AERONAUTICAL ENGINEERING

A SPECIAL BIBLIOGRAPHY
WITH INDEXES
Supplement 82

APRIL 1977

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
ACCESSION NUMBER RANGES

Accession numbers cited in this Supplement fall within the following ranges:

STAR (N-10000 Series) N77-13975—N77-15973
IAA (A-10000 Series) A77-16145—A77-19298

This bibliography was prepared by the NASA Scientific and Technical Information Facility operated for the National Aeronautics and Space Administration by Informatics Information Systems Company.
AERONAUTICAL ENGINEERING

A Special Bibliography

Supplement 82

A selection of annotated references to unclassified reports and journal articles that were introduced into the NASA scientific and technical information system and announced in March 1977 in

- *Scientific and Technical Aerospace Reports (STAR)*
- *International Aerospace Abstracts (IAA)*
This Supplement is available from the National Technical Information Service (NTIS), Springfield, Virginia 22161, at the price code E02 ($4.75 domestic, $9.50 foreign).
INTRODUCTION

Under the terms of an interagency agreement with the Federal Aviation Administration this publication has been prepared by the National Aeronautics and Space Administration for the joint use of both agencies and the scientific and technical community concerned with the field of aeronautical engineering. The first issue of this bibliography was published in September 1970 and the first supplement in January 1971. Since that time, monthly supplements have been issued.

This supplement to *Aeronautical Engineering -- A Special Bibliography* (NASA SP-7037) lists 311 reports, journal articles, and other documents originally announced in March 1977 in *Scientific and Technical Aerospace Reports (STAR)* or in *International Aerospace Abstracts (IAA)*.

The coverage includes documents on the engineering and theoretical aspects of design, construction, evaluation, testing, operation, and performance of aircraft (including aircraft engines) and associated components, equipment, and systems. It also includes research and development in aerodynamics, aeronautics, and ground support equipment for aeronautical vehicles.

Each entry in the bibliography consists of a standard bibliographic citation accompanied in most cases by an abstract. The listing of the entries is arranged in two major sections, *IAA Entries* and *STAR Entries*, in that order. The citations, and abstracts when available, are reproduced exactly as they appeared originally in *IAA* and *STAR*, including the original accession numbers from the respective announcement journals. This procedure, which saves time and money, accounts for the slight variation in citation appearances.

Three indexes -- subject, personal author, and contract number -- are included.

An annual cumulative index will be published.
AVAILABILITY OF CITED PUBLICATIONS

IAA ENTRIES (A77-10000 Series)

All publications abstracted in this Section are available from the Technical Information Service, American Institute of Aeronautics and Astronautics, Inc (AIAA), as follows Paper copies are available at $5.00 per document up to a maximum of 20 pages. The charge for each additional page is 25 cents. Microfiche are available at the rate of $1.50 per microfiche for documents identified by the symbol following the accession number. A number of publications, because of their special characteristics, are available only for reference in the AIAA Technical Information Service Library. Minimum airmail postage to foreign countries is $1.00. Please refer to the accession number, e.g., (A77-10026), when requesting publications.

STAR ENTRIES (N77-10000 Series)

One or more sources from which a document announced in STAR is available to the public is ordinarily given on the last line of the citation. The most commonly indicated sources and their acronyms or abbreviations are listed below. If the publication is available from a source other than those listed, the publisher and his address will be displayed on the availability line or in combination with the corporate source line.

Avail NTIS Sold by the National Technical Information Service. Prices for hard copy (HC) and microfiche (MF) are indicated by a price code followed by the letters HC or MF in the STAR citation. Price codes are given in the tables on page vii of the current issue of STAR.

Microfiche is available regardless of age for those accessions followed by a symbol.

Initially distributed microfiche under the NTIS SRIM (Selected Research in Microfiche) is available at greatly reduced unit prices. For this service and for information concerning subscription to NASA printed reports, consult the NTIS Subscription Unit.

NOTE ON ORDERING DOCUMENTS When ordering NASA publications (those followed by the * symbol), use the N accession number. NASA patent specifications are offered) should be ordered by the U.S. Patent Office. Non-NASA publications (no asterisk) should be ordered by the AD, PB, or other report number shown on the last line of the citation, not by the N accession number. It is also advisable to cite the title and other bibliographic identification.

Avail SOD (or GPO) Sold by the Superintendent of Documents, U.S. Government Printing Office, in hard copy. The current price and order number are given following the availability line. (NTIS will fill microfiche requests, at the standard $3.00 price, for those documents identified by a symbol.)

Avail NASA Public Document Rooms. Documents so indicated may be examined at or purchased from the National Aeronautics and Space Administration, Public Documents Room (Room 126), 600 Independence Ave, S.W., Washington, D.C. 20546, or public document rooms located at each of the NASA research centers, the NASA Space Technology Laboratories, and the NASA Pasadena Office at the Jet Propulsion Laboratory.

(1) A microfiche is a transparent sheet of film 105 by 148 mm in size containing as many as 60 to 98 pages of information reduced to micro images (not to exceed 26:1 reduction).
Avail ERDA Depository Libraries Organizations in U.S. cities and abroad that maintain collections of Energy Research and Development Administration reports, usually in microfiche form, are listed in Nuclear Science Abstracts. Services available from the ERDA and its depositories are described in a booklet, Science Information Available from the Energy Research and Development Administration (TID-4550), which may be obtained without charge from the ERDA Technical Information Center.

Avail Univ Microfilms Documents so indicated are dissertations selected from Dissertation Abstracts and are sold by University Microfilms as xerographic copy (HC) and microfilm. All requests should cite the author and the Order Number as they appear in the citation.

Avail USGS Originals of many reports from the U.S. Geological Survey, which may contain color illustrations, or otherwise may not have the quality of illustrations preserved in the microfiche or facsimile reproduction, may be examined by the public at the libraries of the USGS field offices whose addresses are listed in this introduction. The libraries may be queried concerning the availability of specific documents and the possible utilization of local copying services, such as color reproduction.

Avail HMSO Publications of Her Majesty's Stationery Office are sold in the U.S. by Pendragon House, Inc (PHI), Redwood City, California. The U.S. price (including a service and mailing charge) is given, or a conversion table may be obtained from PHI.

Avail BLL (formerly NLL) British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England. Photocopies available from this organization at the price shown. (If none is given, inquiry should be addressed to the BLL.)

Avail ZLDI Sold by the Zentralstelle für Luftfahrtdokumentation und -Information, Munich, Federal Republic of Germany, at the price shown in deutschmarks (DM).

Avail Issuing Activity, or Corporate Author, or no indication of availability. Inquiries as to the availability of these documents should be addressed to the organization shown in the citation as the corporate author of the document.

Other availabilities. If the publication is available from a source other than the above, the publisher and his address will be displayed entirely on the availability line or in combination with the corporate author line.
GENERAL AVAILABILITY

All publications abstracted in this bibliography are available to the public through the sources as indicated in the STAR Entries and IAA Entries sections. It is suggested that the bibliography user contact his own library or other local libraries prior to ordering any publication inasmuch as many of the documents have been widely distributed by the issuing agencies, especially NASA. A listing of public collections of NASA documents is included on the inside back cover.

SUBSCRIPTION AVAILABILITY

This publication is available on subscription from the National Technical Information Service (NTIS). The annual subscription rate for the monthly supplements is $45.00 domestic, $75.00 foreign. All questions relating to the subscriptions should be referred to NTIS, Attn: Subscriptions, 5285 Port Royal Road, Springfield Virginia 22161.
ADDRESSES OF ORGANIZATIONS

American Institute of Aeronautics and Astronautics
Technical Information Service
750 Third Ave
New York, N Y 10017

British Library Lending Division,
Boston Spa, Wetherby, Yorkshire
England

Commissioner of Patents
U S Patent Office
Washington, D C 20231

Energy Research and Development Administration
Technical Information Center
P O Box 62
Oak Ridge, Tennessee 37830

ESA-Space Documentation Service
ESRIN
Via Galileo Galilei
00044 Frascati (Rome) Italy

Her Majesty's Stationery Office
P O Box 569, S E 1
London England

NASA Scientific and Technical Information Facility
P O Box 8757
B W I Airport, Maryland 21240

National Aeronautics and Space Administration
Scientific and Technical Information Office (KSI)
Washington, D C 20546

National Technical Information Service
5285 Port Royal Road
Springfield, Virginia 22161

Pendragon House, Inc
899 Broadway Avenue
Redwood City, California 94063

Superintendent of Documents
U S Government Printing Office
Washington, D C 20402

University Microfilms
A Xerox Company
300 North Zeeb Road
Ann Arbor, Michigan 48106

University Microfilms, Ltd
Tylers Green
London, England

U S Geological Survey
1033 General Services Administration Building
Washington, D C 20242

U S Geological Survey
601 E Cedar Avenue
Flagstaff, Arizona 86002

U S Geological Survey
345 Middlefield Road
Menlo Park, California 94025

U S Geological Survey
Bldg 25 Denver Federal Center
Denver, Colorado 80225

Zentralstelle fur Luftfahrtdokumentation und -Information
8 Munchen 86
Postfach 880
Federal Republic of Germany
TABLE OF CONTENTS

IAA Entries .. 89
STAR Entries .. 119
Subject Index .. A-1
Personal Author Index .. B-1
Contract Number Index .. C-1

TYPICAL CITATION AND ABSTRACT FROM *STAR*

NASA SPONSORED DOCUMENT

N77-10048*# Lockheed Missiles and Space Co Sunnyvale, Calif Research and Development Div

NASA ACCESSION NUMBER

CIVIL USES OF REMOTELY PILOTED AIRCRAFT Summary
Report
Jon R Aderhold, G Gordon, and George W Scott Jul 1976
28 p ref (Contract NAS2-8935)
(NASA-CR-137895, LMSC-D057322) Avail NTIS
HC A03/MF A01 CSCL 01C

TYPICAL CITATION AND ABSTRACT FROM *IAA*

The economic technical, and environmental implications of remotely piloted vehicles (RVP) are examined. The time frame is 1980-85. Representative uses are selected, detailed functional and performance requirements are derived for RVP systems, and conceptual system designs are devised. Total system cost comparisons are made with non-RVP alternatives. The potential market demand for RVP systems is estimated. Environmental and safety requirements are examined and legal and regulatory concerns are identified. A potential demand for 2,000-11,000 RVP systems is estimated. Typical cost savings of 25 to 35% compared to non-RVP alternatives are determined. There appear to be no environmental problems and the safety issue appears manageable.

TYPICAL CITATION AND ABSTRACT FROM *IAA*

A77-10214*# Resizing procedure for structures under combined mechanical and thermal loading H M Adelman (NASA, Langley Research Center, Hampton, Va) and R Narayanswami (Old Dominion University, Norfolk, Va) AIAA Journal, vol 14, Oct 1976, p 1484-1486 6 refs

The fully-stressed design (FSD) appears to be the most widely used approach for sizing of flight structures under strength and minimum-gage constraints. Almost all of the experience with FSD has been with structures primarily under mechanical loading as opposed to thermal loading. In this method the structural sizes are iterated with the step size, depending on the ratio of the total stress to the allowable stress. In this paper, the thermal fully-stressed design (TFSD) procedure developed for problems involving substantial thermal stress is extended to biaxial stress members using a Von Mises failure criterion. The TFSD resizing procedure for uniaxial stress is restated and the new procedure for biaxial stress members is developed. Results are presented for an application of the two procedures to size a simplified wing structure.
Experimental results A practical method is given for empirically computing the total pressure loss or wake momentum loss coefficient from the injection flow rate or injection ratio. The coefficient of a blade is calculated theoretically and compared with the validity of an analytical technique for estimating the separation. Injection or suction on cascade performance is investigated, the point of the blade-surface boundary layer is considered. The effect of layer is compared with that of the boundary layer on a flat plate, and blade surface. The velocity profile of the blade-surface boundary layer is considered. The applicability of an analytical method for studying a turbulent layer is compared with data. The design and aerodynamic characteristics of control systems used on board modern airliners are discussed. Simple mathematics are used to explain the physical nature of the phenomena encountered in airliner operation.

A transportable VFR air-traffic control system that is designed for use in terminals where fixed facilities are not available or are not adequate, and for use in austere contingencies (temporary replacement, repairs, or other downtime, support of disaster relief operations, training and mobility exercises for rapid deployment in military emergency situations). The article describes a prototype of a family of tactically deployable transportable visual flight rules (VFR) terminal air traffic control (ATC) systems, along with functional limitations, viable solutions, and support equipment. The AN/TSW-7 deployable VFR terminal ATC system described can use any combination of 3500 UHF channels or 1360 VHF channels in simultaneous transmission/reception. Descriptions of a unique UHF/VHF colinear antenna and UHF/VHF transceiver coupler systems are presented. These systems are designed for use in terminals where fixed facilities are not available or are not adequate, and for use in austere contingencies (temporary replacement, repairs, or other downtime, support of disaster relief operations, training and mobility exercises for rapid deployment in military emergency situations).

A transportable VFR air-traffic control system that is designed for use in terminals where fixed facilities are not available or are not adequate, and for use in austere contingencies (temporary replacement, repairs, or other downtime, support of disaster relief operations, training and mobility exercises for rapid deployment in military emergency situations). The article describes a prototype of a family of tactically deployable transportable visual flight rules (VFR) terminal air traffic control (ATC) systems, along with functional limitations, viable solutions, and support equipment. The AN/TSW-7 deployable VFR terminal ATC system described can use any combination of 3500 UHF channels or 1360 VHF channels in simultaneous transmission/reception. Descriptions of a unique UHF/VHF colinear antenna and UHF/VHF transceiver coupler systems are presented. These systems are designed for use in terminals where fixed facilities are not available or are not adequate, and for use in austere contingencies (temporary replacement, repairs, or other downtime, support of disaster relief operations, training and mobility exercises for rapid deployment in military emergency situations).
allowable oxygen effect, to include just a prescription for oxygen effect, the required instrument response to oxygen should be limited to the range of actual use, i.e., 15 to 20%. The analysis of low concentrations of CO by methanation and subsequent detection using a flame ionization detector is a viable technique. There is need for additional CO₂ IMBS standards in the range 0.5-5% and additional O₂ IMBS standards in the range 10-21%. Participation in interlaboratory cross-reference gas analysis programs would provide valuable insight into proficiency to make accurate and reliable analyses.

A77-16375 A new air transport policy for the North Atlantic J J Friedman New York, Atheneum, 1976 p 97 refs $5.95

An investigation is conducted concerning the requisites of a sound regulatory policy with regard to the great North Atlantic air transport system. A basic change in the regulatory policy under which the industry now operates is required to solve the deep-laying economic problems which have plagued the North Atlantic service for years. Approaches for achieving improved efficiency are considered, taking into account the control of scheduled capacity, the integration of scheduled and charter capacity, and the control of charter capacity. Questions related to an achievement of economic fares are also discussed, giving attention to fares for scheduled services, the relation of scheduled to charter fares, charter rates, and a standard of reasonableness of profits.

A77-16401 Max-Planck-Institut fur Stromungsforschung, Gottingen 1925-1975 Publication celebrating the 50th anniversary of the Institut (Max-Planck-Institut fur Stromungsforschung Gottingen 1925-1975 Festschrift zum 50-jahrigen Bestehen des Instituts) Gottingen, West Germany, Max-Planck-Institut fur Stromungsforschung, 1975 p 477 in German and English.

Attention is given to turbulent flow of compressible fluids, real and rarefied gas dynamics, molecular interactions in the framework of kinetic theory, and atomic and molecular collisions in rarefied gases. Also considered are the interaction of elementary chemical processes with flow processes, turbulent wall flow, wall pressure fields in turbulent boundary layers, vortex rings, interactions of sound and flames, and aircraft noise. Laser Doppler anemometry and the investigation of vortex structures in the wake of a cylinder are also discussed.

