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EXACT SOLUTION OF SOME LINEAR MATRIX EQUATIONS USING ALGEBRAIC METHODS

Abstract

Let PA+BP - -C be a linear matrix equation where A is an nxn matrix,

B an mXm matrix and C an mxn matrix, all three matrices taken over the

reals. Let R[x,y) be the ring of polynomials in two indeterminants x and y

over the reals R, and MN the set of all mxn matrices over the reals. Let

T _ ( Yx), *2 (y)) be the ideal in R[x,y] generated by 0 2 (x) and Yy),

where 0 2 (x) is the characteristic polynomial of A and *2 (y) the charac-

teristic polynomial of B. The elements of the quotient ring R[x,y]/'Y are

denoted by T + a(x,y) _ (h(x,y) + a(x,y),h(x,y) a T).

Define the action fBA :R[x,y) x MN + MN in the following manner:

fBA (h(x,y),M) _ I hjkBJ-M•Ak
jk

where h(x,y) _	 hjkxky3 is an element in R[x,y),
jk

M is an element in MN

The action fBA allows for the interpretation of MN as a module over

R[x,y)/T with multiplication (*) of elements in R[x,y]/T with elements in

MN given by:

(T + a(x,y))*M = fBA (a(x,y)mod T, M)

where a(x,y)modT is the element of minimal degree in T + a(x,y).

The polynomial x+y is in the coset T + (x+y). In the event that

T + (x+y) has an "inverse" T + qu (x,y) in R[x,y)/T such that (T + (x+y))•

(Y + qu (x,y)) - T + u where T + u is the eoset containing the real number

u # 0 we can write:

1

W



i	 (T+ (x+y))*P =PA+BP =-C

u•P	 + qu(x,y))*(-C)	 fBA(qu (x,y)mod 'Y,-C)

Pu
f ^ (qu (x,y) mod 'Y, -C) .

„ s
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1.	 Introduction

In the past fifteen years or so there has been impressive progress in

the theoretical understanding of the structure, representation and control

of linear multivariable systems. In contrast, workers in the field have

paid little attention to the computational aspects of systems problems.

This does not mean that algorithms for the solution of systems problems

have not been developed. But most of the algorithms that have been pro-

- posed have never been seriously studied as far as stability convergence

and similar issues are concerned. Even the LQG problem, bulwark of the

so called "modern control theory" seems to be little understood from the

computational point of view.

In this paper we undertake a study of solution methods for Linear

Matrix Equations including Lyapunov's equation

PA + A'P - -Q	 (1.1)

using methods of modern algebra. The emphasis is on the use of finite

algebraic procedures which are easily implemented on a digital computer

and which lead to an explicit solution to the problem.

It is well known that the Lyapunov equation is important in the study

of stability of linear finite dimensional time-invariant systems. If Q .s

symmetric and positive definite and if A is a stability matrix then the

unique solution to (1.1) is given by the convergent integral

00

P = f eA'tQeAtdt
0

(cf. BROCKETT).

However, the solution requires the evaluation of an integral over an
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infinite time interval. other methods of solution do exist all of which

have the basic drawback of giving an approximate solution. This becomes

`	 frustrating when the problem is ill-conditioned.

The need for solving the Lyapunov equation also arises when one uses

Newton's Method to solve the Algebraic Riccati equation (cf. KLEINMAN) 	 o"

(A - BR-' B'P)'P + P(A - BR71 B-P) - -C'C - PBR 1B'P.

Here a finite number of Lyapunov equations have to be solved.

This paper has been inspired by an important paper by KALMAN. Kalman's

concern was the characterization of polynomials whose zeroes lie in certain

algebraic domains (and the unification of the ideas of Her-mite are Lyapunov).

In this paper we show that the same ideas lead to finite algorithms for

the solution of linear matrix equations.

This paper is divided into five sections. In section 2 we introduce

the action fBA and prove a Basic Lemma. In section 3 we deal with the

equation PA + BP = -C. In section 4 we analyze the Lyapunov equation,

give algorithms for its solution and comment on the arithmetic complexity.

In section 5 we deal with the equation P - A'PA Q and in section 6 we

present numerical examples.
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Let A be an nxn matrix and B an mxm matrix both over the reals. Let

R[x,y] be the ring of polynomials in two indeterminate x and y over the

real numbers R. Let	 2(x), *2 (y)) be the ideal in R[x,y) generated

by ^2 (x) the characteristic polynomial of A, and *2 (y) the characteristic

polynomial of B. Elements of the quotient ring R[x,yl/T are cosecs

denoted by T + a(x,y).

