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Abstract

A model of robot learning is described that associates previously

unknown perceptions with the sensed known consequences of robot actions. For

these actions, both the categories of outcomes and the corresponding sensory

patterns are incorporated in a knowledge base by the system designer. Thus

the robot is able to predict the outcome of an action and compare the expecta-

tion with the experience. New knowledge about what to expect in the world

may then be incorporated by the robot in a pre-existing structure whether it

detects accordance or discrepancy between a predicted consequence and experi-

ence. Errors committed during plan execution are detected by the same type

of comparison process and learning may be applied to avoiding the errors.

The model is being implemented as a system called RECOGNIZEA, and will be

incorporated into the existing JPL robot system so that its performance may

be tested in real situations.

Descriptive Terns: Lobot learning, error correction, partial matching,

association, recognizai.le states.
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INTRODUCTION

We describe a learning paradigm designed to improve the performance of a

robot in a partially unpredictable environment. We will discuss closely related

work on error correction, showing how the learning process may be applied to it,

and how research in partial matching of patterns can be used to provide the

necessary support for the learning process once it has been initiated. The

inspiration for the work on learning and error correction reported here has

been the JPT. Robotics Research Program. A robot system has been under development

at JPL for five years and is now fully operational, integrating vision and scene

analysis subsystems with both manipulation and locomotion (see Fig. 1). A brief

overview of the robot's system organization is given in Thompson's paper on

robot navigation (Thompson, T1).

The learning paradigm, which is being implemented in a system called

RECOGNIZER, has been described elsewhere with some indications of its applica-

tion to modeling biological learning (Friedman, F1). Here we are concerned

with its interactions with error correction and partial matching. The starting

point for both the learning and error correction processes is the recognizable

state. By recognizable we mean two things. First, an internally stored model

of the state exists. Second, a process for matching sensory inputs against

the internal model also exists.

^_ 1
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RECOGNIZER

RECOGNIZER will associate object descriptions or perceptions from the

scene analysis system with perceived consequences of robot actions. In order

to make clear what is meant by learning in this paper, we will first describe

elements of the Common Sense Algorithm (CSA) language in which RECOGNIZER is

being programmed. CSA is a high-level language system under development by

C. J. Rieger for use in natural language understanding (Rieger, Rl, R2, R3).

The JPL robot employs, in addition to various support procedures, a subset

of procedures that accomplish useful functions in scene analysis, manipulation

and locomotion. A member of this procedure subset is called an "action." A

suing of actions, called a "plan," can achieve specific goals of a human

operator. In order that a plan-synthesizer may be able to construct a plan in

RECOGNIZER, knowledge about robot actions is provided by the designer and

stored as a CSA form. This form is a triple, linking the name of a robot action

and its parameter list with the name of the state it produces via a causal

link.(R1). The form also includes slots for preconditions or gates. These are

states that must be true if the action is to produce its intended effect. For

useful plans to be constructed, the uninstantiated algorithms must be selected

and instantiated. A decision net for each goal-state performs this function.

The selection net for a goal-state is called a "causal" net and consists of

nodes, arcs, and the terminal algorithms. A test performed at each node

chooses the arc to a successor node and to another test, eventually reaching a

terminal algorithm (see Fig. 2). When the CSA plan-synthesizer receives a

request to make a goal state true, it traverses the corresponding causal net to

a given algorithm, examining that algorithm for gating state condition* not

already true. For each of the gating states in turn, the process of traversing

{
i



s.
Y
a

a
0
M

4

^r1

V
Y
'q

ca

V
qd

N

a0
V4
PL.

77-16

4	 !

{



MR

]7-16

its causal net is repeated till an action to make each gatiug condition true is

found. The synthesizer then links the actions in proper order to make a plan

that accomplishes the desired goal state. There is also a generalized "demon"

capability provided.

This brief description of the language suffices for our definitions and

we can now describe RECOGNIZER itself. RECOGNIZER incorporates a causal net

for each action in the robot's repertoire. Other decision nets are also employed

in the system. For each robot action, there is an "outcome" net. This is a

decision net that terminates with measurable predictions of what may happen

as the result of an action. The predictions take the form of more-or-less

directly sensed input parameters such as "finger touch sensors 1 and 2 are off"

or of higher-level perceptions inferred from these patterns such as "unsupported

rock." Still another type of net is the semantic decision net which selects for

perception categories based on the descriptions constructed from the sensory

input. One semantic net infers useful property categories of objects perceived,

another the existence of conditions leading to the commission of errors.