B J

A77-16413 Self-excited oscillations in supersonic flow (Selbstregte Schwingungen von Uberschallstromungen) G E A Meier In Max-Planck-Institut fur Stromungsforschung Gottingen 1925-1975 Publication celebrating the 50th anniversary of the Institut Gottingen, West Germany, Max-Planck-Institut fur Stromungsforschung, 1975, p 184-188 5 refs in German.

Mach-Zehnder interferometry data on strongly unsteady gas flow in a Laval nozzle is used to explain the self-excitation of oscillations in transonic flow. Attention was given to wall boundary layer separation in the divergent part of the nozzle where a pressure rise is observed. The unsteady flow regime which results is conditioned by pressure gradients and the associated formation of compression shocks and resembles the flow regime associated with buffeting of wing profiles.

B J

A77-16414 Sonic boom focusing (Uberschallknallfokusierung) F Obermeier In Max-Planck-Institut fur Stromungsforschung, Gottingen 1925-1975 Publication celebrating the 50th anniversary of the Institut Gottingen, West Germany, Max-Planck-Institut fur Stromungsforschung, 1975, p 189-193 5 refs in German.

A shock-ray tracing method of caustics is applied to the problem of sonic boom focusing. The method consists of three steps: (1) determination of the time function of pressure distribution of the sonic boom, (2) determination of the Fourier component of the shock pressure in the neighborhood of the caustic formed by the boom, and (3) use of the inverse Fourier transformation to obtain the modified pressure distribution of the focused sonic boom. The method is applied to a shock wave system with a shock duration of 0.1215 s and a shock rise time of 1.5 x 10⁻¹ s 3rd s.

B J

A77-16417 Calculation of curves of constant equivalent levels of enduring sound for implementation of the aircraft noise protection law - Methods and preliminary results (Berechnung von Kurven konstanten aquivalenten Dauerschallpegels bei der Durchfuhrung des Gesetzes zum Schutz gegen Fluglarm - Methoden und erste Ergebnisse) E Koppe, H Leinemann, and K Marschat In Max-Planck-Institut fur Stromungsforschung Gottingen 1925-1975 Publication celebrating the 50th anniversary of the Institut Gottingen, West Germany, Max-Planck-Institut fur Stromungsforschung, 1975, p 208-214 In German.

A77-16421 Wavelength in axisymmetric steady supersonic free jets (Uber die Wellenlange im rotationssymmetrischen stationaren Uberschallfreistrahl) G Grabitz In Max-Planck-Institut fur Stromungsforschung Gottingen 1925-1975 Publication celebrating the 50th anniversary of the Institut Gottingen, West Germany, Max-Planck-Institut fur Stromungsforschung, 1975, p 223-240 In German.

A77-16422 The velocity field of small-Mach number Knudsen flow on the edge of a disturbed plate (Das Geschwindigkeitsfeld der Knudsenstromung kleiner Machzahl an der Kante einer anfahrenden Platte) K Kraemer In Max-Planck-Institut fur Stromungsforschung, Gottingen 1925-1975 Publication celebrating the 50th anniversary of the Institut Gottingen, West Germany, Max-Planck-Institut fur Stromungsforschung, 1975, p 241-254 10 refs in German.

When a plate that is in thermal equilibrium in a quiescent gas performs uniform translational motions, then a Knudsen flow is induced at the edges of the plate. This paper uses the kinetic theory of gases to investigate the excitation of Knudsen flow for a thin flat infinite plate disturbed in a quiescent gas. The Knudsen flow is considered to be subsonic and it is assumed that gas molecules are reflected diffusely from the plate. The Maxwell distribution is used to obtain distribution functions for the collision-free Knudsen flow and to examine flow velocity distributions. The problem is examined in a relative inertial reference system.

B J

A77-16528 Parameter identification and study of properties within the scope of flight testing a high performance aircraft (Parameteridentifizierung und Eigenschaftsuntersuchungen im Rahmen der Flugerprobung eines Hochleistungsflugzeugs) H Schaufele and H Ebel (Messerschmitt-Bolkow-Boehm GmbH, Ottobrunn, West Germany) Deutsche Gesellschaft fur Luft und Raumfahrt, Jahrestagung, 8th, Munich, West Germany, Sept 14-16, 1976 Paper 76-220 53 p 7 refs in German (MBB UFE 1268).
The paper describes the method of subsystems for calculating stability and control derivatives from parameter identification tests of aircraft. Differential equations for computing a number of derivatives of longitudinal and transverse motions are set up. Measurement matrices that minimize the effects of angle of attack and sideslip angle measurement errors are introduced. Calculations of poles and zeros of transfer functions are shown.

P T H

A77-16529 New technology for fighter aircraft (Neue Technologie fur Kampfflugzeuge) H Langfelder (Messerschmitt Bolkow-Blohm GmbH, Ottobrunn, West Germany) Deutsche Gesellschaft fur Luft- und Raumfahrt, Jahrestagung, 9th, Munich, West Germany, Sept 14-16, 1976, Paper 76-147 16 p In German (MBB-UF-E-1263)

The paper discusses the interrelation between new technology, system integration, and economic feasibility with respect to a possible new generation of European fighter aircraft. The desirability of an integrated prototype and European cooperation is stressed.

P T H

A77-16530 Experiences concerning construction and testing in the case of a pressurized fuselage section with a sandwich-construction design (Erfahrungen aus Fertigung und Versuch an einer druckbelasteten Rumpfsektion in Sandwichbauweise) W Maurer (Vertreute Flugtechnische Werke-Fokker GmbH, Bremen, West Germany) Deutsche Gesellschaft fur Luft- und Raumfahrt, Jahrestagung, 9th, Munich, West Germany, Sept 14-16, 1976, Paper 76-197 42 p 6 refs In German

A cylindrical aircraft fuselage section with a length and a diameter of about 3 m is considered. The fuselage section consists of four component shells. It contains six windows and a flap for freight loading applications. A titanium sandwich design is used for a lateral shell and the upper shell. An aluminum sandwich design is employed for the other structural components. The design differences are used for a comparative study. Attention is given to details of fuselage section construction, a comparison of the weights of the components, and the first results of a fatigue test.

G R

A77-16531 Experimental cognition for qualification of voice warning systems in aircraft (Experimentelle Erkennnisse zur Eignung von Stimmwarnsystemen in Flugzeugen) M Reinecke (Bundesministerium der Verteidigung, Flugmedizinisches Institut, Ingolstadt, West Germany) Deutsche Gesellschaft fur Luft und Raumfahrt, Jahrestagung, 9th, Munich, West Germany, Sept 14-16, 1976, Paper 76-211 4 p In German

Pilots' responses to auditory (speaking voice) and visual warning and alarm annunciation systems are compared, with emphasis on response times. Response times to auditory warnings are found to be demonstratively shorter than response times to visual warnings, although the gap is smaller with more experienced pilots. Simulator and flight tests were carried out with UH-1D helicopter and with F104. A voice-transmitted 'check caution panel' warning in hedge-hopping flight brought no faster response than the visual warning. Pilots tend to respond most urgently to voiced warnings 'fire', 'rotor rpm too low', and 'exhaust temperature too high'. Some average response times to different modes of warning are cited.

G R

A77-16532 Calculation of pressure distribution on oscillating airfoils in supersonic flow (Berechnung der Druckverteilung an schwingenden Tragflugeln in Uberschallstromung) A Muller (Messerschmitt Bolkow-Blohm GmbH, Ottobrunn, West Germany) Deutsche Gesellschaft fur Luft und Raumfahrt, Jahrestagung, 9th, Munich, West Germany, Sept 14-16, 1976, Paper 76-156 32 p In German

The integral equation for pressure distribution on an oscillating airfoil was solved by a stepwise procedure which divides the wing into rectangular cells whose diagonals are Mach lines. The kernel function was formulated for the supersonic flow region. Mean values and the first two moments were determined for selected cells and a three-term local approximation was calculated for the kernel functions. The pressure integral thus determined was used to examine cells behind supersonic and subsonic leading edges. Results of computations were compared with those obtained experimentally for rectangular wings with a steady pressure distribution.

B J

A77-16534 Liquid hydrogen as propellant for commercial aircraft (Flussiger Wasserstoff als Treibstoff fur Verkehrsflugzeuge) A Quast (Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt, Institut fur Aerodynamik, Braunschweig, West Germany) Deutsche Gesellschaft fur Luft und Raumfahrt, Jahrestagung, 9th, Munich, West Germany, Sept 14-16, 1976, Paper 76-188 29 p 6 refs In German

An investigation is conducted concerning the feasibility to use liquid hydrogen as fuel for commercial aircraft. Effects related to lower fuel weight and larger tank volume compensate each other. The energy consumption in the case of an aircraft using hydrogen is, therefore, about the same as in the case of a corresponding conventional aircraft. However, a considerable amount of electrical energy is required to transform gaseous hydrogen into the liquid state. Liquid hydrogen is consequently significantly more expensive than synthetic hydrocarbons. As much as 40% of the operational costs of commercial aircraft can be related to fuel costs. It is concluded that a use of hydrogen in commercial aviation on the basis of the current status of technology is not economic.

G R

A77-16535 Flight-characteristics requirements concerning static stability in supersonic flight (Zum problem der Flugeigen- schaftsforderungen nach statischer Stabilitat im Uberschallflug) G Sachs (Darmstadt, Technische Hochschule, Darmstadt, West Germany) Deutsche Gesellschaft fur Luft und Raumfahrt, Jahrestagung, 9th, Munich, West Germany, Sept 14-16, 1976, Paper 76-199 15 p 7 refs In German

It is shown that three important criteria of current flight-characteristics requirements concerning static stability are not suited for the range of the very high speeds of supersonic flight. Relations between static and dynamic stability in supersonic flight are explored, taking into account the question of aperiodic instability. It is found that the currently known criteria for the detection of aperiodic unstable forms of motion are not suited for the supersonic flight range.

G R

A77-16537 Transonic cascade flow calculation using the relaxation method (Transsonische Gitterstromungs-Berechnung mit der Relaxations-Methode) M E Schmidt (Stuttgart, Universitat, Stuttgart, West Germany) Deutsche Gesellschaft fur Luft und Raumfahrt, Jahrestagung, 9th, Munich, West Germany, Sept 14-16, 1976, Paper 76-186 18 p 6 refs In German

The paper describes a numerical procedure for the calculation of two-dimensional inviscid transonic flow past a blade cascade. A finite difference method is used to solve the full compressible potential flow equation in the potential stream function plane, and the relaxation method is used to solve the associated system of nonlinear hyperbolic differential equations. The solution was obtained through integration in the flow velocity and direction fields. Numerical results are compared to those of holographic interferometry on a transonic cascade flow.
A77-16538

Amplification of jet noise through engine noise (Die Verstärkung von Strahlarm durch Schall aus dem Triebwerk) D. Bechert and K. Prössnitzer (Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt, Berlin, West Germany) Deutsche Gesellschaft für Luft- und Raumfahrt, Jahrestagung, 9th, Munich, West Germany, Sept 14-16, 1976, Paper 76-162 29 p 10 refs In German

Common practice has been to consider the total noise output of an aircraft engine to be composed of several independent contributions. The present investigation, however, shows that broadband jet noise can be amplified by a pure tone excitation as much as 6 to 7 dB. This effect is found to occur at sound pressure levels which are present in real aircraft engines. The experiments were carried out with a cold jet at high subsonic Mach numbers excited by sound waves coming from inside the nozzle. Based on a simplified theoretical model an attenuator has been constructed which is able to reduce the jet noise amplification considerably. (Author)

A77-16539

Investigation of airfoils near the ground with nonsymmetrical flow past them (Untersuchungen an unsymmetrisch angestromten Tragflächen in Bodennähe) G. Binder (Braunschweig, Technische Universität, Braunschweig, West Germany) Deutsche Gesellschaft für Luft- und Raumfahrt, Jahrestagung, 9th, Munich, West Germany, Sept 14-16, 1976, Paper 76 152 34 p 24 refs In German

Airfoil theory is used to examine the aerodynamic coefficients of drifting and hanging wings near the ground with the ground effect accounted for by the mirror principle. Kinematic flow conditions are considered giving particular attention to induced velocity distributions. Results of line airfoil theory are compared with experimental data in terms of the influence of various flow and airfoil parameters on the aerodynamic characteristic lift, drag, rolling moment, and aerodynamic center. Attention is given to rectangular, swept-back and delta wings. B J

A77-16540

Mobile data radio (Mobiler Datensender) R. Bauerle (Elektronik System-Gesellschaft mbH, Munich, West Germany) Deutsche Gesellschaft für Luft- und Raumfahrt, Jahrestagung, 9th, Munich, West Germany, Sept 14-16, 1976, Paper 76-168 28 p In German

An investigation is conducted concerning the parameters which affect the quality of communication in the case of mobile transmitters and receivers. Questions of data transmission by radio in the VHF range between a stationary transmitter and a receiver which is in motion are discussed, taking into account aspects of radio wave propagation, transmission error characteristics, and problems of data transmission to low-flying flight vehicles as, for instance, remotely piloted vehicles. G R

A77-16541

The new microwave landing systems (MLS) and their properties, giving particular attention to the German system DLS /DME-Derived Landing System/ (Die neuen Mikrowellen-Landsysteme [MLS] und ihre Eigenschaften unter besonderer Berücksichtigung des deutschen Systems DLS /DME-Derived Landing System/) A. Becker (Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt, Institut für Flugführung, Braunschweig, West Germany) Deutsche Gesellschaft für Luft- und Raumfahrt, Jahrestagung, 9th, Munich, West Germany, Sept 14-16, 1976, Paper 76-176 40 p In German

An investigation is conducted concerning the requirements which have to be satisfied by the new microwave landing systems, taking into account certain disadvantages of the currently used instrument landing system. The characteristics of air-derived and ground-derived systems are examined and a survey is provided regarding the various competitive landing systems. Attention is given to the frequency bands for MLS, the time reference scanning beam systems of the U.S. and Australia, the Doppler scan system of Great Britain, and the DLS of West Germany. Approaches are discussed for demonstrating the feasibility of DLS operation. G R

A77-16542

Center-of-gravity problems in the system ejection seat-pilot (Schwerpunktprobleme im System Schleudersitz-Pilot) H. Bollmann (Bundesanstalt für Wehrtechnik und Beschaffung, Manching, West Germany) Deutsche Gesellschaft für Luft- und Raumfahrt, Jahrestagung, 9th, Munich, West Germany, Sept 14-16, 1976, Paper 76-213 18 p In German

Curves of pilot ejection with harmonic and stabilized characteristics are considered along with the details of the pilot ejection process. The motions of the system pilot ejection seat are determined by the center of gravity of the system. The location of the center of gravity of the system depends on the locations of the center of gravity of the ejection seat and that of the pilot. A description is given of approaches which will ensure that the actual pilot ejection curves will be similar to the curves established for a pilot ejection process with ideal characteristics. G R

A77-16543

Development of single-flight cycles for fatigue tests, based on operational stresses, in the case of large aircraft components (Entwicklung von Einzelflugabläufen für Ermüdungsvor- suche an Flugzeugwasserschichten basierend auf Betriebsbelastungen) K. Wotthe (Industrieanlagen-Betriebsgesellschaft mbH, Ottobrunn, West Germany) Deutsche Gesellschaft für Luft und Raumfahrt, Jahrestagung, 9th, Munich, West Germany, Sept 14-16, 1976, Paper 76-217 22 p In German

A description is given of a flight-by-flight program for the main landing gear of the F-104 G aircraft. The fatigue test was carried out by a German company during the years 1974 and 1975. The test was conducted to determine the operational life of the landing gear components. Attention is given to the determination of the stress cycles which correspond to the takeoff and landing operations. Details are presented concerning the approaches which were used in the development of a test program that provides a suitable simulation of the operational stress cycles. G R

A77-16544

Crack propagation in the reinforced structure of a transport aircraft, calculation-experiment comparison (Rissfort- schritt in der versteiften Struktur eines Transportflugzeuges Vergleich Rechnung-Versuch) H. Wiese (Vermerigte Flugtechnische Werke-Bremen GmbH, Bremen, West Germany) Deutsche Gesellschaft für Luft- und Raumfahrt, Jahrestagung, 9th, Munich, West Germany, Sept 14-16, 1976, Paper 76-218 21 p In German

The reported investigation is concerned with the determination of the damage tolerance of the structure of a transport aircraft, taking into account a study of a crack in the normal frame region of the fuselage. The crack is located in the skin between the normal frame section and the stringers. It extends in the flight direction. The crack propagation was observed from an initial length of 200 mm to a length of 490 mm at constant stress amplitude. Computational crack propagation data are compared with the experimental results. The employed method of calculation is described. G R

A77-16545

Methods and problems concerning the flight control of RPV’s (Methoden und Probleme der Flugführung von RPV’s) H. Schmidtien (Vermerigte Flugtechnische Werke-Fokker GmbH, Bremen, West Germany) Deutsche Gesellschaft für Luft- und Raumfahrt, Jahrestagung, 9th, Munich, West Germany, Sept 14-16, 1976, Paper 76-204 26 p 10 refs In German

One objective of the considered RPV’s is related to a replacement of aircraft in the case of missions which are particularly...
dangerous. Another objective of RPV employment is a lowering of the hazards to which aircraft are exposed by using RPV's before the aircraft mission. Both objectives involve a direct attack of hostile targets by RPV's General operational and technical conditions of RPV employment are examined. It is recommended to develop low-cost RPV's for specific targets. Attention is given to the degree of automation, questions of a disturbance of RPV missions by enemy action, a definition of three stages for the development of RPV systems, approaches for precise navigation, procedures for the automatic recognition of ground targets, the onboard system, and methods for the transmission of information between RPV and ground control units.

