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ABSTRACT
 

This document is prepared and submitted in accordance with the require
 

ments of Exhibit A, paragraph IV.2, of Contract NAS8-31487. It provides a sum­

mary of the technical development of the Proto-Flight Manipulator Arm (P-FMA)
 

which is a seven-degree-of-freedom general-purpose arm capable of being remotely
 

operated in an earth orbital environment. Conclusions and recommendations are
 

offered for NASA's consideration.
 

The P-FMA is a unique manipulator, combining the capabilities of signi­

ficant dexterity, high tip forces, precise motion control, gear backdriveability,
 

high end effector grip forces and torques, and the quality of flightworthiness.
 

The 2.4-meter (8-foot) arm weighs 52.2 kilograms (115 pounds) and was delivered
 

to NASA-MSFC in March 1977 for the integration of the remote controls. It is
 

intended that the P-FMA would fly as a teleoperator experiment aboard an early
 

Shuttle flight. Ultimately, it,would be used on a free-flying spacecraft to
 

extend the teleoperator capability to 5 kilometers (3.1 miles) beyond the Shuttle
 

Orbiter.
 

This contract was performed under the cognizance of Messrs. John L.
 

Burch and J. Dwight Johnston, Electronics and Controls Laboratory, NASA-MSFC.
 

Specific abknowledgmeits for the work performed on this contract also go to
 

the following Martin Marietta personnel:
 

Mebhaftical design - G. Kyrias, M. Snodgrass;
 

Electrical design - L. Schwab, C. Lord;
 

Structural analysis - R. Thomas, K. Fogg;
 

Thermal analysis - R. Worrell, M. Connolly; 

Reliability analysis - K. Richardson;
 

Manufacturing'and assembly - F. Phelps, R. Dickman, L. Legran~e. R. Groff.
 

McCann;
 

Electrical assembly - R. Maestas. M. Griffin;
 

Functional test - E. Mielkus;
 

Environmental test - D. Lawless, A. Taylor;
 



Quality assurance - L. Jeski, J. Tutchton, H. Saunders;
 

Configuration and data management 
- P. Linn, J. Watson;
 

Planning and cost management - V. Paull;
 

Procurement - R. Ernest, G. Schlicht.
 



1.0. Introduction and Summary
 



1.0 INTRODUCTION AND SUMMARY
 

The role of the remotely operated manipulator is expanding at a rapid
 

rate, particularly in the area of earth orbital operations such as the assembly
 

of large space structures, the performance of satellite retrieval and servicing,
 

and other operations requiring the extension- of man's reach in space. Under
 

the direction of the NASA Marshall Space-Flight Center (4SFC), Martin Marietta
 

Corporation (MMC) Denver Division has designed, manufactured, tested, and de­

livered a seven-degree-of-freedom general-purpose manipulator arm which can be
 

remotely operated in an earth orbital environment. The 2.4-meter (8-foot)
 

Proto-Flight Manipulator Arm (P-FMA), shown in Figure 1, combines the capabili­

ties of significant dexterity, precise motion control, gear backdriveability,
 

high tip forces, high end effector grip forces and torques, and the quality of
 

flightworthiness. When integrated with the controls system being developed by
 

MSFC, the manipulator will be capable of operation from a remote station such
 

as the Shuttle Orbiter payload specialist station or a ground station.
 

Figure 2 Proto-Flight Manipulator Arm 
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The P-FMA contract, NAS8-31487, was a 100 man-month activity conducted
 

over a7 period of performance of 21 months. The contract technical specification,
 

NASA-MSFC 50M23186, defined the manipulator arm requirements and served as the
 

basis for the Contract End Item Specification, MC No. CEI-PFM-00000, and the,
 

P-FMA Interfac& Control Document, MMC No. ICD-PFM-00000. These MMC documents
 

are included in this final report as Appendices A and B, respectively.
 

The manipulator has a flight weight of 52.2 kilograms (115 pounds) and
 

has an average power requirement of 250 watts withpeak power of 500 watts. The
 

unit is driven by providing an analog voltage to the motors to control the oper­

ational rate. The maximum supply voltage is 31V DC. A counterbalance is pro­

vided with the arm to permit the manipulator to perform useful tasks during
 

laboratory testing and evaluations. This counterbalance is unbolted and removed
 

to provide the flight configuration of the P-FMA.
 

The P-FMA drives will develop torques of 112 Newton-meters (90 foot-pounds)
 

at the shoulder, 68 Newton-meters (50 foot-pounds) at the elbow, and 20 Newton­

meters (15 foot-pounds) at each of the wrist drives. This capability provides
 

tip forces in excess of 45 Newtons (10 pounds) in any direction at the end ef­

fector. The end effector has a controllable grip force of 45-400 Newtons (10-90
 

pounds) and a controllable torque up to 22 Newton-meters (16 foot-pounds), as
 

well as continuous roll, in either direction. The drives can operate at an
 

angular rate of 0.2 radians per second (11.5 degrees per second) at no-load and
 

full load. Because of the precision of the drive joints, the starting torques
 

are very low enabling minimum operating rates that are not perceptible to the
 

eye. This results in the ability for fine positioning of the end effector to
 

within a 1.3 mm (0.05 inch) tolerance.
 

The P-FMA drives were based on the design and experience developed by
 

MMC during the development of a 3.7-meter (12-foot) arm, which was an internally­

funded effort during the period of 1973-74. This arm has been used as a labora­

tory tool to develop various control modes and to evaluate.orbital assembly oper­

tating techniques. The results of this experience permitted a rapid development
 

of the new manipulator. Additionally, design improvements which were identified
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by 	this 'earlier experience could be incorporated into the proto-flight unit.
 

Specific improvements included precision gearing, high quality motors and tach­

generators, improved position feedback transducers (brushless sine-cosine re­

solvers), and supplier-adjusted fail-safe brakes, The P-FMA also has the fol­

lowing special flightworthy provisions incorporated in the design:
 

" 	Thermal coatings for passive thermal control in earth orbital
 

operations;
 

* 	Low outgassing, flat viscosity index wet lubricant compatible with
 

earth orbital environments;
 

* 	Space-compatible materials and processes;
 

* 	Demonstration of the drive design under thermal vacuum conditions,
 

Formal acceptance tests were performed on all drive joints to verify
 

operational performance prior to final assembly of the P-FMA. These tests in­

cluded torque and velocity performance, position accuracy measurements, and
 

maximum travel. After final assembly of the manipulator, the acceptance tests
 

included maximum reach, effective tip forces, electrical resistance and con­

tinuity, and end effector performan&e. A thermal vacuum test was conducted on
 

one drive joint which demonstrated the operational performance capabilities at
 

the temperature extremes of -73oC (-1000 F) and 930C (+200'F), as well as 93
 

hours of continuous operation.
 

The major conclusion from this contract effort is the demonstrated capa­

bility to produce a flightworthy manipulator that will perform useful work, as
 

shown by the successful thermal vacuum tests and the development of 58-111 Newtons
 

(13-25 pound) tip forces and end effector torques of 22 Newton-meters (16 foot­

pounds) and grip forces controllable from 45-400 Newtons (10-90 pounds). It is
 

our strong recommendation that NASA give consideration to our proposal of May
 

1976 for the development of a rate control system for the P-FMA.- Only with the
 

fully articulated controls can the utility of this general purpose manipulator
 

be recognized.
 

The balance of this report describes the Engineering Design, Manufactur­

ing, and Hardware Test activities conducted during the development of the P-FMA.
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The final section provides conclusions and recommendations that should be con­

sidered in subsequent manipulator activities.
 

For the convenience of the reader, we have provided the following ap­

pendices to this report:
 

a) P-FMA Contract End Item Specification; 

b) P-FMA Interface Control Document; 

c) P-FMA Operations and Maintenance Document; 

d) V-FMA Drawing Tree. 

Detailed engineering drawings and "as-run" test procedures are on file at
 

NASA-MSFC and Martin Marietta-Denver.
 



2.0 Engineering Design 

1 



2.0 ENGINEERING DESIGN
 

2.1 General - The P-FMA was designed to the requirements of the NASA
 

technical specification, 50N23186.' The resultant manipulator, as shown in
 

Figure 2, has an effective length of 2.4 meters (8 feet), and with its seven
 

degrees of freedom and articulation capability, is a general purpose arm. The
 

unit was designed for stiffness and precise motion, which were accomplished by
 

the proportional sizing of the drive joints and intermediate arm members, and
 

the unique design of the drive gearing to minimize gear backlash. The arm will
 

develop tip forces at the end effector of 58-67 Newtons (13-15 pounds) in the
 

directions normal to the arm length, and can develop forces of 111-113 Newtons
 

(25-30 pounds) in the extend/retract axis. The end effector can develop grip
 

forces from 45-400 Newton-meters (10-90 pounds) and rotational torques up to 22
 

Newton-meters (16 foot-poupds) in either direction through the wrist roll.
 

The arm weighs 52.2 kilograms (115 pounds) in its flight configuration.
 

The weight distribution is presented in Table 1. For laboratory operation, a
 

END EFFECTOR
 

WRIST AmLl 
WRISTY 

WRIST PITCH
 

AIM
LOWER 
SEGHENT 

ELBOW PITCH
 

4 fbet
 

i / 4 feet
 

Shoulder Yaw
 

Figure 2 Proto-Plight Manipulator Arm (Isometric)
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Table I Weight Distribution 

Subassembly, 


Shoulder Yaw 

Shoulder Pitch 

Shoulder Roll 

Upper Arm 

Elbow Pitch 

Lower Arm 

Wrist Pitch 

Wrist Yaw 

Wrist Roll 

End Effector 

Wire Harness + Bracketry 


TOTAL 


Weight (Ibs)
 

17.2
 
17.7
 
12.0
 
4.8
 
11.0
 
3.3
 
6.5
 
6.5
 
7.6
 
5.4
 

23.0
 

115.0
 

simp e counterbalane~e has bee applied to -ach o-f the three pitch axes. This
 

permits the P-FMA to perform useful work during evaluations and testing under
 

earth gravity conditions. The counterbalances are simply unbolted from the arm
 

to obtain the flight configuration.
 

A supply voltage of 0-31V DC is required to operate the drive motors
 

through the total performance range. The unit operates with an average power
 

requirement of 250 watts and a peak power of 500 watts. The position transducers,
 

which are sine-cosine resolvers, require single phase 400 Hz, 26V AC input vol­

tage.
 

The arm is powered and controlled through two electrical connectors lo­

cated at the base of the shoulder yaw drive. The mechanical interface is a bolt
 

pattern of six 6.35-mm (1/4-inch) diameter holes equally spaced on a 19.0-cm
 

(7-1/2 inch) diameter bolt circle.
 

The dexterity of the arm is demonstrated by its ability to touch its
 

mounting base with the end effector. Figure 3 illustrates the maximum extent
 

of travel of all drives. In order to stow the P-FMA for flight, the configura­

tion shown in Figure 4 offers a low profile, with a small packaging envelope
 

and good structural support.
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All components, processes, and materials were screened and selected on
 

the basis that ,they were fLightworthy. Component suppliers were selected for
 

their flight hardware experience. A materials list for the P-FMA was developed
 

and forwarded to NASA. Material selections were taken from the NASA-MSFC Speci­

fication 50M02442, Revision W. Materials Usage Agreements (NUAs) were prepared
 

for nonconforming materials.
 

Subsequent paragraphs of this section discuss the various detailed design
 

descriptions of the drive joints, the end effector, and the analyses that sup­

ported the manipulator design.
 

2.2 Drive Joint Design - The P-FMA has seven degrees of freedom plus 

the end effector grip capability. Six of the drives (shoulder pitch and yaw,
 

elbow pitch, and wrist pitch, yaw, and roll) are all of one typical design, but
 

sized for specific torques and speeds as shown in Table 2. The seventh drive
 

is the shoulder roll which is only for position indexing of the arm.
 

Table 2 Torque and Speed Requirements
 

SHOULDER SHOULDER ELBOW WRIST PITCH, 
PITCH AND YAW ROLL PITCH YAW AND ROLL 

Drive Torque 90 INDEXING 50 15 
ft-lbs (max) 90_ _ ONLY 

Weight - lbs 17.75 10.32 11.5 6-pitch and yaw 

7-roll 

Gear Reduction 109.8:1 66:1 103.1:1 86.4:1 

Motor RPM 208.62 72.60 391.78 164.16 
(no load) 

Output RPM 
(no load and 1.9 1.1 3.8 1.9 
full load) 
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The basic drive joint design is shown in Figure 5. The drive is power­

ed by a pancake torque motor mounted on Shaft 1. The shaft 1 pinion drives a
 

dual mesh, three-stage gear reduction. This gear train can be traced by follow­

ing the torque transmission through Shafts 2 and.3, inclusive of Sections A and
 

B. The final gear stage terminates with the internal gear which is fixed to
 

and drives the outer housing. The tachometer (rate sensor) is mounted to the
 

shaft 1, giving the maximum voltage for rotational speed. The fail-safe brake
 

is also mounted on the Shaft 1 which requires the minimum torque, and therefore
 

minimum power to restrain the drive if motor power were interrupted. The re­

solver (position sensor) is driven through an anti-backlash gear from Shaft 3.
 

The precision of the drives is accomplished by the use of AGMA Class 12
 

spur gears and the incorporation of an adjustment in the second gear mesh to
 

remove the system backlash. This is illustrated in Figure 6. Prior to doweling
 

the adjustable gears, the gear train backlash is removed by rotating all gears
 

until the tooth faces are in contact. This design results in a total gear back­

lash of less than one arc minute.
 

bRIVE GEAR TRAIN 

CENTER MESHGEAR 
(Adjustable) --

INPUTPINION 
(I Re'4) 

INPUTGEAR 

, 
--

S 
CENTERMESH 
PINION 

(2Req'd) 

CENTER MESH
 
GEAR
 

INTERNIAL OUTPUT GEAR
 
OUTPUT 
PINION
 

Figure 6 Drive Gear Train
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Internal Gear 

A B Outer Housinq 

Shaft 3 N-Iotor 

0 - -Tachometer 

Resol ver 
Brake 

Heater 0 

Shaft 2 -

Limi t Switch ShaftI 

A B, 

Shaft 3 Shaft 3 

SShaft 2 Shaft 1 Shaft 2 

Shaft 3_ Shaft 3" 

sECToI A -A SECTION B- B 

Figure 5 Drive Joint Design (Typical) 
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These drive joints have the feature of backdriveability because of the
 

inherent efficiency of a spur gear train. With no power applied to the motor
 

and external forces applied to the output side of the drive, the drive will ro­

tate, thus preventing damage to the unit due to overloading by external forces.
 

