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Sufficient Statistics for Mixtures

of Measures in a Homogeneous Family
by

Charles Peters
Department of Mathematics

University of Houston

1. Introduction:

Let (X,&2) and (Y,ig) be measureable spaces and let T : X+ Y be
surjective and measureable. Let 72 be a set of finite positive measures on
(X,@). For each u e N there corresponds a measure u'l’_l on (Y,B) defined

for F E;g by
wtim = uerim).

If f is a p~integrable real valued function on X, then as a consequence of
the Radon Nikodym Theorem, there is a uT‘l— integrable function eu(f) on Y
satisfying
-1
f e (DduT © = [ fdu
F T1(F)

for each F 513. Clearly eu(f) is defined only up to sets in Y of uT-l

measure 0 and f =g a.e. (u) implies eu(f) = eu(g) a.e, (uTnl). The
linear operator e, defined as above maps the space zfl(x,CZ,u) to the space

‘{I(Y,Tq,uT-l) and is called the conditional expectation operator. Its value




z
eu(f) at f ¢ (X,@,u) is called the conditional expectation of f given
T,

The conditional probability of an event E e d is defined as
Pu(E) - eu(xE)
where Xg is the ipdicator function of E. The conditional probability

functions satisfy

(a) P, - jiy, 8, uT_l).

whereg(Y, A ,uT-l) is the set of all real valued ‘ﬁ-measuteable functions

on Y, with equality defined as equality a.e. (u'r—l).

(b) For each FeB,Ee@,

wE o TR = [ B (Bapr?
F M

(c) 0 < Pu(E) <1 for each E €@ and Pu(X) = 1.

(d) 1f {En}:=1 is a disjoint sequence of events in @,

o o . -1
Pu( n31 En) = n§1 Pu(En) a.e. (UT 7).

It should be noted that PU satisfies property (c) even when WU is not a

probability measure.

The transformation T is called a sufficient statistic forM if

for each E ¢ @ there is a‘g-measureable function P(E) on Y such that
for each u €77, PM(E) = P(E) a.e., (‘uT-l). The set 7 is dominated by

a measure A - (perhaps not in?]) if for each u €M, u is absolutely



’ ifiéontinumxs with respect to A,( written I << A.)7)|is homogeneous if it 1s
~ dominated by each of its members. A measure A is equivalent to TH if
A dominates M and u(E) = 0 for each U €M implies A(E) = O.
The notation and terminology used in this paper are taken from (ﬁalmos
and Savage; 1949), as are the following three theorems. The notation
%%(Q)T-l(ﬁ) means that there is an element of the equivalence class du of

dA
Radon-Nikodym derivatives which is '1‘-1(‘3) measureable,

Theorem 1: If FMN 1is dominated, then a statistic T 1is sufficient for 7/ if

and only if there exists a measure A equivalent to #7. such that for each

wem, P

Theorem 2: If ¥} 1is dominated, then a statistic T is sufficient for 72 if

and only if T is sufficient for each pair {u,v} of elements of 77 .

Theorem 3: If 771 1is homogeneous, then a statistic T is sufficient for 2 if

and only if %(e)'l'-l(ﬂ) for each u,v eMN.

2. Homogeneoys Families:

Henceforth, we will assume that “}¥] is homogeneous. Let C(}## denote the
cone generated by 77| , excluding the zero measure. That is, C{# is the set of
all finite linear combinations, with strictly positive coefficients, of elements
of M . Elements of C(n) are termed mixtures of elements of ‘7?2 Clearly,
C¢:) 1is also homogeneous; hence, the spaces :,‘(Y,'é’.uT'l) are all the same
for 1 € CO and may be denoted simply byd . For u € COM, 1’u maps (1 to
G and it is-clear from the definition of a sufficient statistic that T is

sufficient for a subset }? of C¢M if and only if the conditional probability
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- __functions Pu for u e M are all equal.

Lemma 4: If P is dominated, 7/c C(H), and T is sufficient for M, then

T 1is sufficient for 72 .

Proof: Let X be that measure equivalent to 77{ whose existence is assured

by Theorem 1. If u e C#9, then u can be written

Kk
wE 121 By ¥y

with 8, >0, v, e/ for i =1,...,k. Hence,

. ,
dy _ dvi ~1
o - Bika (@1 @

Thus T is s»{ficient for CEON) and hence is sufficient for /L.