Define the action f
BA

:R[x,yl x MN -► MN in the following manner:

fBA (h (x,y),M) _ I hjkBJ.M•Ak
jk 

where h (x,y) _	 hjkxkyj, is an element in R[x,y) and M an element in MN.
jk

It can be shown (2) that fBA 
has the following properties:

i) fBA (u,M) = M where u is a real number

ii) fBA (g(x,y)+h ( x,y),M) - fBA (g(x,y),M) + fBA(h(x,y),M))

iii) fBA (g(x,y)•h ( x,_),M) = fBA(g(x,y),fBA (h(x,y),M))

= fBA(h(x•y)•fBA(g(x,y),M))

iv) Let g(x,y)mod`Y denote the polynomial of minimal degree in T + g(x,y)

(which can be found by first dividing g(x,y) by 0 2 (x), obtaining

the remainder Rx (x,y) and in turn dividing R x (x,y) by 2 (y) and

picking its remainder).

Then: fBA (g (x , y ),M) - fBA (
g(x,y)modT, M)

V)	 fBA(g(x ► y), M+N) a FBA (g (x,y),M) + fBA (g(x,y), N)

for all g(x,y) in R[x,y) and M,N in MN.

The definition of fBA allows for the interpretation of MN as an
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R [ x , y )/V- module.

Basic Lemma. The set MN of mxn matrices with real entries is a module

over the quotient ring R[x,y)/Y.

Proof of Lemma: The set of mXn matrices under addition is an abelian

group. Define multiplication (*) of cosets I + h(x,y) and m Xn matrices M

in the following manner:

('Y + h(x,y)) *M a fBA (h(x,y)modT, M).

The multiplication is well defined and satisfies the properties:

1) ('Y + h (x,y)) * (M + N) _ ( If + h (x,y)) *M + (`Y + h (x,y)) *N

2) (Y' + h (x,y)) * [ (T + g (x.y)) *Ml - [ (T + h(x,y))-(T + g (x,u))) *M

3) [(V + h(x,y)) + (T + g(x,y)))*M - (T + h(x,y))*M + (T + g(x,y))*M

4) (4Y + 1) *14 - M

for all M,N in MN and all `Y + h(x,y),`Y + g(x,y) in R[x,y)/Y , with `Y+1

being the multiplicative identity in R[x,y]/T.

Property v) of the action guarantees 1. Property iii) ensures the

validity of 2. Property ii) makes certain that 3 holds. Property i)

ensures the correctness of 4.

3. The equation PA + BP - -C

The Basic Lemma provides the groundwork for the construction of a

method for obtaining the solution P of the equation

PA+BP - -C
	

(3.1)

whenever a unique solution does exist.

Equation (3.1) can be written as



fBA (x+y ,P) - PA + BP - -C.

7

Suppose that there exists a coset T + q u (x,y) such that

(`Y + qu (x,y) ) • Of + (x+y) ) - ('Y + u)
	

(3.2)

where T + u is a coset which contains the real number u # 0. Let

qu (x,y ) mod`Y be the polynomial of minimal degree in T + qu (x,y). We

then have:

(T + (x+y))*P - PA + BP - -C

[(^' + qu (x,y)) • (`Y + (x+y)))*P - (T + qu(x,y))*(-C)

(Y' + u) *P - (T + qu (x .Y)) * (-C)

uP	 ('Y + qu(X,Y))*(-C)

P = u 
f BA(qu (x, y) modIV, -C)

The idea therefore is to ensure that for Y' + (x+y) condition (3.2)

holds and to then construct such a polynomial qu(x,y)modT.

Proposition 1. The coset T + (x+y) contains the polynomial x+y. There

exists a coset T + qu(x,y) for which we have

( IF + qu(x,y))- ('Y + (x+y) ) - T + u	 (3.3)

where Y + u is a coset containinq a real number u # 0 if and only if

X  + V  # 0 where X i,i < i < n are the eigenvalues of ^ 2 (x) - det(Ix-A)

and p il l < j < m are the eigenvalues of ^ 2 (y) - det(Iy-B).

Proof of Proposition: We prove this Proposition by first showing that

Xi + pj # 0 for all i,j if  * 1 (x) - *2(-x) and 02 (x) are relatively

prime. Assume that *1 (x) and ^2 (x) are relatively prime. Suppose then

that there exist ai l pj such that ai + pi - 0. This means that Xi = -uj

..b.
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which implies that *1 (x) and 02 (x) have at least one root in commo n.

