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ABSTRACT

The Earth's original ocean basins were mare-type basins produced

4 billion years ago by the flux of asteroid-sized objects responsible 	 ,

for the lunar mare basins. Scaling upwards from the observed number of

lunar basins for the greater capture cross-section and impact velocity

of the Earth indicates that at least 50% of an original global crust would

have been converted to basin topography. These basins were flooded by

basaltic liquids in times short compared to the isostatic adjustment

time for the basin. The modern crustal dichotomy (60% oceanic, 40%

continental crust) was established early in the history of the Earth,

making possible the later onset of plate tectonic processes. These later

processes have subsequently reworked, in several cycles, principally

the oceanic parts of the Earth's crust, changing the configuration

of the continents in the process. Ocean basin g (and oceans themselves)

may be rare occurr;nces on planets in other star systems.



INTRODUCTION

It has recently been pointed out by Lowman (1976) that the combination

of extraterrestrial and terrestrial data yields a common evolutionary pattern

for all the terrestrial planets. An important implication of this model is

the nature of the Earth's original crust: it is inferred to have been global

in extent and intermediate (roughly andesitic) in coupostion. The present

continents are then considered the greatly altered, "redifferentiated"

(Lowman's term) remnants of this original global crust. The bulk composition

of the modern continents is not far removed from the suggested original

material, and terrestrial evidence alone supports the reworked nature of the

continental crust. But the inference of global extent rests almost entirely

on interplanetary analogy, and runs counter to most modern views (as pointed

out by Lowman, 1976; 1973), which favor continental growth over geologic time.

If the Earth did begin with a global crust, then more than 50% of that

crust must have been "destroyed" over geologic time in order to reach the

present 60/40 oceanic/con t inental crustal division. The modern ocean basins

are very young, and are generally agreed to be a consequence of plate

tectonic processes. The creation of new (oceanic) crust at spreading

centers requires compensating destruction of crust elsewhere. This destruc-

tion occurs principally at subduction zones, where one plate overrides

another. McKenzie (1969) has shown that contin ental crust more than 5 km

thick is too buoyant to be subducted; the required destruction must be

taken up by subduction of oceanic crust. Continental crust remains more or

less intact as new oceanic crust is formed at the expense of older oceanic
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crust. Plate tectonics cannot convert an original global continental

crust into the observed modern dichotomy.

Furthermore these same plate tectonic processes cannot occur unless

the crustal dichotomy is already established, because subductable crust

is required for subduction to compensate for newly formed oceanic crust.

Burke et al.(1976) suggest that modern plate tectonics goes back at least

2 billion years, and that prior to this kind of "microplate" tectonic

environment existed. Engel et al.(1974) infer from a variety of geochemical

parameters that a major change in tectonic style occurred on the Earth 2.5

billion years ago, perhaps marking the onset of modern(large plate) plate

tectonics. Wise(1974) argues for the modern ratio of oceans/continents

having persisted throughout most of geologic time. It would appear that,

from the above, the crustal dichotomy of the Earth was established early

in its history.

The modern dichotomy (of high density/low density crust) of the Earth

superficially resembles the mania/highlands dichotomy of the Moon, Mercury

and Mars. The ratio of new/old crust (oceanic/continental or maria!highlands)

increases with the size of the planet, being roughly 30/70 for the Moon,

40/60 for Mars and 60/40 for the Earth. The lunar dichotomy is largely due

to a period of intense bombardment by basin-forming objects some 4 billion

years ago (Tera et al., 1974). The impacting bodies created large, shallow basins,

s
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such as the Orientale basin (Head, 1974), which, on the lunar frontside,

were subsequently flooded by basaltic lavas. Even the large, shallow,

irregular maria (of which Oceanus Procellarum is the most extensive) way

have been the sites of large impacts (Wood and Head, 1976; Wood, 1976.

private communication). Murray et al. (1975) and Chapman (1976) argue that these

basin-forming impacts were common to all the terrestrial planets, and Wetherill

(1975, 1976) has shown that dynamically plausible orbits exist for such an event.