In order to characterize sufficient statistics for 2Lc C(M, it suffices,

by Theorem 2, to consider a pair

Hp T 151 Bi Hy

and

in }L’ , where 1 and J are finite sets; Bk >0 for k e TuJ; and the

|
measures {u,} are distinct members of /'), as are the measures {u,(}

i'iel j jed’
The set C( ) of all finite mixtures of elements of 7/{ is said to be
identifiable (Teicher, 1960, 1961; Yakowitz 1969) if each element of c
can be expressed in only one way as a linear combination with positive

coefficients of elements of‘?/Z, except for the order of the summands. Equivalently,

C(lp) is identifiable if the set 7% is linearly independent over the real numbers.



" The concept of identifiability is very important in establishing the

 uniqueness and consiatenc&_of various estimators of the so called mixing

parameters {R ¢ t1el} in a mixture My

Given a mixture y . in C(#) we have for each E €@, Fe B,

1

£ B, (E)dyT

(Yakowitz, 1969).

-1
y wp (En T (F))

= L B (En *r'l(p))

iel

=z 8, [P (E)a, Tt
je1 1 F “1 i

J T

= I_B P (g) —=— dd

iel i F ui de T 171
Let Il""’Ir be the equivalence classes in

P =P H
and only if y u

i k
pair {ui. uk}. Then we have

/ du i’r'l 1
L. B > (E) ——— du.T
i€Y "1 F “1 dUIT 1 1
-1
/ 518 M, (g) dy, 1!
= E ] ’
= -1 I
F 1 icIl i dUIT ng .
where P. (E) 1is the common value of the Pu (E) for {¢ IR' Thus,
1 i
'
r duI T-l
P = § —- P
UI 4] du. T 1 u‘z

I

; that is, if and only if T is sufficient for the

I modulo the relation i = k

3.

if
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where uI is the mixture
L

Whenever the conditional probability function PUI of a mixture W is
written in this fashion with Il,...,Ir being equivalence classes modulo the

relation =, we will say that PuI is written in normal form.

Definition 5: The set C(%) 1is conditionally identifiable with respect to

the statistic T 41f for each pair {uI,uJ} in C(7/)) , whenever Pu = Pu and
1

J
P ,P are expressed in normal form
U H
I J ~1
r duI T
fur " = Ty
du T 2
! 1
du T
S
= I k
Tuy T kAL ) P“J )
dp T k

then r=3s and for each £ =1,...,r there exists exactly one k=1,...,r

dUIT-l dUJT-l

such that L i k 1 and Pu = Pu . The set C(7) 1is
duI T dy T Igl Je

J

marginally identifiable with respect to T if the set il em) s

linearly independent over the real numbers.

Theorem 6: If CéMp) 1is both marginally identifiable and conditionally
identifiable with respect to a statistic T, then C(M) 1is identifiable.

Proof: Suppose u, = I Bu, = I B u, =u,6,  where the measures in each
I iel il jeJ 33 J

sum are distinct members of }/{ . Then, expressed in normal form,



-1 -1
r dulzT r duJ T
P = z s S t— p = g ———aL—-——- P - P .
HpooemL du T 1 "11 =1 du T 1 Moy W

and we wmay assume without loss of generality that

duy T} du; 1
I S
-1 -1

duIT duJT

and PuI = PuJ for 2 =1,...,r.
L L
: -1 ~1 -1 -1
Since u,T " = pu T *, it follows that u_ T " =u, T ~. For i,k ¢ Ii'
I J 12 Jl

-1 -1
uiT # ukT , for otherwise, since Puy Puk, we would have My = Wy

contradicting the assumption that {u1 : ieI} are distinct. Similarly, the

ujT-l for j e J2 are all distinct. Since C(77) 1is marginally identifiable,

Il and JE have the same number of elements and for each 1 € Iy there is

a unique j(1) € JQ such that B and u T-l = “j(i)T~1' Since

17 By 1

Pu = Pu , it follows that
i j()

there is one to one map j from I onto J such that Bj(i) = Bi and

My = uj(i) for each 1 ¢ Ig. Therefore,

uj(i) = ui for each i € 1. Hence, C(#]) 1is identifiable, and the proof
is complete.
For conditionally identifiable sets of measures, the followipg theorem

and its corollary provide some characterizations of sufficient statistics.

