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This report is concerned with the control of linear, discrete-time,
stochastic systems with unknown control gain parameters. Two suboptimal
adaptive control schemes are derived: one is based on underestimating
future control and the other is based on overestimating future control.
Both schemes require little on-line computation and incorporate in their
control laws some information on estimation errors. The performance of
these laws is studied by Monte Carlo simulations on a computer. Two
single-input, third-order systems are considered, one stable and the
other unstable, and the performance of the two adaptive control schemes
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I.	 Introduction

Problems of controlling systems under uncertainty have long attracted the
attention of many control theorists and engineers because of their importance in
practical control systems. Since the work of Bellman [1], the stochastic adap-
tive control approach has been useful for treating such problems ([21; also see
[3] for a survey). For state space models, the optimization approach for sto-
chastic adaptive control haq been studied extensively. However, explicit solu-
tions have been obtained for only a limited class of problems, for example, the
well known certainty equivalence solution of the standard linear quadratic
gaussian problcai. Although more general problems have been conceptually solved
(i.e., requiring formal solutions of functional equations), explicit forms of
the optimal control laws (if they exist) have yet to be obtained. In order to
overcome the difficulties in solving the functional equations, many suboptimal
schemes have been proposed [3]. Most of them incorporate approximations for
some features of adaptive control. However, except for the ad hoc scheme where
the certainty equivalence principle is enforced (this scheme will be called the
CE law), they usually require a considerable amount of on-line computation,
which can often be prohibitive. For example, the control law based on the dual
control approach in [4], which exhibits an active learning property, requires
extensive on-line computation to evaluate future observation programs. The open
loo; optimal feedback control law (OLOF) ignores future measurements but incor-
porates some information concerning the uncertainty (covariances of estimation
errors) in its control algorithm [S - 7]. In this sense, this scheme was called
"cautious" in [3]. The OLOF law still requires numerical optimization techniques
on-line.

The purpose of this study is to investigate two suboptimal schemes which
require little on-line computation but incorporate the effects of estimation
errors in zheir control laws, and to study the performance of these laws by Monte
Carlo simulations on a computer. We consider discrete-time linear stochastic
systems with unknown control gain parameters (essentially the same class of prob-
lems as that treated in [61). Admittedly, this class of systems is small in
practice. however, we believe that because of their conceptual simplicity and
computational efficiency, the two laws derived in this report may provide a
suitable framework for treating the more general problem, i.e., when the system
state and control gain matrices are both unknown.

One of the two control laws is based on underestimating future control,
hence called the UEFC law, and the other is based on overestimating future con-
trol, the OEFC law. Two single-input, third order systems (one stable and the
other unstable) are simulated, and the performance of the UEFC and OEFC laws is
compared with that of the CE law and the law where the control gain parameters
are known. The sensitivity of the performance of the four laws is studied for
various levels of initial uncertainties in the states and the control gain param-
eters.

This report is organized as follows: Section II defines the notations. A
precise definition of the problem is given in Section III. Section IV presents
the results of the application of Kalman filter theory for the optimal estima-
tion problem. We derive the UEFC and OEFC laws in Section V, and Section VI shows
the results of the Monte Carlo simulations. Section VII concludes with remarks on
this study.
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II. Notations

The transpose of a matrix X (vector x) is denoted by XT (J). The trace
of a square matrix X is denoted by tr(X). The matrices I n and Om'n denote
the n-dimensional identity matrix and the m x n null matrix, respectively; the
subscripts will be dropped when there is no ambiguity. The notation X >0
(X ? 0) denotes a positive definite (semidefinite) matrix X, and X >Y (X >_ Y)
implies X -Y >0 (X - Y ? 0) . The Kronecker product of matrices X and Y is
denoted by X « Y. The mn dimensional row and column string vectors of an
m x n matrix X are denoted by rs(X) and cs(X); i.e.,

[rs(X)] T = N 1 xR2.. xRm)
[cs(X)I T = (XTCl xC2	 xCn)

wherexRi (xCi) is the i-th row (column) vector of X.
The (conditional) expectation of a random vector x (given Y) is denoted by

E[x] (E[x!Y]). The notation x - N(x, X) means that a random vector x has
Gaussian distribution with mean x and covariance X. Statements with "a.s."
imply that they hold with probability 1.

Symbols with subscript or superscript "U" ("0") pertain to algorithms for
UEFC (OEFC).