Because it is impossible that the Earth could escape such a bombardment

common to the entire inner solar system, this paper investigates whether or

not such a bombardment could account for the modern crustal dichotomy of

an Earth which originally had a global crust.

TERRESTRIAL IMPACT PARAMETERS

A lower limit to the number of basin-forming impacts that must have

occurred on the Earth 4 billion years ago can be obtained by scaling upwards

from the observed number of lunar basins to the greater capture cross-section

and impact velocity of the Earth. Because the Earth and Moon at that time

were in roughly their present configuration, both bodies should have

,experienced the same spatial distribution of incoming objects. It is

therefore reasonable to treat this as a scaling problem.

Consider a group of objects deflected into Apollo-type orbits. These

asteroids represent the closest modern example of the basin-forming objects

that impacted the Moon 4 billion years ago (Wetherill, 1975). Such objects

will approach the Earth-Moon system with a relative velocity between 15 and
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20 km/sec Opik, 1966). Figure la shows the impact velocity at the

surfaces of the Earth and Moon, and the ratio of these Impact velocities,

as a function of approach velocity. The 15-20 km/sec range of approach

velocities is shown by the bar. The impact velocity at the Earth varies

from.18.7 to 22.9 km/sec; for the Moon, the corresponding range is 15.2 to

20.1 km/sec. The ratio of impact velocities is 1.23 to 1.14. Equivalent

objects strike the Earth some 15-20% faster than they do the Moon.

It is possible to convert impact velocity to crater diameter b through

the energy scaling relation, which can be written (Hartmann, 1965)

[.1	 k
D	 CEk . C 	 MV2

where C and k are constants and the energy E is assumed due to the kinetic

energy of an object with mass M and impact velocity V. The constant C is

not well determined. We use the ratio of crater diameters on the Earth to

those on the Moon:

k
DD
	 -
	 (MV 2)®

D,O	 (MV 2)d

which eliminates the constant C. If objects of equal mass are

considered, then the relation becomes

2k

t6l

where V® and V
J
 are the impact velocities at the surfaces of the Earth

and Moon as discussed above.
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This relation now depends on k. As discussed by Hartmann (1965),

values of k between 1/3.0 and 1/3.4 have been suggested in the literature.

Figure lb is a plot of D® ID,6 as a function of approach velocity for two

different values of k. In the velocity range of interest, the resulting

diameter ratio is not very sensitive to k, varying only from 1.15 to 1.13

(for k - 1/3.0 to k - 1/3.3 respectively) for the worst case of 15 km/sec

approach. Craters on the Earth will be 11-15% larger than those formed on

the Moor by identical objects, as shown in Figure lb.

The Earth also collects more of these objects. The lower limit on this

is the ratio A the physical cross-sections of the Earth and Moon. This goes

as the square of the ratio of their physical radii: (I,, /RJ) 2 - 3.672 - 13.47.

Were there no other considerations, the Earth would gather thirteen and a

half times as many objects, but have the same number of craters per unit

area as the Moon. But the Earth has a significantly larger gravitational

radius than the Moon, and therefore a larger gravitational cross-section.

Figure lc shows the gravitational radius of the Earth and that of the

Moon as a function of approach velocity, using a relation given by

Wetherill (1974):

V 2
R - R 1 + 

esc

g	 XJ2

where R  and R are the gravitational and physical radius of the planet,

Vesc is the escape velocity and V is the approach velocity. Also shown in

this figure is the ratio of the gravitational radius of the Earth to that

for the Moon. Over the range of approach velocities of interest.

i
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R9  /R '16 varies from 4.52 to 4.18, decreasing with increasing velocity.

The Earth's gravitational cross-sectional area is 17.4 to 20.4 times larger

than the Moon's, compared to the physical cross-section ratio of 13.7.

The Earth therefore collects some 17-20 times as many objects of a given

mass as does the Moon (or 1.3-1.5 times as many per unit area). If even

30% of the lunar surface was covered by basins (see below), the at least

45% of the Earth's surface was disrupted by a similiar event 4 billion years

ago. A more careful estimate is made below.

