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PRE FACE 

This document on Automatic Vehicle Monitoring Systems presents the
 

results of work supported by the National Science Foundation. It was spon­

- sored under an-interagency agreement with the National Aeronautics and Space 

Administration through Contract NAS 7-100. Points of view and opinions 

stated in this document are those of the authors and do not necessarily repre­

sent the official postion of the sponsoring agency. 
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FOREWORD 

This report was prepared for distribution to public safety planners for 

the purpose of providing them with a compact source of information regarding 

improvements in efficiency and cost benefits obtainable with various classes 

of operational and proposed automatic vehicle monitoring (AVM) systems. An 

AVM system can contribute to emergency patrol effectiveness by reducing 

response times and by enhancing officer safety as well as by providing essential 

administrative control and public relations information. This complete report 

and the Executive Summary (Vol. 1) were prepared by the Jet Propulsion 

Laboratory of the California Institute of Technology using the results of studies 

sponsored by the National Science Foundation. 

Special computer programs are described which can simulate and 

synthesize AVM systems tailored to the needs of small, medium and large 

urban areas. These analyses can be applied by state and local law enforcement 

agencies and by emergency vehicle operators to help decide on what degree 

and type of automation will best suit their individual performance requirements 

and also the possible reduction in the number of vehicles needed which could 

substantially reduce operating expenses. 

G. R; Hansen 
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ABSTRACT
 

A set of planning guidelines is presented to help law enforcement 

agencies and vehicle fleet operators decide which automatic vehicle monitoring 

(AVvL) system could best meet their performance requirements. Improvements 

in emergency response times and resultant cost benefits obtainable with various 

operational and planned AVM systems may be synthesized and simulated by 

means of special computer programs for model city parameters applicable to 

small, medium and large urban areas. Design characteristics of various AVM 

systems and the implementation requirements are illustrated and costed for 

the vehicles, the fixed sites and the base equipments. Vehicle location accur­

acies for different RF links and polling intervals are analyzed. Actual appli­

cations and coverage data are tabulated for seven cities whose police depart­

ments actively cooperated in the JPL study. Volume 1 of this Report is the 

Executive Summary. Volume 2 contains the results of systems analyses. 

G. R. Hansen 
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AUTOMATIC VEHICLE MONITORING SYSTEMS 

George R. Hansen 

I. INTRODUCTION 

In this report, the results of the first phase of a three-phase program 

to aggregate existing information on Automatic Vehicle Monitoring (AVM) 

Systems are presented in terms of performance, urban characteristics, 

operating modes, and cost in a way that will assist prospective AVM User 

Agencies to make valid comparisons and selections from among the many com­

peting AVM techniques and AVM Systems. This phase (Phase 0) of the study 

was performed by the Jet Propulstion Laboratory (JPL) for the National Science 

Foundation (NSF). As originally conceived by NSF and JPL, the AVM Systems 

study program would include the following three phases, 

Phase 0 Problem Definition and Derivation of AVM System Selection 

Techniques (in this Report) 

Phase I Critical Research and Verification of the Efficacy of AVM 

System Selection Techniques Through Computerized System 

Simulation. 

Phase II Proof of Concept Experiment Demonstrating the Efficacy of 

Selected AVM Systems in Urban Environments. 

In brief, the Phase 0 research was concentrated in three areas: (1) 

Compilation of a broad information base on AVM technology and urban char­

acteristics, (2) adaptation of computerized analytical techniques needed in the 

AVM System selection process and in cost benefit trade-offs, and-(3) applica­

tion of AVM System selection process by manual iteration to small, medium 

and large model cities. 

Frequent reference is made in this Report to "AVM techniques" and 

"AVM Systems". The term "AVM technique" is used to denote the technology 

required to acquire a fix on a vehicle, while "AVM System" is used to denote 

the integration of all functional elements required to locate and keep track of 

vehicles in some automated fashion. 



II. SUMMARY OF AVM SYSTEMS STUDY RESULTS
 

A. WORK ACCOMPLISHED IN PHASE 0 

A broad range of information concerning automatic vehicle monitoring
 

(AVM) was compiled from the existing literature, including: (1) Various
 

vehicle location sensing techniques, (2) all functional elements of the total
 

- AVM system, and (3) various sized cities with representative geography, 

topology, demography and urbanology. The information obtained from the 

literature was supplemented by data obtained directly from police department 

representatives of seven Southern California cities that participated in the User 

Group Advisory Committee (UGAC). 

Several computerized analytical techniques were developed. City models 

representative of those characteristics that affect AVM selection were devel­

oped for use in the general cost benefit solutions. An analytical technique for 

predicting vehicle polling rates achievable for the various location sensing 

techniques in a full AVM system configuration was also developed. Algorithms 

were developed to estimate the accuracies achievable by a large variety of 

AVM systems using the probabalistic distributions for three independent var­

"iables: (i) vehicle speed, (Z) inherent accuracies of location "sensingtechniques, 

and (3) vehicle polling intervals. 

Preliminary analyses were performed to determine first-order cost 

estimates for AVM Systems as a function'of the various vehicle location sensing 

techniques when used in small, medium and large cities. Preliminary analyses 

of the accuracies achievable with various AVM systems were also performed. 

Various AVM system configuration options were developed, and promising 

options were examined for possible cost benefits to seven UGAC cities. 
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B. PRELIMINARY CONCLUSIONS 

1. AVM Class should indicate effects on urban environment. From the 

viewpoint of the prospective AVM system user, the traditional classifications 

of vehicle locating systems (i.e. , piloting, deadreckoning, triangulation, tri­

lateration, and proximity) do not necessarily reflect the impact of an AVM 

installation on the local urban scene. It is believed that the prospective user's 

needs would be better met if vehicle monitoring classifications were based on 

system element types and functions as follows: 

Class 0 	 Manual Monitoring. No AVM 

Class I 	 AVM. No modification to the urban environment. 
(existing RF links) 

Class II AVM. Autonomous signposts throughout urban area 

Class III AVM. Sparsely distributed special RF sites 

Class IV AVM. Monitored signposts throughout urban area 

2. AVM cost benefits obtainable by medium and large cities. The pre­

liminary cost analysis indicates that the cost benefit break-even point occurs 

for a medium sized city with an area of about 100 km Z (40 miZ ) and with roughly 

50 vehicles. In other words, cities larger in size could expect a positive and 

increasing benefit with size, up to a certain point. Conversely, cities below 

this medium size probably would not realize any cost benefit. This conclusion 

was based on 5-year estimates of AVM system costs and savings. 

3. No cost benefits derived from monitored signpost systems. None of 

the Class IV systems produced a cost benefit for the cities studied, generally 

because the rental rates on telephone lines raise the equipment costs 

exces sively. 

4. AVM System accuracies greater than technique accuracies. In 
S 

general, the 95% total system accuracy cam be expected to be significantly 

greater than the inherent accuracy of the location sensing technique. Usually 

the system accuracy is no less than three times the inherent technique accuracy. 



5. Vehicle polling intervals determine AVM system accuracies. It 

appears that the polling interval will dominate system accuracy and that the 

polling interval can only be shortened at the expense of RF resources dedicated­

to AVM purposes. Because of the present and predicted future demand on RF 

resources, this is one area that demands optimization. 

6. Critical research required for verification of selection technique. 

The results of the first phase of the AVM study effort should be used with 

caution and should not be construed as specific recommendations at this point. 

The second phase of the analytical work should be completed to verify the 

results of the first phase. 

C. PROGRAM RECOMMENDATIONS 

1. It is recommended that the second phase (Phase I) of the AVM Systems 

study proceed. 

Z. It is further recommended that mission agencies such as the Law 

Enforcement Assistance Administration (LEAA) and/or the Department of 

Transportation (DOT) sponsor the Proof of Concept Experiment, or third phase. 

The tests presently planned jointly by the city of Los Angeles and DOT could 

effectively serve this purpose. This could be accomplished by closely coordin­

ating the analytical techniques developed in this study with the Los Angeles 

Police Department, the Southern California Rapid Transit District, LEAA and 

DOT and making the analytical tools available to the city for use in the design 

of the experiment. 



Ill. CLASSES OF AVM SYSTEMS 

A. CLASSIFICATION RATIONALE
 

Traditionally, AVM systems have been classified in the literature 

according to the method used to locate the vehicle within an urban area, Recog­

nizing that all AVM systems have certain elements in common and that some 

systems have unique elements, an alternate classification scheme was devel­

oped for the purpose of this study. This classification not only implies the 

type of AVM system but also suggests the physical impact that the system 

elements and functions will have on the local urban environment. The following 

groupings of system elements suggested the classification scheme: 

Functional Elements Common to All AVM Systems 

(1) Existing communications system. 

(Z) Vehicle polling subsystem. 

(3) Landline data links. 

(4) Telemetry data/polling handler. 

(5) Telemetry link (common to most). 

(6) In-vehicle equipment, such as data processor, telemetry data 

encoder, polling processor, and signpost sensor 

(7) Vehicle location computer. 

(8.) Information display subsystem. 

Functional Elements Unique to Specific AVM Systems 

(9) Autonomous signposts; signpost sensor in vehicle (Class II). 

(10) Fixed synchronized RF transmitter sites (Class III). 

(11) Monitored signposts, vehicle sensor on signpost (Class IV). 

A discussion of each of these AVM functional elements follows: 

5 



1. Existing communications system. As a practical consideration, AVM 

systems will probably be integrated with the existing voice communication and 

vehicle polling RF links, especially for the telemnetered location data between 

the vehicle and the dispatch center. 

2. Vehicle polling subsystem. This interrogation device or procedure 

enables the vehicle location computer (VLC), described in Element 7, to know 

which vehicle corresponds to which set of location data. Polling may be either 

an operating procedure or an active element that allows the dispatcher to obtain 

locations of specific vehicles. 

3. Landline data link. This data link is a landline supplying data to the 

VLC (Element 7). It may either be relatively short, leading from the telemetry 

data/polling handler (Element 4) to the VLC, or it may be quite extensive, 

collecting data from monitored signposts throughout the covered urban area, 

or it may be somewhere in between these in its extent, bringing data from a 

relatively small number of fixed RF sites. 

4. Telemetry data/polling handler. This device is included because 

AVM systems deal with data that are different (e. g., digital) in character from 

that used by the dispatcher in voice communication with the vehicles. Further­

more, if the vehicle polling subsystem (Element 2) provides for selective 

polling, then there are likely to be corresponding additional requirements on 

the communication system. 

5. Telemetry link. Since it is tacitly assumed that the AVM system will 

not restrict the mobility of the fleet vehicles, some kind of communication-at­

a-distance is essential. In some systems, the telemetry link is assumed to 

share or be in addition to the RF link now used for voice communications. In 

other systems the telemetry path might be between the vehicles and sparsely 

distributed synchronized RF sites. In still other AVM systems, the telemetry 

path may be relatively short, being only from the vehicles to signposts distrib­

uted throughout the urban area. In that case, the transmission medium could 

conceivably be sonic, optical, or even magnetic, instead of radio. 

6 



6. In-vehicle equipment. Depending on the AVM system, some or all 

of the four following devices may be carried In the vehicle. 

a. Vehicle data processor. This device receives raw vehicle 

location data either from the officer or from signpost sensors. It does what­

ever data processing is done on-board, then adds the vehicle identification 

data, and passes this information along to the telemetry data encoder, described 

next. 

b. Vehicle telemetry data encoder. This' device puts the vehicle 

location data supplied by the vehicle data processor into the telemetry link 

(Element ). 

c. Vehicle polling processor. This device enables the vehicle to 

respond properly when polled, and may range in complexity from a clock to 

an RF signal decoder. 

d. Signpost sensor. Where the densely distributed autonomous 

signpost concept is used (Class II), the signpost sensor must be carried in the 

vehicle. This sensor is required to read the signpost ID/location. Location 

data may be acquired by coded optical, infrared, sonic, or magnetic means 

besides radio. 

7. Vehicle location computer (VLC). This device transforms the vehicle 

location data into location points or coordinates for use by the information dis­

play subsystem (Element 8). It also informs the display subsystem as to the 

identity of the vehicle to which the location data belongs. The VLC may also 

interface with the Computer-Aided Dispatch System. 

8. Information display subsystem. This device indicates to the 

dispatcher where the vehicles are currently located (or were when last polled). 

It may also identify the vehicle's status. As in the case of manual aids used 

for vehicle location in Class 0, the possible range of complexity and sophisti­

cation may range from a simple printer to an elaborate electro-optical device 

supported by a computer. It should be noted that the display subsystem is vir­

tually independent of the location technique used. 

7
 



9. Autonomous signposts used in Class II AVM. Each autonomous 

wayside or buried signpost has a location ID and must be recognizable and 

readable by the signpost sensor in the vehicle. The signpost telemetry link to 

the vehicle may be by radio, pulsed light, infrared, sonic, or magnetic means. 

10. Fixed synchronized RF transmitter sites used in Class III AVM. 

These RF sites are a relatively small number of special-purpose transmitters 

which broadcast synchronized signals that can be used to determine the loca­

tions of receivers on vehicles by means of navigation techniques. The char­

acteristics of these signals could be FM phase, pulse, or noise correlation. 

Some of these sites may also receive retransmitted signals from the monitored 

vehicles. 

11. Monitored signposts used in Class IV AVM. Each monitored wayside 

or buried signpost requires a vehicle sensor that will transmit the vehicle's 

ID data received and also identify its own location to the central collection 

station. These signposts may sense vehicle motion, or they may detect pulsed 

light, infrared, or ultrasonic signals or receive RF signals through buried 

antennas. 

B. AVM CLASS DESCRIPTIONS 

The vehicle location system classes, based on their physical impact on 

the urban environment, are shown in the following list and are described in 

greater detail in subsequent paragraphs and accompanying figures. For ref­

erence, the traditional vehicle location classifications are noted as indentures. 

(1) 	 Class 0 Manual Monitoring. No AVM 

(a) 	 Piloting 

(Z) 	 Class I AVM. No Modification to Urban Environment (Existing 

RF Links) 

(a) 	 Officer Update 

(b) 	 Dead Reckoning 

(c) Navigation (Using Existing RF Beacons) 

(3) Class II AVM. Autonomous Signposts Throughout Urban Area 
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(4) Class III AVM. Sparsely Distributed Special RIF Sites 

(a) Triangulation 

(b) Trilateration 

(5) Class IV AVM. Monitored Signposts Throughout Urban Area 

(a) Vehicle Proximity 

I. Class 0 Manual Monitoring; No AVM. This baseline (piloting) class is 

included in the listing of vehicle location techniques purely for comparative 

purposes. In Class 0, the location monitoring methods (Figure 1) range from 

those relying solely on the dispatcher's memory, through manually updated 

mechanical and visual aids, to keyboard-updated computer displays which 

keep current each vehicle's location and status based on verbal or digital 

communications between dispatcher and vehicle. 

2. Class I AVM with no modifications to urban environment. All AVM 

systems require the installation of certain equipment in the command center 

to accomplish the automation of vehicle monitoring. All AVM systems also 

require the installation of some device in or on the monitored vehicles. But 

systems in Class I require nothing further, though they perforce utilize RF 

resources.
 

DISPLAY 
MANUAL AIDS 

DISPATCHER 

EXISTING 
COMMUNICATION EXISTING 

SYSTEM NAVIGATION 
OR COMMERCIAL." 

AM RADIO STATION AM 
STATION 

/./ URBAN ENVIRONMENTFLTVECE 

Figure 1. Class 0 Manual Monoring, No AVM 
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A typical Class I AYM configuration is shown in Figure 2. Each AVM command 

center must contain a display subsystem, a vehicle location computer, a 

vehicle polling subsystem, and a telemetry data/polling handler, which are 

described in Section IV. Each vehicle requirei location sensors, a data pro­

cessor, a telemetry data encoder, and a polling processor. Class I AVM 

systems are based upon a variety of location techniques and algorithms which 

include the following: (a) Officer update techniques, in which the functions of 

the vehicle's sensors and its data processor are performed by an occupant of 

the vehicle. (b) Deadreckoning systems are included if the requisite updating 

does not require the installation of fixed location reference equipment in the 

environment. (c) If the AVM systems use existing navigation beacons or 

AM broadcasting stations, they are also included 3n Class I because the 

required stations are assumed to be part of the urban environment. 

3. Class 11 AVM with autonomous signposts throughout urban areas. 

The defining characteristic of Class U AVM systems is the installation of 

autonomous signposts in strategic wayside or buried locations at intersections 

throughout the covered urban area. These location reference sites are auto­

nomous in that they communicate their identity only to the vehicles and not to 

the command center. 
DISP'LAY 

DISPATCHER 

COUNICATIONTIN 

DATANGOEXISTINGAAM 
LXINGAALN 

TEEMTR DATANAVILEGEUITMNTN 

Figure 2. Class I AVM; No M~odifications to Urban Physical Environment 
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The location information provided by the signposts to the vehicle may be either 
an identification code or the geographic coordinates of the location. Since the vehi­
cle location accuracy provided by systems in Class II is dependent upon signpost 

spacing, greater accuracy can be achieved in critical areas by locally increa­

sing the signpost density to one per intersection or per lane. A typical Class 
H system configuration is sh6wn in Figure 3. Signpost systems can be "pure", 
in that all location information is deri;red from the fact that a mniomtored vehicle 

is (or was) near a signpost; or they can be "hybridized", with the fact of sign­
post proximity used either to augment, calibrate, or reinitialize the determin­
ation of vehicle locations obtained by other means, such as odometers. If a 
hybrid system does not require a data link in the environment, it is placed in 

Class II. If the hybrid system requires a data link from the signposts but no 

special-purpose fixed RF sites, it belongs in Class IV. If it has both a data 
link in the field and special-purpose fixed sites, it is in Class III. 

4. Class III AVM with sparsely distributed special RF sites. This AVM 
class includes those systems that require the installation of a relatively small 
number of special purpose fixed IF sites, where a "fixed site" either broad­
casts or receives over a relatively large urban area with a radius of 5 to II km 

(3 to 7 miles). 
DISPLAY
 

SYTE ELMTR LPATOLLIGSNING AU 0" 
DISATA OMUE 

COMMUNICATION 
LIN SI1GNPOOST 

SYTMTELEMETRY SNSOR 

LINKL 

LINK BURED BURIED
 

URBAN ENVIRONMENT FLEE'T VEHICLE EQUIPMENT 

Figure 3. Class II AVM, Autonomous Signposts Throughout Urban Area 
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Data links in the environment are required to maintain synchronization for 

triangulation or trilateration purposes. Since the number of fixed sites is 

relatively small, these data synchronization links could be microwave rather 

than landline. Figure A shows a typical Class III configuration. It is optional 

only in Class II systems whether the telemetry link from the vehicle be along 

the existing communication system or through the-special-purpose RF sites. 

In either case, RF resources are utilized for that link. 

5. Class IV AVIV with monitored signposts throughout urban area. 

Systems in this class contain monitored signposts installed in strategic wayside 

or buried locations throughout the covered urban area for the purpose of 

sensing the proximity and identity of signals transmitted from vehicles. A 

Class IV data link does not share the use of RF resources with the existing 

communication system but uses telephone lines, which may make this class of 

AVM systems very attractive for some applications. A typical Class IV 

system configuration is shown in Figure 5. 

~VEHICLE 
DiSPATCLAR 

C I CATRLOCATION 

POLLING SYNCHRONIZER 

DATA LINES 

SYSTEM TELEMETRY DATA/
COMUATIO 

LINK 

AVVM
 

URBAN ENVIRONMENT SITE FLEET VEHICLE EQUIPMENT____/ 

Figure 4. Class Ill AVM; Sparsely Distributed Special RF Sites 

i2
 



DISPATCHER DMPLAYSUBSYSTEM
 

~VEHICLE
 
COMPUTER TELEMETRY 

DATA/OLLINO
 
POLLNG HA NDLERSUBSYSTEM 
 DAT
 

L 

. EXISTIN G MONITORED ! 

COMMUNICATION DATA SENSORS 
i SYSTEM LINK (THROUGHOUT 'CITY) 

1
TA:TELEMETRY 

A..
LOLINK 

UBNENVIRONMENT FLEET VEHICLE EQUIPMENT 

Figure 5. Class IV AVM, Monitored Signposts Throughout Urban Area 

13
 



IV. VEHICLE LOCATION TECHNOLOGIES AND COSTS 

A. PROVED AVM TECHNIQUES 

This section contains a narrative description and a compilation of the 

cost and performance parameters of operational or proved techniques used 

for automatic vehicle monitoring (AVM). Schemes primarily intended for 

vehicle identification, such as those used in rail freight or extensions of 

point-of-sale methods are not included. In this report, the vehicle monitor­

ing techniques are categorized into five broad classes, based on system ele­

ment types and functions: Class 0, Manual Monitoring, no augmentation of 

location information; Class I AVM, no additions to the urban environment; 

Class II AVM, densely distributed autonomous signposts; Class III AVM, 

sparsely distributed special transmitting/receiving fixed RF sites; and Class 

IV AVM, densely distributed monitored signposts. In Table 1, the proved 

vehicle location methods are listed by AVM Class along with estimated costs 

(as of 1974) for unique system-required equipments installed in each vehicle 

and at each signpost or special fixed site. 

1. Functional diagram correlating various AVM techniques. In order 

to make equipment and cost comparisons, a functional block diagram combining 

the elements that make up all of the AVM techniques was generated. This block 

diagram (Figure 6) demonstrates the equipment and functional commonality 

among the various techniques. In most techniques, the functional elements can 

also be physically identical, such as the location/vehicle ID/status register. 

Variations in costing such elements are due to other factors, such as achiev­

able location precision, fleet size, and amount of status telemetry desired 

which all affect register length but are technique independent. 

Figure 6 illustrates the numerous optional methods available for 

performing the vehicle location function which make AVM system comparisons 

difficult. For example, the various Class I techniques can either process the 

location data on the vehicle or transmit the raw data to the base station. In 

the Class III techniques, the vehicles may be polled either through the normal 

2-way radio or through a special telemetry link used for vehicle location 

purposes.
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Table 1. AVM Classes, Systems and Costs of Functional Elements Installed 

Element Costs, $ 1Element Costs, $ 
AVM Class and System. leen st e AVM Class and System Ele Fixed S 

VhceI Fixed Site Vehicle 	 Fixed Site 

Class 0. 	 Manual Monitoring No Augmentation of Class UI Autonomous Signposts Throughout

Vehicle Location Information Urban Area
 

Class I. 	 No Modifications to Urban Environment (1) Active signposts - ­
(Existing RF Links) (a) Radio beacons 
 -

(I) Officer update systems - -	 Low frequency 145 165 

(a) 	 Keyboard entry Z0 Citien band, VHF 145 145 
X-band beacon 160 275(b) Stylus map 	 2535 0 (b) Ultrasonic signposts 170 160 

(Z) Dead reckoning systems - - (c) Optical, infrared 170 155 

(a) Two accelerometers 500 0 (d) Buried antennas 135 120 
(2) Passive signposts - ­

(b) Two velocimeters - - (a) Buried Magnets 95 110 

Laser, orthogonal 715 0- (b) Reflective patterns - ­

Laser/compass 805 0 Coded on signposts 580 85 

Coded 	on roadway 135 IZ5
Ultrasonic 485 0 (c) Buried resonant loops 135 95 

(c) Odometer/compass -	 Class Im.- Sparsely Distributed Special RF Sites 

Magnetic compass 285 0 (1) Tralateration systems -

Gyro compass - 0 (a) Phase TOA ­ -
Narrow-band 100 5,000(3) 	 Navigation, existing beacons - -N 

Wide-band Z,965 11,000(a) OMEGA systems - - (b) Pulse TOA 1,435 14,500 

Differential 1580 0 (c) Interferometer, noise 885 9,000 
Relay OM EGA 455 0 (2) Triangulation systems ­

(a) Rotating beams (HONORE) -
(b) 	 LORAN (A, C, or D) - - (b) Direction finding 50 Z7, 500 

Differential 2680 0 Class IV 	 Monitored Signposts Throughout
Urban Area 

Relay LORAN 505 0 	 Urban Area 

(c) DECCA System 1010 0 (1) Radio receivers 
(a) Wayside 	 135 260

(d) AM Broadcast stations 365 0 (b) Buried antennas 145 265 

(2) Ultrasonic receptors 185 280 
(3) Optcal, infrared detectors 185 270 

15
 



CLASS I ENVIRONMENT - NO MODIFICATIONS EXISTING BEACONSI 

CLASS III OFF , LAE ,MGETCTREER oGE 
CLASS I PAE VELOCIMETERS COMPASS- COPASSN- RBEVRRECAEST 

EOITR
SPECIAL 
FIXED SITES, 
SPARSELOFIE ACCELERO- TJLTRASONC PAET MEADEC 

ME VELOCE&TEEDISTRIBUTED UA 

CMUEHONO RE 
MODULATION T UNIOI 

(TI ~i' U LAIOCLALA S I V E I L DEADo CLA I, 

VEHICLECKOIN ,o [ xE VEHICLE,-
HAONOPE LOCATION A ND 

SYSTEM STMSGATEETR 
TRANSAMTTERS) 

(TRIANGVLATIOIOD 

VEHCLE [DENTIN MODULATOR 
MODULATIONCO IE REISTER 

PULSE 

TRILATERATIONAM 
RECEIVIERS RNMTE O I 

TEILATERATION NOISE 

SIGNAL 

PRCSSRBASE 

POLLIN /OICE IICLASS 
VEHICLE 

1, 11, 111 VEHICLE 

MICROWAVE LA 

RLY(S) 2-WAYEHDIO POLLING
TIMER 

POLLINGLOGIC PODEOLLTOG 

EASE 
STATION 
RADIOIII 

MNEQUIPMN 

POLLING, UNIQUE EQUIPMENTS 

MEICRWVE MODEM MESSAGE BASE STATION EQUIPMENTS 

LANDLINE9 

16
 



SURN.D 

LOOPS 

CLASS II AUTONOMOUS 
REFCTIT1 LECTIvR 

REFLOCTIVEREFLECTIVE X-.RA}D 
SIGNS I.ROADpATTERNS 

SIGNPOSTS THROUGHT URBAN AREA 
0IEE 

CLTIZEN8AiD VISIBLE BURIED ULTRASONIC 
SIGN POSTS I SIGPOSTSSIGNS S 

T Po 
TR.'LIC 
LOOPSENSORS 

BURIEDLOOP 

TRANSMITTER 
RECEIVER 

REFLECTIVE RECIVE 

SIGNS ROADPATTERN X-BAND CITIZENRAND 
TRAnMMTTER RECEVER RECEIVER-RECEIVER -RECEIr 

CLASS II VEHICLE, UNIQUE EQUIPMENTS 

MAGNETIC ULTRASONIC 
DETECTOR RECEIVER 

FOR VARIOUS SYSTEMS 

LOOPCURRENT 
RECEIVER 

CLASS IV 
VEHICLE 

VEHIlCLE 

R 

UNIQUE EQUIPMENTS 

TRofI
2 AOIt 

WASIER 
ASITE 

V,,PHOT- ULTRAONC 
A dO 

PRESENCE 

LOOPS 

RADIO 

RECEIVER 

DETECTOR 

SIGNPOST 

SIGNP OST 

RECEIVER 

CLASS IV 

MONITORED SIGNPOSTS 
THROUGHT URBAN AREA 

SIGNPOST 

9ERI 

I. LAND LINES 

Figure 6. AVM Systems Showing
 
Common and Unique Equipments
 

for Vehicles, Signposts, and
 
Base Stations
 

17 



Class I, I, and III techniques may use any of the various vehicle polling 

techniques. Polling does not apply to the Class IV monitored signposts. The 

consideration of which polling method is to be used may depend heavily on 

whether or not equipments requiring digatial communication have already been 

installed. 

Z. Technical and cost parameters. Virtually every technical perfor­

mance and cost estimate parameter of a particular vehicle location technique 

is system-dependent. The AVM system accuracy, the numbers of fixed sites, 

the message lengths, the data rates, the base station computing, the informa­

tion displays, software, and RF channel requirements are all functions of the 

particular application. Some functional elements and performance factors can 

be determined to a limited extent, such as the cost and coverage radius of the 

various signposts, RF beacons and traffic presence sensors in Classes II, III, 

and IV; and also the cost and minimum message requirements of the vehicle 

sensors and data processors in Class I. 

In order that cost estimates could be made for the various AVM tech­

niques, extremely simplified block diagrams of the unique functional elements 

associated primarily with the vehicle location process were developed. That 

is, only the vehicle sensor and AVM fixed sites associated with the particular 

technique were considered. These cost figures accompany each of the descrip­

tions and considerations of the method in the following section. 

B. AVM COST CONSIDERATIONS 

In addition to the costs associated with the vehicular and fixed site 

functional elements required for the basic location process, there are the 

costs of yearly maintenance and vehicular radio additions or modifications for 

transmitting and receiving AVM signals. Estimates of the vehicular costs 

(as of 1974) for each class of AVM are presented in Table Z. In this table, 

the radio cost and the radio modification columns represent optional choices. 

That is, the radio modification cost is not applicable where a separate radio 

for AVM signals is selected. 

The costs for fixed sites equipment, installation, operational mainten­

ance, data link, and mileage charges per mile per month are summarized in 

Table 3 for Classes II, III, and IV. 
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Table Z. Vehicle Equipment Costs* for All AVM Classes and Systems 

''EHCOST 
'L C'OSTS PEP ''EHICLE Ill 1. 

TECHNIOUE 
CLASS I 
-EBOPD 
STYLUS HAP 
2-ACCELEPOr1ETEPS 
LASEP I iELCI IHTP 
ULTASFICLII i 'ELO 
COMPASS ODOMETEP 
COMPASS LASER ''EL 
CHPSS U-SOHIC 'EL 
OIiEGA 
LORAN 
DECCA 
RH-STATIO S 
DIFF. O11E'GA 
DIFF. LORAN 
DIFF. AMi-STA, 
PELY OMEGA 
RELAY LORAN 
CLASS II 
BURIED RES. LOOPS 
REFLECTING SIGNS 
REFLECTING ROAD 
::-BAND POST 
HF, iIHF POST 
LF POST 
LIGHT I-P POST 
BURIE' MAGNETS 
ULTPASOHIC POST 
TRAFFIC SENSOR 
CLASS III 
rAP-BAHD F1 PHASE 
WID-BAHI FM1 PHASE 
PULSE T-O-APP I'AL 
NOISE COPELATION 
DIRECTION FINDER 
CLASS I' 
TRAFFIC LOOPS 
WAYSIDE RADIO 
PHOTO I-P DETECT 
ULTRASONIC DETECT 

SENSOR 

.0"5 
2.-65 
400 
L-o 

270 
269 
655 
-"9 

2500 
&'.uu 

,30 
2300 
-­600 
315 
-,5 

.-

90 
430 

-5 
120 
105 
100 
95 
50 
'" 

95 

60 
379 
2975 
re.5 

35 

,0,-
75 
115 
125 

FPOC.,-I, 

35 
1000 
1000 

-'--
1o 
1000 
loo 

0 
0 
0 
0 
0 

0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 
A 
U 

0 
0 
0 

RADIO 

1200 
1200 
1200 
1200 
1200 
1200-
1200 
1200 
1200 
lbJO 
1200 

o-00 
1200 
1200 
1200 
1200 
1200 

1200 
1200 
1200 
1200 
1200 
1200 
1200 
1200 

.12010 
1200 

1200 
0 
0 
0 
0 

0 
0 
0 
0 

AB. HOD 

50 
50 

200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200 
200,' 
10 
150 
150 

505 
50 
i-.0 
50 
50 
50 
5,0 
50 
50 
90 

165 
30 

0 
A 
0 

0 
0 
0 
0 

11ST 

35 
3f. 

lciL 
135 
100 
20 

150 
100 
00 
-

60 
so 
s0 
.su 
50 
u 
,3-

133 

45 

-1, 
, .5 
4--' 

40 
190 

150 
100 

15 

65 
-o 

"0 
65 

IS 
2, 

100 
150 
150 

Q 
VC 
75 
-5 

-15 
60 

-5 
-
l"­

1D0 

20 
15 
10 
10 
i 5 
2 

25 
5 

25 
_25 
0 

1 
10 
15 
15 

* Costs as of 1974. 
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Table 3. Fixed Site Costs* for Class II,III, and IV AVIV Systems 

FI: :':OST 
AiIIL COST PEP SITE iOP UHITi IH 'S, 

:IRTA LIHE 
TECHHICUE EQIUIP INST O-i LIt PET 

CL ASS I 
SE','BOAPD uj c0 ci 0 
BT'LUS lAP 0 0 0 0 0 
2-ACCELEPOilETEPS 0 U 0 0 0 
LASER ''ELOC IITP 0 0 0 0 0 
ULTR-,OHIC IHELO cL u 0L 0 0 
iUPAS, ODOHETEP 0 U 0 U 0 
tlOHPASS LfV:.EP 
CiPS' u-SOic 

'E 
''EL 

0 
0 0 

-­j 
0 

0 
13 

0 
0 

ONE,FA -1 0 0l 0 0 
LOPA 0 J J U 
DECCA 0 J C' L0 

.I I--. TIIHS 0 0 -1 L 
DIFF OrlEGA 0 Cl 0 
DIFF. LORAH 
--TrF I- T.-ThIEF. Arl-5TFA. 0 a -i LI 

LcI a 
RELAY OitIGAH 0 3 u 
RELAY LOR CH-I L U L­

-,IJPIED ES LOOPS 17 Li 
REFLECTIG SIGHS --55 
PEFLECTING ROAD - 25 J 
:',--,rf Pr-,T 45 15 
HF- ''HF POST ,c- 15 Ci_ 0 
LF POST 12-_ 15 0i LI 
LIGHT i-P POST 100 25 0l 
3,JPIED iHACHETS 2 0 0
ULT'ASOIIC POST ,S 45 10 0 0 
TRAFFIC ,EHSflP 95 40 0 0L U 

CLASS III 
HAP-.BANM Fril PHASE 4500 500 500 25 5 
H.ID-BHAD Fi PHASE '9500 1500 500 2070 0 
PULSE T--APPI''IIAL 12000 2500 5FFl 2000 u 
HOISE COPELATION 7500 1500 500 2000 0 

FINDER ,IECTIO 1500 1200 25 526000 
CLAS. II 
TRAFFIC LfOPS 165 113 10 13 1-
HA''SIDE RADIO 160 113 25 13 4 
PHOTO I-P DETECT 170 113 25 13 
ULTRASOHIC DETECT 16IS0 113 25 13 4 

* Costs as of 1974. 
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Additional costs associated with each AVM technique when configured as 

a system are the base station costs and the vehicle polling system costs, given 

in Table 4. The base station is assumed to include the vehicle location compu­

ter, the peripherals, the dispatcher displays, software, and yearly operational 

maintenance. 

I. Vehicle cost parameters. Vehicle costing for an AVM system is a 

straightforward multiplicative process of determining the total cost to equip 

all vehicles in the fleet with the appropriate AVM sensor, data processor, 

vehicle polling equipment, and radio modification; motorcycles are not consid­

ered. If a separate radio link is deemed necessary for AVM purposes, then 

this additional cost must be added. 

If the vehicle fleet has already been equipped with digital message entry 

devices (DiMED), keyboards, hard-copy printers, gas -plasma or cathode-ray 

displays, then some of the functional elements required for an AVM system 

have been established. Prior installation of digital message equipment was 

not considered in the costing of vehicular equipment. 

2. Fixed site costs. Site costs unique to AVIM systems are considered 

only in Classes II, III and IV. In determining the system costs, the number 

of installed units must first be determined. The design algorithms for fixed 

sites are dependent on the density distributions of intersections, road segments, 

and lanes, and on the area to be covered. 

Most of the Class II AVM techniques that rely on radio ID signals are 

configured and costed on the basis of one autonomous signpost per intersection. 