This in turn implies that * 1 (x), ^2 (x) have a non-trivial common divisor

which is a contradiction. Assume on the other hand that A i + u j # 0

for all i,j. Suppose then that there exists a k(x) of degree greater than

or equal to one such that k(x)l* 1 (x) k(x)IYx). This would imply that

^ l (x) and $ 2 (x) have at least one root in common which contradicts our

assumption.

It can be shown ( 2) that

x+y10 2 (x)V 2 (y) - 0 1 (Y)*1 W.

	

0 2 	- 01
	(x)

Let P^^(x,y)	 2	 2	 l	 1	 (3.4)
x+ 

Y

We now prove the Proposition.

Assume that A i + u
j 
# 0. We then have that 02 (x) and 9) (x) are

relatively prime, which implies that there exist polynomials A e (x), ue(x),

Ae(x),ue(x) such that

Ae (x)^1 (x) + ue (x)^ 2 (x) - e
(3.5)

Ae(x)* 2 (x) + 1je(x)^l (x) - e

for some element e 0 in R.

Let qu (x•y) = Ae (x)ue(y)P (x,Y).

Since

(x+y)•qu(x,Y) - Ae(x)i,e(Y)PO(x,y)

= Ae (x)ue(Y)m2(x) Y y) + eA;(Y)^2(Y)

+ eue (x) Q2 (x) - p  (x) Ae (y) 02 (x) Yy) - e2.

we must have (u = -e2)
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(4' + (x+y) ) • (`Y + qu (x,y) ) - T + u.

Assume on the other hand that there exists a coset `Y + q u (x,y) such

that (Y' + qu(x,y)) . (Y' + (x+y) ) - T + u where T + u contains the real

number u # 0. Show that Xi + 11	 0 for all i,j.

we have that

qu (x,y) . (x+y) - a(x,M 2 (x) + b(x,Y)*2(Y) + u.	 (3.6)

Suppose that there exist i - i' and j - j' such that

X i s - —uj,.

Evaluating ( 3.6) at x - ^ i , and y - Vy we have that

0 - u

which is a contradiction. This completes the proof of Proposition 1.

As can be seen from the proof of Proposition 1 the polynomial qu(x,y)

can be constructed and this prescribes an algorithm for the solution of

equation (3.1).

Algorithm for solving the Linear matrix equation PA + BP - -C.

Al) Obtain 02 (x), *2 (x) the characteristic polynomials of matrices

A and B respectively.

^2 (x) *2 (y) - fl
(y) *l (x)

A2) Set PO -	 x + y

A3) Using the Extended Euclidean algorithm or an equivalent method

obtain the polynomials A  W, ue(x) and e.

A4) Find qu (x,y) - Xe (x)ue(Y) P" (x,Y)

A5) Form Pu s fRA (qu (x,y)modY, -C).

A6) Set P - u Pu , u - -e2.

r
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4. The Lyapunov equation A'P + PA -Q

Suppose that B = A', C = Q Q' with A a stability matrix (one

which has the real parts of its eigenvalues in the left half complex

plane). This is the special case of equation (3.1) known as the Lyapunov

equation. Because of its importance we study it separately.

In this case where B = A' let us denote the action fBA by fA. Let

(02 (x), ^2 (y)) be the ideal in R(x , y) generated by ^ 2 (x) and Yy)

where as previously f2{x) is the characteristic polynomial of A. We

denote by t + g (x,y) the cosets in R(x,y)jm. We then have the following

corollary to Proposition 1.

Corollary 1: The coset 4 + (x+y) contains the polynomial x+y. There

exists a coast 0 + qu(x,y) for which

(0 + qu (x,y))-0 + (x+y)) _ 0 + u

where + u is a coset containing the real number u 0 0, if and only if

X  + a j f 0 for 1 < i, j < n where ai,l < i < n are the eigenvalues of

0 2 W..

In this case we have

01(x) = m2 
( -x)	

(4.1)
Ta WO1 (x) + ae (x)O

2
{x) = e

for a real number e 0 0

12 ( x)®2 (y) - 
f1

(x)ol(Y)

x + y

qu {x ,Y) = TO W Te (y)P0 (x,y).	 (4.3)
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Algorithm for solving the Lyapunov equation A'P + PA - -Q.