THE SIZE DISTRIBUTION OF LUNAR BASINS

The actual number and diameters of lunar basins are not precisely

known. Table I is compiled from the published lists of Hartmann and Wood

(1971), Stuart-Alexander and Howard (1970) and Howard et al. (1974). The

adopted diameter (column 6) is generally the "most prominent" ring of

Hartmann and Wood, where available. Capital letters in column 1 designate

basins not listed by Hartmann and Wood; for some of these, diameters were

estimated from the Figure 14 in Howard et al. Craters larger than 200 km

or showing evidence of mare fill are also included in Table I. The

irregular mare of Oceanus Procellarum is represented by two "artificial

basins" (900 and 450 km across), as is the irregular mare at 30°W, +8°

("Euclides"). "Mare Gargantua", which appears in a recent compilation

by Wood and Head (1976), is not included here; its large diameter

(> 2500 lm) would significantly increase the total area of the Moon covered

by basins. Another very large basin ("Super Basin") -suggested by

Howard et al. (1974), also appears on the list of Wood and Head, and is

included here.
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Figure 2a is a histogram of the basins and craters from our list.

The large craters in the 100-199 km diameter range are under-represented

due to observational selection. This may apply to the adjacent bin as

well. Therefore, large craters with diameter less than 300 km were not

included in the minimum area count (see below). In Figure 2b, we plot a

log cumulative number-log diameter curve for these basins, together with

the solid line for highland craters from Hartmann (1966). Despite the

sma.t numbers, there appears to be a break at D - 500 km, which is also

ev:9ent in the histogram (Figure 2a). At smaller diameters, the basins

grE3E^ into the highland crater curve. This suggests the lunar surface

may be saturated for craters larger than 500 km; smaller basins and craters

may be depopulated by the obliterating effects of one large basin.

Alternate interpretations are also possible; for example, two different

populations of objects may be represented here. At the present, there

is no way to determine the reality or significance of the 500 km break.

In determining the minimum total area of the Moon covered by basins,

it is necessary to eliminate overlap between basins. Where small basins

lie inside larger areas (see "Remarks" column in Table I), the small

basins were discarded entirely (for example, basins 14, 17, 18, 19, 22,

23, 24 and 26 were not counted for this reason). When two basins overlap

(for example, "Fauth" - Basin B overlaps Imbrium - Basin 1), the effective

diameter of the smaller basin was decreased so as to count only the non-

overlapping area of each basin. Mare Australe, whose rim is difficult to

identify and whose diameter is therefore uncertain, was also eliminated

in the minimum basin area count.

i
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The total area of the Moon covered by large, non-overlapping basins

is 32% of the available surface area. The total area of all basins and large

craters in Table I is equivalent to 40% of the lunar surface area.

BASIN DISRUPTION OF THE EARTH'S SURFACE

The Earth should have collected 1.3-1.5 times as many obi%cts per unit

area as did the Moon. Each basin on the Earth was 11-15% larger than the

corresponding crater on the Moon (for objects of the same mass). This means

each terrestrial basin had roughly 28% more area than would the lunar basin

produced by an equivalent object. Figure 3 shows the total equivalent area of

the Earth's surface covered by basins as a function of approach velocity for

all basins and for non-overlapping large basins only. For 32% of the lunar

surface covered by basins, the corresponding figure for the Earth is 48-62% of

the surface area. If we adopt the equivalent 40% coverage of the Moon,

60-78% of the Earth's surface could have been affected by basin formation.