The exception is the HF signpost which is configured on the basis of one unit for 

each four intersections because of the greater coverage radius. The reflective 

pattern signs techniques require two installations for each road segment because 

of the geometry constraints between vehicle and sign, whereas the traffic 

presence sensors require one installation for each road segment because of 

the nature of the normal installation. Buried loops and magnets- require an 

installation per lane in each road segment. In addition, each installation is 

actually a multiple installation; i. e. , there must be sufficient loops or magnets 

to provide adequate coding for each road segment. The cost estimates for 

fixed sites were based on an average of 2.4 lanes for each road segment, i.e., 

about 1 four-lane road for each 6 two-lane roads. 
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Table 4. Base Station Costs for All AVM Classes and Systems 

BASECOST 
fl 'L -- COSTS THOUSRHIS 	 OF S3-E STFITIOH t 

CO[I'UTEP SOFTORPE 
TECHHiOIE SOlL [IED LGE IHST ,-i DISP SML iIED LGE 

:-L H , !I 

30 4o G 10 100 10 20 30 
5,TJ tijIF' ,i0 ii 10 100 310 20 30HAP 

LFT_,EF I 'ELOCRIITP 	 U0 . 10 100 3 25 35 50 
50ULTRSOIC ''ELO - b. 80 10 100 3 25 35 

COPASS ODOETER -0 60 30 10 100 3 25 35 50 
CIOMPASS rLASER 'EL 1-0 G0 :30 10 100 3 25 35 50 
CPSS U-S,: Id 'EL 40 60 3 10 100 25 35 40 
L.EA 	 30 30 -0 10 100 3 20 30 4U 

,-
,_1F..T.IT-OH 3QIEL 9Ci ,0 10 100 3. 20 
LCcFH LL 6f -J 10 100 , 20 30 40 

,, 30 Y1 TQ 10 100 3 20 30 40 

-F, I 	 - 0 710n 1 10 100 ., . A 

L3FF-iO_,3 "0 10 100 3 30_ 40 

F0 5- 70 !O 100 c, 4 
PELfiF OiIEGF _5 0 100 20 -030 U I0 3 30 
PELFr LOPIIH 30 50 -0 10 100 3 ,0 30 0 
FLFC-,_-- II-
-iljP ES. LO,40 	 60 10 ian 3 10 20 

PEFLECTING --HS 0 40 1 I 10 20 30 

PELITI D iTh bU0i 1 100 : 0culU 
-,PH POT4 	 .,FI 10 10 3 10 20 

IF IIFPOSTFi 43 6 0 I00 10 C" DO 
LI rIST 3 0 60 10 100 3 i0 ,20 30 
LII,,T I-, POST 0 c 6 iI100 -3 10 20 30 
FIE-1 4FuIETS 30 _0 60 10 100 10_ 2, LU 

JLTP'SOHIC PO_,- 30 40 _ 10 100 3 10 no 30 
TRAFFIC cJ-SOR 30 40 I 10 100 3 10 20 30 

HUP3-sai Ri1 PHASE 33 80 13T. : 100 -3 20 4-1 60. 
L-I-BA 1!Fri PH7SE 40 20 20 10 200 3 25 50 10 
PULSE T-O-APPI''AL 100 250 290 io irs5 3 35 79 1o@ 

HOT E CORRELATION 100 250 250 1 ir7 3 35 0 100 
DIPECTIOH FINDER 15 30 0 10 150 3 15 30 60 
CLASS III 
TRAFFIC LOOPS 30 .0 60 10 10I 3 10 20 30 

?F PSi -07I,,'IE 60 10 	 10 3 1- 20 .30 
175 ir0PHOTO I-P DETECT 30 40 650 10 3 10 20 

ULTFASOIIC DETECT 30 40 60 10 100 3 10 20 20 

'tosts as of 1974. 
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The number of loops at each lane segment was that sufficient to provide a 

unique base-Z code for each road segment. The number of magnets used is 

half this value since spaces can be used to provide approximately half the 

coding bits (magnet for "one", space for "zero"). 

Since the Class Ill synchronized RF sites are more sparsely distributed, 

their numbers are estimated on the basis of urban area for the selected phase 

and pulse time-of-arrival techniques. The radius of coverage for narrow-band 

and pulse systems, based on prior tests and experiments, is set at 5 km 

(3 miles). In addition, the requirement that, wherever possible, four or more 

antennas should cover the given area is imposed. This procedure provides 

data for least-squares computation as opposed to the analytic " flat earth" solu­

tion of vehicle location. The wide -band antenna coverage radius is set at 11 km 

(7 miles), based on prior tests. Design algorithms were established from the 

rectangular model cities data as follows: z 
= 6 + area in

Number of narrow-band and pulse sites 
10 

km Z 
area in 

Number of wide-band sites = 4 + 40 

The number of fixed sites in the southern California UGAC cities was 

determined from geometrical gridlined overlays superposed on outline maps 

of the cities. The outline and site locations for-the cities are depicted in figures 

that accompany Part Z of this Report. A minimum number of fixed sites for 

noise correlation and direction finding was established, recognizing that this 

number is probably insufficient for all but the smallest cities. 

Class IV monitored signposts were configured and costed on the same 

basis as the equivalent Class II devices. Telephone line rental is, however, 

included in the site costs where applicable as the line should be considered an 

equipment cost as opposed to an operation cost. 

3. Base station costs. Base station equipment costs were estimated on 

the basis of both urban area coverage and fleet size. The station's computer 

costs were estimated on the basis of area, and the software costs were based 

on fleet size. This separation of cost elements is only partially defensible. It 

is assumed that a minicomputer is usually used to support the AVM function 

with varying amounts of bulk storage (disc) to accommodate the city map for 

output display. 
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Exceptions are in the Class III time-of-arrival (TOA) methods, where 

larger machines are assumed. The pulse and noise-correlation techniques also 

require a larger computer with more speed and versatility than can be provided 

by a minicomputer because of the inherent capability of servicing many more 

vehicles per unit time and the need to accommodate a large number of inputs in 
real time. The software estimate based on fleet size is also difficult to justify 

totally. Much reliance was placed on prior work estimates and on the judge­

ments of systems analysts. 
I Three estimates each of base station computer and software costs were 

made based on model city parameters for small, medium and large cities. 

For the UGAC cities, the costs were determined based on the urban areas and 

the total fleet size, excluding motorcycles, using linear interpolation. 

Display equipment costs are included in the base station costs on the basis 

of the actual number of dispatchers in the case of UGAC cities. For the model 

cities, the costs are estimated on the basis of 1 display console for each 50 

vehicles or less. 

4. Installation costs. Equipment installation costs were obtained by 

multiplying the cost per unit vehicle and the cost per fixed site installation by 

the appropriate number of units. Toegether with the base station installation 

cost, they make up the tabulated total cost. A constant cost value is assumed 

for the base station, which is a rounded average value of prior estimates made 

in conjunction with AVM deomonstration tests. 

5. Operation and maintenance costs. The estimates of 0 - v[ costs for 

equipment installed in vehicles, at fixed sites, and the base station are based 

on experience values for both mobile and fixed equipments. In the base station, 

the principal cost element is for operation and maintenance personnel. Three 

persons (one per shift) were assumed in all AVM techniques to provide software 

support or equipment service. Although this assumption may not be justifiable, 

it was believed that AVM is a comparitively new technology which will probably 

interface with computer-aided dispatching and digital message systems and that 

additional service personnel would be required for a substantial time period 

after the initial installation. 
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V. VEHICLE POLLING AND LOCATION PERFORMANCE 

Four classes of vehicle polling are considered for AVM Systems: 

(1) Synchronous, (2) Commanded or random access, (3) Synchronous with 

Command capability, and (4) Volunteer or contention. All four techniques are 

generally applicable to Class I and II AVM Systems.- Synchronous polling and 

synchronous with command are used mainly in Class III Systems. For the Class 

IV monitored signpost systems, which use land lines, polling by radio is not 

applicable in the context used in this description. 

All polling techniques are suitable for half-duplex (base station and vehicle 

on the same frequency), but when the base station relays all vehicle transmissions 

or when each vehicle monitors all other vehicles, then the Volunteer technique 

can only be used on full-duplex (base and vehicle on different frequencies). 

1. Synchronous polling. In this technique, each vehicle transmits location 

data at a preselected time within the fleet polling sequence. Equipment on the 

vehicle keeps track of the start of the sequence and internally determines when 

its time to respond occurs. The cost of the vehicle polling equipment installed 

(as of 1974) is about *Z70. 

Z. Synchronous with command capability. This polling technique allows the 

base station to modify the position of each vehicle in the polling sequence. The 

cost of the vehicle equipment installed is about f365. 

3. Commanded or random access polling. In this technique, the base station 

sends a request to each vehicle whenever location data is required. This tech­

nique is the most flexible but requires more use of available RF time. 

4. Volunteer polling. This contention method requires that each vehicle 

determine whether the channel is "clear" before transmitting. The cost of 

vehicle equipment installed is about $170, 

These vehicle polling techniques were evaluated with both a simple one-time 

radio message transmission and with redundant transmissions where every 

message is sent twice. The digital message rate is set at 1500 bps. Where 

equivalent RF channels are assumed, a channel spacing of 25 kHz is used. 

Message lengths are about 20 bits, or occupy about 15 millisec transmission 

time. Delays due to equipment turn-on times reduce the achievable polling rate. 
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PART ONE. AVM COST BENEFIT INFORMATION BASE 

I. 	 PERFORMANCE AND COSTS OF 
PROVED AVM TECHNIQUES 

Costs and performance parameters of 36 
operational or proved techniques used for auto-
matic vehicle monitoring (AVM) are described 
and illustrated in this section. Schemes that are 
primarily intended for vehicle identification, such 
as those used in rail freight or extensions of 
point-of-sale methods are not included. In this 
Report, the vehicle monitoring techniques are 
categorized into five broad classes, based on 
system element types and functions: Class 0 
Manual Monitoring, with no augmentation of loca-
tion information; Class I AVM, with no additions 
to the urban environment, Class II AVM, using 
densely distributed autonomous signposts, Class 
III AVM, using sparsely distributed special 
transmitting/receiving fixed RF sites, and 
Class IV AVM, using densely distributed mon-
itored signposts. Estimated special equipment 
and installation costs are as of 1974. 

A. 	 Class 0 Manual Monitoring. No AVM 

This is the baseline vehicle location technique 
against which other systems should be compared. 
A manual monitoring system consists of a dis-
patcher, an existing real-time communication 
system, and a fleet of vehicles. The dispatcher's 
knowledge of vehicle locations depends upon voice 
communications with the officers in the vehicles, 
Even in the manual vehicle monitoring class, there 
are several options that affect both performance 
and costs. The dispatcher can, for example, rely 
strictly upon his knowledge of each vehicle's 
designated location or patrol area and its subse-
quent assignments. Alternatively, he can use 
some of his RF resources (channels and air time) 
to interrogate and obtain actual vehicle locations 
vocally. 

A relatively wide range of options is available 
to the dispatcher for use with Class 0 non-
automated vehicle monitoring. The simplest 

visual location aid is 3ust a map on which the 
assigned beat areas are permanently marked, the 
dispatcher relying on his memory to locate the 
vehicles on the map. Numbered magnets or 
lights may be used which may be updated man­
ually to augment his memory. Elaborate electro-
optical display devices are available, which 
indicate each vehicle's last known location, status, 
and anticipated destination, all driven by manual 
input. 

The 	dollar cost of a purely manual vehicle 
management system is almost bound to be com­
petitive, but the use of RF resources could be 
prohibitive, and the attainable dispatching per-
formance is also an open question. With an AVM 
system, the closest available vehicle can quickly 
be dispatched in response to a service request. 
Analyses indicate that response times are reduced 
and 	fleet efficiency is increased by up to 716, per-
mitting a reduction in fleet size and in operating 
costs. 

B. 	 Class I AVM. No Modification to Urban 
Environment 

1. Officer update. Vehicle location data may 
be encoded automatically by means of manually 
operated devices installed in the vehicle, such as 
keyboards or stylus maps. 

a. Keyboard entry. This manual data 
input technique for providing automatic vehicle 
location data at the base requires the officer to 
enter some code or identifying numerical 
sequence on a digital keyboard (Fig. 1-1). The 
keyboard can be either the device being used for 
sending digital messages or a separate unit. 
The location code can relate to a particular 
street segment and/or intersection and would 
probably be four or five digits in length. The 
vehicle location code is transmitted to the base 
station either by "Touch-Tone" or some other 
digital modulation techniques. Volunteer or 
random-access vehicle polling is most suitable 
for this technique. The AVM system accuracy 
is dependent on the code used; that is, either 
(1) the nearest intersection if only streets or 
intersections have codes, (2) a particular block 
on a street if each segment is coded, or (3) the 
location in a block if street segment is followed 
by address digits of closest property parcel. 
The automatic computational requirement is a 
table look-up function to translate the code to a 
geographical location. While this AVM tech­
nique is low in cost, particularly if a digital 
message entry device (DiMED) is already 
installed, it is extremely slow and requires much 
memorization on the part of the patrolling officers. 
If the car is out of the normal beat, either a map 
or street guide would have to be used by the 
officer for reference to determine the code. 

$45 	 $40 

/E To
 
10-DIGIT EnoTO
KEYBOARD 

W/DIMED W/O DIMED 

VEHICLE EQUIPMENT 0 $85 
INSTALLATION 0 $35 

Fig. 1-1. Class I AVM Officer Update 
Option, Using Keyboard Entry 

b. Stylus map. This officer update tech­
nique is a manual method whereby the patrolling 
officer indicates his vehiclers location by press­
ing the appropriate spot on a special map 
(Fig. 1-2) with a stylus. The map-and-holder 
combination encodes the spot where the pressure 
is applied, and the digital code is sent to the 
base station. The location polling process can 
be either in response to a request or volunteered 
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as part of a transmission from the vehicle, 
Location accuracy is dependent on the scale of the 
map and on the holder encoding technique. For 
example, a 20 x 25 cm (8 x 10 in. ) portion of a 
7. 5-minute U.S. Geological Survey topographic 
map (scale 1 24000) would cover an area of 6 x 
4. 8 km (3. 6 x 3 mi). If this information were 
encoded by 5 binary bits (I in 32) on each axis for 
a 10-bit location code, then the location could be 
achieved within a rectangle of about 190 x 150 
meters (600 x 500 ft). By increasing the encoding 
to 12 bits or using a map with half the scale, the 
size of the vehicle's location rectangle could be 
decreased by one-half in each dimension. Maps 
of other beats would probably be required by each 
officer together with some means of identifying 
when these maps were in use. The base station 
computation requirement is a table look-up func-
tion to translate the code to a geographical 
location. 

$35 
Y Lthat 
R CONTROL 
E LOGIC 

X-REGISTER Iphotodetector, 

ULTRASONIC STYLUS MAP 
$2500 

VEHICLE EQUIPMENT $2500 
INSTALLATION $ 35 

Fig. 1-2. Class I AVM Officer Update Option, 
Using Stylus Map 

2. Kinematic sensors. Changes in vehicle 
location may be sensed either by accelerometers, 
velocimeters, or odometers, 

a. Two accelerometers. Dead reckoning,
which can measure the change in location of a 
vehicle, can be mechanized with two accelerom-
eters (Fig. 1-3). These devices would measure 
the rate of change of velocity of the vehicle in the 
horizontal plane of the vehicle in both the fore-
and-aft and sideways directions. The outputs of 
the two accelerometers can be used to compute 
velocities attained as well as changes in direction 
and distance during a selected time interval. The 
computations can be performed on-board the 
vehicle and the results transmitted to the base 
station, or the outputs of the accelerometers can 
be encoded and transmitted directly to the base 
station. 

A U-turn made at a speed of 10 m/sec (23 mph)
in a 4-lane street about 18 in (60 feet) wide is 
about the limit of vehicle turning performance, 
This turn would result in about a 0. 8-g indication 
of lateral motion for just over 3 seconds. If the 
accelerations are sampled and transmitted every 
0. 03 second, then the 16 data bits each time 
would lead to a data rate of 4800 bits/sec. Based 
on personal rapid transit studies, the "comfort" 

zone of vehicle operation is in the less than 0. Z-g 
range. If most accelerations experienced by the 
vehicle are maintained in this 0. Z-g region, then 
a 1% full-scale error during a low-g maneuver 
causes these normal measurements to be in error 
by 47 or more. 

b. Orthogonal laser velocimeters. This 
kinematic sensor technique is based on prior 
work by G. Stavis (Ref. 1), which used a laser 
velocimeter (Fig. 1-4) and compass (Fig. 1-5). 
In this scheme, the laser would be used to mea­
sure not only the forward velocity of the vehicle, 
but also that velocity component which occurs 
during turns and is at a right angle to the fore­
and-aft motion. All portions of the vehicle which 
are not located on the turning axis experience 
some side velocity during a turn. The sign and 
magnitude of this velocity component is a function 
of the distance from and location with respect to 
the turning axis. If both forward and side veloci­
ties are measured at the same point remote from 
the turning radius, then the velocities at this 
point provide a means to keep track of the vehicle 
motion. The operation of the laser velocimeter 
is based on the speckle pattern observed in the 
reflection of coherent laser light from a surface 

moves relative to the source. The speckles 
tend to move in the opposite direction to the rela­
tive motion between the laser source and the 
reflecting surface. By passing the reflected laser
light through a diffraction grating and then to a 

a signal can be derived with a fre­
quency that is a direct measure of the velocity of 
the reflecting surface. The velocity measured is 
that at right angles to the rulings on the grating.
Two photo detectors and two gratings with the 
rulings at right angles provide the means to nea­
sure the two components of motion of a single
laser spot. Investigators in the cited work(Ref. 1) indicate that a laser velocimeter's 

dynamic range is of the order of 2500 to I and that 
the maximum and minimum measurable velocities 
are primarily a function of the rulings on the 
grating. For example, a vehicle velocity range of 
50 m/sec to 2 cm/sec (115 mph to 0.05 mph)
could be accommodated, and turning rates of 0. 01 
radian/sec (0. 6 0/s) could be detected. Maximum 
data bit rates of about 5000/sec for speed and 
100/sec for turning may require in-vehicle 
computation. 

c. Ultrasonic velociineters. The use of 
ultrasonic waves for intrusion detectors, motion 
sensors, and distance measuring is well esta- ­
blihed. The doppler frequency shift of a reflec­
ted sound wave from the road surface can form 
the basis of a velocimeter (Fig. 1-6). An ultra­
sonic wave directed at an angle at the road sur­
face will reflect a doppler-shifted frequency pro­
portional to the cosine of the angle of incidence 
times the surface velocity. For example, if a 
33-kHz frequency is chosen which has a wave 
length of about I cm directed at a 45-degree angle 
to the road surface and traveling at 50 m/sec 
(115 mph) will yield a doppler shift of about 10%. 
If a. dynamic range of 2000:1 can be achieved, a 
minimum velocity of 2.5 crm/sec (0. 05 mph) can 
be detected. If the velocimeters are mounted on 
each side of the vehicle and the differential veloc­
ities are measured to the same Z.5 cm/sec, then 
minimal directional changes of 12 mrad (about 
0.7 deg) can be detected. This precision is on the 
order of that achieved with the differential 
odometer, described later. 
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rig. 1-3. Class I AVM Kinematic 	Sensor Using Two Accelerometers 
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$250 
HALL DIGITAL J d. Odometer-Corn ass. Dead reckoning

COMPASSJ ENCODERwith compass and odometer (Fig. -7) has been 

tested, built and furnished to several armed
forces (U.S., Canada, Britain) as a means of 

keeping track of mlitary vehicles in off-road sit­$200 $25 $180 Uations. The systems have all achieved some 
] measure of success, and all have included on-LASER PHOTO TRACKING board computation to indicate position in northings 

DETECTOR LOOP and eastings (Y- and X-coordinates). Accuracies 

~within 	 0.6 to 2% of the distance travelled haveGRATING 	 curaces in the odometer measurement and com­/ GRATbeen 	 demonstrated. Error sources are the mnac-

N / pass heading. The odometer is affected by tread 
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Fig. 1-5. Glass I AVM Magnetic Compass of vehicle speed. Atpresent, gyro compasses 
wilth Laser Velocu-neter are not sulted for vehicular applcations. 
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with Odometer 

3. Wide-area navigation. The three principal rig. 1-9. Class I AVM Relay OMEGA 
wide-area navigation schemes use synchronized Navigation System 
radiolocation beacons. They are hyperbolic tech­
niques which operate in three different modes: c. LORAN. This technique (Fig. 1-10) 
OMEGA, LORAN, and DECCA. uses combined pulse and phase time-multiplexed 

RF signals for determining LOPs. Pulsed signals 
a. OMEGA. This navigation scheme (Fig. from three or more stations are transmitted 10 to 

1-8) uses very low frequency (10-13 kHz) time­
multiplexed RF signals. The relative phase of the VEHICLE 

L RA''I 11 DIGITAL 

$2600 
$1500 

VEHICLE EQUIPMENT $2600VEHICLE EQUIPMENT $1500 

INSTALLATION $ 80 INSTALLATION $ 80 

Fig. 1-8. Class I AVM Normal and Fig. 1-10. Class IAVM Normal and 
Differential OMEGA Navigation Differential LORAN Navigation 

signals, transmitted on the same frequency in
 
sequence from several sites, defines a set of lines
 
of position (LOP). At the intersection point of the 33 times a second in coded groups. The receiver
 
LOPs is the receive location. There are anbi- measures the time of arrival difference from
 
guitles in position since the phase patterns repeat given pairs of signals to determine the LOP. No
 
every 15 km-or so. Differential OMEGA is a ambiguity exists, and each LOP is unique geo­
technique for reducing the effects of local anoma- graphically. Differential LORAN also uses fixed
 
lies. A fixed receiver at a precisely known loca- site receivers to remove local propagation
 
tion is used to remove these anomalies over a 15 anomalies.
 
to 30 km radius through continuous monitoring of
 
the received signals. d. Relay LORAN. In this system (Fig.
 

1-11), the received signals are retransmitted to ab. Relay OMEGA. In this technique (Fig. base station for time differencing. Some band­
1-9), the vehicle rebroadcasts the raw OMEGA width comprIssion is required and is used in a 
signals on another frequency to the base station, technique called LOCATES in order to retransmit 
The base station then measures the phase differ- the 90 to 110 kHz LORAN over voice communica­
ences and computes the LOPs. This is a time- tion channels. The 20-kHz bandwidth signals are 
consuming operation as each vehicle would have reduced to 3 to 7 kHz for retransmission. The 
to transmit the entire OMEGA sequence lasting higher repetition rates of LORAN make relaying 
several seconds. more feasible than in OMEGA. 
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Fig. 1-11. Class I AVM Relay LORAN 
Navigation System 

e. DECCA. The DECCA system (Fig. 
1-12) is a continuous-wave phase-difference tech­
nique in which each transmitter operates on a 
different, but harmonically related, signal to 
other transmitters. The location is determined by 
simultaneous reception and comparison of the 
phase of the signals. Since the LOPs determined 
by the phase measurements are not unique, spe­
cial signals are transmitted frequently to enable 
the determination of the correct one. 

VEHICLE 

DIGIT]rely
D)ECCA DIGITAL 
RECVR ENCODER 

$950 

VEHICLE EQUIPMENT $950 

INSTALLATION $ 60 

Fig. 1-12. Class I AVM DECCA 

Navigation System 

f. AM Broadcasting stations as radioloca-
tion beacons. Carrier signal frequencies, being
transmitted from three commercial broadcasting 
stations located around a city's perimeter, can 
each be separately received and multiplied by 
relatively low-cost in-vehicle equipment to syn-
thesize a new common frequency. These three 
identical frequencies can be made relatively phase
coherent. Virtual hyperbolic patterns of naviga-
tional LOPs are generated by the signals received 

from each pair of AM stations. These LOPs can 
serve as the basis for a reliable AVA system 
(Fig. 1-13). Avehicle's starting position is first 
noted and recorded at the central command base. 
When the vehicle moves, the phase differences 
produced in the three signal frequencies are mea­
sured on-board, and the number of times that the 
phase pattern is repeated can be counted on-board. 
This digital information is then sent to the base 
where a minicomputer converts it to the vehicles 
new geographical location. In Part Four of this 
report, this AVM system is described in detail. 

$75 $90 $454150 

AM TRACKING DIGITAL 
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NORMAL DIFFERENTIAL 
VEHICLE EQUIPMENT $200 $315 

INSALTION $0 
INSTALLATION $ 50 

Fig. 1-13. Class I AVM AM Broadcasting 
Station Navigation Systems 

C. 	 Class II AVM: Autonomous Signposts 
Throughout Urban Area 

All autonomous signpost location techniques 

on the vehicle coming near or passing over 
an instrumented geographical location. The 
instrument, located at an intersection or road 
segment, is usually a continuously radiating
device sending out a uniquely coded message, 
either radio, light, IR, ultrasound, or magnetic.
The 	vehicle is equipped with a suitable receptor 
to receive and store the message for subsequent
retransmission to the base station and in this wayinform the base as to the last instrumented loca­

tion passed. 

1. Radio frequency signposts. Most of the 

techniques use RF signals as the medium for the
short-range link from wayside or roadway sign­
post to vehicle. These signals, which may range 
from low frequencies (190 kHz) through VHF to 
X-band (10 GHz), require the equipment shown in 
Figs. 1-14, 1-15, 1-16. Elevated locations for
the signposts are usually selected to achieve a 
larger coverage area, freedom from blocking by
large vehicles, and to lessen the probability of 
vandalism. Vehicle location accuracies of the 
Class II AVM systems are a function of the radius 
of ihfluence and density of the signposts, and 
similarly the message repetition rate from the 
post must increase as the radius of influence 
decreases to ensure complete message reception 
by a fast moving vehicle. 
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Fig. 1-15. Class II AVM Citizen Band or VHF 
Wayside Radio Signposts 
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Fig. 1-16. Class II AVM X-Band Wayside 
Radio Signposts 

Since active electronic signposts require some 
primary power source, difficulties may be encoun­
tered in general applications if reliance is 
placed on either street lighting circuits or traffic 
signals In some applications, alternate power 
sources will be necessary. Options other thai 
utility power are long-lived batteries, solar, and 

radioisotope sources. 

2. Ultrasonic and photo or IR signposts. 
Ultrasonic and light radiation are possible prac- ­
tical approaches to the message link to avoid 
further RF congestion and interference to other 
services. The ultrasonic waves (Fig. 1-17) are 
similar in length to X-Band RF (less than 1 cm), 
and "horn" antennas can be designed for focusing 
sound to a desired coverage area. The flashing 
light approach (Fig. 1-18), either visible or 
infrared, is also a practical short-range infor­
mation transfer method. Both of these techniques 
are, however, somewhat hindered by weather con­
ditions, particularly fog, rain, and wind. 

3. Buried active antennas. The buried antenna 
approach using existing traffic-presence sensor 
loops as electronic signposts (Fig. 1-19) is cur­
rently being tested in San Francisco and New York 
as a toll authority billing technique for equipped 
buses In these systems, the antenna (buried 
loop) interrogates continually and receives 
responses from instrumented buses so that the 
buses may be billed for toll fees without having to 
stop. The use of traffic sensor loops as antennas 
is a practical implementation for electronic sign­
posts and has an added advantage in that weather­
proof enclosures and power are available in the 
traffic signal controller. 
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Fig. 1-19. Class II AVM Active Buried Antenna 
Traffic Sensors 

4. Buried magnet autonomous location 
identifiers. Buried permanent magnets are used 
to provide a means of passive proximity location 
identification (Fig. 1-20). In this concept, rows 
of permanent magnets are installed along vehicle 
lanes to provide a means of inducing a voltage in a sensing coil mounted on the vehicle. The mag­
nets could be either placed in drilled holes in the 

pavement or propelled into the surface by using an 
explosive-actuated concrete fastener tool. Mag­
nets in the rows have either N or S poles up to 
provide binary identification of the location. The 
sense coil in a forward moving vehicle would 
detect signals of different polarities depending on
the vehicle direction across the magnetic field. 

Reasonably strong magnets must be used, both to 
be detected in the presence of the earth's field,
which is about 0. 5 gauss, and to withstand added
spacing that could be created by street 
resurfacing. 
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Fig. 1-20. Class II AVM Buried Magnetsas Location Identifiers 

5. Reflective paint patterns on signposts and 
roadways. Other passive techniques require that
the vehicle continually interrogate the area tray­
elled either by low-frequency RF or light radia­
tion. In the case of the reflective wayside sign 
(Fig. 1-21) or pattern on the road (Fig. I-ZZ), 
the vehicle must be in a fairly precise position to 



receive a response- less in the case of the road 
pattern than the wayside sign. 
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Fig. 1-21. Class II AVM Sensor of 
Reflective Patterns on Signposts 
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6. 	 Passive buried loops. The passive buried 
loop 	(Fig. 1-23) requires tat the vehticle,oo(i-3)equipedit d r atea p er a 
equipped with under-carantennas, pass over and 
excite he loops to obtahn a response. Results of 
a detailed analysis of the buried loop coupling are 
included in Part Four of this report. 

D. 	 Class III AVM. Sparsely Distributed Special 
RF Sites 

This class of AVIV systems encompasses those 
vehicle location techniques of the trilateration 
rho-rho (range-range) and triangulation theta-
theta (angle-angle) types with sparsely distributedsmall 
RF sites primarily intended for medium or 

urban area coverage, 7 km (4 mi) to 11 km (7 ma) 
radius, 

I. Trilateration Systems. Included in the 
rho-rho systems are trilateration techniques 
which measure the time-of-arrival (TOA) of a 

- signal emanating from a vehicle at several fixed 
receiving sites. Each pair of time differences 

EHKLE 
5 

UNDERCfl ANTENNAS 

$15 $25$0 
N-TONE N TO BINAY 

AP DECODER CONy 

LOCATION 

LOOPS 

VEHICLEEQUIPMENT$90 

INSTALLATION $45 

FIXEDEQUIPhENT $10($2 LO0) 
INSTALLATION $85/LANE(S17/LOOP) 

Fig. 1-23 Class Il AVM Sensor of 
Passive Buried Resonant Loops 

forms a hyperbolic line- of-position (LOP). The 
intersection of these LOPs establishes the posi­
tion of the vehicle. This information may be sent 
to the base station from the site by leased tele­

phone lines or by microwave transmissions. 

Hyperbolic trilateration methods tested have 

Used either a pulsed (or keyed) carrier from the 
vehicle or an audio-tone frequency modulating a 
-carrier. The pulse systems measure the TOA of 
the signal and establish the range differences 

directly. The tone trilateration systems measure 
the relative phase of the audio tone at the receiv­
ing sites, and the phase difference measurement 

-then determines the range difference. 

The 	tested tone phase TOA trilateration methods 
used 2. 7 kHz and approximately 18 kHz frequencies 
whose phase patterns repeat at 111 km and 16 km, 
respectively. These AVM systems have been 
termed narrow-band (Fig. 1-Z4) and wide-band 

(Fig. 1-25) since the first can be accommodated 
in a narrow-band FM voice channel (25 kHz) while 

the second requires eight times the bandwidth or 
four adjacent channels (100 kHz). In comparison, 
the pulse TOA method (Fig. 1-26) utilizes up to 
10 IvMz of bandwidth to preserve the leading edge 
of the pulse. 

Another wide-band trilateration method is 
based on interferometer techniques. As currently 
envisaged, each vehicle would transmit a carrier 
signal modulated with either white or P-N 
sequence noise (Fig. 1-Z7). These signals would 
again be received at the several sites, and by 

correlation computation the time differences of 
arrival would be established. Since only the 
signals from one vehicle would show substantial 

correlation, it would be possible but not necessary 
to have all vehicles broadcasting the noise modu­
lated signals simultaneously. The effects of 
multipath on trilateration techniques have been 
analyzed and modeled by George Turin (Ref. 5). 

2. Triangulation Systems. The direction 
finding methods proposed would measure the 
azimuth angle of the vehicle signal at several 
fixed sites (Fig. I-Z8). The intersection of the 
extension of these bearing angles would be the 
position of the vehicle. Multipath in this method 
would probably cause uncertainty in the angle of 
arrival of the vehicle signal leading to 
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approximately the same accuracy limitations as VEHICLE 
those for trilateration. Of the Class III AVM 
systems delineated, the direction finding and 
narrow-band phase TOA would allow the use of $1000 $250 $35 
the normal vehicle transceiver. The pulse, wide- AVM KEYING CONTROL 
band phase, and noise modulation TOA methods RADIO MOD LOGIC 
would require an additional AVM transmitter. 

$1285
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INSTALLATION $ 40 Fig. 1-26. Class III AVM Pulse TOA 
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Fig. 1-24. Class III AVM Narrow-Band FM VEHICLE 

Phase TOA Tralateration 
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Fig. 1-25. Class III AVM Wide-Band FM Fig. l-Z7. Class III AVM Noise Correlation 

Phase TOA Trilateration TOA Trilateration 
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E. 	Class IV AVM, Monitored Signposts Through- Fig. 1-29. Class IV AVM Monitored
 

out Urban Area Wayside Radio Receivers
 

This class of AVM techniques is an inversion
 
of the Class II autonomous wayside or buried
 
signposts and removes the data collection link
 
responsibility from the vehicle. In Class IV
 
AVM, a vehicle-to-signpost link (Fig. 1-Z9) is
 
maintained, but the information flow is the 
 VEHICLE 
vehicle's identity to the monitored signpost. The 	 $15 $10 $20 
data link to the base station or central collection 
point is based either on telephone lines rented
 
from the local utility of on call-box lines for
 
police and fire use. Since individual lines from UNDER-CAR
 
each signpost are usually not considered economi­
cally practical, it is usually proposed to group

the signposts on "party lines". The "party line"
 
approach requires that each signpost not only

transmit the vehicle ID data received but also LOCATION 
identify itself to the central collection point at 
the base station. The telephone line is an addi- AND TO TRAFFIC

tional complication to the Class IV installation, OSC SIGNAL
 
and a prime power connection is still required. DLI CONTROL
 

EXISTING $25 
BURIEDFA technique of using the buried loop-sensors, LOOP


which actuate traffic signals, as receiving 
 TELEPHONE 
antennas (Fig. 1-30) can be used in the monitored 	 $15 L40LINE 
Class IV as in the autonomous Class II signpost 2----- LINE
 
method. This is an especially attractive
 
approach if the signals are centrally controlled
because dedicated communication lines are, 	 $3 

usually already installed. Ultrasonic as well as COTROL LOCA
 
ph'oto/IR detectors could also be used on moni- L
 
tored signposts (Figs. 1-31, 1-3Z).
 

VEHICLE EQUIPMENT $ 80 - In lass IV, the vehicle polling function is INSTALLATION $ 65
Slaced either by line-finding, as is used in LOCATION SENSOR $165

iormal telephone service, or by a continual INSTALLATION $100 
scanning of the lines to find an "off hook" indi­
cation that a signpost on one of the party lines Fig. 1-30. Class IV AVM Monitored
has 	information to forward. Traffic Presence Sensors 
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II. VEHICLE POLLING AND EXISTING $25 
LOCATION PERFORMANCE __--MO ­

and CostsPolhnc TechniquesA. Vehicle 

Four general classes of vehicle polling are 

considered for AVM Systems: (1) Synchronous, 

(2) Commanded or random access, (3) Synchro-
nous with command capability, and (4).Volunteer 
or contention. All four techniques are generally 
applicable to Class Iand II AVM systems. Syn-
chronous polling and synchronous with command 
are used mainly in Class III AVM systems with 
sparsely distributed special signposts. Volun­
teer polling is usually considered only for low­
density Class II autonomous signpost systems. 
For the Class IV monitored signpost systems 
which use land-lines, vehicle polling by radio is 
not applicable in the context used here. 