Rl ) Obtain 02 (x) the characteristic polynomial of A

02 ( x)o2 (y) - 01(y)o1(x)
02) Set PO (x,y)	 x + y

R3 1 Using the Extended Euclidean algorithm or an equivalent

r
method obtain Te (x) and e.

R4 ) Form qu (x,y) - Te(x)Te(y)Yx,y).

RS) Find Pu - fA (qu (x,y)moo, -Q) .

Rd Set P - u • Pu , u - -e2.

Computer Implementation

Since we are interested in an exact computer solution we restrict

the field of interest to that of the rational numbers F. The algorithm

is fully implem►entable, using the remarkable facilities provided by the

computer programming system MACSYMA available at M.I.T. MACSYMA is a

large computer programming system used for performing symbolic as well

an numerical computations.

Three versions of the algorithm have been constructed and p-. rammed

on MACSYMA. They are the Rational algorithm,the Integer Algoz,.thm and

the Modular Algorithm having names indicative of the mode in which arith-

metic operations are carried out.

The Rational Algorithm

It consists of carrying ont steps R1 through RS in rational arithmetic.
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The Integer Algorithm

Suppose that the matrices A and Q only contained integer entries.

The polynomials 111 2 (x), P^ (x) then have integer coefficients. Define S

to be the nxn matrix.

al 	a0	 0	 0	 0	 0	 ...	 0

a3 	a2	 al	 a0	 0	 0	 ...	 0

S = as 	a4	 a3	 a2	 al	 a0	 ...	 0

a2n-1 a2n-2 " '	 an

where 111 2 (x) = a0xn + a1xn-1 + ... + an and ak = 0 for k > n. Since

Yx) is a stability polynomial det S > 0 [1), and a  0 < i < n are

positive integers. If we let e = 2detS the linear system

c 
	 0

c2 	0
S

e
cn 	 2

has an integer solution and there exists a polynomial T e (x) = d1xn-1 +

d2xn-2 ... + do with di = (-1) n-ici which satisfies

Te (x)Yx) + Xe (x)0 2 (x) = e.

This means that qu (x,y) as in (4.3) has integer coefficients. The polynomial

qu (x,y)modO also has integer coefficients which implies that

P u = fA(qu(x,y),-Q)

is a matrix with integer entries.
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The algorithm proceeds as follows.

I1) Find ^ (x) the characteristic polynomial of A.

02 (x) O2 (y) - 01 (x) O1(Y)
I2) Set P0(x,y)	 x + y

I3) Find Te (x) and e.

I4) Form qu ix ,y) = Te(x ) Te(y)P0(x,Y).

I5) Find Pu fA (qu (x,y)modO, -Q).

I6	 u) Set P u P, u -e2.

The Modular Algorithm

The integer algorithm paves the way for a modular approach to the

olution.

Suppose p is a prime that does not divide e = 2detS. If A = (aid)

and Q = (q
ii

) are matrices with integer entries let p  = (gij
modp) and

p  = (a
ii
modp) be considered as matrices over Z p . A left subscript p

on a polynomial b(x,y) written as pb (x,y) denotes coefficient reduction

modulo p. Suppose that coefficient arithmetic is done modulo p. We then

have

p^ 2 (x) = det(Ix - pA)

p0 2 (x) P02 (y) - 1201 W 0 (y)
pP0 (x,Y) =	 x + 

Y

pT e (x) p^l (x) + pAe (x) p^2 (x) = p 

pqu(x,y) = pTe(x)pTe(Y)pP^(x,Y).

Let pPu = fA (pqu (x,y)modp0, -p
Q) where all arithmetic is done modulo p

and p^P _ (p02 (x), p02 (y)) in Zp [x ,y]. If 
p 

P 
u 

and p  are obtained for a

r

r_

i
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sufficient number of ,primes, the Chinese Remainder Theorem can be used

to find Pu and u making it possible to obtain the solution P 
-I .

The algorithm is as follows:

M1) Obtain pA, Q.

M2) Obtain P02(x) = det(Ix - pA).

p^2
( x ) p0 2 (Y) -^01(x)pQl(Y)

M3) Set pP0 (x,yj =	 x + y

M4) Obtain pTe (x), p 

M5) Set pqu (x,y) = pTe(x)pTe(Y)pP0(x.Y).

M6) Obtain 
p 
P u = f  (pqu (x,y)mod p4, -pQ).

M7) Repeat steps 1-6 for a sufficient number of primes and

and using the Chinese Remainder Theorem find P  and u --e2

M8 ) Set P = u • Pu.