The above scaling merely indicates the area of basins on the Earth, and

does not represent the true fraction of the Earth's surface covered by basins

(except in the unlikely case of no overlap between basins). How this basin

area is distributed over the Earth depends on the probability of each new

basin impacting fresh surface. This of course depends on the fractional area

of the planet already covered by basins. Let A be the fractional area of

the Earth covered by basins, and let a$ be the total basin area due to

objects impacting the Earth. This quantity can be determined by scaling

from the Moon's total basin area, which amounts to an equivalent of 40% of

its surface area. Thus, for a median velocity of approach of 17.5 km/sec,

s	a® -
	 x 1.4 x 1.28 - 0.72
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That is, the basins form:ing on the Earth have an area equivalent to 72% of

the Earth's surface area. This will be distributed over a fractional area

A - 1 - e-a® - 0.51

or, over about 51% of the Earth's surface. This value obviously depends on

the approach velocity, and rangee from 45% at high velocities to 55% at

15 km/sec. It would appear from the above that about 502 of the Earth's

surface was covered by basins whose total area was equal to 72% of the

Earth's surface area.

Not included above is the possibility of much larger basins than those

observed on the Moon.	 D-2  scaling of basin numbers would suggest that, if

there are 3 basins on the Moon with Dt1000 km (implying 56 such on the Earth),

then on the Earth there could have been 6 basins with diameters in excess of

3000 km, and one of these would have been larger than 6000 km. While there

is no guarantee that such large impacts did occur, if they did they would

significantly add to the percentage of the Earth's crust affected by this

period of basin formation.

Therefore, 4 billion years ago at least 50% of the surface of the Earth

was disrupted by basin-forming impacts. This figure represents the minimum

percentage of a global crust affected. No attempt has been made to account

for the possibility of saturation of lunar basins (which may have occurred);

the above figure is Laded on an absolute minimum number of basins observed

on the Moon. The actual number of basin-forming objects impacting the Moon



was certainly higher than the number of surviving basins. For example, if

"Super Basin" had occurred last on the Moon it would have destroyed at least

eight basins with diameters between 280 and 435 km. There is no way to

correctly estimate the number of smaller basins eradicated by the formation

of an Imbrium or Orientals.

V.

	

	
Another potential problem we have not investigated is the possible

shadowing and/or focusing effect the Moon may have had on Earthbound

objects. If the flux duration was long compared with the orbital period

of the Moon 4 billion years ago, the effect is probably small unless the

Moon was very close to the Earth.

EFFECTS OF BASIN-FORMING IMPACTS

The impact of a large object produces two immediate effects: the

excavation and ejection of large amounts of crustal material, and the

fracturing and brecciation of crustal rocks to great depths. The former

is the more obvious, but the latter affects a greater volume of rock.

Baldwin's (1963) data suggest a 500 km basin will have a depth of ro 9.5 km.

This is based on extrapolation of smaller craters and observed diameter-depth

ratios, and therefore represents the minimum depth of the original crater.

For example, Pike (1967) would argue for much greater depths for these

basins; this only serves to enhance the effects discussed below.

Basin depth modification results from back-falling ejects, slumping and mass-

wasting of the walls, isostatic adjustment of the basin topography, and

possible filling by mare-type liquids.

10
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Fragmentation of the underlying rock is severe. Data from Table %II

of Baldwin (1963) and from Innes (1961) suggest a relation between the

depth to the bottom of the brecciated layer (B) and the crater diameter (D):

log B - 1.0232 log D - 0.5905

which is a least squares fit to the above data. This is shown in Figure 4.

The inset gives the results for terrestrial craters where drill cores have

provided direct measurements. The curve is then extrapolated into the

diameter range for basins. The two orders of magnitude extrapolation is

probably not valid, but is at present the only available information.

A 500 km basin impact excavates almost 10 km of crust, but fractures rock

to depths of ti 150 km.

To understand the effects of such an impact, a model of the crust and

mantle for the Earth 4 billion years ago is needed. We adopt the following

(Frey and Lowman, 1976): 	 The crust is andesite with a bulk density of

2.7 gm/cm 
3..  