All of the polling techniques are suitable for 
half-duplex (base station and vehicle on the same 
frequency), but when the base station relays all 
vehicle transmissions or when each vehicle moni­
tors all other vehicles, then volunteer polling can 
only be used on full-duplex (base and vehicle on 
different frequencies). 

cur-In Class I and II AVM systems where the 

rently installed 2-way radio is to be used for AVM 
purposes, speed-up modifications are required. 
These changes to antenna switching, transmitter 
stabilization time, and squelch delay are neces-
sary to reduce the substantial guard time requiredI 
between transmissions from vehicles adjacent inFL 
the polling sequence or to reduce the transition 
time interval from receive to transmit in Com-
inanded or random access polling. 

A modification of the Volunteer polling method 
only allows location data to be transmitted as a 
precursor or brief interruption of voice trans-
missions, but this technique has limited applica­
tion. Interrupted speech as a technique in other 
polling methods relies on very short transmit on-
off-on sequences for a vehicle currently using 
voice when another vehicle responds with data. 

1. Synchronous polling. In this technique, 
each vehicle transmits location data at a pre-
selected time within the polling sequence. The 
equipment on the vehicle keeps track of the start 
of the polling sequence and internally determines 
when the appropriate time to respond occurs. 
The functional elements of Synchronous polling 
are shown in Fig. 1-33. The fact that the start 
of the polling sequence must be periodically trans-
mitted to each vehicle for correction purposes 
leads to the capability of the base station to 
modify the time when the vehicles are to respond 
in the polling epoch, 

2. Synchronous with command capability. 
This technique allows the base station to modify 
the position of each vehicle in the polling 
sequence. The additional functional elements for 
the command option are shown in Fig. 1-34 con-
nected by dashed lines to the elements required 
for synchronous polling, 

[ LOCATION/ $40 +$4
 
ANDYNC STATUS I =LOCATION
 

REGISTER BITS)
 

$40 $3 
ID CCCRT NTROL 

VEHICLE EQUIPMENT ($165 + $4n) 
INSTALLATION $40 
FAST TURN-ON 

SQUELCH MODIF $50 

Fig 1-33. Vehicle Synchronized Polling for 
AVM Classes I, II, III 

EXISTING
 
-- COAE A -_
 

$L5
 

DEJ D 

IR-Q LoCAIOW $4.5. 
SL STATUS (n - LOCATION

RR S) 

$ $ M 
COUNTER CONTROL 

FILE AK ID/*A LOGIC 

W I $20 

II 
L...WSYNCAO CDAWD

CONTROL 

VEHKCLEECJIPWENT$315$4.,
 
INSTALLATION $ 50
 

Fig. 1-34. Vehicle Commanded Polling for 
AVM Classes I, II, HI. 

3. Commanded or random access polling. 
Commanded pollng requires that the base station 
send a request to each vehicle whenever location 
data is required. This random access technique 
is the most flexible but requires substantially 
more use of available RF time than the synchro­
nous method or the synchronous with command 
capability. The elements required for the com­
manded polling method are shown in Fig. 1-34. 

4. Volunteer polling. This contention method 
of sending location data requires that each vehicle 
determine if the channel is "clear" before trans­
mitting. A mechanization is shown in Fig. 1-35. 
Some technique of providing a random delay in 
each vehicle after determining that the channel is 
clear and before transmitting is usually necessary 
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to preclude certain vehicles from dominating the Table 1-1. Vehicles Polled/Second/RF 
channel. Channel For 0 Sec Turn-On 

EXISTING 

0 


RADI 


MODEM 

$10 	 $40 + $S4 $20 

SQEC OAIN 

RE ITR ID 

CONTROL 
AND SYNC 

4 
VEHICLE EQUIPMENT $130 + $ n 

INSTALLATION $30 

Fig. 1-35. Vehicle Volunteer Polling for 

AVM Class II Systems 

B. Vehicle Polling and RF Link Evaluations 

The three vehicle polling techniques: Synchro-
nous (SYN), Volunteer (VOL), and Random 
(RAND) or commanded were evaluated with both 
a simple one-time radio message transmission 
and with redundant transmission, where every 
message is sent twice. In all cases, the digital 
message rate is set at 1500 bps. Where equiva­
lent RP channels are assumed, a channel spacing 
of 25 kHz is used. 

Any delays in the polling processes will tend to 
reduce 	the number of vehicles which can be 

accommodated by an RF channel. Therefore all of 
the delays are lumped into one parameter called 
turn-on time. Thirty two of the Class I, H and
III AVM techniques were evaluated in both the 
simple and redundant modes of the three polling
methods. The range of turn-on times examined 

was from 0 to 0.3 second, in five steps. This 
range is sufficient to estimate the performance 
of full-duplex radios with separate antenna cir-
cuits relative to half-duplex with electro-
mechanical antenna transfer relays. Tables 1-1 

through 1-5 are compilations of the vehicles 
polled per second per RF channel. Each table 

includes a theoretical maximum entry which is 
the 1500 bps rate divided by the number of bits 
in the location message. Included under Class 11 
techniques are small and large entries as the 
location message length is a function of the 
number of instrumented intersections, therefore 
data are provided for both small and large urban 
areas. Since the Class HI techniques in general 
are not amenable to volunteer (VOL) polling 
methods, no VOL calculations were made for this 
class. 	 Also, with the exception of direction
finding 	and narrow-band phase location, trans-

tponder ype radio equipment is required which 
does not have the same order of delays. 
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"TECHHIIOUS lfRll L6 $21 PI.1 S~lO PD in location accuracy is caused by the vehicle'sIP- IO PtI11100 0 

JID--1401T-P PHASE * 10 1u 1o motion, the delay in vehicle-to-base transmission, 
PULCE T-O-APPI1AI .00 10011 10000 10000 '0000 
HIS U RPELRTIOW 200 1000 1000 1000 1000 the computer processing time to relate the 
DIFECTIOWFIER I - a 	 a vehicle data received to a physical location, and 
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the delay in displaying the location on d map or 
other computer output device. In dead-reckoning 
systems, the location error is cumulative, and 
the accuracy is proportioned to a percentage of 
the distance travelled (% dist), 

The amount of location data which must be sent 
to or from the vehicle is another parameter that 
affects performance. Not only is it a function of 
the location technique, but also of the number of 
vehicles in the system, the area of the urban 
coverage, the density of streets or intersections 
in the area, and the dimensions of the urban area 
in each direction. The quantity of location data, 
together with the polling technique used and the 
availability of RF channels, determines the delays 
in receiving vehicle data at the base, which in turn 
affects the AVM system accuracy. 

Another parameter is the "fix" time required 
for the vehicle to receive or generate whatever 
raw data is required for the new location to be 
determined elsewhere, which is primarily tech-
nique dependent. Similarly the interval between 
successive messages from the vehicle is also 
technique dependent. That is, no new location 
information will be forthcoming until a definite 
time period or travelled distance has elapsed or 
has been accumulated, 

A tabular compilation of four location per-
formance characteristics has been developed 
from several sources such as test data, prototype 
demonstrations, and performance estimates by 
both system developers and other evaluators, 
In Table 1-6, the performance values for the 
location accuracy or radius, the amount of 
location data, and the fix time parameters arelisted for the four AVMr classes and 36 systems.
lisedlfo hefour eaVM casse andl36wsy . 
An explanation of each parameter follows: 

1. Accuracy. This tabular entry represents 
either the estimated or test-result accuracy of 
vehicle location for Class I and Class III AVM 
systems. Since the accuracy cannot always be 
stated as a single value, a range of values is 
given in some cases. In the case of Class II 
and IV signpost systems, the term accuracy is 
inappropriate, and the term radius is used. 

2. Radius. In Class II, III, and IV AVM 
systems, this radius figure represents the esti-
mated coverage of the individual signpost or the 
special purpose fixed site. 

3. 	 Fix time This value is the time in seconds 
required for the vehicle to receive or generate 
new location data. In Class I AVM systems, the 
fix time is determined by the updating rate of the 
vehicle sensors or the repetition rate of the navi-
gational aid. In Class II or IV systems, the fix 
time is a comparative number only and repre-
sents the time interval required such that a vehicle 
near the signpost will receive at least two ldcation 
messages while moving at a speed of 50 m/sec 
(113 mph). In Class III systems, the fix time 

represents only the time of transmission of a 

location signal from the vehicle to the special 

R F site. 


4. Location data. This tabulated number 
represents the minimum quantity of raw data 
required to locate an individual vehicle. In 
Class I AVM dead-reckoning methods, the loca­
tion data figure is the combined number of bits 
required to represent a change in vehicle position 
to the indicated accuracy. In Class I navigational 
aids, the figure is either the number of bits 
required to Indicate the time or phase differences 
of the received signals or the actual RF bandwidth 
(BW) required in the relay systems. In Class II 
or IV AVM systems, the location data value is the 
number of bits required to uniquely identify each 
signpost or each vehicle, respectively. The 
Class III location data is the RF bandwidth 
required for the tone, pulse, or noise location 
signal. 

111. URBAN CHARACTERISTICS THAT 

AFFECT AVM COSTS 

A. 	 City Model Parameters For AVM System 
Design 

In order to develop abasis for AVM System cost 
comparisons, itwas necessaryto establish baseline 
system design parameters applicable to each tech­
nique. To make these designs somewhat realistic, 
three model cities were developed, based on the 
populations and physicalparameters of the seven 
representative UGAC cities inSouthern California. 
Characteristics of the small, medium, and large 
model city are given in Table 1- 7. The justification 
or rationalizationfor the model city parameters 
and the other factors considered in the system 
design are as follows* 

I. iyhp One characteristic of the 
model cities that is difficult to justify is shape.
 
In this Report, the assumption is made that the
 

cities are rectangular with a 2-to-l aspect ratio. 
The development of most cities either along a 
river, railway, or coastal harbor usually results 
in one dimension being significantly greater than 
the other. The choice of a rectangle is believed 
to be more realistic than the square or circular 
city sometimes chosen. 

2. Urban area. The areas chosen for the
 

three city models re 10, 100, and 1000 km Z
 

(4, 40, and 400 mi ), which compare with
 
Montclair and Monterey Park as the smallest
 
cities, Anaheim, Pasadena, and Long Beach as
 
the medium cities, and Los Angeles and San Diego 
as the large cities. (See Part Two of this Report, 
p. 2-1.) 

3. Population. The populations of the model
 
cities are based on population densities in the
 
actual cities, which averagg 3000 people per
 
square kilometer (7800/mi).
 

4. Vehicle fleet size. Two classifications of 
vehicles are assumed for each city. These are 
the patrolling vehicles and the total number of 
instrumented vehicles. An assumption is made 
that one-half the fleet is patrolling while the 
remainder is involved in investigation. 
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Table 1-6. Location Performance Parameters for All AVM Classes and Systems 

Value used, Location Data, Fix Time, 
Tecmique Accuracy or Radius (in) bits or BW sec 

CLASS I AVM Accuracy 

Keyboard update 
Stylus map update
2 -Accelerometers 

10-100 m 
30 m 
2% dist 

(33) 
(30) 
(34) 

6-20 bits 
14-20 
14 

Z-5 
3 
0.3 

s 

Laser velocirntr 0.50 dist (13) 16 0.3 
Ultrasonic velo 
Compass/odometer 

3% dist 
1% dist 

(40) 
(20) 

14 
14 

0.3 
0.3 

Compass/laser vel 0.6%dist (15) 14 0.3 
Cmpss/u-sonic vel 0.8%dist (17) 14 0.3 
OMEGA navigation 1600 in (1600) 27 3-10 
LORAN navigation 
DECCA navigation 

0.4 m/km 
0. 5 m/km 

(160) 
(200) 

32 
30 

0.06-. Z 
0 

AM-Stations nay 150-250 in (200) 12 0-3 
Diff OMEGA nay 160 m (160) 27 3-10 
Diff LORAN nay 120-400 m (400) 32 0.06-. 2 
Diff AM-Stations 150-250 m (250) 21-32 0-3 
Relay OMEGA nav 200-600 m (500) 3 kHz' BW 3-10 
Relay LORAN nay 800 m (800) 10 kHz BW 0.06-. 2 

CLASS II AVM Radius m 

Buried res loops 10 - 10-18 bits 1-2 s 
Reflecting signs 10 - 0-18 1-2 
Reflecting road 3 - 10-18 1-2 
X-Band signposts 12-100 - 9-17 1-2 
HF, VHF signpost 15-100 7-15 2-5 
LF Signposts 100 9-17 1-2 
Light/IR post 30 9-17 1-Z 
Buried magnets 10 10-18 1-2 
Ultrasonic post Z0 9-17 1-2 
Traffic sensor 10 10-18 1-2 

CLASS III AVM Accuracy 

Nar-band FM phase 800-1300 m (1000) 3 kHz BW 0.015 s 
Wid-band FM phase 1000-1500 (1200) 15-40 kHz 0.01 
Pulse T-O-Arrtval 100 m (100) 10 MHz 0.0001 
Noise correlation 100 m (100) 5-10 MHz 0.001 
Direction finder 30 dist (700) 3 kHz 0.2-1 

CLASS IV AVM Radius, m 

Traffic loops 10 - N/A 1-2 s 
Wayside radio 
Photo/IR detect 

100 
30 

-
-

N/A 
N/A 

l-Z 
1-2 

Ultrasonic detect 20 - N/A 1-2 

Table 1-7. Model City Parameters That Affect AVM Costs 

Parameter Small Medium Large 

km 2Area, 10 100 1000 

Dimensions, km Z.2 x 4.5 7.1 x 14.2 ZZ.3 X44.7 

Vehicles, patrol/total 5/10 50/100 500/1000 

Intersections- 350 3500 35000 

Road segments X lanes 1600 16800 168000 

Road distance, km 125 1245 12450 

Telephone lInes, km 83 828 8275 

Population 30,000 300,000 3,000,000 

*Based on 25/75% ratio of 50/30 blocks/km2 in the urban area. 
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5. Intersections, The number of intersections In Class IV techniques, the telephone line rental 
in each city is based on two business area street 
densities. They are based on actual measure-
ments of randomly selected areas of the UGAC 
cities, and the values assumed are 30/km2 for 
75% of the area and 50/km2 for 25% of the area. 

6. Road distance. For the purposes of the 
models, the blocks are assumed to have the same 
aspect ratio as the city, namely 2:1, and to be in 
a regular array. An average of 2.4 lanes for 
each road segment was assumed, based on UGAG 
city averages. 

7. Telephone line distance, Class IV AVM 
systems require land line monitoring; and for the 
purposes of comparison, an equal division of 
sensors is assumed of up to a maximum of 100 
sensors for each phone "party" line. These 
party lines are assumed to parallel the long 
streets so that the total mileage of lines is about 
two-thirds of the total road distance. 

8. Building distribution and topography. A 
uniform low-rise building distribution is assumed 
for location accuracy comparison purposes. The 
topography of the model cities is assumed to be 
essentially flat without "blind" radio areas or 
special areas that might unduly affect any particu­
lar technique. 

9. Radio The only information sent from the 
vehicle in this comparison is that required for 
location, either as a binary message or equiva­
lent RF bandwidth for the Class I, IT, and III 
systems. Radio modifications are also assumed 
to enable automatic message transmission. 
Additionally, transmitter turn-on stabilization 
time, squelch delay, and antenna transfer are 
assumed constant at several values. 

10. Model city AVM cost and performance 
summaries. Tables 1-8 through 1-16 sumnmarize 
the AVM system costs in each of three model 
cities, small, medium, and large, for each of 
thirty six location techniques and for three polling 
methods. 

a. Small city summary. The costs of all 
AVIV techniques in the small city model are 
dominated by the operation-and-maintenance 
(O-M) cost with the result that there is a great 
similarity in total costs regardless of the vehicle 
location technique. The Class II and IV system 
costs are higher because the signposts and the 
associated costs are relatively greater than the 
vehicle costs (see Tables 1-8, 1-9, 1-10). 

b. 	 Medium city summary. The costs of 
AVM Class I in the medium city model show an 
increase which is almost all due to vehicular 
equipment. The Class II costs increase by a 
greater factor due again to signposts. The site 
costs of the buried resonant loops are substan­
tially higher than those of any other Class 11 
technique because of installation costs. The 
more sparsely distributed {F posts, either HF 
or VHF, do not impact the total cost to the extent 
of the techniques which use a post at each inter-
section. In the Class III techniques that require 
pulse or wideband equipment, the vehicular equip­
ment accounts for about one-third the total cost. 

which is included in the site cost is the primary 
cost factor (see Tables 1-11, 1-12, 1-13). 

c. Large city sunrary, The AVM costs in 
the large model city show the same trend with 
Class II techniques (save for two exceptions) 
costing some 2 to 4 times the Class I techniques 
and about twice the cost of Class III systems. 
The Class II techniques systems costs are reduc­
ible by less dense placement of posts (see Tables 
1-14, 1-15, 1-16). 

The method of vehicle polling has only a slight 
impact on AVM system costs in any of the tech­
niques in any of the model cities. Applications 
of the AVM cost analysis to actual cities in 
Southern California are presented in Part'Two of 
this Report (p.Z-1). 

B. 	 Small Model City AVM Cost Summary 
Tables 

Table- 1-8. Small ModelCity Parameters
 
Used in AVM Cost Analysis
 

AREA 15 4 SnURPE WtILES. 

IIOPTH SOUTH DISTANCE IS 2.- WILES. 

TOTAL ROAD IIILEACE IS 77 WILES. 

tHE 	IIUIIF.EP OF INITERSECTIONS I; 350: 

THE 	 ESTIHATED OF ROAD SEGIIEITS 1s 700.INIUIWBEP 

THEPE APE 10 CAPS IN THE FLEET 

AND 	 THERE APE 0 IIOTOPCCLES. 

THE 	 ItUIMER OF VEHICLES ON EACH SHIFT IS: 

rIFBT SHIFT iAX. 5 

FIRST SHIFT IlIN. 5 

LECOuD -HIFT WAX. 5 

CECOMD SHIFT WtIN. 5 

THIRD :HIFT IA>' 5 

THIRD SHIFT WIM. 5 

THE 	 CIT? WOULD PEQUIRE 4 IIIDE-BAIID OR 

PULSE T-O-A ANTENNA SITES AND 6 NARROW 

SAND ANTENNA SITES WITH 7 AND 3 ILE COVEFACE PDII. 
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Table 1- 9. Small Model City C. Medium Model City AVM Cost Summary Tables 
AVM Cost Summary 

I- 11. Medium Model City ParametersIIO~o.Table 
S LL TOTALS ~ Used in AVMv Cost Analysis 
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THIRD SHIFT IN. 50 
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Table 1- 13. Medium City Vehicle Polling Table 1- 14. Large Model City Parameters Used 
in AVM Cost Analysis (Cont'd) 
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IV. 	 AVM SYSTEM ACCURACIES 
AND COST BENEFITS 

A. 	 System Parameters ThatAffect AVM Costs 

The prediction of the expected accuracies of 
AVM systems is essentially a probabilistic prob-
lem. Actually there are two distinct problems, 
one a precursor to the other, depending on the 
class of AVMV! system. Classes I and III are 
loosely referred to as "random route" systems 
be-cause the techniques have the capability of 
vehicle location anywhere within their surveil-
lance areas. Classes II and IV are called "fixed 
route" systems because the location capability 
exists only in the vicinities of signposts that are 
distributed along the wayside or on the roadway at 
intersections within the covered area. Besides 
the inherent range of uncertainty in the location 
measurements provided by individual AVM tech-
niques, Classes I and III are subject to another 
location error, which is the shift in the moving 
vehicle's position during the interval between the 
instant of polling and the display of location data 
at the base. On the other hand, Class IIand IV 
techniques provide location information only at the 
time when the vehicle passes within the sensing 
radius of a wayside or buried signpost. This 
information is the best available until the time 
that the vehicle enters the sensing radius of 
another signpost. A measure of this uncertainty
in location is required to determine the "inherent" 
accuracy of the signpost AVM techniques. This is 
particularly true when the signposts are less than 
maximally dense; that is, when the signposts are 
placed two or more intersections apart. 

It is intuitively reasoned that if the signpost 
sensors in Classes I and IV are placed at each 
intersection, then the location of any vehicle can 
be found to plus-or-mmus one block. It also fol-
lows that if the sensors are placed in a diamond 
pattern at every other block in each direction, 
then the accuracy is plus-or-minus two blocks, 
This reasoning is valid only if every passage
through instrumented intersections by all vehicles 
is known. If the polling technique or RF channel 
loading is such that this data frequency cannot be 
assured, then the achievable accuracy is not as 
well known. A tutorial treatment of the less 
dense signpost placement by Markov, or random-
walk, processes is included in Part Three of this 
Report. The analysis technique leads to a pre-
diction of the mean and variance of the distance 
traveled by a vehicle starting at an unsensed 
intersection before it passes a sensed intersec-
tion. The results of this technique for various 
signpost densities are as follows: 

Ratio 
(Sensed/Unsensed) Mean Variance 

1/1 1 1 

3/8 1.778 1.778 

3/9 z 2 

The 	second approach to the system accuracy
prediction considers not only the inherent error 
in the vehicle location technique but also the addi-
tional inaccuracies introduced by the delays in 
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successive pollings of the vehicles and by the 
computation of location when the vehicles in the 
fleet are moving at various speeds. In Part Three 
of this Report, the analysis, the method of solu­
tion, and the tabular results are presented. 

The technique for predicting the location accu­
racy was used to generate the family of curves in 
Fig. 1-36. These contours of system accuracy 
correlate the independent variables of the polling 
interval and the standard deviation of the inherent 
error. The accuracy contour yields the 95% con­
fidence interval for vehicle fleets that move with 
an exponential velocity distribution such that more 
than half the vehicles are moving at speeds less 
than 15 mph (6.67 m/s). It can be seen from the 
curves that either the polling interval or the inher­
ent error can quickly dominate the achievable sys­
tem accuracy if either is very large. The curves 
are shown for the system accuracy interval of 100 
to 1000 meters (0.1 to 0.6 mile). The curves for 
less than 100 and greater than 1000 meters are 
repetitions of those shown and can be derived with 
subtraction or addition of a unit constant on both 
axes (equivalent to division or multiplication of 
the interval or deviation by a factor of 10). 

B. 	 Estimated Cost Savings Based on Urban
 
Parameters
 

1. System accuracy estimation. The accuracy 
to be expected from any given AVM system in a 
locality is estimated by a step-by-step process. 
First, from the data provided for the particular 
city, the maximum and minimurn number of 
vehicles deployed is obtained. Next, the number 
of bits in the location message required from each 
vehicle for each technique is determined. The 
time required to poll the deployed vehicles with a 
0. 1-sec radio turn-on time is then computed for 
the redundant mode of the random polling process.
This value yields very conservative (or pessunis­
tic) polling intervals for the two values of vehicles 
deployed. These intervals together with the value 
obtained from the table of technique accuracies 
provide the entries to the graph of system accu­
racies. These curves are prestored in the com­
puter program. A rather simple linear interpola­
tion program_ yields a maximum and minimum 
estimation of the 95% confidence level of system 
accuracy for the maximum and minimum vehicle 
deployments. The location accuracies used are 
usually greater than the standard deviation value. 

Z. Vehicles saved estimation, Based on the 
prior work of Larson (Ref. Z), Knickel (Ref. 3), 
and Doering (Ref. 4), a quantitative measure of 
efficiency increase in responding to calls for ser­
vice should be determinable from the accuracy of 

the AVM system. One of the approaches to this 
problem is to compare a situation where, in 
response to a call for service, the dispatcher 
always sends the vehicle responsible for a beat to 
that where the location of the vehicles is known 
and the "closest" vehicle is dispatched to the 
scene.
 

The efficiency comparison is made either in 
the excess time required or the excess distance 
travelled by the beat vehicles relative to the 
closest located vehicles. The conclusions of this 
approach are generally that a vehicle location 
accuracy of about 1/5 the beat-side dimension is 
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sufficient. Additionally the service improvement 
is found to be about 7%0 for the locator system dis-
patches versus the "tcenter of mass": or beat 
vehicle dispatches. 

The more recent study of Doering (R~ef. 4), 
however, compares response time performance in1 
a situation with differing absolute accuracy values 
of the A !VM system and a given fleet size with the 
number of vehicles required to provide the same 
response time with no AVMv. Doering's study indi-
cated that, in the area studied (the city of Orlando, 
Florida), 34 vehicles in the AVMv fleet where the 
accuracy is 240 meters (800 ft) would provide a 
response time which would require 35. 8 vehicles 
in a non-AVMv fleet. Extrapolation of the curves 
presented by Doering indicates that 8 to 10% fewer 
vehicles in an AVMv system fleet wilth perfect 
(0 feet) acculracy can provide the same response 
performance as the larger number of vehicles in 
a non-AVlv[fleet. Extrapolation In the direction 
of less accurately known location, indicates that 
the re is little improvement in re spons e time with 
location accuracies of 450 meters (1500 ft) or 
more. It may be coincidental that this value is 
about 0.3 kin (0.Z mile), which is 1/5 the average 
beat side dimension in the Orlando simulation 
studies. A plot of the increase required in a non-
A /M vehicle fleet to equal AVMv vehicles response 
timne performance versus accuracy shows a lin-
early decreasing value as the AVM accuracy 
decreases. 


vs 95%0 AVM System Accuracy 

For the purposes of this study, a 77o increase 
in efficiency is assumed for a perfect AVMv sys­
tern, with the percentage decreasing linearly to 
zero at an AVM accuracy of 0, Z timles the average 
beat side length. The average beat is calculated 
by dividing the area by the number of vehicles 
deployed.
 

For maxinmurn and minimumr deployments, the 
efficiency increase assumption yields different 
values for the same A~VM technique accuracy. In 
case s where the minimum deployment is substan­
tilly lower than the maximum, the apparent beat 
size may be increased to the point where an AYM[ 
technique wvhich yields no efficiency increase with 
maximnum deployment may display a marked 
irmprovement in response. Additionally, the mini­
mum deployment decreases the polling time inter­
val which provides an additional improvement in 
system accuracy. 

The calculation of cars saved is based on a 
reas onable re ciprocity as sumnption that fewer car s 
with A /VM can yield the same performance as that 
obtained now with a given fleet size The number 
of cars saved is determined by multiplying the 
percentage efficiency value, obtained from the 
beat dimnension and system accuracy, by the nurn­
her of vehicles deployed. Savings of less than one 
vehicle are allowed by the calculation. As stated 
before, the factors tending to increase efficiency 
are such that, in some cases, the number of cars 
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saved with minimum deployment exceeds that for obtained is then multiplied by 5 years for the total 
mnaximnum deployment with a given technique. saving. 

The 5-year saving is positive only Lf the value 
3. Estimated 5-year Cost saving. The 5-year of the car saving exceeds the annual O-M cost. 

saving cacltopeetd in Tables 1- 17 The calculation is performed for a given technique 

through 1-20 is an attempt to place a dollar value only f a car saving is indicated, and the result s 
on the efficiency increase which might in turn presented regardless of sign. No calculation is 
indicate possible choices of candidate AVM sys- performed if no car saving is indicated. 
terns. The calculation assumes that each car 
saved is worth $150, 000 annually, which is pri- A simnple sumrnaton of savings rather than a 
marily salaries and overhead (as of 1974). This present worth of an anuity calculation is justified 
is an average value for a l-man cr based on on the basis that it is less speculative and might 
5 salaries and 100% overhead. The saving for be more nearly correct if salaries rise at a per­
small, medium, and large cities is a straightfor- centage rate which exceeds the rate of return that 
ward multiplication of the mamximurm of the cars can be realizedl on 5-year municipal investments. 
saved times the annual value of the car mnus the The 5-year saving estimnaton is presented solely 
O-Mv costs of the AVMV technique. The value for AVM system comparison purposes, 

Table 1-17. Small Mvodel City Cost Benefits Table 1-19. -Large MVodel City Cost Benefits 
from AVMv System Usage from AVM Systems Using One RF Channel 
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V. 	 COMPUTER PROGRAMS FOR 
ANALYSES OF AVM NEEDS 

cost estimates for the AVM techniques are
The 

in almost all cases precisely that- estimates as 
of 1974. They have the additional shortcoming
that large-scale production is assumed, which 
accounts for the generally low system cost 
amounts Therefore, additional studies are nec-
essary to refine these estimates in view of the 
rapidly changing technology and costs. 

Although the cost estimation procedure forAVM 
systems in model cities is a valid technique, it 
does not take into account the individual differences 
of real cities. That is, the system engineering
aspect where the vagaries of a particular city and 
operational methodology are considered has not 
been included. The AVM system cost estimation 
and particularly the performance estimation and 
resultant estimated savings are essentially averag-
ing processes. Since each city differs in details 
from each other city, and the AVM system cost,
performance, and impact depend on these differ-
ences, final selection of an AVM system will 
require an individual analysis such as those pre-
sented in Part Two. 

An individualized analysis for a particular city
requires the two following steps- (1) Synthesis of 
AVM systems corresponding to each of the desired 
concepts as they would be configured for the physi-
cal, political, and cost environment of that city,
and (2) evaluation of the effects of each of those 
systems. The process of synthesizing apartLcular
AVM system is a straightforward but tedious task,
requiring detailed technical knowledge that may 
not be readily available in real cities. It can be 
made easily available, however, by the develop-
ment of an AVM system synthesis computer 
program, as is described later. The expected 
effects can then be assessed by using the resultant 
systems in a system simulation computer pro-
gram, which is described in more detail in 
Section B. Since these two programs were 
planned to be developed in Phase One of this AVM 
Systems Study project, they do not yet exist. 

A. AV! System Synthesis Computer Program 

The synthesis program will be based on design
algorithms, equations, cost estimates, and theAVM 
data base developed in Phase Zero of this Study. 
These program components include antenna siting
algorithms for time-of-arrival systems, message
length equations for different location technique
and polling combinations, accuracy estimation 
equations for various reporting intervals or sign-
post densities, and life-cost equations. A prelimi-
nary concept of the basic elements of the AVM 
system synthesis computer programis shown in 
Figure 1-37. A concept of the operations sequence
in using the synthesis program is presented in 
Table I-Z. Salient features of the synthesis pro­
gram are listed in the following subsections. 

1. City and fleet data for AVV System
SynthesisProgram. The synthesis program will 
first summarize the data provided from the input 
file. The purpose of this step is to provide the 
user with an opportunity to review the input 
before actually running the synthesis program.
Table 1-22 lists some of the parameters that will 
be included in the data input summary. 

Table 1-al. Operating Sequence of
 
AVM System Synthesis
 

Computer Program
 

Step 1. The user will supply the values of 
those parameters that describe his particular
city. Some of the data may be fairly exten­
sive, for example, geocoding data or DIME 
file type information which describes the city
street/block system in detail, For informa­
tion of this type a computer-readable data file 
will be used. An auxiliary program, separate
from the AVM system synthesis program, will 
be developed to facilitate the interactive 
development of the data file. 

Step 2, The synthesis program will read the 
datafile and determine the AVM system con­
figurations suited to the city. If any data is 
missing or incomplete, the program will 
indicate which systems cannot be evaluated and 
provide an opportunity to modify the data file. 

Step 3. The program will present basic com­
parson data for each system configuration 
option. 

Step 4. After selecting the viable confLgura­
tion opttons,the program will shift to a 
"trade-off" or compromise mode in which the 
user can access further detail and investigate
the options available within a particular choice 
of system concept. 

Table 1-22. City and Fleet Input Data 
for AVM System Synthesis Program 

City name AAAAAAAAAAAAAAAAAAAAAAAA 
Area monitored. XX.X sq miles 
Maximum X and Y dimensions: XX. XX mi. by 

XX.XX miles
 
Street length- XXX.X miles
 
Number of intersections: NNNN
 
Number of road segments; NNNN
 
Number of vehicles instrumented: NNNN
 
Average number of vehicles each shift:
 

NN, NN, NN
 
Number of beats per shift: NN, NN, NN
 
Shift hours: HH-HH, HH-HH, HH-HH

Number of dispatcher consoles: N 
Utilization factor by shift: FF%, FF%, FF% 

(This is the fraction of time available 
to respond to calls for service).

Average call for service time by shift: 
HH, HE, HE 

RF channel utilization factor: P%, P%, P0 
RF channel assigned' N Planned: N 
LORAN coverage in area 9: Y-N; DECCA 9: 

Y-N
 
AM stations in area K--, W--, K--, W-­

2. AVIV Configuration options for AVV Sys­
tem Synthesis. Each of the AVM options identified
by the selection process will be described briefly
in narrative form. Each will be tagged with an 
identity code for later use. Then for each of the 
applicable options, the following gross data will 
be presented for comparison: 

a. Cost estimates. Total system cost, 
"present value. "$XX XXX XXX (These figures 
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Figure 1-37. Concept for A~rVM System Synthesis Computer Program 

will be for comparison purposes only. A b. Resource utilization estimate. 
breakdown follows:) 

Radio channels required: XX.X 
One-time costs $XX XXX XXX 

Microwave or dedicated telephone 
(development, conversion, facilities) lines needed: XXX 

Installation costs $XX XXX XXX Computer memory estimate:
 
XXX XXX bytes
 

Recurring costs $XXX XXX per year
 
c. Performance estimates.
 

(operations, maintenance, training)
 
Median location accuracy- XX ft 

Replacement $XXX XXX per year (effective polling rate = XX vehicles/ 
second)
 

(equivalent annual payment at 10% year) 
Fraction of fleet with error 

Upgrading costs 
less than ft: XX% 

Display consoles 
$XXX XXX plus $XX XXX per year (each) less than ft: XX% 

Fixed sites 
$XXX XXX plus $XX XXX per year (each) less than ft: XX%0 

Signposts 
$ XXX plus $ XXX per year (each) d. Comnyents. Design features and other 

Vehicle equipment relevant considerations will be noted. Typical 
$ X XXX plus $ XXX per year (each) cornments that might apply to specific systems 

are as follows: 
Telephone mileage 

$XXX XXX plus $XXX XXX per year (each) "Vehicle status is monitored". 
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"Field unit alarm capability is present". 

"Polling procedures are inflexible". 

"Shared usage by several agencies would 
be difficult to implement". 

"Effect of weather on performance expected 
to be small'. 

"Fleet locations easily monitored by 
public", 

"Each 90 vehicles monitored requires an 
additional radio channel", 

"Sensors may require protection from 
vandalism"-. 

e. Trade-off potential. This portion of the 

output will identify significant trade-off possibil-

ities and the potential outcome that could result 
from those trade-offs. The trade-off relation- 
ships will be accessible during Step 4 (Table 1-21) 
of the program. Typical trade-offs that might be 
possible for all or some of the systems are these: 

Location accuracy vs number of radio 
channels (via the polling option and rate), 

Computing at the command center vs corn-
puting on-board the vehicles. (This affects 
the costs and accuracy vs radio spectrum 
trade-off.) 

Display characteristics vs cost. (These 
trade-offs may be independent of the other 
descriptors of the system.) 

Location accuracy vs cost (via the spatial 
density of signposts, the number of fixed 
sites, etc). 

f. Cost benefit estimate, A preliminary estt-
mate of efficiency increase with AV V will also be 
an output. The cost benefit estimate will be 
derived from the estimated increase in efficiency 
and data such as that listed below-

Patrolman average salary: 
$XX, XXX per year 

Patrolmen required for each vehicle' N 
Support personnel for each vehicle: N.N 
Overhead on salaries: PP%0 
Replacement cost of vehicle: $X, XXX 
Maintenance cost of vehicle: 

$X, XXX per year 

'Based on the size of the fleet and these param-
eters, a cost benefit (deficit) first estimate will 
be provided such as: 

Number of vehicles saved by shift. X, X, X 
Vehicle cost saving equivalent: $XXX, XXX 
AVM capital investment equivalent,

10 yr: $XXX, XXX 

5 yr: $XXX, XXX 


The information provided by the AVM system 

synthesis program will not in itself provide suf-

ficient justification for selection but will be a 

very important first step that elirninates obvious 

non-conpktitive techniques and allows for more 

detailed consideration of the viable techniques, 


B. AVM System Simulation Computer Program 

Much work has already been done by others in 
regard to AVM simulation (see Bibliography), 
The intent of this study effort is to utilize as much 
of that work as possible. 

