ground observation, by image interpretation, by computer analysis, or
 

by a combination of these.
 

A major objective of the effort reported herein was to establish
 

criteria for determining the amount and type of training data required
 

for sufficient Landsat training statistics and signatures for computer
 

inventory of wheat. A supporting objective, which was upgraded in
 

emphasis, scope, and schedule midway in the contract year, was to simu­

late Landsat radiances and signals for wheat fields under a variety of
 

conditions, for use in this and other investigations.
 

The overall approach taken toward this investigation was based on
 

viewing the selection of training data as a sampling problem. Initial
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efforts, therefore, were directed at gaining an understanding of the
 

spectral and physical characteristics and variability of the popula­

tions that are being sampled, especially the wheat fields and their
 

Landsat signals.
 

Table 1 lists the major factors that enter into the determination
 

of multispectral signatures for use in recognition. As indicated in
 

Table 2, these include the biological and agricultural conditions
 

which may be observed and described in varying degrees of detail by
 

ground observers and/or photointerpreters. Also important are the
 

actual physical characteristics of the ground cover and soil which
 

interact with the incident radiation to produce the observed radiation;
 

these quantities include those needed for modeling the spectral reflec­

tance of vegetation canopies. Finally, Table 2 also lists the obser­

vation conditions which play an important role in determining the mean
 

signals observed.
 

It is not sufficient to describe the mean signal levels from
 

various scene classes for recognition purposes. The within-class
 

variability is another important factor in determining their separa­

bility. Table 3 lists several different ground-related, atmosphere­

related, and sensor-related factors which contribute to the variability
 

in Landsat signals.
 

Agronomic data acquired for LACIE within the five LACIE Intensive
 

Test Sites in the State of Kansas were analyzed thoroughly as a first
 

step in understanding winter wheat and other classes and their varia­

bility (See Sec. 3),. Actual Landsat data acquired from two of these
 

test sites were analyzed in several ways (See See. 4). First, sta­

tistics (field signatures) were extracted from every field of suffi­

cient size in the sites. Then the wheat field signatures were grouped
 

according to their spectral similarities and these groupings corre­

lated with the agronomic data. Next, for one site, all field-center
 

pixels were clustered in a supervised mode and all boundary pixels
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TABLE 1. ELEMENTS OF SIGNATURE DEFINITION
 

* FACTORS DETERMINING MEAN SIGNALS
 

" BIOLOGICAL/AGRICULTURAL CONDITIONS
 

" RADIATION/PHYSICAL INTERFACE CHARACTERISTICS
 

* OBSERVATION CONDITIONS
 

- SOURCES OF VARIABILITY IN LANDSAT SIGNATURES
 

* GROUND-RELATED 

* ATMOSPHERE-RELATED 

* SENSOR-RELATED
 

" SAMPLING ERRORS
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TABLE 2. DESCRIPTORS OF FACTORS DETERMINING MEAN SIGNALS
 

A. DESCRIPTORS OF BIOLOGICALAGRICULTURAL CONDITIONS
 

" CROP SPECIES AND VARIETY
 
" MATURITY OR GROWTH STAGE
 
* VIGOR 
* 	CONDITION
 

- MOISTURE LEVEL
 

- INFESTATION
 
* PERCENT COVER
 
* LEAF AREA INDEX
 
* YIELD
 
* BIOMASS 
SOIL 	TYPE AND TEXTURE
 

* FARMING PRACTICE 

B. DESCRIPTORS OF RADIATION/PHYSICAL INTERFACE CHARACTERISTICS
 

PHYSICAL STRUCTURE OF VEGETATION CANOPY
 
* 	DISTRIBUTION OF SIZE, SHAPE, LOCATION, AND ORIENTATION 

FOR EACH COMPONENT PART 
* PLANT DENSITY AND PLANTING PATTERN
 
* TEXTURE AND MOISTURE CONTENT-OF SOIL 

COLOR OR SPECTRAL PROPERTIES OF VEGETATION CANOPY
 
* OVERALL COLOR OR SPECTRAL RADIANCE 
* OVERALL DIRECTIONAL SPECTRAL REFLECTANCE 
* REFLECTANCE OF EACH COMPONENT 
* TRANSMITTANCE OF EACH COMPONENT 
* SOIL REFLECTANCE 

FIELD SIZES, SHAPES, AND PATTERNS
 

C. DESCRIPTORS OF OBSERVATION CONDITIONS
 

" DATE OF YEAR
 
* TIME OF DAY
 
* SOLAR ANGLES 
" SCAN ANGLE
 
METEOROLOGICAL CONDITIONS
 
ATMOSPHERIC STATE
 

- HAZE OR OPTICAL THICKNESS 
- CLOUDS
 

* SPECTRAL BAND 
* SPATIAL RESOLUTION 
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TABLE 3. SOURCES OF VARIABILITY IN LANDSAT SIGNATURES
 

A. GROUND-RELATED FACTORS 

* LOCAL GROWTH CALENDAR AND VARIATIONS IN MATURITY 
- CROP CONDITION 
* PLANTING PRACTICE 

- DENSITY OF PLANTS
 

- FIELD PATTERNS AND SIZES
 
- CROP VARIETY
 

* SOIL TYPE AND MOISTURE LEVEL 
" LOCAL METEOROLOGICAL CONDITIONS, PAST AND PRESENT 
* MANAGEMENT PRACTICE 

- IRRIGATION
 
- FERTILIZATION
 

- CULTIVATION
 

- GRAZING
 

B. ATMOSPHERE-RELATED FACTORS
 

- HAZE LEVEL OR OPTICAL THICKNESS OF ATMOSPHERE 
" METEOROLOGICAL STATE OF ATMOSPHERE
 
* CLOUDS
 

C. SENSOR-RELATED FACTORS
 

* LATITUDE/LONGITUDE OF SENSOR IDetermine Sun Angles,
 
* TIME AND DATE OF OBSERVATION ( Among Other Variables
 
. SENSOR SCAN ANGLE
 
* SENSOR NOISE
 

- STRIPING, BANDING (Within-Frame Calibration)
 
- RANDOM NOISE
 
- BETWEEN-FRAME CALIBRATION
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clustered in an unsupervised mode. Intercomparisons of the various
 

spectral groupings were made.
 

Next, -a test was carried out-to explore the effects of varied
 

amounts of training data on recognition performance (See Sec. 5). An
 

attempt was made to incorporate LACIE Analyst-Interpreter (AI) con­

straints into the three data selection rules employed. Three inde­

pendent data selections were made using each rule; signatures were
 

established and used to classify the data; and recognition performances
 

were evaluated and compared. Additional planned testing of this type
 

was postponed due to an increased emphasis and priority on the theo­

retical simulations of multitemporal wheat signatures which are dis­

cussed next.
 

NASA has recognized the need for a consistent and extensive set
 

of synthetic spectral radiance and LANDSAT data for use in LACIE
 

investigations. Therefore, a set of parametric calculations of inband
 

Landsat radiances from wheat fields at seven stages of growth was made
 

using the ERIM Multispectral System Simulation Model (See Sec. 6). A
 

total of 3400 combinations of wheat field characteristics, viewing
 

geometries, and atmospheric conditions were simulated to explore the
 

sensitivity of the received radiances to the various factors (approxi­

mately eight in number). The total inband radiances were computed by
 

integrating spectral radiances formed by multiplying the product of
 

reflectance, irradiance, and atmospheric transmittance spectra (after
 

adding the appropriate path radiance spectrum) by the Landsat spectral
 

response functions. Similarly, effective inband values of the com­

ponent reflectances and the atmospheric features, were calculated as
 

well. These calculations are concisely summarized and briefly analyzec
 

in this report and presented in full in a limited-distribution supple­

ment to this report [1].
 

The final source of data on wheat signature characteristics con­

sidered in this report was the LACIE field measurement program for
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wheat. Unfortunately, the major measurements, i.e., the spectral
 

measurements of reflectance made by the field vans and the helicopter­

borne spectrometer were not reduced and distributed for analysis during
 

the contract period. Some analyses of ground observation data were
 

carried out.
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WHEAT AGRONOMIC DATA AND LANDSAT PIXEL AVAILABILITY
 
FOR LACIE INTENSIVE TEST SITES IN KANSAS
 

During the 1973-74 growing season (as well as succedding years)
 

the U.S. Department of Agriculture's Agricultural Stabilization and
 

Conservation Service (USDA/ASCS) condudted field observations and
 

interviews with farmers within the LACIE Intensive Test Sites.
 

Several types of fiseful agronomic data were compiled-for the wheat
 

fields present in the sites. Data were recorded concerning wheat
 

variety planted, irrigation and fertilization practices, and field
 

size. Much of the same information-was obtained for other crops as
 

well. The compiled stAtistics from these field visits were provided
 

to LACIE project personnel. The major use of these data has been for
 

the purpose of identifying the crop types present in fields to be used
 

for training recognition processors and-evaluating their subsequent
 

performance.
 

More extensive use and analysis of these data were made in this
 

investigation in an attempt to correlate the characteristics of Landsat
 

spectral signals with these agronomic factors. The agronomic data
 

were summarized for each of the five intensive test sites in the state
 

of Kansas. These were compared among one another, with supplementary
 

data summarizing planting conditions and characteristics in their ­

respective crop reporting districts, and with statewide agricultural 

planting and harvesting patterns. These compariaons are presented in
 

Sec. 3.1.
 

Another important factor in -recognition processing of Landsat
 

data is the proportion of single-class (field-center) pixels in the
 

scene. As examined more fully under another task [2] of this contract,
 

the proportion of field-center pixels depends on the field sizes and
 

shapes relative to the ground resolution size of a pixel. The presence
 

of a high proportion of multiclass pixels (those which cross field
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boundaries) can deleteriously affect crop proportion estimation accu­

racy. A summary was made of the average field sizes for two of the
 

five intensive test sites, Finney and Ellis. These data and their
 

possible influence on the accuracy of classification processors is
 

discussed in Sec. 3.2.
 

3.1 ANALYSIS OF AGRONOMIC DATA FOR WINTER WHEAT
 

The agronomic practices which most affect the vigor and density
 

of wheat stands could be expected to have the greatest influence on
 

spectral characteristics observable by Landsat In Kansas, water
 

availability is perhaps the major factor limiting growth, especially
 

in the semi-arid Southwest Crop Reporting District (CRD). Therefore,
 

irrigation should be important to the spectral characteristics of a
 

wheat field.
 

Statistics were extracted from USDA/ASCS 1973-74 observations to
 

describe the moisture supply practices (e.g., irrigation) in the five
 

LACIE Intensive Test Sites (ITS's) which were located in two of Kansas'
 

nine crop reporting districts, the Southwest and the Central. These
 

statistics are presented, in Table 4, along with values for the county,
 

crop reporting district and the western two-thirds of the state (the
 

six western-most CRD's). It is immediately evident that there are sub­

stantial variations in these practices throughout the state. The
 

majority of wheat in the western two-thirds of the state was planted
 

on summer fallowed land, 36% on continuous-cropped dry land, and less
 

than 3% on irrigated land. The Central CRD had essentially no wheat
 

on irrigated land, with 58% on continuous-cropped dry land. The South­

west CRD, on the other hand, had 10% on irrigated land and less than
 

that on continuous-cropped dry land, with 81% on summer fallowed land.
 

These patterns are related to the local amounts of rainfall, and differ
 

more widely on a county-by-county basis.
 

Finally, we see that the Finney Intensive Test Site for 1973-74
 

was preponderantly (88%) irrigated, a very anomalous area for the state
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TABLE 4. IRRIGATION AND FERTILIZATION PRACTICES ON KANSAS SITES 

FARMINO PRACTICE 

ITS 

FINNEY 

CO ORD ITS 

ELLIS 

CO CRD 

P E R C E N T O F W H E A T ACR E A G E 

MORTON RICE 

ITS CO CRD ITS CO CED ITS 

SALINE 

CO CRD 

W E S T E R N 

WESTERN 

TWO-THIRDS 
OF STATE 
OF KANSAS i 

1. Moisture Supply 

(a) Irrigated 

(b) Summer 
Fallowed 

88 13.8 

82.3 

(SW) 

10.1 

81.3 

0 0 

81.7 

(C) 

0.1 

41.4 

24 13.2 

84.9 

(SW) 

10.1 

81.3 

0 0 

39.7 

(C) 

0.1 

41.4 

0 0 

22.7 

(C) 

0.1 

41.4 

2.8 

61.2 

H 

(c) Continuous-
Cropped 
Dry Land 3.9 8.6 18.3 58.5 1.9 8.6 60.3 58.5 77.3 58.5 36.0 

0 

2. Fertilized 78 26 26 100 100 

3. Neither Irrigated 
Nor Fertilized 10 74 74 0 0 

0 

c 
r 

4. Both Irrigated 
and Fertilized 76 0 23 0 0 

o 

0 

2 

For 1973-74 Crop in LACTE ITS (Intensive Test Site), from SDA/ASCS Observations. 

tFor 1972-73 Crop in CRD (Crop Reporting Districts) and Western 2/3 of State (3]. 

SW = Southwest CRD and C = Central C0 

0 

z 
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of Kansas. It is primarily for this reason that the location of the
 

Finney ITS was changed for the 1975-76 growing season-. Even in the
 

Morton ITS, nearly twice as high a percentage of wheat was irrigated
 

(24%) as was in the county (13%). There was no irrigation in other
 

test sites or counties.
 

Statistics on fertilization practices, as extracted from the
 

USDA/ASCS records, also are presented in Table 4 for the five sites.
 

These indicate that 100% of wheat acreage in Rice and Saline counties
 

was fertilized, while the value was 78% in Finney and only 26% in
 

Ellis. In the Finney ITS, nearly all wheat fertilized was also irri­

gated, and only 10% was neither fertilized nor irrigated. In the
 

Morton ITS, on the other hand, nearly all wheat irrigated also was
 

fertilized but 74% of the wheat acres were neither irrigated nor ferti­

lized. Thus, although the percent irrigated varies, there is a high
 

probability that a fertilizer was applied wherever there was irrigation.
 

Adequate amounts of fertilizer should enable vigorous growth with
 

accompanying healthy colors of the wheat vegetation.
 

More than 15 varieties of winter wheat were planted in Kansas
 

during the 1973-74 growing season. The varieties planted and the
 

relative amounts of each change from year to year. Most common in
 

1973-74 was the Scout variety, as it had been for the preceding four
 

years or more. However, the percentage of acreage seeded to Scout
 

(36.5%) was 10% less than the previous year, with most of the increase
 

being in the Eagle variety (up to 17.8%). Each other variety contri­

buted less than 10% of the total for the state.
 