The crust-mantle boundary is 20 km deep, which is consistent

with Condie's (1973) suggestion that the Archaean crust thickened to

25-30 km between 3.5 and 3.0 billion years ago. The mantle is solid

peridotite with a density of 3.3 gm/cm3 . These relations are shown in

Figure 5. Geothermal gradients were probably higher in the past. We

adopt 20°K/km, compared with the present day value (shown dashed) of

roughly 10°K/km. The pressure melting curves for basalt (the partial

melt product) and peridotite are also shown. The latter intersects the

thermal gradient curve at roughly 70 km; below this the mantle is molten

in this simple model.
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Basin impacts initially produce a dichotomy in elevation. Two

subsequent effects are expected: isostatic adjustment of the basin

topography (which would tend to smooth out the elevation differences) and

basaltic flooding of the basin (which would produce a compositional

dichotomy between the basin floor and the highland crust`. The thinner

crust and higher thermal gradient of the Earth 4 billion years ago (compared

to the Moon) suggest that isostatic adjustment of the basins should have

been faster on this planet. As shown below, filling of the basins on the

Earth was also rapid compared to the Moon, where major basins remained "dry"

on the frontside for some 10 8 years and were never filled by mare basalts

on the lunar far. :e.

Below the basin the pressure-temperature relations are changed in the

sense that melting is favored at shallower depths. That is, the pressure

drop due to large impacts causes the melting of "pressure frozen" material

closer to the original surface, and therefore significantly closer to the

new (deeper) surface level of the basin floor. For a basin 1000 km across,

melting now occurs some 15 km closer to the new surface. Partial melting

of the mantle in these regions produces a basaltic liquid with a density of

.^.3.0 gm/cm3 , which is overlain by solid but hib:.ly fragmented peridotite

of density 3.3 gm/cm3 . The liquid would clearly rise in this situation and,

being hotter than its surroundings, would encourage further melting as it

rises. Near the surface hydrostatic pressure expands the liquid into the

crater, flooding the basin with lava whose composition is quite different

from that of the highlands. The rise time for the lavas should be '`1 102

years, based on seismic studies of Hawaiian basaltic eruptions. This rapid,
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impact-triggered basin flooding is quite distinct from the late erupting

mare basalts of the Moon, and results from the relatively thin lithosphere

and high thermal gradient of the Earth. These combine to locate a magma

source at depths which are shallow compared to the effects of brecciation

due to impact. On the Moon, thermal conditions 4 billion years ago were

such that rapid flooding could not have occurred, the mare basalts having

been derived from relatively deep regions by partial melting (see Taylor,

1975) some 108 years after the basin formed. Backside basins have no

appreciable mare fill, presumeably a consequence of greater crustal thickness

overlying the source regions. For example, if lunar basalts were derived

from depths > 200 km, these liquids would lie below the region of intense

fragmentation for all but the largest basins. Therefore, even if a source

of magma was available at the time of basin formation, penetration of this

magman to the surface would have been significantly longer than in the case

of the Earth, where brecciation reached well into the molten regions.

Arkani-Hamed(1974) has shown that the lunar lithosphere beneath the basin

thickens rapidly after basin formation, which would further hinder the rise

of magma. This sub-basin thickening occurs on the Earth as well (Frey, 1977),

but the shallow fragmented lithosphere of the early Earth presents little

obstacle to rapid flooding following impact.

Remnants of these early post-basin volcanics may have been preserved

in the ancient greenstone belts. Glickson(1976) suggests that some very old

ultrabasic rocks are the products of temporally unique conditions on the

early Earth, such as might be produced by very large impacts. Green(1972)

called parts of the greenstone belts "terrestrial maria" and showed how

i
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rapid pressure drops could produce the observed ultrabasic volcanics

(Green, 1975). Because the rocks show no shock metamorphic effects, they

must postdate the impact events (Glickson, 1976) as suggested above. We

suggest that, like their lunar counterparts, these "mare basalts" were

derived from the upper mantle by partial melting but, unlike the lunar case,

penetrated the thin lithosphere of the Earth and erupted onto the basin

floor in a very short time following the impact.