Each semantic net furnishes a corresponding outcome net with the infor-

mation needed to make a decision about what is the expected outcome, selecting

from all known outcomes of an action. If such a partnership exists for every

robot action, expectation can be compared with experience. (Specific examples

of outcome nets and semantic nets are given later.)

The specification of the categories of objects that the robot needs to

know and the kinds of error states that it can readily detect requires close

study of actual robot experience by the semantic and outcome net designer and

an intimate knowledge of robot subsystcu design. With this knowledge, he can

ME
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specify particular outcome states the robot can measure without knouing the

nature of the object or environmental state which will produce that outcome

state in advance.

fine additional CSA feature facilitates learning. This is the ability to

perform "reverse search" of decision nets. The net is normally traversed from

top to bottom, with an initial test leading to an arbitrary number of further

tests, terminating in some kind of executable statement representation

(terminal algorithm) or datum. In CSA, it is possible, after making such a

traverse, to start at the termination and retrace the path actually followed in

reverse, because the result of each test has been remembered. By arranging a

system which plans action strings from a knowledge base of causal nets and

which has some expectation of what it will sense as the result of each action it

will take, we can relate what is perceived during e.cecution with the anticipated

sensed cons-quences. Reverse search enables us to locate critical branches at

which to place the learned perceptions.

WHAT CHANGES AS A RESULT OF LEARNING

Two forms of learning will be discussed, learning how to categorize

specific unknown perceptions and acquisition of stimulus-response pairs. In

categorizing perceptions the tests resident at a given node of a semantic net

are subject to modification. The net structure (number of nodes, the arcs

leading to successor nodes and the terminations) remains unchanged. At the

start, before learning, most of the nodes will have only default tests; i.e.,

they will have no templates to match against a pattern perceived externally.

When no templates are present that match, the default test points to an arc

that is most likely when the robot's world is behaving normally. A succession

6
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of default choices leads to a terminal perception category that is most likely.

We make the assumption that the environment is regular enough to justify pre-

selection of a normal or default node.

After perception learning takes place, there will be templates at those

nodes where there were initially only defaults. When an incoming perception

matches such a template, a non-default are is chosen, leading to a non-normal

perception category termination.

}	 During stimulus-response acquisition, the structure of the semantic net is

modified to add new terminations as well as new templates at the nodes.

When and how the templates are generated by RECOGNIZER and how they are

positioned at the appropriate node are described next.

A PERCEPTION LEARNING SCENARIO

A semantic net before learning is shown in Fig. 3. The net provides

for a matching of visual perception patterns and can potentially select for

intrinsic object properties that affect manipulator performance. The net

shown selects for the properties "heavy," "fragile," "sticky" and "hard."

"Hard" is the default termination, and will always be selected as the expected

category at the outset. Thus the robot will respond by trying to grasp all

objects it is commanded to manipulate.

To initiate a learning experience, the robot may be commanded to "pick

up rock 1 and put it in the box." The plan-synthesizer will then generate

a string of actions including "analyze scene," "find rock l," "grasp rock 1"

"move-object rock 1" and "ungrasp rock 1." Figure 4 shows an outcome net

associated with the action "grasp." An execution monitor looks at each action

In the plan stack before it is executed. It then activates the corresponding

_	
-t
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outcome net. In addition to the outcome net, a trigger-tree, TT1, is activated

by the monitor. Trigger-trees are CSA constructs and consist of packets of

demons (Rieger R3). A demon in TT1 will be on the alert for each combination

of sensory inputs shown in the terminations of the outcome net. Thus each

termination is a recognizable state. Note that for "grasp" alone the sensors

available cannot distinguish between "hard," "sticky" and "heavy." In effect,

several categories can be inferred from the action "grasp". These can be dis-

ambiguated by subsequent actions.

Before "grasp" is executed, as part of the process of scene analysis and

segmentation to find rock 1, the semantic net will make a selection to cate-

gorize the object. When the robot is "naive" (before any experience) the

semantic net choice will inevitably be "hard object." When the next action is

"grata-;" its outcome net uses the semantic net selection to make the choice of

"hard expected." As "grasp" is executed, the activated demons report to a

trigger monitor which compares the demon actually triggered with the expected

outcome perceptions. For simplicity, assume that the early experience cf the

robot will be only with a variety of hard, non-fragile objects.