III. Problem Statement

We consider a standard finite-stage discrete-time linear stochastic con-
trol problem with a quadratic performance index. The system dynamics and mea-
surement relations are described by

x(k+1) = Ax(k) + Bu(k) + D C(k)	 (1)

y(k+ 1) = C x(k+ 1) + n(k+ 1), 	 k = 0, 1,	 •, N- 1	 (2)

where the state x(k), the control u(k), the measurement y(k) and the plant
noise &(k) are vectors of dimensions n, m, i and r, respectively. The matrices
A, C and D are of appropriate dimensions and are assumed to be known. The n xm
control matrix B is a random matrix i with

b - N (S, Pb ) ,	 b = rs (B)

*	 The other primary random variables are

x(0) -N(RO, PO)

E(k) -N(0, Q(k))

TI(k) -N(0, R(k)),	 R(k) > 0

(k) and n(k) are mutually independent white noise sequences, and both are inde-
pendent of b and x(0); b and x(0) are also mutually independent.

i For simplicity of derivation, we assume that B is a constant matrix.
The extension of our results to the case with linearly varying B as in [6] is
straightforward.
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The performance measure we wish to minimize is given by

1 (N-1	 N-	 l
J - E	 J(k) = E - jx(k+ 1) T S(k+ 1) x(k+ 1) +u(k) T A 	 u(k) }	 (3)

k^0	 k-0 t	 JJJ111

where S(k+1)>_O  and A(k) >0. Admissible control_ laws are causal; i.e.,

u(k) = u(k, Y(k), U(k - 1))

where Y(k) = {y(1), • • •, y(k)} and U(k -1) = {u(0), 	 •, u(k -1)). uf0)
must be a function of prior information on the system.

IV. Estimation

Since the system equations (1) and (2) are linear in the random vector
x(k) and random matrix B, Kalman filter theory can be applied to modified
system equations to obtain the optimal minimum variance estimates.

Applying Lemma A.1 in the Appendix, we get

B u(k) = In B u(k) = [In ® u(k) T I b	 (4)

We can write the following system equations for the augmented state vector

z (k) T = (x(k) T bT)

where2

z(k+ l) = FM z(k) + GM)	 (5)

	

y(k+ 1) = H z(k+ 1) + n(k+ 1) 	 (6)

A	 In 0 u(k) T 	D
F(k) _	 G -	 (7)

0	 I	 0
nm,n	 nm	 nm, r

H	 rC	 0k,nm ]	 (8)

Application of Kalman filter theory to the linear equations (5) and (6)
yields the following optimal minimum variance estimate:

2If we arrange the vectors of B columnwise we obtain augmented system
equations of the same form as (5) -(8), except that F(k) is given by

A u(k)T 81 
F(k)

0	 I
nm,n	 nm

The augmented state vector for this case is z(k) T	(x(k) T bT), where

be = cs (B). The row string arrangement in (5) - (8) is preferred in order to

facilitate backward optimization (see Section V).
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2(k+llk+1) = F(k) 2(klk) +K(k+ 1) [y(k+1)-HF(k)z(kjk)] 	 (9)

K(k+1) = P(k+1lk+1) H T [HP(k+Ilk) HT +R(k)) -i 	(10)

	

P(k+ 1l k) = F(k) P(klk) FT (k) +G Q(k) G 	 (11)

P(k+llk+l) = [In -K(k+1) H) P(k+llk)	 (12)

2(010) = 
xp	 Pp	 On

P(Ol0)	
,nm

El l 	 0nm,n Pb

where z(klk) =_ E[z(k)lY(k)], 2(k + llk) 	 E[z(k + 1)lY(k)) = F(k) 2(klk) and

`	 P(klk) = E[{z(k) - 2(klk) }{z(k) - 2(klk) }Tl Y(k) ]	 (13)

P(k+llk) = E[{z(k+l) -2(k+llk)}{z(k+l) -2(k+llk)} T IY(k))	 (14)
We partition 2(ilk) and P(ilk) as

^k(ilk)	 nl(ilk) n3(ilk)T
2(ilk) _ ^	 P(ilk) =_(15)

[b(ilk) 	 7T3(ilk) n2(ilk)

where x(ilk) is an n-dimensional vector, and ?T 1 (ilk) and 7T 2 (ilk) are n x n
and nm x nm matrices, respectively.

V.	 Feedback Control Laws

It is well known that the control laws which solve the optimization problem
are the formal solutions of the functional equation [2]

J*	 Min J,	 k=N-1,	 •, 0	 (16)
k u(k) k

where

Jk = E[J(k) + Jk
+1

lY(k)],	 JN - 0.