A77-16564
Theoretical determination of the characteristic curves of airfoil profiles with flaps, flow separation and ground effect (Theoretische Bestimmung der Kennkurven von Tragflügelprofilen mit Klappen, Stromungsablösung und Bodeninflluß) J Jacob (Aerodynamische Versuchsanstalt, Göttingen, West Germany) Deutsche Gesellschaft für Luft- und Raumfahrt, Jahrestagung, 9th, Munich, West Germany, Sept 14-16, 1976, Paper 76-206 28 p 24 refs In German

The behavior of the characteristic curves (particularly the drag coefficient as a function of the lift coefficient and the lift coefficient as a function of angle of attack) depends on Reynolds and Mach numbers, and especially on airfoil geometry. The paper considers the following flow situation: a dead-water region outside boundary layer separation from the airfoil, a region of constant pressure distribution inside the dead-water region, and a potential outer flow outside the separated boundary layer. A two-step procedure is applied: (1) the use of a singularity method to calculate the potential flow using a dead water simulation, and (2) the use of boundary layer calculations and iteration to calculate the separation region. The case of a high-lift wing system is considered and attention is given to ground effect, displacement effects, and the effects of wind tunnel walls.

A77-16550
Application and effect of the results of stability and structural component studies on current and future aircraft (Anwendung und Auswirkung der Ergebnisse von Festigkeit- und Bauteiluntersuchungen auf gegenwartige und zukünftige Flugzeuge) P Garnatz (Verenigte Flugtechnische Werke Fokker GmbH, Bremen, West Germany) Deutsche Gesellschaft für Luft- und Raumfahrt, Jahrestagung, 9th, Munich, West Germany, Sept 14-16, 1976, Paper 76-167 70 p 43 refs In German

Technological developments related to the materials used for aircraft components are examined, taking into account activities concerning the use of fiber reinforced composites in the U.S. and in Europe, the employment of titanium alloys, the development of improved aluminum and beryllium alloys, and the use of steel. Certain problems concerning the use and the manufacture of the new materials are considered along with the approaches which, in West Germany, can be used to overcome these difficulties. The gradual utilization of the new technological developments in the production of military and civil aircraft components is discussed, giving attention to the time from now to 1990.

A77-16554
Airfoil design for a variable geometry aircraft (Tragflächenentwicklung für ein Flugzeug mit variabler Geometrie) E Klinke (Messerschmitt Bolkow-Bohml GmbH, Ottobrunn, West Germany) Deutsche Gesellschaft für Luft- und Raumfahrt, Jahrestagung, 9th, Munich, West Germany, Sept 14-16, 1976, Paper 76-153 42 p 7 refs In German (MBB-UFE-1266)

The design of a variable geometry wing for STOL military aircraft applications is examined giving attention to geometrical characteristics of the wing, mission spectra, and wing-stability optimization. Two-dimensional optimal wing design is considered for an assigned pressure distribution and three-dimensional wing design is considered for conditions of vortex flow, separated flow, and flow with shocks. The design of an augmented lift system (and a three-dimensional one in particular) is examined giving attention to structural considerations and optimal control flap conditions.

A77-16558
Reducing secondary losses by blowing cold air in a turbine (Verminderung der Sekundärverluste durch Kühlluftausblasung in einer Turbine) W. Koschel (Rheinsch Westfälische Technische Hochschule, Aachen, West Germany) Deutsche Gesellschaft für Luft- und Raumfahrt, Jahrestagung, 9th, Munich, West Germany, Sept 14-16, 1976, Paper 76-164 23 p 6 refs In German

Experimental investigations are described, the purpose of which is to determine whether local blowing on the pressure surface side of the turbine guide wheel blades can be effective in preventing the propagation of secondary flows, that is, casing and hub boundary layers being transported by pressure gradients. Some preliminary results on how the blowing should be accomplished in order to influence the secondary flows in the desired manner are given. The effectiveness of blowing is demonstrated by comparing to performance without blowing. Blowing is also seen to be more effective than using boundary layer slots as far as diminishing losses in the rim zones are concerned.

A77-16560
Aerodynamic design and flight testing of the VFW 614 (Aerodynamische Auslegung und Flugerversuche der VFW 614) G Krenz (Verenigte Flugtechnische Werke-Fokker GmbH, Bremen, West Germany) Deutsche Gesellschaft für Luft- und Raumfahrt, Jahrestagung, 9th, Munich, West Germany, Sept 14-16, 1976, Paper 76-208 42 p 5 refs In German

Aerodynamic design of the VFW 614 aircraft is considered with attention given to the interference interaction of engine and airfoils under stall conditions. The effects of engine wing interactions at high Mach number (about 0.68) are examined taking account of the behavior of the lift coefficient and the aerodynamic moments. Flight testing has involved the examination of a number of different aerodynamic engine-wing configurations, with particular attention given to engine over-the-wing configurations.

A77-16561
Gasdynamic investigations of explosive decompression of one of the cargo holds of the Airbus A 300 (Gasdynamische Untersuchungen zur explosiven Dekompression einer der Frachträume im Airbus A 300) U Haux (Messerschmitt-Bolkow-Bohml GmbH, Ottobrunn, West Germany) Deutsche Gesellschaft für Luft- und Raumfahrt, Jahrestagung, 9th, Munich, West Germany, Sept 14-16, 1976, Paper 76-209 31 p 10 refs In German (MBB-UFE-1266)

The paper describes a procedure for making gasdynamic calculations of explosive decompression in a cargo hold of the Airbus A 300 aircraft, which could result from collision, an explosion, or the loss of a door or window, for example. General ideas on flow processes within the aircraft were obtained by model tests, with which a calculation procedure was calibrated. Additional through-flow surfaces for reducing the pressure load on the passenger deck are optimized with respect to location, size, and inlet and outlet pressure differences.

A77-16562
A wall interference problem in a hybrid tunnel at transonic speeds (Wandinterferenzprobleme im Hybridkanal bei transsonischen Geschwindigkeiten) T Hottner (Stuttgart, Universität, Stuttgart, West Germany) Deutsche Gesellschaft für Luft- und Raumfahrt, Jahrestagung, 9th, Munich, West Germany, Sept 14-16, 1976, Paper 76-169 28 p 11 refs In German

The paper proposes a procedure for compensating for the aerodynamic interference caused by boundary layers formed on the
walls of a hybrid transonic wind tunnel The wall interference problem is considered as one of power transmission and the following processes in the hybrid wind tunnel are examined: restriction of the core of the potential flow to the corridor through the boundary layer, the effects of the wall boundary layer on wind tunnel corrections in the supersonic region, and shock wave attenuation in the supersonic region. The following wall configurations were examined to find the optimal one in terms of interference: (1) a freely stretched foil, (2) a foil on an elastic backing, and (3) an elastic foam.

An implicit difference procedure for the solution of equations for a chemically reacting hypersonic boundary layer is described. Difference forms of arbitrary error order in the x and y coordinate plane were used to derive estimates for discretization error. Computational complexity and time were minimized by the use of this difference method and the iteration of the nonlinear boundary layer equations was regulated by discretization error.

A77-16566 # Calculation of three-dimensional boundary layers on sweepback wings (Berechnung dreidimensionaler Grenzschichten an Pfeilflugeln) E H Hirschel, V Jawtusch, and R Grundmann (Deutsche Forschungs und Versuchanstalt fur Luft- und Raumfahrt, Institut fur angewandte Gasdynamik, Cologne, West Germany) Deutsche Gesellschaft fur Luft- und Raumfahrt, Jahrestagung, 9th, Munich, West Germany, Sept 14-16, 1976, Paper 76-187 35 p 38 refs In German Research supported by the Deutsche Forschungsgemeinschaft.

The finite difference method is used to examine the three-dimensional laminar boundary layer on a sweepback wing and the laminar-to-turbulent boundary layer transition on the wing. Boundary layer equations are formulated in a nonorthogonal coordinate system on the curved wing, taking account of the effects of curvature. The calculations are performed in the infinite drifting wing approximation and attention is given to initial and boundary conditions, and the dependence and influence regions of the solution to the boundary layer equations obtained through numerical integration using the finite difference method.

A77-16567 # High-speed tests with the helicopter BO 105 (Hochgeschwindigkeitsprobung des Hubschraubers BO 105 HGH) H Huber, C Schick, and A Teleki (Messerschmitt Bolkow-Blohm GmbH, Ottobrunn, West Germany) Deutsche Gesellschaft fur Luft- und Raumfahrt, Jahrestagung, 9th, Munich, West Germany, Sept 14-16, 1976, Paper 76-222 32 p 7 refs In German (MBB-UD-178-76).

A description is presented of a research and test program which has been conducted by a German aerospace company in connection with the development of high-speed helicopters. Objectives of the test program include the testing of a hingeless rotor with respect to an extended flight regime, the study of advanced blade designs for future high-performance helicopters, and a determination of the effect of a rotor-lift relief provided by wings on flight performance and maneuverability.

A77-16568 # Contribution of materials technology to progress in propulsion system construction (Beitrag der Werkstofftechnik zum Fortschritt im Triebwerkbau) H Huff (Deutsche Gesellschaft fur Luft- und Raumfahrt, Jahrestagung, 9th, Munich, West Germany, Sept 14-16, 1976, Paper 76-150 13 o In German.

The basic goals of progress in gas turbine engine design are higher gas temperature, higher specific strength, and higher material utilization, which are attained by lighter construction. Progress in these areas over the past twenty-five years achieved by the development and use of new materials is summarized.

A77-16569 # Theoretical and experimental investigation of the departure characteristics of external stores which are dropped from an aircraft (Theoretische und experimentelle Untersuchung des Abgangsverhaltens einer Auslenklast von einem Tragerflugzeug) H Barth (Messerschmitt Bolkow-Blohm GmbH, Ottobrunn, West Germany) Deutsche Gesellschaft fur Luft und Raumfahrt, Jahrestagung, 9th, Munich, West Germany, Sept 14-16, 1976, Paper 76-202 40 p 6 refs In German.

Approaches for the determination of the behavior of external stores which are dropped from an aircraft are discussed, taking into account a theoretical model for store trajectory calculations, the equations of motion for the stores, and experimental investigations in the wind tunnel. A description is given of the results obtained in the study of the departure characteristics for an external store in the vicinity of the Phantom F4F. The study included an investigation of the effect of differences in store weight.

It is expected that in the future a large part of the aircraft structure will consist of fiber-reinforced composite materials. Of these materials, carbon fiber-reinforced plastic has the greatest potential for a replacement of the light metal currently used in aircraft manufacture. A description is given of the employment of carbon fiber reinforced plastic for an elevator unit by a German aerospace company. An important development objective, in addition to the reduction of the component weight, is the avoidance of a cost increase in comparison to the design which utilizes metal.

Sandwich construction is employed in the design of the rudder. Outer sheets of carbon fiber reinforced plastic cover a layer of aluminum. Component design calculations have been performed with the aid of the finite element method. Modifications in the initial design were introduced to lower production costs in connection with a use of quantity-production techniques. Certain difficulties experienced in the construction of the first rudder could be eliminated by design changes.

The effectiveness of a rotor-lift relief provided by wings on flight performance and maneuverability was examined.

A77-16575 # Theoretical and experimental investigation of the departure characteristics of external stores which are dropped from an aircraft (Theoretische und experimentelle Untersuchung des Abgangsverhaltnisses einer Auslenklast von einem Tragerflugzeug) H Barth (Messerschmitt Bolkow-Blohm GmbH, Ottobrunn, West Germany) Deutsche Gesellschaft fur Luft und Raumfahrt, Jahrestagung, 9th, Munich, West Germany, Sept 14-16, 1976, Paper 76-202 40 p 6 refs In German.
Although numerous data exist on noise shielding values of lifting surfaces for point sources of noise, the noise generated by aircraft is hardly from a point source. This paper describes experiments in an acoustic sound chamber, the purpose of which was to verify the prediction capacity of such data for real aircraft designs. An aircraft half-model was placed in a reflection-free acoustic chamber, while the noise source was a fan model. The experiments were specifically designed to determine the shieldability of the noise from the fan moving from back to front. Harmonic components of the fan revolution noise were measured with and without the aircraft model. A numerical model was constructed that enables calculating with reasonable accuracy the noise emission of noise shielding configurations.

A77-16574 Adaptation of the lateral controls for the VFW 614 during the flight tests (Anpassung der Quersteuerung für die VFW 614 während der Flugerprobung) K. Böttcher (Verenigte Flugtechnische Werke-Fokker GmbH, Bremen, West Germany) Deutsche Gesellschaft für Luft- und Raumfahrt, Jahrestagung, 9th, Munich, West Germany, Sept 14-16, 1976, Paper 76-221 31 p In German

The VFW 614 is a commercial aircraft which is equipped with two engines. It was developed for short-haul traffic and a use of small airports. The design criteria for the lateral controls are described. The first flight test showed that the flight characteristics of the aircraft at low speeds were unacceptable. Certain modifications of the design of the lateral controls were required to eliminate difficulties concerning the control of the aircraft. The design modifications are discussed in detail together with the effect of the modifications on the flight characteristics of the aircraft.

A77-16575 # Layout and flight performance of a hypersonic transport /HST/ (Auslegung und Flugeigenschaften eines Hyperschall-Transport-Flugzeugs /HST/) G. Brüning, M. Kloster, and H. Krammer (München, Technische Universität, Munich, West Germany) Deutsche Gesellschaft für Luft und Raumfahrt, Jahrestagung, 9th, Munich, West Germany, Sept 14-16, 1976, Paper 76-198 44 p 31 refs In German

General considerations for planning and reference designs for a hypersonic transport aircraft (HST) are laid out. Selection criteria for airfoils are discussed, including a conventional wing fuselage combination, wedge airfoils, and surfboard type airfoils. Projections for flight range, propulsion plant organization, and design value comparisons in computer models are discussed. High Mach diagrams are plotted for performance in throttling, maneuvering, acceleration, and underwater. Literature data for thrust, fuel consumption, and drag are found to be realistic. Flight noise is considered moderate, and hydrogen fuel with water vapor as exhaust gas is environmentally safe.