This feature becomes useful when performing close tolerance work subh as inser­

ting of a pin in a hole which has misalignment. Once the pin has been started
 

into the hole, the motor input signal should be zero on the wrist drives. Power
 

properly applied to the shoulder and elbow pitch drives will provide a transla­

tional motion to the end effector and the three wrist drives will backdrive to
 

eliminate the misalignment. If the backdrive rotation is not required, motor
 

input signals would be applied to the drive.
 

The fail-safe brakes are designed to be applied in case of power failure;
 

each brake is released when powered. The brakes have been sized to restrain the
 

rated torque-.of the -drive, but will slip at 15 percent over rated torque. There­

fore, overloads will not damage the gear train; and in case of a flight anomaly,
 

the arm could be repositioned to the stowed configuration either by EVA or use
 

of the Shuttle attached manipulator system.
 

A limit switch is provided in each drive, except for the wrist roll, to
 

provide an indication that the drive has reached its maximum travel. The heaters
 

are required in the cold thermal case to prevent the drive temperature from
 

going below -730C (-100'F). Temperature sensors are provided in all three of
 

the pitch drives. An eight (8) conductor slip ring assembly is incorporated
 

in the continuously rotating wrist roll drive for the end effector operation.
 

A listing of the major component suppliers is presented in Table 3.
 

Figure 7 is a section view of the shoulder roll drive which is used
 

only for position indexing. This is- a worm drive with the resolver worm and the
 

motor on the same shaft. The worm drive provides a nonbackdriveable condition
 

and therefore no brake is required. The limit switch and heater serve the
 

same functions as in the other drives.
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Table 3 Component Suppliers
 

COMPONENT MANUFACTURER ADRESS
 

Motor Inland Motor Radford, VCrg lnia
 

PToaychometer Radksr,Virginia
Inland Motor 

Resolver Singer-Kearfott Clifton, New Jersey
 

Gears Schwartz Precision Gear Co. Warren, Michigan
 

Fail-safe Brake American Precision Inc. East Aurora, New York
 
Heater Watlow Electric Mfg. Co. St. Louis, Missouri
 

Temperature Sensor Hy-Cal Engineering Santa Fe Springs, California
 
Limit Switch Honeywell, Inc. Freeport, Illinois
 

Slip Ring Polyscientific Division Blacksburg, Virginia
 
Litton Precision Products,
 
Inc.
 

Electrical ITT-Cannon Santa Ana, California
 
Connectors
 

Wiring W. L. Gore, Inc. Flagstaff, Arizona
 

The drives are lubricated with a wet grease lubricant. A lithium-based
 

grease W('L Scientific L-I1) with a small fraction of molybdenum disulfide has
 

been used on all drives for ground based operations, For space operations, the
 

unit has been tested with a Braycote 3L 38-RP lubricant. This grease was se­

lected for its low outgassing and flat viscosity index. The selection of a wet
 

lubricant over a dry-film or solid lubricant was based on the high contact
 

stresses in the bearings, and the probability of high humidity exposures to
 

prelaunch and post-landing environments. However, all drives are assembled
 

with teflon dust seals at the interface between the fixed and rotating housings
 

of the drive.
 

Each motor and tachometer is provided with a spare brush ring assembZy.
 

For laboratory operations, the standard silver-graphite brushes are installed.
 

Prior to vacuum environment (testing or space) operations, the brushes are re­

moved and replaced with Boeing compact 046-45 brushes.
 

Special considerations were given to the thermal design of the drives.
 

The operational thermal limits are established by the lubricant viscosity on
 

the cold extreme and the motor rotor temperature on the hot extreme. The drives
 

were biased in the direction of the cold case which provides for longer operating
 

time at a motor-stalled condition. To accomplish this biasing, the exterior of
 

the arm was coated with a white acrylic lacquer (a/e = 0.3) and internal surfaces
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C. 	Motor rotor/stator interference - The design clearance is reduced
 

by 35 percent at a maximum rotor temperature of 155°C (311°F).
 

This is an acceptable condition.
 

The mechanical components of the drives,were structurally analyzed as
 

described below.
 

a. 	Gear analysis - Each gear mesh of each drive was analyzed to deter­

mine both strength and durability horsepower. Techniques were
 

based on American Gear Manufacturers' Association (AGMA) methods.
 

Significant margins (> 100%) existed in all cases, as shown in
 

Figure 9. Gear tooth load cycles and contact stresses were com­

puted -for the pinion of each drive for comparison with lubricant
 

allowables. Based on the drive operating for 500 hours in each
 

direction of rotation, gear life was acceptable even using some
 

dry-film lubricants, if special precautions were taken with appli­

cation and maintenance. Extremes showed 23 x 106 contact cycles
 

04 

.03 

SHOULDER ELBOW 	 WRIST
 

Figure 9 Gear Durability Horsepower
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at no-load, and at full stall (0 cycles) a contact stress of
 

1.0 	x 106 kilograms/sq cm (145,000 psi).
 

b. 	Bearing loads analysis - Radial bearing loads were predicted based
 

on stall torque, no friction, and equal distribution of loads be­

tween the dual gear sets. Adequate margin existed for both static
 

and dynamic bearing capacity, as shown in Figure 10. However,
 

calculated contact stresses at the maximum rated horsepower showed
 

a value of 1.9"x 10 kg/sq cm (270,000 psi) which exceeds the ac­

ceptable limit for dry-film lubricants. It was primarily this data
 

that resulted in the selection of a wet lubricant for the drive
 

joints.
 

c. 	Vibration analysis - In order to provide data for the servo-control
 

design, the natural frequency of the P-FMA was computed at its fully
 

-extended 
 corfffiguration with tip loads of 0, 50, and 136' kilograms
 

(0, 110, and 300 pounds). Under these conditions the natiirnl
 

6001- Dynamic Capacity
 

SHOULDER DRIVE BEARING
 
AT OUTPUT PINION
 
FAFNIR MVS3K
 

Soo 	 (52% C.R.)
 

400
 

300
 

Static Capacity 
Design Load at Stall 

200 I 

Design 	Load at Max HP
 

100I oI . ,
 

0 
 l~ 
100 200 ' 300 400 500 

Contact (Hertz) Stress - ks, 

Figure 20 Bearing Load/Stress Curve
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frequency was 2.4, 0.9, and 0.6 Hertz, respectively. The natural
 

frequency of our in-house manipulator with no tip load was 0.7 Hz,
 

and the controlled performance of this arm is well documented.
 

2.5.2 Thermal Analysis - The thermal analysis was performed in two
 

phases--I) analysis of a drive joint to determine the thermal design require­

ments, and 2) analysis of the total arm to determine the overall temperature
 

extremes and the adequacy of passive thermal control. The Martin Thermal Radia­

tion Analysis System (TRASYS) computer program was used to calculate radiation
 

interchange and external heat rates. The Martin Interactive Thermal Analysis
 

System (MITAS II) was used for the thermal network solution.
 

The thermal environments were based on a 400 km (250 mile) circular
 

orbit. The basis for the cold thermal case was an equatorial orbit with the
 

manipulator in the stowed configuration on a free-flying vehicle, which was
 

tilted at 45 degrees to the orbital plane. This orientation simulates no direct
 

solar exposure, and always oriented toward the earth. The hot thermal case has
 

the manipulator in a deployed configuration on a free-flying vehicle and in a
 

circular polar orbit. This orientation permits planetary and albedo heating
 

as well as direct solar exposure.
 

The wrist pitch drive was selected for thermal analysis because the
 

wrist drives represent the smallest thermal mass and the pitch drive has an in­

ternal temperature sensor which is useful during thermal tests. Seven thermal
 

cases were identified based on the orbital attitude, operational and nonopera­

tional drive joint, operational and nonoperational heater, and transient opera­

tions. The conclusions from this drive joint analysis were:
 

a. 	Provide a high emissivity exterior surface such as white acrylic
 

lacquer, which will cold bias the drive in all space environments.
 

This will enable a maximum continuous operating time since the
 

motor rotor temperature is a design limit.
 

b. 	Provide black anodized interior of the drive housing to increase
 

motor heat rejection and aid in the warming of other internal drive
 

components.
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c. 	Provide a small heater for each drive to prevent drive temperatures
 

from dropping below -73oC (-100'F).
 

The resultant drive temperature extremes are presented in Table 4. The
 

steady state temperature distribution for the P-FMA for the cold case (only
 

heaters "on") and the hot case (all components operating continuously) is shown
 

in Table 5.
 

Table 4 Extreme Drive Joint Temperatures
 

TEMPERATURES (OF)
 

DRIVE ELEMENT Cold Case Hot Case
 

Housing -44 81
 

Resolver Cover -65 43
 

Brake Cover -61 49
 

Motor Rotor - 1 310*
 

Pinion Gear 0 151
 
*8.9 minutes of running; start temperature 1001F
 

2.5.3 Rate Control Analysis - The Proto-Flight Manipulator Arm (P-FMA)
 

controls analysis was performed-based on the rate servo loop as shown in Figure
 

11, which is intended to demonstrate the operation of each drive joint. The
 

control laws and articulated arm control design are being developed by NASA-MSFC.
 

The results, which are summarized below, provided the parameters for bidirec­

tional motion at variable input rates and showed the stability and bandwidth
 

for drive joint operation. The control parametric values are tabulated in the
 

P-FMA Interface Control Document (Appendix B to this report). The controls
 

analysis was performed in the following manner.
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Table 5 P-FMA Temperature Distribution 

Temperatures (OF) 

Cold Cold Hot 
Arm Subassembly Stowed Deployed Deployed 

Shoulder Yaw -15 -12 136 

Shoulder Pitch -17 -25 137 

Shoulder Roll -73 -102 95 

Upper Arm -65 -111 93 

Elbow Pitch 4.3 -18 114 

Lower Arm -59 -105 105 

Wrist Pitch -11 -18 125 

Wrist Yaw -15 -14 139 

Wrist Roll -15 -19 139 

-10 to DoV o to +iot/ 

DEFINITIONS 

KT = toque sensitivity of mtor, ft-lb/amp 

N = gearratio 

RT 
J 

= totalresistance, ohms 

= totalreflected inertia, ft-lb-sec 
2 
(loaded and unloaded) 

K= backEMF of motor, volts/rad/sec 

V -tachometer sensitivity, volts/tad/sec 

KF = forward loopgain 
SCM= servo compensation network 

DA drive amplifier 

Figure -1 Rate ControZ Loop 
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a. 	Drive motors were selected on the basis of stall torque and no­

load speed. This established the torque sensitivity (KT) and the
 

back-EMF (KB), and determined the damping factor (FI).
 

b. 	The tachometers were selected based on the speed range of the motors.
 

Since the tachometer and the motor are mounted on a common shaft,
 

the maximum tachometer signal level could be attained with no addi­

tional complexity to the drive design. The tachometer sensitivity
 

(1V) 	 of 0.118 volts/radian/second was selected for all drives. 

c. 	Drive joint inertias (J) were calculated, based on the final joint
 

designs. Arm inertias were also calculated for the unloaded and
 

loaded conditions, in a typical deployed configuration. Addition­

ally, a maximum inertia was calculated with the arm in a fully ex­

tended configuration, with and without the maximum 50 kg (110 pound).
 

tip load.
 

d. 	Drive amplifier gains YFKDA) were calculated for each of the drives
 

and are listed in Table 6. The following factors were considered:
 

1) The maximum controller input was assumed to be 10 volts.
 

2) Drive breakaway torques were determined to be insignificant.
 

*3) 	System compliance values were assumed to be 20,300 Newton­

meters/radian/second (15,000 ft-lbs/radian/second) for the
 

shoulder drives, 10,800 Newton-meters/radian/second (8,000
 

ft-lbs/radian/second) for the elbow drive, and 2,700 Newton­

meters/radian/second (2,000 ft-lbs/radian/second) for the
 

wrist drives. These values were determined from our in-house
 

controls development.
 

4) The damping factor (FI) is 0.1 of an infinite impedance power
 

source.
 

e. 	Open loop bode plots were generated for each of the drive joints to
 

demonstrate that with the drive amplifier gains of Table 6 and the
 

correct servo compensation networks, each drive has sufficient
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Table 6 Drive Amplifier Gains (volts/volt)
 

SY SP E.P WP WY WR 

492 492 1003 382 382 382
 

response and phase margin for both no load and full load. They
 

also proved that the joint designs, in particular the motor se­

lection, will easily meet specification requirements and even pro­

vide growth potential for loads and/or response. The compensation
 

and gains were selected to provide one set of values for both load
 

and no load for each of the joints. The 3 hertz bandwidth response
 

requirement has been met for the unload condition only as a cost
 

effective measure to simplify control electronics.-More optimum
 

performance can be achieved if the user wishes to vary the gains
 

and compensation values.
 

f. 	To provide added flexibility to the user, position sensors (brush­

less resolvers) have been incorporated into each drive joint. The
 

resolvers are driven through anti-backlash gears from the final
 

output stage to minimize position error due to gear backlash.
 

Resolvers were selected in preference to encoders for the following
 

reasons:
 

a. 	The resolver weight and volume were compatible with the drive sizes.
 

b. 	An encoder at each drive would significantly increase the size of
 

the main wire harnesses due to the significant increase in number
 

of wires required.
 

c. 	The encoder was not compatible with the environmental temperatures
 

unless special heaters were provided.
 