Table 5 summarizes the percentage of each variety of wheat
 

planted in the five Kansas intensive test sites during the 1973-74
 

growing season. Six varieties were.identified in the USDA/ASCS field
 

observation data, in addition to a general non-specific category which
 

happened to be the only one identified for the Saline segment. Per­

-centages are noted both for the State and for the crop reporting
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C TABLE 5. APPORTIONMENT OF WHEAT ACREAGE AMONG WHEAT VARIETIES (KANSAS, 1973-74) 

PERCE NT O FTO TAL WHEAT ACREAGE~STATE STATE OF or 

FINNEY ELLIS MORTON RICE SALINE KANSAS4 

CROP WHEAT 
CODE VARIETY ITS CRD ITS CRD ITS CRD ITS CRD ITS CRD PERCENT RANK 

(SW) (C) (SW) (C) (C) 

402 Scout 20.2 58.0 82.7 21.7 36.9 58.0 44.6 21.7 21.7 36.5 1 
(21.2)** (90.0) (51.9) (51.7) 

404 Eagle 1.0 18.1 9.2 25.8 17.9 18.1 10.4 25.8 25.8 17.8 2 
(1.1) (10.0) (25.3) (12.0) 

407 Satanta 56.1 6.5 4.6 1.1 6.5 3.8 4.6 4.6 4.7 6 
(59.0) (1.5) (4.4) 

. 408 Centurk .0.7 6.6 11.9 10.9 6.6 27.5 11.9 11.9 9.5 3 
(0.7) (15.3) (31.9) 

409 Bison 5.7 3.5 0.7 4.3 3.5 1.2 10 
(6.0) (6.0) 

424 tEagle Scout 11.4 A.I. 0 

(12.0) 

400 Unknown 4.9 8.1 28.9 13.7 100. 
r 

(-) (-) (-)0 

Other Var. 7.3 35.3 7.3 35.3 35.3 30.3 0 

ITS denotes LkCIE Intensive Test Site. 

Denotes apportioning Code 400 proportionally among other varieties. 
a 

= 
CRD denotes Crop Leporting District; SW = Southwest and C Central; Values are for 1974 Crop [2]. 

0 

USDA Agricultural Experiment Station personnel in Garden City. Kansas, have indicated that there is 
no "Eagle Scout" variety; these are most likely of the Eagle variety. 

0 
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district (CRD) containing each segment [3]. Percentages on the CRD
 

level are seen to depart substantially from the state-wide averages -­

the Southwest CRD more so than the Central CRD. The Southwest CRD had
 

about 58% Scout, 18% Eagle, 7% Centurk, and 7% Satanta, while the
 

Central CRD had about 22% Scout, 26% Eagle, 12% Centurk, and 5% Satanta.
 

The percentages of the different wheat varieties for the inten­
sive 	test sites departed from the patterns for both state and district.
 

Finney ITS, for example, has 56% Satanta wheat with only 20% Scout and
 

1% Eagle (although the 11% called Eagle Scout, a non-existent variety,
 

is most likely of the Eagle variety). Ellis ITS on the other hand,
 

with 	no Satanta, had 83% Scout and 9% Eagle. Morton ITS came closest
 

to matching its district. The patterns for the other sites are less
 

clear because of greater amounts of "unknown" variety.
 

Reasons for the variation observed in the patterns of wheat
 

varieties planted may lie in topographic, soil, and weather conditions,
 

in irrigation and fertilization practices, in differences in the speed
 

with 	which newer varieties gain acceptance by the growers, and/or in
 

combinations of these factors. Wheat variety might affect the observa­

ble multitempdral multispectral characteristics of wheat due to differ­

ent maturation dates, different spectral reflectances and transmittances
 

of components at comparable stages of development, different growth
 

forms and habits, and different densities. Several of these effects
 

were 	observed and are discussed in Sec. 4.
 

3.2 	FIELD SIZE AND LANDSAT PIXEL AVAILABILITY
 

For training, it is usual to use only field-center pixels so as
 

-to avoid contamination of pure crop signatures by pixels which cross
 

field boundaries and therefore contain mixtures of two or more mate­

rials. Hence, field size is another variable which can have an impor­

tant effect on recognition performance. LACE AT's attempt to select
 

only field-center pixels for training, with a minimum of four field­

center pixels per selected field [4]. In recognition, mixture pixels
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can cause problems because they frequently may be misclassified. The
 

larger the average field size in the segment, the smaller the propor­

tion of mixture pixels that will exist [2].
 

A detailed analysis of field sizes was made for two ITS's, Finney
 

and Ellis. Fig. 1 presents histograms of the number of fields in these
 

ITS's as a function of the field size, Different vertical scales are
 

used because the overall size of the Finney ITS is larger (30 sections)
 

than that of the Ellis ITS (9 sections). The fields tabulated are for
 

all LACIE ground truth codes except 800, non-agricultural. Overall, the
 

Ellis ITS tends to have smaller fields than the Finney ITS. The pre­

dominance in Ellis of small "other" fields in the category 10 acres or
 

less is notable. The mean and median wheat fields in the Finney ITS
 

are both about 44 acres whereas in the Ellis ITS the mean is about 40
 

acres but the median is only about 30 acres. Also in the Ellis ITS,
 

the mean "other" field size is about 18 acres while the median is
 

about 25 acres. In the Finney ITS, on the other hand, the mean ITother"
 

field size is just over 40 acres while the median is about 35 acres.
 

The distribution of field sizes does not fully indicate the way
 

in which wheat acreage is found in the sites. Fig. 2 presents cumu­

lative distributions of wheat and "other" acreages as functions of
 

field size. These curves show that roughly 25% of the wheat acreage
 

is in fields of 80 acres or more in size, 50% in fields of 55 acres or
 

more, and 75% in fields of just under 40 acres or larger. The distri­

butions for wheat are much more similar between the two sites than for
 

"other", where the effect of the smaller fields in the Ellis ITS 
are
 

more evident.
 

Part of the job of preparing Landsat data for the analyses which
 

were performed was the designation of field-center pixels in the data
 

sets. Data preparation was performed jointly by several Tasks under
 

this contract. A semi-automated procedure, which had been previously
 

developed [5] and later employed in part of the CITARS data prepara­

tions [6], was refined and used in LACTE data set preparations. 
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Coordinates of every field vertex in the intensive study sites analyzed
 

were digitized from the rectified aerial photomaps provided by NASA/JSC.
 

At the same time, coordinates were digitized for control points which
 

could be located in digital line-printer 'graymapst of the Landsat data.
 

Regression techniques were then used on the control points to determine
 

a transformation to convert the photo coordinates of all the field ver­

tices to Landsat data coordinates. These Landsat coordinates then
 

could be used to. extract signatures and perform other analyses of the
 

Landsat data. Computer plots of the field patterns were also drawn to
 

scale to be overlayed on computer graymaps.
 

Each field was defined by a polygon described by its vertices. A
 

feature of the ERIM multispectral processing programs is a capability
 

to specify an inset distance from field boundaries to insure the selec­

tion of only field-center pixels, by eliminating those pixels close
 

enough to the boundary to be mixture pixels. Typically, allowance was
 

made for a complete-pixel guard row around the periphery of each field
 

(i.e., an inset parameter of 1.5 pixels). This also would seem to be
 

a reasonable criterion for the LACIE analyst-interpreters to follow.
 

A surprisingly small number of field-center pixels are present in
 

a Landsat data set. Summary statistics were computed for field-center
 

pixels selected in the Finney ITS (with the 1.5 pixel inset). Fig. 3
 

presents the average field size (in acres) for the given numbers of
 

field-center pixels selected. The average size of fields containing
 

one pure field-center pixel was over 30 acres and for four pixels (the
 

LACIE minimum) fields of over 40 acres were required. These are large
 

fields in comparison to the size of a Landsat pixel, which is approxi­

mately 1.1 acres. The average size of fields for which no field-center
 

pixels were available was over 20 acres, and more than half the fields
 

in the segment fell into this category. Fig. 4 presents a plot of the
 

number of fields for which various numbers of field-center pixels were
 

available. After a large peak of 240 fields with no pixels, to 23 fields
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with one pixel, the number of fields falls off almost exponentially to
 

only one or two fields for pixel numbers greater than 20, with a maxi­

mum of 70 pixels (for one 160-acre field). Figs. 3 and 4 include both
 

wheat and "other" fields.
 

For wheat specifically, Fig. 5 presents a cumulative distribution
 

of field-center wheat pixels selected as a function of the number of
 

pixels in a field, for the Finney ITS. From this graph it can be seen
 

that 25% of the field-center wheat pixels are from fields yielding 45
 

or more pixels each, with 50% of pixels from fields with 22 or more
 

pixels each, and 75% from fields with 12 or more field-center pixels.
 

These results show an even greater concentration of wheat field-center
 

pixels in the larger fields than was observed in the preceding graphs
 

for wheat acreage. Fig. 5 also includes a curve giving the cumulative
 

percent of wheat fields as a function of the number of field-center
 

pixels selected in each.
 

3.3 DISCUSSION
 

A thorough examination of the agronomic data from the Kansas LACIE
 

ITS's has shown a wide variation in the characteristics of wheat fields.
 

This variation potentially could lead to spectral differences between
 

fields and variability within fields which would be evident in their
 

Landsat signals. In the next section, the extent of such ground­

related spectral differences in Landsat data will be examined.
 

The major difference found among the sites was the 88% irrigation
 

of wheat fields in the Finney ITS, compared with 24% in Morton, and
 

0% in the other three sites. Fertilizer usually was applied whenever
 

there was irrigation. The percentages of the different wheat varieties
 

planted were also found to differ from site to site and from CRD to CRD.
 

To summarize the observations regarding field-center pixels, we
 

note that LACIE AI's, for the most part, will be selecting training
 

data from among fields of 40 acres or more in size, with their require­

ment for a minimum of four field-center pixels per field. For the
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Finney and Ellis ITS's, this corresponds to sampling from about 75% of
 

the wheat acreage but only about 40% of the individual wheat fields;
 

77% of wheat field-center pixels (1.5-pixel inset) in the Finney ITS
 

were in 20% of the total number of wheat fields, Also noted are the
 

different average field sizes between the Finney and Ellis ITS's and
 

the fact that the average size of wheat fields was greater than that
 

of other fields.
 

The distributions of field sizes in the Finney and Ellis ITS's in
 

Kansas are such that AI's should have no difficulty selecting a suffi­

cient number of training fields and training pixels, although as noted
 

above 60% of the individual wheat fields will not be sampled. The
 

problem of finding sufficient training data could become severe in
 

areas where average field sizes are smaller and/or field shapes tend
 

to be long and narrow rather than more like squares. Planting patterns
 

(i.e., field size and shape distributions) and field-center pixel
 

availability in other areas of interest to LACIE should be examined.
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4 

LANDSAT SIGNAL STATISTICS AND THEIR RELATIONSHIP
 
TO AGRONOMIC FACTORS
 

Having determined the major agronomic differences between winter
 

wheat fields in the intensive test sites, attention was directed toward
 

determining whether or not spectral manifestations of those or other
 

differences existed in Landsat signals. First, signal statistics were
 

extracted from each individual field of sufficient size in two Kansas
 

intensive test sites and analyzed, as discussed in Sec. 4.1. Then,
 

multispectral clustering procedures were applied, as described in
 

Sec. 	4.2. The results are discussed in Sec. 4.3.
 

4.1 	ANALYSIS OF LANDSAT SIGNAL STATISTICS FROM INDIVIDUAL FIELD
 
CENTERS
 

Signal statistics were extracted from Landsat data for every field
 

for which field-center pixels could be identified. Such individual
 

'field signatures' were selected for the Finney 26 May 74 and Ellis
 

12 June 74 data sets.
 

A total of 57 wheat fields and 161 other fields were analyzed
 

for the 5x6-mi Finney ITS. Ellipse plots were made for various pairs
 

of Landsat bands for three groups of fields -- those with 1-4 pixels,
 

those with 5-12 pixels, and those with 13 or more pixels. The plots
 

of Channels 3 vs 2 (Landsat Bands 6 vs 5, i.e., 0.7-0.8 pm vs 0,6-0.7
 

pm) for wheat are presented in Fig. 6(a), (b), and (c). Each ellipse

2
 

represents the contour for a X value of 1.0, i.e., approximately 40%
 

of the pixels in the distribution would fall within the ellipse in the
 

two-dimensional case. The major concentration of wheat for each set
 

of pixel sizes is in the same spectral location on these graphs; how­

ever, some small and large fields have ellipses with larger Channel 3
 

values than the middle-sized fields.
 

In the Ellis ITS, which was smaller (only 3x3 mi), statistics
 

were extracted for a total of 25 wheat fields and 32 other fields.
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These wheat signatures were more tightly bunched spectrally than the
 

Finney fields and had a slightly different spectral location, as shown
 

in Fig. 6(d).
 

Next, a computer analysis was performed on the statistics from the
 

38 wheat and 105 "other" fields in the Finney ITS which had five or more
 

field-center pixels. To examine the spectral similarities and dissimi­

larities of these fields, a new signature-combination program, GROUP,
 

was employed [7]. First, it was necessary to reduce the number of indi­

vidual field signatures to a practical level, so the cluster-combining
 

feature of the ERIM data clustering program [8] was applied to each
 

major ground-truth class of fields. (This program computes the Maha­

lanobis distance between signatures as the combining criterion.) A
 

total of 34 individual or combined field signatures (11 wheat and 23
 

other) were developed to input to program GROUP. Program GROUP suc­

cessively combines the pair of remaining signatures which best satis­

fies a user-specified weighting of rankings according to five criteria:
 

(1) resultant combined determinant, (2) resultant combined trace, (3)
 

the between-signature Bhattacharyya distance, (4) between-signature
 

probability of misclassification, and (5) resultant average pairwise
 

probability of misclassification between the classes wheat and other.
 

For the results presented here, the weightings applied were 1, 1, 1, 0,
 

and 3, respectively, for the five criteria, giving greatest weight to
 

the probability of misclassification between wheat and other.
 

Fig. 7(a) displays ellipse plots of the 34 Finney combined signa­

tures which were the input groups to program GROUP; the plots again are
 

for Channels 3 vs 2. Ellis signature groups are shown in Fig. 7(b).
 

From the spectral standpoint, the Finney wheat groups exhibit substan­

tial variety while, for the most part, being distinct from the other
 

signatures. Therefore, further analysis was performed to see if these
 

groups could be characterized according to agricultural characteristics
 

of the fields which made them up.
 

The makeup of the 11 Finney wheat groups is summarized in Table 6.
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TABLE 6. CHARACTERISTICS OF WHEAT SIGNATURE GROUPS, FINNEY 26 MAY
 

NO. FIELDS, BY VARIETY
WHEAT 

GROUP NO. OF NO. OF ti --- I cO m -k Q
0 0) 0 0 0D cl 

NUMBER PIXELS- FIELDS c - c - - . 4 IRRIGATED" FERTILIZED 

1 186 13 1 12 13/13 9/13 

2 53 3 2 1 3/3 3/3 

3 113 5 1 2 1 1 5/5 5/5 

4 43 4 4 4/4 4/4
 

5' 8 1 1 0/1 0/1 

6 11 2 1 1 2/2 2/2 

7 31 3 1 1 1 3/3 2/3 

8 31 2 1 1 2/2 1/2 

9 15 1 1 i/ 1/1 

10 122 3 2 1 0/3 0/3 

11 52 1 1 1/1 0/1 
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Three of these groups contain only one field, while the largest (Group
 

1) contains 13. It is interesting to note that the non-irrigated fields
 

are all in Groups 5 or 10. When program GROUP was used to successively
 

combine wheat groups until just one average group remained, Groups 5
 

and 10 were paired before they were combined with any others. The full 

combination tree for the 11 wheat groups is presented in Fig. -8. 