However, ,dosed form solutions of the backward optimization are not available,
and various suboptimal schemes have been proposed (see, for example, [3] for a
survey of such schemes). Some of the schemes [4, 61 require a considerable
amount of on-line computation at each stage k. We derive here two feedback
laws which do not require lengthy on-line computations. T i- two laws are
obtained by carrying out the backward optimization (16) approximately. In the
following derivations of the control laws, the time indices will be dropped for
brevity when there is no ambiguity in notation.

V.1 Control Law Based on Underestimating Future Control Efforts (UEFC)

This control law is derived by underestimating the effects of future con-
trol. The backward "sub-optimization" proceeds as follows:
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Last - Stage: k = N- 1

Since J 1 :- 0, it is easy to obtain the quadratic cost-to-go functional

JN-1 = E[x(N) T S(N) x(N) +u(N - 1) T A(N- 1) u(N - 1) IY(N - 1)]

= u(N- 1) T A(N- 1) u(N- 1)+tr{S(N) E[Bu(N - 1) u(N- 1) T BT (Y(N- 1)]}

+ 2 tr{AT S(N) E[Bu(N - 1) x(N- 1) T 'Y(N- 1)11 + a(N- 1) + S(N- 1) (17)
where

a(N - 1) - tr{A
T
 S(N) A E[x(N - 1) x(N - 1) T +Y(N - 1)] }

R(N-1) 2 tr[DTS(N)DQ(N-1)]

are independent of u(N -1).

Recalling (4), we can rewrite the second and third terms as

tr{SE r 6uuT BT l y ] = t r {S( In a uT)E[bbT l y ] (In0u)}

= tr{S(N)[In®u(N-1)TIM2(N-1IN-1)[1n0u(N-1)]}

tr{A
T
 SE[B v xT lY] } = tr{AT 

S [ I n 0 uT ] E[b xT ly] }

= tr{ATS(N)[In0u(N-1)T]M3(N-1'N-1)}

where the M i 's are defined by

rM3(ilk)

1(ilk) M3(ilk)T	 x(i) x(i) T x(i) b 
Wilk)-	 =- E	 Y(k)

 M2 (ilk)	 b x(i) T	b b 

r
Tr

l(ilk) +x(i+k) x(ilk) T Tr 3 (i+k) T +x(i'k) S(i'k)T

3 (ilk) +b(ilk) x(ilk) T n2 (ilk) + S(ilk)b(ilk)T

Applying Lemma A.2 to (20) and (21), we have

tr{S(In ®uT)M2 (In ®u)} = cs(In0U)T (So M2 ) cs(IngU)

= u(N- 1) T [ rT (S(N) ®M2 (N- 1JN- 1)t] u(N- 1)

tr{A
T
 S (I n ® uT) MO = tr{M 3 AT S (In ® uT) }

[cs(M 3 AT S) ] T cs(In 0 uT)

_ {PT cs[M 3 (N-11N- 1) AT S(N)]}T u(N- 1)

where the following identity was used to obtain the final expressions:

cs(I ®u) = t u
n

T
r [I m

 Om, nm Im Om, nm Im, 	
.. ' 

Om, nm Im]

(18)

(14)

(20)

(21)

(22)

(23)

(24)

6
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Note that P is an n 2 m x m matrix.

Thus, (17), (23) and (24) yield

JN-1 = u(N - 1) T WN - 1) +0(N - 1) ] u(N - 1)

+ 2w(N- 1) T u(N - 1) + a(N - 1) + S(N - 1) 	 (26)

where

0(N - 1) _ rT [S(N) 0M 2 (N - 1,N - 1)] t	 (27)

w(N - 1) - r  cs[M 3 (N - 1 IN - 1) AT S(N) ]	 (28)

9

	

	
Therefore, the optimal control law u*(N -1) and the associated cost-to-go are
given by

u*(N-1) _-(A(N-1)+0(N-1)]-lw(N-1) 	 (29)

J*N-1 = -w(N- 1) T [A(N - 1) +0(N- 1)] -1 w(N- 1) + a(N - 1) + S(N - 1) 	 (30)

Note that 0(N- 1) ?0 a.s., since S(N) ?0 and M 2 (N- 1(N- 1) >0 a.s. (see
Lemma A.3 in the Appendix). Hence A(N -1) + 0(N -1) >0 and invertible a.s.,
since A(N -- 1) > 0.