A77-16577 # Multidimensional solutions for supersonic flow fields in turbomachines (Mehrdimensionale Lösungen für Überschallstromungsfelder in Turbomaschinen) H. H. Frühaut (Stuttgart, Universität, Stuttgart, West Germany) Deutsche Gesellschaft für Luft- und Raumfahrt, Jahrestagung, 9th, Munich, West Germany, Sept 14-16, 1976, Paper 76-165 10 p 9 refs In German

A nonlinear model for three-dimensional supersonic flow through an axial ring cascade is compared with a simplified nonlinear model. Next, an axisymmetric flow model and a model for a two-dimensional cascade are compared. Three-dimensional corrections introduced into the flow models are examined along with the number of three-dimensional effects and the influence of the flow over the flat surfaces, and cross flow. The example of supersonic flow through a ring cascade with complex geometry is treated with application to a supersonic momentum impeller. The results obtained are examined in the light of supersonic turbine development.

A77-16578 # Numerical procedures for the calculation of unsteady air forces on oscillating wings and fuselages (Numerische Verfahren zur Berechnung von instationären Luftkräfte an schwingenden Tragflächen und Rumpfen) W. Gessler (Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt, Institut für Aeroelastik, Göttingen, West Germany) Deutsche Gesellschaft für Luft und Raumfahrt, Jahrestagung, 9th, Munich, West Germany, Sept 14-16, 1976, Paper 76-158 24 p 9 refs In German

Accurate information regarding the unsteady air forces on oscillating aircraft components is vital for a detailed flutter analysis. A description is given of numerical panel procedures which can be used for the calculation of unsteady air pressure distributions and the resulting air forces in the case of oscillating aircraft components in subsonic flow. The procedures are based on the velocity potential. The employment of the velocity potential in place of the acceleration potential, used in current approaches, has a number of advantages related to certain simplifications and additional possibilities. The results obtained with the aid of the new procedures are compared with the results of other theories and with experimental data.

A77-16579 # The relationship between the mean depression in a vortex and its rotational kinetic energy (Störung und rotativer kinetischer Energie in einem Wirbel) A. Stewart (Rolls-Royce/1971/Ltd., Derby, England) Deutsche Gesellschaft für Luft- und Raumfahrt, Jahrestagung, 9th, Munich, West Germany, Sept 14-16, 1976, Paper 76-184 18 p

A relationship is derived between the mean depression within a vortex and its rotational kinetic energy, which applies to any vortex which goes 'solid' at the center. With this proviso, the relationship is independent of the type of vortex. An illustration of the relationship, the loss due to swirl in a propulsion nozzle is derived.

A77-16581 # Experience related to the development of high-stress carbon fiber-reinforced plastic structures, taking into account the example of a subsonic inlet ramp (Entwicklungs- und Erfahrungen für hochbelastete KFK-Strukturen am Beispiel einer Unterschall-Einlaufkappe) H. D. Berg (Verenigte Flugtechnische Werke Fokker GmbH, Bremen, West Germany) Deutsche Gesellschaft für Luft- und Raumfahrt, Jahrestagung, 9th, Munich, West Germany, Sept 14-16, 1976, Paper 76-159 41 p In German

A number of development problems are connected with the employment of carbon fiber-reinforced materials with plastic matrices in components which have to satisfy exacting stiffness and strength requirements over a wide operational temperature range. These problems are quite different from those involved in the use of metallic materials. The development of a mobile inlet ramp for a Mach 2 military aircraft is discussed. Attention is given to the technical requirements for the ramp, a weight cost analysis of various design and material combinations, questions of ramp design, problems of material selection, mechanical tests, and aspects of ramp manufacture.

A77-16582 # Experiments on supersonic lee-side flow past delta wings (Experimente zur Leeseiten-Stromung bei Deltaflügeln im Überschall) J. Szodruch (Berlin, Technische Universität, Berlin, West Germany) Deutsche Gesellschaft für Luft- und Raumfahrt, Jahrestagung, 9th, Munich, West Germany, Sept 14-16, 1976, Paper 76-157 23 p In German

Experiments were performed on three sweepback delta wing models in two different wind tunnels, one at a Mach number of 3.5 and a Reynolds number of 5 x 10 to the 6th, the other at a Mach number of 2.5 and a Reynolds number of 1 x 10 to the 6th. Static pressure measurements on the lee sides of the models, all with different cross sections, were performed using hot film anemometers. Oil-film images of the pressure distributions were obtained. Primary attention was given to the effects of Mach number and angle of attack on leading edge conditions with angle of attack selected between 0 and 30 degrees.
A77-16585

Theoretical and experimental results of the investigation of two different supersonic compressor stages (Theoretische und experimentelle Ergebnisse der Untersuchungen an zwei unterschiedlichen Überschalldieckblattstufen) H E Gallus, D Bohn, and K O Broichhausen (Rheinisch-Westfälische Technische Hochschule, Aachen, West Germany) Deutsches Institut für Luft- und Raumfahrt, Jahrestagung, 9th, Munich, West Germany, Sept 14-16, 1976, Paper 76-166 25 p 12 refs In German

One-dimensional calculations were performed on two supersonic turbocompressor stages a stage with a momentum impeller and a stage with a shock impeller, to determine optimal flow conditions for the compressor. Theoretical results are checked by pressure probe measurements performed on a supersonic compressor using a Freon-air mixture as the working fluid, and by schlieren photographic flow-visualization data. The results are relevant to the determination and control of the pressure distribution and thrust-weight ratios of supersonic compressors, with possible application to engines of remotely piloted vehicles. B J

A77-16587

Holographic determination of thermal and mechanical deformations in the case of structural components and structures of aeronautical and astronautical technology (Holographische Bestimmung thermischer und mechanischer Deformationen an Bauteilen und Strukturen aus der Luft- und Raumfahrttechnik). K Grunewald (Dornier System GmbH, Friedrichshafen, West Germany) Deutsches Institut für Luft- und Raumfahrt, Jahrestagung, 9th, Munich, West Germany, Sept 14-16, 1976, Paper 76-180 9 p In German

Tests for studying the basic material are considered and quality control investigations involving preimpregnated materials (prepreg) are discussed. Attention is given to the prepreg area weight, the fiber area weight of prepregs, the resin content, volatile components, the effective thickness, resin flow, the resistance to bending strain, tensile strength, and shear strength. A description of tests conducted during the manufacturing process is also presented, taking into account X-ray methods, approaches of neutron-radiography, ultrasonic procedures, resonance methods, and impedance studies. G R

A77-16590

Hingeless rotor for the larger helicopters (Gelenkloser Rotor fur grossere Hubschrauber) F L Von Dobhoff (Boeing International Corp., Munich, West Germany) and E Weiland (Messerschmitt Bolkow-Boehn GmbH, Ottobrunn, West Germany) Deutsches Institut für Luft- und Raumfahrt, Jahrestagung, 9th, Munich, West Germany, Sept 14-16, 1976, Paper 76-223 33 p 20 refs In German

Regularities encountered in the scale-up of hingeless rotors are discussed and comparisons are drawn between rotors manufactured by several firms (Boeing-Vertol YUH-61A rotor and the BO 105 rotor of MBM). Rotor parameters independent of the rotor system are studied: tip speed, rotor disk loading, rotor blade thickness, blade width, the rotating mass of the rotor (of interest for helicopter autorotation performance), and operating conditions. The ratio of the first impact bending eigenform to the rotor rotating frequency is studied as the major parameter dependent upon the rotor system. Geometric similarity problems and recent trends in design are examined, and the two rotor designs are compared systematically. R D V

A77-16597

Longitudinal stability in supersonic and hypersonic flight (Langstabilität im Uberschall und Hyperschallflug) G Sachs (Darmstadt. Technische Hochschule, Darmstadt, West Germany) Zeitschrift für Flugwissenschaften, vol 24, Nov Dec 1976, p 301 329 66 refs In German

The paper deals with conditions specific for static and dynamic stability of supersonic and hypersonic flight. In particular, it is shown that height dependent forces and moments have a decisive influence on stability. Contrary to this, speed dependent forces and moments are unimportant or even negligible. It is shown that certain design conditions exist, with regard to the effect of thrust characteristics on stability. The influence of speed and height dependent pitching moments on stability is described. The study includes the effects resulting from elastic deformations. Further, it is shown that the current concept of static stability is not applicable to supersonic and hypersonic flight. A new concept generally valid is introduced which is adequate for supersonic and hypersonic flight as well as for subsonic flight. In addition, it is shown that the well-known relation between static stability and the variation of elevator angle with speed does not exist in supersonic and hypersonic flight. Here, too, a new concept is introduced. (Author)

A77-16598

The effect of inclined trailing edges and membrane weight on the supersonic flow past conical paragliders with small camber (Einfluss schragter Hinterkanten und Einfluss des Eigengewichts der Bespannung auf die Umströmung konischer Paraglider mit schwacher Wölbung im Uberschall) B Wagner (Darmstadt, Technische Hochschule, Darmstadt, West Germany) Zeitschrift für Flugwissenschaften, vol 24, Nov-Dec 1976, p 329 340 8 refs In German

Lifting wing theory is used to analyze the supersonic flow past a conical paraglider of small camber for the case of inclined trailing edges. The integral equation of the problem is solved in the elliptical and hyperbolic regions of supersonic flow and the effect of glider membrane weight on aerodynamic characteristics is considered. The effect of trailing edge inclination and of membrane weight on the eigenvalues of the problem is studied with particular attention given to flutter boundaries. B J

A77-16599

Design of airfoils in transonic flow by the integral method (Entwurf von Tragflügelprofilen für schallnahe Anströmung nach der Intregalmethode) H Hansen (Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt, Institut für Aerodynamik, Braunschweig, West Germany) Zeitschrift für Flugwissenschaften, vol 24, Nov Dec 1976, p 340-349 43 refs In German

In the present paper a method for the design of lifting airfoils for a prescribed sub- or supercritical contour velocity distribution is developed. From Oswatitsch's integral method for the prediction of the velocity distribution on a given airfoil in transonic flow a corresponding difference equation is deduced. A reduced gasdynamic equation is derived for transonic speeds assuming small perturbations which is also valid for the stagnation region. In contrast to the prediction method after Oswatitsch which requires the solution of an integral equation, the present design problem works by solving simple integrations. For this new method a computer program has
been developed and tested by comparison with exact solutions. For
prescribed sub- and supercritical velocity distributions on airfoils
with convex curvatures, good agreement is obtained with correspond-
ing exact solutions (Author)

A77-16606 / A simplified method in flight test techniques
for the determination of the range performance of jet aircraft (Ein
vereinfachtes flugversuchstechnisches Verfahren zur Ermittlung der
Horizontalflugleistungen von Strahlflugzeugen) R. Rosenberg
(Bundesamt für Wehrtechnik und Beschaffung, Manching, West
Germany) Zeitschrift für Flugwissenschaften, vol 24, Nov Dec
1976, p 350-356 In German

From the physical fundamentals of the known W/delta method, a
simplified method is derived to determine the range performance
of jet aircraft. The theoretical background is provided. The flight test
parameters which are to be measured result from the developed
equations. The simplicity of the method, which under certain
conditions is also applicable to aircraft with multishaft engines,
results from a special plotting of the data (Author)

A77-16666 * Computation of wave drag for transonic flow
P R Garabedian (New York University, New York, N Y) Journal
d’Analyse Mathematique, vol 30, 1976, p 164-171 10 refs
NGR-33-016-201

The paper develops a method for calculating wave drag for
two dimensional transonic flow, with particular application to the
prediction of the drag rise Mach number of a supercritical wing
section. The method is based on a transonic similarity model which is
defined by a normalized small perturbation equation and represents
shock waves by the addition of an artificial viscosity term in the
region of supersonic flow to the partial differential equation. The
drag formula obtained allows the computer simulation of transonic
wind tunnel data taking account of boundary layer and wall effects

A77 16732 . Sneak circuit analysis of military systems E J
Hill and L J Bose (Boeing Aerospace Co, Seattle, Wash) In
International System Safety Conference, 2nd, San Diego, Calif., July

The purpose of sneak circuit analysis is to detect latent (sneak)
circuits and conditions that inhibit desired functions or cause
undesired functions to occur without a component having failed. The
technique consists of the recognition of basic topological patterns
inherent in all circuitry (straight line, power dome, ground dome,
combination dome, and H pattern), with the circuitry to be analyzed
reconstructed in node topograph form. Attention is given to com-
puter aided sneak circuit analysis, data encoding and processing, and
network tree analysis. Some military applications of sneak circuit
analyses are considered including the AGM 34M, AWACS, the Boeing
Compass Cope, the F 4C autopilot, the Titan II coded switch system,
and the Pershing missile

A77-16734 # Safety concepts and innovations on the B-1
Bomber H Wilkerson (Rockwell International Corp, El Segundo,
Calif) In International System Safety Conference, 2nd, San Diego,

The B-1 System Safety Program is modeled after the guidelines
in MIL-STD-882. This paper describes the B-1 System Safety
Program with particular emphasis on several analytical and manage-
ment innovations to integrate hazard analyses, classify potential
hazard impact, and track and resolve potential hazards. The
innovative safety concepts developed during the B-1 program were
implemented in two advanced electronic systems (1) the electrical
multplexing (EMUX) subsystem guided by fail operational/fail safe
design philosophy, and (2) the central integrated test subsystem
(CITS) governed by lockout guidelines

A77 16735 3 System safety and the Utility Tactical Trans-
port Aircraft System J C Henderson (US Army, Agency for
Aviation Safety, Fort Rucker, Ala) In International System Safety
Newport Beach, Calif., System Safety Society, 1976, p 455-460

After a general description of the UTTAS (Utility Tactical
Transport Aircraft System) helicopter, attention is directed to
integration of system safety during concept formulation and specific
system safety tasks which included hazard analyses, the establish-
ment of positive system safety evaluation procedures for proposed
system modifications, and the identification of qualitative and
quantitative safety requirements for the system and all subsystems.
System safety criteria, hazard identification and control (including
preliminary hazard analysis, and operating and maintenance hazard
analyses), reliability, vulnerability and crashworthiness are examined

A77 16736 # System safety in the Advanced Attack Helic-
opter D W Logan and M V Stratton (US Army, Agency for
Aviation Safety, Fort Rucker, Ala) In International System Safety
Newport Beach, Calif., System Safety Society, 1976, p 506-510

The safety features of the Advanced Attack Helicopter (AAH)
include: twin engines with OEI capability, redundant hydraulic
system, a redundant flight control path, a crashworthy fuel system, tail rotor protection, self retaining bolts, and damage tolerant main and
tail rotor blades. The principal objective of the AAH System Safety Program is to provide for the identification and correction of hazards. Once a decision is made to apply a specific correction to a hazard, the correction must be
submitted to analysis to assure that other problems are not
introduced.

A77 16737 # The hidden passenger J A Eckols (Air Line
Pilots Association, Washington, D C) In International System
Safety Conference, 2nd, San Diego, Calif., July 21-25, 1975,
Proceedings Newport Beach, Calif., System Safety Society, 1976, p 547-563

Aircraft safety is considered from the point of view of
dangerous cargo materials particularly toxic chemicals and corrosive
substances. The emergency which arose on a United Airlines 2875
flight from Chicago to San Francisco is described in detail with
quotations from the report written by the flight engineer. The
emergency described was related to the spread of fumes from the
cargo compartment where thirty different organic chemicals were
being stored. A number of recommendations are made concerning
chemically dangerous cargo handling of chemicals by ground
personnel, packing containers, flammable cargo-flash point deter-
mination, the inflammability limits of flammable cargo, onboard
detection systems, fire extinguisher systems, crew oxygen masks and
smoke goggles, and emergency procedures.
and the onboard error. The results of flight tests concerning VOR
installations in the airspace of the German Democratic Republic are
discussed. Attention is given to the results of flight tests conducted
during the time from 1967 to 1973 and proposals regarding the
establishment of additional VOR installations.