After each exercise of "grasp," the trigger monitor asks the scene analy-

sis system for its description of the object grasped. The scene analysis

system, DABI, designed by Yakimovsky and Cunningham, is working now in the

robot system and operates with a library of primitive attributes, specified in

advance (Yakimovsky and Cunningham, YC1). An attribute list that is imple-

mentable might include shape, size, texture, color pattern, and symmetry.

The trigger monitor receives advice from the outcome net in Fig. 4 to wait at

least till "ungrasp" for the next step in learning. For both "move-object" and

"ungrasp," the outcomes (Figs. 5 and 6) confirm "hard movable object." Therefore

10
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the trigger monitor can proceed. By reverse search, starting at the confirmed

termination "hard object," a monitor function climbs the semantic net, placing

the description found by scene analysis at each node containing a default till

it gets to the highest node in the net. If the experience is repeated, a process

capable of determining the common attributes and relations and eliminating

differing attributes is employed to revise the test for attributes present in

hard objects. Hayes-Roth has described programs for similarity and difference

matching (partial matching) between patterns that will do this job (Hayes-Roth,

HR1; Hayes-Roth and McDermott, HR-McDl). For the property lists we are talking

about here, simple bit operations suffice, performed on binary vectors representing

presence or absence of attributes. For more complex relations, his algorithms

search the problem space efficiently, and will be employed in RECOOIZER.

Now the stage is set for learning about exceptional properties such as

"fragile." Suppose the robot is commanded to pick up a Christmas tree ornament.

It grasps with normal pressure and breaks it. At this point, the trigger

monitor discovers that the demon corresponding to a fragile broken object has

been triggered and that this is not the expected outcome. Once again it requests

the object description from scene analysis, but now starts its reverse search

of the semantic net (Fig. 3) from the termination "fragile object." It is

looking for the last node common to the path that scene analysis took in the

normal direction (to hard object) and the path to the actually experienced

termination (fragile object). The monitor can find this node because each

time the scene analysis system traverses the semantic net, it leaves an updated

marker at each node of the path taken. All the trigger monitor has to do is

climb from the termination "fragile object" to N3 in Fig. 2 to find the current

path marker. This node is where it will locate its test for "fragile." The

11
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trigger monitor then calls the partial matching process to examine the tests for

hardness (non-fragility) at N3. The partial matching process will now seek to

find the differences between hard and fragile objects by comparing the N3 tests

already present with the scene analysis characterization of the ornament as a

spherical, smooth, shiny, red object. If a difference set cannot be found,

the partial matcher may request more detailed attributes of scene analysis.

This is possible because DABI operates with a resource allocation algorithm

that controls the time spent and depth of tree search. Thus in a first pass

the object might be characterized asp spherical. More in-depth analysis would

add "a small cylinder sticks out of the sphere." If, on the basis of some

predetermined criterion, a distinctively different attribute set description of

a fragile object can be found after partial matching a limited number of times,

it will be placed at N3, overriding possible similar descriptions for hard

objects placed there earlier. Thus the next time the robot is commanded to

pick up a similar ornament, its semantic net will choose "fragile object," and

its outcome net, Uy selecting "fragile" expectancies, will find advice for the

execution monitor to "grasp with minimum pressure," advice that was not found

during its first experience with an ornament until too late.

Similar outcome nets are shown in Figs. 5 and 6 for the actions "move-

object" and "ungrasp." These subsequent actions, as already pointed out, serve

to disambiguate the properties "too-heavy" and "sticky" from "hard." Once

tests for such objects are learned, the predicted expectancies contain advice

to inhibit the execution monitor from proceeding further with a planned grasp.

12
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UNDERLYING PRINCIPLES

'Mere are several underlying principles of the learning paradigm. First,

recognizable state outcomes that are independent of what is to be Zearned are

associated with an action (or string of actions). Second, to be useful, the

recognizable states must relate to goals of the system such as avoiding danger,

correcting errors, locating energy, etc. Third, the recognizable state must be

coupled with an action that increases the likelihood that what is to be learned

is properly segmented or isolated from the total sensory input. (The designer

can only anticipate perception-outcome relationships that are likely, not

guaranteed). Thus "grasp" relates to an object whose intrinsic properties (such

as weight) may be recognizable via actions (such as move-object) and specific

sensory stimuli (such as manipulator motor current overload) divorced from the

objects appearance, but the appearance of the object grasped may then become

useful information, allowing the machine to avoid further overloads.