Stage  k= N - 2

The functional relation (16) yields

JN-2	
E[J(N-2)+JN-1IY(N-2)]

= E[- w(N - 1) T {A(N - 1) +0(N- 1) }-1 w(N- 1) 1Y(N- 2)]

+ E[J(N - 2) +a(N - 1) JY(N - 2)] + S(N - 1)	 (31)

Since Y(N- 1) _ {Y(N - 2), y(N- 1)}, from (18)

E[a(N - 1) JY(N - 2)] = E[E{ x(N-1)TATS(N)Ax(N- 1)JY(N- 1)}IY(N-2)]

= E[x(N- 1)TATS(N)Ax(N-1)JY(N-2)]

Therefore, it is straightforward to obtain

JN-2 = E[J(N-2)+a(N- 1)JY(N -2)] + a(N-1)

u(N - 2) T [A(N - 2) +0U (N - 2)] u (N - 2)

+ 2w 
U 
(N  - 2) T u(N - 2) + aU (N - 2) + 6U (N - 2)	 (32)

where

0U(N -2) __ rT [VU (N-2) ®M2 (N- 211-2)] r	 (33)

wU (N - 2) = rT cs[M 3 (N- 21N- 2) AT VU (N- 2)]	 (34)

aU (N-2) - tr{
AT

 VU (N- 2) A E[x(N- 2) x(N - 2) T JY(N - 2)11	 (35)

7



SU(N-2) -- 5(N -1) + tr[DTS(N-1)AQ(N-2)]
	

(36)

VU (N - 2) - S (N - 1) + AT S (N) A
	

(37)

The difficulty in optimization lies in evaluating the first term in (31),
sincA 0(N -1) and w(N - 1) are complicated random matrix and vector, respective-
ly, depending on u(N -1). In this control law the term is neglected in order
to simplify the backward optimization. Note that the term is nonpositive a.s.,
since A(N - 1) + 0(N -1) > 0 a.s. This term originates from the first two
terms in ( 26) (with the optimal law u*(N -1) in (29)), and accounts for the
amount of reduced cost due to the control at stage N -1. Hence the omission
of this term means that the control law at N -2 is designed by neglecting the
control effect at N -1 (E[a(N - 1)IY(N - 2)] accounts for the cost due to the
free motion from N -1 to N). Although this approximation may seem somewhat
ad hoc, the resulting control law require4 little on-line computation and shows
good performance in the simulated examples, as will be observed in Section VI.

With the above simplification, we have the control law YN -2) which mini-
mizes	 and the associated cost-to-go functional JN-2

	

uU (N-2) - - [A(N-2)+OU(N-2)]-lwU(N-2) 	 (38)

JN-2 5 JN-2 - -wU(N-2)T[A(N-2)+OU(N-2)]-lwU(N-2)

+aU (N- 2) + 8U (N- 2)	 (39)

Algorithm for UEFC

By proceeding with the simplification described for stage N-2, we obtain
the control law for a general stage k:

uU (k)	 - [A(k)+OU(k)	 wU(k)	 (40)

where

0U(k) = rT [VU (k) ®M2(k 1 k)] r ? 0	 a.s.	 (41)

wU (k) = 1.T cs[M3(klk) AT VU (k)]	 (42)

VU (k)	 S(k+ 1) + AT VU (k+ 1) A,	 k - N - 1,	 •, 0	 (43)

VU (N) = 0

and r and Mi (k(k) are defined by (25) and (22), respectively.

Remarks:

1.	 Since VU (k) can be computed off-line by (43), this control law requires

no on-line recursive computation, but com putation of only 0U (k) and wU(k)

to obtain uU(k).

8
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2. Note that OU (k) and wU (k) are functions of q n 2 (kIk) and n 3 (klk), measures
of estimation error, as well as A(k1k) and b(k1k) (see equation (22)). In
this sense UEFC is cautious like OLOF [3].

3. As mentioned above for stage N -2, A(k) + OU (k) > 0 and invertible a.s.,
hence (40) provides a well-defined control Yaw a.s.

V.2 Control Law Based on Overestimating Future Control Efforts (OEFC)

S tage k _- N - 2

The UEFC law was obtained by neglecting the term due to the control efforts
at stage N -1 because of the difficulty in approximating the term in a simple
manner. Here we bound the term, the first (negative) term in (31), from below,
thereby obtaining a control law (OEFC) by overestimating the control efforts at
stage N -1.