A77-16740 # The technical concept of the IL-62M I (Die
technische Konzeption der IL-62M I) S W Ilushin and G V
Novozhilov Technisch-okonomische Information der zivilen Luft-
fahrt, vol 12, no 4, 1976, p 213, 214 In German

The IL-62M airliner is currently used for long-distance flights.
Differences between the IL-62M and the IL-62 are mainly related to
a greater flight range and the enhancement of the payload for the
IL-62M. The increase in payload is on flights from Moscow to Tokyo
about 50%, on flights from Moscow to New York about 80%. The
improvements were obtained as a result of design changes. Attention
is given to improvements regarding the aerodynamic properties of
the aircraft, the new fuel system, changes in engine location, and the
design of the landing gear.

A77-16741 # Maintenance basis for the aircraft Tu-134
(Wartungsbasis fur das Flugzeug Tu-134) D Kausch (Gesellschaft fur
internationalen Flugverkehr mbH, Berlin, East Germany) Technisch-
okonomische Information der zivilen Luftfahrt, vol 12, no 4, 1976,
p 217-219 In German

An increase in maintenance operations in connection with the
enlarged volume of flight operations and the growing number of
aircraft produced certain problems concerning the provision of a
suitable place for the conduction of the maintenance operations in
the case of the Tu-134. Approaches used for overcoming these
difficulties are discussed and a description is given of the selected
dock installation design which makes it possible to perform the
required maintenance operations for the Tu-134.

A77-16742 # Electric power supply in the case of airports I
(Elektroenergieversorgung von Flughafen I) H Krause (Gesellschaft
fur internationalen Flugverkehr mbH, Berlin, East Germany) Technisch-
okonomische Information der zivilen Luftfahrt, vol 12, no 4, 1976,
p 222, 223 In German

The requirements concerning the power supply systems for
airports are examined. Airport installations and devices which have to
be supplied, in the event of power failure, with electric power from an
emergency power supply include selected installations and areas of the
air traffic control system, selected navigational devices, selected
obstacle lights, selected meteorological equipment and installations,
and selected parts of the airport lighting system.

A77-16744 # Experience with the flight simulator (Er-
fahrung mit dem Flugsimulator) J Gorlich (Gesellschaft fur
internationalen Flugverkehr mbH, Berlin, East Germany) Technisch-
okonomische Information der zivilen Luftfahrt, vol 12, no 4, 1976,
p 229, 230 In German

A general analysis is conducted regarding the advantages of
simulator training and an evaluation of the experience obtained in
the use of Soviet flight simulators is provided. In a comparison of
new flight crews with end without simulator training it was found
that the proficiency of crews with simulator training was sig-
ificantly higher. The use of flight simulators in the training of
INTERFLUG crews is briefly discussed.

A77-16749 Concorde has designed-in reliability L J
Schefer (British Aircraft Corp / U S A /, Inc., Arlington, Va) Hy-
draulics and Pneumatics, vol 29, Dec 1976, p 51-55

The paper outlines the design capabilities of the Concorde's
hydraulic system based on advanced planned-in safety and reliability
considerations. Hydraulic power is essentially used for operating
those services in the flight control, landing gear, wheel brakes, and
fuel systems which require relatively large forces instantaneously.
The discussion covers the hydraulic system design elements, in-
cluding three independent hydraulic systems, hydraulic reservoirs,
titanium alloy tubing lines with brazed couplings, and pump
depressurization. Also discussed are emergency power unit, hydraulic
fuel-to-fuel exchanges, and maintainability. The hydraulic layout is
so planned that if any one engine or any one main pump becomes
inoperative, flight can be continued without recourse to the standby
system. Hydraulic system design paid attention to surge control,
fluid isolation and malfunction with a view toward reducing risk of
fire, fatigue failure of fittings and lines, systems simplicity, accessi-
bility, and maintainability.

A77-16786 # The effect of twist on the aerodynamic inves-
tigation of axial compressor blades (Influenza dello svergolamento
sullo studio aerodinamico delle pale dei compressori assiali) M Albini
and I Miragino (Napoli, Universita, Naples, Italy) Ingegneria,
Set Oct 1976, p 287-284 In Italian.

Axial compressor blade twist, associated with tangential velocity
free vortex distributions on the blades and with axial-velocity
variations along blade radius is studied in the framework of aerody-
namic theory. Expressions are presented for tangential-velocity free
vortex distribution, and the optimization of compressor rotor
efficiency is considered.

A77-16947 # Spin entry of aircraft S B Spangler (Nielsen
Engineering and Research, Inc., Mountain View, Calif.) Naval
Research Reviews, vol 29, Aug 1976, p 24-32 13 refs

The paper describes the general features of theoretical work
which has been advanced recently on the basic flow characteristics
and force distributions acting on modern fighter bomber aircraft at
incipient spin entry. The central phenomenon is the asymmetric
separation of vortex sheets on the nose, and the problem is to define
position and strengths of the vortices and calculate the loads induced
on the components. Two principal models being investigated are
discussed. The Thompson model is based on extensive experimental
data on long cone-cylinders in which many vortices are formed and
torn from the feeding sheet at the separation line to move aft in a
direction close to the free stream direction. The Wardlaw method is
based on slender-body analysis where three dimensional flow is
analyzed as unsteady, two dimensional flow in a plane normal to the
body axis. Some predicted and measured loads in four aircraft
regions for 40 deg angle of attack and zero sideslip are given as
examples.

A77-16959 MLS - A practical application of microwave
technology R M Cox and J R Sebring (Bendix Corp., Baltimore,
Md.) (Microwave Theory and Techniques Society, International
Microwave Symposium, Cherry Hill, N J, June 14-16, 1976) IEEE
Transactions on Microwave Theory and Techniques, vol MTT 24,
Dec 1976, p 964-970 U S Department of Transportation Contract
No F A72WA-2801

The microwave landing system (MLS) discussed has emerged from
the FAA development program as the U S candidate system to
ICAO. This scanning beam system uses a signal format with time
division multiplexing of all functions using a common carrier
frequency at C band. The most comprehensive MLS configuration
(known as the expanded configuration) provides proportional
azimuth angle distance up to + or - 60 deg relative to runway center
line with vertical coverage at least +20 deg, with a 13.33 Hz
update rate, proportional elevation guidance from 0 to 20 deg with a
40-Hz update rate, proportional flare elevation guidance from -2 to
+8 deg with a 40-Hz update rate, range to GP/IF (touchdown) and
range to end of runway after strut switch actuation is provided by an

98

NASA-sponsored studies of existing and new LTA missions showed that airships looked very promising for some two dozen civil and military applications. These include surveillance of rural and urban areas, in the form of forest and police patrols, transport of very heavy large-volume maritime, industrial, and military payloads, coastal patrol and sea control, seismographic surveys, air pollution monitoring, and moving goods to remote areas, along with a number of less important but still attractive missions. A figure of merit of productivity (payload weight, ton moles per hour) was used to compare airships of various type and size. In each case, this criterion established an index of efficiency for evaluating not only conceptual approaches but also modes of flight. Some, in part unexpected, results of these studies are described.

Over half the articles deal with the design, operation, testing, and use of hydrofoil hovercraft, with some emphasis on military uses, and about a quarter of the articles deal with advanced transit systems. Air cushion vehicles also receive attention, and one article reconsiders wind-driven sail craft as a minimum-energy maritime transit system. Particular hovercraft and geographical areas serviced by hovercraft, new designs, hovercraft use in countermine and protection of offshore rigs against commando attacks, and linear multivariable control of hydrofoil motion are discussed. Articles on transit systems cover magnetic levitation, linear induction motors, transverse-flux motors, air bearing systems, mechanical suspension systems, and high-speed trains.

11 refs

The paper presents an account of the studies arising from the National Research Council of Canada's 'CASPAR' programme to date. Studies of the drag of ACVs over water are well advanced, and clearly summarized by Trillo and others. The drag of an ACV overland is a much more complex problem, and was not well understood when this programme started. The experimental difficulties in measuring it are severe, and the data available were poor and fragmentary. The accepted theory of overwater drag is examined and extended to attempt to cover the overland case. The connection between lift airflow and drag is examined, and a fully non-dimensional lift air coefficient developed, to match a tow coefficient for drag measurement. The experimental measurement of these quantities is discussed in detail, and theoretical rationalization is foreshadowed. Experimental data are shown and discussed, and towing drag measurement methods are evaluated.

The technical and economic aspects of a people-moving overland monorail system powered by linear induction motors or advanced transverse flux motors, of the type used at Braniff International, Dallas to move airline passengers between the terminal and the parking area, are discussed. The advantages such a transportation system would offer to people using mass transit systems are noted. A demand-responsive fully automatic transportation system, called Astroglide, is described and is shown to be far superior to the monorail installation used at Braniff International.

The maneuverability of a hovercraft where the craft's travel route is restricted by obstacles or requires close-quarter turns, and during travel on slopes and in crosswind conditions, and the use of ground contact devices for positive directional control is discussed. Wheels are analyzed in more detail because of their obvious application on a variety of land terrains. Brake rods and bars are more suitable on water, ice and snow. The saucer would cause the least ecological impact on fragile organic terrains such as tundra. The use of controlled ground contact with skirt sections having retractable rollers or special wearing surfaces may represent the least significant change to the basic design of the craft or its components. The relative directional stability is evaluated in terms of the total yawing moments produced by a variety of wheel arrangements (single, dual, tandem), location on the craft, and operational modes (free-rolling, braked, or a combination of the two). The available moments are plotted against the yaw angle of the craft to determine the most effective operational mode with a particular wheel arrangement for any yaw condition. The analysis is limited to retractable devices which act as moment-producing brakes or rollers and do not serve as either propulsion or load support aids.

The prototype VT 2 hovercraft (100 tons normal maximum weight) features a non-compartmented cushion/skirt system with softer suspension than existing skirt arrangements and a marked improvement in maintenance downtime. Propulsion is provided by large diameter ducted axial fans. Compared with an open aircraft-type propeller, the ducted propulsor results in a more compact installation, reduced noise and increased safety to personnel working around the craft deck. The VT 2 may be adapted for several military roles. Various mixes of weapon systems, guns and missiles can be accommodated, in a logistic role up to 32 tons weight of vehicles and personnel can be carried. VT 2 is almost identical in size to the US AALC (JEFF) craft due to be launched in 1976. The Royal Navy recognizes the particular advantages offered by amphibious hovercraft in mine countermeasures operations.

(Author)

The Vosper skirt/brushon design consists essentially of an outer loop of flexible material around the periphery of the craft, attached to the upper edge of the hull. Numerous segments are attached to the lower edge of the outer loop and also to the lower edge of an inner loop and segment attachment cables. The skirt configuration is designed to accept a skirt shift system in both pitch and roll. This allows the craft turn to be altered to suit prevailing conditions and to move the center of pressure relative to the center of gravity. A two-dimensional theory on which the design and dimensions of the Vosper skirt are based is outlined.

The performance, reliability and economy of a new means of transportation must be such as to enable it to compete with the existing facilities. Although the N 500 will be the largest operating hovercraft in the world, it is not derived from a smaller similar craft. Therefore, a tremendous effort in research and development was necessary in all the techniques involved. This research and the testing facilities used by SEDAM are described here with particular emphasis on external and internal aerodynamics, air distribution and skirt systems, maneuverability and sea keeping qualities.

Oscillatory fluid flow in the vicinity of a circular orifice with a steady grazing flow is analyzed. A simplified system of partial differential equations is obtained by starting with the momentum and continuity equations and by assuming that the flow can be represented as an oscillatory motion superimposed on the (known) steady flow. It is found that the equations are linear in the region where grazing-flow effects dominate, a solution and the resultant orifice impedance are given for this region. It is tentatively concluded that orifice resistance is directly proportional to grazing-flow velocity, and that the orifice inductive and correction is not a function of grazing flow.

A field study has been conducted to examine the interior noise characteristics of a general aviation aircraft. The purposes of the study were to identify the major noise sources and their relative contribution and to establish the noise transmission paths and their relative importance. Tests were performed on an aircraft operating under stationary conditions on the ground. The results show that the interior noise level of light aircraft is dominated by broadband, low frequencies (below 1000 Hz). Both the propeller and the engine are dominant sources, however, the contribution from the propeller is significantly more than the engine at its fundamental blade passage frequency. The data suggests that the airborne path is more dominant than the structure-borne path in the transmission of broadband, low frequency noise which apparently results from the exhaust.

At the present time, predictions of aircraft interior noise depend heavily on empirical correction factors derived from previous flight measurements. However, to design for acceptable interior noise levels and to optimize acoustic treatments, analytical techniques which do not depend on empirical data are needed. This paper describes a computerized interior noise prediction method for light aircraft. An existing analytical program (developed for commercial jets by Cockburn and Jolly in 1968) forms the basis of some modal analysis work which is described. The accuracy of this modal analysis technique for predicting low frequency coupled acoustic structural natural frequencies is discussed along with trends indicating the effects of varying parameters such as fuselage length and diameter, structural stiffness, and interior acoustic absorption.

Electrons emitted by a fresh metal surface (made by machining, crack growth, or wear) are exploited for visualization, quantification, and monitoring of dynamics of surfaces experiencing wear, cracks, or fatigue, and illuminated by a focused UV beam (Einstein photoelectric effect). The author’s use of exoelectrons emitted by metallic surfaces of rolling-contact devices (ball bearings) experiencing surface fatigue wear is discussed at length, and other uses of exoelectrons are also illustrated (ball milling, sliding pairs and friction loads, radiation damage, crack growth and fatigue, distinguishing between arrested microcracks and rapidly propagating microcracks, studying direction of crack growth and fatigue mode in process). Novel uses of exoelectrons are suggested (NDT of an entire aircraft wing structure, incipient-flow detection in wheels and rails, cracks in subsurface rock for earthquake prediction).

The tip vortex of a laminar-flow wing was studied at a sectional lift-to-drag ratio of 60. The vortex Reynolds number was 78,000. At and near the wing, the vortex core was turbulent with an axial jet downstream of the wing, the jet rapidly dissipated, a wake developed in the core, and the intensity of turbulent velocities decreased. From 13 to 40 chord length, periodic oscillations dominated the velocity fluctuations with little background turbulence. These instabilities had a symmetric and a helical mode with wavelength of the same order as the core diameter. In this range of distances along the vortex core, the maximum axial, swirl, and fluctuating velocities vary.
slowly. At 40 chord lengths behind the wing, there is a rapid change in these velocities. This change of state of the vortex core is accompanied by change of velocity fluctuations from periodic to turbulent. The core showed spatial excursions. Measurements up to 80 chord lengths downstream showed no self-similar decay. (Author)

The paper discusses the development and application of an elementary electronic digitally-compatible airborne continuous recording data acquisition and recording system to be incorporated in service aircraft to provide factual, accurate and quantitative data. The airborne system along with the ground replay system and the data processing procedures are described. The system - referred to as the engine usage monitoring system - consists of a digital airborne data acquisition unit and a quick access recorder which sequentially monitors engine and aircraft parameters, converting each discrete parameter into a digital number and recording this digital output on tape. The ground computing equipment analyzes the airborne data and provides processed data related to each aircraft sortie and also provides a historical record of the data related to each engine.

Engine System reliability and data integrity are also examined.