2.5.4 Failure Modes and Effects Analysis (FMEA) - A failure modes and
 

effects analysis was performed in accordance with NASA-MSFC document SE-020-O06-2H,
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Guidelines for Performing FMEA on the Solid Rocket Booster, dated 10 July 1975.
 

This analysis verified there were no failures that would jeopardize crew safety
 

or primary mission objectives. An extension of this analysis presents the re­

sultant reduction in reach envelope under various drive joint failures. The
 

most severe failure would be that of the elbow drive. Preceding the FMEA, we
 

performed a failure mechanisms analysis, which basically catalogued the causes
 

of failures and identified the techniques to minimize the failure occurrences.
 

Analysis tables were developed for the following:
 

i DC Torque Motors, * Ball Bearings
 

* Tachometers a Resolvers
 

* Spur Gears * Lubricants
 

" Worm Gears
 

Additionally, failure probability analyses were performed for the motors and
 

tachometers, resolvers, and the slip ring.
 

2.6 Counterbalance Design - The P-FMA was designed for operation in a
 

zero-g environment. A simple bolt-on counterbalance was provided for each of
 

the three pitch axes in order to permit useful operations in the laboratory en­

vironment while not degrading the flightworthy quality of the arm. Thus, the
 

arm can perform useful work during laboratory evaluations and testing. Addi­

tional counterbalance weights have been provided for the condition when simula­

ted loads are applied to the end effector. Each of the three pitch drives must
 

be sequentially counterbalanced to accommodate the increased tip load. When
 

properly adjusted, the arm can be positioned throughout its full range of travel
 

in shoulder yaw and all pitch motions, as long as the shoulder roll drive is in
 

its nominal position. If the shoulder roll is rotated, the wrist yaw becomes
 

a pitch degree of freedom and is not counterbalanced. With nominal operations,
 

the wrist yaw also produces an imbalance error when the drive is actuated, as
 

shown in Figure 12. Wrist yaw travels of +20 degrees have an insignificant im­

balance, but if the travel is greater counterbalance compensation should be con­

sidered.
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All changes to the counterbalanced condition should be carefully planned
 

and analyzed before implementation. After implementation, tests should be con­

ducted with the arm manually supported as the individual drive brakes are re­

leased. Operations at minimum drive voltages, running in each direction at the
 

same voltage, will demonstrate an effective counterbalance.
 

In the design of the control system it must be recognized that the
 

counterbalance causes a large increase in the reflected moments of inertia on
 

the drives. Accelerations will be significantly decreased, thus reducing the
 

control response. If the manipulator is ground tested with the counterbalance-­

controlled by a closed position loop--extreme care must be taken so the added
 

inertias do not cause instability that could damage the drives.
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3.0 Manufacturing
 



3.0 MANUFACTURING
 

3.1 General - The manufacturing of the P-FM was conducted in four
 

phases--l) procurement of components, 2) detail manufacturing, 3) assembly of
 

drives, and 4) final assembly of the arm. Figures 13, 14, 15, and 16 show the
 

P-FMA in the various phases of manufacture.
 

The manufacturing period of performance was held to a minimum by the ef­

fective use of the Engineering Model Shop which permits daily liaison between
 

the manufacturing and engineering personnel. From this same location, quality
 

assurance inspections are conducted and documented. Corrective actions and
 

drawing revisions can be immediately resolved and implemented. We have demon­

strated the cost-effectiveness of manufacturing and assembly of limited quanti­

ties of units by this method. Subsequent paragraphs of this section discuss
 

the manufacturing phases in detail.
 

3.2 Procurement of Components - During the design phase of the P-FMA 

program, components had been selected by trade studies which considered perfor­

mance, geometry, supplier qualifications, and cost. Procurement activities were
 

started with the issuing of statements of work for competitive bidding for the
 

various P-FMA components. In moat cases the statement of work identified manu­

facturers' part numbers, but required space-worthy materials and process con­

trols, as well as quality assurance provisions and documented functional accep­

tance tests prior to shipment. In sowe cases such as gears, brakes, and re­

solvers, there were no catalogue equivalents available. Therefore, these state­

ments of work also included detailed drawings and special testing requirements.
 

In the case of the resolvers, two sizes were required; one size had been developed
 

as well as the technical design principle.
 

The final selections of components and suppliers ware mutually establish­

ed by NASA and Martin Marietta at the Critical Design Review. Firm priced pro­

curement agreements were issued to the selected suppliers. Issued dates were
 

based on program need dates with a 30 percent margin and were influenced by con­

tract incremental funding limitations. Supplier performance was quite satisfactory
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Figture 16 P-FM4 as Delivered to NASA 



despite some technical problems which were resolved without the reduction of
 

technical performance. A listing of the primary components and suppliers was
 

shown in Table 3.
 

3.3 Detail Manufacturing - Because of design similarity of the two
 

shoulder drives and the three wrist drives, many machined details were made
 

from a common machine setup in order to improve productivity. Details were
 

rough-machined then brought to final external dimensions. In order to incor­

porate precision into the drives, final gear shaft centers and bearing diameters
 

were located and finally machined, using jig bore precision within +0.005 mm
 

(+0.0002 inch). All specified details were then black anodized as required for
 

passive thermal control. By completely anodizing these parts, significant time
 

otherwise required for masking was saved. Subsequently, the external finishes
 

were easily applied. The upper and lower arm segments were manufactured from
 

standard square extruded aluminum tubing. The wall thicknesses were reduced
 

internally by chemical milling to reduce weight and still maintain a maximum
 

cross-sectional moment of inertia. Machined details were inspected for dimen­

sional compliance to engineering drawings.
 

3.4 Assembly of Drives - All drive assembly operations were performed
 

on laminar flow benches within a clean room. All parts had been previously
 

cleaned. Bearings were cleaned ultrasonically prior to being lubricated. The
 

initial assembly phase involved the installation of gears and bearings into
 

the center internal housing. All bearings were installed with a light "push"
 

fit. The two adjustable gears were located and doweled to minimize the gear
 

backlash. At this point, two interim acceptance test points were verified by
 

Quality Assurance to document the measured gear backlash and the static torque
 

for each drive. These tests are described in the hardware testing section under
 

paragraph 4.4.1. At this point, component installation and electrical wire
 

routing were performed concurrently. The motors with matching brush ring assem­

bly are installed on the input shaft. The tachometers with matching brush ring
 

assembly are then installed on the same shaft. The fail-safe brake is installed
 

with its housing and cover to complete one side of the drive. On the other side
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of the unit, the heater and temperature sensor (pitch drives only) are instal­

led. A thermal conductive grease is used for improved heat transfer. The re­

solver and associated.anti-backlash gearing is installed, coming off the final
 

output pinion shaft. The resolver housing or cover is then installed. As com­

ponents are installed they are wired in accordance with engineering schematics
 

and wiring diagrams. Each drive has two main connectors--one for power conduc­

tors and the other for instrumentation conductors--mounted to the fixed portion
 

of the drive housing. These connectors will subsequently be mated with the
 

respective main wire harnesses during final assembly.
 

At this point, further interim acceptance tests are conducted to verify
 

electrical continuity and resistance, and the functional performance of each
 

drive. These tests are further described in the hardware testing section under
 

paragraph 4.4.1.
 

The drive assembly procedures for the shoulder roll and the end effec'tor
 

are different due to their unique designs. However, the assembly philosophy and
 

subsequent tests are similar.
 

Just prior to final assembly of the P-FMA, final external thermal fin­

ishes were applied-to the drives, tubular arm segments, and wire harness brack­

etry. It should also be noted that the wrist pitch drive was subjected to the
 

thermal vacuum qualification testing, including a 93-hour operational life test,
 

after the functional acceptance tests. Following the qualification tests, the
 

unit was completely disassembled, inspected, relubricated, reassembled, and re­

acceptance-tested prior to final assembly into the P-FMA.
 

3.5 Final Assembly - The final assembly of the arm progressed, starting
 

from the shoulder yaw drive to the shoulder pitch and so on throughout the length
 

of the arm. As the drives were installed, the main wire harnesses were develop­

ed, routed, and clamped in accordance with the engineering schematics and wire
 

harness drawings. Just prior to installation of the wrist roll drive, the slip
 

ring was assembled and wired into the drive. The slip-ring provides the contin­

uous roll capability while providing power to the end effector. The end effec­

tor was then installed.
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The next operation was to set the arm in its nominal position and null
 

the resolver in each drive~joint. Then each drive was operated through the
 

specified angular travel and the limit switches were set at the position ex­

tremes.
 

As the arm was assembled the counterbalances were installed at the
 

three pitch drives. Just prior to final acceptance testing of the arm, the
 

counterbalance was adjusted for nominal operations.
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4.0 HARDWARE TESTING
 

4.1 General - The testing of the Proto-Flight Manipulator Arm was con­

ducted in three phases--l) design development tests, 2) qualification tests, and
 

3) acceptance tests. These tests were performed in accordance with NASA-approved
 

test procedures which were based on the requirements of the MSFC Specification
 

50M23186. The testing primarily demonstrated the functional performance of the
 

drive joints under no load and full load, the operational capability of the
 

drive joint design under thermal vacuum conditions, and the functional capabili­

ties of the fully-assembled manipulator in a laboratory environment with the
 

counterbalance installed. All performance requirements were met or were exceed­

ed. Significantly, the maximum tip force of 45 Newtons or ten pounds was ex­

ceeded, providing the capability of 58 to 111 Newtons (13 to 25 pounds) depend­

ing on one or two drives in operation concurrently. The minimum operational
 

rates which can provide a fine positional adjustment have been measured at 10
 

arc minutes/second. When this data is referenced to the wrist drives, position
 

control is attainable to within 1.3 mm (0.05 inch) for each second of applied
 

input voltage.
 

4.2 Design Development Tests - Design development tests were performed
 

early in the program to evaluate the thermal effects on the operational capability
 

of the drive joint design. With the gear backlash removed by gear adjustments,
 

it was a concern that thermal contraction could increase tooth engagement and
 

result in high starting torques. Thermal analysis had predicted a satisfactory
 

condition and this was confirmed by test. The test unit was the wrist roll
 

drive from the Martin Marietta 3.7-meter (12-foot) remote manipulator system.
 

This unit was selected because its design was similar to the P-FMA drive design
 

and the gear backlash was less than one arc minute. The tests were performed
 

in an apparatus shown in Figure 17. A liquid nitrogen shroud encapsulated the
 

drive and infrared lamps around the test unit regulated the specimen temperature.
 

Torques were applied to the output end of the drive using a pulley and weights
 

until motion was perceptible. Torques were factored to reflect input drive
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Figure 17 Design Development Thermal Test
 

torques. Figure 18 shows the effects of temperature on static friction (break­

away torque). The cold temperature effect was due to the increased lubricant
 

viscosity. These tests concluded that cold temperature operations had only
 

minimal effect on losses due to thermal contraction and that selection of lubri­

cant must consider viscosity index.
 

Several lubricants were tested to evaluate the effects of temperature
 

on viscosity. Various lubricants were applied to ball bearings and lightly
 

pressed into retaining plates, as shown in Figure 19. The bearing torques were
 

measured with a torque watch as the temperature was reduced. The results of
 

these tests are shown in Table 7. It was concluded that a small heater in each
 

drive would provide the assurance that the drive temperature could be maintained
 

above -730 C (-100F). Independent studies by NASA-MSFC identified a Braycote
 

3L38-RP grease that provided an improved viscosity index and also had low out­

gassing characteristics. This lubricant will be used for space environment oper­

ations, and the P-L Scientific L-11 (lithium-base grease with 2 percent molybdenum
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Table 7 Temperature Effects on Lubricants
 

Bearing Friction Torque (oz-inch) at Cold Temperatures
 

Lubricant -121OF -117OF -1150FO -89 
°F -BO°F -770F -72F -62 0F -50OF -250F 00 F 

Bearing 0 0 0 0 0 O 0 0 
= iDry 

E = Brayco 
!E=631 

Very 
High 

Very 
High 

Very
High 

Very
High 

20 3 1 0 

- c Brayco 
813 

Very 
High 

Very
High 

Very
High 

Very
High 

Very
High 

12 1 0 

S 
Bearing 
Dry 
L-11 

0 0 

Very 

0 

4 

0 

6 

- O 

2 0 

0 a 

0 

.2[ Grease 
L-11 

1 High
0 1 0 0 O 0 0 

-'' 
Spray 

disulfide) will be used for laboratory operation because of improved corrosion
 

resistance properties.
 

A development test was conducted in vacuum to determine the extent of 

motor rotor heating with convective heat transfer eliminated. The wrist roll 

drive was installed in a vacuum chamber, as shown in Figure 20, and pumped to 

1 x 1 0 -4 torr. The motor was operated at stall with maximum rated input power 

for periods of 30 seconds. Maximum rotor temperature rises were approximately 

30'C o 50'F. Subsequent thermal analyses concluded that the P-FMA drives would 

not experience a rotor temperature that exceeded its rated value of 15500 (310'F) 

when operating for 30 seconds at stall. 

A component development test was performed on electrical connectors to
 

verify the integrity of the units after exposure to the cold temperature extreme.
 

Exposures - 770C (-1060 F) showed no structural or electrical degradation to the
 

connector, inclusive of potting or wire insulation.
 

Tests were conducted to determine the best suited material for the fail­

safe brake grip surface. The standard material--cork--was not compatible with
 

the space environment. Twelve materials were tested to determine the most uni­

form coefficient of friction over the temperature range of -73
0C (-1000 F) to
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Figure 20 Motor Rotor Temperature Test 

+930C (+2000 F). The Raybestos R860-6 showed the most consistent results and
 

was selected as the brake material. Outgassing tests of the material were per­

formed which showed a weight loss of less than 0.10% with volatile condensible
 

materials of 0.05%.
 