Spectrally, it can be seen in Fig. 9 that Groups 5 and 10 have 

among the highest Channel 2 (0.6 - 0.7 um) signals of the wheats and 

among the lowest Channel 3 (0.7 - 0.8 um) signals. This would indicate 

advanced growth stage, dryness, and/or more exposed soil, all compati­

ble with a non-irrigated condition.
 

At the other extreme are Groups 8 and 9 which spectrally appear
 

to be immature and still green, 9 more so than 8. In fact, their
 

signals in the "green" channel, Channel 1 (0.5 - 0.6 pm), were found
 

to be relatively greater than for the other wheats. Group 6 appears
 

to be a little less green and more senescent than Groups 8 and 9, with
 

Group 3 closer matching the remaining groups.
 

There is an indication of correlation between immaturity or
 

greenness and variety, although one cannot be completely definite
 

from this example. That is, two of the three fields in Groups 8 and
 

9 are Variety 409 (Bison) and the other field of this variety is in
 

Group 3. The third field in Groups 8 and 9 is Variety 424 (Eagle
 

(Scout)) and two of the other three fields of this variety were found
 

in Groups 6 and 3. It also is of interest to see that 16 of the 20
 

fields of the most common variety (407, Satanta) are found in Groups 1
 

and 4, along with only one field of another variety. The fields of
 

Variety 402 (Scout) tend to be lighter in both Bands 2 and 3, compared
 

to Variety 407 (Satanta).
 

Another factor which should be considered in this analysis of
 

wheat spectral characteristics and agronomic factors is the spatial
 

distribution of the features and characteristics. Fig. 10 presents
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maps of the wheat fields analyzed in the Finney ITS. Part (a) indi­

cates the spectral group to which each field was assigned, while Part
 

(b) indicates the wheat variety for each field, and Part (c) the irri­

gation and fertilization practices. Some patterns are evident. The
 

non-irrigated fields found in spectral Groups 5 and 10 are in the
 

upper righthand corner. The greener fields of spectral Groups 8 and
 

9 are just to the left and below the site center and the fields of the
 

other green-tending groups (3 and 6) extend from there up to the upper
 

lefthand corner. It is along this swath and the non-irrigated fields
 

in the upper right where varieties other than the most common 407
 

(Satanta) are planted (See Fig. 10(b)). There was no clear associa­

tion of these planting patterns with soil maps for the area.
 

The spectral pattern found for wheat in the Ellis ITS differs,
 

from that just discussed for the Finney ITS, referring again to Pig. 6.
 

There are at least two possible explanations for these differences.
 

One reason is the 18-day interval between acquisition dates, allowing
 

the Ellis wheat fields additional time to senesce or ripen. Second,
 

the Ellis fields were not irrigated and were predominantly of the
 

Scout variety which exhibited different spectral characteristics than
 

the majority of the Finney fields which were irrigated and of the
 

Satanta variety. In this regard, the fields of Ellis are more typical
 

of those in the State of Kansas than are the fields of Finney. Affect­

ing the overall patterns in the two sites are the atmospheric condi­

tions at the times of acquisition which could have been different.
 

A major observation that can be made regarding the preceding
 

analysis of wheat signatures is that, in general, the variability of
 

Landsat signals is greater between fields than within fields. Two
 

main sources of this between-field variability were, determined for the
 

data sets analyzed in the Finney ITS. First, irrigation, or the lack
 

of it, was definitely correlated with the observed spectral responses.
 

Second, spectral differences could be associated with wheat variety
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on the site. Variety 409 (Bison) was greenest, 407 (Satanta) was
 

darkest, and 402 (Scout) was lighter than 407. These observations
 

were checked against the experience and knowledge of USDA personnel
 

at the USDA Agricultural Experiment Station near Garden City, Kansas,,
 

and were found to be consistent. The Bison variety is the slowest to
 

mature of the varieties planted in the area, Satanta has a dense canopy
 

with dark leaf color, and Scout tends to be lighter with spotted or
 

streaky leaf coloration. Both the planting density and the actual
 

density of wheat on irrigated fields is greater than that on non­

irrigated fields. For example, row spacing tends to be greater on
 

the non-irrigated fields.
 

Further analyses are needed to better identify and establish more
 

quantitative relationships between agricultural and spectral charac­

teristics of wheat fields. Once field measurement data become availa­

ble, they should form a major source for such analyses. The modeling
 

capability and results described in Sec. 6 can provide a complementary
 

analysis data base and an analysis tool.
 

4.2 MULTISPECTRAL DATA CLUSTERING ANALYSES
 

In the preceding section, the signal statistics analyzed were
 

generated using pixels from spatially distinctive groups, i.e., from
 

the centers of individual fields. Another mode of spectral data
 

analysis, called clustering, associates pixels according to their
 

spectral similarity and generates signal statistics or signatures from
 

the members of the resultant clusters. Two different modes of cluster­

ing procedures that were used are (a) supervised clustering, in which
 

the true class of each pixel is known and labels are assigned and used
 

in the calculations, i.e., each cluster can contain pixels of only One
 

labeled class, and (b) unsupervised clustering, in which no prior
 

information regarding the true class is used.
 

Supervised clustering of the field-center pixels in the Finney
 

26 May 74 data set was performed to provide results that could be
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directly compared with the individual-field results of Sec. 4.1.
 

Next, unsupervised clustering was performed on those pixels which
 

included field boundaries, i.e., those which contained mixtures-of
 

two or more ground covers. Finally, unsupervised clustering was per­

formed on all pixels in the segment.
 

In addition to providing additional insight into the spectral
 

character and variability of Landsat data from the Finney ITS, the
 

results of these clustering procedures were used in the analysis dis­

cussed in Sec. 5 of the influence of the quantity of training data on
 

recognition performance.
 

The clustering algorithm employed [8] forms an estimate of the
 

spectral distributions in the scene by using multivariate normal dis­

tributions with diagonal variance-covariance matrices as basis ele­

ments. Pixel assignments are made using a quadratic decision rule,
 

allowing for different variances in the different channels. A new
 

cluster is formed when the current pixel is not within a threshold
 

distance from one of the previously formed clusters.
 

In order to efficiently carry out the separate clusterings of
 

field-center and boundary pixels, a feature was added to the basic
 

clustering program to enable it to readily distinguish between various
 

groups of pixels. In essence, it was the capability to extract and
 

use, for control, information contained in channels added to the nor­

mal data channels. For the analyses here, three additional channels
 

were created using field polygon cards describing the vertices of each
 

field in the site; they were: (1) a fifth channel containing the field
 

number from the ground truth forms, (2) a sixth channel containing the
 

ground truth crop code, and (3) a seventh channel giving the distance,
 

in pixel units, of each pixel center from the nearest boundary of the
 

field within which it was located.
 

This use of additional channels is an extension of their develop­

ment and previous uses which, at ERIM, began with the creation of new
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data features which were linear combinations of the original data
 

channels [9]. The introduction of polygonal field coordinate descrip­

tors and boundary inset parameters was done to facilitate analyses of
 

Landsat data and the accurate identification of field-center pixels
 

for training and evaluation of recognition performance [5]; procedures
 

employing them were used extensively in the CITARS project [6] and have
 

since been refined. These and the feature described in the preceding
 

paragraph have recently been incorporated as an integral part of the
 

ERIM PROtotype Classification And Mensuration System (PROCANS) [10]
 

and used by other tasks of this contract [7,12].
 

The three specific spectral cluster analyses carried out on the
 

Finney 26 May 74 data set were as follows:
 

(1) All pixels inset by 1.5 or more pixel units, as designated
 

in Channel 7, were defined to be single-class field-center pixels and
 

were clustered in a supervised fashion. Using the crop code informa­

tion in Channel 6 as labels, wheat pixels were clustered only with
 

other wheat pixels and all 'other' crop pixels were clustered among
 

themselves. Fig. 11(c) displays ellipse plots for Landsat Channels 3
 

vs. 2 for the resultant 47 clusters.
 

(2) All pixels within 0.5 or less pixel units from the nearest
 

boundary were included in the set of multiclass boundary pixels
 

clustered in an unsupervised fashion. The resultant clusters are
 

displayed in Fig. 11(b).
 

(3) All pixels within the 5x6-ii Finney ITS were also clustered
 

in an unsupervised fashion, with results as shown in Fig. 11(a).
 

Several interesting points can be observed in these cluster plots.
 

The clusters formed from the whole area quite completely fill a tri­

angular region of spectral space in Fig. 11(a). However, the field­

center clusters form more of a "V" shaped pattern in which both ground*
 

truth information here and past experience have shown that bare soil
 

42
 



00 	 £ 

003 (36 

h 
C000W 

LE 	 10Q2 

(a) Finney Whole Area Clusters 


8 	 0 

,th ® 	" "'I 


8N
 
SWheat 

0 Other 

(c) Finney Field-Center Clusters 

(l,5-Pixel Inset) 


(3 (3e0 

0 o® 
0 

(b) Finney Boundary Clusters
 
(L 0.5 Pixel from Boundaries)
 

(@ () 

(0) 	 Boundary 

0 Field Center 

(d) Comparison of Field-Center
 
and Boundary Clusters
 

'FIGURE 11. COMPARISON OF DATA CLUSTERING RESULTS FOR THE FINNEY
 
KANSAS ITS,.26 MAY 74
 

43
 



FORMERLY WILLOW RUN LABORATORIES THE UNIVERSITY OF MICHIGAN 

fields tend to lie along the righthand arm of the "V", water and other
 

"dark" scene elements at its apex, and healthy green vegetation at the
 

top of the lefthand arm. From Fig. 11(b), it can be seen that the
 

upper center portion of the "V" is filled primarily by clusters of
 

the boundary pixels. For example, signals representing mixtures of
 

a healthy green crop (such as alfalfa) and bare soil would fall in
 

this region.
 

Finer distinctions can be drawn between the field-center and
 

boundary pixel clusters when their cluster plots are overlaid. Fig.
 

11(d) displays the field-center clusters as open ellipses and the
 

boundary clusters as shaded ellipses. Note how the boundary pixel
 

clusters tend to fall in the spectral space between field-center
 

clusters.
 

4.3 DISCUSSION
 

Upon comparing the field-center clusters of Fig. 11(c) with the
 

individual field signatures of Fig. 6 and Fig, 7 (the latter of which
 

includes some combining of field signatures), the earlier conclusion
 

that between-field spectral differences for wheat generally are greater
 

than within-field differences is confirmed for the Finney 26 May 74
 

data. Obviously when there is just one other class, between-field
 

differences predominate in that class as well,
 

An important result of the separate clusterings of field-center
 

and boundary pixels was the verification of different spectral patterns
 

in the two cases. First, spectral features were found among the boun­

dary pixels which did not exist within the field-centers. Second, the
 

p pixel clusters usually were between 

the field-center clusters.
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5 

INFLUENCE OF TRAINING DATA AMOUNT ON RECOGNITION PERFORMANCE 

Multispectral signatures used in recognition processing are
 

intended to describe, in an adequate statistical fashion, the charac­

teristics of remote sensor signals from the particular scene classes
 

they represent. More than one signature may be needed for an indi­

vidual class, and signatures for all classes which may become confused
 

with the classes of interest should be included in the set used for
 

processing. The usual assumption made is that the signal distributions
 

for classes or subclasses are sufficiently described by multivariate
 

normal (Gaussian) distributions. One of the major problems faced in
 

the training process is that of determining how many fields should be
 

selected for use in training to establish the signatures. This prob­

lem cannot readily be addressed separately from considerations of both
 

the spectral characteristics of the relevant scene classes and the
 

amount of information available and procedures used to select the
 

training fields.
 

If the-scene classes are relatively homogeneous within and between
 

fields, the sampling approach can be much simpler and require fewer
 

samples to adequately describe the signature means and dispersion
 

volumes than for a scene with non-homogeneous classes. The preceding
 

sections have shown that wheat fields had widely differing spectral
 

characteristics in the Finney ITS on 26 May 74, due to differing varie­

ties, maturation stages, and irrigation practices. These variations
 

would not be satisfactorily represented by a single signature for wheat,
 

necessitating sub-class signatures to describe the various modes,
 

The procedure by which training fields are identified also enters
 

in. If, for example, one were to ask a ground observer to select fields
 

at random for identification, the number of fields required to obtain
 

representatives of all modes would be much-larger than if the observer
 

were asked to obtain a certain number from each combination of the key
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factors affecting spectral response, such as irrigation practice and
 

variety. In LACIE, there are no ground observers to provide identifi­

cation information, except for development and evaluation purposes.
 

Thus, the manner in which Al's (Analyst-Interpreters) operate must be
 

considered. Since AI's use Landsat imagery which has inherent spectral
 

characteristics they can and do make use of these characteristics in
 

selecting training fields.
 

5.1 APPROACH
 

The previously described analyses of wheat populations in the
 

Finney, Kansas, ITS were made largely in support of the analysis,
 

reported in this section, of the effects of varied sample size on
 

recognition performance.
 

Two sampling parameters are of concern in LACIE: (1) the number
 

of fields chosen for training and (2) the total number of pixels
 

chosen. Our best information as to the LACIE AI procedures and con­

straints current at the time this analysis was started was used as
 

a guide in devising and implementing the-analysis. Al selection
 

of the eight or ten most different spectral classes in a scene was
 

simulated through the spectral cluster analysis and subsequent group­

ing of spectrally similar clusters to reduce the number of spectral
 

classes to four wheat and four "other". Each field in the site was
 

assigned to one of these eight groups, by majority vote of a "baseline"
 

classification of its pixels.
 

Training fields then were selected from within each group by
 

random draws made with probability of selection proportional to field
 
- st .e-Tthreeciarrerent data selection rules, resulting in different
 

quantities of training data (i.e., different numbers of fields and/or
 

pixels), were specified and used. Three different draws were made
 

using each rule. The individual signatures previously extracted for
 

the selected fields in each group were combined with equal weights to
 

form signatures for use in recognition.
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Nine separate recognition runs were made using the resultant
 

signature sets. Recognition performance was evaluated with regard to
 

the accuracy of both classification of field-center pixels and the
 

estimated proportion of wheat in the site. The nine sets of results
 

were compared to one another and to the baseline result. The baseline
 

result was obtained by using all available (at a 1.5-pixel inset) data
 

for training and establishing a less constraining number of recognition
 

signatures (seven wheat and ten other).
 

5.2 SIMULATION OF VARIOUS AT TRAINING DATA SELECTION RULES
 

In choosing representative training statistics for LACIE segments,
 

the AT has at his or her disposal multitemporal false color imagery
 

of the test site of interest. The number of distinguishable classes
 

present is determined first, simply by identifying and distinguishing
 

colors that are visible to the eye. Then each color class is photo­

'
 interpreted to be 'wheat' or 'other . From each class, then, enough
 

fields are delineated to meet minimum requirements on the number of
 

fields and/or number of pixels. The minimum requirements for 'wheat'
 

color classes are more stringent than for 'other' color classes.
 

The data clustering and cluster combination procedures previously
 

described in Sec. 4 were used as a substitute for the AX's determina­

tion of spectral classes. Initially, the 47 clusters shown in Fig.
 