Lemma

The first term in (31) can be bounded as

-wU (N - 1) T [A(N - 1) +0(N - 1)] -1 w(N- 1)

	a -tr{[A(N-1) +0(N- 1)]`lp(N-1)}a(N-1)	 (44)

Proof:

Using S(N) ? 0 and M(N - IIN - 1) > 0 in Lemma A.4 in the Appendix, we have

	

S(N)aM 1 (N-IIN-1) S(N)OM3(N-1IN-1)T z 0
	 (45)

S(N)®M3 (N- 1IN-1) S(N)®M2(N-1IN-1)

We define

tr{ATS(N) AM, (N- IIN - 1)} cs{M 3 (N- 1IN- 1)ATS(N)}]T
(46)

cs{M 3 (N- 1IN-1)AT S(N)}	 S(N)®M2,;N-1IN-1)

then

a(N -1) - tr [AT S(N)AM 1 (N- IIN-1)] - tr(MiATSA)

'	 - tr(S AM 1 AT) - [cs(AT)] T (S ®M 1 ) cs(AT)

where Lemma A.2 was used to obtain the last equality. Also from Lemma A.1

cs[M 3 (N- IIN - 1) AT S(N)] - (S ®M 3 ) cs(AT)

Therefore,

9



{cs(AT ) } T (S 0 M 1 ) es(AT) { (S 0M 3 ) cs(AT ) }T
Y'

(S SM3) cs(AT )	 S OM2

{cs(AT ) } T 0	 2	 S ®M 1 s ®M3T	 cs(AT) 0 2 21,n m	 n ,n ml

0 2	 2 1 2	 S OM 3 S ®M2	
I

	

0	 2n m,n	 n m	 n°m,1	 n m

Hence, on noting (45), we have

4'^-0

and an application of Lemma A.4 to (46) yields

cs[M 3 (N-1IN-1) AT . (N)I {CS [M3(N-1i,.-1) AT S(N)]} T	 a(N-1)[S(N) *M 2 (N-liN-1)] (47)

Thus, from (28)

w(N- 1) T [A(N- 1) +0(N- 1)] -1 w(N- 1)

tr{(A+0) -1 PT cs(M 3 AT S) ICS (M3ATS)]Trj

tr{(A+0)-1 rT a ( S GM2 ) r}

tr{[A(N-1)+()(N-1)]-1()(N-1)}a(N- i)

where (47), A + 0 > 0 a.s. and Lemma A.5 were used to obtain the Inequality.
This completes the procf.

Using the above Lemma and (31), we have a lower bound for JN-2

JN-2	 JN-2 - E[tr{[A(N-1)+0(N-1)]-10(N-1)}a(N-1)jY(N-2)] 	 (48)

wherr: 0(N- 1) and a(N -1) are random matrix and variable, respectively, given
Y(N -2), and no simple expression is available for the second term. As can be
observed in (27), 0(N -1) is a function of M 2 (N - 1IN -1), the estimate of bbT
(a constant random matrix) at N -I. In order tj proceed with the analysis in :.
simple manner, 0(N -1) is replaced by its estimate

0(N- 1IN-2) E E[0(N- 1)IY(N-2)] ., r T [S(N) ®M 2 (N-21N- 2)] r	 (49)

which is a function of Y(N -2). Therefore, (48) is approximated by

	

1
N- 2 -
 

1N-2 - tr{[A(N-1) + 0(N-1jN- 2)] -1 6(N-1jN-2) E[a(N-1)jY(N-2)]} 	 (50)

For (32)- (37) and (50), we have the following cost-to-go expression for OEM

1N-2 = u(N - 2) T [A(N - 2) +0 (N - 2)] u(N - 2)

	

+ 2w 0 (N - 2) T u(N - 2) + a0 (N - 2) + B0 (N - 2)	 (51)

where

10



1

00 (N - 2) = F T [V0 (N - 2) O M, (N - 2 IN - 2)) F	 (52)

w0 (N-2)	 FT cs[M 3 (N-21N-2)AT V0 (N-2A 	 (53)

^x0 (N-2) _ tr[AT V0 (N-2)AN 1 (N-2IN- 2)) 	 (54)

of -2)- 2)	 SU(N-2)

VO (N - 2) Y S(N - 1) + c (N - 1 IN - 2) AT S 	 A	 (55)

e(N- 1IN -2) = 1 - tr{[A(N-1)+UN-IIN-2)] -l U(N-IIN-2)1 	 (56)

Therefore, the control law OEFC which minimizes JN-2 is given by

u0 (N-2) - - [A(N-2)+00(N- 2) 	w0(N-2)	 (57)

	

1N-2 = -wp(N•-2)T[A(N-2)+00(N-2)	 w0(N-2)

+a0 (N- 2) + S0 (N- 2)	 (58)