Because the thinning of the lithosphere is due principally to the

impact, the situation described above probably represents a 'Worst case"

for the Earth in that the depth- diameter relation used(Baldwin, 1963) is

conservative and represents a minimum depth for these basins. Pike(1967)

would argue for much deeper excavation; according to his calculations a

1000 km wide basin could na-t had an original depth of some 75 km, which

means the impact would have punched completely through the lithosphere of

4 billion years ago and exposed a nearly molten, high density magma. The

crustal compositional dichotomy would have been established immediately;

isostatic adjustment would result in a basin floor of basic, 3.0-3.3 gm/cm3

materiol some 3-4 km below the 2.7 gm/cm3 intermediate highland crust.

This adjustment should occur in some 10 3 years(Frey, 1977), which is slow

compared even to the "worst case" basin flooding discussed above. While

it is not clear that Pike's relations are any more applicable than Baldwin's

formulas to the case of very large basins (where basin diameter greatly

exceeds lithospheric thickness), it is clear that deeper excavation on the

early Earth will serve to produce the crustal dichotomy more rapidly. More

conservative depths for giant impact basins have basin filling on the
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Earth delayed some 10 2-10 3 years, a time still significantly shorter than

the filling of the lunar basins.

DISCUSSION

It would seem that, 4 billion years ago, the Earth experienced not only

a period of intense bombardment but a subsequent period of extensive volcanic

eruptions. The results described above indicate that the basin-forming period

was quantitatively adequate to produce a crustal dichotomy comparable to the

modern one from an original global crust. The Earth's first ocean basins

were mare-type basins, and the original "oceanic" crust was mare-type fill

in these basins. The modern oceanic crust, which is a product of plate tectonic

processes, is a much reworked descendent of the original lowlands of the Earth

formed by basin impacts.

Once established, the crustal dichotomy made possible the onset of

plate tectonics. At first, a period of vertical tectonics was the major

influence. Crustal uplift and rifting were probably initiated in the thinned

crust of the Earth's mare basins(Frey, 1977). Loading of these basin margins

by sediments encouraged subduction, which initially was probably confined to

the continent/ocean(highland/'mare)interface. With subduction established, sea

floor spreading at mid-mare ridges could begin the long processes of(oceanic)

crustal reworking, which, after several cycles, would eventually generate the

young oceanic crust of the modern(post-Pangaea)plate-tectonics period. The

remnant highlands were carried about, the pieces being first assembled into

super-continents,then rifted apart as new oceans were born. For the last 2-3

billion years, horizontal tectonics have dominated the crustal development of

the Earth.

i
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The highland crust is not inactive during this period. Basin formation,

basin flooding, rifting and spreading all compete with a gradual thickening

of the continental or highland crust. Intrusive magmatism (Glickson, 1976),

production of anomalous sialic "nuclei" such as in the Fiji Islands (Glickson,

1972) and lateral accretion play minor roles throughout the history of the

Earth in the generation of new continental areas. Continental collisions

and subsequent compression as well as minor underthrusting may account for

minor losses in the areal extent of continents. These processes are hardly

significant, however, compared to the establishment of the original curstal

dichotomy.

If external events are responsible for the generation of this fundamental

division of the Earth's surface, the implications are far reaching. We

mention two examples below.

Without the production lowlying, higher crustal density areas it is

unlikely that modern (horizontal) plate tectonics could have occurred. An

intact global continental crust more than S km thick cannot be subducted

(McKensie, 1969). Crustal uplift and rifting would produce a number of

plates with nowhere to go. New material added at juvenile spreading centers

could spread to nowhere, once minor compression had taken up the "Jostling"

of continental plates. Without subduction there would be no spreading.

Vertical tectonics would dominate the scene. Crustal thickening would likely

proceed more slowly in the early history of the Earth, but would eventually

lead to very thick blocks pushed up by internal motions, only to slide back down.

Volcanics would dominate orogeny, and Himalayan-like folds would not occur.