4.3 Qualification Tests - The sole qualification test of the P-FMA was
 

a thermal vacuum functional test of one drive joint. The test arrangements are
 

shown in Figure 21. The wrist pitch drive was selected as the test specimen
 

because it was most susceptible to temperature changes due to its low thermal
 

mass, and it contained a temperature sensor as part of the design that would
 

provide internal temperature monitoring capability. It had been modified to
 

incorporate the Boeing compact brushes for the motor and tachometer, and had
 

Braycote 3138 grease as the lubricant for these tests, Tests were performed,
 

-
as shown in Figure 22, at 1 x 10 6 torr with three thermal cycles from -73*C
 

(-1000F) to +930C (+2000F) with functionals performed at -73oC (-1006F), +270C
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Figure 23 Thermal Vacuum QualificationTest 
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(80*F), +49-C (120'F), and +93C (200'F). A total of ten functional tests in­

clusive of no-load and full-load operations were performed. Additionally, an
 

operational life test with rotational cycling was performed which accrued 93
 

hours of continuous operation without degradation of drive performance.
 

The performance capabilities of the drive were demonstrated in the
 

space environment. It was noted that the drive had reduced performance at +93C
 

(200*F). At this temperature the drive operated at one-half the rotational rate
 

at full torque. This condition had been predicted from motor performance analy­

sis due to the 12R loss resulting from rotor heating. However, our thermal
 

analysis has predicted a maximum drive temperature of +27*C (81*F) at the ex­

ternal housing. Therefore, no performance degradation is anticipated during
 

actual orbital operations.
 

The operational life test was performed for 93 hours at a vacuum of
 

I x l0- 7 torr and a temperature of 27C (810F). This test consisted of contin­

uously operating the drive, changing the direction of rotation every five min­

utes during the first hour, every 15 minutes during the next 14 hours, and every
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30 minutes during the last 78 hours. The test demonstrated the capability for
 

sustained operations of the drive design in a space environment. Post-test
 

inspections showed no effects other than some chipping of the tach-generator
 

brushes; however, the motor brushes showed negligible wear. The contrasting
 

appearance of the two sets of brushes indicated that consideration should be
 

given to increasing the size of the tach-generator brushes. It appeared there
 

might be a minimum size to which the Boeing compact material should be cut in
 

order to maintain structural integrity.
 

4.4 Acceptance Tests - The acceptance tests were performed progressive­

ly as the P-FMA was assembled, followed by fully-assembled arm tests and a final
 

demonstration at NASA-MSFC. The acceptance tests provided the means of verify­

ing that all critical parameters were met during the assembly phases and that
 

the final design would meet the NASA specification. All tests were functional
 

tests under a laboratory environment; no flight environmental tests were per­

formed. However, this subject is discussed in paragraph 5.2. "As-run" accep­

tance test procedures and data are on file at NASA-MSFC and Martin Marietta.
 

4.4.1 Drive Joint Tests - As the drives progressed through the assembly
 

phases, they were tested for gear backlash, static friction, electrical contin­

uity and resistance, insulation resistance, component performance, and drive
 

joint performance. The following paragraphs briefly describe these tests.
 

a. 	The gear backlash tests were performed after installation of the
 

gears and bearings into the drive housing. At the completion of
 

the adjustment of the second gear mesh, gear backlash was verified
 

to be less than one arc minute in all primary drives.
 

b. 	The static friction tests were performed immediately after the
 

backlash tests. A torque was measured at the input shaft to deter­

mine the value to overcome friction and the torque variance through­

out each drive, as an indication of concentricity and uniform gear
 

mesh. Static friction torques of 0.24 - 0.32 Newton-centimeters
 

(1/3 to 1/2 inch-ounce) were consistent on all primary drives.
 

46
 



c. 	The electrical tests were performed after installation of all com­

ponents and internal wiring. Breakout boxes which interface with
 

the drive joint power and instrumentation connectors were used for
 

these tests. Continuity and resistances were verified; a 100-volt
 

Hegger test was performed to verify insulation integrity.
 

d. 	The component performance tests verify that all components meet
 

functional requirements prior to final assembly of the manipulator
 

arm. Most significant of these tests are the motor torque-speed
 

relationship, tach-generator output, resolver performance, and
 

fail-safe brake holding and slip torques. Vendor test data for
 

these components have been supplied to NASA.
 

e. 	The drive joint performance tests verify the final performance of
 

each drive. These tests were performed at no load and full load
 

to verify torque and speed capabilities. Input power was monitored
 

for 	each drive condition. A summary of these test results is pre­

sented in Table 8. Figure 23 illustrates a typical load test on
 

Table 8 Drive Joint Performance Data
 

Applied No-Load Velocity Full-Load Velocity
 
Torque
 

Drive (ft-lbs) volts amps rad/sec volts amps rad/sec
 

Shoulder Yaw 90 11.0 0.3 0.20 29.9 3.5 0.20
 

Shoulder Pitch 90 11.3 0.2 0.21 29.8 3.3 0.21
 

Shoulder Roll 7 6.3 0.2 0.24 24.0 2.5 0.20
 

Elbow Pitch 50 19.0 0.2 0.39 30.0 2.3 0.24
 

Wrist Pitch 15 8.0 0.1 0.23 28.0 1.4 0.23
 

Wrist Yaw 15 8.0 0.15 0.23 28.0 1.4 0.23
 

Wrist Roll 15 8.0 0.1 0.22 24.0 1.0 0.23
 

the wrist pitch drive. During these tests the tach-generator output was checked
 

against a stop watch to verify rotational rate. The resolver output was checked
 

by measuring the actual drive rotation, using an inclinometer, for known rotations
 

of the resolver. These tests are shown in Figure 24, where the resolver positions
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Figure 23 Drive Joint Load Tests
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Figure 24 Resolver Position Tests
 

are indicated on the oscilloscope and are verified by digital voltmeter outputs.
 

Position repeatability was verified to within 2 arc minutes for 360 degrees of
 

drive rotation. During the drive joint performance tests the fail-safe brakes,
 

heaters, temperature sensors, and limit switches were also verified to assure
 

they were functional.
 

4.4.2 Assembled Manipulator Arm Tests - These tests were performed to
 

demonstrate the fully assembled arm capabilities of dexterity, maximum reach,
 

stowage configuration, angular travel of each degree of freedom, maximum tip
 

force, and end effector performance. These tests were performed with the
 

counterbalance installed on the arm in order to permit the drives to perform
 

useful work. Figure 25 shows several of the manipulator arm configurations
 

during these tests. These tests are described in the following paragraphs.
 

a. The P-FMA drives were powered to demonstrate the dexterity of the
 
arm to have the end effector reach the shoulder drives. At maximum
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Figure 25 Manipulator Positions
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reach, measurements were taken to verify a 3-meter (9.7-feet)
 

reach from shoulder pitch to end effector jaw. The unit was
 

powered into a stowed configuration, although the counterbalance
 

(nonflight hardware) did cause some minor interferences. Stowage
 

envelope dimensions were verified to be in accordance with the
 

Interface Control Document (Appendix B).
 

b. The angular travel capability of each drive joint was verified
 

and the limit switches were set to provide an indication of these
 

travel limits, THE SWITCHES AND THE FAIL-SAFE BRAZES should be
 

integrated into the control electronics to interrupt motor power
 

and 	engage the brake when travel limits are reached. Angular travel
 

limits are defined in the Inter-face Control Document (Appendix B).
 

c. 	The maximum tip forces, as applied in each direction along each of
 

the three orthogonal axes, were demonstrated at 58-67 Newtons (13­

15 pounds). This capability can be increased to at least 111 Newtons
 

(25 pounds) when articulated motion is provided to -the shoulder and
 

elbow drives concurrently.
 

d. 	The end effector performance tests demonstrated the opening/closing
 

rate and grip force. When integrated with the controls to vary
 

supply voltage and current limiting, the opening/closing rate can
 

be controlled to 2.5-38 mm/second (0.1-1.5 inches/second) and grip
 

forces up to 400 Newtons (90 pounds).
 

4.4.3 P-FMA Demonstration - The P-FMA was delivered to NASA-MSFC where
 

it was reassembled, counterbalanced, and demonstrated for NASA personnel. The
 

manipulator was driven by analog voltage inputs directly from standard labora­

tory power supplies, through breakout boxes interfacing with-the P-FMA base con­

nectors, to the individual drive joints. The resolvers were energized by single
 

phase, 400 Hertz, 26V AC supply voltage. The drives were operated one at a time
 

while the tach-generator output, demonstrating the drive rate, was displayed on
 

a digital voltmeter. The sine-cosine resol7er output, demonstrating the drive
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position, was displayed on an oscilloscope. All electrical circuits were veri­

fied; however the room size prevented full travel in all degrees of freedom.
 

All drives were demonstrated for torque capability, smoothness of operation,
 

and backdriveability. Minimum rate demonstrations showed the low starting vol­

tages required and minimum movement capability. The drives can be operated
 

at 10 percent of rated voltage, resulting in manipulator motions that are not
 

perceptible to the eye. A summary of the minimum movement capabilities are pre­

sented in Table 9.
 

Table 9 Minimum Movement Capabilities
 

Minimum Minimum Rate of Motion
 
Input Voltage Output Rate at End Effector
 

Drive Joint (volts.) (rn/sec1 Cinches/sect
 

Shoulder Yaw 2.3 5.0 0.17
 

Shoulder Pitch 2.0 4.2 9.14
 

Shoulder Roll Indexing Only N/A N/A
 

Elbow Pitch 1.6 8.9 -0.18-


Wrist Pitch 1.7 10.7 . 0.06 

Wrist Yaw 1.5 10.7 0.05 

Wrist Roll 1.8 14.0 Rotational 

NASA-MSFC is presently developing the electronic controls to enable the
 

arm to be operated remotely in a rate-control mode from a pair of hand control­

lers. A closed-circuit television system will provide visual feedback. It is
 

anticipated that the P-FMA with integrated controls will eventually fly as a
 

teleoperator experiment on an early Shuttle Orbiter flight.
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5.0 CONCLUSIONS AND RECOMMENDATIONS
 

5.1 Conclusions - This contract demonstrated that Martin Marietta in
 

conjunction with NASA-MSFC had the technical capability to produce a general
 

purpose manipulator that is operable in earth orbit. This arm is capable of
 

performing useful work, as evidenced by testing that has demonstrated 111-New­

ton (25-pound) tip forces and end effector torques of 22 Newton-meters 016
 

foot-pounds). The precision of the individual drive joints has provided mini­

mum rates that show smoothness of operation while motion is not perceptible
 

to the eye. Maximum rates--both at full load and no load--can be controlled
 

to 0.2 radians per second (11.5 degrees/second), correlating to tip speeds of
 

0.5 meter/second (1.8 feetisecond). The backdrive capability permits the arm
 

to absorb external forces without damage to the manipulator and also is useful
 

in correcting misalignment problems during operation.
 

The minimum motion capability was accomplished by using precision gear­

ing, accurate gear shaft alignment with precision bearings, and the performance
 

qualities of a pancake torque motor. This minimum motion feature, when integra­

ted with a properly designed control system, will offer positioning capability
 

of 1.3 mm (0.05 inch) at the end effector. Position accuracies for this type
 

mechanism may be improved, but such requirements should be investigated first.
 

It has been our experience that other position errors such as mounting toler­

ance, target locations for the end effector, relative position between the
 

free-flyer and the objective spacecraft, become very significant relative to
 

the manipulator end effector positioning. In the case of general purpose oper­

ations, the present positioning capability of the manipulator is adequate. In
 

the case of a dedicated servicing-type manipulator with a position control loop
 

where position calibrations can minimize these extraneous position errors, it
 

appears beneficial to use optical encoders instead of resolvers at the shoulder
 

drives, providing improved position readout capability. However, the placement
 

of encoders at other drives creates excessive design problems due to the large
 

increase in the number of wires required in the wire harness, as well as the
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size and weight of the encoders. Due to the large thermal mass at the shoulder,
 

a heater at this location would provide a uniform thermal environment to the
 

encoders, even at the lowest anticipated orbital temperatures.
 

The design of the drive joints, similar for all torques from 20 Newton­

meters (15 foot-pounds) to 122 Newton-meters (90 foot-pounds), can be extrapo­

lated to significantly greater ratings. This was demonstrated by an in-house
 

funded activity which produced a 1,625 Newton-meter (1,200 foot-pound) drive.
 

A continuing effort to seek manipulator improvements has yielded the results
 

that new samarium-cobalt torque motors of the sizes used in the Proto-Flight
 

Manipulator Arm can provide a 30 to 50 percent increase in output t6rque. Of
 

course, motor replacement must be preceded by further structural analysis.
 

Where exceptionally long life is restricted by motor brush life, brushless di­

rect current motors are also available. A Martin Marietta IRAD Task 45-D'is
 

in process to continue to study other drive improvements.
 

The development ofthe two adjustable gears within the three-stage,
 

dual-mesh gear train has demonstrated an effective method of minimizing gear
 

backlash, which is usually a major contributioh to position error. The effec­

tiveness was also demonstrated over the temperature extremes from -730C (-1000F)
 

to +930C (+2000F).
 

The analytical techniques used in the design of the manipulator arm
 

were shown to be correct and accurate. As a result, all specified performance
 

requirements were met or exceeded.
 

The effectiveness of the programmatics used in this contract was demon­

serated by. the efficient production of the P-FMA for 100 manmonths of effort
 

and in a period of performance of 21 months.
 

5.2 Recommendations - In order to make use of the manipulator pro­

duced under this contract, it is necessary to provide the control laws and
 

the rate control servo-loops to give the arm articulated motion capability.
 

It is strongly recommended this effort receive a NASA priority if the P-FMA.
 

is to be demonstrated in space in the early 1980's. In May 1976, a program
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statement of work was submitted to NASA for consideration. Using the same type 

cost-effective programmatics and the same design and test philosophy used on 

the P-FMA contracts a p-FMA rate control package will require 18 months to de­

sign, build, teat, and deliver, This effort makes maximum use of the experience 

developed in performing a similar task on the manipulator, previously developed 

with internal Martin Marietta funding. Only when the controls have been inte­

grated can the full utility of the Proto-Flight Manipulator Arm be demonstrated. 

