
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



PREPARED FCR
EARTH OBSERVATION DIVISI^N, J5C

UNDER
CONTRACT NAS-9-15:.G

^.0 OF yo

n G^ DEPARTMENT OF MATHEMATICS

7^ UNIVERSITY OF HOUSTON	 HOUSTON. TEXAS

^L

(NASA-CR-151338) SUFFICIENT STATISTICS FOR 	 977-24887
HIXTUFES OF [MEASURES IN A HO M OGENEOUS FXMILY
(Houston Univ.)	 18 p HC A02/MF AC 1 CSCL 12A

Unclas
G3/65 26140

SUFFICIENT STATISTICS
FFR	 IXTUREF CF h'EASUk--
IN A HFIMOGFNC-OUS FAMILY
FY CHARLES PFTEk-.
REPCRT #E4 V4RCH 1'477 m f

i

,,223Z4^ s^G

AY 1;;77 ^'^

NA

RECEIVED

NP ST' FACILIT	
^.

Ur BRANCH 4.j

^ a5^

HOUSTON. TEXAS 77004

-^--	 t 2



Sufficient Statistics for Mixtures

of Measur-s in a Homogeneous Family

I
iE

By

Charles Peters

department of Mathematics

University of Houston

March, 1977
Report 64



Sufficient Statistics for Mixtures

of Measures in a Homogeneous Family

by

Charles Peters

Department of Mathematics

University of Houston

1. Introduction:

Let (X,12) and (Y, 8) be measureable spaces and let T X Y be

surjective and measureable. Let 	 be a set of finite positive measures on

(X,Q). For each u E	 there corresponds a measure pT 1 on (Y,$) defined

for F 4 by

UT-1 (F) = U(T 1(F)).

If f is a u-integrable real valued function on X, then as a consequence of

the Radon Nikodym Theorem, there is a VT-l
-
 integrable function e 

1
(f) on Y

satisfying

j e
U 
(f)dUT 1 = 1 fdU

F	 T-1(F)

for each F e t. Clearly eP (f) is defined only up to sets in Y of PT -1

measure 0 and f = g a.e. (u) implies eu (€) = 
e 1

(g) a.e. (UT l ). The

linear operator eu defined as above maps the space t l (X,Q ,U) to the space

J 1 (Y, -g,UT-1) and is called the conditional expectation operator. Its value
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L.

e (f) at f c ;t
j 
(X, Q,p) is called the conditional expectation of f given

T.

The conditional probability of an event E E a is defined as

PU (E) = 
e11

(XE)

where XE is the indicator function of E. The conditional probability

functions satisfy

(a)
P11 

;a.-14(Y, °8 , PT-1

where lm $ ,uT l) is the set of all real valued ' -measureable functions

on Y, with equality defined as equality a.e. (uT 1}.

(b) For each F c k?,E c Q ,

V(E n T
-1 

(F) = l PP (E)dPT l

F

(c) 0 <_ Pu (E) < 1 for each E t Q and Pu M = 1.

(d) If {En}n=1 is a disjoint sequence of events in CZ,

u( 
CO

P	
n 1 E

n) = nil P1 (En) a.e. (PT
-I ) .

It should be noted that P u satisfies property (c) even when u is not a

probability measure.

The transformation T is called a sufficient statistic form if

for each E c(2 there is at
7
-measureable function P(E) on Y such that

for each u e-)11, Pu (E) - P(E) a.e., (NT 1 ). The set_Y4 is dominated by

a measure A -(perhaps not in 711) if for each u cll?, p is absolutely
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continuous with respect to A,( written U « a.) Y is homogeneous if it is

dominated by each of its members. A measure X is equivalent to 'M if

l dominates '41 and U(E) _ 0 for each P E"M implies a(E) = Q.

The notation and terminology used in this paper are taken from (Halmos

and Savage; 1949), as are the following three theorems. The notation

)T 
1(	

means that there is an element of the equivalence class ^ of
dX

Radon-Nikodym derivatives which is T-1(9) measureable.