ERROR CORRECTION

We turn now to error correction, a subject closely connected to learning,

and give an overview of the approach adopted by S. Srinivas (and to be included

in RECOGNIZER) for correcting execution errors in robot performance (Srinivas, S1).

His starting point is also the recognizable state. For each action of the JPL

robot he stores a list of possible error states and triggering perceptions

actually available in the existing system. For example, the action "move-hand-

to-grasp" can be associated with six foreseeable error states. The hand could

miss the object to be grasped entirely, left or right fingers could bump into

it, etc. Ambiguities similar to those of the recognizable states described

in the section on learning also exist here, due to the imperfect knowledge

15
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supplied by the available sensory devices. If in "move-hand-to-grasp" the hand

missed entirely, the JPL robot would only know actual hand position ( from its

angle-sensing pots) relative to desired hand position. It would have to execute

the next action, "grasp," to resolve the ambiguity between correct placement

and a complete miss.

Srinivas applies two basic strategies for correcting errors after having

detected them. These are failure reason analysis and multiple outcome analysis.	 •^

In "failure reason analysis" he seeks to determine automatically why the failure

occurred by examining the history of actions preceding the failure. When the

reason for failure is known, a corrective action can usually be associated with

it. The second strategy ignores why and seeks to characterize the nature of the

error state -- what exactly is the error? Sometimes, simply knowing what is

wrong may point to a correction. It appears to be impossible to know in advance

which of these strategies (if either) will find a proper coui se of action to

correct the error.

Failure reason analysis is accomplished by synthesizing a tree of causally

linked failure reasons and actions. A knowledge base of possible failures for

each robot action is provided. These are classified into operational, pre-

condition, information, and constraint errors. Starting with the action at which

failure was detected, its associated list of possible failures becomes a candidate

for the tree. Some classes of error are causally linked to previous actions.

For example, an "incorrect information supplied" reason has the link "incorrectly

provided by" which points to a previous action. Before adding a candidate

failure reason to the tree, it is pruned, if possible, by a variety of tech-

niques. One method is to examine the sensory manifestations experienced during

the performance of the specific action. A manifestation selection net based

16
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on study of that action will point to some of the failure reasons of the can-

didate list as being more probable than others. Usually the manifestation

net will rule out some reasons. The failure tree synthesizer is linked to

a trace of previous actions. Once a layer of failure reasons is accepted,

those failures causally linked to previous actions provide the actions for

the next round of synthesis and pruning. The number of layers added to the

tree is limited by the finite trace maintained. If the tree can be pruned

enough to narrow the reasons for error to a single cause, a proper course of

action for correcting that error is usually determinable in advance and stored

with the error.

Multiple outcome analysis seeks to characterize what the error state is

by performing additional "inexpensive" tests, when necessary; i.e., causing the

robot to execute additional actions for the sole purpose of adding information

about the nature of the error committed. This may be needed if the triggering

recognizable state indicates an error ambiguously.

If either failure reason analysis or multiple outcome analysis has found

a solution pointing to a course of action, the planner goes to work patching

in error corrections to the action plan. To achieve the necessary preconditions

for the failed action, it may have to undo some actions as well as redo . ^thers.

Thus, if the failure was asr:ociated with "grasp" and the fingers were closed

before a failure was detected, they would have to be opened again before

retrying "grasp." The resultant "undo" and "redo" steps and new actions are

patched into the previous plan and execution is resumed.

17
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LEARNING APPLIED TO ERROR CORRECTION

Error correction refers to the ultimate achievement of a goal state after

an initial execution failure. Learning refers to avoiding the failure in sub-

sequent attempts to achieve similar goals. The combined qualities may be called

adaptation. RECOGNIZER will incorporate the techniques worked out by Srinivas.

Not only are they important in their own right, but they extend the scope of

adaptation possible. The learning techniques already described may be applied

to the recognizable states classified as errors. Our example will once again

center on the action "grasp." Figure 7 shows a second outcome net introduced

for the action "grasp" with an additional class of terminal recognizable state:.

The class previously discussed (Fig. 4) ("hard," "fragile," "sticky," "heavy")

do not initiate error correction. The second class ("missed," "position error

normal to finger plane (p.e.n.f.p.]," "left finger touching," etc.) when

recognized, initiate both learning and error correction processes running in

parallel (or simulating parallel processing). Figure 8 introduces a new

semantic net, the object-grasp error net. This net is shown before learning

and contains a set of tests containing only defaults pointing to the terminal

category, "no error." With such a net we can discuss a learning scenario.