12(a) were generated, far more than the number of color classes that
 

could be distinguished by an AT. These 47 were reduced to the inter­

mediate eleven wheat and 23 other clusters shown in Fig. 12(b), by
 

clustering as previously discussed. A further reduction in their num­

ber was made by grouping clusters until the four wheat signatures
 

shown in Fig. 12(c) resulted, and the remaining other signatures were
 

reduced to the four others shown in Fig. 12(c).
 

Each field of five or more pixels was then assigned to one of
 

the eight spectral groups, to enable subsequent simulation of random
 

selections of training data within the 'distinguishable color classes'.
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This assignment was accomplished simply according to how the individual
 

pixels within the given field were classified in a baseline classifica­

tion run made using 17 signatures (See Fig. 12(d)). Each of the 17
 

signatures was associated with one of the eight spectral classes, and
 

the predominant class recognized within a field determined the class
 

label assigned to it.
 

Training fields for each of the eight classes were chosen by a
 

random sampling procedure with probability proportional to field size
 

(i.e., number of field-center pixels). This sampling procedure reflects
 

our expectation that the Al would be more likely to select the larger
 

fields because they would be easier to locate and identify and would
 

contribute a greater number of training pixels to the total requirement.
 

Three sampling rules were specified with resultant sample size as
 

the parameter being varied. The three rules generated small, medium
 

(the one most similar to the AI implemented requirements), and large
 

sample sizes. The three rules incorporated the following minimum
 

requirements in field and pixel selection:
 

Rule A. 	Small Number: One field per subclass, with extra
 
field(s) chosen if required to obtain a minimum of
 
80 pixels for wheat, 120 pixels for other, and at
 
least five pixels per subclass.
 

Rule B. 	Medium Number (Most LACIE-Like): Enough fields for
 
160 wheat and 240 other pixels, with at least five
 
pixels per subclass.
 

Rule C. 	Large Number: Enough fields for 320 wheat and 430
 
other pixels,, again with at least five pixels per
 
subclass.
 

Three draws of training fields for each rule were made with proba­

bility of selection proportional to field size. Table 7 summarizes
 

the selection results. Typically, the percentage of total wheat pixels
 

(and fields) chosen for training was higher than the percentage of
 

other pixels (and fields) chosen, usually more than 2:1 in favor of
 

wheat. Hence, the wheat crop tended to be more fully described than
 

the other crops.
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TABLE 7. SU4iARY OF SELECTION RESULTS 

WHEAT OTHER 

NO. OF 
PIXELS 

PERCENT 
OF 

TOTAL 
WHEAT 
PIXELS 

NO. OF 
FIELDS 

PERCENT 
OF 

TOTAL 
WHEAT 
FIELDS 

NO.. OF, 
PIXELS 

PERCENT 
OF 

TOTAL 
OTHER 
PIXELS 

NO. OF 
FIELDS 

PERCENT 
OF 
TOTAL 
OTHER 
FIELDS 

RULE A, SMALL: DRAW 1 

DRAW 2 

DRAW 3 

80 

83 

93 

118 

12.2 

13,7 

4 

4 

4 

7.3 

7.3 

7.3 

180 

192 

125 

9.2 

9.8 

6.4 

6 

6 

6 

3.7 

3.7 

3.7 

RULE B, MEDIUM: DRAW 1 174 25.6 9 16.4 256 13.0 8 4.9 

DRAW 2 

DRAW 3 

202 

185 

29.7 

27.2 

6 

6 

10.9 

10.9 

251 

286 

12.8 

14.5 

8 

8 

4.9 

4.9 

RULE C, LARGE: DRAW I 

DRAW 2 

DRAW 3 

321 

337 

343 

47.2 

49.6 

50.4 

14 

21 

12 

25.5 

38.2 

21.8 

493 

497 

505 

25.1 

25J 

25.7 

20 

23 

20 

12.3 

14.1 

12.3 

ALL FIELD CENTERS: 680 100.0 55 100.0 1967 100.0 163 100.0 
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Once training fields were selected, a combined signature was
 

made for each subclass selection of fields, with equal weights being
 

given to the training fields. These eight signatures were then used
 

for recognition. The results from nine recognition runs, one for each
 

of three draws of the three rules, were compared and analyzed. The
 

analysis centered on examinations of (1) field-center classification
 

accuracy and (2) whole area proportion estimation. Before describing
 

the results of these runs, the recognition signature patterns will be
 

examined.
 

5.3 EXAMINATION OF THE SELECTED SIGNATURE SETS
 

One would expect that the variability between corresponding sig­

natures of the three draws within a rule would diminish as the sample
 

size became larger. Fig. 13 illustrates that this was found to be
 

the case; signatures from two draws are displayed for each of the
 

three selection rules, again with Channel 3 plotted versus Channel 2.
 

Another observation that can be made is that the wheat signatures
 

become more robust as the sample size increases. The wheat signatures
 

in Fig. 13(f) compare well with the wheat signatures in Fig. 12, and
 

Fig. 13(e) is quite similar. The wheat signal space is more fully
 

represented here than in the other cases with smaller sample sizes.
 

Comparing draws within each rule, one finds that in Rule A (com­

pare Figs. 13(a) and 13(b)) both means and variances for a given spec­

tral class differ dramatically from draw to draw. The conclusion drawn
 

is that the sample size of Rule A was insufficient to accurately esti­

mate the mean and variance-covariance characteristics of each class.
 

The signatures displayed for Rule B (compare Figs. 13(c) and 13(d))
 

indicate that both means and variances for corresponding signatures
 

also differ from one another, but to a lesser degree than those of
 

Rule A. Finally, the ellipses drawn using Rule-C-and pictured in
 

Figs. 13(e) and 13(f) appear to estimate mean and variances of their
 

corresponding classes with greater consistency than do those of the
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FIGURE 13. INFLUENCE OF TRAINING SAMPLE SIZE ON SIGNATURE PATTERNS
 

52
 



SIM
 
FORMERLY WILLOW RUN LASORATORIES THE UNIVERSTY OF MICHIGAN 

other selection rules. One would expect these facts to be reflected
 

in the recognition results, i.e., results corresponding to Rule A
 

should vary more between draws than those generated from Rule B and,
 

likewise, those from Rule C should be even less variable.
 

This between-rule analysis suggests already that the Rule A selec­

tion criterion is inadequate. Two additional observations can be made,.
 

First of all, the boundary clusters described earlier (Sec. 4.2) that
 

T
fill the center portion of the 'V pattern in the signal space are not
 

usually described by these signatures. This is natural since field­

center spectral classes were not found in that vicinity. A related
 

observation is that four subclasses for 'other' are probably too few
 

to adequately describe the spectral characteristics of 'other' to the
 

same degree of accuracy that the four wheat subclasses describe wheat
 

signal distributions.
 

5.4 RECOGNITION RESULTS
 

Recognition runs were made using the ERIM linear decision rule [11]
 

with a decision threshold corresponding to a 0.001 probability of false
 

rejection (for normal distributions). Classification results are
 

presented in Table 8 for field-center pixels defined by three
 

different insets from the field boundaries. Both individual results
 

for each draw and average results for each rule are included. The
 

corresponding wheat proportion estimates for the entire site are pre­

sented in Table 9.
 

The field-center results indicate a sharp increase in the correct
 

classification accuracy for wheat pixels when increased amounts of
 

training data were used. With the 1.5-pixel inset, for example, the
 

'correct percentage increased from 74.0% with signatures based on a
 

small amount of training data (Rule A) to 91.7% with the medium amount
 

(Rule B). The greater amount of training data with Rule C produced
 

another increase by 5.2 percentage points to 96.9% correct. This trend
 

is repeated for pixel insets of both 1.0 and 0.5 pixel. Although not
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1 TABLE 8. RESULTS OF TRAINING DATA SELECTION TEST, 

FINNEY 26 MAY 74, FIELD-CENTER RESULTS 

TRAINING 
DATA 

SELECTION 

Rule Draw 

CORRECT CLASSIFICATION PERCENTAGE FOR FIELD-CENTER PIXELS WITH: 

1.5-PIXEL INSET 1.0-PIXEL INSET 0.5-PIXEL INSET 

Conditional Conditional Conditional 
Wheat Other Average* Wheat Other Average* Wheat Other Average* 

A 1 69.9 93.7 81.8 65.4 92.8 79.1 59.4 92.6 76.0 

2 

3 

Avg. 

78.2 

73.8 

F4.095 

97.3 

96.4 

.8 

87.8 

85.1 

r84.9 

74.9 

73.1 

17.1 

96.8 

94.6 

F94.7 

85.8 

83.8 

82.9 

67.4 

68.9 

65. 

96.2 

93.8 

942 

81.8 

81,3 

79.7] 

B 1 

2 

3 

Avg. 

83.5 

95.3 

96.3 

F 

96.1 

95.6 

91.7 

11794.51 

89.8 

95.5 

94.0 

931! 

80.7 

93.8 

94.2 

F89.61 

94,9 

94.1 

89.4 

87.8 

93.9 

91.8 

78.0 

88.9 

88.3 

825.1 

93.9 

93.3 

88.6 

91.9 

85.9 

91.1 

88.4 

8. 

r 

C 1 

2 

3 

Avg, 

96.3 

98.9 

95.6 

96. qF_ 

96.7 

95.6 

96.4 

96.3 

.1. 

96.5 

97.3 

96.0 

96696536 

95.2 

98.1 

94.6 

[262o 

95.6 

93,7 

94.3 

9. 

95.4 

95.9 

95.5 

953 

91.6 

95.3 

90.8 

92.6 

94.5 

91.9 

93.3 

93.23192.9 

93.0 

93.6 

92.1 

0 

z 
"The conditional average is the average of the correct classifications of wheat
 
(given wheat) and other (given other).
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TABLE 9. RESULTS OF TRAINING DATA SELECTION TEST, 
FINNEY 26 MAY 74, WHEAT PROPORTION ESTIMATES 

WHEAT PROPORTION
 
TRAINING DATA ESTIMATE 

GROUND TRUTH (30 SECTIONS)
 

BASELINE RUN - ALL DATA
 

RULE A, SMALL: DRAW 1 .181 

DRAW 2 .177 

DRAW 3 .217 

AVERAGE 

RULE B, MEDIUM: DRAW 1 .244 

DRAW 2 .268 

DRAW 3 .288 

AVERAGE 

RULE C, LARGE: DRAW 1 .288 

DRAW 2 .327 

DRAW 3 .279 

AVERAGE 
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shown explicitly in the table, most of the wheat pixels .whichwere not
 

correctly classified were thresholded, i.e., not assigned,to any one of
 

the eight signatures, and were therefore counted as 'other'. As more
 

training fields were used, the descriptions of the wheat signal popu­

lation improved, the wheat signatures became more robust, and more
 

wheat pixels were correctly classified. Correct classifications of
 

'other' field-center pixels were relatively independent of the amount
 

of training data used. Field-center accuracy also was greatest when
 

the most stringent criterion (1.5-pixel inset) was employed to define
 

the field centers. In other words, the closer the field boundaries
 

were approached, the less accurate was the field-center classification
 

performance.
 

The proportion of wheat recognized in the entire site also
 

increased as the amount of training data was increased (See Table 9).
 

However, it went from an underestimate of the wheat proportion with
 

the small amount of training data to an overestimate with the large
 

amount of training data. Possible explanations for these proportion
 

estimation results are explored in the next section.
 

5.5 ANALYSIS OF WHEAT PROPORTION ESTIMATES
 

Three analyses of the proportion estimation results and possible
 

explanations of them will be presented in this section. First, on a
 

site-wide basis, the relative contributions of field-center and non­

field-center pixels to the estimated proportions will be examined.
 

Next, section-by-section comparisons will be made between true and
 

estimated proportions. Finally, the crops present in those sections
 

where wheat proportion estimates were most in error will be analyzed.
 

5.5.1 	COMPARISON OF WHEAT PROPORTION ESTIMATES WITHIN AND
 

OUTSIDE FIELD CENTERS
 

The wheat proportion estimates were based on classification
 

results for all pixels in the site, boundary as well as field-center
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pixels. However, to gain insight into the observed proportion esti-.
 

mation performance, values were tabulated separately for pixels within
 

and outside field centers. Table 10 presents such comparisons for the
 

three different pixel insets. Note that less than 2/3 (0.159/0.251)
 

of the wheat actually lies within field centers with the minimal 0.5­

pixel inset, approximately 1/3 with the 1.0-pixel inset, and about 1/6
 

with 	the 1.5-pixel inset.
 

The numbers in Table 10 were computed using the following equation:
 

- AWFC * NWFc + (I - AOFC) * NOFC
 

PFC NTOTAL
 

where
 

PFG 	 is the contribution from field centers to the estimate
 
of wheat.
 

Aw,FC is the wheat field-center classification accuracy
 

NWFC is the number of field-center wheat pixels
 

AO,FC is the 'other' field-center classification accuracy
 

NOFC is the number of field-center 'other' pixels
 

NTOTAL is the total number of pixels in the scene
 

Upon comparing the true proportions of wheat within and outside
 

field centers to the corresponding estimated proportions, one first
 

finds that the absolute discrepancies are greatest, in most instances,
 

for pixels that lie outside field centers. Second, proportion estimates
 

for pixels outside field centers are more sensitive to the training
 

data selection procedure than are those within field centers. For
 

example, absolute differences between proportion estimates with Rules
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TABLE 10. COMPARISON OF WHEAT PROPORTION ESTIMATION ACCURACY WITHIN AND OUTSIDE 
 L_.
 
FIELD CENTERS (FINNEY INTENSIVE TEST SITE, 26 MAY 74, 30 SECTIONS)
 

1.5-PIXEL INSET 1.0-PIXEL INSET 0.5-PIXEL INSET 0.0-PIXEL INSET 

WITHIN 
FIELD 
CENTERS 

OUTSIDE 
FIELD 
CENTERS 

WITHIN 
FIELD 
CENTERS 

OUTSIDE 
FIELD 

CENTERS 

WITHIN 
FIELD 
CENTERS 

OUTSIDE 
FIELD 

CENTERS 

FIELD 
CENTERS 

(ALL-PIXELS) 

GROUND TRUTH VALUES: 

(1) TOTAL NUMBER 
PIXELS 

OF 

(a) TOTAL 2,673 14,533 5,604 11,602 10,264 6,942 17,206 

(b) WHEAT 707 3,612 1,504 2,815 2,739 1,580 4,319 

(2) TRUE CONTRIBUTION 
TO WHEAT PROPOR-
TION IN SITE 0.041 0.210 0.087 0.164 0.159 0.092 0.251 

(TOTAL WHEAT = 

0.251) 

ESTIMATED PROPORTION 
OF WHEAT IN SITE, WITH 
TRAINING BY: 

RULE A (AVG)(Small) 0.035 0.157 0.075 0.117 0.129 0.063 0.192 

RULE B (AVG)(Medium) 0.044 0.223 0.095 0.172 0.171 0.096 0.267 

RULE C (AVG)(Large) 

BASELINE (All Field-
Center Data) 

0.044 

0.044 

0.254 

0.232 

0.097 

0.096 

0.201 

0.180 

0.177 

0.168 

0.121 

0.108 

0.298 

0.276 
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A and C are greater for non-field-center pixels, regardless of the
 

inset parameter and whether they were in the majority or minority of
 

pixels.
 