There is one aspect of the prior work where it 
is believed-that improvement is needed. This is 
in the area of AVM system accuracy estimation. 
Prior AVM simulation work has investigated the 
overall command and control function to deter­
mine the effect of AVM system accuracy on 
"wrong dispatches" and the average distance 
travelled as a result of these "wrong dispatches." 
A 'wrong dispatch" results when the closest 
available vehicle is not the one directed to 
respond to the call for service. This incorrect 
action results from not knowing precisely the 
vehicle locations, and thus the entire system 
performance is degraded owing to unnecessary 
distance travelled and time consumed in respond­
ing to calls for service. 

In these prior simulations of the command and 
control functions, the investigators assigned 
values such as a 95 percentile value of a radial 
error of X feet to the AVM system accuracy. It 
has been assumed that this error distribution is 
normal and constant with time. The computer 
simulation programs determine the exact location 
of each vehicle from a mobility routine or driver 
scenario. Then, in order to test the system 
response to a call for service, each of the exact 
locations is corrupted in some random fashion 
with either X and Y or with an angle and range 
to the exact location. The apparent location is 
then used by the dispatching routine in the search 
for the vehicle closest to the call for service. 
The foregoing mode of simiulation effectively 
assumes a constant value for the AVM system 
accuracy which may be misleading for all but 
those techniques that use very short intervals 
between vehicle location determinations. Short 
interval interrogation of location is not a requisite 
mode of operation in many AVM techniques and is 
impractical or inappropriate in others. 

A more realistic approach to AVIV accuracy 
simulation is to model the actual vehicle location 
process, including the expected or appropriate 
polling technique and taking into consideration the 
time lapse from the last location determination, 
the motion of the vehicles, and the resultant 
effect on closest car determination. In this mode 
of simulation, the vehicle mobility or driver 
location routine can be altered by a time-varying 
location uncertainty, if that is appropriate for the 
particular AVM system concept. The exact nature 
of this uncertainty or modification to the exact 
location may also be a function of other factors 
in addition to time. These factors may be vehicle 
speed, physical location at time of interrogation, 
distance travelled since last location, or distance 
travelled since last signpost proximity update. 
These factors will be explicitly considered by
the AVM simulation program. 

An accurate measure of the reduction in 
response time requires that a reasonably accu­
rate geocoded definition of the coverage area be 
a part of the simulation program. Simulations 
that sum the absolute values of the differences 
in X- and Y-distances from the vehicle position 
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to the location of the call for assistance give a 
correct solution only for idealized rectangular 
cities. Geocoded descriptions of the coverage 
area will allow an accurate measure of distance 
in each instance, since the optimum trevel routes 
can be used in the simulation. 

The advantage of using the more accurate AVM 
simulation models is that a more realistic 
appraisal of the expected increase in efficiency 
can be determined. In addition, the possible var­
iations in system configuration that affect per-
formance parameters of the entire system can be 
investigated with the assurance that the influence 
of the variation has been considered. 

Other technical performance parameters that 
will be considered in the simulation program 
include the data links involved in the vehicle loca-
tion process and the effects of errors in reception; 
the effects of entry of new vehicles into the cover-
age area, and the re-establishment of the position 
of "lost" vehicles in relative location techniques.
In addition, the actual location algorithm for each 
technique can be exercised with the expected input 
data. The preliminary concept of the main com­
ponents of the AVM system simulation program 
are shown in Fig. 1-38. As already indicated, 
the intent is to develop this program around prior 
work insofar as possible. 

Heretofore, simulation has been used almost 
exclusively in regard to reducing response time. 
The proposed simulation program will allow the 
investigation of other aspects of vehicle location. 
The utility of post data analysis can be evaluated, 
and the effects of an officer-needs-assistance 
incident can be assessed, both for the impact on 
subsequent calls for service and on the response 
time improvement to the officer in trouble. 
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PART TWO. AVM DATA FOR USER GROUP ADVISORY COMMITTEE CITIES 

I. COST BENEFITS OF AVM SYSTEMSFOREOST OF SEN M 
FOR SEVEN CITIES 

A. 	 Rationale for Selection of UGAC Cities 

In order that a more realistic appraisal of 
the costs and expected performance of AVM Sys-
tems could be estimated, police department 
representatives from several cities were invited 
to participate in a User Group Advisory Commit-
tee (UGAC) devoted to studying AVM technologies, 
A set of nine criteria was established for selecting 
typical Southern California cities for the UGAC 
study. Some criteria are obvious and were estab-
lished for time and economic considerations, 
while others were arrived at by heuristic pro-
cesses. In this listing, the future tense is used 
because the criteria were established before city 
selection began. A brief rationale is presented 
with each criterion, to wit: 

(1) 	 City Size. Cities in three categories, 
(a) 	less than 20 sq miles, (b) between 20 and 
100 sq miles, and (c) greater than 100 sq 
miles, will be solicited to determine the 
impact on urban areas to be covered by 
AVM Systems. 

(2) 	 Geography/Topography. Essentially flat as 
well as hilly areas in the communities are 
desirable to ascertain the effects on AVM 
methods as well as the communication data 
links. 

(3) 	 Population Density/Land Use. These cri-
teria are closely allied, and agricultural 
areas, industrial centers, and suburban as 
well as high-rise residential areas should 
be a part of the cities. This criterion will 
eliminate those cities formed to be wholly 
agricultural or industrial areas for tax 
purposes. 

(4) 	 Building Sizes. The inclusion of high-rise 
dense metropolitan, low-rise business (less 
than 6-10 stories), mixed business and 
residential, and suburban areas is desirable 
to match and extend prior AVM work and to 
include the effects of these structure distri-
butions on the communication links, 

(5) 	 Population. Cities with populations of 
(a) more than 1, 000,000, (b) between 
200, 000 and 1,000,000, and (c) less than 
200, 000 will be solicited. These numbers 
are arbitrary and are not firm, but the pop- 
ulation somewhat determines the size of the 
municipal government. It is felt that this 
criterion is desirable as differing governing 
bodies will require AVM information to dif-
ferent degrees. Additionally, the partici-
pants in the user group will probably have 
different authority within their city govern-
ments as a function of population. It is 
believed, that those from smaller cities 
may be closer to the policy making level 
than those from major cities, 

(6) 	 Willingness to Cooperate. This is an 

obvious but important criterion and is 


difficult to assess beforehand. Itis essential 
because the participants will be required to 

furnish data about their city as well as being 
regular in meeting attendance. 

(7) 	 Pursuing or Contemplating AVM. This 
criterion is necessary to assure some active 
interest in the study effort. 

(8) 	 Close to TPL. Economic considerations 
require this criterion since expense monies 
are not available in the grant for the partici­
pants. Additionally, regular frequent meet­
ings are required and extensive travel time 
would be an additional expense to the partici­
pating city. 

(9) 	 Must Have Public Safety Department. This 
is an obvious and perhaps trivial require­
ment, but is necessary to eliminate those 
cities that contract for police services with 
another government agency. These cities 
would probably fail Criterion (7) as well. 
This criterion is a natural outgrowth of the 
principal thrust of the proposed work which 
will focus on public safety vehicle location. 

None of the foregoing criteria were intended 
to preclude participation by governmental bodies 
other than cities, such as counties. By criterion 
(8), only Los Angeles and possibly, San Bernar­
dno, Ventura and Riverside counties could have 
been considered. 

Seven cities were selected which met the 
majority of the criteria. Small cities were 
Montclair and Monterey Park. Medium cities 
selected were Pasadena, Long Beach, and 
Anaheim. The large cities were San Diego and 
Los Angeles. 

Senior police officers from each of these 
cities participated in the UGAC and provided 
information concerning police operations and plans 
as well as statistical data for the individual cities. 

B. 	 Parameters Used in AVM Cost Analyses 

Each UGAC city had different modes of 
operation and requirements regarding the imple­
mentation of AVM systems. For example, some 
police departments operate on a three-shift basis, 
while others use the ten-four plan where the 
officers work four 10-hour days in sequence. In 
responding to calls for service, some police 
departments use only patrolling vehicles while 
others dispatch the plain colored (i. e. , pastels) 
in response to citizen calls. The inclusion of 
motorcycles, either two- or three-wheelers, in 
the AVM system was planned by some cities, but 
not by others. In the main, however, there is 
sufficient commonality of parameters to allow for 
automation of the AVM cost and performance 
estimation procedures. 

1. Number of vehicles in the fleet. The 
total number of vehicles to be instrumented is the 
basis for the car cost estimates. Motorcycles 
were not included because a satisfactory digital 
message capability for motorcycles does not yet 
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exist. Vehicles, which n general do not respond 
to calls for service were also not included. The 
maximum and minimum number of vehicles by 
shift was determined and normalized to a three­
shift operation. This parameter is necessary to 
determine vehicle polling intervals. 

2. City area, street mileage, number of 
intersections and road segments. This informa-
tion was provided by the representatives for the 
UGAG cities. The beat area is an important 
parameter which is used in the AVM system accu-
racy estimation, but no standard or common 
method of determining this parameter could be 
found. In some cities, the beats are correlated 
with the crime reporting technique. In others, the 
beats are periodically readjusted as determined by 
the average number of vehicles deployed on par-
ticular shifts. The beat size parameter is an 
independent variable in predicting the response-
time improvement that should accrue with a given 
location accuracy value. For the purposes of this 
study, the beat size was placed at the values 
resulting from dividing the city area by the num-
ber of vehicles deployed. This average value 
assumption cannot be wholly justified when, for 
example, beats vary from 6 blocks to 49 square
miles in size as they do in San Diego. 

3. Number of signposts or fixed sites 
required. The fixed site enumeration parameter 
in Glass I and IV AVM systems was determined 
from the data supplied concerning the number of 
intersections or road segments. Where the tech-
nique was dependent on the number of lanes in the 
segment, the average value of 2.4 lanes per street 
segment was assumed as in the model cities. For 
the Class III AVM techniques, the placement and/ 
or the number of widely distributed fixed sites 
required was determined by an algorithm which 
was only a function of the area in the model city 
estimations. The boundaries and shape of the 
UGAC cities seemed to dictate a more realistic 
approach. Boundary outline maps of each city 
were prepared, and the most optimum placement 
of a grid representing the spacings for narrow-
band and wide-band antennas was determined. 
The minimum number of sites that would be neces-
sary was thereby determined. The assumptions 
made were that there were no "difficult" RF areas 
that would require additional coverage, and that a 
fixed site could be placed where needed regardless 
of zoning, existing structure, or geographical 
restrictions. 

4. Costing procedure for AVM Systems in 
UGAC cities. The costing of the various AVMa 
system configurations for the UGAG cities was 
accomplished through the use of the APL computer 
programming language (see Part Three). The 
costs of vehicle equipment, fixed sites, base 
equipments, and polling elements were stored in 
the table form by technique and cost category 
(e.g., equipment, installation, operation and 
maintenance). This assemblage forms the cost 
data base. The various parameters for each 
UGAC city are also stored in a prescribed manner 
as follows: 

(1) 	 Urban area in square miles. 

(2) 	 East to West extent in miles. 

(3) 	 North to South extent in miles. 

(4) 	 Road mileage. 

(5) 	 Number of intersections. 

(6) 	 Number of road segments. 

(7) 	 Number of vehicles in AVM fleet. 

(8) 	 Number of motorcycles. 

(9) 	 Maximum number vehicles deployed in first 
shift. 

(10) 	 Minimum number of vehicles deployed in
 
first shift.
 

(11) 	 Maximum number of vehicles deployed in 
second shift. 

(12) 	 Minimum number of vehicles deployed in
 
second shift.
 

(13) 	 Maximum number of vehicles deployed in 
third shift. 

(14) 	 Minimum number of vehicles deployed in
 
third shift.
 

(15) 	 Number of dispatcher consoles. 

(16) 	 Number of small coverage (or narrow band) 
Class III AVM sites. 

(17) 	 Number of wide coverage (wide-band)
 
Class III AVM sites.
 

The cost estimates (as of 1974) are comi­
piled into the cost categories after multiplying by 
the appropriate p'arameter. The program is very 
simple, being really a programmed desk calcula­
tor with automatic input. The rationale for pro­
gramming was to avoid a repititious procedure of 
calculating fine cost categories and obtaining 
three totals for each of 36 AVM techniques in the 
seven UGAC and three model cities and to simplify 
future cost estimations. 

C. 	 Descriptions and Summary Analyses of
 
UGAC Cities
 

In Sections II through VIII, outline maps of 
each UGAC city are presented along with detailed 
listing of each city's physical parameters, AVM 
cost summaries, vehicle polling cycle times, and 
estimates of the AVM system accuracies and 
5-year cost savings. The seven selected cities 
were Anaheim, Long Beach, Montclair, Monterey 
Park, Pasadena, San Diego, and Los Angeles. 
Thirty-six techniques in the four AVIV classes 
were investigated for each city. Each of the seven 
cities was treated as an entity, with the exception 
of Los Angeles which was evaluated for each of its 
four 	geographical bureaus. Additionally, because 
of the large number of vehicles deployed in the 
cities of San Diego and the four Los Angeles 
bureaus, the system accuracies were determined 
for shorter cycle times or polling intervals. That 
is, more than one RE channel (half-duplex) was 
allowed for these areas. 

In this Section, the summary analyses for 
each UGAC city are based solely on a comparison 
of the estimated 5-year saving and the estimated 
costs (as of 1974) of particular AVM systems. 
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The 5 -year saving is predicted on only one factor 
of AVM performance, namely response time 
improvement. There are many other aspects of 
AVM systems which should enter into the decision 
process. Many of the thirty-six listed techniques 
which appear viable have never been developed or 
tested in typical urban environments. Therefore, 
only the developed and/or tested concepts will be 
discussed in the following summary descriptions, 
Complete tabulations are given in Sects. II to VIII. 

1. Anaheim, CA. This city might be char-
acterized as a break-even city with ,response time 
improvement such that cost savings just equal
AVM costs, but only for the dead-reckoning tech-
niques in Class I. Anaheim is slightly smaller 
than the medium model city (see Part One, 
Sect. III) in both area and fleet size, and the cost 
sunimary indicates Class I system costs for the 
dead-reckoning techniques of about $280, 000. The 
5-year saving is about $300,000 for a magnetic-
compass/odometer systemwith a system accuracy
of 50 to 75 meters. 

The Class II AVM systems which indicate 
some car saving are the wide-spaced signposts 
and buried magnets. The accuracies achievable 
are roughly 250 meters and 50 to 75 meters, 
respectively. The cost of the Class II wide-spaced 
signposts is about twice the saving, while the 
buried magnets may cost four times the 5-year 
saving, 

The most accurate Class III and all Class IV 
systems resulted in car saving, but the cost saving 
was negative. (See Sect. II.) 

2. Long ,Beach, CA. The same AVM tech-
niques as in Anaheim are viable in this city, but 
because the city is slightly larger In area with a 
substantially bigger vehicle fleet, the costs are 
about $50,000 more for the Class I dead-
reckoning techniques. The 5-year savings are
 
lower, about $160, 000, because the maximum 
deployment considered is less than in Anaheim. 

in the order of 5% of the deployed vehicles (4 to 7), 
that is, 0.2 to 0.4 cars. 

Despite the fact that Montclair has a wide­
spaced signpost AVM system installed and opera­
tional for over a year, this analysis indicates that 
the cost is substantially greater than the saving. 
The reason this analysis is faulty in this case is 
that Montclair does not have either a computer in 
the system nor the operation and maintenance 
(O-M) personnel indicated as required for all 
systems. 

The system accuracy indicated for the wide­
spaced Class II signposts is about 250 meters, 
which is quite close to that achieved in Montclair. 
The installed system has an accuracy of 0. 2 km 
(1/8 mile) with slightly fewer signposts. The 
system costs are quite similar for the technique if 
the O-M category is omitted ($60K versus $71K). 
(See Sect. IV.) 

4. Monterey Park, CA. Car savings are 
indicated for all classes of AVM in this city.
Again as in the other small city, or small model, 
the cost saving is near zero or negative. This 
city, because of the great difference between 
maximum and minimum deployment and short 
polling cycle shows a greater car saving when 
fewer vehicles are deployed. If the O-M costs 
were greatly reduced, the 5-year saving would 
exceed the costs. (See Sect. V. ) 

5. Pasadena, CA. This city is roughly 
half-way between the small and medium models. 
Again a car saving is shown in all AVM classes 
with negative 5-year cost savings. Again, the 
short polling cycle causes little degradation of 
achievable accuracy. The O-M costs are the 
principal element mitigating against a-positive 
saving, and the value for cars saved is less than 
a whole car. (See Sect. VI.) 

6. San Diego, CA. In this city, virtually 
every AVM technique indicates a positive 5-year 

There is a large difference between Anaheim 
and Long Beach in the Class II AVIM systems as 
Long Beach has almost four times the road mile-
age and almost twice the number of intersections, 
Long Beach is unique in having a large number of 
named dedicated alleys in the central area which 
results in an intersection density of 144/km 2 (400 
per square mile). This factor causes the Class 11 
and Class IV techniques to have a greater number 
of installations than are really required. Wide-
spaced signposts and buried magnets indicate car 
savings, but the 5-year figure is well below the 
systems cost. If the high central density were 
reduced to a more reasonable value, the disparity 
between cost and saving would lessen to the point 
where the saving would be half the cost. 

The pulse TOA Class III technique and all 
the Class IV systems indicated car savings, but 
cost savings were negative. (See Sect. III.) 

3. Montclair, CA. In this city, the dead-
reckoning techniques of Class I AVM and most of 
the techniques in the other classes indicate car 
savings primarily because system accuracies are 
very high. This is a direct result of a very short 
polling cycle time. The 5-year savings for all 
systems that indicate a saving are negative and 
exceed a "loss" of $Z00,000. The car savings are 

saving. The Class I dead-reckoning techniques

system costs are exceeded by the estimated 
savings, and the Class III costs are close to the 
savings. This result occurs despite the poor sys­
tern accuracies caused by relatively long polling
cycles. There is a substantial car savings because 
the averaging of beat areas leads to results in 
which apparent response time improvements with 
very inaccurate techniques occur. More than half 
the area of San Diego is covered by five northern 
beats which causes the average beat to be 40% 
larger in side dimension than the average beat 
that would result if these five beats and the area 
involved were not considered. The reduction in 
beat dimension would cause a decrease in apparent 
response time improvement. 

In an attempt to reduce cycle time effects, 
the system accuracy and cost savings calculation 
were also performed for three RF channels for 
AVM. The cost savings under these conditions 
for Class I systems were doubled. The savings
for Class II were uniformly increased by about 
$1. 8 million to the point where the cost of the 
buried magnet system was equalled, as were the 
costs of the Class III pulse TOA system, by the 
cost saving. (See Sect. VII.) 

7. Los Angeles, CA. Los Angeles was 
analyzed separately for each of the four bureaus 
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MIL'S(Central, South, West, Valley), which range in 
area from 130 to 500 km Z (50 to 200 square miles).
 
Again as i the mediumin model city, all of the ATEN, NA ICCASr OC.IM 01OJ.IETUIITM
ON * 0 

bureaus show a 5-year saving for most of the AVM 
techniques. All bureaus operate about the same 
number of cars, so the effect of beat size on the 
response tine efficiency increase is greater for 
the larger bureaus. In overall cost savings, the 
Valley bureau shows the greatest saving, followed 
in order by the West, Central, and South Bureaus. 

The AVM system-accuracy and 5-year 
saving calculations were performed for 2 and 3 
RF channels for the AVM systems for each of the 
bureaus.- As expected, the accuracy improved to Figure 2-1. Anaheim, CA, AVM Pulse or 
about one-half and one-third that of the one RF Narrow-Band Antenna Locations 
channel case. The 5-year saving with 3 channels 
showed an increase when changing from 2 to 3 RF 
channels that was almost twice that obtained in MIS 
changing from I to Z RF channels. The increase I, 
in accuracy leads to increased car savings, ° 1 2 '45 

thereby reducing the effect of the constant O-M 
expenses (See Sect. VIII.) 

I. 	 Anaheim, CA, City AVM Cost
 
Benefit Analysis Tables
 

Table 2- 1. Anaheim, CA, City AVM Physical
 
Parameters
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Table 2-3. Anaheim, CA, AVM Polling Cycle Ill. Long Beach, CA, City AVM Cost 
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TableZ-4. Anaheim, CA, AVM Accuracies
 
and Cost Benefits 


.'l oTEII IPCCIJPCIES.1,UEIC-ES ESTII l1nUe0I 1TTEDSRUING0 
THEO 5.27511 VEHICLES ESTIITE3 

Cli". I ULTIIITE VEHICLES RCCAWCe 54"ED 5-ESP1
TECI4IIIUE emCURAc SOUSD 11'a i1IIN 1%N Vit. 11' 

I E,2UBC>.P I -' .- 1 -5
STLU3 IMp $0 I 02 0 0 7 I 0 
-ArCELEFUIIETEPa '4 I 3 5 0 7 I 23U 

LICEF IEL0I0IT I- I 7 49 0 7 I I 5 
ULTPHZOIIIC I)ELO .11 I 10 1lOS 0 . I 0 e 
CLUIPA$-UDUIIETEP SU 1 7" U1 0 7 1 = 

OMLPASC/LA$EPVC!L is I 7, 0 0 7 I I S 
CIflS/UOIIC $EL. 1-, 1 7, ' ,~ 0, I I U0 
O0I2GH 1,00 11 21±4 .41 0 0 0 "i 
LUPHtI 1oU 1 302 38402 001 
DEC1H uO 1 .72Z . U I u U -4,0
AhI-rPATI0O1 2UO 1 '70 'oI 0 0 0 0 
DIFF OIIFA IOU 1 391 04 2i U I 
SIFT LOpAII -uO 0 PiOl IU5+ 0 U U 11 0 

DIFM 11-STA .Su 1 56S 55- 0 0 0 U 11 
PELAN OIIECH Suo 0 o307 .115 0 U 0 0 UFEL t( LOrA Cuu U 2±15 214 0 0 0 0 u 
LH 11 
3IIFIED RE LOOPS t0 1 73 's , I I I2_ 
FEFLECTIIO &ICI13 10 1 7a .9 0 7 1 1 -1o0 
PEFLECTIIO ROAD - 1 72 0 7 I 1 
\-RAID POST le 1 -3 -3 0 I I 
H', "HF PuST 15 1 713 3 0 7 I I 
LF POST I00 1 23 11 .3 -,N
LlLHT/1-P POST 30 1 S2 20 0 1I U 
WIPIED 01001175 1 1 0 7 1 1 1 
ULTPASOIIIC pUGT 2j I ' SI 0 7 1 1 1*0 
TpRFFIC CEIISUP ±U.3 10I 0D 1 110 
CLOsSIII 
lim#-Ali PHtP001St 1000 0 0-88 1.422 0 U I 0 
VII-DAI FIt PHHSE 1200 0 8354 09 0 0 0 i1 U 
PUL'E T-O-PpIIOAL 100 1 177 172 0 5 . S _-20
101t COPpELIHTIOII I00 1 I'S I1, 0 5 U 7 

3IPECTIOII FIIOEP 7 0 1w0 17ao 0 i 0 U0 
CLMSS IV 
TPHPFIC LOOPS to 1 25 23 U C 1 2 -O 
11,I.ZDIO ±00 1 210 22, 05 U 255 

P16T00- 2TEC 6.110 1 2551*5 n'pTSoI-' e-TC S 1 .0 7 1 ­20 I 
ULTP C XTECT 20 1 's -o 1 1 -

Benefit Analysis Tables 

Table 2-5. Long Beach, CA, City AVM 
Physical Parameters 
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1.73 1 So 3 48 1.8. Z.01 3 75 

DIFF OMEGA L3 Z2 1.89 1 9. 3."4 2-10 2o33 07 
1 89 1 96 3.,4 e is 2 S1) 4 07 

DIFF. la~t1 59 1.94I 2.02 3 .>9 2 29 8 43 4 18 
1.94 2.02 3 9 2.23 2.43 4 13 

DIFV 	 fI-STR 13 1, 1 88 1 95 3 63 2 16 a So 4 0 
1-Mo 1 95 3 S63 2 16 2.30 4 05 

RLA OIt 693 e! > I 22 12 42 1417F 
L 3 6 93 7 01 a SS 12 27 I2 Q 14 17 

53 70 10 

BURIED RES LOP 12 25 	 1.7D3 1.82 3 w8 I So 2.M0 3M 
1.75 1 w 35O 14, 25 S 

RPLKCTIM SIGNS 12 25 1 75 1 w2 S SO 1 its5 3 SO 
1.75 1 w 35SO 	 I O 5 3 S 

1 75 1.82 a SO 1 0 2 M S 
X-BROD POSIT 12 17 1.74 1.81 3 -49 1 SS 2 IS 3M 

1 74 1-81 3 49 1 SS 2 IS S 78 
W, UHF POST 12 W 1 72 1.79 3 47 1 83 1 3 73 

I.n 1.79 3 47 1 83 1.98 a 73 
LF POST 12 17 1.74 1.81 3 49 1 So 2 So 3 78 

1 74 1.81 49 1 So 2 03 2 78 
LICKTII-R 	POST IS 17 1 74 1.81 3 49 1 Si 2 03 3 78 

1 74 1.81 3 49 1 88 2 03 3 7Fig'ur e 2-4. Log-°B , A V M 	 1* 1.8- e a c '-,C A 3=SO I %-'° 2 OS a:SO 

Wide-Band Antenna Locations ULTRAONC POST 12 17 1 74 1.91 3 49 1 So 2 So 3 In 
174 181 3 49 1 AS 2 3 78 

PAFF'IC SEMO L2 17 1 74 1.81 3 49 1 AS 2 M3 3 79 
1.74 1 81 3 .9 1 w 2 03 3 78 

Table 	2-6. Long Beach, CA, AV~v1 Table 2-8. Long Beach, C~A, AV/M 
Systems Cost Analyses Accuracies and Cost Benefits 
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X-DAND POST 11 1-4U 66 373 221 2520 25s 5 SD1 -:HOID POST la 1 64 b, U 9 1 -V 
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3 	 !-
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irV. Montclair, CA, City AVM Cost 

Benefit Analysis Tables 
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Figure 2-5. Montclair, CA, AVM Pulse or 
Narrow-Band Antenna Locations 
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Figure 2-6. Montclair, CA, AVM Wide-Band 
Antenna Locations 

Table 2-9. Montclair, CA, City AVM 

Physical Parameters 

AFEA IS 5-F SOUARE HILES. 

CAST lEST DISTANCE IS 2.3 HILES. 

NOFTH _OUTH DISTANCE IS 2.5 MILES-


TOTAL ROAD IIILEAGE IS 67 MILES.
 

THE NUMBER OF INTERSECTIONS IS 338.
 

FHE ESTIMATED NUMBER OF ROAD SEGIIEITS 1$ 506: 

THERE APE 10 CARS £INTHE FLEET. 

AND THERE ARE 0 MOTORCYCLES.
 

THE 14LUIIBER OF VEHICLES Oil EACH SHIFT IS*
 

FIRST SHIFT MAX. 5
 

FIRST SHIFT t11. 4 

EECOND SHIFT IIAX. 5 

SECOIID SHIFT MNI. 4 

v
THIRD SHIFT i - 7 

THIRD SHIFT MI. 7 

THE IIUMBER OF DI$PATCHEFS IS I 

THE CITY WOULD FEDUIPE S IJIDE+BAND OP 

PULSE ANTENNA SITES AMD 5 IAPPOPI BAND 

Fit ANTENNA SITES FOP 7 AND 3 MILE RADIUS COVERAGE. 

Table 2-10. Montclair, CA, AVM 
Systems Cost Analyses 

II ITCLAIP UTL 

CLASS I TIALS 

TECIII0UE CAR3 SITES -RSE IIST 0-1- VOL sd,1C F13011 
VEISO'pD 
S IJSIIAP 
Z-ACCELEPOIIETERS 
LASEp IIELOCIITP 
ULTPRASUIIICELU 
CUIIpHSSODOIIETEP 
CUIIPHSCRASER VEL 
tIPf2--SOHIC VEL 
OII(A R
LORA 
DE)CCR 
A I-SRTIOIIS 

2 
2o 
lb 
1C 
1. 
15 
19 
11u2 
r 
a 

la 
. 

0 
0 
0 
0 
0 
U 
A 
iU 

0 
0 
0 

40 
'5 

70 
70 
70 
N 
7000155 

55 
55 
55 

11 
1 
it 
12 
I1 
11 
12 
1111 

11 
11 
II 

101 159 
l1 ±33 

JujU I 11d 
11,2 3 
"'2 197 
JUl 197 
101 203 

20010!10! 1 96 

Jul M07 
1.31 13U 
ItI Ira 

157 
$2 
200 
e05 
l" 
Uu 
uS 
jO$ 

'99 
IRS 
17. 

15­
132 
2U0 
W.' 
1-9 
199 
2D 
1 51 

Ip
Ira 
I?­

0IFF. OEGR 27 0 55 11 Jul 1-6 198 l-t0 
3IFF LORAN 
0IFF. 011-STA 
PELAiUIIEGA 
PELA, LOPRI 

23 
5 

U 
U 
U 
U 

55 
55 
55 
55 

II 
I1 
I1 
I 

101 
101 
JltI?', 
101 

197 
173 

175 

9 
175 
173 
I7 

J 
17. 
177 
1-7 

CLASS II 
LUpIEDRES LOOPS 

REFLECTINGSICIIS 
FEFLECTIIG ROAD 

2 
S 
9 

i1e 
56 

7 

45 
.5 
.5 

IJ7 
42 
4S 

I0t 
10 
131 

,54
255 
2 2 

'55 
256 
233 

53 
C53 
slo 

%c-MIDPOST 
It" UIF POST 

2 
2 0 

's,S 
45 

9o 
15 

0l 
IU 

2$? 
IF? 

258 
17. 

.456 
11 

LF POST 2 '3 .5 2 Ilt 222 Z23 2Z0 

LIGHT'I-P POST 
BURIEDIIAGIETS 
ULTPHSONIC POST 
TPHFFIC SENSOR 

'' 
/ I 

a 
a 

34 
IL 
14 
.9 

'5 
45 
'5 
45 

30 
33 
5' 
31 

I03 
luoG 
l6t 
101 

20 
1 

951 
2Z? 

azi 
I32 
25 
2S9 

20 
['U 
24 
196 

CLASS II 
t:RR-D4ID Fil PHASE 3 24 11 J03 19 201 2112 
II FRI PHASE 30 35 72 I. a2u 353 35o 3. 

PULSET-O-ARRIVHL 
COPRELRTION 

D/]IPETIOII FI Ep 

e6
3 
1 

70
29 
79 

IS 
143 
35 

24 
Is 
i5 

17'. 
177 
154 

41 
374 
2a" 

-34 
375 
C 

-.4 
3?5 
269 

CLASS IV 

TRAFFIC LOOPS 
IJAYSIDERADIO 

I 
1 

229 
1SS 

45 
'S 

103 10 
11$ 

'S5 
38± 

4,5 
341 

4S5 
31 

PHOTO2I-R DETECT 2 117 5 49 109 220 3a0 -20 
ULTRASOIIIC DETECT 2 1ZU 'S 49 109 321 32, $24 
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Table 2-11. Montclair, CA, AVM Polling V. Monterey Park, CA, City Cost Benefit 
Cycle Min/Max Times Analysis Tables 

CyIC TIHE IN SECONDSTOPOLLHpIA "-I MIUfTSDEpLOyKED Table 2-13. Monterey Park, CA, 
Physical Parameters 

City AVM 

0Ass I 
TECHIOIE 

Sm 9P 

TOTAL 
FLEET 

07 

I 1e 

SYT 
075 
0 43 

78070 45 

Silas 
8Oi.

0 
0 44 
08O0 46 

P50 
1.9 
0 a5 
I 50 S7 

REDISNOIT 
SPIC um 
08S 04 
0 46 0 48 
8s7 0 9105SO a 2 

PI410 
1 s
aS 
164 

AEA IS 7.3 SQUARE WILES. 

(-t9C£80 
044 

78 
045 

1 SO 
98" 

O83 
048 050 

t EST WEST DISTANCE IS 4.6 WILES. 
LAVD0 

UTROAiCE UnO 

1" 

£ 09 

0 78 
L 44 
0 770 44 
m", 

079 
0 45 

78 
0 4S 
0 78 

0 
1 5 
0" 
1 SO 

81as 
0 49 
0083 
0 43 
0 93 

0a 89 
usl 
0 87 
050 
0 IVo 

1 
11 
0 Sa 

I l 

IIORTH SOUTH DISTAIICE IS S HILES. 

TOTAL ROAD 1ILERCE IS 101 NILES. 
0-44 0 45 a8 0 4 050 00 

01Jos5'I-sER UEL t 09 0 
0 4 

a 78 
0 45 

1 50 
0 

0 83 
0 48 

u 87 
U SO 0 

I 
2 THE IUMBER OF IITERSECTIONS IS 59E. 

C rS-4,-8aIu 109 07 
044 

4?4800 47 

0 78 
045 

850 48 

1 50 
08 
0 560 " 

08 3 
840 
0 5a 5t 

0 87 
050 
070 57 

1 1 
0 2 
I n099 THE EoTIIATED IUMBEP OF ROAD SEGMEIIT- IS Z6: 

11IN 1.Zi1 

1r20 
s 

0 490 84 
it07 
0s
0 

1.50 
05 1
1 58 

1 00 
0 57
a." 

1 04 
0 59I 

1 n 
0175 THERE APE 15 CAPS IN THE FLEET. 

8I-STRTIOS 

0IFF. O1EGt 

Di.1-

DIFF PM1-STa 

108 

i I 

I 17 

048 
0 76 
0 43 
90.83 
0 47 
o0, 
0 49 
08 
0 4? 

04q 
0 78 
0 44 
0 85 
084. 
0 8e 

0SO 
u84 
0 48 

00 
1 49 
0 85 
I.-5 
U 3 

U Il 
1 56 
09 

O o0058 
0 at 
0 46 
0 95 
0 

osas 
0 57 
00 4 
054 

085 
0 40, 
0 99 
00 s?I 
0 59 
O8 

0 56 

I.0 
159 

91 
1 73 

9)I n 
11 

1 72 
98 

ArND THERE FRE 0 IOTOPCYCLES. 

THr NUMBER OF VEHICLES ON EACH 

FIRST SHIFT MAX. 14 

SHIFT IS: 

RELy O118 101 00 70-70 
40.40 

70 7a 
40 41 

71 44 
40 82 

140 70 
0 40 

140 74 
80 4a 

141 48 
80 84 

ELRAYLORI 

CLSS 
8t8IE8 RES. LOOPS 

433 

1 ()6 

303Ir 

1W 
0 74 
0 42 

30513. 

0 7b 
0 43 

37?8DbI 

1 48 
065 

537307 

0 73 
0 .5 

540309 

0 82 
0 47 

.14351 

15. 
083 

FIRST SHIFT HIM. 4 

REFLECTI1OSIGNS t 0 74 0 76 1 0"80 000 I 

REFLECTIM ROAD t a 
0-1 
07 4 

0. 
. 76 

083a 
1 48 

04 
o M 

0 7 
0 02 

009 
1o ECO111 SHIFT IMAX. 14 

04!. 0 43 08SS 0 45 0 47 08' 
X-RS POST L 07­ 0 1.I_9 07 0 S2 I S. 