S. D.

The life cycle development and management process for turbine engines is being revised to provide more durable, reliable, and lower life cycle cost engines to the military services. Greater attention is being given earlier in the life cycle to the cost trades between performance, producibility, and operability/supportability, i.e., during the technology, conceptual and validation phases of the development process. The full-scale development phase has been restructured to emphasize structural durability and to provide formal demonstrations of useful engine life limits, operational and logistic characteristics, and validation of the engine life management process to provide economic management rationale for the production hardware acquisition, operational usage, and logistic support phases.

(Author)
efficiency of the aerodynamic machinery, the weight and cost per unit power, etc. On the converse side, the response time of small engines is lower than that of the larger counterparts and the surge and stall margins are generally more tolerant for a number of reasons. A small onboard combined starter and auxiliary power engine is described which is unique in permitting the pilot to select a start mode without stopping the engine when it is operating in the auxiliary generating mode. The unit has now been in operational service for sometime and a description is undertaken of some of the problems arising and their investigation. (Author)

A77-17233 Operational experience with lift plus lift/cruise T P K Vleghert (Nationaal Lucht- en Ruimtevaartlaboratorium, Amsterdam, Netherlands) In International Symposium on Air Breathing Engines, 3rd, Munich, West Germany, March 7-12, 1976, Proceedings Cologne, Deutsche Gesellschaft fur Luft- und Raumfahrt, 1976, p 113-137

Operational experience with the L + L/C propulsion system of the VAK 191B V/STOL Strike and Reconnaissance aircraft is the subject of this paper. This is based on a large number of flights done in jetborne and aerodynamic flight. Special attention is paid to the handling of the lift engine system for minimum work load and optimum performance. This includes vertical take-off procedures, shutting down of lift engines and relight in transition flights. Flight experience has shown that this type of L + L/C concept has proven its feasibility within the whole range of flight operation from vertical lift-off to aerodynamic flight in the high subsonic region. (Author)

A77-17244 Fuel consumption of civil jet transport aircraft F P Vlieghert (National Lucht- en Ruimtevaartlaboratorium, Amsterdam, Netherlands) In International Symposium on Air Breathing Engines, 3rd, Munich, West Germany, March 7-12, 1976, Proceedings Cologne, Deutsche Gesellschaft fur Luft- und Raumfahrt, 1976, p 139-148 7 refs

Fuel consumption under steady cruise conditions is analyzed using aircraft flight data logged by hand and further processed by computer. A large problem with the interpretation of the observed data is the limited reliability of the instrumentation chain, which requires extensive cross-checking, filtering and fault-eliminating, with the attendant risk that short-term deterioration passes unnoticed. Examples of possible cross-checks are given. Only part of the excess fuel consumption could be traced to the engine via test bed results. Some considerations are given with regard to the applicability of static test bed results to cruise conditions. Further flight tests with tufted nacelles showed the boundary layer aft of the fan exhaust ducts to be unsteady in some cases, which could be related to in-service deterioration of the fan exhaust ducts. (Author)

The paper analyzes the impact of civil airworthiness requirements on the reliability of engine control systems, on the partitioning of response to failure, and on the efficiency of monitors which control the partitioning. The whole of the certification process for aircraft and engines assumes that there will be an extremely low probability of multiple shut-down from a common cause. The first impact of the airworthiness requirements is to make an independent overspeed limiter mandatory because this is the simplest way of achieving the triplex protection against catastrophic overspeed which is imposed by the requirements applied to state-of-the-art technology. The discussion of dispatch in the presence of failure has some important repercussions on the way a system is built. (Author)

A77-17238 Self-correcting control for a turbofan engine S H Ellis (United Technologies Corporation, Pratt and Whitney Aircraft Group, West Palm Beach, Fla.) In International Symposium on Air Breathing Engines, 3rd, Munich, West Germany, March 7-12, 1976, Proceedings Cologne, Deutsche Gesellschaft fur Luft- und Raumfahrt, 1976, p 171-186 5 refs

A failure-tolerant turbofan engine control concept is presented that can maintain operational capability after a sensor failure while minimizing the number of additional sensors. This has been accomplished by multivariable logic in which key engine parameters are synthesized by a process that utilizes all sensed information for estimating each parameter. Sensor signals are cross checked using the coupling between signals given by knowledge of the engine cycle. Sensors which lie outside editing boundaries are disconnected from synthesis circuits. The fail-operational capabilities of the control are demonstrated by simulating sensor failures in a mathematical model of a turbofan engine. Editing demonstrations are presented showing the ability to detect small magnitude failures and failure tolerance during transients. (Author)

A77-17237 A comparison of two transonic compressors designed for a pressure ratio of 1 88 R K Oldham (National Gas Turbine Establishment, Farnborough, Hants, England) In International Symposium on Air Breathing Engines, 3rd, Munich, West Germany, March 7-12, 1976, Proceedings Cologne, Deutsche Gesellschaft fur Luft- und Raumfahrt, 1976, p 189-216 11 refs

A two-stage compressors of small and large size which were designed by the same method and designated for the same target performance. There were three major geometric differences between the two compressors. The small compressor is about one-third the size of the large compressor. The large compressor, has lower aspect ratio blades instead of a clappered first stage rotor, and a parallel outer wall compared with the constant mean radius annulus of the large compressor. A comparison is drawn between the two compressors from the viewpoints of validity of transonic testings and the effect of the different geometric features on their measured overall characteristics. The detailed flow measurements in the two compressors revealed the advantages of having a large unit for interblade row traversing. (Author)

A77-17238 Three-dimensional turbomachine flow equations expressed with respect to non-orthogonal curvilinear coordinates and methods of solution C H Wu (Academia Sinica, Peking, Communist China) In International Symposium on Air Breathing Engines, 3rd, Munich, West Germany, March 7-12, 1976, Proceedings Cologne, Deutsche Gesellschaft fur Luft- und Raumfahrt, 1976, p 233-252 20 refs

The basic aerothermodynamic equations governing the flow of a viscous fluid in a turbomachine are reviewed, and the equations governing a three-dimensional flow along relative surfaces of revolution are expressed in terms of general nonorthogonal coordinates. Two groups of general methods for solving these equations are outlined, one based on the 'mean streamline curvilinear extension' technique and one that combines matrix and iterative methods previously used to solve the flow equations expressed in terms of orthogonal cylindrical coordinates. Some special forms of the flow equations are discussed, and a procedure is presented for computing the F term. (Author)

This paper discusses the testing of an axial flow compressor in which the 'stator' casing corotates with the rotor and extracts power from the air stream. The concept originated as a means for driving a fan in a turbofan engine. The rotor speed, relative to the casing, is similar to that of a conventional compressor, so that the driving turbine speed is high, while the casing speed is kept at a level compatible with the fan. The arrangement, in effect, provides an aerodynamic gearbox to permit a better matching of the speed requirements of the turbine and the fan. A cooperative project was undertaken to examine this concept of compressor spooling. Analytical and experimental results showed that the concept was both mechanically and aerodynamically feasible. The paper compares the performance of the rotating-stator compressor with the conventional compressor, and some possible applications of this type of compressor scheme are presented.

Test and measurement techniques are described for evaluating surge margin in an actual engine. Emphasis is placed on the fuel step technique for high pressure compressor surge testing, which is a relatively simple method that eliminates some of the limitations imposed by other engine testing techniques. The fuel step is simply a rapid acceleration of the engine by induction of fuel flow at a rate well above that of the normal engine acceleration fuel schedule. The transient is called a step because fuel flow is jumped rapidly to a predetermined level, with an attendant acceleration of the engine up to the speed at which the stepped fuel flow level holds the engine steady state. An analysis procedure is described for estimating the path of the transient on the compressor map.

Results are presented for experimental investigations of the performance of a six-bladed free vortex axial-flow fan impeller with a hub-tip ratio of 0.4 and a tip diameter of 250 mm. The experiments were performed to determine whether the performance of an axial-flow fan at low flow coefficients with stalling and back flow can be improved by installing inlet guide blades which may rotate freely and may also brake the flow. Effects on performance of axial distance between inlet-guide-blade row and impeller, inlet-guide-blade shape and setting angle, and the partial omission of guide blades at hub and tip regions are analyzed. The most favorable axial distance and setting angle are determined. It is found that the installation of freely rotating inlet guide blades appreciably increases the useful operating range of the fan, reduces the power coefficient, and gives higher efficiency for corresponding volumes in comparison with a fan without guide blades. It is concluded that essential improvement in the stalled working range of the fan may be obtained by the combined use of freely rotating and braked guide blades.

Two supersonic prototype wheels have been designed in order to explore the Mach-2 domain and the supersonic axial inlet component. The Mach-2 compressor stage has been investigated in terms of an inlet blockage ring, a bleed system, the rotor, inlet-guide-vane-rotor performance, and the modified rotor. The second prototype has been designed to study the supersonic axial inlet component up to an axial Mach number of 1.50. Information about some aspects of the dynamic behavior, supersonic inlet component, and incidence-angle variations has been obtained.

A77-17244 One-dimensional analysis of the properties of the elementary supersonic axial-flow compressor cascade. K. Celikovsky (Vyzkumny a Zkusebni Letecky Ustav, Prague, Czechoslovakia) In International Symposium on Air Breathing Engines, 3rd, Munich, West Germany, March 7-12, 1976, Proceedings, Cologne, Deutsche Gesellschaft für Luft und Raumfahrt, 1976, p 351-368. 15 refs.

The paper deals with a theoretical investigation of the characteristics of the supersonic compressor cascade, which is treated as an elementary cascade of the supersonic or transonic stage of an axial flow compressor. The loss coefficient and diffusion factor are derived as functions of inlet conditions, contraction ratio of stream surfaces, and back pressure. Equations of one-dimensional compressible flow are applied for the derivations. The derived relations may be of use for three-dimensional stage design. The flow angles are correlated with the stream contraction ratio.

An experimental study of a control device for the boundary layer in the region of interaction with the shock-wave due to back pressure has been realized in a plane supersonic cascade. Such a device allows control of the flow in the region of interaction by suction through the lateral walls (limiting the blade span) as well as through the blades walls. A number of tests have been performed for an upstream Mach number of 2 under conditions corresponding to the maximum pressure ratio (required for initiating the cascade). Measurements and probing realized under such circumstances have revealed a noticeable increase in the static pressure ratio across the cascade (from 2.4 to 4).

The paper describes and discusses the results from some of the research and development programs for reducing aircraft gas turbine engine emissions. Although the paper concentrates on NASA programs only, work supported by other U.S. government agencies and industry has provided considerable data on low emission advanced technology for aircraft gas turbine combustors. The results from the two major NASA technology development pro-
grams, the ECCP (Experimental Clean Combustor Program) and the PRTF (Pollution Reduction Technology Program), are presented and compared with the requirements of the 1979 U.S. EPA standards. Emission reduction techniques currently being evaluated in these programs are described along with the results and a qualitative assessment of development difficulty.

A77-17247 Results of further investigations of a new concept of fuel pre-vaporization G. Kirschev, A. Fehler, G. Koppier, and W. Krookow (Motoren- und Verbinden Union Munchen GmbH, Munich, West Germany) In International Symposium on Air Breathing Engines, 3rd, Munich, West Germany, March 7-12, 1976, Proceedings Cologne, Deutsche Gesellschaft fur Luft- und Raumfahrt, 1976, p 409-428 17 refs

A new fuel injection system for aircraft engines is developed to suppress droplet combustion and avoid burning at stoichiometric air fuel ratios. Based on a suitable fuel vaporization model, a computer program is used to determine the lifetime of fuel droplets along a recirculating stream path inside the combustor. The additional pressure loss implicated by the attachment of the fuel injection system to conventional combustors is measured using a full-scale air flow model. Full-scale combustor tests are carried out at chamber pressures up to 10 bar and air entry temperatures up to 825 K. The measured temperature distribution at the combustor outlet and the recorded pollutant and smoke emission values are reported.

A77-17248 A premixed, variable area combustor for a small gas turbine engine J. Ogders, H. Gerardin, and D. Kretschmer (Universite de Laval, Quebec, Canada) in International Symposium on Air Breathing Engines, 3rd, Munich, West Germany, March 7-12, 1976, Proceedings Cologne, Deutsche Gesellschaft fur Luft- und Raumfahrt, 1976, p 429-445 18 refs

Research supported by the National Research Council of Canada. A design study has been made of a combustor which combines both premix and variable geometry, for application to a small gas turbine. The variable geometry is achieved by moving a baffle within a conical section at the entry to the chamber. The movement of the baffle being accomplished by the fuel pressure. The rate of the baffle movement is such that there is adequate response to changes occasioned within the fuel system. Additionally, a fail-safe mechanism is incorporated so that flame extinction cannot occur inadvertently. The performance of the combustor is estimated using existing correlations, carbon monoxide, hydrocarbons, and oxides of nitrogen that are all predicted for a range of operating conditions. The results indicate that this type of combustor has the potential of a near-to-optimum performance at all operating conditions. Some confirmation of the predictions has been suggested by results obtained using a premixed combustor having a similar, but fixed geometry.

Predictions of the hydrodynamic and thermodynamic properties of a flow under the conditions of a jet-engine after-burner are presented. The flow is two-dimensional, axisymmetric, unsteady, compressible, turbulent and chemically-reacting. The predictions are obtained by the numerical solution of the transport equations for the components of the mean velocity, the pressure, the kinetic energy of turbulence and its dissipation rate, the stagnation enthalpy, the concentrations of fuel droplets in ten size ranges and the concentra-

tions of the gaseous fuel before and after the occurrence of chemical reaction. In the analysis of fuel spray, account is taken of the vaporization-plus-combustion processes around the droplets. The present numerical solution procedure provides a useful tool for investigating the 'buzz' phenomenon in engine after-burners.

A77-17250 Numerical methods for calculating the performance of air-breathing combustion chambers Y. Manhemer-Timnat (Technion - Israel Institute of Technology, Tel Aviv, Israel) in International Symposium on Air Breathing Engines, 3rd, Munich, West Germany, March 7-12, 1976, Proceedings Cologne, Deutsche Gesellschaft fur Luft- und Raumfahrt, 1976, p 473-488 35 refs

After reviewing briefly numerical methods developed recently for predicting the performance of air-breathing combustion chambers, two numerical codes are described. The first allows to calculate the performance and to carry out parametric studies, taking into account the finite rate of chemical reactions and the effect of unmixedness of the different chemical components. The governing equations and the method of solving them, overcoming stiffness problems, are described for a flow field governed by elliptical partial differential equations. Examples of the results obtained and a comparison with experimental data are presented. The second code allows to consider two-phase flow phenomena, the way this is achieved, as developed for a flow governed by boundary-layer type equations (parabolic in character), is described. The concluding section discusses possible directions of future research, such as integration of the above methods and inclusion of further physical effects in the calculations.

Research supported by the Science Research Council Grant No. B/FR/1095. A finite difference procedure is used to predict quantitatively the local flow, heat-transfer, and combustion processes inside a three-dimensional can Combustor for the case of swirling and recirculating flow. The procedure involves the solution of 12 simultaneous differential equations with three velocity components, pressure, stagnation enthalpy, fuel-air ratio, mass fraction of unburned fuel, the kinetic energy of turbulence, and three radiation fluxes as dependent variables. The following example is considered: gaseous fuel and air enter separately, additional air is injected both for dilution and film cooling, and the flame tube wall is cooled externally.

A77-17252 The application of advanced turbine cooling technology in the XT701 Engine W. H. Thomas in International Symposium on Air Breathing Engines, 3rd, Munich, West Germany, March 7-12, 1976, Proceedings Cologne, Deutsche Gesellschaft fur Luft- und Raumfahrt, 1976, p 517-534

The focus of this paper is upon the developments which lead to the turbine cooling features found in the S01-M626 and XT701-AD-700 Engine developed for use in the U.S. Army Heavy Lift Helicopter Program (HLH). Specific design features of the XT engine turbine section, as well as the features of the prototype are described.