Fig. 14 graphically illustrates the data contained in Table 10.
 

Note that the case for field centers with a 0.0 inset is equivalent
 

to the total estimate of wheat in the scene. The series of illustra­

tions on either side of the graph indicate the component parts for
 

varying pixel insets. These plots clearly show that field-center
 

errors for Rules B and C and the baseline case are almost constant,
 

whereas the variation among boundary pixels is much greater. The
 

other observations drawn from Table 10 data also are clearly portrayed,
 

e.g., the greater magnitudes of errors among boundary pixels and the
 

underestimation with Rule A signatures.
 

5.5.2 SECTION-BY-SECTION ANALYSIS OF WHEAT PROPORTION ESTIMATES
 

Section-by-section wheat proportion estimates are compared in
 

Fig. 15 to the actual wheat proportions, as given in ground truth data.
 

Fig. 15(a) presents the baseline case, where all available field-center
 

pixels were used to establish signatures. Several sections are seen to
 

have significant overestimates of their wheat proportion, leading to
 

an overall section-by-section rms error of 0.053 and a small positive
 

bias in the overall wheat proportion estimate.
 

For examination in conjunction with the analysis of Fig. 15,
 

Fig. 16 displays both the section-by-section rms error and the entire­

site proportion-estimation bias for each signature set used in the
 

study. Average values are presented for each data selection rule, as
 

well as the values for each individual draw.
 

The section-by-section results for the three draws of training
 

fields using data selection Rules A, B, and C are presented in Figs.
 

15(b), (c), and (d), respectively. With Rule A, most sections were
 

underestimated and the rms errors were large (0.109 average for the
 

three draws). A few sections were overestimated and it is interesting
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True Proportion 

Estimate From
 
LANDSAT Data 

LOCATION OF DATA:
 

OUTSIDE
WITHIN 

FIELD CENTERSFIELD CENTERS 


0.30-

INSET
 
(Pixels): 

0.25 0.00. ­
H(All Data) INSET
 

P4 0.20­0 

z 

0.10 0.5-. 

01.0 
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 1. 5 ­
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TRAINING DATA SELECTION RULE 

FIGURE 14. RELATIVE CONTRIBUTIONS OF PIXELS WITHIN AND OUTSIDE
 

FIELD CENTERS TO WHEAT PROPORTION ESTIMATES;
FINNEY, 26 MAY 74 
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FIGURE 	15. SECTION-BY-SECTION CMPARISON OF ACTUAL WHEAT PROPORTIONS WITH THOSE ESTIMATED 

USING VARIOUS TRAINING DATA SELECTION RULES (30 Sections, Finney ITS, 26 May 74)
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to note that, in every case, these sections were also overestimated by
 

the baseline signature set and all draws using Rules B and C.
 

The pattern for Rule B is also variable, but the average rms error
 

is lower (0.083). The wheat proportion estimates for most sections
 

increased above their Rule A values, many approaching their true values
 

but a few (notably, Sections 8, 19, and 25) being grossly overestimated
 

for most of the draws. The average bias in proportion estimates for
 

the site were smaller for Rule B than for either Rule A or Rule C. If
 

it were not for the few sections with large overestimates, the site
 

proportion estimate would have been quite accurate with Rule B.
 

The results with increased amounts of training data (Rule C)
 

showed a greater tendency to overestimate the wheat proportion in each
 

section but the estimates were more consistent and, on the average,
 

their rms error was lower than for Rule A or B. The sections which
 

had large overestimates with Rule B were also overestimated by Rule C.
 

The wheat proportion bias was greater than for Rule B, presumably
 

because of the more robust nature of the wheat field signatures in
 

comparison to the limited scope of other class signatures.
 

5.5.3 ANALYSTS OF FOUR SECTIONS REPRESENTING EXTPEMES OF
 
PROPORTION ESTIMATTON BIAS
 

Several sections were identified in which the wheat proportion
 

was consistently overestimated by all signature sets. In addition,
 

there were some which tended to be underestimated, especially so for
 

Rule A. Four sections were selected for additional analysis to see if
 

reasons for such overestimates (Sections 19 and 25) and underestimates
 

(Sections 12 and 16) could be determined.
 

Table 11 presents acreages of the major crops in each of these
 

four sections. Also listed are the average wheat proportion biases for
 

the various rules, expressed as a percentage of the total section area.
 

Two pertinent observations are that: (1) relatively large acreage of
 

alfalfa and early-planted corn were found in Sections 19 and 25, where
 

63
 



TABLE 11. CROP DATA COMPILED FOR FOUR SECTIONS E)(fIBITING WHEAT
 
PROPORTION ESTIMATION BIASES
 

BIAS IN WHEAT PROPORTION ESTIMATE
 
(Expressed as Percent of Total
 

ACREAGE Section Area)
 

CORN CORN BARE AND
 
(April (May SUMMER
 

SECTION WHEAT ALFALFA Planting) Planting) FALLOW RULE A RULE B RULE C BASELINE
 

19 118.4 73.0 145.6 0.0 224.4 +5.8 +19.1 +10,5 +6.2
 

25 153.7 136.3 156.8 0.0 105.5 +8.1 +17.3 +18.5 +11.1
 

12 178.4 10.0 44.8 249.1 106.3 -17.9 -7.7 -1.5 -2.9 


rr
0 

C
z
r 
0
 

16 334.5 0.0 0.0 0.0 249.5 -39.2 -21.2 -10.4 -10.6
 -

Cz 
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wheat was overestimated, and (2) large acreages of bare soil, summer
 

fallow land, and/or late-planted corn were found in Sections 12 and 16,
 

where wheat was underestimated.
 

The significance of these observations and their implications for
 

multispectral recognition will be facilitated by reference to Sec. 4
 

in which the spectral characteristics of wheat and other signals were
 

examined, to Fig. 13 which displays many of the signatures used to
 

obtain the results being analyzed, and to Fig. 17 which displays the
 

spectral signatures obtained from large fields in the Finney ITS -­

wheat in Part (a), corn and grain sorghum in Part (b), and other crops
 

in Part (c).
 

Healthy green alfalfa fields produce Landsat signals that are
 

large in Channel 3 and small in Channel 2, as shown in Fig. 17(c).
 

Fields of bare soil or recently planted corn (and grain sorghum) pro­

duce signals falling along a line as shown in Fig. 17(b). Alfalfa
 

fields lie spectrally close to signals from immature wheat, the upper­

most of the four subclasses of wheat shown in Fig. 13. If an alfalfa
 

field were not as dense or vigorous as most, it might be misclassified
 

as wheat by the immature wheat signature. Another possibility is that
 

fields of bare soil or corn might lie adjacent to alfalfa fields and
 

pixels that include these boundaries would have mixture signals that
 

could appear more like wheat than like either of these or any other
 

crop signature. In most of the cases portrayed in Fig. 13, many pixels
 

falling in between the arms of the 'V' pattern would be classified as
 

wheat by the particular signature sets used.
 

Another possible source of wheat false alarms lies with corn
 

fields that are darker and fall spectrally near the lower left of the
 

distribution of corn field signatures (Fig. 17(b)). These fields are
 

close to the wheat subclass which represents the most senescent and/or
 

least dense, non-irrigated wheat fields. As can be seen in Fig. 13,
 

the signatures generated for the other classes often did not adequately
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FIGURE 17. FIELD SIGNATURE PLOTS FOR VARIOUS CROPS; 

FINNEY ITS, 26 MAY 74 
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represent this region of corn's spectral response. Upon checking the
 

individual corn fields in Sections 19 and 25, it was found that these
 

early-planted corn fields did indeed have spectral signatures in this
 

region.
 

Thus, plausible reasons for the large overestimates of wheat in
 

Sections 19 and 25 have been advanced, namely the presence of particular
 

multiclass boundary pixels and inadequate representation of all other­

crop subclasses. Turning now to the underestimated sections (12 and
 

16), note that the absence of alfalfa in significant amounts precludes
 

the existence of boundary pixels which would appear spectrally similar
 

to wheat. Also, at the other side of the wheat spectral region, there
 

was little or no early-planted corn to potentially be classified as
 

wheat.
 

5.6 DISCUSSION
 

A good start was made on examining the influence of the amount of
 

training data on winter wheat recognition performance. Additional
 

planned effort was postponed because emphasis was shifted to the simu­

lation modeling effort discussed in Sec. 6. However, useful results
 

were obtained which may have practical implications either for LACIE
 

operations or for further exploration in subsequent SR&T (Supporting
 

Research and Technology) investigations. The results of this study
 

and some of the procedures developed already have found applications
 

in other tasks on this contract. For example, they were useful in the
 

development of the training procedure used in the test and evaluation
 

task [7] andin the development of some of the computer-aided training
 

procedures [12].
 

The sampling,aspect of the training problem was examined for one
 

site and one time period. For more general applications,, multiple
 

time periods and multiple sites must be considered in the establishment
 

of training criteria. For example, in Sec. 4, substantial differences
 

in the spectral character of both wheat and other populations in the
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Finney and Ellis ITS's were observed. The LACIE training problem is
 

one of characterizing wheat and other spectral characteristics jointly
 

for several segments, with a minimum requirement on AI identifications.
 

The amount of data used for training was shown to definitely affect
 

both classification performance on field-center pixels and wheat pro­

portion estimation accuracy for the entire site. It also was shown
 

that boundary pixels contributed much of the bias in the proportion
 

estimates. One factor which should have been examined more fully and
 

which would affect the results in an undetermined manner is the effect
 

of varying the detection threshold in the decision algorithm. With
 

the fewest training fields (Rule A), the signatures tended to be com­

pact and about one-quarter of the scene pixels were thresholded. This
 

decreased to about one-sixth for Rule B and 6% for Rule C; only 3% of
 

pixels were thresholded with the baseline signature set. The use of
 

more and more training data reduced the importance of the particular
 

decision threshold level used.
 

The spectral sampling of wheat pixels was more complete than that
 

for other pixels. Perhaps twice as many other spectral classes should
 

have been defined. The choice of four was quite arbitrary, and the
 

results obtained indicated that it is important to adequately represent
 

the other signals as well as those for wheat.
 

The study was limited in that only one site at one time of year
 

was examined before the emphasis was shifted to other efforts. In
 

several ways though, the Finney site was a good first choice. Although
 

not typical of much of Kansas, because of its high percentage of irri­

gated fields, it nevertheless contained a variety of wheat fields which
 

pointed out several factors which affect wheat signatures and 'the need
 

to consider multimodal signatures. The'availability of a rather com­

plete set of ground truth data was very helpful in the analysis.
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Spectral two-channel displays of signatures and data were found
 

to be useful analysis tools and are recommended for use in LACIE pro­

cedures where analyst interaction is required.
 

The procedure of simply combining signatures from training fields
 

in each spectral 'color' class should be compared with a spectral data
 

clustering procedure, especially if small numbers of classes are
 

defined.
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6
 

THEORETICAL MODELING AND -ANALYSIS OF SEASONAL AND
 
UNITEMPORAL VARIATIONS IN WHEAT SIGNATURES
 

A need was recognized by NASA for an extensive and consistent set
 

of synthetic Landsat data values and associated radiance components,
 

for general use by members of the LACIE project team as well as this
 

specific investigation. Such data are of potential use in the develop­

ment 	of various remote sensing systems and information extraction tech­

niques and in solving specific problems of LACIE. Example uses and
 

benefits are those of enabling analysts to (1) assess the relative
 

importance of the variety of factors affecting signals, (2) gain insight
 

into the variability of training statistics in Landsat data, (3) improve
 

and extend analyses of field measurement data, (4) gain insight into
 

aspects of the signature extension problem and provide quantitative
 

data to aid in developing solutions such as haze correction algorithms,
 

(5) gain insight into the operation of alternative classification tech­

niques, such as the Delta Classifier [13], and (6) gain insight and
 

provide quantitative bases for developing data transformation procedures,
 

such 	as the tasseled-cap transformation [12].
 

6.1 	APPROACH
 

The capability required was that of simulating multispectral
 

scanner signals from wheat fields for a variety of ground and obser­

vation conditions and parameters. At this initial stage, it was impor­

tant to consider a wide range of conditions and generate a consistent
 

set of the simulated values. It was deemed desirable, since the basic
 

capability existed, to carry out calculations at a relatively fine
 

spectral interval, multiply by the relative spectral response functions
 

of Landsat and integrate over wavelength to obtain effective inband
 

values, rather than approximating these by values at a single wave­

length for each Landsat spectral band.
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Existing computer models developed at ERIM to compute vegetation
 

canopy bidirectional reflectance 	and atmospheric radiative transfer
 

characteristics were linked and a sensor submodel was added to form
 

the ERIM Multispectral System Simulation Model. Together, they pro­

vide a capability to compute synthetic inband radiance and data values
 

for a sensor (with specified characteristics and locations) viewing
 

specified surface reflectors (for which bidirectional reflectance
 

characteristics can be computed) through homogeneous, isotropic atmos­

pheric media of specified characteristics under specified solar illumi­

nation geometries (See Fig. 18).
 

Effective Landsat inband values were calculated for each of the
 

following three groups of quantities:
 

(1) Inband atmospheric effects, including values representing
 

(a) direct solar irradiance, (b) diffuse sky irradiance,
 

(c) path transmittance, and (d) path radiance.
 

(2) Inband reflectances, both (a) bidirectional reflectance for
 

reflection of direct solar radiation, and (b) diffuse reflec­

tance for reflection of indirect solar radiation scattered by
 

the atmosphere.
 

(3) Sensor inband radiances that combine the reflectance and
 

atmospheric effects calculations.
 

The equations used for the simulation are discussed in Sec. 6.2,
 

while Sec. 6.3 describes the crop canopy reflectance model and the
 

radiative transfer model for atmospheric effects. The former section
 

also presents the Landsat spectral characteristics which were simulated,
 

while the latter section presents the model parameters used in simu­

lating the signals arising from wheat fields at seven stages of growth
 

throughout the growing season and a variety of atmospheric conditions.
 

6.2 	 SIMULATION EQUATIONS AND SENSOR RESPONSE FUNCTIONS
 

The basic equation used for computing the spectral radiance L(X)
 

at 	the satellite is:
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RESPONSE 

SIMULATED SIGNALS 

FIGURE 18. FLOW DIAGRAM FOR SIMULATION MODEL CALCULATIONS
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X TX +LPath (7-ffs
Biirc + Eif 


S Direct Bidirec Diffuse pat (7)
 

where E X is the direct (solar) spectral irradiance,

Direct 

EDiffuse is the diffuse (sky) spectral irradiance, 

A 

PBidirect is the bidirectional spectral reflectance of 
the surface, relative to that of a perfect
 

Lambertian surface,
 

P is the Lambertian (i.e., diffuse) spectral
 
Diffuse reflectance of the surface,
 

A
 
T is the spectral transmittance of the atmosphere,
 

A
 
and LPath is the spectral path radiance.
 