U42 0 43 0* 0 4 04? 08 
WUFPS 

S 
5 

1FOST0. 

0 73 
AeW4OC 
0 74 
0842 

0a 
00 
07. 
0 3 

1±47 
0 -a 
± 48 

as 

07 
n 44SCN 
0 73 

45 

0-~ 

08_2 
Or 

1S-. 

5 
0 8 

SHIFT MIN. 4 

LIGHTI-R POST 

"I*ED I1IETZ 

ULTNFEWIC POST 

L 06 

1 06 

1 06 

0 74 
0-2 
0 74 
0 42 
874 

0 76 
0,3
0 76 
0 
0 76 

1 'a 
0 
1 48 
u85 
14S 

78 
a0s 
0 7a 
0,50 ' 
073 

0U 
0 ? 
u 
Uj 
0 W 

I 5 
990 
156 

4 
1 56 

THIRD SHIFT HAX. 14 

TRAFFICSESOR i Ob 074 
0 a 

0 76 
0-43 

1 .8 
00a 

0.78 
045 

2 
-. ? 

1 t 
0 S 

THIRD SHIFT 1NI. 4 
6 

THE IIUtIBER OF DISPATCHERS IS 1 

THE CIT', WOULD REOUIRE S WIDE+BAID OP 

PULSE AHTEINA SITES AHD 5 HtIFPO BAND 

AND 2 MILE PRDIUS COUEPAGE.Table 2-12. Montclair, CA, AVM Accuracies F11AITEHI4A SITES FOR 7 
and Cost Benefits 

iltj'ITCLAIP 
,271S[ lIJiPACIES 1IIIVEHIOES AlD ESTIMATED ST00 SAUINGW 

THEO SSTEI "JEHICLEC CTIIIATED 

CLASS I ULTIUSTE "EHICLES SCC[URSCY ZVED -i{Pr 
TECRIIIIOUE ACCU ACY -. IED II I'll, V I1H? :Avlivic 

117rOP2 24 02 U -. 
STLUS IAR 30 0 77 -, 0 Z -

L-1EOIT 13 0 as 3,3 00 aZ" v a-d-HCCELEPC4'ETEPS 34 1J Z10 

ULTPaOIIIC FILD 40 a 103 Duo 0 7 U 3 -z 
cItiPOnsOs,0IlsrEP 20 0 50 0 7 -

I
. 

.33 0 ? . -35 

CltPas-,U-OI1IC UnL 17 U 3 0 U -20b 
0±509 I O0 0 51 3664 

GWISsn1/AtEP UEL 15 0 3 

0 0 9A 

LLPPII 16u 0 373 6 0 0 U U 
2880 300 U -52 '42 00a -u 0 
ONI-SThTIOIIS T0 0 450 4.0 0 0 U a0 
DIFF OIEGR lbU 0 375 6b 0 0 U 9 0 
DrF LOPHII 400 0 983 945 0 0 a . U 

IFF PII-STA 250 U 545 532 0 0 U 0 0 
2ELit GIT2C 540 0 244o 1312 0 0 0 . 0 
R-LS? LOFAII 300 0 Z110 205n 0 0 u 0 
CLRSS I1
 
StIPIE5RES LOOPS tO 2 7 27 0 3-.
 

27 0 2 n ­

rEFLEGTII; ROAD 3 0 87 is 0 z 0 
- pOST 1a 0 32 0 2 0 - -. 

Hr "1iF P&$T 15 U 30 2 0 Z 0 4 
LrP$T io 0 46 239 0 00 " 

tICHT'1-F pACT 30 U 77 7 a07 , 

PEFLECTING 3IIlS to t, 27 

30 
34PIED WGHOIIETS , U 15IS 0 0 - -O 
ULTPAOHiC POST 0 0 50 ­ 0 a l3L0 

pPFFIC EIISOP 10 U 27 0 U 5 

CLASS Ill 
IMP- iSRIF11 PHASE 100 0 2370 7306 0 0 U 0 
13--P PD F1i PH'CE I00 a 2214 2709 a U U 0 
PULSE T-0-APPIUKL 100 16'0 t- 0 1 11 I -. 15 

OIas CUPPELATIOCI 100 0 1-? 1S3 0 I C.I 
3IFECTILH rI±DEP 7Ou @ "43 10~7 0 U U 0 U 
CLA3> Ill '2-5______________ 
TRAFFIC LOOFS to U 7 a. U U-, 

I VII11ID2RADIO SUn 0 n3 ~ u 0 
MILSPHOTUI-P DETECT Cu 0 70 73 0 e U 3 

ULTFACUIIC DETECT 20 0 .7 -3 0 2 -2.5 

Figure 2-7. Monterey Park, CA, AVM Pulse 
or Narrow-Band Antennas 
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E MTENA C ,, Table 2- 15. Monterey Park, CA, AVM 

Polling Cycle Min/Max Times 

CI"CLE TfhE" 11 SECONDS¢ TO PIN.L VWq SID) IIIH WITS DEPLOSED 

CLASS I TSL SI1ULE PEDUDSA 
TECOMIGUE FLEET sac VOL PSD S 1ol PHO 

1EIOqJ 1 58 1 54 2 -8 1I .1 1 3 1.1 
0 43 0 44 0 05 0 4t. a a a 90 

0 45 a 46 a8 OF 0 So 0 2 
R-AqCCOLEPOINETER I &I 1 53 1 57 3 at1 , 1 74 s 11 

v 4 tJ 45 .J S& 49 0 5V . -2 
LFSEP MEOCIMlp 1 66 1.55 , 59 3 02 1.70 1 77 S £a5 

04 0 45 0 0. 4- a 51 0 93 
UJLTPAGOS0CVELO I 14 53 1.57 3 ol1 66 1 1-4 a at 

0 44 0 45 a 0 ;5 0 $0 0 , 
I:ra~4 1 53 1 57 3 01 1 I 7 3 21 

0 4, 0 45 0 1, usLSO 0 92 
SLlV(IEL I 1453 1 57 3 SI1 66 1 7 1 at 

0 44 . 45 0 a. 48¢ . 50 0 -2 
O 4 0 s 05 8 O- 0_50 0 

0 47 08 a 089 0 5' 0 57 0 99 
LORPS{ I ae I TO 1 74 I-, 27 . 2 07T SS 

0 4, a so 0 91 0 57 0 5 I ei 

0 4tS 0 49 O 0 5 0 SO 1 08 

043 0 44 a GS 0 46 U-49 0 I 

I 1) 0 50 0 91 0 57 0 51 1 01 
0 2 iff. fltg-sa 1 76 I.C I SO9 3 12 1.89 1 S 3 ­

8 47 0 48 0 89 e.5 a. 0'S 
/ REL-AY OHECA 151.543 141 40 141 44 142 SO SetI 10 2:81 47" SS 9'5 

40 40 48 41 40 82 so IS so Q so 84 
FlEI M1A LOPAIJ SO .6 OF . 10 7 ,5 to M 1o a1 12 28 

1 73 1 74 2.11 3 OF 3 Do 3 51 

BUJZIEDRED LOOPS to 1 49 1 53 2 Q7 1 59 1 66 3 14Figure 2-8. Monterey Park, CA, AVM RE Cn, SIGIM I.o O.4 054 e0= 85 G 8 3 
WieB n ctos043 0 4,1 SS It 45 0 48 0 SOnenaL 

-- caln 	 ROPLAnenaL 1 .0 1 49 1 53 2 97 1 59 1 - 3 14CTIM ROAD 
0 43 9 44 0 05 0 45 0 4a 0 0 

X-SAD POST I SO 1,49 1 53 2.97 1 59 1 6> 3 14 
9 43 0 44 a) OS 045 0 48 a 9 

W, VP POST I SO i ? 1 51 a 95 1 w 1 62 3 to 
0 42 0 4$3 0 N4 0 44 0 4 0 8 

LF POST I o 1 49 1 DO 2 97 1 59 1 " 3 I 
0 43 a 44 a 85 4 0 48 09SO 

LIGHT/t-R POST I o 1 49 1 S3 2 97" 1 S I So 3 1, 
0 43 0 44 0O'S 0 45 0 48 0'0 

BURIED HROtETS 1 68 1 49 1 5w 2 97 1 59 1 -. 3 14 
043 0 4 w 0 45 a 8 98; 

ULTP1SOIC POST 1 o0 1 49 1-53 a 97 1 5S I -: a 14 
a 43 04 4 0 I 0 45 IS 48 89 

TRFFIC SEIISOR 1 60 1 49 1 53 2 97 1 59 1 66 3 1 
a 3 0 44 0 US 0 45 0 S 0 -0O 

5 

Table 2-	 14. Monterey Park, CA, AVM Table 2-16. Monterey Park, CA, AVM 
Systems Cost Analyses Accuracies and Cost Benefits 
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2UV I 
0 

75 IS 
11 

103 
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211 
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214 
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.12 
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'0 1 

56 
to." 
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A 2 
V a 
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OUDEGA 
LUFA t 
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-1 
-

0 
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0 
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A) 
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e4NALE A fl*V1. Pasadena, CA, City AVM Cost Benefit 
Analysis Tables 

Table 2-17. Pasadena, CA, City AVM 
Physical Parameters 
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Figure 2-9. Pasadena, CA, AVM Pulse or 
Narrow-Band Antenna LocationsTHIRD SHIFT NIH. 10 

THE IIUII1EP OF DISPATCHERS 1-5 1 

THE CIT( MOULD PEOUIRE 3 IIIDE+BAH OF 

FULSE ANTENUIA ITES AND 7 NARROLiBAND 

FI ANTENNA SITES FOP 7 AND 3 MILE FADIUS COVEPAGE. 

0 2 2 4 

IflTable 2-18, Pasadena, CA, AVM Systems , O " 
Cost Analyses 
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Table 2-19. Pasadena, CA, AVM Polling VII. San Diego, CA, City AVM Cost 
Cycle Min/Max Times Benefit Analysis Tables 
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oASI TOTAL -MIE PEDHFT Table Z-Z. San Diego, CA, City AVM 
TECIVIOE FEET SYC WOL ID S= VOL. MID Physical Parameters 

I1EOARO 3 7. 	 1 07 1.11 s15 115 1 23 2 31 
1 07 I 2 15 1 i 1 23 e 31 
ITLSIt2 I1 ED1-l 1 1.132 a40
 
12 I l 2.e0 24 i 3 2 40
 

O 38 099 2 1 2 AREA 13 &31 30UAPE MILES.TP a S3 ±UX/ 113IS 21J7 11 I 2335 
LASER UELOII 2 I I 219 12 2 9 227 

LR ILOCtiR 87 1 1 5 2 19 21 I29 3 

I 115 21" 21 II" 2 37 
ULTRASOIIC ULO 39 3 IO 13 27 19 27 2 35 EAST NEST DISTANCE it C3.' IILES. 

10m 13 2 17 1-19 2' . 35 
COwPSS P'OltitCp 2 109 13 217 19 " C32

I 0' '.13 2 17 1-I9 I 7? 2-sS 
1 I 14 1 1 I 127 233 HOrTH SOUTH DISTANCE 1 41.2 MILES. 

CIIS 1lC UL 2 I10 9 1 21 19 121' 223 
1 09 1 1 119 '2'I 2I 

OIEGII 4 13 1 12 1 22 2o ±3, I 14 e 2 
LI -125 	 1 n9 2Z6 Io 1:7 244 TOTAL ROAID MILEAGE IS 1945 MILES. 

121 25 229 13 I 51 2$) 
ECA -. 20 ±24 2293 1, 1.9 256120120 24 229 10 2 1 251 

rtn-STATIOIS 70 1 0O 12 2 1 1 lb I 2. 2 THE IIUIJIER OF INTERSECTIONS IS 13700: 
2i. 112 2.16 116 ±24 22 

n 18 22 22 36 ±04 252 
1-I 1±22 2 2. ±26 ± z 52 

7- LO1 4-2$ 1 2! I 29 43 151 E - THE ESTIIMATED IUIBER OF ROAD SEGMENTS IS 27400­
21 1±25 295 ±3 15 2 5' 

SIFF AH-STA 4 11 1 17 1 21 2 25 1235 1- 21S 
II? 121 S2 128 1-!51

RELA.y OIISCA 2,52 59 	 ±91 90 1l1104 ±04 08 201 00 201 te 20 16 

1'else 101 V ±ot.9 o0 '92 202" ! THERE APE 300 CARS IN THE FLEET
 
RELR LORAN 15 17 4 33 4 37 5 41 7 6- 7$ 0 

4 33 3- 5 41 '7 7$ n , 3 

SITED RES LoS 3 78 1 D 112 2 b I 16 ± 24 C 32 rI0 THERE APE 52 IIOTORC'±CLES. 
REFLECTINIGN 23111 	 192 1.12 2 lb 1 lb I 2K 

REFLETIG ROA 37n 	 192 112 2o It It 2, 2 
1-92 1 12 2-lb 116 1 2, 229 THE NIIBER OF VEHICLES OH EACH SHIFT IS-

X-W, UPOST 3 71 07 11 2 15 1 1I 3 231 

1W, 'AVPOST 3 71 ue 110 2 14 112 1 20 0222
1u 21 1$ 2tIII 1 1 231 

P 1 10 2 is I i 1 23 a a FIRST 3HIFT 1AX. 66 
IO II 2t15 15 23 2 31 

1 07 11: 2 is I Is 1 nP 2 1B I ED ENET S 3 M I ?o e a I' 111 1 2 K FIFST SHIFT 66 

ULTRASOIC POST 3 7. 	 I Il t 215 1.16 13 31 
MflIDIISENS 372 	 '9 21 5 i215 


i 0C 1.11 15 1 15 23 L 31-I
 
I.? 1I 2 5 1 123 1 232 FIFS MAX-1 95II'. 31 SHIFT 

I 

:ECOND SHIFT lINs. 95
 
Table Z-Z0. Pasadena, CA, AVM Accuracies
 

and Cost Benefits 
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Figure 2-11. San Diego, CA, AVM Pulse or 
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Table 2- 2Z. San Diego, CA, AVM Table 2-24. San Diego, CA, AVM 
Systems Cost Analyses Accuracies and Cost Benefits with 

One Radio Channel 
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VIII. Los Angeles, CA, City AVMv Cost Table 2-28. Los Angeles, CA, Cental 

Benefit Analysis Tables Bureau AVM Polling Cycle Times 
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Table Z-29. Los Angeles, CA, Central 
Table 2-Z7. Los Angles, CA, Central Bureau AVMv Accuracies and Cost Benefits 

Bureau AVMv Systems Cost Analyses with One Radio Channel 
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Table 2-30. Los Angeles, CA, Central Table 2-31. Los Angeles, CA, Central 
Bureau AVM Accuracies and Cost Benefits Bureau AVM Accuracies and Cost Benefits 

with Two Radio Channels with Three Radio Channels 
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Table 2-32. Los Angeles, South Bureau Table 2-34. Los Angeles, South Bureau 
AVM Physical Parameters AVM Pollhng Cycle Times 
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5?n 6 So 1."& & 29 6 85 12 72 
OMM19°47 12 27 12 So n To 14 14 15 25 26-76

AtID THERE ARE 0 IIOTOPCYCLES- 6ma25 6ae54 'e-3 4 84 15-95 27 t& 
LORA ED02 1 1 I 17 41 144 1.5 74 

6 43 6 71 12o30 75 0.13 13.99 
THE HU11PER OF UEHICLES ON EACH SHIFT 1;! DEE:CT 19 so 12 40 13 04 23 " 14 56 15 67 27 18 

RMI-STRTIOtS 17.88 ,1.n 117n 22.74 12 "6 13 17 24 69 
5 72 6 61 11.59 6 15 6.71 12 53FIRST SHIFT IM,-. 63 DIM ONEM 1-47 12.27 12-83 So 73 14 14 to 2ts 26 76 

DI O,:62 °? 13 17 L:'413 4 84 15 95 2746 
6 43 6 71 12.30 7 56 8 13 13.99 

FIFoT SHIFT NIH- 53 6.S-o~ ., to -Oil 7.l14 7 70 13 57 
RELAYOMEG 16 DO IWO 42 I 361 209 10 Ent151lst91 21W3 So 

,3 S So 4l117 1 36453 IO&SOF1735355 So 
565 9?REAYLORA 71 So 45 W 4562. W FsFS SOS 92 35 

SECOIMD SHIFT MAX.- q4 CLS 122 97 So as E S3 , 63 41 M 47 06 

BURIEDIRE LOOPS 18 84 137 I1193 22 83 12.31 13 45 24 96 

REIh N SIGNS is04 3 113 it93 BE 88 le 34 13 45 N 96
5ECOND SHIFT 11iH- 64 RELCTN ROA 18 04 IS 7 as 1& S .29 . SS le.72 

84 1'L'Th it 93 22 W8 IS 34 13 45 24 96137 
5 9 8 6 >& 6 AS 12.72 

X-IiM PonT 17913 nt So8 1186 22 81 1;EnoB 13-41 a4 W£ 
576 . 84 11.63 . as 6.79 12.65THIRD S HIFT 11FA. 104 W, UH POS 17.71 11.16 11 72 22.67 it 93 13 0 1 24 54 
569 5 97 11.55 6 W 6. 4 12.51 

5 6 6 04 11.63 6 22 6.Fa 1e 65 
OS 1IHI- it186 12 2:0 24.02713 ,1.38 22-81 13 31THIRD SHIFT MIN. 94 ZROT i- 5 76 .0 N 1-63 a 6.70 12. 

DURIED MAGET IS."4 11.37 11.93 22-00 12 24 13 45 2, 96 
5 h 8 11 66 6 29 6 5 12 M 

THE HUMDER IS 2 s76 173 1 11 6e 22 16 78 12OF DISPATCHERS 5i *. 04 s 
S6 6 04 I163 G n 79 'a 

THE CITY WOULD REOUIRE 5 14IDE+BAND OR
 

PULSE M31TENINR SITES AND 23 NIARROW EFIND 

FN1ANTENNA 31TES. FOP 7 ANtD S IlLE RADIUS COU)EPRGE. 

Table 2-35. Los Angeles, South Bureau 
Table 2-33. Los Angeles, South Bureau AVMv Accuracies and Cost Benefits 

AVMV Systems Cost Analyses with One Radio Channel 

CLAS9 I TUTAL' S'fST/IJ ACCUPOCIES 1I1),U£EHICLES AND ESTIMA TED 1000 SRUIMGS 
THOUSANLDSOF $ THEO V.,STElD VEHICLE$ E-TINATED 

TECH' MOVE CAPS SITES BASE I13ST 0-1" VOL SYIC p.MDONI CLW3S I ULTIMATE£ VEICL~ES ACCURACY SAVUED 5-YMP 
IMYSOPRI 23 U 3 16 JOS 2,0 Z14 E14 T CI1OUE A MIC SAED ImO "INMAY8 I-INt M1VtIN 
n- Wtl HRp 421 V 7 I 105 >41 61. >. &E BOAPD o .11 213 1 a 0 U 325 
2-RCCaERWfETERS 
LASER VELOGIHITR 

264 
4 

V 
U 

l1.0 
lo 

< 27 
33 

117 
1ao 

534 
5-F 

588 
.,19 

558 
.11 

T(LUS MPp 
2-HCCELEPOU:ETEP3 

ED 
a4 

6 
6 

4n 
4W 

Eat 
a17 

12 
1 2 

0 
0 

0 
0 

37'5 
o1u 

ULTRASONIC VELO 216 0 109 27 125 1-7 on> S21 LRACEP VELOCINTR L 7 411 213 1 2 0 a C75 
COMPASS/ODOMETER 

U~IILSR:EL 
242 
3V7 

0 
0 

109 
109 

14 
35 

107 
115 

49S 
5 

58-
631 

5ao 
61, 

ULTRASONIC UELO 
CCNIPR$$ DIETEt 

4 
20 7 

2 
412 

1 
aI, 1 2 U 0 

7 
365 

CWPSS"J-SOHIC VEL 262 0 107 2- 1 . ,ts. 57. 559 CCMPRSSvLASER VEL is 7 4U9 21Z 1 3 0 U ,,00 
OMGA -46 0 < 24 113 -of 7, 5 4 0 S-DIIC U£a 1"1 7 4108 2 1 3 0 O 4uO 
LORAN 
IECtI 

.62 
ISO 

a 
0 

93 
93 

24 
20 

113 
113 

-17 
.4n 

7 l 
4S. 

75,
477 

OIIECS 
LUPPMI 

16008 
160 

a 
2 

42U6 
470 

'on9 
409 

a a 
0 0 

. 0 
0 0 0 

A11-STTITION'S 6t, 0 93 1a 110 214 3,5 3,3 DECCO we I Us7 93 0 0 0 0 0 
DIFF. 
DIFF 

OMEGA 
LORAN 

446 
462 

0 
0 

93 
93 

24 
2 

113 
113 

7.01 
717 

FEE 
749 

734 
754 

IHI-STATION'S 
DIFF OEM£G 

200 
160 

1 
a 

5U5 
66 

4'il uo 
UO9 0 0 

o 
80 

0 
a 

DIFF. AM-STR 77 0 93 is IIu 325 SS6 37L DIFF LORAN 400 0 1171 11305 0 0 0 0 o 
RELRY" OMEGA 97 0 2 4 117 34. -26 336 DIFF PJM"STP 250 1 bl8 59, 0 0 aa 0 
REiAY LORIN 0 93 Z' 117 33 4 K Lff (NEW 500 0 35972 le512 0 0 V 0 U 
CLASS 11 PELA? LuRP1 SOL 0 Z152 Sa o-0 0 0 0 
ItURIED FIES LonP 
REFLECTING SIGNS 

24 
80 

4893 
1340 

73 
7S 

.>975 
76 

103 11293 
Z26 2510 

I1230) 
E525 

11266 
2483 

CLAS 11 
eVUPIED RES LOOPS IU - -04 209 1 a,00 v 

REFLECTINIG ROAD 21 147 73 &9W 834 19$7 2012 1970 REFLECTIN G SIGNS 10 7 40, 2u, 15 a0 -155 
X-BRND POST 29 1401 73 2191 193 201e 2028 19a6 REFLECTING AMI 3 7 9(i 202 1 4 a 0 -31eo 
HF, U- POST 26 153 73 86 125 487 503 461 -lfli POST I1 404 20 1 G U 0 10 
I-F Pon 25 -,62 73 292 1v4 I 13,97 1345 MR, IVMFPOST Is 7 102 EEL, 1 3 0 eJ 35u 
LICVT/I-R POST 21 609 73 3958 257 13 7 ISLE 1320 LF POST l00 1 429 271 V 0 08 -52V 
BURNED MRGNETS 17 410 73 -',6 Ilea 1, 1477 1435 LIGHT. I-F*POST 30 6 14 at1$ 1 2+ 0 0 -3.5 
UMTRRSDMIC POS 23 1o-6 73 106e 226 2443 2458 2416 IDUPIED MAGNETS 4 7 .394 20,; 1 a* U bJ5 
TRAFFIC SENSOR 24 1158 73 504 102 185 1902 1860 UJLTRASONIIC POST 2V 7 1I0 213 1 3 0 0 -155 
CLAS III TRAFFIC SMSOR 1U 7 '0z 2Ud 1 n a 0 4 >5 
VAR-SAND Fri PMMSE SS 109 142 27 116 431 472 76 GLASS III 
WII -MRH FMl PHASE -. 8 5,9 1$4 33 207 91L 954 956 I;PD[ Fit PHASE lBo o 2702 2W15 0 0 0 V 
PULSE T-O-PP'IVRL 42,5 322 331 9" 191 1361 1-,02 14.7 pnI-MoH FitpkiSE 1208 0 3179 on90 a 0 0 0 o 
HOISE CORRELATION 130 2'9 33 1 31 181 72G. 742 74"7 PULCE T-O-APRIUAL lea 4 192 Is 1 > 13 2-5 
DIRECTION PINNOER 6 79 F 17 154 3 334 334 MUISE CORRELATION 100 4 215 a1ea 1 0 6 -1 
CLFISS IV DIRECTION FINDER 700 a 1987 19a3 U O 0 0 
TRAFFIC LOOPS 14 .823 73 1673 2408 4* 6829 San9 CLAISS to 

IIE RAIO 13 4135 7S3 1393 407 M 19 6019 9019 TRAFFIC LOOPS 1s 7 ES- 23 3 , 6,-5 1 
PNOTO0,I-R bETCO " 19 2540 73 710 255S 3605 3605 U'AesD RADIO 100 4 202 209 1 3 1 0 -1060 
LTRASOIC DETECT 21 2689 72 709 255 3667 3667 3667 pHXTO I-R DETECT 30 6 59 1 3 0 5 4 -17FS 

ULTPRS)NIC DETECTr 20 7 42 ,3 ? 2 5 - 150 

Z_-I 6
 

http:l(DAD17.71


Table 2-36. Los Angeles, South Bureau Table 2-38. Los Angeles, West Bureau 
AVM Accuracies and Cost Benefits AVM Physical Parameters 

with Two Radio Channels 
HFEA IS I6.3 SOURPE IILES. 

LA-SOUTH BUREAU
 
SSTEI ACCURACIES±12VEHICLES ANDESTIORTED $1000 SAVINGS -T IEST DISTANCE IS 19 NILES-

THEO VTICLES ESTIMI D EYSTEMI I 
CLASS I ULTIMATEVE ICES ACCURACY SAVE 5-yEAR 
TECNIIE ACCURACY SAVED MAN hIt MAX NIII SAVING NOPTH 3OUTH DISTANCE IS 18 MILES. 

LEY3ORRD 2 6 209 105 2 5 0 7 ±360 
STVLUS MAP 30 6 217 109 C.. 0 5 1275 
2-ACCELERORETERS 34 6 21$ 17 e . 0 6 1215 TOTAL ROAD IlILERGE IS 1677 NILES. 
LASER UELOCiITP 13 7 209 105 2.5 0-7 125 
ULTRASONICVELO 40 214 jUl 2.4 0.6 1175 
coePASSODOIEflS 20 7 210 106 2.s 0 7 13.0 THE IIUIILER OF INTERSECTIONS IS 3400. 
WIASitSER Vnt 1s 7 eus 105 2.5 0 a 1300 
CIlS-S0MIC UEL 17 7 200 105 2 5 0 7 1300 
OtEGA 1600 0 406 3972 0 0 0.0 u THE ESTIMATED HUt1BER OF ROAD SEGMENTS IS ISOO: 
LORRM 160 2 409 390 U0 0 0 0 
DCC 200 I .93 479 0 U . 0 U 

A-TI 0 1 491 477 0 0 0 u THEFE ARE 1S CAPS INITHE FLEET-
DIFF. OVIEGA 1.0 2 409 397 0 0 0 0 0 
3IFF. LOARA ,00 0 ±134 10 9 0 0 00 0 
3IFF. RII-STA 250 1 592 577 0 0 0 0 0 AND THERE ARE 0 MOTOPCYCLES-
RELAYOMCR 500 0 e162 8O0 0 G 0 0 0 
RELAY LORAN SW 0 23Z7 2252 0 0 0 0 0 
CLHS3 11 THE HUMBEP OF 'IEHICLES ON EACH 3HIFT IS: 
BURIED RES LOOPS 10 7 205 103 2.5 0- la0 
REFLECTING SIGNS 10 7 BUS 103 a s 0 745
 
REFLECTING ROAD 3 7 19S 96 a 1 I 2C23 FIFST SHIFT tIO.. 59 
X-BARDPUBT 12 205 IU3 25 0 9 10 
HF, VI POST 15 - 205 103 5 0 1 1250 
LF PT to0 1 2N C62 0 7 00 -5
 
LICHT'I-R OST OU 6 a11 0o 2 S 0 7 500 FIPT SHIFT MIN.h 3?
 
BURIEDM±AGNETS I. 'a. 100 2 5 1 v 1375
 
ULTRASONICPOST a0 7 209 105 2 5 0 0 -45
 
TRHAFIC sENSOR 10 7 204 I03 2 5 0 1365
CLAS IIICID HF IR' 0 
tt0R-BR D Fi PHASE 100 0 2612 2528 0 0 0 0 0 SECOND SHIFT MAY/ 105 
MIl-BRID M PHASE IM 0 3088 3002 0 0 0 0 0 
PULSET-O-ARRIUPL 100 4 192 ±86 1 6 1 3 245 
INOISECORRELATION I00 4 215 20 1 3 0 -0 
DIRECTION FIhEp 700 0 1922 106 00 00 0 -SECOIND SHIFT MII. 94 
CLISS IV 

RAFFIC LOOPS ±0 7 23 a3 3.4 6 5 35 
WAYSIDE RADIO Moo 4 202 209 1 3 1.0 -low 
PHOTO0I-R DETECT 33 6 59 61 3.0 5" 2775 THIRD SHIFT IA'C- 117 
ULTRASONICDETECT 29 7 42 43 3.2 5 9 3150 

THIRD SHIFT 1lI. 9; 

THE HLIIPEP OF DI3PATCHEPS IS E 

THE CIT( 13OULD REQUIRE 7 1IDE+tAD O 

PULSE AITENIIA EITES AND 44 IARPPOI EAID 

F ArNTENNA SITES FOF 7. AND 1IILE FADILIS COVEFAGE. 

Table 2-37. Los Angeles, South Bureau
 
AVM Accuracies and Cost Benefits
with Three Radio Channels Table 2-39. Los Angeles, West Bureau 

AVM Systems Cost Analyses 

LUt<OUTH 3JKAN
 
SISICI' ACCUPRACIES SAVINGS LA-WEST BUREAUO ,VEHICLESANDESTIHATEDSIOO 


THEO StST61 VEHICLES ESTIIIMTED S I TOTALS
 
CLHSSI ULTIrIATE VEHICLES ACCURACY SAVED 5-YEAp OF $
THOUSANDS 

TEC9IIOUE ACCURACY SAVE:D MAN MIN 'N' HIM SUIRG TECIQUIOOE CARS SITES BASE IMIST O- VOL SYNC P5430±1 
IE.BOARD 33 94 : 9 KEYDORRD 0 78 17 103 252 222 22239 2 - 160 25 

brYIJSIAP 3 144 e 2 7 e 7 I±00 STYLUS W 467 0 78 17 105 695 666 666
 

ERtIT 3- 142 9$ 2 6 2 8 1515 2-CCEnERQETERS 293 0 111 29 119 580 616 607
34 6 
L SER VE±UACI±T 13 7 ta9 'I a 9 2 ±550 LASERUE C.MT 326 0 1±6 3S i2 634 670 661 
UlTpHSOIIC IELO 40 1,2 107 2.4 2 8 475 ULTiASONIC 0ELO 233 0 116 e9 i2 $34 570 561 
CO flSSODOIIETCR 20 7 139 71 , 9 2 9 1o0 CfoOETER 269 0 116 14 I0 535 S79 560 
COQ] AG II. 15 7 71 2 - 2 9 160 CaWS4SSEP VE. 340 0 116 3 117 69 683 664ino.ASER 128 
CISSAtI-ic IEL 17 7 ±39 71 09 2 9 woO CWSS U-SONIC VEL 291 0 l10 2 117 575 619 600 
0EGA 100 0 017 390t 0 0 0 0 0 ONEGA 495 0 9 25 11- 760 809 -97 
LOPRAN 160 2 40Z 391 00 0 GU LORN 513 0 98 25 114 779 827 a±3
 
D1CCR 200 1 484 471 0 0 0 0 U DECM 211 0 9a 21 11 473 521 512
 
all-TATIONS BOO I e2 469 00 U 0 U V-STATIO"S 74 0 9 20 111 Be1 366 357
 
DIFF. VIEGA 10 2 "02 391 0 0 0 0 v DIFF OCR 495 0 98 2S 114 760 795 77 

98 8±3 

3IFF R-STA 250 1 503 567 0 0 0 U 0 DIFF. Al-STA. 06 0 98 20 11 n43 370 396
 
RELAYDIEGO S00 0 1-007 5 22 0 0 0 0 U RELAYOMEGA 97 0 98 25 119 267 33 411
 
PELW, LORAN 00 0 2221 2208 0 0 V 0 0 RELAYLORAN 106 0 98 25 119 376 347 420
 
C I$S.II cLASS II
 

IJPIED PES LOOPS I0 7 136 70 2 9 3 0 1735 JIED RES LooPS 2 6762 78 11524 I0n 18528 18545 18499
 
REFLECTINGSIGNS to 7 12Z 70 2 9 3 U ±±2U R ING SlGNS s o2 2062 70 1166 2Q2 3721 3730 3ql
 

3IFF LORAN .OU 0 1113 ±07 0 0 0 0 0 IFF. LORAN 513 0 25 114 1 S1
 

REFLECTINGROAD - 7 131 68 2 9 3 2 -1" REFLECTIHG ROAD 23 226 78 375 123± 2962 2979 2932
 
A-N*D POST 12 7 136 7$ 2-9 3 V 1205 X-BRIK POST 32 2162 70 441 243 2984 300± 2955
 
W, K POST 15 7 136 70 2 3 3 0 IS's HP, UHFPOST 29 235 7$ 124 138 631 .49 602
 
LF POT I0G , 266 257 03 0 30 ±S POST 28 1175 78 442 244 1995 2013 1966
 
LIGHTI-p POST So 6 14U Be 2 7 , 9 a0 LIGMT'I-R POST 27 940 78 541 340 1955 1972 1925
 
BURIEDIIAGETS 1337 68 2 9 3 1 132$ BURIEDMlvN 19 677 78 ±32n 100 2275 2292 2245
 
I-TRASO±IC ROST 20 7 129 71 2 - 2 ' IUs ULTRASONIC POST 25 1598 78 1624 29 3647 3664 3617
 
TRAFFIC 5ENSOR 10 7 136 70 2 9 3 0 ±740 TRAFFIC SENSOR 27 1786 78 770 102 2791 2809 2762
 
CLASS III CLASSIIl 
lP-Mo FIo PHASE 1000 0 2561 247- 0 0 0 0 0 MAA-851t FMIPHASE 42 208 152 38 127 565 610 615
 
1.13-BO R!t PHASE ±200 0 20c6 2944 0 U U 0 V "ID-BANMI PHASE 532 01 154 37 9 1012 1060 1062
 
PUL3I T-0-APRIVPL 100 1±92 1-- 1 6 1 3 245 PULSET-O-RRIUR_ 472 616 343 148 202 170 I.5 1230
 
10121lCORRELATION ±00 4 2±5 202 1 3 0 6 7" OISE CORRELATION 144 29 343 33 112 759 775 700
 

DIRECTION FINDEP 700 0 In- 1024 0 0 0 0 0 DIRECTION FINDER 7 SO 91 Is ±54 30 349 340
 
CLABC IV CLASSIV
 
TRAFFIC LOOPS ±0 7 23 23 3 4 6 5 0o35 TRArIC LOOPS 15 15470 78 2572 328 1846e 18462 18462
 
IJ'SID RADIO t00 1 202 2V9 1.3 ± 0 low SiRySIDERADIO 14 13709 78 2142 572 16514 16514 16514
 
FHOTOI-P DETECT au 6 59 61 3 0 5.4 2775 PHOTO I-R DETECT 22 9114 78 1086 339 10636 ±0636 10636
 
ULTRAPCIC BETECT 20 - 42 43 3 5 9 3150 LTRASONIC DETECT 23 920 7$ 10 5 338 10731 10731 10731
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Table Z-40. Los Angeles, West Bureau Table 2-42. Los Angeles, West Bureau 
AVMv Pollhng Cycle Times AVM Accuracies and Cost Benefits 

with Twvo Radio Channels 
UX.LE TIMIE I"1SMCOLOS TO POLL Mfl. NOL 0111 ILTS DEF GaLD 