Theorem 1: If I-& is dominated, then a statistic T is sufficient for ILL if

and only if there exists a measure a equivalent to VIL such that for each

ji E7n, d1 (f )T 1(-R).

Theorem 2: If -17t is dominated, then a statistic T is sufficient for Ylt if

and only if T is sufficient for each pair (p,v} of elements of MI .

Theorem 3: If In is homogeneous, then a statistic T is sufficient for -14t if

and only if dv (E)T 1 ( ,& for each P, v E171. 

2. Homogeneous Families:

Henceforth, we will assume that )n is homogeneous. Let Coj) denote the

cone generated by'j)L , excluding the zero measure. That is, C" is the set of

all finite linear combinations, with strictly positive coefficients, -of elements

of -M . Elements of COO) are termed mixtures of elements of 'm . Clearly,

001,0 is also homogeneous; hence, the spaces j (Y ,S IjT 1 ) are all the same

for p e C(ft and may be denoted simply bye' . For )A e C('j/p, Pu maps Gt to

and it is clear from the definition of a sufficient statistic that T is

sufficient for a subset JZ of C(* if and only if the conditional probability

r



functions P^ for U c 7 are all equal.

Lemma 4: If M is dominated, c C( , and T is sufficient for , then

T is sufficient for	 .

Proof;	 Let X be that measure equivalent to Ik hose existence is assured

by Theorem 1: If P € COS, then p can be written

k

s iZl d
i vi

with di > 0 ) vi e llt for i	 1, ... ,k. Hence,
k

dX	 it ^i dXi	
{E) T-1().

Thus T is s ­ 'icient for C" and hence is sufficient for-2 .

In order to characterize sufficient statistics for A c C(M, it suffices,

by Theorem 2, to consider a pair

uI	 iEI Si ui

and

ui	 j EJ sj uj

in ^ 1 , where I and J are finite sets; a  > 0 for k E TO; and the

measures {Ui } iEI are distinct members of PI, as are the measures' {Uj}jEJ'

The set C( ) of all finite mixtures of elements of 7/t is said to be

identifiable (Teicher,1960, 1961; Yakowitz 1969) if each element of C(M

can be expressed in only one way as a linear combination with positive

coefficients of elements of `117 1 except for the order of the summands. Equivalently,

COO) is identifiable if the set 1^ is linearly independent over the real numbers.



I
The concept of identifiability is very important in establishing the

uniqueness and consistency of various estimators of the so called mixin g

parameters { :ieI} in a mixture u I (Yakowitz, 1959).

Given a mixture u I _ in COW we have for each E e O , y e 1g,

PuI (E) dull-1 	
V11 

(E n T-1 (F ) }

= E Oiui ( E n T
-1 

(F } }

iEI

E $i Pu { E } i T-1
ieI	 F i

-1

iEI 
 

i I P^ (E) ^ i T-
1 du 1 T 1.

F i	 dl I T

{	 Let Il ,... , I r be the equivalence classes in I modulo the relation i BE k if

and only if P  = PP ; that is, if and only if T is sufficient for the

i	 k
pair { ui , uk} . Then we have

duT1

i€I. 
Bi J 'u (E)	

i 
-1 du lT 1

F i	 duIT

r	 d T 1

	

_	 ui	 -1

F 'j, iEI i Bi d T 1 P11 (E ) dµI T •

uI	 ,-

where Pu (E) is the common value of the Pu (E) for i e I i. Thus,I	 i
r dpIQT 1

	

Puf 
s 
	

du T 
1 Puii

I



b.

•	 uI^ iEi
k
 ^i ui

Whenever the conditional probability function P
III 

of a mixture It  is

written in this fashion with I 1 ,...,Ir being equivalence classes modulo the

relation =, we will say that 
PuI 

is written in normal form.