Computer programs have been developed to analyze the external and internal flow and heat transfer, temperatures, mechanical and thermal stresses, creep and fatigue lives of cooled turbine blades. The programs involved comprise a finite element iteration scheme for solving the steady, compressible cascade flow problem and a finite-difference solution of the two-dimensional compressible boundary layer. A finite element method is used for steady or transient temperature calculations in an arbitrary cross section and an iterative matrix method for solving the stationary, three-dimensional temperature distribution in a cooled turbine blade. The elastic and plastic stresses and the creep life are calculated for prescribed centrifugal, aerodynamic and thermal loads and the combined creep and fatigue life is found using a weighting method.

Existing methods of assessing the low cycle fatigue life of gas turbine components such as disks are based on testing a wide range of specimens, cyclic spinning of actual disks, and service experience. This paper proposes an approach to the estimation of life based on fatigue testing a number of identical simple specimens. The results are analyzed statistically to produce a general description of the LCF behavior of the material. This information is then used as material data in a modified finite element stress analysis program to compute the cumulative probability of failure of any specific component design. The specimen and the fatigue testing machine are described and the results of a preliminary investigation using a titanium alloy are presented and discussed. It is concluded that although further research is required, the proposed method offers considerable promise.

A77-17255 Boundary layer calculation of an effusion cooled turbine blade H Kruse (Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt, Institut fur Luftstrahlantriebe, Cologne, West Germany) In International Symposium on Air Breathing Engines, 3rd, Munich, West Germany, March 7-12, 1976, Proceedings Cologne, Deutsche Gesellschaft fur Luft- und Raumfahrt, 1976, p 585-603 5 refs

Results are presented for an investigation of discrete hole cooling of turbine blades, whereby air is exhausted through small holes distributed either all over the blade surface or over parts of it. Particular attention is given to the influence of pitch to diameter ratio on boundary layer development. A modified mixing-length model is used for calculating the boundary layer, which takes into account the specific condition of discrete hole injection. Introducing an analytical expression with two additional constants as a turbulence model, it is possible to give an overall description of measured boundary layer phenomena with discrete hole injection by a two-dimensional calculation procedure. Blowing of the coolant through distributed discrete holes appears to be more realistic than blowing through porous materials for engine application.

A77-17256 Simple complex method of selection of the main design parameters of turbine stages for engine-designs. A Malek (Vyzkumný a Zkusebni Letecky Ustav, Prague, Czechoslovakia) In International Symposium on Air Breathing Engines, 3rd, Munich, West Germany, March 7-12, 1976, Proceedings Cologne, Deutsche Gesellschaft fur Luft- und Raumfahrt, 1976, p 605-626 10 refs

The paper shows that the preliminary step in the design of high-load aircraft turbine stages must be based on mutual conditions for selection of the basic design parameters of the turbine and the corresponding compressor. Construction of blade rows by means of optimized groups of elementary stages allows effective application of aerodynamically valuable blade cascades which meet strength requirements with proper assumptions for the desired dynamic properties of blades. Necessary information for systematic improvement of design materials can be obtained through optimization of elementary turbine stage groups.

A77-17257 Turbine engine cycle selection procedures J Frederick (USAF, Aero Propulsion Laboratory, Wright Patterson AFB, Ohio), R Sutton (Boeing Aerospace Co, Seattle, Wash), and R Martens (McDonnell Aircraft Co, St Louis, Mo) In International Symposium on Air Breathing Engines, 3rd, Munich, West Germany, March 7-12, 1976, Proceedings Cologne, Deutsche Gesellschaft fur Luft- und Raumfahrt, 1976, p 629-663

A multivariable design method is described whereby subsystems can be properly selected, advanced engine cycles can be examined adequately as they evolve, and insight as to technology leverages and direction for developments can be provided in a timely and cost-effective manner. A systematic procedure for fighter engine and airframe design selection is developed and demonstrated. Three aircraft roles, encompassing sixteen missions, are defined. Tradeoff studies regarding the size and design characteristics of both the engine and the airframe can be successfully achieved.

A77-17258 Pressure ratio optimization criteria in aircraft turbojet-engine design V Quagginetti (Padova, Universita, Padua, Italy) In International Symposium on Air Breathing Engines, 3rd, Munich, West Germany, March 7-12, 1976, Proceedings Cologne, Deutsche Gesellschaft fur Luft- und Raumfahrt, 1976, p 665-683

Optimization criteria are obtained for the pressure ratio in an aircraft turbojet-engine of rectilinear configuration in which the propelling nozzle, the exhaust duct, the turbomachines, the intake duct, and the diffuser are aligned. The symmetric configuration and the essentially rectilinear geometry of the stream suggest a one-dimensional representation as a good approximation. The propulsive efficiency and the thermal efficiency are expressed as functions of the total pressure ratio considered as the most important design parameter. Suitable charts can be plotted as useful tools in guiding the preliminary choice between requirement of low displacement and low weight and requirement of low specific fuel consumption as an ever-impelling factor due to oil crises.

Experience gained in the design of first generation supersonic transport aircraft is applied to the desirable features of advanced supersonic transport (AST) aircraft. The discussion covers engine cycle, intake, nozzle, and control system. AST aircraft mission will be more severe with greater emphasis on environmental considerations. A summary of AST features which will differ from those of the first generation aircraft is given. The intake should give lower cowl drag. The engine is expected to be a bypass engine with duct burning, or a variable cycle engine. Good nozzle design will be even more critical to the project than at present, and the subsonic/supersonic compromise will be slightly altered.
A77-17260
Investigation of the flow pattern at the engine face and methods of the flow pattern simulation at supersonic flight speed D A Ogrodnikov and V A Ianchuk. In International Symposium on Air Breathing Engines, 3rd, Munich, West Germany, March 7-12, 1976, Proceedings, Cologne, Deutsche Gesellschaft fur Luft- und Raumfahrt, 1976, p 703-721

Steady-state distortions and fluctuations of a nonuniform time-dependent fluctuating flowfield at an aircraft engine face at supersonic flight speed affect significantly the engine operational stability. The principal characteristics of this distortion flow and the possibilities of its simulation are examined for a normal shock wave in a model of slightly divergent diffuser duct. The model is provided with transducers for measurement of steady-state distortion flow and total pressure fluctuations in different sections downstream of the terminal shock wave. A similar distortion flow study is performed for a cylindrical duct with a smooth inlet and a spoiler of varying height. Regions are identified where the flow pattern corresponding to the flow downstream of the terminal shock wave may be simulated by means of spoilers with good approximation S D

A77-17262

An account is given of basic principles for the calculation of three-dimensional axisymmetric flows in choked or nonchoked ejectors with internal venting. By means of a correlation between theory and experience, it will be shown that the calculation method requires incorporation of an accurate theoretical determination of the transonic field together with an appropriate thermodynamic formulation of the primary flow (Cp varying continuously) Adaptation of the proposed mathematical model to ejector design is discussed, including analysis of the optimum pattern and geometric dimensioning Soundness of the calculation method is substantiated by comparisons between theory and experience. The feasibility is considered of investigating the compromise between aerodynamics and mechanical design by means of numerical tests in order to reduce wind-tunnel testing (Author)

A77-17264
Variable geometry for high performance aircraft engines J Hournouzakis (Motoren und Turbinen-Union, Munich GmbH, Munich, West Germany) In International Symposium on Air Breathing Engines, 3rd, Munich, West Germany, March 7-12, 1976, Proceedings, Cologne, Deutsche Gesellschaft fur Luft- und Raumfahrt, 1976, p 781-801 10 refs Research supported by the Bundesministerium der Verteidigung

An investigation was carried out to assess the feasibility of variable geometry as an active means of influencing bypass ratio, aiming at improving the adaptability of engine performance characteristics to aircraft requirements. Addition of variable geometry to existing engines and development of new optimized designs were considered. Since some variable components can also have significant effects on spillage and afterbody drag, installed performance was chosen as a basis for comparison. It is shown that active variable geometry offers a significant potential for improving turbofan performance flexibility and component handling by means of rather conventional technologies. Improvement from variable geometry in existing engines is restricted by speed limits and maximum permissible pressure levels in the core engine S D

A77-17265
Crossflow performance of lift-fans in tandem R A Tyler and R G Williamson (National Research Council, Gas Dynamics Laboratory, Ottawa, Canada) In International Symposium on Air Breathing Engines, 3rd, Munich, West Germany, March 7-12, 1976, Proceedings, Cologne, Deutsche Gesellschaft fur Luft- und Raumfahrt, 1976, p 803-832 15 refs

Earlier work on the thrust behavior of isolated fans equipped with cowled intakes in crossflow is extended here to multiple lift-fans in tandem, as in recent designs of V/STOL transport aircraft incorporating wing pods or fuselage-mounted sponsons. The cowled fans are usually gimbal-mounted to allow limited thrust vectoring or inflow distortion control by fan tilting. A V/STOL propulsion tunnel designed for testing the models is described. A sponsor model containing three cowled and tiltable lift-fans in tandem array was operated in crossflow. Tunnel flow breakdown and wall interference effects, shielding effects on inflow distortion from fans operating upstream, and inflow interaction effects were taken into account. The leading fan operates in the manner of an isolated fan, while trailing fans benefit from favorable interaction effects on inflow distortion R D V

A77-17349

Experimental data obtained on aerodynamic noise emitted by a cold subsonic jet is evaluated using the so-called method of causalityThe experiments consisted of hot-wire measurements performed in an anechoic chamber on a jet with a diameter of 20 mm and a velocity of 105 m/s. The measured correlation between far field sound pressure and velocity fluctuations is used to analyze sound source distribution in the Lighthill sense. Attention is given to the behavior of self-noise and shear noise B J

A77-17406
Research in multicyclic and active conol of rotary wings M Kretz (Giravions Dorand, Suresnes, Hauts-de-Seine, France) (European Rotorcraft and Powered Lift Aircraft Forum, University of Southampton, Southampton, England, Sept 22-24, 1975) Vertica, vol 1, no 2, 1976, p 95-103 9 refs

Studies of active control of rotary wings, using an experimental 40-ft d'am jet-flap rotor capable of introducing multicyclic effects to improve the performance and dynamic response of the lifting rotors, are reported. This research was undertaken to find a way to replace the conventional swashplate by using to advantage gains achieved in fly-by-wire and control configured-vehicle developments. Each rotor blade is governed independently by a feedback system with an electrohydraulic actuator. Generalized feedback control of the blades is tested with encouraging results. The design and tested performance of jet-flap rotors and feedback-configured rotors are described R D V

A77-17407
Optimizing the cyclic control response of helicopter rotors M J Young (Delaware, University, Newark, Del.) (European Rotorcraft and Powered Lift Aircraft Forum, University of Southampton, Southampton, England, Sept 22-24, 1975) Vertica, vol 1, no 2, 1976, p 107-112 Grant No DA ARD(O)-31-124-71-G112

The response of a helicopter rotor to cyclic pitch control inputs is examined from the point of view of error analysis and system optimization. The transient deviations of individual blade flapping response from the desired steady state are used as the bases of calculations of a variety of performance indices. These are integral square error (ISE), integral time square error (ITSE), integral absolute error (IAE) and integral time absolute error (ITAE). It is
shown in the case of conventional articulated rotors that Lock number and its influence on the blade aerodynamic effect damping ratio is the decisive parameter in minimizing and hence optimizing the various performance indices. The ideal Lock number is shown to vary between 8 and 12, depending on the performance index selected. The influence of real or virtual offset of the blade flapping hinges in the case of hingeless rotors is then examined for the case of integral square error, and the ideal trade off between blade flapping frequency ratio and flap damping ratio is determined. It is found that the optimum flapping damping ratio increases only slightly with increasing flapping frequency ratio thus making the optimum Lock number vary directly with flapping frequency ratio.

A relatively simple computational model for synthesizing unsteady section aerodynamic effects in theoretical analyses of rotor aerodynamics is constructed on the basis of a physical model for dynamic stall having sufficient generality to be applicable to all airfoils and excitation modes. The model's validity is substantiated by applying it to both static and oscillating airfoils, using both stepwise solution. The theoretical results are compared with test data in terms of the resulting amplitude and phase relations in which the Mach number effect is included for pitch in forward and reverse flow as well as for pure plunging motion. The correlation is found to be good except for the case of reverse flow at high reduced frequency. It is noted that this computational model may be used to predict airflow behavior under conditions that have not been simulated in tests, to predict changes in dynamic behavior resulting from design or operational modifications of the airfoil profile, and particularly to investigate rotor airloads and flight boundaries.

F G M

A77-17409 Handling qualities evaluation of helicopters with different stability and control characteristics H-J Pausder (Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt, Institut fur Flugmechanik, Braunschweig, West Germany) and D Jordan (Messerschmitt-Bolkow-Blohm GmbH, Ottobrunn, West Germany) (European Rotorcraft and Powered Lift Aircraft Forum, University of Southampton, Southampton, England, Sept 22-24, 1975) Vertica, vol 1, no 2, 1976, p 125-134 7 refs

The intention of this paper is to present a discussion of and contribution to the evaluation of handling qualities criteria of helicopters, especially for IFR-flights. For a critical examination of helicopter flight dynamics it is necessary to consider the combination of stability and controllability. Therefore, pilot-in-the-loop methods are used. The existing stability boundaries are considered and compared with results of crossed loop analysis. Root locus-curves and Bode plots in the frequency domain are applied. For a special case, a time history for a gust disturbance is plotted showing the influences of the pilot model.

Dynamic characteristics of helicopter airframes and evaluation of general methods for analyzing helicopter vibration, particularly in relation to the use of normal modes to calculate the forced response of the airframe, are studied. Normal modes of a Wessex helicopter were isolated using multipoint excitation, quantified, and compared to modes calculated by finite element analysis. The airframe was suspended in a normal forward-flight attitude, with backlash minimized with pitch (nose-down) simulated by ballast, and with lumped masses replacing rotors, crew, and standard equipment. A maximum of three exciters was needed for modal purity in all five normal modes up to 21 Hz. Coarse branched-beam analysis adequately represented the first three normal modes.

R D V

The present paper deals with the applicability of ground vibration tests to rotorcraft. Especially new VTOL-concepts require the investigation of rotor whirl-flutter or ground-air-resonance. The design of efficient vibration isolation systems demands a thorough knowledge of natural vibration behavior, supported by proper ground vibration tests. The possible test configurations based on different subsystems are discussed. Experiments on non-rotating subsystems are most attractive. A theory based on such tests takes into account effects of rotor rotation and uses 'modal synthesis' to assess the elastodynamic model. If a complete rotor is used as a subsystem, the classical 'phase resonance' procedure can be modified to obtain 'multi-blade' modes in the test.

The paper examines the role of heat diffusion as an internal noise source in aeroengines and as a source of noise in the mixing of hot jets. A number of model problems are considered, and it is found that the sound induced by unsteady heat transfer can show an unusually weak dependence on the mean flow velocity at low enough velocities, diffusion effects will overwhelm other noise sources, but a significant practical situation cannot be found in which it can be proved that sound generated by diffusion clearly dominates over that excited by unsteady aerodynamic forces, they are sometimes comparable. The possibility that diffusive monopole sources feature in the noise of hot jets is examined using model problems in both linear and non-linear cases. It is concluded that no significant monopole exists when the specific heats are constant. But the specific heats are not constant at low frequencies when, for example, heat flows into and out of vibrational energy modes, then an important monopole source is present. This source shows an unusually complicated scale effect.