In order to prepare the P-FMA for an operational demonstration in low 

earth orbit within the Shuttle cargo bay, as illustrated in Figure 26, Martin 

Marietta strongly recommends the performance of a refurbishment of the P-FMA 

after the teleoperator controls have been integrated with the manipulator. The 

following activities constitute the minimum extent of that refurbishment. Other 

items may be required based on Shuttle integration requirements. 

a. 	Electromagnetic Compatibility (EMG) Testing - The P-FMA is likely 

to be operated from a remote station through an PY link. The
 

mamipulator should be tested to determine the radiated and con­

ducted emissions generated by the electrical components. This
 

test will serve as a baseline for making design changes such as
 

noise filters on the motorse, additional shielding of conductors,
 

and the use of shielded connectors.
 

b. 	A preliminary flight-level vibration test should be conducted to
 

verify the structural design and mechanical and electrical work­

manship. This rest, together with the EMC test, should be conduc­

ted before refurbishment in order to verify system compatibility
 

and still provide the appropriate time to make corrective actions,
 

if required.
 

c. 	The P-FMA must be refurbished prior to flight in order to remove 

the lithium-base grease and replace it with the Braycote lubricant. 

This requires a complete disassembly of the drive joints. This 

will also provide the opportunity to perform various inspections 
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of the drive components after a significant amount of operating
 

time. During this disassembly the internal wiring will be improved
 

to replace the numerous microconnectorswith lap-solder and sleeved
 

connections. Single shielded conductors will be provided through­

out the drives and the flat conductor cables used locally around
 

the torque motors will be replaced by printed circuits with a
 

shield plane. Noise filters, designed from the data obtained
 

from the EMC tests, will be installed. Consideration should be
 

given to revising the external wire harnesses by eliminating the
 

existing service loops and replacing them with Poly-Twist housings
 

at each drive. After electrical tests have been performed, all
 

,electrical connectors will be potted.­

d. 	Further c6nsiderations should be given to the tachometer brush
 

chipping that occurred during thermal vacuum operational life tests
 

(see paragraph 4.3). It is recommended that the tachometer com­

mutators be made slightly longer to enable the size of the Boeing
 

compact brushes to increase. It is felt the size increase would
 

reduce 'the tendency for the brushes to chip.
 

e. 	Flight acceptance testing should be conducted prior to final de­

livery to NASA. Functional acceptance tests similar to those con­

ducted for the present effort would be performed prior to and after
 

completion of the environmental acceptance tests. The environmental
 

acceptance tests should include a repeat of the EMC and flight-level
 

vibration tests. Other tests to be considered would be a thermal
 

vacuum test of all drives and a mechanical shock test using a mass
 

simulator to verify the structural interfaces under crash loads.
 

f. 	Prelaunch verifications should be conducted to replace the silver­

graphite brushes with the Boeing compact brushes, verify operation­

al performance, install the manipulator in the Orbiter cargo bay,
 

and verify structural and electrical interfaces.
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As part of a captive experiment aboard the Shuttle we recommend that
 

a task panel, representative of the numerous general purpose operations, be
 

designed and built with the standards that would make it flightworthy. Addi­

tionally, other end effector jaw configurations may be considered that would
 

be interchanged by remote operations.
 

Although this section of recommendations may appear lengthy, Martin
 

Marietta has demonstrated a cost-effective program approach during the develop­

ment of the P-FMA. This same approach would be used in the performance of
 

these recommended actions, applying the experience developed from flight hard­

ware programs on Viking, Skylab, Apollo, and Gemini.
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1.0 SCOPE
 

This specification establishes the cdnfigurationi performance, and
 

acceptance requirements for the Proto-Flight Manipulator Arm (P-FMA),
 

Part No. 849PFM00000-009 and -010. This Contract End Item (CEI) is in­

tended for use in the Shuttle Transportation System (STS) on such ve­

hicles as-a remotely controlled Free-Flying Teleoperator type spacecraft.
 

Prior to- this application, the P-FMA shall be refurbished from its ground­

based operational configuration, and shall fly as a Shuttle payload ex­

periment to demonstrate its flight-worthiness.
 

2.0 APPLICABLE DOCUMENTS
 

The following documents form a part of this spe
 

tent specified herein. In the event of conflict bet
 

and detailed content of this specification, the latt
 

2.1 Military Documents
 
Ref. Para. 

Number Title Herein 

MIL-STD-130 Identification Marking of 3.2.2.3 
U.S. Military Property 

.MS24123 Plate, Identification 3.2.2.3 

MIL-STD-1472 Human Engineering Design Cri-
teria for Military Systems, 

3.2.2.5 

Equipment and Facilities 

MIL-W-6858 Welding, Resistance, Spot 3.2.2.2 
and Seam 

MIL-W-8611 Welding, Metal Arc and Gas, 3.2.2.2 
Steels, and Corrosion and 
Heat Resistant Alloys; Pro­
cess for 

MIL-W-8604 Welding of Aluminum Alloys; 3.2.2.2 
Process fbr 



2.2 NASA Documents
 

50M23186 Equipment Specifications for 3.1 
Manipulator Assembly of Re­
motely-Operated System 

MSFC-STD-512 Standard Man/System Design Cr1- 3.2.2.5 
teria for Manned Orbiting Pay­
loads 

NHB 5300.4(IC) Inspection System Provisions 4".0 
Aeronautical and Space Systems 
Materials, Parts, Components, 
and Services 

50M02442 ATM Material Control for Con- 3.2.2.1 
tamination due to Outgassing 

SE-020-006-2H Guidelines for Performing 3.3.1 
Failure Modes and Effects 
Analysis on the Solid Rocket 
Booster 

2.3 Mart . 

849PFM00000 Proto-Flight Manipulator Arm 1.0,3.2.1 
Assembly 

ICD-PFM-00000 Interface Control Document 3.1.1, 3.1.4 
for the Proto-Flight Manipu­
lator Arm (P-FMA) 

RES 3157500 P-FMA Counterbaldnce In- 3.2.1 
stallation 

3.0 REQUIREMENTS
 

.3.1 Performance 

The Proto-Flight Manipulator Arm (P-FMA) has been designed to meet
 

the performance requirements of NASA-MSFC Specification 50M23186 as part
 

of Contract NAS8-31487. Those performance requirements to be verified
 

prior to the acceptance of the P-FMA are specified in succeeding para­

graphs of this section 3.1.
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3.1.1 Stowage Envelope - The external envelope of the P-FMA shall
 

be in accordance with the P-FMA Interface Document, ICD-PFM-00000. The
 

envelope dimensions are 153 cm x 107 cm x 41 cm (60 Inches x 42
 

inches x 16 inches), excluding the dimensions of the laboratory counter­

balance system and any restrictions caused therefrom.
 

3.1.2 Maximum Reach - The P-FMA when fully extended shall have a
 

length of at least 2.4 meters (8 feet), as measured between the shoulder
 

pitch centerline and the wrist pitch centerline.
 

3.1.3 Weight - The P-FHA in its flight configuration shall not ex­

ceed 52 kilograms (115 pounds) in weight.
 

•3.1.4 Operations - The following operational tests will be performed
 

prior to acceptance of the P-FMA.
 

a.; Drive Joint Travel - The drive joints shall be capable of the
 

following rotational travel, as defined in ICD-PFM-00000.
 

1) Shoulder pitch--3.2 radians (180 deg);,
 

2) 'Shoulder yaw--+3.5 radians (±200 deg);
 

3) Shoulder roll--+l.6 radians (±90 deg);
 

4) Elbow pitch--+3.0 -radians (+173 deg);
 

-1.7 radians (-100 deg);
 

5) Wrist pitch--+1.6 radians (+90 deg);
 

6) Wrist yaw--+l.6 radians (±90 deg);
 

7) Wrist roll--Continuous rotation.
 

b. Velocities - The drive joints shall be capable of the following
 

no-load and full-load rotational speed:
 

1) Elbow pitch--0.40 radians/second (23 deg/sec);
 

2) All other drives--0.20 radians/second (11.5 deg/sec).
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c. Applied Torques - The drive joints shall be capable of develop­

ing the following torques at rated velocity:
 

1) Shoulder yaw--123 Newton-meters (90 foot-lbs);
 

2) Shoulder pitch--123 Newton-meters (90 foot-lbs);
 

3) Shoulder roll--9.5 Newton-meters (7 foot-lbs) (arm indexing only);
 

4) Elbow pitch--68 Newton-meters (50 foot-lbs);
 

5) Wrist pitch--20.5 Newton-meters (15 foot-lbs);
 

6) Wrist yaw--20.5 Newton-meters (15 foot-lbs);
 

7) Wrist roll--20.5 Newton-meters (15 foot-lbs).
 

d. End Effector - The parallel-jaw end effector shall be capable of
 

the following controlled operations;
 

1) Grip distance --8.9 cm (3.5 inches);
 

2) Grip closing/opening rate--0T3.8 cm/sec (0-1.5 in./sec);
 

3) Grip force--44.5-397 Newtons (10-89 Ibs);
 

4) Nonbackdriveable--223 Newtons (50 lbs).
 

e. Manipulator Tip Force - With the P-FMA fully extended, the arm 

with power applied shall be capable of exerting 44.5 Newtons (10 ibs) of 

force at the end effector in each direction along the three orthogonal 

,xes of the arm. 

f; Failsafe Brake - Each drive except the shoulder roll (nonback­

driveable) shall have a failsafe brake that will restrain the dtive when
 

power is removed from the system.
 

g. Counterbalance - With the failsafe brakes energized and no power
 

applied to the drive motors, the P-FMA shall remain in static equilibrium
 

with the counterbalance installed.
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3.2 Product Configuration
 

3.2.1 Design Drawings - The configuration of the P-FMA shall be in
 

accordance with MMC drawing 849PFM00000-009 and -010 and drawings and
 

engineering data assembled thereunder. A counterbalance system in accord­

ance with NMC drawing RES3157500 is provided for laboratory operation of
 

this manipulator.
 

3.2.2 Standards of Manufacturing - The manufacturing of the P-FMA
 

shall be in accordance with standards and processes specified on applicable
 

NMC drawings and those specified below.
 

3.2.2.1 Materials - Materials, finishes, and coatings shall conform
 

to NASA-MSFC specification 50M02442, as supplemented by the Materials List
 

for Proto-Flight Manipulator Arm.
 

3.2.2.2 Welding - Welding in the P-FMA.shall be in accordance with
 

the following specifications:
 

a. Aluminum Fusion Welding - MIL-W-8604;
 

b. Resistance Welding - MIL-W-6858;
 

C. Steel Fusion Welding - MIL-W-8611. 

3.2.2.3 Identification and Marking - The P-FMA shall be marked for
 

identification in accordance with MIL-STD-130. The end item nameplate
 

shall conform to MS24123, and shall include but not be limited to the item
 

nomenclature, part number, and serial number.
 

3.2.2.4 Workmanship - The P-FMA shall be fabricated in a workmanlike
 

manner ii accordance with generally accepted industry practices. The
 

end item, assemblies, plating, and welding shall be free of burrs and
 

sharp edges that might cause injury to operating personnel.
 

3.2.2.5 Human Engineering - The P-FMA and the associated controls
 

shall be in accordance with the design criteria of MIL-STD-1472 and
 

MSFC-STD-512.
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3.2.2.6 Cleaning - The P-FMA shall be cleaned in accordance with
 

NASA standards for instrumentation (visually clean under normal white
 

light).
 
4 

3.2.3 General Description - The P-FMA shall be attached to a free­

flying teleoperator spacecraft and be used as a general purpose arm to
 

remove and replace modules on an orbiting satellite, after having firmly
 

*docked to that satellite. The P-FMA has seven (7) degrees of freedow
 

plus the end effector operation. Six (6) of the drives (shoulder pitch
 

and yaw, elbow pitch, and wrist pitch, yaw, and roll) are all of one
 

typical design, but sized for specific torques. The seventh drive
 

(shoulder roll) is only a position indexing drive.
 

3.2.3.1 Joint Drive Description - The six typical drives have a
 

dual mesh, three-stage gear train of AGMA Class 12 gears. A direct­

current pancake torque motor and a tach-generator (rate feedback trans­

ducer) are mounted on the input shaft. The failsafe brake is also mounted
 

on an extension of the input shaft. The final gear stage has adjustable
 

gears set at final assembly to remove the cumulative gear backlash from
 

the gear train in each direction. The final gear mesh is two pinions
 

and an internal gear that is rigidly attached to the outer housing of
 

the drive.-A brushleds sine-cosine resolver (position feedback trans­

ducer) is driven by the output gear shaft through an anti-backlash gear.
 

The drives haveta limit switch to indicate the end of full travel and 

THESE SWITCHES SHOULD BE WIRED INTO THE MOTOR POWER CIRCUIT ALONG WITH 

THE FAILSAFE BRAKES when the control circuitry is designed for the P-FMA.
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Each drive contains a small heater to prevent drive temperatures from
 

reaching -730C (-100°F) during normal orbital operations. The three (3)
 

pitch drives (shoulder, elbow, and wrist) have a temperature sensor that
 

will provide an indication of the drive temperatures along the length of
 

the arm. Each drive is capable of operating for 30 seconds at rated
 

torques without exceeding the maximum motor rotor temperatures of 155°C
 

(3i0 F).
 

3.2.3-2 Shoulder Roll Drive Description - The shoulder roll drive
 

is only for the purpose of position indexing of the P-FMA prior to articu­

lated operations. It is a wdrm;drive with the direct-current pancake
 

torque motor and the worm gear on the same shaft. A small worm gear lo­

cated at the end of the shaft drives a sine-cosine resolver through-an
 

anti-backlash gear. The worm-wheel is rigidly mounted to the upper arm
 

segment to provide the rotational capability. This drive contains a
 

limit switch t6 indicate the-rotational limits. Since the shoulder roll
 

is a worm drive and is not-backdriveable, it requires no failsafe brake.
 