Since considerable coefficient growth takes place in intermediate

computations of the Integer algorithm a lot of storage is being used up.

In such cases it is advantageous to use the Modular Algorithm.

Arithmetic Complexity of the Integer Algorithm

We are concerned with the number of integer operations (addition,

subtraction, multiplication, division) involved in running the Integer

Algorithm when A and Q are n xn matrices, using classical operations.

Step I l : There are several methods for obtaining the Characteristic

polynomial Yx) of a stability matrix. Evaluating ^ 2 (x) at n distinct

points and then solving for the coefficients requires 0(n 4 ) operations.

If n is in the range n < 20 evaluating 0 2 (x) at x=1 where 0 2 (1) = A,

Ii

k	 ^ y	 ,
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X = flog10nland then at x = 10X allows one to "read off" the coefficients

of $2 (x) from a large integer: This procedure requires only 0(n3)

operations.

Step I 2 : This step can be done in 0(n 2) operations.

Step 13: Solving a linear set of n equations simultaneously is an 0(n 3)

operation.

Step 14. Performing the multiplication as Te ( x)['te(y) • P^(x,y)) requires

0(n 3 ) operations.

Step I 5 : Obtaining qu (x,y)modf involves two polynomial divisions and

can be done in 0(n 3 ) operations. To form fA (qu (x,y ) mod'D, -Q) we use

0(n4 ) operations. In the event that the matrix 0 is a product of vectors

Q = c-c' this calculation can be done in 0(n3) operations.

Step I6: It can be done in 0 (n2) operations.

It can therefore be seen that the overall calculation requires 0(n4)

operations in general and 0 (n3) operations in the special cases mentioned.

storage requirements are much harder to determine since the imple-

mentation is on a variable length word computer.

S. The equation P - A'PA = Q

The Basic Lemma provides the groundwork for the construction of a method

for obtaining the solution P of the equation

P - A'PA = Q	 (5.1)

whenever a unique solution exists.

Equation ( 5.1) can be written as

fA (1 - xy, P) = P - A'PA c Q	 (5.2)

----------^ '
	 ►

r	 r
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where as in the Lyapunov equation, we are interested in the case when

B = A' and we denote fBA by fA . Let $ _ (0 2 (x) , 0 2 (yD with 02(x)

det(Ix - A). We then have the following Proposition.

Proposition 2. The coset 0 + (1 - xy) contains the polynomial 1-xy.

There exists a coset 0 + qu (x,y) for which	 r+

0 + qu (x ,y))0 + (1-xy)) = O+u

where O+u is a coset containing the real number u#0, if and only if

1-a iaj ¢ 0 for 1 < i,j < n where a i 1 < i < n are the eigenvalues of

02(x).

If we have that

0 2 (x) = anxn + an-lxn-1 + ... + a0

then let

0 3 (x) = xn02 (x 1 ) = a 
0 
x n + 

alxn- 1 
+ ... + an.

We can see that the roots of ^ (x) are	 1 < i < n.
i

Proof of Proposition 2: We will first show that ^ (x) and ^ (x) are rela-

tively prime if and only if 1 - ^ia j # 0. Assume that ^3(x),02(x) are

relatively prime. Suppose then that there exist ai ,^ j such that 1 - a i a j = 0.

This means that a i =	 which implies that ^ (x) and ^2 (x) have at least

J
one root in common. This implies in turn that Yx" 3 (x) have a non-

trivial common divisor which is a contradiction. Assume on the other hand

that 1 - a i X  ¢ 0 for all i,j. Suppose that there exists a k(x) of degree

greater than or equal to one such that k(x)IYx) and k (x)IYx). This

implies that 02 (x), 03 (x) have at least one root in common which contradicts
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our assumption.

It can be shown that

XY102 ( x)O2 ( y) - $3(x)03(y).

Let
02 (x)O2(Y) - 0 (x)O3(y)

P^(x,Y) =
	 1-xy

We now prove the Proposition.

Assume that 1 - ai^ j 0. We have that 2 (x), ^ 3 (x) are relatively

prime which implies that there exist polynomials Te (x), ae (x) such that

Te (x)03 (x) + Xe (x)02 (x) - e

for some element e ¢ 0 in R.

Let qu (x,y) = Te(x)Te(y)P0(x,y).