Theorem 7: If "} is homogeneous, C(77) 1is conditionally identifiable
with respect to a statistic T, and Myl are in C(h), then T is
sufficient for the pair Hpe Hy if and only if there exist partitions

I=1I_vu... UIr and J =1J

1 U wes qu such that for each £ = 1,...,r*

1
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(a) aC T R, u)/ d(E 8, w) e S
: terg 1 Hy) (3231 "y M3 dﬁdl B du,

and
(b) T 1s sufficient for the set Nl = {uk t ke ILUJZ}'

Proof: First suppose such partitions exist. By (b) T 1is sufficient for the

set N, and hence, by lemma 4, it is sufficient for the pair {uI WMy Yo oIt
1 71

follows from (a) and Theorem 3 that T is sufficient for the pair {ul,uJ}.

Suppose that T is sufficient for the pair {u_,u.}. Then, expressed in
I'"J

normal form, - -1
. duI T . duJQT

P
SN e A S S

and we may assume without loss of generality that

dug 71 du, 771
,£-1 = 1_1 and Pu = Pu for each £.
duIT dUJT Iﬂ, Jf.
The condition PuI = Pu is equivalent to (b). By Theorem 3, there exists a
J
L 3
duy -1 ~du 'I‘-1
representative f € —— which is8 T (-6) measureable. If g ¢ qu.T-1°
duJ Hy

then geT is T-l(13) measureable and for each F e‘f?,

[ got du = IR duJT'l - uIT-l(F)
T'l(F) F
- [ £ du,

T-1(F)

A

L




It follows that g+T = f a.e.(uJ). Thus,

Tl 4
1 1
=} et
du,T Uy

duIT-l
o T~{eTlee

duJT

Since T 1s also sufficient for the pair {HI .qu }, a similar argument

L
gives
duy 1} duy
L T e - L
~1 du
dquT Jk
a1 aw !
for each 2. Since <£41 = 1 for each £, it follows that (a)
duJT duJT

holds for each . and the proof is complete.
Corollary 8: If 1 is homogeneous and C(M!) 1s conditionally identifiable
with respect to a statistic T, then T 1is sufficient for a pair {uI.uJ}

in C(M) 1if and only if there exist subsets Ilc I and J1 ¢ J such that:

(a) By

duJ1 du

and

(b) T is sufficient for N = {uk : k€ 11 U Jl}'

Proof: That T sufficient implies the existence of Il and J1 satisfying

(a) and (b) is immediate from Theorem 7. Conversely if Il and Jl satisfy
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(a) and (b), then T is sufficient for My s Hy by (b) and hence, by (a),
1 1

T is sufficient for ULskg.

Given a pair of mixtures Mis Wy in <(/4), we will call their
du

11kelihood ratio -d—u-l- indecomposable if I, I, J, <J and
J
dy du
——31-- L imply I, =1 and J, = J. It is clear from Theorem 7 that
1

if C(W) 1is conditionally identifiable with respect to T and a pair of
mixtures Hps Yy in C(M) have an indecomposable likelihood ratio, then
T is sufficient for {uI, uJ} if and only if it is sufficient for

{uk t: keIulJ}. Also, it is not difficult to see that for each pair

o My in C(M) there exist nonempty subsets Il €1 and J, < J such

that
dy
ho, 2
dy du
J1 J
dul
and the likelihood ratio m 1 is indecomposable. If e and By represent
J
1

the probability laws for two alternative hypothesc., then there would be two
advantages in being able to identify subsets 11 and J1 satisfying these

two criteria. First,the maximuym likelihood decision procedure would bz simplified,
and second, the search for a statistic sufficient for deciding between the two

hypotheses and having the property that C(M1) is conditionally identifiable

could be restricted to those statistics sufficient for {uk H I1 v Jl}'

3. Sufficient Linear Statistics for Mixtures of Norgalg:

If'lz is a subring of the ring ég‘ introduced in Section 2, then with the
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usual definition of addition and multiplication by elements of % the set
of all functions ¢ : d - 7 1s a module over ﬁ . Thus, it is natural to

consider‘féindgpendence of a set o of such functions. To be precise, J s

f’-independent if whenever «tl,...,c:sﬂ is a finite set of distinct elements of

.f and Yl....,y are elements of ﬂ such that
m

Y4, () *+o.+ Y 6 (E) =0 for each g €72,

then v,= ... = Yo " 0. If "K, is a subring of _'/ which contains all tae
bound - <: don-Nikodym derivatives %“—';;-[ for u, ve C(M , then it is clear
that K—independence of the set {Puv: v eM} implies that C(7N) is
conditionally identifiable with respect to T,

For the remainder of this section we will assume that X 1is fD\n, Y is |p. k
(k< n) and T : X~ Y 1is linear and full rank. £l and'lg are respectively,
the Borel fields on [K " and {'L’.k. We also assume that each ¢ 7] is described
by a normal density function fu with mean m, and covariance 'QU . That {s,

for each E ¢(.,

« [ f dr,
w(E) fgudn

where >‘n is Lebesgue measure on R" |

By a suitable choice of the coordinate system, we may represent the densities
fu as joint density functions fu(y.z) on Rk x‘p\“'k while representing T
as the projection T(y,z) = y. Then the marginal densities

are normal with means Tmu and covariance matrices mu'rl (Anderson, 1958).