3.2.3.3 End"Effector - The end effector has a parallel-jaw opera­

•tion that is driven from a direct-current pancake torque motor through a
 

spiroid gear set. Control circuitry can be provided to regulate closing
 

speed and-grip force.­

3.2.3.4 Arm Segments - Two (2) sets of arm segments are provided-­

1) One set to provide the 2.4 meter (8 foot)' reach capability, and 2) one
 

set to provide the 1.2 meter (4 foot) reach capability. The arm seg­

ments are square standard aluminum extrusions that have been chemically
 

milled to reduce the weight of the segments.
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3.2.3.5 Wire Harness - The P-FMA has two wire harnesses that extend
 

the length of the arm. The power harness originates with a 37-pin base
 

connector and contains the power leads for the motor, brake, and heater
 

within each drive, as well as the case ground. The power harness is
 

terminated at each drive with a 9-pin connector to interface with the power
 

connector on the drive. The only exception is the wrist roll interface
 

which is a 15-pin connector in order to accommodate the end effector motor.
 

The instrumentation harness originates with a 78-pin base connector
 

and contains the leads for the resolver excitation and outputs, tachome­

ter output, limit switch indications, temperature sensors (pitch drives
 

only), and spare leads (for end effector only) for each drive. The
 

harness is terminated at each drive with a 15-pin connector that inter­

faces with the instrumentation connector on each drive.
 

3.2.3.6 Maximum Power --The maximum power consumption of the P-FMA
 

shall not exceed 500 watts. The supply-voltage to be supplied to the
 

P-FMA shall be controllable from 0-31 Vdc for all components except the
 

position resolvers. This supply voltage shall be 26 VAC, 400 hertz.
 

3.2.3.7 Counterbalance - The counterbalance system is provided to
 

pe-mit laboratory operations of this flight-worthy manipulator. The
 

counterbalance is disconiected (unbolted) from the three pitch axes in
 

order to provide the space version of the P-FMA. Additional hardware is
 

provided to counterbalance the 1.2 meter (4 foot) arm configuration.
 

When lightweight payloads are being handled in the laboratory, the three
 

counterbalance segments must be readjusted by the addition of compen­

sating weights.
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3.2.3.8 Other Considerations - P-FMA has been designed for flight
 

usage and has been delivered with two (2) sets of brushes for each motor
 

and tachometer. The drives have silver-graphite brushes installed for
 

laboratory operations. During space environmental operations, all brushes
 

must be replaced with the spare brush L±LL6 atsemblies, having brushes
 

made of Boeing-compact 046-45.
 

The drives are presently lubricated with a lithium-base molybdenum
 

disulfide (MoS2) grease that will withstand high contact pressures and
 

provides adequate corrosion resistance. During refurbishment of the P-FMA
 

for space environmental operations, the existing lubricants must be re­

moved and replaced with a Braycote 3L38 grease that has a flat viscosity
 

index and low outgassing characteristics.
 

During the refurbishment for flight operations, the internal drive
 

wiring shall be replaced to eliminate the numerous electrical connectors,
 

improve the flat conductor wires, and increase wire shields to suppress
 

electromagnetic interference.
 

3.3 Operational Capability
 

3.3.1 Useful Life - The P-FMA shall be designed to last for a use­

fiil llfetime of five (5) years and/or 1,000 hours of operation, as a de­

:sign goal. Reliability analyses for wear characteristics and a Failure
 

Modes and Effects Analysis shall be performed in accordance with NASA
 

specification SE-020-006-2H.
 

3.3.2 Maintainability - The P-FMA shall be designed to provide
 

accessibility, replaceability, and serviceability consistent with effi­

cient servicing, testing, and maintenance practices. Components expected
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to require servicing shall be designed to be accessible. A minimum of
 

special tools shall be required.
 

3.3.3 Operational Environments - In addition to operational cap­

ability in the earth ambient laboratory environment, the P-FMA shall be
 

capable after refurbishment to operate in a low-earth orbital environment 

consistent with temperatures of 730C (-1000F) to 93°C (+200°F) and vacuum
 

-
of I x 10 7 mrHg. 

4.0 QUALITY ASSURANCE
 

The quality assurance provisions specified herein constitute the re­

quirements for acceptance of the P-FMA. These provisions are based on
 

NASA Document NHB 5300.4 (IC) and the P-FMA Quality Assurance Plan gen­

erated therefromi
 

4.1 In-Process Inspections
 

Visual inspections of the assembled contract end item and inspections
 

as necessary during fabrication shall be performed to verify compliance
 

with the applicable drawings and the configuration requirements of para­

graph 3.2.
 

4.2 Tests and Verifications
 

The capabilities of the P-FMA shall be tested and verified to meet
 

the reqtirements of paragraph 3.0. These tests shall be conducted in
 

accordance with applicable test procedures, as prepared by MC and approved
 

by NASA-MSFC. 

4.2.1 Acceptance Tests - These tests shall be performed by 1MC at
 

the contractor's facility under l6cal ambient conditions in order to
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verify the performance requirements of paragraph 3.1 and the configuration
 

requirements of paragraph 3.2. The basic elements of these tests are-­

1) joint drive functional tests, 2) component performance tests, and 3)
 

assembled arm tests.
 

4.2.2 Qualification Tests - These tests will be performed by MMC
 

at the contractor's facility to verify the performance of one (1) drive
 

joint under the Srbital environment specified in paragraph 3.3.3. This
 

test will also demonstrate the capabilities of paragraph 3.3.1, by a con­

tinuous operation in the orbital environment for a period of 94 hours.
 

4.2.3 Demonstration Test - The P-FMA shall be demonstrated by MMC
 

at NASA-MSFC in order to show operational performance. Operations to be
 

demonstrated are: 1) Operation of each drive joint, 2) Movements from the
 

stowed position to the maximum reach position and back to the stowed po­

sition, 3) Manipulator-tip force capability, and 4) End effector opera­

tions.
 

4.3 Post-Test Inspection
 

The P-FMA shall be visually inspected after the acceptance tests
 

to inspect final finishes and cleanliness and to assure that no damage
 

has occurred as the result of testing. Test data will be reviewed and a
 

quality assurance stamp affixed to indicate this review.
 

5.0, PREPARATION FOR DELIVERY
 

5.1 Packaging - The P-FMA shall be partially disassembled and
 

packaged in the most economical method acceptable to the common carrier,
 

which will assure safe and proper delivery to destination. Packaging
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shall be labeled with a warning that a delicate instrument is involved.
 

The unit shall be shipped to NASA-MSFC, Huntsville, Alabama.
 

5.2 Shipping Document Review
 

Prior to shipment, the Acceptance Data Package shall be inspected
 

to verify its contents of:
 

a. Shipping Document (DD Form 250)
 

b. Top Assembly Drawing
 

c. Electrical Schematic
 

d. Interface Control Document
 

e. "As-Run" Acceptance Test Procedure with data
 

f. Copies of all DAR's, Waivers, and MRB Actions
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FOREWORD
 

This document is prepared and submitted in accordance with the require­
ments of paragraphs II.A.5, 6, and 7 of Exhibit A of Contract NAS8-31487.
 
It will be updated periodically during the period of performance of the
 
contract.
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INTERFACE CONTROL DOCUMENT FOR THE PROTO-FLIGHT MANIPULATOR ARM (P-FMA)

Document No. ICD-PFM-OOO0O
 
1 November 1975 	 Revised May 1976
 

1.0 SCOPE
 

This Interface Control Document (ICD) establishes the interfacing
 
requirements between the Proto-Flight Manipulator Arm (P-FMA) and the
 
Earth Orbiter Teleoperator Spacecraft-(EOTS) or other interfacing space­
craft.
 

The scope of this document defines the mechanical, electrical, and
 
thermal interfaces that are required to have proper performance of the
 
manipulator arm, as specified in NASA-MSFC Specification No. 50M23186.
 

2.0 APPLICABLE DOCUMENTS
 

The following documents, of the issue shown, form a part of this
 
ICD to the extent specified herein.
 

2.1 Specifications
 

a.. NASA-MSFC 

501423186 	 Equipment Specifications for Manipu­
lator Assembly of Remotely-Operated
 
System, dated 12 December 1974.
 

50M02442 	 ATM Approved Materials, Revision W
 

NRB 5J0.4(IC) 	 Inspection System Provisions for
 
Aeronautical and Space System Materials,
 
Parts, Components, and Services, dated
 
July 1971
 

2.2 -Dawins
 

a. HbA
 

849P M00000 

2.3 Other Documents
 

A. 	XOG0 (TBD) "Operations, Maintenance, and Calibra­
tions Manual - P-FMA" 
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3.0 -REQUIREMENTS
 

3.1 Operations
 

The primary functibn of the manipulator arm is to remove and replace
 
modules on an orbiting satellite within a distance of 5000 meters of a
 
Shuttle Orbiter. The manipulator is baselined to be a general purpose
 
space tool attached to the Earth Orbiter Teleoperator Spacecraft (EOTS)
 
and is operated from the Shuttle Orbiter control station.
 

The Proto-Flight Manipulator Arm (P-FMA) is a precursor to the EOTS
 
manipulator. The P-FMA is capable of operating to remove/replace modules
 
in a low earth orbit environment, such as from within the Shuttle cargo
 
bay. The P-FMA is capable of very limited earth-bound (one-g) operations
 
unless a counterbalance is applied which significantly increases the arm
 
utility.
 

3.2 Mechanical Interface
 

The manipulator arm has angular travel in each joint as shown in
 
Figure 1. The manipulator arm is designed to mechanically attach to an
 
interfading structure such as an EOTS or a mounting fixture. The P-FMA
 
mounting base geometry is shown in Figure 2. Holddown provisions must
 
be provided on EOTS at the elbow pitch drive and at the wrist roll drive.
 

3.3 Electrical Interface
 

The electrical interface is accomplished by the mating to two (2)
 
electrical connectors--(l) power connector for the motors, brakes, and
 
heaters; and (2) instrum&ntation connector for resolvers, tachometers,
 
switched, and.temperature sensors. The electrical interface is described
 
in-Figure 3 (pin number identification table TBD).
 

3.3.1 Power Consumption - The maximum power consumption of the manipula­
tor arm will not exceed 500 watts. The average power will not exceed
 
240 watts. (These values may be reduced as the result of acceptance test­
ing and typical task simulations.)
 

3.3.2 Power Source - The manipulator arm shall be operable at its rated
 
torques and velocities at a voltage levt! of 28 + 4V DC, as supplied from 
the EOTS, or equivalent. 

3.3.3 Position Resolver Supply Voltage - The seven (7) position resolvers
 
will require 26V 400 Hz primary output, supplied by the EOTS or control
 
electronics. The two primary input leads from a comnon source are paral­
lel for all seven resolvers.
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3.3.4 Heater Supply Voltage - The seven heaters may require continuous
 
28 + 4V DC power from the control electronics during space operation. The
 
DC leads are common for all heaters in parallel.
 

3.3.5 Brake Voltage - The six brakes will require 28 + 4V DC from the
 
control electronics applied simultaneous with joint operation. The plus
 
DC lead is common-for all brakes in parallel and is paralleled with the
 
plus DC for the heaters.
 

3.3.6 Temperature Sensor - The three temperature sensors are designed
 
for use as one leg of a four-leg instrumentation bridge network with a
 
maximum of one milliwatt applied to the sensor. The sensor resistance
 
is 150 + 0.5 ohms at 00C. The bridge ground lead is common for the three
 
sensors in parallel.
 

3.3.7 Position Switches - The Six position switches are designed and
 
wired to carry the positive supply voltage through the common terminal
 
with a maximum current of 0.5 amperes for a resistance load or 0.25 am­
peres for an inductive load. The positive voltage lead is common to all
 
switches ,inparallel.
 

3.3.8 Case Ground and'Shielding - A common case ground lead to all joints
 
terminates in a pin in-the power harness connector. This lead is required
 
if noise filters are used at the motors. All shields are open ended at
 
the component end and carried out to a pin on both the power harness and
 
instrumentation harness connectors.
 

3.4 Weight 

SThe 
 manipulator arm is designed to a minimum weight but shall not
 

exceed 45.4 Kg (100 lbs). The weight distribution is presented in Table l.
 

8.5 Stowage Volume
 

With the manipulator arm in its stowed configuration, the stowage
 
configuration and dimensions are shown in Figure 4.
 

3.6 Thermal Interface
 

The'ianipuiator arm temperatures have been analytically determined,
 
using the TRASYS II computer program to establish the thermal environment
 
and radiation-interchange, and the MITAS II computer program which solves
 
the temperature prediction equations. The manipulator arm was configured
 
in the stowed mode as shown in Figure 5 and in the deployed mode as shown
 
in Figure 6. All external surfaces had a solar absorptivity (a) of 0.2
 
and an infrared emissivity of 0.89. Since the arm is primarily aluminum,
 
a specific heat of 0.2 BTU/Ib-0 F was assumed. The weight distribution is 
presented in Table 1. 

3 
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The environments were chosen to represent extreme cold and hot con­
ditions to be encountered by the EOTS spacecraft. The cold environment
 
was generated for the stowed configuration with the EOTS in the earth
 
shadow and tilted at 45 degrees to the orbit plane. The earth orbit was
 
at 400 km, circular, and equatorial. The hot environment was generated
 
for the deployed configuration with the EOTS continually in the Bun and
 
tilted at 45 degrees to the orbit plane. The earth orbit was at 400 km,
 
circular, and polar.
 

The results of the thermal analysis are summarized in Table 2.
 