Definition 5. The set C(-91) is conditionally identifiable with respect to

the statistic T if for each pair (ui,uJ) in COO , whenever Pu = Pu and
I	 J

P	 P	 are expressed in normal form
u1	 uJ	

r du T-1

PuI = k.^ l	
I___ :^__ PuI

du TI
du T-

1

_ S	 ,s
_	 k

PuJ k
=1 du T 1 PPik

J

then r = s and for each i - 1,...,r there exists exactly one k = 1,...,r

dulT`1	
dPj T-1

such that	 Q_	 =	
k	

and P	 P	 . The set C(77) is
dui T 1	

duJ 
T
-1
	 111 9,	 uJk

marginally identifiable with respect to T if the set (uT l lu C" is

linearly independent over the real numbers.

Theorem 6: If CCOO is both marginally identifiable and conditionally

identifiable with respect to a statistic T, then C(?V is identifiable.

Proof: Suppose pi = E Siu i = E sou	 uJ	 where the measures in each
iEI	 jEJ

sum are distinct members of Ili	 Then, expressed in normal form,
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i

i

r duI T-1
	

r dui T-1
=	 g-

PuI V, 

dpi 
T-1 FuI $ 

iEI dp 

J T

_ 1	 P J Phi,

^

and we may assume without loss of generality that

duI 
T-1	

dui 
T-1

L	 =	 i
diAIT 

1	
duiTll

and	
PuI = 

P11  for X

Since pIT
-1
 = uiT-1 , it follows that 

p  
T-1  

= ui 7
-1 . For i,k c It,

	

k	 1L

uix 1 + il
k
 T 1 , for otherwise, since Pu i = Puk, we would have U  = uk'

contradicting the assumption that (Pi : ieI} are distinct. Similarly, the

Wi T 1 for j c J 
t 

are all distinct. Since C(lit) is'marginally identifiable.

I  and J 
i 

have the same number of elements and for each i c It there is

a unique j (i) c J9 such that Si = aj 1i) and u IT 1 = uj (i) T-1 . Since

P.= F	 , it follows that u
i = u j {i}	 ^

for each i c I	 Therefore,ui	 uj (i} 
there is one to one map j from I onto J such that 6 J (i) _ a  and

uj(i) = Iii
 for each i E I. Hence, C(-M) is identifiable, and the proof

is complete.

For conditionally identifiable sets of measures, the following theorem

and its corollary provide some characterizations of sufficient statistics.

Theorem 7:	 If -/-^j is homogeneous, CCM) is conditionally identifiable

with respect to a statistic T. and li l ,ui are in C(-W , then T is

sufficient for the pair pi , Pi 
if and only if there exist partitions

I = 1 1 u ... uI r and J = J 1 u ... 0	 such that for each $ = 1,...,r'
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dU	 du

(a) d{ 
iCIL 

i ui)/ d{ pit j J)	 dud 	dpj

and

(b) T is sufficient for the set Ni - {uk : k e IiuJi}.

Proof: First suppose such partitions exist. By (b) T is sufficient for the

set N1 and hence, by lemma 4, it is sufficient for the pair {ui , J }. It
1 l

followa from (a) and Theorem 3 that T is sufficient for the pair

S •zppose that T is sufficient for the pair {I•uJ}, Then, expressed in

normal form,

	

r dpi T -1	 r	
duJjtT 1

LE1 
dP, 

T-1 PIA - LI 
d^ 

T-1 PuJ^,

J

and we may assume without loss of generality that

du : 1
	

dp T-1

Ii-1
	
and P u	 P	 for each L.

dull	 d1a JT 	 IR	 Ji

The condition PuI - Pu	 is equivalent to (b). By Theorem 3, there exists a

X	 J^

d11	 dt:T 1

representative f e du
J	 J

which is T-1 05) measureable. If g e du
Z

T_1,

1
then g•T is T (-e) measureable and for each F e e,

I R •T auJ - I g do T 1- uIT 1 (F)