A'	 ithm for OEFC

Since the expression (58) for JN-2 has the same quadratic form as (39)

for JN-2 , it is easy to obtain the OEFC control law for a general stage k:

up (k) = - [A(k)+00 (k)J -1 w0 (k)	 (59)

where

00(k) = rT [V0 (k) a M2 (kIk)I P	 (60)

w0 (k)	 rT cs[M 3 (kIk) AT V0 (k)1	 (61)

The matrix V0 (k) is computed by the following (backward) recursive formula

V(iIk) - S(i+1) + c(i+IIk) AT V(i+IIk) A	 i - N- 1, N-2,	 •, R	 (62)

V0 (k) = V(k;k), V(Nlk) = 0n,n	 (63)

e(i+l1k) = I - tr{[A(i+1)+0(i+Ilk)]-1 6(1+ Ilk)) 	 (64)

6(i+11k) _ rT [V(i+llk) ®M 2 (kik)] F	 (65)

Remarks:

1. The OEFC algorithm has the same structure as the UEFC law given by (40) -
(43), where e(i +Ilk) _^ 1 (compare (43) with (62)).

2. The OEFC law requires more on-line computation than the UEFC law, since
0(i + Ilk) depends on M2 (klk) - E[bb T IY(k)) and (62) must be recursively
computed for ea ch stage k.
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VI. Examples

A computer simulation study was performf-d to evaluate the performance of
the UEFu and OEFC control laws. The two systems selected are single-input third
order systems, and are essentially th3 same as those in [6]; one is a stable
system and the other is an unstable system. The performance of the laws for
Monte Carlo runs is statistically compared with the certainty equivalence law
(CE) and the optimal control law wi,en B is known (called the LQG algorithm—
the solution of the standard LQG problem). The sensitivity of performance of
the four algorithms is studied for various levels of initial uncertainties
(Pb and PO).

The system matrices common to the two systems are

C = [1 0 0), DT = [0.2 0.4 0.61

SE = [ 1 1 11, Q(k) - 0.01, R(k) = 0.09

S(k+1) = I3, A(k) = 1

We simulate 20 stage (N = 19) processes, and compute the sample mean M  and
N-1

standard deviation S  of the performance measure I J(k) for 20 Monte Carlo
runs.	 k=0

VI.I. Stable System

The system matrices are given by

1 0.2 0.0 0.0

A = 0 1.0 0.2 B = b = 0.0

-1 -1.4 0.4 -0.4

where A has eigenvalues 0.8 and 0.8 ±0.4j. The performance of the four algo-
rithms (UEFC, OEFC, CE and LQG) for the Monte Carlo runs is plotted in Figure 1
(sample mean MJ) and Figure 2 (sample standard deviation S J) for Pp = 4 I3

and different P
b
 's. The abscissa in the figures is a b , where Pb = ab I3•

For each of the 20 runs, B = b and x(0) are randomly generated by the distribu-
tions b - N(b, Pb ) and x(0) - N(xp, Pp). Similarly, Figures 3 and 4 show the

dependence of M  and S  on various ao's, where Pp = ap I3, for P b = 4 13-

In order to see the normalized performance of the suboptimal laws, the ratio

MJ for a suboptimal law

rJ =	 M  for the LQG law

is plotted in Figures 5 and 6 for various ab 's and ao's, respectively.

12



Ohserva t i cans :

I.	 The performance of UEFC and OEFC remains almost the same as a  increases,
whereas the CE performance becomes considerably worse (Figures 1, 2 and 5).
This is to be expected, since both UEFC and OEFC take the errors of esti-
mates into consideration and are cautious in implementing control, while CE
does not consider such uncertainty (see Remark 2 following equation (43)).

2. The normalized performance of the three suboptimal laws is rather insensi-
tive to variations in Pp; however, r J decreases slightly as P o increases
(Figure 6). This is because the uncertainty in Rp (P Q), which is common
to the four laws (including the LOG law), becomes comparatively more domin-
ant than the uncertainty in b(Pb = 4 I3) as ap increases, and as a result
the performance degradation due to unknown B tends to decrease.

3. Considering that the performance of the LOG, l^e is impossible to attain and
that the optimal law with unknown B is worse than the LOG law (the optimal
law with known B), the performance of the UEFC and OEFC laws (r J 1.5 -3,
Figures 5 and 6) is good, especially since little on-line computation is
required.