TOTAL SHAKtE REDUNDANIT WRIFEL),EICE E3I E I ,I 

TEC~iIUME i1ET 
GLAS I 

SAG wH D VOL SYSTEM N LVHILSESTIMATDSoSAINGSPROL SYNC I STHO AMPICESA 
]SOE O I- .. l 12% 1 IS 5 51 1- 42 4 2 b.1TIT I ITI E SYTE ILE -ESTM 

4all3 86 .4 TEGANIIx Ave~tuCv SAE MIX "lI" MA Himl soII 
$Iraw1 H1W w 50 13 to 1, 3 : 05 14 $1 15:; 713 73 7t, 20 70 KE'5'DOF5RD Go 7 236 9 2.2 2.5 1360 
- ELPOTtR as ol '2 1-958 25 74 13 39 15 13 8 STNUIS HAP Be 7 244 Be 2.3 2.3 law 

UL3I I 2 4 257WEL 13 5 10 Sl 34 7 2 w 2. . 5 1205 

L PROHTp 12 Is 47 25 74 14 as 5 4, 18 UL 17 a Z365 2.3 2.5 lassn00 I9 
, 4752 a , ,st 5 IS I.TNSD'l OE. 40 07t 416 IN S.S e.4 1&0 

CIA-TRSOLC VieL a0 W 12-7 13 42 25 7- 13 as 15 13 as" OXIRSS 20 a 2 36 77 2.9 2- 13Z5 

2l, 47 a 51 S OME i Il0m 0 4186 3 o 0.0 -a9 
COM -ASEC IEL O o1 is 79 13 42 25 7, 1. Sa 15 1 08 OtSRI 8 43 4105 G -

OMOQR at 5 13 81 1, 43 2. 75 Is 91 17 1. -0 11 10 4 41 :'FY095tEq 0 0 Iea 
tIo 2 1 3 92 5oal 1 V DIM- LOPAI 480 1 1149 1SS$ 0 0 0 a a 

L"Al 1120O 20 I C2 27 I4 I -9 3, -7 DIMF- W-STA a58 a 596 569 0 1 0 a -480 
• 73 - 4 1 05 5 avW 10 PE.LJF ONMQ *0w a ZOAL'I 640 0 a 0 a 0 

DECC a1 1 114 I 6 2, e 16 1,I0 - 0 5, 11 LOm8 0 21,16 2218 0 a e a a 
5u-I * as L.oIA RSS II 

MI.-STATIONS3 0 76 1; 6.* 13 K 'S 5B 1- 5 4 is 27 7 BURICD RE LOOPS 1o 8 Z33 7. 2.3 2 6 1435 

3IF OIIEGA '1 59 61- 3 2 5 is 1, 17 J 1SRE WF=TN IGNS 10 8 233 6" 2.3 2. 6 -4%5 
1-O 1,4143 2. 7S 5 POI 12 a 224 7,X 2.3 28 6 495 

DIFF LORMI a 20 1- CO , 1 '21 270 14 1,SWQ 1757 94 3110C0"1 311DPll 2 a 23 7 . 3 

IFF1 ? I I t , 1iS7 70 "5 LF POST tee 6 273 259 1.5 1 7 55 

RaElR OMEGA I SO 113L 70 11,;2 Be 10q 2,,51 70 a= 5 c 5 lI DUIED HAGEL 4 a U6 75 a.z a.8 16W0 

PQ-AY LORAN ON 50 7. 51 3 lz as 7i IV3 -0 TRWIC SESO t0 a M3 7. 2.3 2.6 1440 

CLASS I I ;ife) M HAS lw 00 2 527 2491 8.6 0-0 0 
IMPIED Pas LOOP N) 13 12 ST 13 - 2: 82 1L 15 2' as a, MD-]ANtD FI PRWE 1200 a 3103 2958 0.0 0-0 0 

I 13 1 29LCI 1 4 a5 14 tS 15 19 MISE01 COR=RELATION Lea 6 216 205 1.7 3.0 13,09 45 1 5 0 -1 DIRECTION FINDE 701 a 11933 less 0.0 0.0
FEEMHCI PLA ae 13 12 87 13 19 M5 L4 04 15 29 C-ItSG IV 

o -47 aGO d 3 Ix RADIO 100 6 2?01 ale 1.7 3.4 7310 

- I 42 - W I b2 4 a, ULTRASOIC DETET 0 a 42 44 2.5 7.1 1 625 

LF POTI- P 0 a 11 Q 254 NOO at 13 aS 13 L5 is 

LTFIC IO T se a ] 79 !3 2 25 74 13 E, 15 13 3O 

SV3! AGNET aIcisrac7esad aos ell itIns NohBnf A1-v A94ace 

L2$
L Sl 0.MUNOMT OTt~ 
Yb' £i RCUR2E~f ~~ - n 1 V S T OJRI t41LS ET;TE 10nUICEESI;qE I05 R
 

olICE aEICE ES'iR 
 T2. E 

SOTE TURSO0 6Y 531 5T 

I~ ~ 1 C aH1LE 08 s Is as ,CFC ULI IEU2I~~~~7 7 -p EU D5
 
TIZCV IOL C ~ lH 5 0,E 3R.I 4IE I I t
St~l 


O Table 2-41 Lo Angles West Buea0 9-4yo3. Tal 7o Angles Wes Bureau 27 

R SYSTEMULI3 3 5WHIE 157RGESAN ESIAE OGO SVNS I'O SVTE ISTM AND $1044 SAVINGS 

mawal=:, TE 
9r&O MAP L 
2 S/-,O I U 
L a-WMIA 
LIRON 

mffSTRI0 Us-

Be 
so 
3417 
10 
40 
2ER0 
15 

7 
7 

a 
7 
3 
a 

459 
47S 
'75 
4n2 
54 
5146 

456 

157 2 0 
1563 1.9 
150 2 0 
4157 2 0 

161 1 . 
817 20 
56 2 0 

INO 
0a 
0.0 
0 0 
a 0 
a 0 
0 

SSIN 
Se 
900 
80 
8-w 
-95 
-1ee 

CNIQUE ROWNG SAE 
ClaeRP SoD 75 
S P<U HAF l so 7 

34 78 
L83Ft ECH 18 a 
MTII)I U8l 407 

WRIO aB 

MAX 
1W6 
Lea 
140 

5 
1606 
L457 

him 
54 
54 
9 6 
4244.4 

46 
4 

2N4 
23 
2.4 
2. 

2 2 
2 4 

4 
I4.4 
44 
4 4 
4 3 

010 
4. 
4. 

27 
2715 
2715 
2.33 
26l,6 
28 

27-0 

01IROE 
DIF. RM 
MECOR 

16N 
4W 
200T 

4227 
4 17334 
35 al62 

4037 
40 9 
4876 

0-
Is 
0 5 

0 a a 
0 0 
°08IF 

U 
DIFF IC 
HFFL 

RM-PAH 

WEI 170 
4w 
15 

a 
i 

154 
4037 
.6004 

54 
336 
3601 

a 4 
0 0 

9 

4 4 
0 a 

0 0 

215 
0 

Los 

DI M " O ME G A 0 
160P. 

0 
4O 

4 1 7 
21 

0 6 
4U4. 0. 

0 
a 

0 
0 

- 1 3 
3U 

R E A y O GN 
DIM. OL il 

5am 
8a 

0 
4 

4 85 
404 

4 463 
3865 

0 
0 

-6 
9 

0 U 
0 a 

- 05 
0e 

DOIM3E.Lp OPS 00 1 1177 1119 0 0 0 U D IM. LOPFS 4O0S0 1 1119 103 2 4 4 5 20 
DIM PCTH-SIS ass 2 45 1535 20a 0-0 4 im. T SII, 1i a 155 50 0. 4 4. 1915 
PawECTIGkR Sao 0 43LB 155 e 0 0 0 --65 RuJEIY W 3m 0 1$6 527 0.0 4 6 -0 
BELAYHLpAN me a 2164 155 a a 0 a8 6 -l-wh' OP111 3 m55 15 0 0 0 0 10 

lsE WS- OOPS to 0 5 155 2 0 0 U wIs BURLED PESTLOOP to 154 53 2 4 4 5 260 
LMEpTINT SIGH 6s 454 26 15 Z. 0 0 'le LF l SIGS oT 1 556 53 2 4 4. 1915 
RLCING ROAD 3 a 43& 149 2 0 0 0 -200 LIETffI- PS 3 7 149 52 2. 4 4 6 -205 
<LIED Pst 12 a 44 Las 2 0 It 0 lZb AliaeD PIS$ 12 a 155 53 2 4 4 S 2160 

U-TRIMSOIC POS 20 a 460 157 2 0 0 U ZS 1LTRftSOl PLOT 20 8 157 51 2.4 4 4 les 
TFN=FIC SENSR 10 a 451 154 2.0 0 0 I'l TRAIC Sl Io 3 154 53 2 4 4 5 20a5 
CLss III COSS III 
i'BOR, FI PHS Ilaw 0 2717 2576 00 a 0 a NOR-2:011) 17 PHS low0 0 2576 a442 0 0 0 0 0 
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Table 2-48. Los Angeles, Valley Bureau Table 2-49. Los Angeles, Valley Bureau
 
AVM Accuracies and Cost Benefits AVM Accuracies and Cost Benefits
 

with Two Radio Channels with Three Radio Channels
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PART THREE. ANALYTICAL TECHNIQUES 

Joseph E. 

1. VEHICLE LOCATION ACCURACY FOR CLASS I 
AND III SYSTEMS 

In this Section, an algorithm is described which 
can be used to determine the system accuracy of 
Class I and III automatic vehicle monitoring (AVM) 
systems as a function of the appropriate system 
parameters. Some of the resultant cumulative 
probability density functions (cdfy) are also pre-
sented, which can be interpreted as the fraction ofA 
the fleet for which the error is less than or equal 
to y. The flow chart shown in Fig. 3-1 is a brief 
outline of the vehicle location accuracy program, 

while Fig. 3-2 expands on the methodology of the 
computation of the cumulative density function. 

A. 	 Parameters for AVM System Accuracy
 
Analysis
 

The inherent error, E', is defined to be the 
distance between the vehicle's actual location and 
the location determined by the AVM system at the 

Obtain standard deviation of inherent error ingand directionso 

Obtain fraction of vehicles stopped, maximum speed, 

and mean of speed density functionu 

Should 
the cumlative 

distribution of No 
A"h system errors 
for this paramete r 
et be computedl 

Yes 
Obtain the first twenty pott of the abscissRyeg 

for the cumulative distribution onl sstemes 
(See Figure 2)
 

Comput for twenty points the cumulative [
e 


probability distribution of A ,,sys e rors
.. . ...


on the onulasuc oy
distribution uneoy'

Obtain twenty additxonal points of the hbesctsa 

for the curilattve distribution of AM system errors 


Are 


you setsmtor
o.si.ed 


No 


stop 

Fig. 3-1. Main AVM Accuracy 

Analysis Program 


FOR ESTIMATING AVM SYSTEM ACCURACY 

Fielding 

samplesFor1000 


polling. pend of vehicle, and direction of vehicle 

system 
error re.utile it the above -luon 

4 
Accuml*te a 	 error histogram by comparing the .islated 

system error with tenty points 

£ the cunulative distributinn function 

Ccmutte umerof samples1needed t . er~e act c errors 
in the above cnn lative probabilities for a givene onfidence interval 

Are 
mor thban No0 letuarn to 

1000samas is Program 
nede 

Yen
zble~ ~~m o m l otl 

nor, mrethan the Limit number of naceco$ 

caciman alowable oaiem _1loable 
tnumber of samples / 

needdz 

distrbnton fu°nctoln probabu itesi 

Imvtee In probabilities 

Fig. 3-2. Computation of Cumulative 
Distribution Function 

instant of polling. Inherent error is assumed to be 

consistent with a distribution, i. e. 

) 

-


As time passes, the vehicle's location changes
by a distance of (s - t) and a direction e. (See
Fig. 3-3. ) The random variable S is assumed to 

be uniformly distributed. Its probability density
function 	is denoted by p(8), and is equal to lI(2n) 

between -w and 7. 
The speed of the vehicle is represented by the 

symbol s and is assumed to be described by the 
following distribution 

(FO -6 s=G 

f(s) =xcXs 0n<s<M 

0 otherwise
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VEHICLE'S REAL 
LOCATION AT The methodology used to generate the random 
TIME variables eo, s, t and 0 involves generating four 

uniform variates on [0, 1] rl, r2 , r 3 , r 4. In­
verting the cumulative density functions leads to 
the expressions needed to calculate the desired 
variables :
 

VEHICLE'S REAL 0 	 o a' -2 ln rI
LOCATION AT 
t=O 

VEHICLE'S ESTIMATED 	 t = TG4 +rgT 
LOCATION FOR 
Tc _<tS C - T 

0 r<3 -< FO 

Fig. 3-3. Error inKnowledge of 	 nO < <1
3


Vehicle's Location 	 s = 

There is a discrete probability FO, associated with 
zero speed. Between speeds zero 0 and maximum 6 = Ir(Zr 4 -1) 
M, the speed is distributed exponentially. The 
parameter X is set such that the fraction of vehicles 
stopped, FO, plus the fraction whose speed falls Of prime concern in the Monte Carlo integration 
between 0 and maximum speed M sums to 0.99. is the number of trials needed to ensure an accept-

The last of the AVM system parameters is time, able estimate of the probabilities that t -5y, If p, 
fthe lati of the vehicle is determined, denotes the real value of cdfy for a particulary yi,

After the location of the inleio ecmes then the process becomes a long sequence of 
there is a delay before the information becomes Bernoulli trials with p, equal to the probability of 
available. This delay is referred to as computation success (i. e. , that <y,). Since the number of 
time, Tc. Thus, if the symbol T denotes thedstrbuton 
polling interval, the probability density function the r ui distri 
g(t) is a uniform distribution over the time interval can be well approximated by the Gaussian distri­
gt g Tbution 	 with mean, p = p
TG through T c + T. 	 Standard deviation, 

B. Derivation of Accuracy Analysis Algorithm 	 = In p(l-p)/n 

Probability distribution functions have been 
defined for Eo, 6 , s, and t, and from Fig 3-3 the where n = number of trials, and Pi has been re­
actual error in the knowledge of the vehicle's 

placed by p for simphcity.
location, E, is: 

Since the distribution of the number of trials 

for which e exceeds any particular value of y is 
S+ s 2t2_ 2 C. st Cosoo 	 approximately gaussian, we can require the prbb­

ability (of the e,ent that the absolute error in the 
distribution function, cdfy, is less than some 

The distribution of errors is given by: 	 specified maximum value, E) to be at least C, the 
so-called "confidence level". That is, a fraction 
C of the distribution must be contained within the 

rrrr interval p - k- thru p + k- (Fig. 3-4). Thus, a 
cdfy = Prob (c :5 y) = J R D(Co) g(t) * value of C determines a value for k. In addition, 

f(s) p(e) dO ds dt dEo, 

where R is the region such that c - y. Due to the 
complexity of R, it is not practical to evaluate this 
integral analyfically or by numerical quadrature. AREA=C 

Therefore a Monte Carlo integration of cdfy is used. 

I 
The Monte Carlo integration generates values 

for the four random variables, R o, s, t, 0 and I 
p-k P p+Ikuses these variables to calculate E by the above 

y, for FRACTION OF TRIALS FOR WHICHi<yformula. By checking whether E s 
i=l, ... 20, when the yi's are a pre-specified array 
of points on the abscissa, it is possible, if enough 
trials are run, to determine an accurate estifnate Fig. 3-4. Probability Density vs 
of the cumulative distribution function. Fraction of Trials 
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to ensure an acceptable absolute error, E, it is 
required that the interval k- be less than or equal 
to E: 

k 5 E. 

Substituting the expression for the standard devia-
tion w into this last equation gives 

knp(l-p)/n - E 

which may be rewritten 

n >_kZp(l-p)/E2 

This value for n represents the minimum num-
ber of trials needed to ensure an absolute error of 
less than E with confidence C. A larger value of k 
implies that a larger fraction of the gaussian dis­
tribution will be contained within the interval 
p + Ika', thus leading to a higher confidence C. How-
ever, a larger k requires an increased number of 
trials in order to satisfy the error criteria. 

The accuracy algorithm specifies the maximum 
allowable error E, and the required confidence 
interval C. The program proceeds to run 1000 
trials, and p, is then estimated as 

(number of times 5 y,)/1000 for i=l, ... 20. 

These approximate values of p, are used to calcu-
late the required number of trials, n, needed to 

ensure (with confidence C) that none of the error 
terms will be greater than the maximum allowable 
error E. If n is found to be less than 1000, no 
more runs are required and the calculation of (y., 
cdfy) is complete. However, if n is greater than 
1000, additional trials are needed. 

In order to prevent an excessive number of runs, 
in terms of computer time, a constant NMAX is 
introduced which serves as the maximum allowable 
number of trials. Thus, if it is determined that 
more than 1000 runs are needed, the algorithm will 
process additional trials until the error terms are 
sufficiently small or until the maximum allowable 
number of trials is reached, whichever comes first, 
In the case where the number of trials reaches 
NIAX, the resulting errors using the improved 
estimates of the pi's are calculated. In the actual 
execution of the program, the number of trials is 
almost always extended to NMIAX with resulting 
errors on the order of 0. 005. 

The accuracy program is interactive, the user 
being free to set the system parameters of variance 
in inherent error, polling interval, computation 
time, fraction of vehicles stopped, and the "maxi-
mum" vehicle speed. The program then computes 
the mean of the exponential speed distribution such 
that 99% of the probability is included between 
speeds 0 and maximum speed M. The program also 
specifies the Z0 values to be used along the abscissa 
of the cumulative distribution function of AVM sys-
tem errors. These values are determined as a 

function of the variance of the inherent error as one 
can assume that the variance of system errors is 
somewhat correlated with this parameter. The in­
tent is to cover the full range from 0. 0 to 1. 0 of the 
cumulative distribution function. As a safeguard 
against failure of fullcoverages, the programallows 
the user to calculate the cumulative distribution 
function for 20 additional values of y where the user 
specifies the initial point and the interval between 
points. This option for additional points can be re­
peated as many times as the user desires. After 
the cumulative distribution function is computed, 
the user may reset the system parameters, and the 
process of determining a new cumulative distribu­
tion function is repeated. 

C. Results of AVM System Accuracy Analysis 

The algorithm described in the previous section 
was exercised by running 42 cases, each one with 
a unique set of the input parameters, where 

SIGMA = Standard deviation of inherent error 
in x and y directions 

T = Polling interval 

TC = Computation time 
M = Maximum speed 

FO = Fraction stopped 

Originally, all combinations of the following param­
eter values were to be run, 

SIGMA T TC M 
(meters) (seconds)' (seconds) (meters/sec) FO 

0 2 0.01 40 0 
100 10 0.1 60 

1000 60 
120 

300 

which would have required 60 cases. However, 
after the first 14 runs, it became evident that the 
AVM system error was stable for computation 
times in the range 0.01 to 0. 1 second. 

A value for the standard deviation of the inherent 
error of zero serves as a boundary condition for 
inherent accuracy of AVM hardware systems. 
Estimates of system error using SIGMA equal to 
zero represents the accuracy to be expected if one 
invests in extremely accurate hardware systems in 
terms of pinpointing location, assuming there is no 
motion. At first glance, a maximum speed of 
60 meters/second (134 rnles/hr) might seem a 
little high, however, the speed of the vehicles of the 
fleet is assumed to be distributed exponentially. 
Thus, a very small fraction of the fleet is traveling 
near maximum speeds; one-half of the fleet is tray­
eing at a speed of less than (maximum speed/6) or 
ZZ. 3 miles/hr. The fraction of cars stopped is set 
at 0 because the algorithm is designed to specifi­
cally test system accuracy assuming moving vehi­
cles. Later, if individual users need results that 
reflect their mode of operation, they can supply a 
non-zero value for this parameter. The effects 
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of changes in the above variables on AVM system 
accuracy follows. 

No modeling effort is necessary to determine 
whether system accuracy will improve or deterio­
rate given the direction of change of any input 
variable. As the variance in the inherent error, 
the polling interval, the computation time, and the 
maximum speed increase, system accuracy deterio-
rates. However, the designer requires a more 
detailed knowledge of the interaction between these 
system parameters and AVM system accuracy. He 
is faced withan accuracy constraint such as 8000 
of the vehicles must be located to within 150 meters. 
In order to satisfy this constraint, he must be 
aware of the combinations of system parameters 
that can meet his requirements. The above analy­
sis provides this information. What it does not 
provide is information for the designers' next step, 
which is to determine the proper balancewith 
respect to inherent accuracy, polling interval, 
and computation time so as to minimize cost as 
well as satisfy accuracy constraints. 

The best accuracy results are obtained when 
SIGMA is set equal to zero. With SIGMA zero and 
polling interval equal to 2 seconds, 80% of the fleet 
is located to within 20 meters and this is not 
strongly dependent on maximum speed or computa- 
tion time. As the polling interval is increased to 
to 10 seconds, 80% of the fleet is located to within 
65 meters at maxirnum speed of 40 meters/second 
and to within 105 meters at 60 meters/second, 
Thus, as polling interval increases, accuracy 
becomes more dependent on maximum speed. 
Again, the accuracy is not dependent on computa-
tion tirme. Table 3-1 presents similar results for 
the remainder of the cases with SIGMA equal to 
zero. The above trends continue, that is, as the 
polling interval increases, the 80% distance grows, 

Table 3-1. Vehicle Location Accuracy at 
80% Level for SIGMA = 0 Meters 

T (sec) TC (see) M (meters/sec) Accuracy (meters) 

2 .01 	 40 15 
2 .01 	 60 20 

2 .1 	 40 15 
2 	 .1 60 22 

40 65 

10 .01 60 105 
10 .1 40 	 70 
10 .1 60 105 

60 .01 40 420 
60 .01 60 620 
60 .1 40 420 
60 1 60 620 

120 .01 40 820 

120 .01 60 1350
 

300 .01 40 2100 
300 .01 60 3080 

Table 3-2. Vehicle Location Accuracy at 
80% Level for SIGMA = 100 Meters 

T (see) TC (sec) 1 	 (meters/see) Accuracy (meters) 

2 .01 40 180 
2 .01 60 183 

2 .1 40 180 
2 .1 60 183 

10 .01 40 195 

10 .01 60 212 
60 .01 40 448 
60 .01 60 650 

120 .01 40 850 

120 .01 60 1250 
300 .01 40 2100 
300 .01 60 3160 

the dependence on maximum speed increases, and 
accuracy is not dependent on computation time. 

Table 3-2 presents similar data for the case 
SIGMA equals 100 meters. With a polling interval 
of 2 seconds, 80% of the vehicles in the fleet are 
located to within 180 meters. The trends evident 
in the SIGMA equal zero cases can also be seen in 
Table 3-2. One major difference is that, in this 
case, the change in accuracy as polling interval 
increases from 2 to 10 seconds is rather insigni­
ficant. Thus, if the ystem hardware has a stand­
ard deviation for inherent accuracy in the x and 
y direction of 100 meters, then little would be 
gained by specifying a polling interval shorter than 
10 seconds. In comparing the results of Table 3-1 
and Table 3-2, it is apparent that the accuracy of 
a SIGMA = zero system is not significantly better 
than a SIGMA = 100 meters system when the polling 
interval is greater than 60 seconds. Thus, if a 
sophisticated hardware system in terms of inherent 

error is installed, it requires a short polling inter­
val to realize significant benefits. 

The most striking difference between the cases 
with inherent error equal to 0 and 100 meters and 
the case with inherent error equal to 1000 meters 
(Table 3-3) is that the interval between the mini­
mum and maximum accuracies is much more com­
pact in the 100 meter case. In general, one can 
conclude that as the resolution in inherent error
deteriorates, the system is less dependent on the 
remaining parameters. The accuracy figure in 
Table 3-3 for polling intervals of 2, 10, 60 and 
120 seconds are significantly higher than the cor­
responding values in Tables 3-1 and 3-2, while 
the accuracy at a polling interval of 300 seconds is 
of the same order over all three Tables. 

These results presenting accuracy estimates 
for AVM system errors can serve as a tool to be 
used in AVM system design. 
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Table 3-3. Vehicle Location Accuracy at 80% Level for SIGMA = 1000 Meters 

T (sec) TC (sec) M (meters/sec) Accuracy (meters) 

2 .01 40 1790
 

2 .01 60 1790
 

2 .! 40 1790
 

2 .I 60 1790
 

10 .01 40 1795
 

10 .01 60 1810
 

60 .01 40 1880
 

60 .01 60 1950
 

120 .01 40 2210
 

120 .01 60 2500
 

300 .01 40 2985
 

300 .01 60 3500
 

300 .1 40 2780
 
300 .1 60 3650
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U. MARKOV CHAIN MODEL OF VEHICLE LOCATION BY MEANS OF
 
PROXIMITY SENSORS FOR CLASS II AND IV SYSTEMS
 

Marvin Pernan
 

One approach to automatically locating specified 
vehicles in an urban area involves the employment 
of proximity sensors. The proximity sensors 
(which may be active or passive) are distributed 
throughout a given area. Once installed, the posi­
tion of a sensor is fixed. A vehicle, properly 
equipped, will interact with a sensor when the dis­
tance between the vehicle and the sensor is within 
prescribed limits. Interaction results in com­
municating the identity of the vehicle and the loca-
tion of the sensor to a central system. Not con-
sidered in this analysis are the proximity sensor's 
characteristics, the required equipment for the 
vehicle, or the means of communicating to the 
central system, This analysis presents a Markov 
chain model of the interaction of fixed proximity 
sensors with moving vehicles whose locations are 
to be monitored. 

A. Classifications of Finite Markov Chains 

1. Concepts and definitions. A stochastic 
process is any sequence of experiments amenable 
to probalistic analysis. A stochastic process is 
said to be finite if the set of possible outcomes is 
finite. An independent process is a finite sto-
chastic process where knowledge of the outcome 
of any preceding experiment in no way affects the 
prediction of the outcome of the present experiment, 

A finite Markov chain process is a finite sto-
chastic process where knowledge of the outcome of 
the innediate past experiment does affect the pre­
diction of the outcome of the present experiment. 
Furthermore, the dependence of the outcome of 
each experiment on the outcome of the nimedi-
ately preceding experiment only is the same at 
each stage of successive experiments. A finite 
Markov chain is characterized by a finite set of 
states (sl, sz, ..... S). The state of a Markov 
chain is the outcome of the last experiment. Thus 
a Markov chain is in one and only one state at a 
given time and advances from one state to another 
(or remains in the same state) in accordance with 
a priori transition probabilities. The transition 
probability Pij is the probability that the (Markov 
chain) process will move from state si to s , and 
Pij depends only on sI. Associated with evary
ordered pair o states is a known transition proba-
bility. An n x n transition probability matrix P 
contains as entries the transition probabilities 
corresponding to each of the respective nz ordered 
pairs of states as follows: 

s 82 Pln 

s2 P21  P 2 2 P2n 
p 


Sn Pnl Pn2 ... 1nn 
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Each row in P comprises a probability event space 
such that 

P. >-0 for ,all , 

and 

2 P 1 = 1 for every L 
3=1 

The transition probabilitymatrix P and an initial 
(starting state completely describe a finite Markov 
chain process. 

2. Regular Markov chains. A Markov chain 
is defined to be r if and only if after n steps 
(i.e. , experiments) for some n, it is possible for 
the process to be in any state regardless of the 
starting state. The entry p(n)in pn (the nth power
of the transition matrix) isijthe probability that 
the process is in state after n steps given that its2 
started in state s. A regular Markov chain has a 
regular transition matrix P such that pn contains 
only positive entries (i. e., p(n) > 0 for all i, j). 
P may be tested for regulart$ by noting whether or 
not the entries in P 2 , (p 2 )2 , (p 4 ) 2 , . . . are 
positive assuming P has one or more 0 entry. 

Example 1. Given the following (proba­
bility) matrix 

s1 s2 s 3 s 4 
-

s1 0 1 0 0 

a2 0 0 1 d 
p = 

0.5 0.25 0 0.25s3 


84 __0 0 0.5 0.5_ 

Successive squaring of P, P 2 , P4 . . . . quickly 
results in large powers of P. When testing for 
regularity, the actual values of the entries need not 
be determined. Denoting each positive entry by x 
and each zero entry 0 gives
 

0 0 0 

0 0 x 0 
P= 

x x 0 x
 

0 0 x 



p2, p 4 and p8 are, respectively 	 For odd n > 1, 

0 0 x 0 0 x x x x x x
 
0 x 0 x
 

X x 0 x x x x X x X X
 
x 0 x 0
 

0 X x x X x x X x x =
 0 x 0 x
 
x x x , x x x x and X X X x
 

.XX x 0 x 0
 

Thus P is a regular transition matrix. 

3. Ergodic Markov chains. A Markov chain Starting in an odd-numbered state (sl or s3), the 
is defined to be ergodLc if and only if it is possLible process is in an even-numbered state (s3 or s 4 ) 
for the process to go from every state to every after an'odd number of steps, and in an odd­
other state. Clearly a regular Markov chain is numbered state after an even number of steps. 
always ergodic. However, an ergodLc Markov 
chain is not necessarily regular. That is, for P in Example 2 is an ergodic transition matrix 
every n, p1n contains some 0 entries. However, which is nonregular. The process characterized 
Pn for different values of n, will contain zeros in by P is a cyclic (ergodic) chain. 
different locations. As n increases, the positions 
of the zeros change cyclically. In this case, the 4. Absorbing Markov chains. An absorbing 
chain is termed a cyclic Markov chain. Thus an state in a Markov chain is one which cannot be-left 
ergodic Markov chain is either cyclic or regular once entered. An absorbing Markov chain is a 
but not both. Markov chain that has at least one absorbing state, 

and from every nonabsorbing state it is possible to 
Example 2. Given the following transi- move to an absorbing state (in one or more steps). 

tion matrix 	 The nonabsorbing states (of an absorbing chain) are 
known as transient states. The transition matrix P 
of an absorbing chain has entries P., = 1 for each si 

is absorbing.4that1 2 a 3 
- -Example 3. The following transition 

s 0 1 0 0 matrix characterizes an absorbing chain 

s2 0.25 0 0.75 0 s1 5 shs 3 s5 

0 0.25 0 0.75s 3 	 sI 1 0 0 0 0 

s4 0 0 0 	 0.5 0 0.5 0 0s2 

or 	 = s3 0 0.5 0 0.5 0 

0 0 0.5 0 0.5
0 	 S40 x 0 

0 0 0 0 1
 
0 	 5x 0 x 

0 x 0 x 	 States sl and s5 are absorbing; whereas, states sZ,
0 	 and S4 are transient states.0 0 x 	 s3 

-
 5. Classification of states. 
The states of 
where x denotes a positive entry. For even n > 0, 	 any given Markov chain can be partitioned into 

equivalence classes. An equivalence class corn­
prises either an ergodtc set of states.or a transient 
set of states. OnceHieprocess enters an ergodic 

i 0 x 0 	 se-, it remais in the set. Once the process leaves 
a transient set, it never reenters the set.

0 X 0 x 
If a chain hag two or more ergodic sets of states 

X 0 X 0 but no transient sets, the chain in effect is a com­
posite of two or more unrelated chains. Each of 

0 x 0 x the unrelated chains consists of a single ergodic 
- _set and may be treated separately. Without any 
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loss in generality, every ergodic chain (regular 
and cyclic) consists of a single ergodic set. 

An absorbing state is an ergodLc set consisting 
of one and only one state. Such an ergodic set is 
referred to as a unit set. Thus an absorbing 
chain has one or more unit sets and one or more 
transient sets. 

Every state of a given set whether it is ergodic 
or transient can "communcate" with every other 
state in the set. The process, however, moves 
toward the ergodic sets when the chain contains 
transient as well as ergodic sets. 

B. Properties of Absorbing Markov Chains 

1. Canonical Form of P and Pn. The tran­
sition matrix P of an absorbing chain can always 
be arranged to have the following canonical form 
(by relabeling states) 

I' + 

The submatri I is an 2 x 2 identity matrix whose 
entries are the transition probabilities for every 
ordered pair of absorbing states (s,, s ) where 

= 

1 if i = 

The submatrir Q is an mnx in matrix whose entries 
are the transition probabilities for every ordered 
pair of transient states. The subnatrix R is an 
m x R matrix whose entries are the transition 
probabilities for every ordered pair of states 
(si, s ) where s, is a transient state and s3 is an 
absorting state. The submatrx 0 is an P x rn 
matrix whose entries are zeros corresponding to 
the zero transition probabilities of moving from 
any absorbing state to any transient state. Powers 
of P have the canonical form 

n 0 
=IThe 

1+M 11 
where 

M =[I +Q + Q +.. + Qn- I]R 

Note that the expression for M\ is a matrix 

equation. 

Theorem 1. In any finite Markov chain, 
regardless of the initial (starting) state, the proba-
bility that the process is in ergodic state after n 
steps approaches I as n approaches infinity. (A 
proof of Theorem I appears in Ref. 1. ) 

A Corrolary to Theorem 1 is that are real 
numbers band c where b > 0 c < I such that-	 and 0 < 

p() I bcn 
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for any ordered pair of transient states (s., s ) . 
This gives the rate at which p(n) approaches 0. 

13 
n 

Every entry in Qn in the canonical form of p 

of an absorbing chain approaches 0 as n increases
 
without imit.
 

2. Fundamental matrix. The fundamental
 
matrix of an absorbing chain is defined as
 

N = [I - Q I 	 (1) 

Note that 

I 0 n = I+Q +Q2 +.. + 0 n-I 

and since Q l 1 and lim Qn = 0 

+ 0? + . + Qn-I][If-]I= lim [I + Q 

the inverse of I - Q (i. e. , N) always exists. 

The submatrix vi in pn as n approaches infinity 
may be expressed as 

M = [I - Q1]- R = NR 	 () 

The fundamental matrix N has the following 
probabilistic interpretation. 

Let n(k) = 1 if the process starts in transient 
state si a~di ntasetsaes after k moves.
 
stt ~aAd is in transient state s~ afe3mvs
Otherwise u(k) = 0. Let ttn)denote the number of
times the process is in transient state s starting 
and during n moves given that it startediin tran­
sient state s Thus 

t ,n) u!Q) ++u • • + u(n ) 
= u 


ijIJ iJ 13
 
The probability that the process is in transient 
state s3 after the kth move Is 

p(u~k = 1) =-lq 
k 

q(k)p (k) 

given that si is transient and the starting state. 
mean of ut ) is 

i~u q(k) +o0 ( (k) 
=3 q3 "j - = i 

The mean of t(n ) is 
mtn) n 

=nq(0) + (I)+. q (m(ti ) = q "- U+ 

t
the i,jth entry of 

Q(0) + Q() + . (n) 

where Q(O) = 

Then 
n. 	 = hnm m(t(n))
 

iJ i -o i3
 



iM the i, jth entry of the fundamental matrix 
expressed in (1). The value of nj Is the mean 
number of times the chain is in transient state s 
given that it started in transient state s. and con-
tinues until the process is absorbed (i.e. , reaches 
an absorbing state). 

3. Statistics on the number of times the 
process is in a transient state. Let vL denote the 
number of steps (including the original position) 
before absorption, given the starting state is s'. If 
s is in an absorbing state, then v, M0. Given that 
the absorbing chain contains a transient set denoted 
by T, and s, is a transient state if and only if 
slzT (i.e., s "is a member of" T). Then 

= nij (3) 


which is the ith row sum of the fundamental matrix 
N. Each row sum of N appears in the m x 1 column 

vector
 

a = NC (4) 

where C is a m x I column vector whose entries 
are all l's. 

The variance of the function vi is 

m(v)- (m(v))var(v) = 

where 

22 
m(v1 ) E PJ" + E PJ M [(vI +1) ) 

s AsTs ET 

(Notethat the original position is necessarily 
included in the expression for rn(v9).) 