These individual quantities also have varying degrees of dependence on
 

the geometry of the situation, with the radiance itself depending on
 

both the sun and view geometries. Of the spectral quantities in Eq.
 

(7), all were computed with the Turner Radiative Transfer Model [14],
 

except p c an Diffuse which were computed with the Suits'
 
ecpPBidirec Diandse
 

Canopy Reflectance Model [15]. Sec. 6.3 describes these models in
 

greater detail.
 

The effective inband radiance for*Landsat Band i was obtained by
 

integration, i.e.,
 

L. = Ri(X)L(X)dX (8) 

where R.(X) is the relative spectral response function for Band i.
 

The calculations were carried out with a spectral interval of 0.01 pm
 

and a summation of products to replace the continuous integration
 

indicated in Eq. (8). The Landsat spectral response curves [16]
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displayed in Fig. 19 were digitized at the stated intervals and used
 

in the simulation calculations.
 

To obtain simulated Landsat signals, V., one would multiply the
 

effective inband radiance values by band calibration factors, Ki,
 

i.e.,
 

V. = 	 K. L. (9)
1 	 11 

The calibration factors found in the ERTS (Landsat) Data Users Handbook
 

[16] represent pre-launch measurements for Landsat-1. Optical changes
 

are known to have taken place shortly after the launch of Landsat-l,
 

but accurate measures of their effects on system calibration are not
 

available. Since selected calculations with these standard factors
 

did not yield values which compare well with actual Landsat data, syn­

thetic Landsat data values were not generated for presentation in
 

either this report or the supplement. It is recommended that more
 

representative calibration factors be determined and applied to the
 

radiance values presented in this report. These new calibration factors
 

would be determined by correlating field measurement data, other data,
 

and calculated atmospheric effects and radiance data with Landsat data
 

values.
 

6.3 	DESCRIPTION OF MODELS AND MODEL PARAMETERS USED IN THE SIMULATION
 

Calculations of wheat canopy reflectances were made using the
 

reflectance model developed by Dr. Gwynn Suits of ERIM [15]. It was
 

used to compute two spectral quantities. The first was the bidirec­

tional reflectance of the canopy, expressed in dimensionless units
 

relative to the bidirectional reflectance (l/v) of a perfect Lambertian
 

(perfect diffuse) surface. This bidirectional reflectance applies to
 

a surface's reflection of direct sunlight toward the sensor. The
 

second quantity computed was the diffuse reflectance or, more precisely,
 

the hemispherical-directional reflectance, i.e., the fraction of
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FIGURE 19. LANDSAT RELATIVE SPECTRAL RESPONSE [16]
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incident radiation from a uniform hemispherical source (to approximate
 

diffuse sky irradiance) that is reflected into the view direction of
 

the sensor by a Lambertian surface.
 

The overall set of factors and levels used to generate the reflec­

tance and atmospheric quantities is presented in Table 12. The 21
 

wheat canopy structures simulated had physical characteristics as
 

summarized in Table 13. In addition, three soil reflectance spectra
 

obtained from Condit [18] were used in the calculations (See Fig. 20).
 

These correspond to his average soil reflectance spectrum and plus and
 

minus one standard deviation from it. View angles corresponding to
 

the nadir and +60 (toward each side of the Landsat track) were simu­

lated, as well as sun angles for 380 and 460N latitude for each time
 

period. A group of 63 different canopies, each viewed under six
 

different viewing and illumination geometries, was simulated for a
 

total of 378 cases.
 

The spectral characteristics (transmittance and reflectance) of
 

the various components of wheat (leaves, stems, and heads) were
 

obtained from samples collected in Finney Co., Kansas, by an ERIM
 

field team working under a Landsat follow-on contract (NAS5-22389 with
 

the NASA Goddard Space Flight Center, Greenbelt, Md.) and measured
 

with a laboratory instrument at ERIM. The structures assumed for the
 

various growth stages were based largely on companion measurements by
 

the ERIM field team, with reference being made to LACIE field measure­

ment data. The high density canopies would be found only for the most
 

healthy irrigated wheat fields in Kansas, while the more common, non­

irrigated wheat fields would most likely fall between the low density
 

and base density conditions.
 

Calculations of four-'atmospheric spectral properties were made
 

with the radiative transfer model, developed by Dr. Robert Turner of
 

ERIM [14], for sun positions and view geometries corresponding to
 

those used for the canopy reflectance calculations. The quantities
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TABLE 12. FACTORS AND LEVELS FOR SIMULATION
 

WHEAT CANOPY REFLECTANCE CALCULATIONS
 

NO. 
FACTOR LEVELS LEVELS 

Stage of Maturity 7 See Table 13 

Set of Spectral Properties 1 From ERIM 1975 Measurements 

Soil Reflectance 3 Condit Average and +1 Sigma 

Canopy Density 3 See Table 13 

Sun Positions 2 For Each Period, for 380 

and 46°N Latitude 

View Angles 3 Nadir, ±60 

ATMOSPHERIC FEATURE CALCULATIONS
 

NO.
 
FACTOR LEVELS LEVELS
 

Background Albedo Spectrum 3 Bare, Green, Brown
 

Haze Level 3 Hazy, Moderately Hazy,
 
Clear
 

Sun Positions 2 For Each Period, for 380
 
and 460N Latitude
 

°
 View Angles 3 Nadir, ±6
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TABLE 13. CHARACTERISTICS OF WINTER WHEAT CANOPIES 

CANOPY 

BASE 
NUMBER SIMULATION DATE STAGE OF GROWTH 

TOTAL 
PERCENT COVER, 

FOR DENSITY: 

LOW BASE HIGH 

GREEN LEAF 
AREA INDEX, 

FOR DENSITY: 

LOW BASE HIGH 

1 Mid November Emergent 3 14 25 0.10 0.52 1.04 

2 

3 

Mid April 

000Mid May 

Jointing 

Pre-heading 

(Boot) 

11 

40 

44 

79 

69 

96 

0.41 

1.03 

2.06 

3.13 

4.12 

6.26 

4 

5 

End May 

Early June 

Post-heading 
(Green) 

Senescing 

43 

27 

82 

64 

97 

84 

1.03 

0.28 

3.13 

0.92 

6.26 

1.61 

r 

2 
r 

6 Late June Ripe 14 40 59 0 0 0 0 

7 Early July Harvested 7 14 23 0 0 0 
c 
2 

'M 

01 
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FIGURE 20. SOIL REFLECTANCE SPECTRA USED IN SIMULATION 
OF WHEAT CANOPY REFLECTANCES. (Soil spectra 

are based on the work of Condit [18] .) 
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computed were both direct-solar and diffuse-sky spectral irradiance
 

at the Earth's surface, path spectral transmittance from the surface
 

to the satellite sensor, and path spectral radiance as observed by the
 

sensor. The optical thickness spectra assumed for the atmosphere in
 

the calculations (Table 14 and Fig. 21) were those associated with
 

Elterman's standard atmospheres that are labeled by horizontal visual
 

ranges of 4, 10, and 23 km for hazy, moderately hazy, and clear con­

ditions, respectively. The three background albedo spectra used for
 

the calculations (Table 14 and Fig. 22) are representative of bare
 

soil 	(average), a green vegetation canopy, and a sparse brown (har­

vested wheat) vegetation canopy, respectively. Thus, for each sun
 

position and view geometry, nine atmosphere cases were computed.
 

Then, the reflectance and atmospheric spectra were used with
 

Eq. (7)-to compute total radiance spectra at the satellite for
 

378 x 9 = 3402 cases.
 

Effective inband values were computed for each spectrum by multi­

plying,it by the Landsat relative response functions and integrating
 

over the appropriate wavelength interval. The individual inband values
 

for reflectance, atmospheric features, and total radiance were too
 

detailed and voluminous for general distribution in this report; how­

ever, they are available in a limited-distribution supplement to this
 

report [1]. Concise summaries of these results and some initial analy­

ses of them are presented in the sections that follow -- wheat reflec­

tances in Sec. 6.4, atmospheric features in Sec. 6.5, and total radi­

ances in Sec. 6.6.
 

6.4 	WHEAT REFLECTANCE CALCULATIONS
 

Reflectance values were computed for each of the seven stages of
 

wheat canopy growth described above. Nine different canopy conditions,
 

corresponding to the combinations of thre' differ&nt densities and three
 

different soil colors, were simulated for -each growth stage, each being
 

viewed under six different viewing and illumination geometries.
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TABLE 14. BACKGROUND REFLECTANCE SPECTRA AND ATMOSPHERIC OPTICAL
 
THICKNESS SPECTRA USED IN THE CALCULATIONS
 

OF ATMOSPHERIC FEATURES
 

BACKGROUND REFLECTANCE OPTICAL THICKNESS
 
(FOR.INDICATED VISUAL RANGE)
 

WAVELENGTH BARE GREEN HARVESTED 23 km 10 km 4 km
 
(Nanometers) 

400 0.073 0.018 0.048 0.682 1.000 1.640
 

450 0.097 -- 0.508 0.792 1.360
0.024 0.072 


500 0.116 0.030 0.100 0.422 0.679 1.190
 

550 0.152 0.055 0.140 0.374 0.600 1.070
 

600 0.197 0.040 0.160 0.334 0.540 0.960
 

650 0.220 0.028 0.200 0.300 0.476 0.860
 

700 0.240 0.090 0.240 0.262 0.425 0.790
 

750 0.258 0,.380 '0.280 .0.241 0.390 0.740
 

800 0.267 0.400 0.300 0.226 0.364 0.695
 

900 0.279 0.460 0.340 0.204 0.326 0.625
 

1000 0-.299 0.450 0.360 0.197 0.300 0.580
 

1100 0.300 0.440 0.380 0.183 0.288 0.550
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FIGURE 21. THE THREE BACKGROUND REFLECTANCE SPECTRA USED 
IN SIMULATING ATMOSPHERIC FEATURES 

82
 



0.0 

FORMCRLY WILLOW RUN L.AORATORIES bI UNIV fltrry o- MIC 

1.5 

H 

H 

4-k 

Q 4km 

23 km 

0.0 I 

o 'no 'o 'n oo In 0 0 0 
-o00-tn o000 I oC 0 N-0 N- 0Co 0o 0 CDo o 

WAVELENGTH (Nanometers)
 

FIGURE 22. 
 OPTICAL THICKNESS AS A FUNCTION OF WAVELENGTH
 
FOR THE THREE MODEL ATMOSPHERES USED IN
 

CALCULATING ATMOSPHERIC FEATURES
 

83
 



ZERIM 

FORMERLY WILLOW RUN LABORATORIES THE UNIVERSITY OF MICHIGAN 

A wide range of resultant wheat reflectance values was obtained.
 

For relative bidirectional reflectance, for instance, Landsat Band 4
 

values ranged from 0.025 to 0.198, Band 5 values from 0.033 to 0.284,
 

Band 6 values from 0.146 to 0.356, and Band 7 values from 0.176 to
 

0.508 for the full range of conditions simulated.
 

Figs. 23 and 24 present two-band scatter diagrams which display
 

this variation and its correlation between bands for relative bidirec­

tional reflectance values. Effective reflectances in Band 6 are
 

plotted vs. those in Band 5 in Fig. 23. These two bands describe most
 

of the spectral character of Landsat scenes, because of the high degree
 

of correlation between Bands 4 and 5 and Bands 6 and 7, as shown in
 

Fig. 24.
 

A composite scatter diagram of reflectances for all seven stages
 

of canopy growth is presented in Fig. 23, Part (a), while Parts (b)
 

through (h) present reflectances calculated for the individual growth
 

stages. These latter plots exhibit a substantial amount of dispersion
 

even within individual growth stages. This is due to the combined
 

effects of canopy density and soil color. The influence of each of
 

these two factors is more easily distinguishable in Fig. 25 where a
 

display of the variation of reflectance values for most of the key
 

parameters is presented for each Landsat band.
 

The horizontal axis in the displays of Fig. 25 has no physical
 

significance; it is used merely as a graphical aid. Reflectance values
 

are displayed successively for the three soil colors within each stage
 

of growth, with the pattern being repeated for each of the three density
 

levels. To aid in distinguishing between growth stages, the plotting
 

symbols for the displays are their respective growth stage numbers.
 

It is clear that soil color has a much greater effect on reflectances
 

from low density canopies, which may be due either to sparse growth or
 

to early time in the growing season. The peaking and decline of green
 

leaf area throughout the growing season is very evident in Bands 6 and 7.
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Another observation is that the effect of heading is most notice­

able in Bands 6 and 7 for high density canopies; other than that, the
 

effect does not appear to be distinguishable.
 

Discussion of other important factors, such as scanner view angle,
 

is deferred to Sec. 6.6 where the combined effects of both diffuse and
 

bidirectional reflectance and atmospheric features are examined in the
 

simulated total radiances.
 

6.5 ATMOSPHERIC FEATURE CALCULATIONS
 

Atmospheric feature calculations provided both irradiance spectra
 

to represent the radiation incident on the wheat fields and trans­

mittance and path radiance spectra to represent the atmosphere's effects
 

on signals passing through it from the ground to the satellite sensor.
 

The key factors are atmospheric visibility (indicated by the visual
 

range associated with the standard atmosphere employed), background
 

reflectance, scanner view angle, and time of year.
 

Figs. 26 and 27 present displays of direct and diffuse irradiances . 

in Landsat Band 4 at 38 N latitude and 10:45 AM local time for the 

seven times of year of interest in this study. The time of year is 

indicated by the brackets at the bottom of the seven groups of data 

points, where Dl through D7 refer to the growth stage simulation dates
 

1 through 7, respectively, in Table 13.
 

The direct irradiance in Fig. 26 is independent of scanner view
 

angle and background reflectance but dependent on time of year and
 

atmospheric visibility. However, the diffuse irradiance in Fig. 27
 

shows some variability for a fixed atmospheric visibility and time of
 

year, due to the three different background reflectances used. Both
 

irradiances vary in a Similar manner with respect to the seven times
 

of year but, whereas direct irradiance decreases with decreasing
 

atmospheric visibility, the diffuse irradiance increases.
 

Figs. 28 and 29 present displays for Bands 4 and 6, respectively,
 

of path radiance as a function of the three scan angles, seven times
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of year and three sets of atmospheric conditions, at 38°N latitude with
 

background reflectance spectrum for harvested wheat. The variation of
 

path radiance with scan angle is represented by the three successive
 

data points associated with a particular time of year and background
 

reflectance. From left to right these three points indicate the path
 

,radiance for scan angles of -60, 00 and 60 along a straight line from
 

the East-toward the West. With the sun in the East, the-path radiance
 

increases for such a set of scan angles. These figures indicate the
 

increase in path radiance to be expected as the atmospheric visibility
 

decreases. They also indicate that the variability of the path radiance,
 

as a function of scan angle,increases as its magnitude increases.
 

Figs. 30 and 31represent scatter plots of the path radiance in
 

Bands 4 and 6, respectively, as a function of scan angle for three sets
 

of atmospheric conditions and three sets of background reflectances for
 

one time of year. The figures indicate the increase in both the magni­

tude of the path radiance and its variability with respect to scan
 

angle, as the atmospheric visibility decreases. These figures also
 

indicate the extent to which path radiance depends on background reflec­

tance.
 