Since

qu(x,y)(1-xy) = Te(x)Te(y)P^(x,Y)(1-xy)

= T  (x) Te (y) ^2(x)02  (Y)

+ ele (y) Yy) + eae (x) Y x)

- X  (x) ae (M2 (x) ^2 (y) - e2

we must have ( u = -e2)

(4^ + (1-xy))' ( D + qu (x,y)) _ (D+u.

Assume on the other hand that there exists a coset 0 + qu ( x,y) such

that

(^ + qu(x,y))((D + (1-xy)) = (D + u

where (D+u contains the real number u # 0. Show that 1 - ;,i^ j	 0 for all i,j.

We have that
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qu(x,y)•(l-xy) - a(x•Y)o 2 (x) + b'(x,y)O2(y) + u	 (5.3)

Suppose that there exists i - i' and j - j' Luch that 1 - ai,^j, 	0.

Evaluating (5.3) at x - X i ., y - X j , we have

0 - u

which is a contradiction. This completes the proof of Proposition 2.

As can be seen from the proof of Proposition 2, the polynomial qu(x,y)

can be constructed and this prescribes an algorithm for the solution of

equation (5.1).

Algorithm for solving the linear matrix equation P - A'PA Q.

B1) Obtain 02 (x) = det ( Ix - A).

02 (x)^2 (y) - 03(x)03(y)
B2) Set P0 (x,y)	 1 -

xy

B3) Using the Extended Euclidean Algorithm or an equivalent

method obtain Te (x), e.

B4) Form qu (x,y) - Te(x)Te(Y)P^(x,Y).

B5) Form P 	 fA(qu(x,Y),Q).

B6) set P - u • Pu.

6.	 Numerical Examples

We wish to compute

W
G - J x' (t) •Q•x(t)dt

0

where x(t) is a solution to

x(t) - AX (t)	 x(0) - C.	 (*)

The system modelled by (*) is of the form



t 	 -1
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where the number of blocks is finite.

Example 1: The number of blocks is 5 with C -1, K=1, M=10000. Listed are

the corresponding A matrix, the Q matrix and the solution P to the

equation PA + A'P a Q.

Example 2: The number of blocks is 2. Listed are the corresponding A

matrix in parametric form, the Q matrix and the parametric solution P of

the equation PA + A'P - Q. The parametric solution P is valid only for

appropriate values of E, M, Z, (Z-^).

Example 1:

	

0	 1	 0	 0	 0	 0	 0	 0	 0	 0

	

_ 1	 1	 1	 1	 0	 0	 0	 0	 0	 0
5000 5000 10000 10000

	

0	 0	 0	 1	 0	 0	 0	 0	 0	 0

	

1	 1	 1	 --1—	 1	 1	 0	 0	 0	 0
10000 10000 5000 5000 10000 10000

	

0	 0	 0	 0	 0	 1	 0	 0	 0	 0
Am	 1	 1	 1	 _ 1	 1	 1

	

0	 0	 10000 10000 5000 5000 10000 10000	 0	 0

	

0	 0	 0	 0	 0	 0	 0	 1	 0	 0

	

0	 0	 0	 0	 1	 1	 _ 1	 _ 1	 1	 1
10000 10000 5000 5000 10000 10000

	

0	 0	 0	 0	 0	 0	 0	 0	 0	 1

	

0	 0	 0	 0	 0	 0	 1	 1	 --1— _ 1
10000 10000 5000 5000
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Q ^ ^

0 0 0 0 0 0 0 0 0 0

0. 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1

11
2 0 0 0 0 0 0 0 0 0
0 _12500 0 _10000 0 _2500 0 -5000 0 _2500

3 3 3 3
0 0 -2 0 0 0 0 0 0 0
0 _10000 0 _20000 0 _5000 0

10000 0 5000
3 3 3 3

0 0 0 0 -1 0 0 0 0 0
2

0 -2500 0 -5000 0 -7500 0 -5000 0 -2500

0 0 0 0 0 0
2

0 0 0

0 _5000 0 _10000
0 -5000 0 -20000 0 _10000

3 3 3 3

0 0 0 0 0 0 0 0 -2 0
0 _2500 0 _ 5000 0 -2500 0 _10000 0 _12500

3 3 3 3



Example 2.

0 1 0 0

-jZ -2Z E Z
M M M M

A
0 0 0 1

E Z -2E -2Z
M M M M

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 -L

E	 0	 0	 02
o M o

P s	 3Z	 6Z

0	 0	 0
2Z

0	 0
6Z	 3Z

21
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