Continuing, 

m(v 1
2 ) = ++ pm3 

sT mv + 2v) i 
s T s e T 

-P p [a(v 2) + 2 m(v.)] + 1 

{m(v12)= PiJ + 2 m(v)] + 1 

s T 
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The braces denote a column vector where each 
entry corresponds to a different value of t. 

Therefore, 

{m(v2 = 2 ) I + 2Qa+ C 

ri 2
 
[I -Q) -- 2ia + C
 

Wv) = [1 - Q]1 [2Qa + C] 
I 

2NQa + NC 

2NQa +a
 

Since
 

N
 
N 1-0 

N- NQ = I and NQ = N-I 

and
 

{m(v )I = 2[N - Ia +a 

= [2.N - Ila 

Finally, the variance of v 1 for each i expressed as 
entries in m x I column vector is 

{var(vi) = 6m(v ) - (mr))2 

= [2N - I] - aa 

where as results from squaring each entry m(v) 
in a shown in (4). 

Example 4. A particle moves a unit dis­
tance along a straight line. Given that it is in st, 
it moves to s,+], one unit to the right, with prob­
ability 0.5, or to state Sl'1, one unit to the left, 
with probability 0.5. Two states are introduced, 
one at each end of the line, to serve as barriers. 
These are absorbing states such that the process 
is absorbed if it reaches either absorbing state. 
Assume there are five states where sl and s 5 are 
absorbing, and sz, S3, and s4 are transient. The 
probability matrix appears in Example 3. Reor­
dering the rows and columns gives the following 
canonical form: 

s s2 s3 s4sI 


s 1 0 0 0 0
 

0 1 0 0 0s5 


P= s2 0.5 0 0 0.5 0 

s3 0 0 0.5 0 0.5
 

s 0 0.5 0 0.5 0 



The fundamental matrix iss 

s 2 s 3 s4 

s 5 . 

- = 3 2 
N I- Q a3 

S L . 

starts 
$s, the mean number of time it is in state Sn s3 

and s4 is 1. 5, 1 and 0.5 respectively. 

Thus, for example, if the process in state 

Furthermore, 

since 

1.nQn = 0 

and 


him M =NR 

as shown in (1) and (2). 

In example 4 
s1 s 

f.
~2 o7C. 

R= 0s3 

s 0 

and 

s8 5 

f ,--vehicle 
.75s 2 

I = 53 0.5 5 

54 0.25 

Hence, for example, if the process starts in state 
s2, it will be absorbed in state sl with probability 
0.75 or in state s 5 with probability 0.25. The row 
sums of NR are necessarily I in accordance with 
Theorem 1. The mean number of steps before 
absorption including the original position for each 
transient starting state appears in a as shown in (4). 

a = NC = s3 

The mean number of steps before absorption is 3 if 
the process starts in s2 or s4 ; whereas, it is 4 if 

the process starts in s 4 . 

The variance of the number of steps (including 

the original position) before absorption for each 
in the column vectorstarting state appears 

[ZN - I] a- asq 

from expression (5). In example (4) 

a q [16a[N ­

12r
 

Thus 

[2N I~a C S1 s= 
3
 

U a 

The mean number of steps before absorption is 
greatest for starting at $3. However, the vari­
ance is the same for each starting transient state. 
(Note that when the variances are quite large corm­
pared to the corresponding entries in asq it indi­
cates that the means are unreliable estimates for 
that particular chain.) 

Model of Absorbing Markov Chain for 
Class I and IV Systems 

Consider a portion of an area to be monitored as 
shown in Fig. 3-5. Subareas are 5 x 5 square 
blocks, and each subarea has an identical sensor 
layout. A (monitored) vehicle entering a sensed 
intersection corresponds to an absorbing state. 
This is to be interpreted as updated information as 
to the vehicle's location. When the process is in 
an absorbing state, the location of the monitored 

is known (to within the detection radius of 
the sensor). A vehicle entering an unsensed inter­
section corresponds to a transient state. The 
absorbing Markov chain models a sequence of 
experiments for locating a vehicle to within pre­
scribed limits of accuracy. 

Given that a vehicle starts at any given inter­
section (sensed or unsensed), what is the mean and 
variance of the number of blocks the vehicle moves 
until being sensed9 Once the vehicle is sensed, a 
new experiment begins. Thus, between sensings, 
an uncertainty exists as to the vehicle's location. 
This is reflected in the magnitude of the mean and 
variance of the number of blocks the vehicle moves 
between sensings. 
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submatrices Q and R in Figs. 3-6 and 3-7, 
respectively. (Note that states s and s4 are 

-- - - I reflecting boundaries in Example 2.) 

-- ) The matrix N and column vectors a = NC and 
A- 2 3 D) _ [ZN - I]a- gsqwere computed on an IBM 360/65. 

The componen s of a and asq rounded to 3 decimal 
4 C 5 6 - places are: 
7 B E 9 0 

N 11 LF 12,,G 13 IN"1 I 1.667 2.778
 
H 14 15 6 i 

2 2.667 7.111
 

3 1.667 2.778
 

4 i..66y 2.•778 
5 1.667 2.778
 

.778
5 1.667
fl SENSOR + - INTERSECTION CI BLOCK 

L-J 6 1.667 2.778
 
Fig. 3-5. Urban Distribution Pattern for 7 2.667 7.111
 

Monitored Proximity Sensors a = NC = 1 
8 i. 66y aq 2.778 

The number of sensors, their layout, and tran- 9 1.667 2.778 
sition probabilities between orthogonally adjacent 
intersections is required a priori information. 10 2.667 7.111 
Uniformity of deployment of sensors assumes 
unbiased routes. Random movement of the vehicle ii 1.667 2.778 
corresponds to unbiased routing through the sensed 
area. Thus the direction of travel of a vehicle 12 1.667 2.778 
from an intersection will be in any one of four 
possible directions with equal probability. 13 1.667 2.778 

If one were to incorporate a different transition 14 1.667 2.778 
probability for each of the four possible directions, 15 2.667 7.111 
the number of states in the Markov chain model 

would increase fourfold. Each state would be 16 1.667 2.778
 
associated with a pair of labels. The intersection . .. .
 
entered would be designated by one label and the
 
direction from which it was entered by the other.
 
Such a transition matrix would be meaningful if the 
transition probabilities were accurately known. 
That is, the probability that a vehicle upon leaving 
a particular intersection will go straight, make a 
left turn, a right turn or a U-turn is a prioriinfor- 1 2 3 4 5 6 7 8 9 io i2 i314 iS i6 

mation. Without this information, equiprobable 1 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
direction of travel (to any of the four adjacent 
intersections) is Assumed. The resulting statistical 2 .25 0 25 0 25 0 0 0 0 0 0 .25 0 0 0 0 

accuracy establishes achievable bounds on the 3 0 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

system's accuracy. 
4 0 0 0 0 0 0 .25 0 0 0 0 0 0 0 0 0 

Returning to Fig. 3-5, only the subareawith 5 0 250 0 0 0 0 0 0 0 0 0 0 0 0 0 
labeled intersections need be considered. Bound­
ary intersections (of the subarea) act as reflecting 6 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 

boundaries in the Markov chain model. A vehicle 7 0 0 0 25 0 0 0 25 25 0 25 0 o o 0 0 
in intersection 1 corresponds to the process being 
in transient state 1. The transition probability 8 0 0 0 0 o o 25 0 o o 0 0 0 0 0 o 
from state 1 to the intersection due North is 0.25. 9 o o 0 0 0 0 0 0 0 25 0 0 0 0 0 0 
Since that intersection has the same relative loca­
tion in its subarea as does intersection F in the 10 0 0 0 0 0 25 0 25 25 0 0 0 25 0 0 0 

subarea under discussion, an upward move (due i1 0 0 0 0 0 0 25 0 0 0 0 0 0 0 0 0 
North) is equivalent to a reflection to intersec­

0 0 0 0 0 0 0 25 0tion F. Identical sensor layouts for all subareas 12 0 0 0 0 0 0 0 

isclearly required. This permits the use of a 13 0 0 0 0 0 0 0 0 0 25 0 0 0 0 0 0 
small transition matrix (25 x 25 in Fig. 3-5) fora 0 0 0 0 0 0 0 0 0 0 0 0 0 0.250 
Markov chain model of an entire area where 
fringe effects are neglected. Intersections labeled 15 0 0 0 0 25 0 0 0 0 0 0 .25 0 25 0 25 
with characters are sensed and are associated with 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 25 0 
absorbing states. Unsensed intersections are 
labeled with numbers and are associated with tran­
sient states. The reflection properties of tran- Fig. 3-6. Submatrix Q of Absorbing Chain Model
 
sient boundary intersections are apparent in the for Monitored Subarea in Fig. 3-5
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A B C D E F G H J 4ff 2 

1 .25 0 .25 0 0 .25 0 0 0 3 C # 
2 0 0 0 0 0 0 0 0 0
 

Dr3 0 .250 .25 0 0 .25 0 0' 


4 .250 .25 .25 050 0 0 0 5 
5 0 .255 . .25 0 0 0 0
 

6 0 .25 .25 .25 0 0 0 0 0 Fig. 3-8. Monitored Subarea 

with Sensor Density of 3/9
T 0 0 0 0 0 0 0 0 0 

8 0 0 .25 0 .25 .25 0 0 0
 

9 0 0 0 .25 .25 0 .25 0 0 Consider a monitored area with identical sub­
areas as shown in Fig. 3-8 where the ratio of 

10 0 0 0 0 0 0 0 0 0 sensed intersections to total intersections is 3/9.
Its associated submatrices Q and R appear in 

11 0 0 0 0 0 .25 .25 .25 0 Figs. 3-9 and 3-10, respectively. For complete­
ness the fundamental matrix N = [I - Q]-l corre­

12 0 0 0 0 .25 .25 .25 0 0 spending to Fig. 3-8 appears in Fig. 3-11. The 
entries are rounded off to 3 decimal places. 

13 0 0 0 0 0 .25 .25 0 .25
 

The mean and variance of the number of blocks 
14 0 0 .25 0 0 .25 0 .25 0 a vehicle moves before detection starting from 

each of the unsensed intersections is Z and 2, 
15 0 0 0 0 0 0 0 0 0 respectively. 

16 0 0 0 .25 0 0 .25 0 .25
 

Fig. 3-7. Submatrix R of Absorbing Chain Model
 
for Monitored Subarea in Fig. 3-5
 

Thus, starting in a transient state or an unsensed 
10intersecton, the mean number of blocks a vehicle 1 2 3 4 5 6 T 8 9 

moves before being sensed is 1. 667 or 2. 667. The -­
variance of the number of moves for each starting 1 0 .25 0 0 0 0 .25 0 0 0 
state (1 through 16) is 1.778 which are the entries 
of 2 .25 0 0 .25 0 0 0 0 0 0 

[ZN-aI]- a sq 3 0 0 0 .25 0 .25 0 0 0 0 

Since 1.778 is a fraction of 2. 778 and 7. 111 (the 4 0 .25 0 0 .25 0 0 0 0 0 
distinct entries of asq), the means given in a are 
reliable estimates for the layout in Fig. 3-5. 5 0 0 0 .25 0 0 0 .25 0 0 

Note that the probability of being sensed cannot 6 0 0 .25 0 0 0 .25 0 0 0 
be computed. The'probability of being sensed by 
a sensor in the same relative location as say B 7 0 0 0 0 0 .25 0 0 .25 0 
(Northeast corner of a subarea) can be determined 
from NR. See Example 4. 8 0 0 0 0 .25 0 .25 0 0 0 

The ratioof sensedintersections tothetotalnum- 9 0 0 0 0 0 0 .25 0 0 .25 
ber of intersections in a monitored area is of Inter­
est. In Fig. 3-5, 4 sensors are each sharing 4 10 0 0 0 .25 0 0 0 0 .25 0 
subareas. These are sensors at intersections A, 
B, H and J. Thus the total number of sensors per 
subarea for 5 (interior) + 4 (each shared by 4 sub­
areas)/4 or 6. The total number of intersections Fig. 3-9. Submatrix Q of Absorbing Chain 
per subarea is 9 (interior) + 4 (each shared by Model for Monitored Subarea in 
4 subareas)/4 + 12 (each shared by 2 subareas)/Z Fig. 3-8 
or 16. Thus the ratio of sensed intersections to 
total intersections is 3/8. 
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A 	 B C D E F
 

1 .25 0 .25 0 0 0 	 1 2 3 h 5 6 7 8 9 10 

2 0 .25 0 .25 0 0 	 1 1 073 029 002 089 0024 0083 0 311 oco6 0083 0 021 

2 0 287 1 15 0 006 0 311 0 083 0 024 0 089 0 021 0 024. 	 00063 	 .25 0 .25 0 0 0 
3 0 021 0 083 1 073 0 311 0 083 0 29 0 089 0 021 0 024 0 006 

Ii 0 0 .25 .25 0 0 	 4 0 077 0 308 0003 156 0308 0012 0oo 0077 0012 0 003 

5 0 021 0 083 0 006 0311 1 15 0 024 0 069 0 287 0 02 	 0 006 
5 0 .25 .25 0 0 0 	 6 0006 oo, 028t 0089 002h 115 0311 0006 0083 0021 

6 0 0 0 .25 .25 0 	 7 0003 0012 oo770 o o4.0012 0308 1156 0003 0308 0o077 

8 0006 00W 0 0021 0089 0 29 0083 0 311 1 073 0 083 	 0 021 
7 0 0 .25 .25 0 0 	 9 0006 0024 0021 0089 0024 0083 0311 0006 115 0287 

8 0 0 0 .25 0 .25 	 1000021008300o60310083 002h 0089 0021 029 1 073 

8 0 0o .25 0.25o 
9 0 0 .25 0 .25 0 

10 0 0 0 .25 0 .25 	 FIG 7 The Fiundenental matrix N Correiooding to righ 

Fig. 3-10. Submatrix R of Absorbing Fig. 3-11. Fundamental Matrix N
 
Chain Model for Monitored Subarea Corresponding to Fig. 3-8
 

in Fig. 3-8
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PART FOUR. AM BROADCAST AND BURIED LOOP FEASIBILITY ANALYSES FOR AVM USE 

G. R. Hansen 

I. 	 VEHICLE LOCATION BY MEANS OF AM 
BROADCASTING STATION CARRIER SIGNALSt" 

Carrier signals of commercial AM broadcast­
ing stations can be used as the source of vehicle 
location information. As in well-known naviga­
tion systems, the signals radiating from pairs of 
stations will form an hyperbolic grid or coordinate 
system, and vehicles which are equipped with 
phase-lock receivers and phase repetition counters 
can keep track of the location of the vehicle in this 
hyperbolic coordinate grid. This information is 
then periodically transmitted to a central command 
base where the transformation from hyperbolic to 
geographic coordinates is performed, and the 
actual location of the vehicle is determined and 
displayed. 

A. Introduction 

Most vehicle location and navigation systems 
require dedicated transmitter-receiving equipment 
combinations and frequency allocations for the 
location function. A particular advantage of the 
AM broadcast phase-difference monitoring system 
is that commercial station signals (0.53 to 1.60 
MHz) are used to furnish the vehicle location infor­
mation. Therefore, neither dedicated transmitters 
nor special frequency allocations are required. 

Carrier signals from three AM stations located 
near the urban perimeter are used to form a co­
ordinate system of hyperbolas of constant phase 
difference between the signals from pairs of sta­
tions (Fig. 4-1). Therefore, this vehicle location 
technique shares many of the characteristics of 
other hyperbolic navigation methods such as 
OMEGA, LORAN, and particularly DECCA. In 
this location method, however, the transmission 
frequencies from the AM stations need not be syn­
chronized, in contrast to the established naviga-
tion systems. It is more akin to the differential 
versions of the foregoing systems. In the differ-
ential verisons, mobile location equipment is uti-
lized at fixed geographical sites for the purpose of 
improving the location accuracy of vehicles in the 
neighborhood by determining the signal phase or 
delay variance at the known site from that predic-
ted, and this variance is used to correct the loca­
tion data received by the vehicle. 

The AM broadcast vehicle location technique 
relies on a frequency transformation method 
whereby the several frequencies of three AM 
broadcasting stations are separately normalized to 
a common frequency, and the relative phases of 
these common frequencies are compared to provide 
hyperbolic lines of position. An exact integral re-
lationship between the carrier frequehcies of the 
AM stations is not required, although harmonic-
ally related frequencies would result in a station-
ary "virtual hyperbolic pattern" and would some-
what simplify the location process. 

Vehicular equipment consists of at least three 
phase-locked loop receivers to extract the carrier 

.. "da"d nn
 

Fig. 4-1. Zero Degree Phase Difference 
Hyperbolic Contours Produced by 
Pair of Synchronized RF Signals 

frequencies and also a second set of three phase­
locked loop frequency multipliers to generate the 
common frequency. Phase comparators and dig­
ital counters are used to keep track of the vehicle 
location within the "virtual hyperbolic pattern. " 
The hyperbolic coordinates are stored for subse­
quent transmission to a central command and con­
trol base. 

Central equipment required consists of a lim­
ited arithmetic processor or table look-up com­
puter which is needed to relate the hyperbolic 
pattern coordinate information to an actual geo­
graphical location 

B. Hyperbolic Location Principles 

If two separated and synchronized sources of 
radiation transmit signals in an isotropic medium, 
a receiver positioned midway between them, or on 
the locus of points which is equidistant from each 
transmitter, will detect no difference in the time­
of-arrival or the phase of the signals from the 
separate sources. The locus is the perpendicular 
bisector of the connective between the two sources. 
(SeeFig. 4-1.)
 

U.S. Patent 3,889, 264. 
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If the receiver is at one side or the other of the 
bisector, the signal from the nearer transmitter 
will arrive at some finite amount of time before the 
signal from the farther source. If the signals are 
continuously transmitted, the phase of the nearer 
will lead the phase of the farther. Another locus of 
constant time or phase difference can be generated 
by maintaining the same difference in distance 
from the receiver to each transmitter. The curves 
for constant time or phase difference will be con-
focal hyperbolas that are symmetric around the 
bisector (see Fig. 4-1). 

A line-of-position (LOP) can be determined 
relative to a pair of RF transmitters by noting the 
time difference in the arrival of the signals, which 
corresponds to one of the hyperbolas. There will 
be ambiguity as to which branch of the hyperbola 
represents the true LOP. If the sigiials are con-
tinuous wave and only the phase differences are 
determined, the degree of LOP ambiguity increases 
many-fold since the phase pattern is repeated 
whenever the cumulative distance change to the two 
transmitters equals one wavelength. The resolu-
tion of the ambiguity is described later, 

If the two stations are transmitting on slightly 
different frequencies, the relative phase between 
the carriers will change cyclically at a rate de-
termined by the difference in frequency. This rate 
will be the same anywhere that the two signals can 
be received. If the locus of lines of constant phase 
,dfference are now considered, they again corn-
prise a family of confocal hyperbolas, but instead 
of being stationary, they will sweep through the 
area covered by the two stations (Fig. 4-Z). The 
hyperbolas, as a function of time, will tend to 

/ I / /somewhere within the hyperbolic triangle described 
/ / by the coordinates of a particular triad vertex. 
/ / The dimensions of this triangle are a function of 

S"/the distance to the foci of the two families of hyper­
/ bolas and also of the wavelength of the common fre-

N, 
\I/ \ted 
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form acutely around the station radiating the higher 
frequency and then move toward the lower fre­
quency station; straightening as they reach the mid­
point, then curving around the lower frequency sta­
tion and then vanishing on the extension of the line 
joining the stations. A receiver capable of count­
ing the passage of hyperbolas representing a par­
ticular phase difference w11 accumulate the same 
count in the same time interval regardless of the 
location within the service area of the two stations. 

If the constant-phase difference counting re­
ceiver is positioned in a stationary hyperbolic field, 
no counts will be accumulated as long as the re­
ceiver's location is fixed. If the receiver is moved 
in such a manner as to cause the difference in the 
distances to the two stations to change by onewave­
length, then one count will be accumulated. Sim­
ilarly, in a moving field, a one-unit difference in 
counts will be accumulated by a stationary receiver 
as compared to a receiver that is moved by a wave­
length distance difference. 

The AVM system based on AM broadcast signals 
is discrete as opposed to continuous location sys­
tems in that the intersections of hyperbolas form a 
grid which can be transformed into specific urban 
area locations corresponding to these intersections. 
Interpolation between grid lines is not used. There­
fore it is somewhat like a proximity system with 
the hyperbolic intersections taking the place of 
physical devices or signposts located at intersec­
tions or at fixed points. Continuous systems pro­
vide 	somewhat uniform coverage of the service 
area 	and allow any geographical locations within 
this 	area to be determined to some limiting pre­
cision dictated by the technique. The grid de­
scribed by the intersection of the hyperbolas allows 
the actual geographical location of the vehicle to be 

quency. In most continuous AVM systems, the 
precision diminishes with the distance from the 

AVM system, the location precision can be adjus­
in the principal service area by the choice of 

the common frequency. 

Established navigation systems such as OMEGA, 
and DECCA refer to the areas between 

adjacent hyperbolas of constant phase as lanes. 
These navigation lanes vary in width from 1. 5 to 

kin, 	 depending on the frequency used in the sys­
and the principal goal of these methods is to 

maintain a vehicle's location precisely within a se­
lected lane. In contrast, the AM broadcast vehicle 
location method utilizes much narrower (e. g.,

\ 	 0.15 km) lanes and keeps track only of the ID num­
ber of the hyperbola of constant phase difference 

that 	the vehicle has crossed and in which direction 
the hyperbola was traversed. Therefore, the 
location precision is a function of the lane width 
and will vary with the distance from the AM station 

\ 	 pair. This system is intended for use in metro­
politan areas and adjacent suburbs of rather lim­
ited size compared to the much larger service 
areas of navigation systems. Since AM transmit­
ting sites are usually located near the outskirts of 
the area they serve, the divergence of the hyper-

Fig. 	4-Z. Apparent Motion of Hyperbolas Due to bolas and the consequent loss in location precision
Slight Difference in Two Signal Frequencies can be held to reasonable values. 
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In many prior studies and developments con- placed in each vehicle. The computation of loca­
cerned with emergency vehicle location problems tions is reserved for the central command base 
(see Bibliography), a general goal has been to pro- where the location information is desired. 
vide a location capability to one city block, or 
roughly 0.16 kn (0. 1 mile). Lane widths of this It is immaterial whether the hyperbolic grid 
size can be generated with a frequency of 1 MHz. pattern is fixed or moving as far as the location 

process is concerned. If fixed, then only the 
In order to generate a hyperbolic coordinate counts accumulated by moving receivers are nec­

system from AM station signals, these signals essary to determine the new positions from the old. 
must be transformed to a common frequency which If the grid is moving, then the difference in counts 
is phase coherent to the AM carrier. To be useful between the moving receivers and a stationary re­
without restraints requires that this common fre- ceiver is all that is required. Besides the magni­
quency be a multiple of the highest common divisor tude of the counts, it is also necessary to know the 
of the available AM carriers. The common fre- "direction" of passage of the hyperbola of constant 
quency should therefore be a multiple of 10 kHz. phase difference. The hyperbolas always move 

from the higher frequency source toward the lower 
The individual AM carrier signals are received frequency. If the hyperbolas are stationary, the 

by the vehicle receivers, and these signals in turn vehicle's movement toward one source will tend to 
are each used to separately synthesize the com- increase the apparent frequency from that source 
mon frequency. The common frequencies are while decreasing the frequency of the other. 
therefore phase-coherent with the original AM Therefore an assignment can be made as to which 
carriers and effectively change the radiation from direction is to be called a positive count and which 
each of the AM stations to the common frequency. a negative count. 
A virtual hyperbolic pattern is generated from 
each pair of AM stations received; and if the AM C. Vehicle Equipment Requirements 
signals were phase coherent, the pattern will be 
stationary in space. It is then only necessary to A block diagram of one of the receivers to be 
measure the phase differences and count the num- installed in the vehicles is shown in Fig. 4-4. 
ber of times the phase pattern has repeated as the 
vehicle travels in order to determine a new loca-

Three pairs of 5W7TOIMtion from a known starting point. 
signals (three station) are sufficient to remove 7X 
any ambiguity in the determination of the new loca­
tion from the old location (Fig. 4-3). Since the 0 

&K)TO I b0kH. 

6I \ /4	 10 I'z 

) 0 -	 AL~P C O TO UP-ON 

S 	 /// FILTE\ COUNTERSS 'C CRT 

10. 	 -.- Fig. 4-4. Phase-Locked Loop AM Receiver
 
- on Vehicle for Hyperbolic AVM Technique
 

NN .J-- ' Three of these receivers are required for each 
"__'_ vehicle. A conventional RF amplifier is used to 

provide selectivity and gain of the desired AM sig­
,a_ nal applied to the phase detector of the phase-lock 

3 loop (PLL). The voltage-controlled oscillator fre­
quency in the PLL is adjusted to run at the same 

l' - -2 frequency as the AM station carrier. The oscilla­
tor output is divided by a variable modulus counter 

- - I -(-53 to 160) so as to produce an output frequency 
of 10 kldz. The 10 k lz signal is applied to a flip­

y/ \ / ' flop which provides a square-wave of 5 kHz used 
,\ \as the reference input to the phase detector of the 

3 frequency multiplying PLL. A 1 MHz voltage­
controlled crystal oscillator is phase-locked to the 

9 105 kHz reference by dividing the oscillator frequen­
cy by 200 to produce a second 5 kHz signal which 

Fig. 4-3. Change in Receiver Location is compared to the reference. Therefore, the 1 
from Hyperbolic Area 5-9-5 to 10-Z-7 lvfIz signal is phase-locked to the AM carrier fre­

quency so that the phase relationship between the 
spacing of the hyperbolic patterns is a function of 1 IMz and the carrier is repeated at least every 
the distance from the station pair, the relationship 53 to 160 cycles of the AM carrier. 
between the phase pattern counts and actual dis­
tances traveled would have to be computed. In this Three such receivers, each tuned to a different 
AVM system, the computational ability need not be AM station, will produce three separate 1 MHz 
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signals, each phase-coherent with the appropriate (i. e., not exactly on the assigned frequency) and 
AM carrier. part is due to vehicular motion. 

The problem then remains to determine the ID D. Vehicle Location Method 
number and direction of the hyperbola that is either 
traversing or being traversed by the vehicle. As If three AM stations, A, B, and C, are moni­
stated previously, the measurement of the frequen- tored (Fig. 4-3) and the transformation of the car­
cy difference and the determination of which is the riers yields three common frequencies fa, fb, and 
greater frequency are required. The technique fc, then the three counters in the vehicles will ac­
selected to determine the frequency difference and cumulate counts N in a time t in accordance with: 
also to yield information as to which is the higher 

fb)t + V
or lower frequency is to use an up-down counter N = (f - (f)t X F(xy)
ain which one frequency provides incrementing pul- a b ab 

ses and the other decrementing pulses. The state Nb = (fb - fc)t + Vbc (f)t x G(x,y) - C 
of the counter should then indicate the integrated 
frequency difference between the two frequencies Nc = (fc- fa)t + Vca (f)t x H(x,y) - C 
which is the algebraic sum of the hyperbola of 
constant phase difference traversed. C = 3 x 109 m/sec 

The up-down counter must respond to every in- where f is the common frequency, V is the vehicle 
any velocity component parallel to the baselne of the 

crementing and decrementing pulse because 
pulse missed will displace the measured location station pair, and F, G, and H are general equations 
by one unit in the hyperbolic grid. In order to pre- of the second degree (describing the three families 
vent the uncertainty in the up-down counter which of hyperbolas) in terms of X and Y which are the 
could be caused by the simultaneous arrival of up geographical location of the vehicle in an arbitrary 
and down pulses, resynchronization of the 1 MHz orthogonal coordinate system. This system of 
pulses was required. A synchronizing frequency equations does not yield an explicit analytic solu­
at least four times the frequency to be counted is tion for the location in terms of X and Y. It does 
required to assure that no pulse is lost or split, indicate the separability of the counts due to slight 
The logic for resynchronizing to 4. 19Z MvHz is differences in the common frequency and the 
shown in Fig. 4-5. The logic discards both incre- counts caused by vehicle motion. Counting is neg­
menting and decrementing pulses which are inputs ligibly influenced by the difference in frequency of 
to the same up-down counter and arrive in the same fa. fb, or fc. 
synchronizing interval. 

At the base, the location process is initialized 
2 by first receiving the actual geographical location 

U*ONC-T (in X and Y) of the vehicle and the initial content of 
- the three counters (called Na, Nb 1 , and Nci, re­

spectively). The coordinates in X and Y and the 
counter states are stored. The counter states of 
the stationary receiver are also stored at the same 
instant. An explicit calculation is then made using 
the X-Y location and the coordinates of the AM 

Cstations which yield the location of the vehicle in 
terms of the parametric families of the hyperbolas. 

S-(b, Each hyperbola in each family is numbered, and 
the results of this calculation give the location in 
three integers which represent the nearest hyper­
bola of each family. 

Subsequent locations are determined by receiv-
Sing the current state of the three counters from the 

o E vehicle. First, the initial state of the vehicle 
counters is subtracted from the current state, and 
second, the change in the state of the stationary
receiver counters (from the initializing time to the 
current time) is determined and subtracted to yield 

IRMTOC the change in each of the hyperbolic coordinates 
05 tC 	 caused by vehicle motion. The new X-Y coordi­

nates of the vehicle location are then calculated 
with an iterative least-squares algorithm. The al­
gorithm uses the old X-Y location and develops the 
required changes in X and Y so that the calculated 

45 new position will have the same hyperbolic coordi-
Fig. Up-Down Counters Sync Logic nates as those determined for the vehicle from the 

for Hyperbolic AVM Technique current counter states. This method was chosen 

over an analytic technique as it yields a "most 
Each of the three counters in the receiver main- likely" solution in less time than an analytic method 

tains a count which is the integrated algebraic sum which has the additional disadvantage of having 
of the apparent frequency difference between a pair several pairs of coordinates as solutions. 
of AM stations each nominally radiating at the com­
mon frequency. Part of this frequency difference Only two of the three available hyperbolic co­
is due to the AM stations not being phase coherent ordinates are necessary in all of the calculations 
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as the third coordinate is not independent. The 
third coordinate does provide a check in that the 
sum of the hyperbolic coordinates should be a con- 
stant plus or minus one. Additionally, for loca-
tions near the vertex (the one AM station common 
to each hyperbolic family), the algorithm may be-
come divergent and another set of coordinates 
should be used. 

E. 	 Accuracy Analysis 

All 	AM broadcast stations in the United States 
operate on assigned carrier frequencies which are 
multiples of 10 kHz in the frequency region be-
tween 530 and 1600 kHz. The FCC requires that 
the actual carrier frequency be within Z0 Hz of the 
assigned frequency. If all the AM stations within a 
given geographical area were exactly on the as-
signed frequency, the relationship between any two 
stations could be expressed as: 

(1) fl/fZ = (n + p)/n, where n and p are 

both integers. 

The carriers could be said to be phase-coherent in 
that the phase relationships between the two car-
riers are repeated every n + p cycles for one car-
rier and every n cycles for the other. If this 
condition is maintained, it isNthen possible to syn-
thesize another frequency, which is also a multiple 
of 10 kHz which is phase-coherent to each of the 
carriers within the area. 

The 10 kHz can be multiplied to another fre-
quency, say I MHz, which will be phased coher-
ent with the original carrier. Since the FCC allows 
a frequency tolerance of 20 Hqz, the synthesized 1 
MHz signal will have a tolerance of: 

(2) eX Hz = ±20 Hz (106 Hz)/f Hz, where 

f is the AM carrier frequency. 

Therefore X can vary between 39 and 12 Hz, de-
pending upon the frequency of the AM broadcasting 
carrier. It is therefore possible that a pair of AM 
stations could cause a beat frequency between the 
two "normalized" carriers approaching 80 Hz. The 
impact of the frequency difference is principally 
upon the equipment design, the sampling rate for 
location purposes, and the amount of information 
that must be transmitted from the vehicle. These 
effects will be discussed later. 

A secondary effect of the AM carrier being off 
frequency and thereby causing the 1 MHz to be 
slightly off is that the location process will be re-
duced in precision. A wavelength of the actual 
frequency will be slightly shorter or longer than 
expected by up to 39 parts per million. This error 
would be on the order of 1 meter on the baseline 
connecting a station pair with a separation of 30 km 
and up to 2 meters some 60 km away from either 
station and therefore negligible, 

F. 	 System Data Requirements and Polling

Intervals 


System considerations determine how much in-
formation is needed from each vehicle and how 
often it should be sent. Prior work in automatic 
vehicle monitoring has usually emphasized the 
fixed-rate polling method of interrogating vehicles 

to determine locations. If the polling method 
allows any or all vehicles to travel at maximum 
speed and still be located to the ultimate precision, 
the information flow is maximized from each ve­
hicle. If an average speed is assumed for the 
fleet of vehicles, then high-speed vehicles will not 
be located to the precision available, and parked 
or slowly moving vehicles will be transmitting 
much redundant data. Volunteer methods wherein 
the vehicle initiates a data transmission whenever 
a significant change in location has occurred re­
quire means to avoid contention and must also send 
additional data to identify which vehicle is trans­
mitting. An adaptive polling technique whereby 
high- speed vehicles are interrogated at much 
shorter intervals and where average and slowly 
moving or parked vehicles are infrequently sam­
pled is quite easily mechanized. The simplest 
polling technique requires that the central control 
transmit incrementing pulses (tones, or tone 
bursts) to all vehicles which count and accumulate 
these incremental signals. When the number of 
signals received matches the number assigned to 
the vehicle, a data transmission is initiated from 
the vehicle. The inclusion of a respond or do-not­
respond pulse, tone, or burst with the incremen­
ting signal will tell the vehicle whether data is 
required or not. Conversely, a vehicle which had 
been immobile could request inclusion in the next 
polling sequence by responding with an appropriate
signal regardless of the command not to send data. 

The amount that the AM carriers are off fre­
quency together with the sampling intervals of the 
vehicles determines the number of bits required to 
be sent to the central command for location pur­
poses. The length of each of the up-down counters 
is therefore determined by this number of bits. 
As stated before, two low-end of the band AM sta­
tions could cause an 80 Hz beat frequency in the 
synthesized 1 MHz signals which would cause a 
total count of about 288,000 per hour to be accu­
mulated. A vehicle cruising at 30 km/hr along the 
baseline of a station pair would accumulate a count
of 200 per hour due in a stationary pattern. A re­
cent Department of Transportation requirement 
for vehicle monitoring required that 25% of the 
vehicle fleet be located each 15 sec and the re­
mainder located each minute. The total counts for 
each station pair under these requirements would 
be 1200 for 15 sec and about 5000 for the minute 
interval. To accommodate this requirement, the 
length of the up-down counters would have to be 
13 bits each. Some 40 to 50 bits per interrogation 
would have to be transmitted from each vehicle if 
a preamble, parity checks, or error detection in­
formation was added to the basic 39 bits of loca­
tion data. Assuming the higher number over a 
voice channel from the vehicle which could con­
servatively accommodate 1200 bit/sec, then 24 
vehicles could be interrogated and located each 
second. Again using the DOT requirement, 820 
vehicles could be located each m ,nutewith205 of 
the vehicles being located each 15 seconds, or four 
times each minute for a total of 1435 locations 
each minute (1440 maximum). It should be real­
ized that these are theoretical maximum numbers 
and neglect the practical realities of turn-on sta­
bilization time of mobile transmitters and also 
assumes another channel for interrogation 
purposes. 