	

T-1(F)	 F

•	 - I fdp
T-1 IF)

L. -- --L
	

i
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It follows that vT = f a.e.(Pi). Thus,

du T-
1 	

au 1	 du
T= {g,T I g E	 } C	 I

du JT-1	 du JTl	 dui

Since T is also sufficient for the pair {u ,uJt	 a similar argumentIR 

gives

dPI T 
1	

dui

d ifi-1 
f T c 

du Ji
^J i	 f.

dui 
T-1	 du T71

for each X. Since	
^

I 
-1 

for each f,, it follows that (a)
dpi	duJT

holds for each h and the proof is complete.

Corollary 8: If -M is htvvgeneous and C(-?t) is conditionally identifiable

with respect to a statistic T, then T is sufficient for a pair {ul,uJI

in C(KI) if and only if there exist subsets I 1c I and J1 c J such that:

(a) dull	 = duI

duJ	dui
1

and

(b) T is sufficient for N = {uk : k r I 1 u J1}.

Proof: That T	 sufficient implies the existence of I 1 and J 1	satisfying

•	 (a) and (b) is icsediate from Theorem 7. Conversely if 11 and J 1	satisfy
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(a) and (b), then T is sufficient for PI , uJ by (b) and hence, by (a),

1	 1

T is sufficient for ul,uJ.

Given a pair of mixtures u l , 1►J in :(if), we will call their
du

likelihood ratio dtj indecomposable if I 1 C-1 J l cJ and

J

dui	 du
-	 - , imply I1 a I and J1 J. It is clear from Theorem 7 that

J 1	 i

if C(-ht) is conditionally identifiable with respect to T and a pair of

mixtures ul , 'Pi in C(M) have an indecomposable likelihood ratio, then

T is sufficient for {ul , ui } if and only if it is sufficient for

{yk : k t I u1}. Also, it is not difficult to see that for each pair

u , u in C(i?1) there exist nonempty subsets I1 I and J1 c J such
I J

that

dull	 Jul

f	 dui	 dui
1

duI

and she likelihood ratio d^ l is indecomposable. If ul and uJ represent
iI

the probability laws for two alternative hypothcsc:,. then there would be two

advantages in being able to identify subsets I 1 and J1 satisfying these

two criteria. First,the maximu- likelihood decision procedure would be simplified,

and second, the search for a statistic sufficient for deciding between the two

hypotheses and having the property that CM) is conditionally identifiable

could be restricted to those statistics sufficient for {uk : 
I l u it}.

3. Sufficient Linear Statistics for Mixtures of liormals.

If A is a subring of the ring J- 
introduced in section 2, then with the
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usual definition of addition and multiplication by elements of the set

of all functions	 Cx ► . is a module over	 Thus, it is natural to

considerl-independence of a set 4 of such functions. To be precise, J is

-independent if whenever 1	m is a finite set of distinct elements of

Jand yl ,...,y are elements of R such that
m

yl^l(E)  +...+ ym^m( g ) = 0 for each E c 1l ,

then y,= ... = ym = 0. If	 is a subring of J which contains all Lae

bound

	

	 don-Nikodym derivatives dW? for, v c C{} then it is Blear
dyT

that 7\-independence of the set 
(Pu	

c ?rj} implies that C(?1t) is

conditionally identifiable with rospect to T.

For the remainder of this section we will assume that X is n , Y is { k

(k t;n) and T	 X -+ Y is linear and full rank. &t and "/. are respectively,

the Borel fields on JK ° and lk. 	 We also assume that each k f= 'j'jt is described

by a normal density function f with mean mµ and covariance	 That is,

for each E c a

t^(E } = E fu da a

where a n is Lebesgue measure on	 R

By a suitable choice of the coordinate system, we may represent the densities

f as joint density functions f u(y,z) on P 
k x Ru	 while representing T

as the projection T(y,z) • y. Then the marginal densities

	

90	 n-k U
(Y) = 1 	f (y,z)dz

^

1are normal with means Tm and covariance matrices V0T

	

V1 
	 (Anderson, 1958).

t -
	

1
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(2)	 SS211S1 - SY1 (TaPT 1 )-1 VIPS1.

where S is the linear operator S(y,z) = z. The conditional probabilities

P 	 } are represented by

Pu (E IY) = j hu(zly)dz

Sy(E)

where Sy (E) _ {z a IR
	

(Y,z) E 
E }.