The conditional density functions
£ (y,2)

‘s'p_()')

are normal as functioms of z € Rn-k with means

hn(z l y) =

+ 8¢ 1'1 T -
(1) Snu W { 9 Y &y mn)
and covariances

1 1 1.,-1 1
- T T .
(2) SﬂuS Sﬂu (TQu ) TQHS

where S is the linear operator S(y,z) = z. The coaditional probabilities

Pu( E) are represented by

PU(E ly) =f n (ziy)dz .
Sy(z)
where S _(E) = {z s)’R“—k | (ys2) € E}.

Theorem 9: 1If 7N is a family of Borel measures on [R n
normal density functions and T : {Rn + \Rk is linear of

C{M) 1is conditionally identifiable with respect to T.

given by n-variate

rank k, then

Proof: It can readily be verified that conditional identifiability of C{mM)

i3 not asifected by the change of variables just descr ibedi
d, T°
are in C()), then the Radon~Nikodym derivative J.L:-l
du T
J

function of' the form

81 (y)
8;(y)

~ By B, Y (y) / jZJ Sjguj(y).

If Mt

is represented by a

and uJ
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:;;e;,ra rétio of,nixtuies of k—variateracrmél density functioaé, which

is continuous. Hence, by the remarks in the first paragraph of this section,
V:it suffices to show that the set {P“: p el of conditional aensi;y | |
- functions isﬁz-independent, where fz is the suﬁring of é?‘ consisting ofzthesé :
elements of .§ which have a continuous representative. To this end, let |

Pu ,...,Pu be distinct ahd let yl,...,yr be cont .:uous real valued
1 r

functions on ﬁlk such that for each E e,

YI(Y)Pu (ely) +...+ Yr(Y)?u (Ely) =0

1 r

. . . k
for almost .-'l y. In particular, choosing for E sets of the form [ x K,
where K 1is a borel set in ﬁ{n-k, we have

2 I{hu (ziy)dz +...+ Y () [ b (zly)dz = 0

1 K T

for almost all y. For each K, f hu (zly)dz is a continuous function of
K "1

y. Hence,

/ (v, h,,

(zly) +...+ Yr(Y)h (zlylddz = 0
K u

1 r

for each y € ﬁzk. It follows that

Yl(y)hul(zly) +...+ Yr(y)hur(ZIY) =0

for each y ¢ ﬂ;k, z E[p?-k. Let F be the set of y E{Q} where two or

more of the conditional dc¢nsity functions h“ (zly) are equal as functions
i
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of 2. It is easily seen from (1) and (2) that the Lebesque measure of F is

zero. For y ¢ F, {h11 (’iy),...,hu';(' -1¥)} 1is a set of distinct normal

i r
density functions of z. Hence, (Yakowitz and Spragins; 1968), they are

linearly independent over the real numbers. Therefore, for y ¢ F, 7
Yl(y) = ... = Yr(y) =0. Thatis, Y, = ...=Y = 0 as elements of F . = »
Thus, C(M) is conditionally identifiable.

If Wy = ié‘! Bi ¥y is in c(ny, then Hy has a density function

which is a mixture of normal density functions. The following tiieorem is an

immediate consequence of Theorems 7 and 9.

iheorem 10: Given the assumptions of Theorem 9, the statistic T 1is
sufficient for a pair {uI, “3} in C(J}) 1if and only if there exist partitions

I=1, u...ul and J = J. u...uJ such that for each 2 = 1,...,r,
1 r 1 r

(a) o8, (0 TR F, (0
iely i jed g j
n
= I Bi f (x)/ I B, fx (x) for each x ElR s
iel My jeg 4 Y

and
(b) .T is sufficient for the family {fu tkely UJ!L} of normal

k
density functions. :

There is set of purely algebraic conditions which are equivalent to (b);
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namely, that the expressions
M

1
m - T (T
Ve M

a thera T
Hi

He

are all independent of k € I

1
Q -2 7T TQ
e %

Q
"

-1

Q,U

k

J

k

Tl)-lT Q“k

™y Ir

M

2 (Peters, Redner, and Decell; 1976).
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