Table 2 Steady State Temperature Results
 

Case No.* Temeratures (OF) 
1 2 3 4 5, 

Shoulder Yaw -84 -15 -129 -12 136 

Shoulder Pitch -95 -17 -124 -25 137 

Shoulder Roll '-85 -73 -122 -102 95 

Upper Arm -67 -65 -114 -111 93 

Elbow Pitch -60 4.3 - 97 - 18 114 

Lower Arm -­61 -59 -107 -105 105 

Wrist Pitch -97 -11 -132 - 18 125 

Wrist Yaw -83 -15 -119 - 14 139 

Wrist Roll -78 -15 -113 - 19 139 

*Case 1 and Case 3 are the cold environments, stowed and deployed
 
configurations respectively, and with no heaters activated.
 

Case 2 and Case 4 are the cold environment, stowed and deployed
 
configurations respectively, and with the heaters activated.
 

Case 5 is the hot environment, deployed configuration with electri­
cally powered components activated.
 

The analysis demonstrates that motor rotors (nonoperating) are con­
trolled between -73F and +139 0F. The shoulder yaw drive, which inter­
faces with the EOTS structure, is controlled between -150F and +136 0F. The
 
cold extreme could drop to -840F, if the heaters were not activated.
 

3.7 Controls and Electronics
 

The manipulator arm and controls/electronic interfaces are defined
 
in terms of the manipulator arm electrical and mechanical parameters.
 
These values will provide the control and electronic designers all neces­
sary information to accomplish the controls analysis and the drive elec­
tronics design.
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The motor and joint gear train parameters are listed in Table 3, and
 
tachometer generat6 in Table 4. The position resolver specifications are
 
defined in Table 5. The resistance values for the brakes are shown in
 
Table 6 and for heaters in Table 7. The calculated joint inertias for both
 
the loaded and loaded cases are defined in Table 8 and Table 9. All values
 
listed are as received from the respective suppliers at time of procurement.
 

Figure 7 is the block diagram for a rate servo-loop control system.
 
This diagram with the above listed-parameters and certain assumptions such
 
as input signal and system compliance were used to design a rate loop servo
 
system. This analysis proved that the arm hardware selected can be control­
led and meet bandwidth and phase margins as specified.
 

3.8 Useful Life
 

The useful life of the manipulator arm shall include the-period from
 
final acceptance through shelf"life, prelaunch life, operating life, and
 
until destruction of its identity. This total time shall be a minimum of
 
five years.
 

3.8.1 Operating Life - The operating life of the manipulator arm shall be
 
designed for 1000 working hours in free space without refurbishment. Oper­
ating life will start accumulating with the acceptance testing and qualifi­
cation testing of the drive joint. Operating time records shall be main­
tained in the-unit historical record.
 

3'.8.2 Shelf Life - During long periods of storage, the manipulator arm
 
shall be stored in its protective container, after having been placed in
 
double ar-tight bags which have been sealed and protected from exposure
 
to high hubidity, The unit shall be placed in an area whose environment
 
is controlled such that the humidity remains below 60 percent relative
 
humidity and the temperature remains between 50°F and 80°F.
 

4.0 INSTALLAT-ION PROCEDURES 

The-instructions for installing and calibrating the manipulator arm
 
.on the EOTS are presented in MMC Document (TBD).
 

5.0 OTHER CONSIDERATIONS
 

5.1 Materials
 

All materials used in the manufacture of the manipulator arm shall
 
be in accordance with ATM 50M02442 or exceptions as approved by NASA.
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5.2 Quality Assurance Provisions
 

Since the manipulator arm has the capability of low earth orbital oper­
ations, the design, manufacture, and test of this unit are controlled by the
 
quality assurance provisions of XHB 5300.4(lC).
 

6
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Instrumentation Harness (DDMAM78P Connector on P-FMA)
 

Pin No. Identification Pin No. Identification Pin No. Identification
 

1 	 Shoulder Yaw Re- 22 Shoulder Roll Re- 44 Wrist Pitch 
solver Si solver S3 Switch NO 

2 	 Shoulder Yaw Re- 23 Shoulder Roll Re- 45 Wrist Pitch 
solver S3 solver S2 Switch NC 

3 Shoulder Yaw Re- 24 Shoulder Roll Re- 46 Wrist Pitch Tach 
solver S2 solver S4 

. 

Generator + 

4 Shoulder Yaw Re- 25 Shoulder Roll 47 Wrist Pitch Tach 
solver S4 Switch NO Generator ­

5 	 Shoulder Yaw 26 Shoulder Roll 48 Wrist Pitch Temp.
 
Switch NO Switch NC Sig
 

6 Shoulder Yaw 27 Elbow Pitch Re- 49 Wrist Yaw Resol-
Switch NC solver $I ver $1 

7 Shoulder Yaw Tach 28 Elbow Pitch Re- 50 Wrist Yaw Resol-
Generator + solver S3 -ver S3 

8 Shoulder Yaw Tach 29 Elbow Pitch Re- 51 Wrist Yaw Resol-
Generator solver S2 ver S2 

9 Shoulder Pitch 30 Elbow Pitch Re- 52 Wrist Yaw Resol-
Resolver S1 solver S4 ver S4 

10 Shoulder Pitch 31 Elbow Pitch 53 Wrist Yaw Switch 
Resolver S3 Switch NO NO 

11 Shoulder Pitch 32 Elbow Pitch 54 Wrist Yaw Switch 
Resolver S2 Switch NC NC 

12 Shoulder Pitch 33 Elbow Pitch Tach 55 Wrist Yaw Tach
 
Resolver S4 Generator + Generator +
 

13 Shoulder Pitch 34 Elbow Pitch Tach 56 Wrist Yaw Tach
 
Switch NO Generator Generator
 

14 Shoulder Pitch 35 Elbow Pitch Temp. 57 - 59 Not Used
 
Switch NC Sig 60 Wrist Roll Resol­

15 Shoulder Pitch 36 - 39 Not Used ver $1
Tach. Sen. 
 40
+ Wrist Pitch Resol- 61 Wrist Roll Resol­
16 Shoulder Pitch ver $1 ver S3 

Tach Gen. - 41 Wrist Pitch Resol- 62 Wrist Roll Resol­

17 Shoulder Pitch ver S3 ver S2 
Temp. Sig 42 Wrist Pitch Resol- 63 Wrist Roll Resol­

18.- 20 Not Used ver S2 ver S4
 

21 	 Shoulder Roll Re- 43 Wrist Pitch Resol- 64 Spare
 
solver S1 ver 
 S4 	 65 Spare 

FigurIe 3 Connector and Pin Identification
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Instrumentation Harness (DDMAM78P Connector on P-FMA) 

Pin No. I Identification Pin No. Identification Pin No. Identification 

66 End Effector 
Spare 

67 Wrist Roll Tach 
Generator + 

68 Wrist Roll Tach 
Generator 

69 End Effector 
Spare 

70 End Effector 
Spare 

71 Ao-k i/sad 

72 All Resolvers RI 
73 All Resolvers R3 

74 All Switch C 
75 All Temp. -

76 All Shields 
77 - 78- Not Used 

Figure 3 Conneotor and Pin Identification (co-bn/ ed) 
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Figure 3 (continued) 

Power Harness (DCMAM37P Connector on P-FMA) 

Pin No. Identification Pin No. Identification Pin No. Identification 

1 Shoulder Yaw Motor+, 32-37 Not used 

2 Shoulder Yaw Motor­

3 Shoulder Yaw Brake­
4 Shoulder Pitch 

Motor + 

5 Shoulder Pitch 
Motor -

6 Shoulder Pitch 
Brake -

7 Shoulder Roll Motor 
+ 

8 Shoulder Roll Motor 

9 Elbow Pitch Motor + 

10 Elbow Pitch Motor -

11 Elbow Pitch Brake -

12 Wrist Pitch Motor + 

13 Wrist Pitch Motor -

14 Wrist Pitch Brake -

15 - 19 Not Used 

20 Wrist Yaw Motor + 

21 Wrist Yaw Motor -

22 Wrist Yaw Brake -

23 Wrist Roll Motor + 

24 Wrist Roll Motor -

25 Wrist Roll Brake -

26 End Effector Motor+ 

27 End Effector Motor­

28 Slip Joint Spare 

29 Case Ground/Shields 

30 All Heaters -

31 All Heaters and 
Brakes + 

B-i1 
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Figure 5 Stowage Mode, Cod"Thermat Case 
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Figure 6 Deployed Mode, Hot Thermal Case 
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Table 1 P-FdA Weight Distribution 

WEIGHT (pounds) 

SHOULDER YAW 17.2 

SHOULDER PITCH 17.7 

SHOULDER ROLL 12.0 

UPPER ARM 4.8 

ELBOW PITCH 11.0 

LOWER ARM 3.3 

WRIST PITCH 6.5 

WRIST YAW 6.5 

WRIST ROLL 7.6 

END EFFECTOR 
(Parallel Jaw) 5.4 

WIRE HARNESS 23.0 

TOTAL WEIGHT 115.0 pounds 
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Table 3 Inland Motor Paraneters 

Parameters at 25°C 


Peak Torque.- lb. ft-Tp 


Viscous Damping-lb. ft/rad/sec 


Zero Impedance Source-F0O

Infinite Impedance Source-F1 ' 


Rotor Inertia - lb ft sec2-JM 


No Load Speed-rad/sec-WNL 


Weight - lb 


Volts at Peak Torque, Volts-VP 


Amps at Peak Torque, Amps-Ip 


Torque Sensitivity, lb ft/amp-KT 


Beck EMF, volts/rad/sec-KB 


DC Resistance, Ohms-RM 


Inductance, Henries-LM 


Current Limit, Amps max-IM 


Gear Ratio - N 


T-4471-G
 
Shoulder 


Pitch, Yaw and 

End Effector 


1.5 

-


0.025 


,0.001 


0.00053 


55 


1.5 


24.8 


4.55 


0.33 


0.45 


5.45 


0.005 

. 2.7 

109.8:1 


T-2218-A 

Shoulder 


Roll 


.55 

-


0.0191 

0.00021 


0.000087 


54 


1.25 


18.9 


2.2 


0.25 


0.35 


8.6 


0.0122 


1.25 


66:1 


OT-2911-A 

Elbow 

Pitch 


.85 


0.013 


0.00005 


0.00023 


67 


1.5 


28.2 


2.74. 


0.31 


0.42 


10.3 


0.017 


1.75 


103.1:1 


OT-2143-A
 
Wrist Pitch,
 
Yaw and Roll
 

.31
 

0.0042­

0.00002
 

0.000051
 

75
 

0.7
 

25.6
 

1.3
 

0.24
 

0.33
 

20.0
 

0.019
 

0.8
 

86.4:1
 



Table 4 Inland Tach Generator Parameters 

Parameters at 250C TG-1338-A, All Joints 

Friction Torque - oz. in. - TF 0.7 

Ripple Voltage-Volts (avg to peak)-VF 2.0 

Ripple Cycles - cycles/rev. 31 

8.8 x 10-4
Rotor Inertia - oz. in.seC 2-JG 


Weight - oz 4.3
 

DC Resistance - ohmf-RG 71
 

Sensitivity - volts/rad/sec - KV .12 

Inductance - henries - LG .024 

Load Resistance - ohms min. - RL 6.5K
 

Operating Speed-rad/sec max. - WM 200
 

Volts at max speed - volts - VM 24
 

Voltage Limit - volts - VL 2.64 for shoulder yaw and pitch
 

4.94 for elbow pitch
 
2.09 for wrist pitch, yaw, and roll
 

1.58 for Upper arm roll
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Table 5 Position Feedback Parameters 

Shoulder Yaw and Elbow Pitch 
Typical Electrical Data Pitch and and Wrist Pitch', 

Upper Arm Roll Yaw and Roll 

Primary Rotor Rotor 

Rated Primary-Voltage 26V 26V 

Test Voltage R1 to R3 26V 26V 

Rated Frequency 400 Hz 400 Hz 

Primary current (nominal) 0.246A 0.250A 

-Primary power (nominal) 2.6W .OW 

ZRO rotor impedance (stator 43.3 + J96.4 204 + J388 
open circuit) 

ZRS rotor impedance (stator 56 + J29.4 367 + J284 
short circuit) 

ZSO stator Impedance (rotor 14 + J29.75 168 + .10 
open circuit) 

ZSS stator impedance (rotor -12.4 + J4.65 171'+ J42.6 
short circuit) 

Output Voltage 11.8 9.54 

Transformation ratio +.0,.015 0.454 0.367 

Sensitivity (volts/deg) 0.206 0.167 

Phase shift input to output 16.4 deg 14 deg 
(open circuit) 

Rotor DC resistance 15.7 ohm 42 + 6 ohm 

Stator DC resistance 5.4 ohm 92 + 6 ohm 

Accuracy (maximum error from 2.5 minutes 2.5 minutes 
synchronous to zero) 

Weight, nominal 9.2 oz 20 oz 

Rotor moment of inertia 12 gm-cm2 190 gm-cm 2 

Degrees of Resolver Rotation/Degrees of Drive Joint Rotation
 

Shoulder yaw - 335°/4000
 
Shoulder pitch - 35501180'
 
Shoulder roll - 339.4 /1800
 
Elbow pitch - 348.4°/2800
 

°
 Wrist pitch and yaw - 328.7°/180
 
Wrist roll - 3600/3600 '
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Table 6 Brake Electrical Characteristics
 

Brake Part Number
 

BFR-1OH BFR-20D-1 BFR-20D-2
 
Brake Electrical (Wrist (Elbow (Shoulder
 

Parameters Units Drivbs) Drive) Drives)
 

Design Voltage 	 Volts 24.0 24.0 24.0
 

Coil Resistance 	 Ohms 96.0 75.0 75.0
+10% 96.0 75.0 75.0
 

Pull-in Voltage Volts 17.0 17.0 17.0
 
(at 200C) (max) 17.017.017.
 