The atmospheric transmittance in Bands 4 and 6 is displayed,
 

respectively, in Figs. 32 and 33, as a function of scan angle and
 

atmospheric visibility. The transmittance decreases significantly
 

with decreasing atmospheric visibility but varies very little over
 

the three scan angles of interest.
 

6.6 TOTAL INBAND (LANDSAT) RADIANCE SIMULATIONS
 

The wheat canopy reflectance and atmospheric effects calculations
 

have been combined to produce simulated Landsat radiances for all com­

binations of levels of the various factors of interest in this investi­

gation, as listed in Table 12. The total number of cases for which
 

radiance values have been simulated is 3402, determined as the product
 

of the number of levels of each factor. This large number has prevented
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an exhaustive analysis of this data set from being undertaken during the
 

time frame of this effort. However, some analysis has been conducted
 

in an attempt to determine, at least qualitatively, the effects on
 

Landsat radiances of variations in the level of each of these factors
 

of interest. Table 15 presents a series of average values of the simu­

lated radiances in each Landsat band, each average being taken over all
 

cases for a particular level of one factor. The levels and factors
 

over which the averages are taken are indicated in the two leftmost
 

columns of the table. This table is useful for indicating gross trends
 

in the simulated radiances over the various levels of any particular
 

factor.
 

Figs. 34-59 are scatter plots of simulated radiances in selected
 

Landsat bands displaying both the domain of these radiances and their
 

variability with respect to the various levels of particular subsets
 

of factors. Figs. 34-36 are two-dimensional scatter plots of simulated
 

radiances in selected pairs of bands; those bands being 4 vs 5, 6 vs 5,
 

and 6 vs 7, respectively. It is of interest to compare these radiances
 

scatter plots to the canopy reflectance scatter plots (Figs. 23 and 24).
 

This comparison indicates a similar pattern in the variations of these
 

two quantities, with the radiances containing somewhat more variation
 

due to the various atmospheric factors and levels affecting these
 

radiances. This increased variation is more noticeable in Bands 4 and
 

5, where atmospheric effects are most significant. Figs. 37-43 are
 

identical to Fig. 35, except that each plot is for a particular growth
 

stage. These plots illustrate the variability in the simulated radiances
 

over all growth stages and within each particular growth stage. They
 

also indicate the changing domain of the wheat canopy radiances as the
 

canopy progresses through its various growth stages.
 

Figs. 44-57 contain displays of the factor effects on simulated
 

radiances in Bands 5 and 6 for each of the seven wheat canopy growth
 

stages. In each figure, 81 data points are plotted, one for each
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TABLE 15. AVERAGE EFFECTS OF FACTOR LEVELS OVER THE
 
ENSEMBLE OF SIMULATED RADIANCES
 

FACTOR LEVEL 

Latitude 380N 

460N 

Visual 
Range 4 km 

10 km 

23 km 

Background 

Reflectance Bare Soil 

Green Wheat 

Harvested Wheat 

Soil 
Reflectance Mean - Sigma 

Mean 

Mean + Sigma 

Canopy 
Density Low 

Base 

High 

AVERAGE 

BAND 4 

.594 


.553 


.647 


.558 


.514 


.613 


.512 


.585 


.540 


.573 


.606 


.623 


.557 


.540 


RADIANCE 2(w/cm . sr) VALUE 
IN LANDSAT BAND* 

BAND 5 BAND 6 BAND 7 

.514 .840 1.22 

.481 .792 1.16 

.541 .795 1.13 

.487 .817 1.20 

.465 .837 1.24 

.542 .802 1.14 

.422 .833 1.25 

.529 .814 1.18 

.454 .751 1.09 

.497 .815 1.19 

.542 .883 1,29 

.573 .808 1.11 

.473 .814 1.20 

.448 .828 1.26 
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different combinations of three canopy density levels, three soil
 

reflectance spectra, three background reflectance spectra, and three
 

atmospheric visual ranges. All data points correspond to 380N latitude
 

and a nadir view angle. As in Figs. 25-33, the abscissa variable has
 

no physical significance; it has been defined solely for the purpose
 

of displaying variations in the simulated radiances due to variations
 

in the three levels of the four factors just mentioned. The factors,
 

from most rapidly to most slowly varying, are: canopy density, soil
 

reflectance, background reflectance and atmospheric visibility. The
 

key in each figure indicates the order in which the levels of each
 

factor vary. Each figure appears to be composed of nine distinct
 

patterns drawn by connecting data points in a particular manner to
 

aid in their interpretation. These patterns form three groups of
 

three, each group corresponding to a particular atmospheric visual
 

range, varying from 23 km (relatively clear) on the left to 4 km (very
 

hazy) on the right. The three patterns within each group correspond
 

to particular background reflectances, varying from left to right from
 

bare soil to green wheat to harvested wheat. Each pattern is formed
 

by the connection of nine data points, consisting of three groups of
 

three data points. Successive groups of three points correspond to
 

particular soil reflectance spectra ranging from the darkest soil
 

(mean - sigma) on the left to the highest soil (mean + sigma) on the
 

right. Successive data points within each group of three correspond
 

to particular wheat canopy densities ranging from low density on the
 

left to high density on the right. The nine patterns were formed by
 

connecting the three data points corresponding to each soil for each
 

canopy density and by connecting the three data points corresponding
 

to each canopy density for each soil reflectance spectrum. These lines
 

serve to geometrically organize each figure into a set-of patterns,
 

each pattern corresponding to a particular combination of atmospheric
 

visual range and background reflectance spectrum. These lines also
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enable the variations in radiance due to changes in soil reflectance
 

and canopy density to be easily followed in each of these figures.
 

Figs. 58-59 are additional display of simulated radiances in Bands
 

5 and 6, respectively, for Growth Stage 5 (senescing wheat), a green
 

vegetation background reflectance spectrum, and 380N latitude. The
 

primary purpose of these two figures is to display the effects of view
 

angle. The organization of these figures is similar to those just dis­

cussed, except that the factors, from most rapidly to most slowly vary­

ing, are: view angle, canopy density, soil reflectance and atmospheric
 

visibility. Successive data points within each group of three corre­

spond to particular view angles ranging from 6° in a westerly direction
 

on the left to nadir to 60 in an easterly direction on the right. Each
 

pattern corresponds to a particular combination of atmospheric visual
 

range and soil reflectance spectrum. The nine patterns are formed by
 

connecting the three data points corresponding to each density for each
 

view angle and by connecting the three data points corresponding to
 

each view angle for each density.
 

Examinations of these simulated radiances have yielded some
 

interesting observations concerning the effects of variations in the
 

levels of the factors listed in Table 12. These observations will
 

next be discussed in terms of these individual factors.
 

6.6.1 LATITUDE EFFECTS
 

No significant differences were observed between simulated radi­

ances corresponding to 8°N latitude and those corresponding to 460N
 

latitude. At the more Northerly latitude the sun zenith angle is lower,
 

but between April and July the difference is less than 4° . This differ­

ence results in somewhat lower scene irradiances at 460 latitude which
 

explains the lower average radiances in Table 15. This small difference,
 

however, does not produce significant differences in the effects of the
 

remaining factors on the simulated radiances.
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6.6.2 ATMOSPHERIC VISIBILITY EFFECTS
 

Variations in the atmospheric visibility affect both atmospheric
 

transmittance and path radiance. As atmospheric visibility decreases,
 

atmospheric transmittance decreases and the amount of path radiance
 

increases. The decreased atmospheric transmittance reduces the scene
 

irradiance and .the amount of reflected radiation reaching the scanner
 

from the ground. Figs. 44-57 illustrate two general trends. The most
 

apparent trend is the decreased variability in the radiances as visi­

bility decreases. This trend can be attributed to the fact that the
 

lower visibility radiances are composed more of path radiance, reducing
 

their sensitivity to variations in the condition of the wheat canopy,
 

i.e., its density and soil reflectance. A less obvious trend is that
 

the radiances increase in the shorter wavelength bands (4 and 5) as
 

visibility decreases and decrease in the longer wavelength bands (6
 

and 7). This trend is more apparent in Bands 4 and 7 than in Bands 5
 

and 6, as is borne out by the average radiance values in Table 15 for
 

the different visual ranges. In the shorter wavelength bands, the
 

increase in path radiance more than offsets the decrease in trans­

mittance, resulting in an increase in radiance as visibility decreases.
 

In the longer wavelength bands, path radiance is less significant and
 

its increase does not offset the decrease in transmittance, resulting
 

in a decrease in radiance as visibility decreases.
 

6.6.3 BACKGROUND REFLECTANCE EFFECTS
 

Fig. 21 illustrates the similarity between the bare soil and har­

vested wheat background reflectance spectra and also the distinctness
 

of the green wheat background spectrum. Using nominal band limits for
 

the four Landsat spectral bands, the bare soil background can be seen
 

to be slightly brighter in Bands 4 and 5 but darker in Bands 6 and 7.
 

Table 15 indicates that the radiances in Bands 4 and 5 are slightly
 

higher for the bare soil background than for the harvested wheat back7
 

ground and that just the opposite is-true in Bands 6 and 7. In any
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band, the radiance is higher for the brighter background due to the
 

increased path radiance from this background. The green wheat back­

ground reflectance spectrum is darker than both the bare soil and har­

vested wheat spectra in Bands 4 and 5 and brighter in Band 7. The
 

situation for Band 6 is unclear because of the abrupt transition in
 

the green background spectrum within the band. Table 15 indicates
 

again the increased average radiance for the brighter background.
 

Figs. 44-57 clearly indicate the lower radiances in Band 5 for the
 

green wheat background as opposed to the radiances for the two brighter
 

backgrounds. In Band 6, the green background appears to be the brightest
 

as indicated by the higher radiances corresponding to it.
 

6.6.4 SCANNER VIEW ANGLE EFFECTS
 

Figs. 58 and 59 illustrate typical scanner view angle effects on
 

radiances for Growth Stage 5. The most obvious trend to note is the
 

increased variation over the three view angles considered as atmospheric
 

visibility decreases. This trend is due to the increase in path radi­

ance as visibility decreases. The variation is greater in Band 5 than
 

in Band 6 because of the greater significance of path radiance at the
 

shorter wavelengths. In Band 5, radiances decrease (or at least don't
 

increase) as the view angle moves from a westerly orientation through
 

nadir to an easterly orientation from the Landsat ground track. With
 

the morning sun in the East, the sun is most directly behind the path
 

of observation of the scanner when it is looking into the West, result­

ing in the highest path radiance component for the westerly view angle.
 

As the view angle swings into an easterly direction the scanner is
 

looking more toward the direction of the sun, resulting in a decreasing
 

path radiance component. (Ref. 19 contains a more detailed discussion
 

of the relationship between path radiance and view angle.)
 

A different phenomenon related to view angle can be noted for
 

Band 6 (Fig. 59). For the 23 km visual range, darkest soil, and high
 

canopy density, the radiance decreases as the view angle shifts from a
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westerly direction to nadir and then increases as it shifts to an
 

easterly direction. This trend contradicts the usual trend described
 

in the previous paragraph. The explanation for the increase in radiance
 

as the view angle shifts to the easterly direction is that, although
 

the path radiance component does decrease as expected, the canopy
 

reflectance increases, offsetting this decrease and resulting in a
 

higher radiance. (The path radiance does not constitute as large a
 

fraction of the signal in Bands 6 and 7 as it does in Bands 4 and 5.)
 

The increased reflectance of the canopy at the 60 view angle isdue to
 

the bidirectional reflectance characteristic of the canopy.- As the
 

scanner shifts from the westerly view angle to nadir, the path radiance
 

decreases and the canopy reflectance also decreases. The decrease in
 

canopy reflectance is attributable to the fact that the soil is darker
 

than the crop and more soil is visible at the nadir view angle. As
 

the scanners view angle shifts to the easterly direction, the less soil
 

is visible again and the canopy reflectance increases, offsetting the
 

path radiance decrease.
 

6.6.5 SOIL REFLECTANCE EFFECTS
 

Figs. 44-57 illustrate the increase in radiance which occurs for
 

a constant canopy density as soil brightness (reflectance) increases.
 

The average radiances in Table 15 for the various soil levels support
 

this observed increase in radiance as soil brightness increases. The
 

brighter soils reflect more of the radiation which penetrates through
 

the canopy layers to the soil. The variation in radiance is greatest
 

when the canopy density is low and less as the canopy density increases.
 

In fact, in some cases for base and high density canopies, soil bright­

ness has no noticeable effect on radiance. For such high density cano­

pies, essentially no radiation emerges from the canopy after being
 

reflected by the soil. This invariance to soil brightness is most
 

prominent for Growth Stages 3 and 4 for which the percent cover is
 

greatest. The figures also indicate that radiances in Band 6 are more
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sensitive to soil brightness variations than radiances in Band 5. The
 

canopy is more transparent at the longer wavelengths, allowing more
 

radiation to penetrate through the canopy layers and increasing the
 

sensitivity to soil brightness variations. Thus one would expect
 

Band 7 to exhibit effects similar to those of Band 6 and those of
 

Band 4 to be similar to Band 5 effects.
 

6.6.6 WHEAT CANOPY DENSITY EFFECTS
 

The variations in radiance due to differences in wheat.canopy
 

density can be seen in Figs. 44-57 to be greater, generally, for
 

changes from low to base density than from base to high density.
 

Table 13 indicates that the greater change in percent ground cover
 

occurs between the low and base densities, explaining this trend.
 

The amount of variation in the radiances is determined by the relative
 

reflectance characteristics of the soil and canopy layers in each spec­

tral band. The average radiance values in Table 15 show a decrease in
 

Bands 4 and 5 as density increases and an increase in Bands 6 and 7.
 

When the soil and crop canopy layers are spectrally similar in a par­

ticular band, density variations have little effect on radiance. For
 

instance, in Band 6 for Growth Stage 6 (Fig. 55), the darkest soil and
 

the crop layers are indeed spectrally similar.
 

An interesting phenomenon occurs in several cases and is related
 

to canopy density effects. For example, in Band 6 for Growth Stage 5
 

(Fig. 53), radiance decreases as canopy density varies from low to
 

base density and then increases as density varies from base to high
 

density for a 23 km visual range and the brightest soil. This some­

what surprising result can be attributing to "shadowing" within the
 

canopy, according to the following postulated explanation. The crop
 

is darker than the soil, so that an increase in density from low to
 

base level results in a decrease in radiance. But the increased density
 

also causes shadows to be cast in the canopy (particularly due to stalks)
 

which are even darker than the crop. When the density is further
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increased to the high level, the canopy is filled in to a higher degree,
 

replacing shadowed regions with highly reflecting crop material, thereby
 

increasing the observed radiance.
 

6.6.7 MULTITENPORAL PATTERNS OF WHEAT RADIANCES
 

One objective of LACIE is to exploit the multitemporal characteris­

tics of wheat signatures, where possible, to improve recognition per­

formance. Consequently, the temporal patterns of wheat signatures and
 

the effects of the various factors on these patterns are of interest.
 

The simulation modeling results provide insight on this subject.
 

Temporal trajectories, in spectral space, of the simulated radi­

ances from nine different wheat canopies are presented in Fig. 60.
 