In order to study further the characteristics of the UEFC and OEFC laws, the
time histories of the four laws for a representative run are plotted in

Figure 7:	 Control u(k)

Figure 8:	 Estimate b(kjk) _ [b l b2 831 

Figure 9 -12: Estimate S:(kik) _ [S21 i'2 R3]T

Figure 13:	 Instantaneous cost J(k)

For this run Pb = Pp = 4 13, the true values of B and x(0) are

BT = [0.54 -2.07 -3.421, x(0)T = [1:19 3.65 5.561

N-1
and the performance measure Y J(k) is 404, 787, 880, and 4301 for the LQG,

k=0
UEFC, OEFC, and CE laws, respectively.

Observations:

The characteristics of the three suboptimal laws are clearly shown in these
figures. The CE law erroneously exerts large control in the beginning (k - 0 -5

•

	

	 in Figure 7), thereby incurring large costs (Figure 13). The large control acci-
dentally results in fast learning of B (Figure 8), and less cost J(k) than the
UEFC and OEFC laws at later stages (k >_7). Both UEFC and OEFC are cautious and
very little control energy is implemented in the beginning (k:57 in Figure 7),
when larger estimation errors are expected (see Remark 2 following equation (43)).
Since UEFC underestimates future control efforts, it is less cautious than OEFC
and exerts more control at k = 8- 14 than OEFC, thereby attaining better cost
(Figure 13) and better estimate b(klk) (Figure 8). Note that the estimation of
x(k) for UEFC and OEFC is veryood (compare Figures 10 and 11 with Figures 9 and
12), although the estimate b(k^k) is not as good as CE.



VI.2. Unstable System

The system matrices are given by

	

1	 0.2 0.0	 0.0

	

A = 0	 1.0 0.2	 B = b	 0.0

	

1 -0.6 0.8	 -0.2

where A has eigenvalues 1.2 and 0.8 ±0.4j 	 As for the stable system, the
performance of the four algorithms for 20 Monte Carlo runs is plotted in

Figure 14: Sample mean M  for various Pb's

Figure 15: Sample standard deviation S  for various Pb's

Figure 16: Sample mean M  for various Pp's

Figure 17: Sample standard deviation S  for various Pp's

Figure 18: Normalized sample mean r  for various Pb's

Figure 19: Normalized sample mean r  for various Pp's

The time histories for a representative run are plotted in

Figure 20: Control u(k)

Figure 21: Estimate b(kjk)

Figure 22: Instantaneous cost J(k)

where Pb = P O = 4 13, the true values of B and x(0) are B T =

[-1.90 1.50 -2.071 and x(0) T = [0.19 1.76 0.371; and the performance measure
N-1
Z J(k) is 64, 471, 708, and 4565 for the LQG, UEFC, OEFC, and CE laws, respec-

k=0
tively.

Observations:

1. The characteristics of the three suboptimal laws are very similar to those
observed for the stable system.

2. The performance of the OEFC law is somewhat worse than that in the stable
case, whereas the UEFC law performs consistently well (Figures 14 -19).
The CE law performs better than the cautious OEFC and UEFC laws for small
Pb (ab = 0.1 and 0.3; i.e., when there is little uncertainty in b).

3. Figures 20- 22 illustrate the characteristics of the three laws more clearly
than the stable case (see Observations for Figures 7- 13); the large control
efforts at early stages for the CE law cause large cost J(k) and acciden-
tally fast learning of B (Figure 21), which results in small cost at later
stages (Figure 22). The UEFC law is less cautious than the OEFC law and
its peak control efforts are implemented earlier (k = 7- 10 in Figure 20)
than the OEFC law (k = 10 -16), resulting in better overall cost and esti-
mate fi(kjk). Note that the peak of J(k) is also earlier for the UEFC
law (k = 9- 12 in Figure 22) than for the OEFC law (k - 13- 18).

14



VII. Conclusions

We have considered a discrete-time linear stochastic adaptive control
system with unknown control gain matrix (B). Two suboptimal control laws have
been derived: the UEFC law based on the underestimation of future control and
the OEFC law based on the overestimation on future control. These laws require
little on-line computation and at the same time incorporate some information on
the estimation errors, hence they are in the category of "cautious" controls as
classified by Wittenmark [3]. Two single-input third order systems have been
simulated to compare the Monte Carlo performance of the laws with that of the
CE and LQG laws. The dependence of the performance of the four laws on Pb and
Pp (the initial uncertainties on the state x and the control gain B) has been
studied. The results indicate that the UEFC and OEFC laws perform much better
than the CE law with only a little extra computation being required.

Admittedly, the class of systems considered in this study is small. How-
ever, the UEFC and OEFC laws derived for this class are conceptually simple and
computationally efficient, and may provide a suitable framework for treating the
more general class, where the system matrix (A) as well as the control gain
matrix (B) are unknown. Further research is envisaged in this direction.