Theorem 9: If `j'jZ is a family of Borel measures on	 n given by n-variate

normal density functions and T 	 n ► t k is linear of rank k, then

C(M is conditionally identifiable with respect to T.

Proof: It can readily be verified that conditional identifiability of C(M)

is not affected by the change of variables just described. If u  and P 
du T-1

are in CCM), then the Radon-Nikodym derivative .^-yl is represented by a

duJT

function of- the form

8I (Y)
0

J (Y)	 i I i$Pi (Y) I jCi 
Sjguj(Y).

I
F
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i.e., a ratio of mixtures of k-variate normal density functions, which

Is continuous. Hence, by the remarks in the first paragraph of this section,

.	 it suffices to show that the set {P 	̂ e'jn of conditional density

functions is =independent, where	 is the subring of j consisting of those

elements of j which have a continuous representative. To this end, let

P ,...,F	 be distinct and let Y i ,...,Yr be cont._;uous real valued
^1	^r

functions on A K such that for each E ca,

Y1 (y)PU ( El y) +...+ Yr(Y)p
P
 (E 1 Y) - 0

1	 r

for almost .-`1 y. In particular, choosing for E sets of the farm fKK 
X 

K,

where K i^ a borel set in n-k , we have

Yl (y) f h11 (zly)dz +...+ Yr (y) f h  (zl y)dz = 0
K 1	 K r

for almost all y. For each K, 1 h (zly)dz is a continuous function of
K pi

y. Hence,

K(Y 
I 
(y)h 11 (Zl y) +...+ Y r (y )hP (zlyl)dz = 0

for each y E rK k . It follows that

Yl(y)hu 
1 
( z ly) +...+ Yr (y ) hu (zlY) = 0

	

•	 r

for each y E 1[- k , z E (kn-k . Let F be the set of y C R where two or

more of the conditional & nstty functions h  (zly) are equal as functions
i
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of z. It is easily seen from (1) and (2) that the Lebesque measure of F is

zero. For y j F , (h (-1y),...,h { -1 y)) is d set of distinct normal
ui	 ^r

density functions _ of z. Hence, (Yakowitz and Spragins; 1968), they are

linearly independent over the real numbers. Therefore, for y t F

	Y1 (y) _ ... Yr(y) _ 0. That is, Y _	 = Y  = p as elements of .

Thus, C(f?'t} is conditionally identifiable.

If uI a i€I0i P i is in C(fitt), then PI
 has a density function

	

f
U I	1

= E 8. f
i6I 	 Ui

which is a mixture of normal density functions. The following theorem is an

immediate consequence of Theorems 7 and 9.

- heorem 14:	 Given the assumptions of Theorem 9, the statistic T is

sufficient for a pair {pl, Pi } in Qjtj) if and only if there exist partitions

I = I 1 u ... ulr and J = J1 u...uJr such that for each i = 1, ... ,r,

(a) E B f (x) /	 F. ^. f {x)
ieI Q i Pi	 j ci k	 uj

n
f W E	 f (x) for each x r f

	

ieI i ui	 j£J J 11 
(x)

and

(b) T is sufficient for the family (fIl
	

k e I  t!J Q } of normal
k

density functions.

There is set of purely algebraic conditions which are equivalent to (b);

1
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it T1 (T 0 T1)-1
k

1
	 are all independent of k c r^ uJR (peters, Redner, and Decell; 1976).
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