The temporal dependence of radiances in Bands 5 and 6 is presented for
 

each possible combinations of the three soil brightnesses and three
 

canopy densities. Each of the seven points in each plot represents
 

one growth stage. These radiance values are for a nadir scanner view
 

angle, 10 km visual range, 380N latitude, and a green wheat background.
 

Substantial differences exist in the specific shapes of the patterns,
 

although there is a common overall trend.
 

The previously discussed effects of soil reflectance (Sec. 6,6.5)
 

and wheat canopy density (Sec. 6.6.6), and their interactions-, are
 

evident here in Fig. 60. The high-density canopies portrayed in the
 

right-hand column of plots, show little influence of soil brightness
 

for Growth Stages 2-6, which have relatively high percentages of vege­

tative cover. The differences observed there between Growth Stages 6
 

(Ripe) and 7 (Harvested) clearly depend on soil brightness. The effects
 

of soil brightness also are apparent in the low-density canopies of the
 

left-hand column of plots.
 

6.7 DISCUSSION
 

Landsat radiances have been simulated for each of several wheat
 

canopy growth stages for a variety of levels of factors determining
 

the exact nature of the canopy and the atmosphere. These factors and
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their particular levels were listed earlier in Table 12. A qualita­

tive analysis of the effects of variations in the levels of these
 

factors has been conducted.
 

A slight decrease in radiance was noted at 46°N latitude as com­

pared to 380N latitude, but no significant difference was observed in
 

the radiance variations at these two latitudes for the various levels
 

of the other factors investigated.
 

The effects of differences in atmospheric visibility conditions
 

were characterized in terms of their effect on atmospheric trans­

mittance and path radiance. As visual range decreases, transmittance
 

also decreases and path radiance increases. Path radiance effects are
 

most significant in the shorter wavelength bands and the overall varia­

tion in the radiance in each band as visual range varies is determined
 

by the relative changes in transmittance and path radiance. Also, in
 

these shorter wavelength bands, because of the significance of path
 

radiance, less sensitivity was observed to variations in factors
 

affecting the canopy.
 

The background reflectance spectrum affects the magnitude of the
 

path radiance component of the total simulated radiance, as well as
 

diffuse irradiance. The brighter the background in any particular
 

band, the greater the path radiance is also. The differences in three
 

backgrounds investigated was most apparent in the shorter wavelength
 

bands where path radiance is most significant. -The bare soil and har­

vested wheat backgrounds resulted in almost identical radiance values;
 

the green wheat background resulted in lower values in the shorter
 

wavelength bands and higher values in the longer wavelength bands.
 

The effect of the different scanner view angles were found to
 

depend on changes in both the path radiance component and the bidirec­

tional canopy reflectance. Some significant changes in total radiance
 

were observed for the different view angles, the amount of this change
 

being determined by the relative position of the sun and the direction
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of view of the scanner. The bidirectional reflectance of the canopy
 

is determined by the amount of soil, crop, and shadow which are observed
 

for a particular view angle. In the shorter wavelength bands, changes
 

in radiance for the different view angles are primarily dependent on
 

changes in the path radiance component;- in the longer wavelength bands
 

they depend primarily on changes in the canopy reflectance.
 

Variations in soil brightness resulted in increased radiance as
 

brightness increased. The amount of this increase depended on the
 

canopy density which determines how much radiation penetrates through
 

the canopy to the soil. These variations were generally more signifi­

cant in the longer wavelength bands because of the higher canopy trans­

mittance in these bands. The effect of canopy density depends to a
 

large part on the relative brightness of the soil and the crop. A
 

greater change in radiance was observed between low and base density
 

canopies than between base and high density canopies.
 

The temporal variation of the wheat canopy was observed in two
 

bands over the seven stages of growth for each combination of soil
 

brightness and canopy density. Substantial differences in the patterns
 

were observed which could have a strong effect'on multitemporal tech­

niques for the recognition of wheat.
 

The accuracy of the simulated radiances is predicated on the
 

accuracy of the Suits canopy reflectance model and the Turner radiative
 

transfer model. The accuracy of both models has been examined in the
 

past and has been found to be acceptable. The data which have been
 

generated as part of this effort, however, would permit further veri­

fication of these models. The simulated radiances could be compared
 

against actual Landsat data values and field measurement data. This
 

comparison would not only allow the two models to be further verified
 

but also allow the appropriateness of the canopy and atmospheric data
 

used in the simulation to be evaluated. At the same time calibration
 

factors could be determined to convert the radiance values into Landsat
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data values. Limited comparisons between some of the simulated values
 

and radiometric field measurements data acquired by the LACIE field
 

measurements team are made in Sec. 7.
 

The analysis of the simulated radiances has thus far been only
 

qualitative, but should be made more quantitative. The calibration
 

factors mentioned in the previous paragraph should be utilized to
 

analyze these data in terms of their equivalent Landsat data values
 

to tie them closer to LACIE processing operations. More levels of the
 

various factors might be included to more precisely determine the
 

effects of these factors. One factor in particular for which more
 

levels should be investigated is visual range (See Sec. 7). Similar
 

simulations should also be undertaken for spring wheat and other crops
 

which compete with wheat in recognition processing.
 

Improvements should be made to the overall simulation model to
 

make it more general and readily useable. A capability for simulating
 

the covariance matrix for a particular set of canopy conditions and
 

atmospheric conditions should also be added to the model. The model
 

could be made more general by allowing the background reflectance
 

spectrum to be the canopy reflectance spectrum itself. In the present
 

arrangement, this would be impractical when many different canopy
 

characteristics are considered. The model might also be used with a
 

more developed sensor system model to simulate an entire data set
 

based on the arrangement of crops within the scene and the particular
 

conditions of each field and the atmosphere.
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7 

ANALYSES OF FIELD MEASUREMENT DATA
 

One part of the overall LACIE effort is a Field Measurements
 

Project [20]. The data acquired in this field measurement activity
 

are directly applicable to studies of the type carried out and des­

cribed in the preceding sections. The major focus of these field
 

measurements has been on detailed spectral reflectance measurements
 

of wheat fields and selected other targets, made from both truck­

mounted and helicopter-borne spectroradiometers. Reduced versions of
 

these data were not available for analysis during the performance
 

period of this investigation.
 

Useful ancillary measurements were also made in support of both
 

the primary spectral measurements and Landsat overpasses and to pro­

vide additional inputs for modeling efforts. Analyses are presented
 

below of the atmosphere optical thickness measurements, broad-band
 

irradiance measurements, and broad-band crop reflectance measurements
 

made by members of the field measurements team.
 

7.1 ATMOSPHERE OPTICAL THICKNESS MEASUREMENTS
 

During the 1974-75 crop year and also for the fall of 1975 optical
 

thickness measurements were made at three LACIE "supersites" in support
 

of the helicopter data collection flights and associated Landsat over­

passes. The data, collected by a Volz type solar radiometer, were
 

taken at approximately ten minute intervals throughout the day for
 

47 days of the year. The optical thicknesses were then tabulated for
 

the bands centered at the wavelengths 380 nm, 500 nm, 610 nm, 748.7 nm,
 

873.0 nm, and 1040 nm. We received useable versions of these data in
 

mid-March of 1976; although it was then stated that this was to be an
 

interim data set, we have nevertheless carried out a preliminary analy­

sis of the data.
 

The optical thickness, T (X) of the atmosphere is defined as 
-0 
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0
 

where KzX(x) is the volume extinction coefficient of the atmosphere as
 

a function of wavelength X and altitude z [21]. Optical depth is a
 

dimensionless parameter which is used to specify the optical state of
 

the atmosphere. It can be determined experimentally by measuring the
 

direct solar irradiance at sea level for a specific angle of the sun,
 
i.e., 

E(X) = Eo () exp[-To (X) sec 6 ] (11) 

where E(A) is the measured irradiance, Eo () is the extraterrestrial
 

irradiance at the top of the atmosphere, and 0 is the solar zenith
 

angle. It is assumed here that the detector has a flat collecting
 

area the normal of which is parallel to the direction of the incoming
 

solar radiation. In actual calculations the annual variation-of E (0)
 

should be taken into account by using the ratio (F/r)2 where r is the
 

mean Earth-Sun distance and r is the variable Earth-Sun distance.
 

Our understandingof the calibration procedures used for the optical
 

thickness measurements is based on Ref. 22. Because of the difficulty
 

in obtaining absolute radiometric calibrations, it was decided by the
 

measurement team that calibrations would be made using the thin atmos­

phere at Pike's Peak, Colorado. This was done for one sensor (#1003)
 

for the period November 1974 through May 1975. June through August
 

calibrations were based on lab measurements ratioed back to the Pike's
 

Peak values. Data for other sensors were based upon calibration con­

stants more recently obtained at Garden City, Kansas, and at JSC.
 

For a given location and time of year the optical-thickness can
 

be determined from the following equation:
 

J(X) = Jo () exp[-o (A) sec 60] (12)
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where J (X) is the response of the particular sensor at the top of
0 

Earth's atmosphere. Because of different gain settings for each spec­

tral channel the values of Jo() do not correspond to the values of
 

the extraterrestrial irradiance at the top of the atmosphere. This
 

is clearly indicated in Fig. 61 for the three sensors #1025, #1023,
 

#1030-.
 

By monitoring the sensor output J(A) as a function of sun angle
 

60, values for the constant J (X) were determined for each radiometer
 

band, but these values are subject to considerable uncertainty because
 

of changes in atmospheric conditions throughout the measurement days.
 

In a telephone conversation with Dr. White at JSC, we learned that a
 

more detailed and careful calibration of the sensors will be performed
 

in Arizona where hopefully the atmospheric conditions are more stable
 

than they were at the previous calibration sites. In any case, we
 

have analyzed some of the data for the interim data set for the LACIE
 

intensive test sites.
 

An example of the temporal fluctuations in the optical thickness
 

during one day at a site in northwest North Dakota is illustrated in
 

Fig. 62. For this case there were two sensors at the same location
 

and yet they give us entirely different values of optical thickness,
 

values of which usually lie outside the estimated uncertainty limits;
 

one sensor (#1030) was used only this one day, while the other was
 

used frequently. It should be noted also that the changes from time
 

to time in each case are about the same, which indicates that ,the cali­

bration constants were different by a constant scale factor.. The opti­

cal thickness should be independent of such factors and this example
 

clearly points out that one must be quite careful in the determination
 

of the calibration constants. In any case, the graph indicates the
 

magnitude of the temporal fluctuation in optical thickness measurements.
 

Another question of importance in the investigation of the rela­

tionship between optical thickness and Landsat multispectral data is
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the spectral variation in optical thickness. In Fig. 63 the optical
 

thickness for an aerosol-free (Rayleigh) atmosphere and for an atmos­

phere with a sea level visual range of "23 km are illustrated. The
 

latter values were taken from an Elterman model based upon measurements,
 

and were used for the 'clear' atmosphere in the model calculations dis­

cussed in Sec. 6. The data points between the two curves represent
 

five values of optical thickness measured in mid-morning over western
 

Kansas between June 1975 and December 1975. The arrangement of points
 

varies somewhat from channel to channel but the graph indicates that
 

the visual range for that period was very high, i.e., greater than
 

about 30 km.
 

Finally, the fluctuation in optical thickness between spectral
 

bands over an extended period of time should be examined. An example
 

is depicted in Fig. 64 for a month in the summer of 1975; values for
 

the first two channels (380 nm and 500 nm) and their ratio are plotted.
 

The significance of the observed fluctuations is not known because of
 

the large uncertainties associated with the instrument calibrations.
 

The ratio of bands seems to have about the same changes as the optical
 

thickness values themselves.
 

In conclusion, we can say that this interim data set is interest­

ing in that it does provide some information on magnitudes and the
 

temporal and spectral variability in optical thickness. Hopefully,
 

the next data set will have improved calibration constants and more
 

reliable values of optical thickness. In any case, considering the
 

difficulties involved in the collection of these data we now have a
 

better idea of the variability in the optical properties of Earth's
 

atmosphere. Also, the recommendation can be made that atmospheres
 

with visual ranges greater than 23 km should be simulated, in addition
 

to those already done, to represent the full range of conditions under
 

which wheat will be observed.
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7.2 	BROAD-BAND IRRADIANCE MEASUREMENTS
 

Radiometers with broad-band spectral characteristics similar to
 

those of the Landsat multispectral scanner were used by Texas A&M
 

University in the Finney Kansas ITS and by Purdue/LARS in the Williams
 

North Dakota ITS to make selected ancillary measurements. One of these
 

measurements was that of the ratio of diffuse (non-direct) to total
 

irradiance, from which the ratio of diffuse-to direct irradiance can
 

be calculated. The average diffuse-to-direct ratios for over sixty
 

measurements at the sites are presented in Table 16. The corresponding
 

values used in the theoretical simulations of wheat radiances were sub­

stantially greater. This provides another indication that clearer atmos­

pheres should be simulated in addition to those already employed, agree­

ing with the observation based on the optical thickness measurements.
 

7.3 	BROAD-BAND CROP REFLECTANCE MEASUREMENTS
 

These same broad-band radiometers were also used to measure crop
 

reflectances, e.g., both wheat and bare soil reflectances at the two
 

sites. Fig. 65(a) presents a scatter diagram of Band 6 vs. Band 5
 

reflectances measured for winter wheat at the Finney ITS throughout the
 

growing season. This plot agrees well with a similar display in Fig.
 

23 of the theoretical reflectance calculations discussed earlier (See
 

Sec. 6.4). The major differences are that the lowest reflectance values
 

in Band 5 are lower for the'measurements than for the calculations and
 

bright-bare-soil effects are not evident in the measured data. The
 

measurements were acquired primarily at five different stages of growth
 

from an irrigated field with a relatively dense canopy at each growth
 

stage. A similar diagram for spring wheat, measured on three dates in
 

North Dakota, is presented in Fig. 65(b).
 

The multitemporal patterns of these reflectance values are pre­

sented in Fig. 66. The winter wheat pattern of Fig. 66(a) should not
 

be compared directly to the multitemporal patterns of Fig. 60 since the
 

latter figure displays radiance values which include atmospheric and
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TABLE 16. AVERAGES OF BROAD-BAND GROUND SPECTRAL MEASUREMENTS
 
MADE BY THE LACIE FIELD NEASUREMENTS TEAM
 

VALUE IN LANDSAT BAND:
 

QUANTITY UNITS 4 5 6 7 

1. Diffuse/Direct Dimensionless 0.137 0.104 0.107 0.119 
Irradiance 

2. Soil Reflectance Dimensionless 
a. Mean 0.130 0.157 0.214 0.263 

b. Standard 
Deviation 0.060 0,049 0.057 0.068 
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irradiance effects as well as reflectance effects.
 

Soil reflectance values also were measured with the broad-band
 

ratiometers. Mean values and standard deviations in the four bands
 

also are presented in Table 16. These average soil reflectances agree
 

quite well with the mean bare soil spectrum used in the wheat canopy
 

simulations (See the 'bare' spectrum of Fig. 21) in Bands 6 and 7 but
 

are somewhat lower in Bands 4 and 5, which would contribute to the
 

lowest measured reflectances being lower than the lowest calculated
 

ones.
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