The amount of data required from each vehicle 
could be reduced by about two-thirds if the AM 

4-5
 



I 

stations being utilized for location maintained phase
coherency. A stationary location pattern would be 
generated, and the up-down counter lengths could 
be reduced substantially as only counts due to 
vehicle motion would be accumulated. Only a rela­
tively small amount of equipment would be neces-
sary at each AM station to maintain the carriers 
coherent to one another. This could be done by
either a common synchronizing signal or with each 
station referencing the carrier frequency to the 
other two carriers by counting and phase-locked 
loop techniques. In either case, the control range 
of the added equipment must not allow the carrier 
to be pulled outside of the 20 cycle FCC tolerance 
limit. 


Some operational difficulties that might occur 
with this type of vehicle location system could be 
caused by momentary outages of one of the AM car-
riers, or transmitter switchover when power is 
increased or reduced. In some smaller metro­
politan areas it may be difficult to find three "24­
hr" broadcast stations with appropriate geometry, 
and different configurations may have to be used for 
day and night operation. 

G. Computer Simulation Programs 

Two computer programs, a location simulator
 
called LOCATE (Table 4-1), and a vehicle count
 

Table 4-1. Vehicle Location Simulator 
Program, LOCATE 

.- lCArE(IilV 
LOCAn2" 


El) XS.-'iXS.XS[l 

C2] .ktYSY'W( 

(3) O-)0 

('I] X.-nitu) 

t5) r-ZI[23 

[(0 RP iI 

E73 U.( (X-ZM ).2),(-Y7)f2).o 5 

[(. 0D-D
D[Ij 

E.) C<.-Uo0
 
t103 RC ARLV ((X-XSL3).D[L)-((X-XSi3),0(13)


ll] PC.(0 (CflC1]-LA1'E1).(LA [3]-C.T"33))300

[12) D[EL{-F] D&)-((T-rL2DE3-(-7([i3)'a[i3
 

(13) CrEL).(D(13-b[u),-Q(Ll*oC(')
 
(14) 1 Et21ti(iS] cr4-C (5/4.2.41 j'2 )- Ct/CA'S) 22 

) 4/f

[173 AY.-(((s/A .).( /P.Cr) (- D2'(.,A.Cr))I

18] X--Xx
 

(10) bX.(((*]A.C0 ( 2))-((tX/7CX)'(O/AS) 2) DP 

[19) .'Y-y
(203 RF4I((CIAX).02V((0 Y).1O))
 
[21) OID-X.Y
 
[223 DEL' X ADD I ARE ' .OLD
 
[31 'X AND7AY AR 1 U-1),(Y-1)
 

generator called PIG (Table 4-2) were written to 
test the location method. A SETAUP program
(Table 4-3) was also written which stores the loca-
tions of the AM stations in the arbitrary coordinate 
system and determines the lengths of the baselines 
connecting the stations, 

In order to make the simulation more realistic, 

three AM stations in the Los Angeles, CA, metro-
politan area were chosen: KFI (640 kHz) located in 
the Buena Park-La Mirada area southwest of the 
Los Angeles Civic Center; KNX (1070 kHz) in 
Torrance which is south and slightly west of the 
Civic Center; and KIMPC (710 kHz) with transmitter 
in North Hollywood which is northwest of the Civic 
Center. The baseline distances are: KFI-KNX 31 
kin, KNX-KMPC 35 kin; and KMPC-KFI 51 km. 

Table 4-Z. Vehicle Hyperbolic Lane Count
 
Generator Program, PIG
 

1PIcra
 
Ell V TDD. YPGZC2XS-Z1 DC DD *CTR-CfTl W q3O 

(12 x-zItI-OLDUII 
[3c I-1lDC73
 

(51 YS-Y.Y. ( .IG. C-(((X-=,2*)+{(Y-YC),2)),D 5
 
(.-
Cal 110-1101300 

[1 tA:C300
 
1u)3w CtOUtR( ,A1c
 

[123 .&X.22[3

[133 Y-Z 2 21]

[iu] DO-([CX-XSl.2) ((Y-Y').2)).O 5
 
[153 tI( C]8CI }()C .;[] (DD[1]-VD[31)
 
[16 2P051300
(171 CR'.t[C ,tf*OA~t52 

,S 

E193 E-CRT-4$C
 

tin1 ,RICODTE CcIr 

[20] 'CIAdOE WAS I 

21] Q.(0.CIIi)) (-R(3))1300 

Table 4-3. AM Broadcast Station Locations 
and Baseline Lengths Program, SETAUP 

VSETLUP( D]
 

C,) C -F-A--p40 
[23 'SET Z A'D I FOR SACP OF TREE AN STATIONS IN PETERS 

[51 X2-C[3
 
(03 X3 CCS3 
[7 1 ri-C23 
[8 72-Ct0 3 
(.) r3-C[.
 
CI0] A-((X2+XI)12) .((X3tX2),2) .U i.X3)e. )

EI)3 V-C(Y2tXl)02).((70072),2).((1 t73n2
 
Ci2Y E (X2-X1) .(X3-;22(XI-X3)
 
[ii F.(Y2-YI).T1
T2).(i-3) 
[143 L-1 
(iS BE C5((ECL3.2)t(7[53.2) 20 

An arbitrary origin for the coordinate system was 
located some 8 km (5 miles) in the Pacific west of 
the Palos Verdes peninsula such that most of the 
area of interest for location purposes would be 
m the first quadrant of the X-Y system. The ori­
gin is at l18°30'W and 33°45'N. 

The location (LOCATE) program and the vehicle 
count generator (PIG) program were written in 
APL computer language. The vehicle count gen­
erator requires two input variables. These are 
the initial and terminal values in meters of the 
X-Y coordinates representing each change of posi­
tion of the vehicle. The hyperbolic coordinates of 
each location are calculated and the integral differ­
ence determined. The difference represents the 
counts that would be accumulated by a vehicle in 
traveling from the initial to the terminal location 
of each leg of travel. The count difference and the 
initial location are the inputs to the LOCATE rou­
tine which determines the new location. The new 
location is determined by a reiterative technique 
whereby the deltas of X and Y which would satisfy 

4=6 

http:F.(Y2-YI).T1
http:bX.(((*]A.C0
http:5/4.2.41
http:XS.-'iXS.XS


the change in counts of the hyperbolic coordinates 
are calculated and added to the initial location, 

H. Conclusions 

A vehicle location method for use in metrdpol-
tan areas is available, which uses the carrier sig-
nal information from three currently operating AM 
broadcasting stations located near the urban perim-
eters. Two advantages of the method are that (I) 

dedicated transmitters for location purposes are 
not required and that (2) the phase-lock-loop count­
ing receivers installed in the vehicles are inexpen­
sive. The mathematical technique for vehicle 
location is relatively simple and requires only that 
the initial location be known. While the techniqueis not explicit, location can be determined with 
adequate accuracy to the precision implied by the 
geometric configurations of the AM stations used 
and the frequency of the synthesized signal used 
for phase comparison. 
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II. VEHICLE LOCATION BY MEANS OF BURIED LOOPS* 

Lawrence 3. Zottarelli 

With the exception of the cut-to-fit development 1. Analytic Relations of Loop Mutual 
method, the evaluation of the buried loop* AVM Inductances 
system requires as a basis some mathematically
 
analytic relations. Since such relations do not (1) The magnetic flux lines q coupling
 
seem readily available in the open literature, an the buried loop (BL) due to the XMTR
 
analytic approach was developed to determine the current I(T) at point P is
 
effects of loop spacings, dimensions, and height
 
above roadway on RF signal detection and on iden- 4 'BL = K1 . NT. I(T)
 
tification of the vehicle's location.
 

where 
A. 	 Relationships of Three-Loop Vehicle I(T) = Ip sin(wt), K1= XMTR/BL 

Location System 

The approach is to find the mutual inductance of coupling, and N T = XMTR turns. 

the vehicle's transmitter and receiver loops 
through the intermediary of the passive buried (2) The voltage E coupled to the buried 
loop. A typical three-loop configuration is shown loop with width W is 
in Fig. 4-6. The assumptions are- EBL(T) = NBL d%L/dt -

I. 	 The XMTR and RCVR are sufficiently re­
mote from each other so that direct mutual W-K I-NT.NLIP' cos(wt) 
inductance is of secondary importance. 

(3) 	 The current in the buried loop (which 2. 	 The buried loop is tuned with a capacitor is at resonance), with resistance R, 
to the vehicle transmitter frequency, and is 
the buried loop resistance is directly pro­
portional to the number of turns. IBL(T) = EBL(T)/RBL ­

3. 	 The loops are in an isotropic medium. [KI NT. NBL* WIP -Cos(wt]/RBL 

R 	 -- (4) The flux lines coupling K2 the RCVR 

due to the buried loop is 

K2 RRCVR(T) 	 = KZ* NBL-IBL(T) 

substituting 

VEHICLE 	 IRCVR(T) 

NT[-K 	 1 K 2 NT. (NBL)2 " W.T. cos(wt)] / 

K1 1MT) 	 RBL 

(5) 	 The voltage at the RCVR due to the 
buried loop is 

ERCVR =N R dRCVR /dt 
I(T) 	 =XMTR CURRENT 

-

K	 =XMTR/BL COUPLING EKg KZN T'NBL I(WIP sin(wt)}/1 

K2 =RCVR,/BL COUPLING RLOOP
 

NR = RCVR TURNS
 
NT =XMTR TURNS allowing now the resistance per turn 
NBL = BURIED LOOP TURNS (R/turn) 

RBL 	 = BL RESISTANCE Rl = (R/turn)NBL 

Fig. 4-6. Configuration of Vehicle's 	 QED- ERCVR =[-K KZ.NT.HBL. NR -

Transmitting and Receiving Loops
 

Relative to Buried Loop (W Ip)Z sin(wt)]/(R/turn)
 

U.S. Patent 3, 772, 691, "Automatic Vehicle Location System." 
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2. Comments. The reasoning involved in 
deriving the relationship permit the geometrical 
and electrical aspects of the solution to be separa-
ble and simply multiplicative. If Ercvr is to be of 
the form MdI/dt then: 

M/
Mequivalentbecomes[Ki K1 T R NBL"(NIP)jI 

(R /turn) 

and i(t) becomes IP cos(wt) 

B. Magnetic Field Generated by RectangularLoop of Wire 

1. Development of Flux Density Equations. 
It is desired to find the flux intensity b at a point 
P(x, y, z) generated by the rectangular loop of 
wire, with the X-axis direction across the lane 
width and the Y-axis in the direction of roadway 
travel, 

Given: 
(1) 	 A rectangular loop of wire of length 

L and width W, with the lane width 
equal to the buried loops length. 

(2) 	 The loop is in a free-space plane 
(of x, y, z rectangular coordinates) 
having equations z = 0. 

(3) 	 The loop has a DC current of I. 

(4) 	 The coordinate space has its origin 
at (0, 0, 0), which is the center of the 
loop wire. 

(5) 	 The linkage or mutual inductance of 
two parallel planar loops (nbt neces-
sarily coplanar) lying in x, y-plane 
uses only the z-component of flux 
density. 

Method: 


(1) 	 Decompose the loop into four linear 
segments
segments 

(Z) 	Apply the Biot Savart law from each 
segment to the point of interest 

= • (COSY - Cosa ) 

(3) 	 Decompose the flux density into its 

vector components, and sum the 
components. 

The complete mathematical analysis is pre-

sented in Ref. 1. 


C. 	 Comlputer Programs for Calculating Iviutual
Inductance
Yn_____O___ 

Two programs are used to generate the mutual 
inductance of rectangular wire loops. The pro-
grams LOOPS and CARCUP are written in the 
Stanford Artificial Intelligence Language, "SAIL, " 
which is an extended ALGOL 60. 

1. ''LOOPS'' and "CARCUP 
II Programs. 

The 	'LOOPS'' program is used to find (1) the 
direct mutual coupling, (2) the selfXMTR/RCVR 

inductance of a loop, and (3) the direct coupling 

between the Buried Loop and the XMTR or between 
the Buried Loop and the RCVR or between two 
Buried Loops. The "CARCUP" program is used 
to find the mutual coupling between the XMTR and 
the RCVR via the Buried Loop, the inner workings 
of the two programs are similar, the program 
"CARCUP" is, in effect, the program "LOOPS" 
run twice. Both of the programs have Input/Output
in common. 

a. LOOPS Program. This program 
(Table 4-4) asks the user- (I) if he wants more 
detailed information, (2) to specify "how many
steps," or data points, (3) where is the startingpoint of the pickup loop and what size is the loop 
(in terms of XMIN, XMAX, YMIN, YMAX) and how. 
high above the buried loop (in terms of Z), (4) to 
specify the aspect ratio of the buried loop. K. 

The LOOPS program calculates and prints out 
the mutual inductance for the number of data 
points specified. Each successive data point rep­
resents the mutual inductance of the buried loop 
and pickup loop moving along the positive Y­
direction (along the roadway lane) by 1/10 of its 
length (i.e., (YMAX-YMIN)/10). The mutual 
inductance is in relative units. To find the answer 
in henrys, multiply the answer by half the lane 
width (in meters), by 10-7, by the number of 
turns of the buried loop, and by the number of 
turns of the pickup loop. 

b. 	 CARCUP Program This program 

(Table 4-5) asks the user: (I) if he wants more
 
detailed information, (Z) to specify "how many
 
steps, " or data point, (3) where is the starting 
point of the XMTR loop, and what is its size and 
how high above the buried loop (in terms of 
XTMIN, XTMAX, YTMIN, YTMAX, ZT); also 
where is the starting point of the RCVR loop and 

Table 4-4. LOOPS Program for Mutual 
Inductance of Buried/Pickup Loops, 

and Sample Run 

.TYPELOOPS SA E 
BEGIN tOOP­ooo ITERNALiINTEGR EXIT )FDPER.1
 

00200 INTEGER I,J,S,Ll,
 
00300 DEFINE RF--'15&1-;
 
00400 PEst .n, M. t,. M,(M4AEN...R Y,S,P,C,DE NA.IB.CC,DD,F,
 ,ML II]O B,Z-,l ES,110,
00500 G,H P, T ,OT. 


00550 STRiN T,,I 
00:00 OUTSTR(DO O TES rTFE IIIEITHER NES OP NO FOLLOWED BY- I ,FIT 
CAPFETB ),DIED0 THE ETS.
 
O0qOO WE PURPOSE OF THIS PpOGPA 1. TO CALCULATE THE FREE SFRCE 

00000 RELRTIVE CPLINA PETEEH TUB FLAT PUT VON COPLANAR FECTARKULAP 
01000 LOOPSOF IIRE(THE SIDESOF UIRICHARE PAPALLEL TO THE LOIFDINAT 
01200 AXES OF PEFPAICE) IT IS TO E APPLIED IN AUTOMOTIVE VEHICLE 
01300 LOCATION HEI1E THE TENOR OF THE FOLLO'JIIIG ITRODIICTIOOI.

1
 
01400 THE LANEUICTH Z ThE 4 DIMENSION LRF LENGTH IS 
011300 THE Y DIMErN-10N,THE £RTIPPL 11 ?NhrE BETWEEN1 LOGPS I . THE
 

01600 Z DItEISTIOI IH CENTER OF THE BURIED LOOP IS AT COORDINATET 
01700 0,0,0 THE I000TH OP THE BURIED LOOP IS THE LANE WIDTH 

01500 X IS THE ASPECT RATIO OF THE ,RIEZ LOOP WOIDTH DIVIDED BY 
01900 LENGT-)
0000 tIN, 'I 'Itl iX DETERNIIE THE SIDES S'ID LOCATION OF THE 
02100 PICrOP LOOP
set00 dLL IUT DIIIENS14S ARE TO BE HORMALI:ED TO HALF THE LANE 
02-00 WIDTH. 

02400 HOW MfAW STEPS PEFERS TO MOVIIU9 ThE pICrbP LOOP ALONG 
AUAYFO E THE BURIED LOOP)00V THE LAKE LEHGTHCMINEPALLV PM% F BY 

02600 1,10 OF TlE PICFP LOOP LENGTH AN4D TH N CPLCUL TEIIG ITS 
G700 GOMALI-ED 2 DIPECTIOI COUPLING FROM ThE BURIED LOOP. 
02000 THE FPIITOUT IS THE CSLCJLHTED FLG, I PELATIATE FLIPl L IITS 
4900 AND OP S1ICESSI,E STEFFICIGS 

03000 TO FIND THE ACTUAL FLUN IN VOLT SECOIODS,MULTIPL 
Y 

THE DATR
03100 :BV THE FOLLOOIII FACTOPs 
03200 )*(LATES IDTHS> CINC-7 

03300 WHEPEI IS THE BURIEDLOP CURRENT IN AMPS 
03400 WHERE THE LANEWIDTH IS InItETERS'&RF)I 
03500 OUTTRCgM Vf 

[ 
UPS TR.HAW 


TR(RF) •
03.00 fN (T 'TS')• ))) C3(14(RR 


03.0oEGINAT 
0370 PEAL ARRAY VCI103, 

) ,

039000 OUTSTR(YXIN>'),NI PEALSCRNSTCIHCHWIK K: OUTSTR<RF>I
03000OUO TC0lN,'1HPALC~(TICW)DI 	 OUTSTR(rf, 

oHIo0 fUTTR(?N_A=');fMiwpEHLSCRH((ST+IHCHUL).RK). OUtSTR<RF);
 
NEED X.XMIN X-( AX-M)/ 01
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Table 4-4. (Continued) Table 4-5. CARCUP Program for Mutual 
Inductance of XMTR/RCVR Loops, 

and Sample Run 
04300 
04400 

Y YMIN yA (tliA-yfIII10; 
'LD''NIII1YR.O 

fops 
00100 

cwAtP SAI 
BEGIN CARCUP 

0440 T - M4I.0-0. 00200 INTERNAL INTEGER EXIT ,FORER., 

0400 OUTTPU:=>,Z4-ELCSNCCSTICHLR) MCTSTR(PF); 00300 INTEER I.J.OZ,S,BRKd 

04700 
04800 

E2.2,j3] 1 
OUTSTP(-'Y=' .Y+PEALSCANCSTICH.)E>FK), CUTSTPCPF); 

00400 
00500 

DEFINE ='I15012, 
REAL <,ITN T TM II,YTflAYEI,AA*YR,A)DCD EAARD3CC'D 

04M. 
0495 
05000 

EIT *OFOFER +0 
BEGIN 
PROCEIPE PIZ, 

DF, 
00,00
00700 REAL XMINHIH,,NRX, 

B510U 
05-00 
05300 

BEGIN 
R (XtI>,6(N-I>, 
C+(Y+k),D(Y-) . 

00800 
0000 

STRIH STE 
OUTSIRS-CO YOU MANT NOTES (TYPE IN EITHER IES OR NO THEM CHO PET 

05400 0AD(A+I),a,DD*(?-K>, 01000 IF ITrH.L =-YES- THEM OUTSTP-TO FIND THE ACTUAL OUTPUT VOLTNH 

05-00 F.EDDSiA-r5>.04'E+CCRA)t( 5>1UTPL H - DAT15)T EP1!1COEITJTA& N 
05700 
05800 
05 00 
06000 
06100 
06200 
0300 
06400 
06500 
0-00 

H*<E+DD+BB)I 5KKT-E+-CC+E)t5.))R 
P <A'(E+RfiAN>(-DF+tC), 
R-(3,(EeI,> -DHetH)I 
L*CBtCECC)),<-1fletRG> 
E0-(D'CE+DD>>*(-E'*+SPFI 
22+(P+R4L+I+<4A.V, -

ECD, 

PRUCEDUFE FLUCUP, 
BEGIM 

01200 
01300 
01400 
01500 
01600 
01700 
01300 
01900 
000IU 

WHERE 
MY = NUMBER OF TURN' Oil THE TF.AT:IITTEP LOOP 
NBL = 11IMitp O TIIONSON THE BUIED LOOP 
NP = NUIIBER OF TUERINS01 THE PECIEVEP LOCP 
LqFi WIDTH IS Ih METERS 
1 = 2.PIF 
F = TRN.OSMITTER FPEQUENCY CHERTZ, 
IF * THE PFSY TPAN-IITTER CUPRENCT 
' ,IT, = VOW1.0 M1HNC 

N.UO 
06700 
04000 

SETFOMT(13,3S> 
UHILE Y GEQ YNIH IlD 
BEGIN 

f LEO <YEIOD-( 999 )-(YA>)) DO 
O.O 
0800 
08300 

R = THE PEP TITAN pREISTNCE OF TH 1"ATED LOOP 
I= DVIDE. * = MULTIPLY, = TO THE POWER OF 
~CRP). 

06-00 
07000 

WHILE X 050 
BEGIN 

%WIN AND0 X LEO C NRX-C 9.(( ) DO 0240v 
0 500 

OUTSTOC-HOITI,TO STEPS 
O¢I*CFERLCHNCCST*INCHL),SPK>)), OUTSTR(RF), 

07100 
07200 
07300 

ITS; T.T+Z,X-'XR 
END, 
VYCSITXt 1IHY-YtVRSS I.TO 

02"6 
02700 
02800 

BEGIN 
FEAL ARFA? VE1 03,PEHL ARPHr II (C0-)] 

07400 
07500 
07600 
07700 
07000 
07900 
05000 
03100 
05200 
08300 
09400 
09500 

END, 
WHILE J LEO S-10) DO 
BEGIN 

WHILE (JIO)>I OD 
BEGIN 

O-0), I]I*I 
END. 
OUTSTR(CVE(O)> 
O'-0J JeI, IF I MUD 

END, 
END, 
FLUCCUP. 

5) = 0 THEN OUTTCR(RF) IJ 

02900 
03000 
03100 
03200 
00300 
03400 
03500 
00400 
03700 
03=00 
03Q00 
04000 

OUTt1kCXTTIIH=- TNELt0fl)I?1L PY> ITTC't 
OUTR< (TNAR=' ,)TI SR;EAL-C.,0.CS-ITrhtt$E1' OUTSTP" -
OUTSTP(.T4IH= YTMh-REALShhc(ST-I rhLLJI"', OlTITT<EC 
OUISTP((TIA=-) ,TMK 0RELChI((STII LLHL),PF(> OUTSTC "), 
OUTTRSC:T=­

) 
,T+PERLtAT ((TeTHCH&L) .Ey) , OUTSTP(FF), 

O''TSTR" .FPIN=" ,0RMINPEALZCAIO(CT-INCHUL) .F p. OUTSTPC -, 
OUTSTR<" ONAz-> IP5%.PERLCAI CZITrhTrL P>BPK OIIT-TPV -, 
DUTTR(YPFIINI"')JYAMI tREELCATHI<ST-IfICL),BPY. OUTSTP< -, 
GUTSTP( YPMAX= >, MV'RSPEALSCW(CT+ITOCHJL) ,RV', OUTSTP( ">, 
OUTtTPc-RP-:P) FpcEALSC'r¢('CT1IIICNL) It), OTTP'PF) 
OITSPC->TCIAT.SLSTI'CST.IOChSL-,~), OUTSTP(FP). 
EXIT.O ROPER .0, 

09550 
09"0 

END,END; 
END 'LOOPS' 

04100 
04200 
04300 

LEIIN 
POCCEDOLE BIZ, 
BEGIN 

"4400 11+1.-1 
PUll LOOPS -RV 04500 C CV4TCD-(,-K5, 

D YOU WHNT NOTES (TYPE IN EITHER YES OR 110 POLLOIJED It,CAR PET) 

THE pURPOSE IF THIS FFDrFPM IS TO CALCULATE THE FEE SPACE 

RELATIVE COUPLING SETLEEN TIO FLMT EUT 110.1 COPLAHP PECTAIGULAP 
LOOPS OF tIRE(TRE SIDES OF WHICH ROE Ff ALLEL TO THE COORDIhNTE 
A\Ea UF PEFPAtICE> It 1: TO BEAPPLIED INI,UTOTIVE VEHICLE 

LOCATION HENCE THE TEEOP OF THE FOLLOWING INTFODUCTION. 
THE LANE WIDTH IS TIE A DIMENSION THE LANIE LENGTH IS 

THE ? DIMENSION THE VERTICAL DISTANCE LETT.SEN LCOPC IS THE 

2 DIMENSION. THE .EIITEP OF THE BUPIED LOOP IS NT COOPTIT6TES 
0,0,0 THE WIDTH O1 THE EUPIED LOOP IS THE LANE W1IDTH 

K IS THE ASPFECTPNT!O OF THE BURIEDLOOP(WIDTH DIVIDED BY 
LENGTH' 

<MIHIAx.%MINdMHX DETERINE THE SIDES KIO LOCATION OF THE 

PICHUP LOOP 
ALL INPUT DIMENSIOIS HNE TO BE HOPORLIZED TO HHLF THE LANE 

WIDTH. 
Hi MHrLf STEPS PEFEPS TO I,ObINN THE PICKUP LOOP ALONG 

THE LAIIE LCHfTHCGENERALLY t*HY FFO1 ARO,E THE BUPIE LOUP) By 

YES 0400 
04800 
"Boo 
04900 
05000 
05100 
05200 
0500 
05400 
05500 
05600 

05700 
05800 
05900 
06000 
0 100 
A60 
6300 
06400 

RR-l)IETDiCY-K)ia.
F E*DeH(A- I+¢RRt() 
FtCEtDDt i)t( 5),f.EICCAA)I( 5), 
H-CE-DD4PD tC.5>.N+CE+CC+EO)tC 5); 
peCSCE4AA).<-D'PC'G) 
E*C3/EE>>PD40+C/N>, 
LCE CC)) - 0045'S>. 
N,-CD(<E+DD)nC1-300+SF>, 
BPZep*R+L+). A.I'; 

END, 

PROCEDURE PLEOOCUP, 
BEGIN 

WHILE I CEO YMIN AND Y LEO CVSTODC 9 
BEGIN 

WHILE .GC SHIN AND LEO CDO 
EI 
31:; T TeBZIX+XA 

EHD, 

9>COA>> DO 

110 OF THE FICKUP LOOP LENGTH AND THEN CALCULHTEIG ITS 06500 E D, 
NGFPLI:EL Z DIRECTIGN riOJPLING 01O THE limFIED LOOP 06700 IL J LE CS-10 9 

THE PPINTOUT It THE CALCULATED FLUY IN PELATIRE FLU- UNITS 
AND OF CUCCESIE STEPFIOST 

06800 
06900 

BEGIN 
IHILE (*10151 DO 

TO FIND THE HCT'JJL FLII\ IN VOLT SECCIDt7.LTIPLN THE DHTR 07000 BEGIN 
RN THE FOLLOJAIt0C FACTOF 

CI).(((LhE UEDH),e>C>+(I0IC-7)> 
tERE I IS THE BURIED LOOP CIIPPENT IN rPS 

07100 
07200 
07300 

D D4'[III+
E D, 
ED-10U1-10310, 

4IHERE THE LAIE WIDTH 
HOW KHtY STEPS 100 

IS IN METERS 07400 
07500 

I-0.JC-l0)J, 
BAD 

'IIIW. 07600 END, 
07700 Z I,1WILE Z LEO (0-9) D 

.A\=l 000 07600 
07900 

BEGIN 
WZI., 

yDIN=-0001 00 00000 E ,21 

MRIF=I 
O9O0
01300 

7OO, -1,0=0
M XTIIIN.}A'C.TIA'-MTI)'10, lYTII VAC-flTA)-?TTIOI OI 

O40n
0500
03400 

YEDYTIN+YA*C,YMIN-yTIH,,MICXTNIN,IAXTMiX 
EC:Ti2,J+1I,I J;I 

=0700 FLIECCUP, 

.34319 
102op 
.10299 

-. 10031 
- 334 
- 155 
- ,501. 
- 519?.l 

41. t ---- 82-1 
-- 1703-I 

.IOCB? 
102P. 

- 59031 
-. 770 
- ee1 
- 13 
- 765-I 
- 4753-I 
- 3153-I- 2 03-I 
-

1021 

- 30131 
-.O 
- zz 
-. 120 
-
- 415B-1 
- 2Q%.l- 00-I 

091-ISI-

102a0 
10299 

- 19 1 
- 489 
-B05 
-. 107 
-I-I 26B-I 
400B-1 
27P-I19.I 

- 14 1.­ l-

.102P9 
o0a09102? 

- 13530 
-.401 
- 172 
- 9503-i 
- -

- 3.l 
- 253p.1-

1340-

08900 

00000 
09T100 
09200 
"300 
09400 
CO500 
09 00 
01,1P700 
09900 

T0,T*1.001 
NyENEND*YRNIN4YAO, 

VA-, YMA-yFPOIIG,'1,yNIK-VPFTII NMM tPIIN XIIAXi-RHRX. 
E.:R2 J-1,I+. 
FLUCCUP, 
SETFORAT<13,31>,I I 
WHILE I LEO CO-0) DO 

BEGIN 
OUTSTRCEWEI)>> 

IF (I MOD5>=0 THEN OUTSTFCPF), 
1 1-1 

- 127 -0 - 120-1 - 114?-1 105-1 - 1029-1 09900 END, 
-970?-2 

- 75--
-A.0k 

.'24-2 
773-2 

- 92P-a 
- 3351-2 
-. 611-2 

-7033-2 
-. 6s 

1000 
10-2IlO 

END ENDCUP 
END CAPCUp 

-400.2 .'I2 -52D - 435;-- -. 41SP-2 
-403 2 
--.335 . 

z0 
-32 

-2 
-

- 274B-2 
-312B-2 

- 0. 
-.201D-a 

-
-

3470-2 
291 -2 

- -a - -27z - - 2 -2 - 2502 - 347--2 
-233- 2:-2 -s;-2:43-2 .272 -211I32 

-. 2BEP-2 CND OP :HIL ENECUTIOH 
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Table 4-5. (Continued) 	 BIZ subroutine, the flux density is calculated for 
that corner of the area XA by YA which is closest 

.RUNCFRCUP.SAV to the point (XMIN, YMIN). With respect to the 
DOYOU1HT NOTES(T'PE IN EIT. P YES OF NO THEMCAR PET> ES FLUXCUP subroutine, FLUXCUP in the LOOPS 
TO FIND THE ATURL OUTPUTVOLTS, MI..TIFL? THE DATA BY THEFOLLOtIOS 

--(IT.EL.NR.(C((EO<-.r .CLRhE JIBm'a~t/)$t >.cW,.cIrta'.ncIH R program differs from FLUXCUP in the CARCUP 
HT= IIUMBER OF TURNS ON THE TRANSMITTERLOOp 	 program, the difference being in form only for the 
NAL = NMkER OF TURNS ON THE UeED LOOP 	 of minimizing handling.
MR - NUMBER OF TURNS ON THE RECIEVER LOOP purpose data
 
LANE UIDTH IS Il METERS
 

FREOUENCY* TRANSMITTER (HERTZ) D. 	 Optimum Relative Configuration of Three-
IF - THE PEAKTRANSMITTERCUPFENT Loop AVM System

SIn(i) = YOU XMINOIHAT
 
R = nE PER TURNRESISTANCE OF THE SUPIED LCP
 
t = DEVIE. 4 MULTIPLY, 1 = TO THE BOjER OF
 

1. Buried loop interaction with adjacent 
HOW MANY STEFS 30SO-	 p,

coplanar loops. The results seem to favor loops
, SSShaving 	 -_^MR.=×55 	 aspectratios of 1. However, the practical 

XTMIMC_ ASa
YTMM=-0S 	 ec aio asaspect of packing the buried loops densely as 
yTMAX 05 
zT=.I possible is a primary consideration. At any rate, 

RMlN=-.55 if K is greater than 0. 025, a center-to-center 
YRMIN- .5 spacing of the buried loops of greater than 4 x K 
YRMAX 05_	 2 times the loop width along the lane) resultsYRM-X=05(i. 	 e. , 
4in same 


K 4 2 1 19superimposed.
 
K-=I 	 a coupling of less than 5% of the loops 

i10-1 1220-I ±239-i .12SP-1 I29-I 
1ae- 13O-1 132B-I .134B-I 137P-1 	 2. XMTR and RCVR direct coupling..140B-1 14p- 1479-1 .150P-1 .154Z-1	 If it is 

185,P-1 6S--1 1 .177P-1 Loops "ought to 
.189D-1 END OF SAIL EXECUTION be the same, " then the results seem to favor loops 

having aspect ratios ->1. That is, the loops should 
be rectangular and have their "small ends" pointed 
toward one another. The XMTR and RCVR on the 
vehicle are small compared to the buried loop. 

what is its size and how high above the buried loop 	 The choice of their aspect ratios has a limit to
 
(in terms of XRMIN, XRMAX, YRMIN, YRMAX, avoid extending beyond the buried loop.

ZR), (4) to specify the aspect ratio of the buried
 
loop, K.
 

.151P-11812-1 .3S 1 -I 72a-11- .191P-1 presumed that the XMTR and RCVR 

At any height, sensors having more turns 
The CARCUP program calculates and prints out on smaller loops are as effective as ones with 

the mutual inductance for the number of data points large loops having fewer turns. At any height 
the coupling varies with later position, beingspecified. Each successive data point represents 

the mutual inductance of the XMTR/RGVR through highest near 0. 81 from center to end of the buried 
the buried loop by moving along the positive Y- loop. The variation between these limits Is 
direction (along the roadway lane) by 1/10 of the about 10%. 
XMTR length. The results are in units of relative 
mutual inductance and to get real answers, answer If a sensor loop is placed lower than the opti­
"yes" when the program asks if you want more de- mum height, it results in overcoupling and rela­
tailed information. tively high noise signal, thus also reducing buried 

loop packing density. This is most pronounced 
2. Method of computing. The inputs to the for buried loop aspect ratios much greater than 

program (XMAX, YMIN, etc. ) describe the area pickup loop size. XMTR and RGVR coils of 
swept out by the motion of the pickup loop(s). The differing shapes will function and may permit 
program calculates the mutual inductance between three-loop systems whereby the smallest moving 
the entire buried loop and portions of the swept-out coil may be made the optimal for signal to "noise" 
area using elements of area 1/10 the pickup loop ratio. 
width by I/10 the pickup loop length. 

= (XMAX-XMIN)/10 	 3. Expected real-life signal levels. The 

AlY = (YMAX-YMIN)/10 	 following configurations and conditions are as­
sumed: (1) Roadway with lane width 22 = 3 meters, 

The swept-out area is divided into portions (2) buried loops with aspect ratio K = 0. 1 and 
having dimensions AY by (XMAX-XMIN). There separated by 4 x k x2 , (3) pickup loops (XMTR 

are (10 + "how many steps") portions. The mutual and RCVR) having sides P = 0. I, height Z = 0. 12, 
(4) All loops have 10 turnsinductances are calculated and stored for those 	 and separated by f. 

each of #27 wire and resistivity of 1. 36 ohm/meter.portions, 
(5) The transmitter is producing 100 kHz at I amp 

Surnming the values of 10 successive portions peak. (6) Self-inductance of buried loop 495 
yields the mutual inductance of the buried loop to milcrohenrys. (7) Mutual inductance of two buried 
one particular position of the pickup loop. loops z0. Z5 microhenrys. (8) XMTR/RCVR self­

inductance 7.87 microhenrys each. (9) Direct 
The CARCUP program sums the corresponding mutual inductance of XMTR and RCVR 0. 0045 

10 successive portions of both XMTR and RCVR microhenry. (10) Three-loop system maximum 
and multiplies them together to get the overall mutual inductance 1. 24 microhenrys. (11) Voltage 
mutual inductances. There are two main subrou- signals produced by XMTR/RCVR direct coupling 
tine procedures used to calculate the mutual induc- 2.8 mV cos wt. (12) Voltage signals produced by 
tances, BIZ and FLUXCUP. With respect to the three-loop system -0.78 mV sin wt. 
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4. Comments. The direct coupling of the +90 degrees. The three-loop system response 
ransmitter and receiver produces a voltage at the envelope is a function of the vehicle speed. The 

receiver of contant peak amplitude, having the output frequency is shifted 180 degrees with 
transmitter frequency and shifted in phase by respect to the input current frequency. 
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