15



Appendix

The identities and Inequalities used to derive the estimation and control
laws in the preceding sections are collected and proved where necessary. The
matrices involved in the following lemmas are assumed to be conformable.

Lemma A.1

cs (ABC) = (CT ® A) cs (B)
	

(Al)

rs(ABC) = (A a C) rs(B)
	

(A2)

Lemma A.2

tr(AB) = cs(A) cs(B) 	 (A3)

tr(A CT B C) = cs (C) T (A 0 BT ) cs (C)	 (A4)

For the proofs of (Al), (A3), and (A4), the reader is referred to [8]. The
identity (Al) is due to Nissen [9]. The proof of (A2) is straightforward and is
omitted.

Lemma A.3

If A >_ 0 and B > 0, then A ® B ? 0 	 (A5)

If A > 0 and B > 0, then A ® B > 0 	 (A6)

Proof:

Since A and B are symmetric, A ® B is symmetric. The eigenvalues of
A ® B are Xi uj, where Xi and uj are the eigenvalues of A and B, respec-

tively [10, p. 235]. Since A ? 0 and B ? 0, X i z0 and u j ? 0, hence

x  
11 j ? 0	 vi, j

This implies that A ® B ? 0. The proof of (A6) is similar.

Lemma A.4
T

If A ? 0 and B

	

	 B1 B3 > 0, where B 1 and B 2 are square matrices of
IB 3 B2

dimensions m and Z, respectively, then

B 2 - B 3 B1 1 B3 > 0	 (A7)

and

A®B1 A®B3
C =

	

	 s 0	 (A8)

A®B 3 A®B2

If B ? 0 and B 1 is a scalar, then

B 1 B 2 >- B 3 B3	 (A9)

16



Proof:

Since B > 0, B 1 > 0 and invertible,

B	 I 	 Om, k	 B1	 Om k	 I 	 B1 1 B3 > 0

B3 
B1 1	 I 
	

Ok,m B2 - B3 Bf 1 B3	 Ok,m	 I 

which implies that B 2 - B 3 B1 1 B3 > 0.

For the case B ? 0, (A9) clearly holds if B 1 - 0. If B i > 0, we obtain

B2 - B 3 BI 1 B3 ? 0, which implies (M).

To prove (A8) we assume that A is an n-dimensional matrix and let
A = A + E In ; then from (A6) A B 1 > 0 and is invertible, since A > 0
and B 1 > 0. Therefore,

A0B l As B3
C

As B3 As B2

1

	

= Dros B
	

Onm,nk	 TDT(A10)

nk,nm A 
s B2 -(ASB 3 )(As BI) - 1 (AsB 3 )

where

D _	 Inm	 Onm,nk

(A s B 3 ) (A s B 1 ) -1	 Ink

Using identities for inverses and products of Kronecker products [8], we
can easily write

(As B 3 ) (A ®B 1 ) -1 = In ® B 3 B1 1

A s B2 -(AsB 3 )(A ®B 1 ) -1 (AsB T= As ( B 2 -B 3 B1 1B3 )

Therefore, from (A10)

I	 0	 A ®B1	 0	 I	 I ®B 1 1B3
C = lim C =	

nm	 nm,nk	 nm,nk	 T	 nm	 n	 (All)

E -; 0	 In ®B 3 B11 
Ink	 0nk,nm As (

B 2 - B 3 B1 1 B3) 
0nk,run	 Ink

From (A5) and (A7), A ® B 1 > 0 and A®	 1( B 2 -B 3 B 1 B3 ) ? 0, hence (All) implies

C ? 0.

Lemma A.5

If A > 0, B ? C ? 0, then

tr[(A+B) -1 B] > tr[(A+C) -1 C]	 (Al2)

17



Proof:

tr[(A+B) - 1 B]	 tr ((A+B)"1[(A+B)-A]}

= tr(In) - tr[ (A+ B)" 1 A]

Now tr[(A+B)` 1 A] - tr[A (A+B) -1 A
i
'] and since B a C >- 0, (A+B) -1 s (A+C)"i

and

A^(A+B)'i A^ s A^(A+C) -1 A^

Therefore, tr[(A + B) -1 A] < tr[(A + C) -l A]. Consequently,

tr[(A+B) -1 B] - tr(In) - tr[(A+B) -1 A; a tr(In) - tr[(A+C) -1 A] - tr[(A+C) -1 C]

18
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