Suppose that the robot attempts to grasp a rock from above, fails to maintain a

briefly attained grasp, and multiple outcome analysis discovers that a "position

error normal to the finger plane" exists ( 	 Fig. 9). Such a "squeezing out"

error occurs frequently. If the robot can categorize shapes such as "wedge-

shaped" or "hemispherical," the partial matching process (HR-1) may discover

that such shapes positioned between the fingers are often associated with

failure. RECOGNIZER will then plant templates for these shapes and for "manip-

ulator position with respect to the object" at the node pointing to p.e.n.f.p.

18
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At this stage of learning, RECOGNIZER will expect to commit a p.e.n.f.p. error

when it encounters such shapes and will find advice in the "object-grasp" error

outcome net on how to modify the robot's actions to correct the error.

LEARNING STIMULUS-RESPONSE PAIRS

Figure 7 indicates where correction strategies are suggested a priori

for correcting this type of error. For the p.e.n.f.p. error, in order of

increasing motor complexity the correction strategies are:

a) rotate plane of sliding vector

b) change angle of approach of hand from above to side of object

c) provide support underneath object (use a shovel).

For each shape that produces an expectancy of "grasp" failure, the plan-

synthesizer can patch in the simplest technique. If it succeeds, an association

is established between the successful action and the shape template at node N2

of the object-grasp error net (Fig. 8). The association may be conveniently

represented by modifying the structure of the semantic error net, creating a new

category "p.e.n.f.p. (technique a)" termination, pointed to by the template

associated with it.*

If the simplest technique does not succeed, the error correction process

will attemp'. ; in order, the more complex b and c strategies. If they are

successful, corresponding new terminations are created in the error net structure.

In effect, a stimulus-response structure is created combining an arbitrary

perception with a pre-fabricated response. Thus the system may progress frf)r::

making motor errors of a particular kind to acquiring a kind of motor skill to

avoid such failures.

*CSA provides for dynamic restructuring of decision nets.
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A small knowledge base has been provided for exercising the plan-

synthesizer, and some demon structures have been implemented, demonstrating

the planner's capacity to produce correct robot action strings and for CSA

functions to perform reverse search of decision nets. Implementing the elements

of RECOGNIZER, and demonstrations of learning and error correction with the robot

are scheduled for this year.

SUMMARY AND FUTURE DIRECTIOtdS

Some features of the RECOGNIZER learning and error correction system

design have been described. Although a few general algorithmic principles can

be pointed out for the processes denoted here by the terms "learning" and

''error correction," the system can be made to work only by studying the actual

contexts in which the JPL robot will find itself and incorporating the necessary

detailed empirical knowledge in its data base. With such a system made opera-

tional, the robot may be able to cop, with a less constrained environment than

a laboratory.

A recognizable state is one which matches at. environmental perception to

a stored model. Learning is initiated by such a match. The stored model attri-

butes of recognizable states are independent of whet is to be learned. The

effect of learning is to enhance the system's ability to predict a relationship

between a previously unknown perception of the environment and a semantic category

defined by a given recognizable state. When such recognizible states are

errors, the system may learn to modify its motor behavior to avoid committing

them. The system's ability to accomplish learning depends or finding a descrip-

tion of the perception distinctively different from its previously experienced

perceptions.
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By studying the actions associated with error sta r-es, reasons for failures

of the action can be stored in advance, and the knowledge can be used to synthesize

failure analyses tailored to the failures actually encountered. We are consid-

ering extensions of the error detection and correction capabilities to encompass

a wider scope of error. For example, if the robot can link detected conditions

like "unsupported" and "above-the-ground" to a model of gravity, it can make

better predictions of where to look if it drops a rock. If it is engaged in a

complex mechanical assembly and has a model of the completed correct assembly

in memory, together with a knowledge of the stage attained, it can detect errors

more context dependent than those tied to the general purpose actions of the

robot behavior repertoire.

During the coming year we plan to integrate RECOGNIZER into the JPL robot's

software system and test its performance in real situations. Such a system

when dealing with previously unknown, objects will enable the robot to eventually

predict intrinsic properties of the objects related to its own goals and so

achieve those goals more consistently.
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