Holding Voltage Volts 8.0 8.0 8.0
 
(at 20°C (max) 8.0 8.0 8.0
 

Current Response (1) msec 19.0 25.0 25.0
 

Inductance (2) henries 1.0 1.8 1.8
 

NOTES: (1)	Time required to reach 63% of'maximum current with 0.007-inch
 
gap (brake face clearance)
 

(2)With zero gap using 1,000 Hz
 

Table 7 Heater Resistances
 

Resistance
 
Heater Watts +10% ohms +10%
 

E1CX3A
 
(Wrist Drives) 5.5 120
 

GlJX154A
 
(Elbow and Shoulder Roll) 7.8 82 

G1NX7A
 
(Shoulder Drives) 11.0 52
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Table 8 Mass Moment of Inertia around Jointy - slug-feet2 

NOMINAL CONFIGURATION 

DRIVE JOINT 

Shoulder Yaw 
Shoulder Pitch 
Elbow Pitch 
Wrist Pitch 
Wrist Yaw 
Wrist Roll 

ARM STRAIGHT OUT 

Shoulder Pitch/Yaw 

UNLOADED 

22.000 
34.741 
15.691 
0.522 
0.267 
0.0029 

68.367 

LOADED 
(110 LB MASS) 

153.42 
167.67 
142.29 
24.15 
18.58 
2.28 

447.28 

El bow 

Shoulder "3 _ Nominal Configuration 



TabZe 9 Mass Moment of Inertia of Joint Drives - slug-feet2
 

JOINT FORWARD DRIVE BACKDRIVE
 

WRIST 6.689 x 10-5  0.4994
 

ELBOW 2.991 x 10-4  3.178
 

SHOULDER 6.623 x 10-4  7.976
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-Ioto 0 0 to +I0I Switch Input
 

Variable
 
"Rate
 

Input K N
 

DEFINITIONS
 

bDetermined 
 by Component Selection and Design
 

KT = torque sensitivity of motor, ft-lb/amp
 

N = gear ratio 

RT = total resistance, ohms 

J = total reflected inertia, ft-lb-sec2 (loaded and unloaded) 

KB = back EMF of'motor, volts/rad/sec 

KV = tachometer sensitivity,'volts/rad/sec 

KF = forward loop gain 

SCM = servo compensation network
 

DA = drive amplifier
 

Figure 7 Rate Servo Loop Block Diagram for Each Joint 
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OPERATIONS, CALIBRATION AND MAINTENANCE
 

1.0 GENERAL OPERATIONS
 

General guidelines and precautions for proper handling and opera­
tion of the P-FMA are identified below.
 

1.1 During handling of the P-FMA the electrical power should be removed
 
from all brakes so that the brakes are set on all drives. During trans­
portation the brakes should be set, the arm folded back on itself, i.e.,
 
stowed configuration, and supports placed At the shoulder drives, the
 
elbow pitch drive, and at the wrist drive to prevent motion and possible
 
damage.
 

1.2 Set-up of the arm for operation should always be accomplished with
 
brakes set. The support structure at the shoulder ydw interface should
 
be leveled in both directions to minimize the gravity imbalance in the
 
yaw directions.
 

1.3 During operation the voltage to the resolver should be set at 26.0
 
\fVac 	at 400 Hertz. The yoltage regulation should be consistent with the
 
desired accuracy of the output voltage or a ratiometer for output to in­
put can be used to correct for input voltage variations.
 

1.4 During operation of the P-FMA care must be exercised to not overheat
 
the motors. 'The table below lists the voltages, and resulting currents
 
at room temperature, to develop full stall torque or no load speed. It is
 
recommended for long.term earth and vacuum chamber operations that volt­
,age and currents not exceed 110% of these values.
 

Drive 	 Voltage Current-amps
 

Shoulders & End Effector 24.8 	 4.5
 
Shoulder Roll 18.9 2.2
 

Elbow 28.2 2.7
 
All Wrists 25.6 1.3
 

1,5 When it is desired to'allow a drive to be back driven the electrical
 
power at 28 Vdc must be applied to release the brake.. The brakes are de­
signed to restrain spall torque of the motors at rated voltage and must
 
be released for operation.
 

1.6 Micro switches are located at each extreme of travel on each drive
 
except the,wrist roll. For safety these switches 'should be'wired into
 

the motor control circuitry, manual or automatic,, to interi&pt power to
 
the motors. This precaution is necessary to jrevent structural hardstop
 
contact at the extremes of travel and to preclude damage to the external
 
wire harnesses.
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1.7 When operating the jaws of the end effector a low voltage, -5 Vdc,
 
should be used to open or close the jaws. If more jaw grip force is de­
sired the voltage can be increased up to the maximum after contact is
 
made. The jaws can be damaged if they are driven together at maximum
 
velocity.
 

1.8 All the drives except shoulder roll and end effector are backdrive­
able at reasonably slow speeds. Damage to the arm will occur if it is
 
driven against a rigid object at high speeds as the safe gear stress
 
value can be exceeded from impact loads.
 

1.9 Electrical connection only be made through the two base connectors
 
or through the individual drive joint electrical connectors. Special
 
breakout boxes are available for interfacing *ith these connectors in
 
order to power the drives or to perform diagnostics. A full set of
 
drawings, wiring diagrams, and schematics are on file at NASA-MSFC and
 
M4C. An "as-run" acceptance test procedure with electrical test data
 
is also on file.
 

1.10 All of the drives have an inherent no load analog voltage threshold 
(less than 10% of rated voltage) to produce motion in one direction. To 
reverse direction, approximately the same analog voltage of opposite 
polarity will be required. Therefore, if the motor voltage drive source is 
analog this total hysteresis band must be considered in the control re­
sponse required. Pulse width modulated controls can minimize this hystere­
sis effect. 

1.11 Except for checkout, the heaters should not be used unless a cold
 
test is being performed in any case the temperature sensors in the pitch
 
drives should be monitored so that the maximum allowable operating tem­
perature is not exceeded.
 

1.12 If another end effector is used the wiring schematics must be
 
utilized to'assure proper pin to pin connections thru the slip ring on
 
the wrist roll drive. Note that certain of the slip ring conductors,
 
numbers 1 and 8, can carry up to 10 amperes, while the other six can only 
carry up to 1.0 amperes. 

1.13 In the use of the P-FMA with th& counterbalances, it must be recog­
nized that this added weight causes large increases in the reflected
 
moments of inertias on the drives from the arm. Accelerations will be
 
significantly reduced, thus reducing the control response. Conversely
 
the deceleration distance will be increased substantially and must be
 
considered to prevent overtravel to hard stop. If the P-FMA is used in
 
a closed position loop system, extreme care must be taken so that the
 
added inertias do not cause an instability. Driving the system at or
 
near resonance could cause damage to the drives or the arm.
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1.14 With the counterbalances installed the arm is capable of perform­
ing in most orientations at full travels of each drive. However, there
 
are a few operations, such as the fully stowed configuration, that are
 
legraded or restricted. The imbalance to the arm is insignificant for
 
wrist yaw travels up to +200; however, beyond 20 degrees some type of
 
compensation should be-considered. In some operations, such as the
 
stowed position, the counterbalance will interfere with the arm and pre­
vent full travel. If the shoulder roll is rotated from the normal orien­
tation, the wrist yaw becomes a pitch degree of freedom and it is not
 
counterbalanced; These special considerations should be used as re­
strictions to manual or automatic control of the arm.
 

1.15 General engineering practices were employed in the arm design to
 
reduce electromagnetic interference (EMI). The external harnesses have
 
individual conductor shields, and these are terminated thru a pin on
 
each of the two-main base connectors. These shields should be grounded
 
at ehe controls ground. Internal to the drives it was not physically
 
possible to complete the shielding to each component. This will be accom­
plished at refurbishment by the use of single shielded conductors and flexi­
ble circuits with shield planes. The motor circuits should contain EMI
 
filters to ground; for these reasons some noise coupling might occur. As
 
part of a flight refurbishment, it is suggested that EMI criteria and
 
tests be performed to ensure compatibility with the RF command link. At
 
that time appropriate action such as adding more 'wire shielding, elimi­
nation of internal micro-connectors, providing conductive connector
 
housing, and providing filters at the motors will be incorporated.
 

2.0 CALIBRATIONS
 

2.1 When the PFMA is relo-ted, the arm should be placed into an approxi­
mate stowed configuration. With the shoulder, elbow, and wrist drives
 
supported, the counterbalance weights can then be removed. When the arm
 
is set-up and levelinghas been accomplished, the counterbalance weights
 
should be carefully re-installed and the arm recalibrated. This is accom­
plished by releasing each brake, one at a time starting at the wrist
 
pitch, and adjusting the counterbalance weights until the gravity effect
 
is counteracted. Then a minimum voltage should be applied to the drive;
 
and the operating rate from the tachometer, recorded. With the polarity
 
reversed, the rate of travel should be approximately the same in the
 
opposite direction. If it is not counterbalance weights should be adjusted.
 

All changes to the counterbalanced manipulator should be carefully planned
 
and analyzed before implementation. Verification tests should be per­
formed at minimum voltages to checkout the new configuration.
 

2.2 If it is planned to use the resolver outputs for position information
 
for any particular task, an end-to-end calibration is recommended. In­
ternal adjustment of the resolvers with respect to an arbitrary mechanictl
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point on the drive is not only unnecessary but is not desirable. In most
 
cases the minimum voltage from one output was adjusted to coincide with
 
a "null" or reference position in the Interface Control Document. To
 
calibrate for a given task the minimum voltage of either output or an
 
equal voltage from both outputs (resolver position at 45 , sin 450
 
cos 450) can be used as the starting reference.
 

Then the drive rotational travel and respective voltage changes can be
 
measured as the calibration. It should be noted that the gearing ratios
 
between the drive and the resolverare presented in the Interface Con­
trol Document. As a general rule, we had designed to have nearly one ro­
tation of the resolver to correspond with the total specified travel of
 
each drive joint.
 

3.0 MAINTENANCE
 

3.1 From a functional standpoint the P-FMA has been designed to be mainte­
nance free. The gears and bearings are lubricated for earth ambient opera­
tion for the specified number of hours.
 

3.2 The P-FMA drive motors and tachometers were assembled with silver­
graphite brush material for long life at earth ambient operation. If 
vacuum operations are required, alternate brush ring assemblies made from 
the Boeing 046-45 material must be used. Caution: Do not operate motors 
or tachometers for more than 15 seconds in an earth ambient with the Boeing 
brushes. During the preflight refurbishment of the P-FMA, the standard 
brushed will be replaced with the Boeing brushes. Additionally, the exist­
ing lubricant for all gears and bearings may exhibit high outgassing 
characteristics in vacuum operations. The preflight refurbishment is in­
tended ,for the purpose of replacing this grease with a space compatible 
lubricant, Braycote 3L38-RP. 

3.3 The internal and external harnesses have been designed for convenience
 
and accessibility and long life for earth operations. They will not re­
quire any maintenance unless damaged. During the refurbishment for flight
 
the wiring should be replaced as described in paragraph 1,15.
 

3.4 For cosmetic purposes any external P-FMA scratches can be "touched­
up" by brush application of the white acrylic lacquer supplied with the 
arm.
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APPENDIX D
 

PROTO-FLIGHT MANIPULATOR ARM DRAWING TREE
 

Proto-Flight Manipulator Arm Assembly (8 ft) 


Proto-Flight Manipulator Arm Assembly (4 ft) 


Proto-Flight Manipulator Arm Schematic 


Proto-Flight Manipulator Arm Harness Assembly 


Proto-Flight Manipulator Arm Harness Machined 

Details and Assys.
 

Joint Actuator - Shoulder Yaw 


Shoulder Yaw Schematic 


Shoulder Yaw Harness Assembly 


Actuator Harness Machined Details 


Connector Assys 


Cable Assys, Flat 


Shoulder Pitch and Yaw Housing Assemblies 


Shoulder Pitch and Yaw Machined Details 


Shoulder Drive Gears 


Joint Actuator - Shoulder Pitch 

Shoulder-Pitch Harness Assembly 

Shoulder Pitch ,Schematic 


Joint Actuator -'Shoulder Poll 


Shoulder Roll Schematic 


Shoulder Roll Harness Assembly 


Shoulder Roll Machined Details and Assemblies 


Shoulder Roll Gears 


Arm Section Components 


Joint'Actuator - Elbow Pitch 

Elbow Pitch Schematic 

Elbow Pitch Hlarness Assembly 

849PFM00000-009
 

849PEM00000-010
 

849PFN00100
 

849PFM00200
 

849PFM00201.
 

849PFMO1000
 

849PFMO1100
 

849PFM01200
 

8491FMO1201
 

849PFM01210,
 

849PFM01220
 

-849PFMOt300
 

849PFMO1301
 

849P.FMO1401 thru
 

849PFM01407
 

849PFM02000
 

849PFM02200
 

849PFM02100
 

849PFM03000
 

849PFM03100
 

849PFM03200
 

849PFM03300
 

849PFM03401
 

849PFM04000
 

849PFM05000
 

849PEM05100 

849IFM05200
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Elbow Pitch Housing Assembly 


Elbow Pitch Machine Details 


Elbow Pitch Gears 


Joint Actuator - Wrist Pitch and Yaw 


Wrist Piich and Yaw Schematic 


Wrist Pitch and Yaw Harness Assembly 


Wrist Gears (Pitch, Yaw, and Roll) 


Joint Actuator - Wrist Roll 

Wrist Roll Schematic 

Wrist Roil Harness Assembly 

Gear Drive Assemblies - Wrist Pitch, Yaw, 
and Roll
 

Wrist Drive Machined Details 


End Effector Assembly 


End Effector Schematic 


End Effector Harness Assembly 


End Effector Machined Details and Assemblies 


End EffectotkSpiroid Gear Set 


Interface Control Document 


Contract End Item Specification 


849PJM05300
 

849PFM05301
 

849PFM05401 thru
 
849PFM05406
 

849PFM07000
 

849PFM07100
 

849PFM07200
 

849PFM07401 thru
 
849PFM07406
 

849PFMO8000
 

849PFM08100
 

849PFM08200
 

849PFM08300
 

849]PFM08301
 

849PFM09000
 

849PFM09100
 

849PFM09200
 

849PFM09300
 

849PFM09401
 

ICD-PFM-00000
 

CEI-PFM-00000
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