AA
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A somewhat more distressing implication is that for the evolution of

life. Without ocean basins we picture a highland crust with many small

patches of water which probably alternately dry and reform. It is question-

able whether life could arise by means of chemical evolution without the

stability of relatively permanent, deep, saltwater oceans. At the very best,

evolution of such life forms could well differ significantly from that of

the Earth. There would likewise be a severe change in the weather patterns

if the heat sinks provided by the oceans were absent. If indeed the ocean

basins are products of a flux of asteroids stored for 500 million years in

the outer solar system (Wetherill, 1975), we must question the generality

of such oceans on worlds near other stars. The implications for the

development of extraterrestrial life are important, and will be examined

elsewhere.

CONCLUSIONS

The two-fold crustal dichotomy of the Earth, which must have been present

prior to the onset of global plate tectonics, can be derived from an original

global crust through bombardment by basin-forming, Apollo type asteroids

4 billion years ago. The proximity of the Earth and Moon at this time

requires that the Earth experience the same flux of objects responsible for

the lunar mare basins. Scaling from the obser4ed minimum number of lunar

basins to the larger (gravitational) cross-section of the Earth and for the

greater size of impact craters on the Earth indicates well over 50% of the

Earth's surface was modified by basin-forming impacts.
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The depth of the basins following isostatic adjustment and the rapid

flooding of the lowlands by basaltic lavas established a combined topographic

and compositional division of the crust, superficially resembling the modern

dichotomy. Plate tectonic processes have since reworked principally the

oceanic (mare) crust several times over, rearranging the configuration of the

continental crust in the process.

If the oceans basins of the Earth ultimately have their origin in a

period of impact bombardment of the inner solar system by a group of objects

"stored" for half a billion years in the outer solar system, we must question

the generality of oceanic materials and oceans themselves on planets in other

star systems. Global crusts are probably common on terrestrial planets;

deep, spreading ocean basins may be rare.
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FIGURE CAPTIONS

FIGURE 1. Impact parameters as a function of approach velocity. (a) Impact

velocity at the surface of the Earth (V® ) and the Moon (V., ) and the ratio

of these. (b) Ratio of basin diameters on the Earth to those on the Moon

(for objects of identical mass) for two different values of k. (c) Gravitational

radius compared to the physical radius for the Earth ((R g/R)
(
^ and for the

Moon ((Rg /R)^), and ratio of the Earth's gravitational radius to that of

the Moon.

FIGURE 2. (a) Histogram of basins as a function of diameter. Notation is

the same as that used in column 1 of Table I. (b) Cumulative number versus

diameter on a log-log plot for basins in Table I. Straight line is the

highland crater distribution from Hartmann (1966). Inclusion of all basins

from Table I suggests a distribution different from normal highland cratering.

FIGURE 3. (a) Total area affected by basins as a function of approach

velocity for the Earth. Two cases are included: a minimum number of large,

non-overlapping basins, and all basins and craters from Table I. (b) Percentage

of Earth's surface disrupted by basin-forming impacts. For low velocities,

the curves exceed 100% because there has been no correction for overlap.

FIGURE 4. Depth reached by excavation (depth of crater) and by fragmentation

(depth of breccia) as a function of basin diameter. Crater depth is based on

Baldwin's (1963) formulas. Depth to bottom of breccia is an extrapolation

of the least squares fit shown as the inset, which is based on terrestrial

crater data as reported in Baldwin (1963) and Innes (1961). The extrapolation

is shown as the dotted line.
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FIGURE S. A pressure-temperature model for the Earth 4 billion years ago,

as suggested by Frey and Lowman (1976a). The crust is andesite and 20 km

thick. The mantle is solid peridotite down to u 105 km. The adiabatic

pressure-melting curves for peridotite (p) and basalt (8) are shown.

Several geothermal gradients are also plotted.

FIGURE 6. Mare-type flooding of a large impact basin will be rapid on

the Earth. Formation of the basin changes the pressure-temperature relations

below the basin, and favors melting at shallower depths. The resulting

liquid basalt is less dense (,0 gm/cm 3 ) than the overlying fractured rock

(3.3 gm/cm 3). The rise time is short compared to the isostatic adjustment

of the basin topography (see text).

Ir
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