A77-17424 Oblique slot blowing into a supersonic laminar boundary layer N Riley (East Anglia University, Norwich, England) Cambridge Philosophical Society, Mathematical Proceedings, vol 80, Nov 1976, p 541-554 10 refs

The behavior of a two dimensional laminar boundary layer in a supersonic flow is considered in the case where air is blown obliquely into the layer from a narrow slot in the boundary. Blowing velocity and slot-width scales are adopted which permit exploitation of Stewartson's (1969) triple deck theory. An analytical solution is derived using small blowing rates on the triple deck scale and linearizing about the profile of the oncoming stream. The solution is completed numerically by relaxing the assumption of small blowing rates and exercising particular care at the slot edges. The calculated pressure distributions and shear stresses indicate that either a compressive or an expansive interaction can occur between the boundary layer and the free stream upstream from the slot, depending on blowing angle.

F G M
A77-17479

There is a need to characterize the thermal response of materials exposed to aircraft fire fuels. Large scale open fire tests are costly and pollute the local environment. This paper describes the construction and operation of a subscale fire test that simulates the heat flux levels and thermochromistry of typical open pool fires. It has been termed the Ames T-3 Test and has been used extensively by NASA since 1969 to observe the behavior of materials exposed to JP-4 fuel fires.

(Author)

A77-17482

Measurements of the density of smoke emission from various nonmetallic materials present in a conventional aircraft passenger seat are reported. The following materials were tested in a sealed smoke chamber: wool fabric, flexible and rigid polyurethane foam, integral-skin polyurethane foam, rigid PVC foam, and conventional plastic material used for panels, dishes, thermoformed shrouds, and other components. The results show that (1) all the materials except flexible polyurethane foam will not comply with proposed FAA smoke density standards; (2) advanced materials which comply with a low-smoke-density standard, such as polycarbonate, should be substituted for wool upholstery fabric, and conventional plastic material, and (3) the smoke density of integral skin foams should be lowered by adding a smoke-density suppressant.

F G M

A77-17483

Particular cases of minicomputers incorporated into ATC systems are cited with an overview of ATC applications for minicomputers. Relative advantages of minicomputers in ATC systems are compared briefly to advantages offered by large computers or by microcomputers. The RAYDARC (Raytheon direct access radar channel) system is described briefly, with its data processing and display functions, and the JCS-1 system derived from RAYDARC and delivered to South Africa is characterized briefly. Detailed measurements of flow fields associated with low-speed turbulent boundary layers have been made for the 17% thick GA(W) 1 airfoil at nominal angles of attack of 10, 14, and 18 deg, Reynolds number 2.2 million, and Mach number 0.13. The data include extensive pressure and velocity surveys of the pre-and post-separated regions on the airfoil and the associated wake. Integrated boundary-layer characteristics, including regions of separatation on the airfoil, are also presented. The results indicate steep gradients of displacement thickness, momentum thickness, shape factor, and the separation streamline from the point of separation to the trailing edge of the airfoil. The present tests reveal that the region of flow reversal terminates within a suprisingly short distance of less than 20% chord downstream from the trailing edge for the test range of angle of attack.

R D V

A77-17484

The metering concept developed for smoother handling of arrivals at airports with congested facilities or with arrivals bunched up at certain times (on the hour or half-hour) is explained, with an illustrative example worked out in detail for a fictitious airport. The desired runway/airport capacity, desired average time or ground speed between the outer fix and the runway threshold, and the desired optimum flight track(s) are three major considerations entertained in the metering approach from the outset. The approach is designed to improve system efficiency via input of dynamic data to flow and sector controllers, recording and supply of data for analysis of delays, reduction of unnecessary delay stemming from ad-hoc flow control or speed restrictions, equalization of delay potential among all arrivals, unreported delays (less than, say, 30 min) and fuel wastage not accountable under present concepts are discussed.

R D V

A77-17494

Attitude instability in steady rolling and roll resonance T Hacker (Institutul de Mecanica a Fluidelor si Constructii Aerospatiale, Bucharest, Rumania) Journal of Aircraft, vol 14, Jan 1977, p 23-31 6 refs

It has been pointed out in an earlier paper that unsatisfactory response characteristics in steady-rolling maneuvers are not necessarily related to divergence in linear approximation, and that it is the aircraft’s angular position that expresses large deviations in the early stages of the maneuver. Two complementary causes of this phenomenon are now considered. It is shown that steady rolling results in unstable angular positions of the aircraft without regard to the value of the rolling velocity. The instability, however, is gentle and not critical by itself, it may nevertheless provide a propitious ground for perturbing actions, particularly the resonance effect. This effect, though apparent only in second-order approximation, induces large deviations of the response in pitch angle in the first 5-10 sec, and is essential in determining unsatisfactory response characteristics. It is shown that the parameters that control attitude instability are the lift curve and particularly the side-force curve slopes. Low values promote the occurrence of a rough resonance affecting the pitch angle at certain rolling velocities which would not develop for some higher values of these parameters. Resonance values of the roll rate mainly depend on the longitudinal and the directional static stability and are higher the greater the static stability.

A77-17496

Experimental investigation of subsonic turbulent separated boundary layers on an airfoil H C Seetharam and W H Wentz, Jr (Wichita State University, Wichita, Kan.) Journal of Aircraft, vol 14, Jan 1977, p 51-55 14 refs Grant No NGR 17 003-021

Detailed measurements of flow fields associated with low-speed turbulent boundary layers have been made for the 17% thick GA(W) 1 airfoil section at nominal angles of attack of 10, 14, and 18 deg, Reynolds number 2.2 million, and Mach number 0.13. The data include extensive pressure and velocity surveys of the pre- and post-separated regions on the airfoil and the associated wake. Integrated boundary-layer characteristics, including regions of separation on the airfoil, are also presented. The results indicate steep gradients of displacement thickness, momentum thickness, shape factor, and the separation streamline from the point of separation to the trailing edge of the airfoil. The present tests reveal that the region of flow reversal terminates within a suprisingly short distance of less than 20% chord downstream from the trailing edge for the test range of angle of attack.

A77-17497

Characterstic wake data for local blade propeller stalling J Rebenot, C Maresca, and D Favier (Aix Marseille I, Universite, Marseille, France) Journal of Aircraft, vol 14, Jan 1977, p 56-59 9 refs

The aim of this experimental program is to show some effects of local blade stalling on wake structure. Measurement of all mean velocity components was carried out in the near wake of a four-bladed propeller by use of a hot-film anemometric probe. In order to observe evolution of the wake structure, four values of the advance ratio are investigated. The two lower values of this ratio correspond to the stalled working conditions of the propeller, and the two upper values are in the vicinity of the maximum propeller efficiency. Some quantitative information about the stall characteristics was obtained from the velocity measurements. The flow separation in the stalled region of the blade decreases both the axial and radial velocity components and increases the rotational speed of the wake. It is found that the stalled region first affected the blade.
A77-17498 // Random vibration peaks in rotorcraft and the
effects of nonuniform gusts G Haonkar (Southern Illinois
University, Edwardsville, III) Journal of Aircraft, vol 14, Jan 1977,
p 68 76 22 refs Research supported by the Southern Illinois
University
The analysis of random blade vibrations is extended (1) to
include the average number of peaks above arbitrary thresholds, and
(2) to the case of both longitudinally and laterally nonuniform or
completely nonuniform longitudinal vibration over the rotor disk. This
extended analysis provides a means of assessing the validity of
uniform and partially nonuniform (nonuniform only in the longi-
dudinal direction) approximate turbulence models and exactly
identifies threshold ranges above which peak distribution functions
(PDF) over one rotor revolution can be approximated by the
statistics of threshold upcrossings. This PDF over one revolution
directly gives the probability that any maxima or peaks in one
revolution are less than or equal to the required thresholds. The
selected problem refers to random flap bending at high advance
ratios. The general turbulence theory includes cross correlation
between inputs from different blade stations. Numerical results
show that average number of threshold upcrossings and
peaks per unit time differ significantly for all values of response
levels and azimuth positions. Consequently, the approximation of
PDF conditional on the occurrence of a peak at any instant by
threshold upcrossing expectations is not satisfactory. Two other
important findings are (1) the effects of nonuniform turbulence are
negligible, and (2) the formulation of approximating the PDF over
one rotor revolution by corresponding threshold crossing statistics is
satisfactory for rotor applications.

A77-17499 * // Measurement of post-separated flowfields on
airfoils H C Seetharam, W H Wentz, Jr, and J K Walker (Wichita
State University, Wichita, Kan) Journal of Aircraft, vol 14, Jan
1977, p 95, 96 5 refs Grant No NGR-17-003-021
A small combination pitch-yaw probe designed to facilitate
measurement of post separated flow fields on airfoils is described,
along with its calibration. A five tube probe is found 'ideally suited'
for separated-flow measurements because of the pitch and yaw angle
information provided in addition to static and total pressures. Wall
proximity effects (in a low-speed tunnel) are described. Procedures
for measurements in flows with small inclinations in pitch and yaw,
for large flow angles, and for scanning flows with large inclinations are
indicated.

A77-17503 // Electrostatics in aviation fuel systems sessions
J B Godown, Jr Institute of Electrical and Electronics Engineers,
Electromagnetic Compatibility Symposium, San Antonio, Tex, Oct
7-9, 1975, Paper 15 p
An analysis is presented of the electrostatic charging charac-
teristic of flowing hydrocarbon jet exhaust emphasizing means and
materials for the retardation of these charges and the elimination of
the dangerous situation which might arise. The clothing study of the
National Bureau of Standards concerning electrostatic charge buildup
on clothing materials to be worn by fuel handlers is reviewed,
indicating that a 50% cotton 50% polyester blend is the safest
material. In addition, an EXXON AF fuel system study has found
that special precautions must be taken following the installation of
new filter separator elements or inspections of existing elements to
prevent ignition of fuel air vapors during initial filling of the vessel.
Attention is also given to new grounding criteria for RR tank cars
and truck fillstand assembly.

A77-17510 // Stainless steels and alloys in air and space-
craft L Sanderson Aircraft Engineering, vol 48, Dec 1976, p 24 32
Modern classes of stainless steels used in the aircraft and
aerospace industries are described, and characteristics and applica-
tions of special stainless steels are summarized. Techniques for
producing high strength corrosion-resistant steels are discussed, in
cluding vacuum induction melting and arc refining, electroslag
resmelting, and argon-oxygen steel decarburization. Age hardened
and austenitic alloys for naval aircraft, various fasteners and liners,
space shuttle engines, and high-temperature service are evaluated.
Cost factors involved in choosing the correct steel for a specific
purpose are noted, and various tests are suggested for finished
products.

A77-17532 // The application of microprocessors to the
control of small /helicopters/ gas turbines A Sharpe (Hawker
Siddeley Dynamics Engineering, Ltd, Hatfield, Herts, England) In
Electronic micromechanical interactions, Workshop on Electronics
and Microtechnology, Ecole Polytechnique Federale de Lausanne,
Lausanne, Switzerland, Oct 19-21, 1976, Proceedings (Inter-
actions electronique micromechanique, Jornnees d’Electronique et de
Microtechnique, Ecole Polytechnique Federale de Lausanne,
Lausanne, Switzerland, October 19-21, 1976, Comptes Rendus)
Workshop sponsored by the Association Suisse des Electrioncis,
Association Suisse de Microtechnique, Ecole Polytechnique Federale
de Lausanne, Groupement de l’Electronique de Suisse Occidentale,
and IEEE Lausanne, Ecole Polytechnique Federale de Lausanne,
1976, p 177 188
Development and testing of a microprocessor based fuel control
system for a specific small gas turbine designed as power and
propulsion unit for helicopters are described. Modifications of the
control system for the application, hardware added to the system,
dedicated software, and propulsion plant functions responding to
analog and digital control inputs are discussed. Real-time program
timing, and techniques for improving the dynamic range and
resolution of signals for internal variables, are discussed. (speed of
power turbine and engine, error accumulation and lag) Test bed
trials are sketched. Since gas turbine control tasks take up little more
than half the microprocessor capacity, additional tasks are proposed
for the available spare capacity.

A77 17534 •; A combined cycle with a partial-oxidation
reactor (Cycle combine avec reacteur a oxydation partielle du
combustible) J Risse, A Jaumotte Entropie, vol 12, no 70,
1976, p 15 18 In French
A combination of power generator and lean fuel gas generator is
realized by replacing the combustion chamber of a gas turbine with a
reactor featuring partial oxidation of the fuel. The lean fuel gas lends
itself to use in the boiler of a conventional steam cycle. The
combined cycle makes it possible to raise the output of a
conventional steam power plant with some boiler redesign. The cost
of installation per kW generated is low. The catalytic oxidation gas
turbine system is recommended for judicious combination with other
industrial facilities, furnaces in particular. Extension of the method
to other fuels is also recommended.
A77-17536 Functional representation of the kinematic properties of two-dimensional blade cascades (Repräsentation funktioneller Eigenschaften der profilten cinématiques des grilles d’aubes planes) R. Rey (Ecole Nationale Superieure d’Arts et Metiers, Paris, France) *Entropie*, vol 12, no 70, 1976, p 25-30 9 refs In French

Ruden has superimposed two flows in an ideal fluid and shown that the tangent lines to the exit angle and the entry angle of a two-dimensional blade cascade are associated by a linear relation whose two parameters are dependent on the keying angle of the profiles and the thickening and shape of the profiles. This paper demonstrates on the basis of experiments conducted on NACA airfoils that a universal law can be formulated for one of the two parameters in question, namely that it is not dependent on the profile shape, but only on thickening. It is also shown that two tests are sufficient for giving a more exact value of the second parameter as a function of the keying angle.

B J

A77-17548 Foundations of aerodynamics (Bases of aerodynamic design) / 3rd edition/ A M Kuehle (Michigan University, Ann Arbor, Mich.) and C Y Chow (Colorado University, Boulder, Colo.) New York, John Wiley and Sons, 1976, 539 p 192 refs $21.95

This textbook deals with fundamental concepts of aerodynamic design applicable to both aircraft and fluid machinery in general. First principles of hydrostatics and aerodynamics are reviewed along with the kinematics and dynamics of incompressible, compressible, and viscous fluid flows. The source method of source, vortex, and doublet panels for analyzing incompressible flows about bodies of arbitrary shape is outlined. Analyses of flow about a circular cylinder and an airfoil (including NASA’s supercritical airfoil) are described in detail, and it is shown how the panel method can be applied to design a wing-fuselage configuration. Other topics include the formation and characteristics of shock waves in two and three dimensions, the Prandtl-Glauert method for determining characteristics of subsonic and supersonic flows, wave drag, laminar boundary layers in compressible and incompressible flows, conditions governing stability and the transition to turbulent flow, separation of laminar and turbulent boundary layers, and boundary-layer control for low drag and high lift.

F G M

A77-17554 Superplastic forming of titanium alloys (Superplastische Verformung von Titanlegierungen) C A J Gay and J Payne *Metall*, vol 30, Dec 1976, p 1203-1205 In German

The forming of metals in the superplastic condition can be compared with glassblowing. The advantages of superplastic forming techniques for design and manufacturing are examined, taking into account possibilities concerning the use of the new technology for the forming of titanium alloy components for civil and military aviation. It is shown that superplastic forming is competitive with conventional procedures. Attention is given to development problems and applications of superplastic forming in the production of components for current and future aircraft.

G R

A77-17751 Instability phenomena in the flow passages of a gas turbine engine compressor (Istabilnaya neustoichivost’ v prototichnykh polotkakh kompressora) A I Belousov, I P Tokarev, and D E Chegodaev *Aviatsionnaya Tekhnika*, vol 19, no 3, 1976, p 410-5 refs In Russian

Loss of stability of the dynamic system comprising the rotor disk and the flow passages of a compressor stage is pinpointed as a likely reason for the generation of dangerous vibrations and resonances leading to fractures and flaws in protruding rotor parts. Introduction of split rings often proves ineffective, but redesign of labyrinth seal passages and axial clearance can eliminate some self-sustained vibrations. The compressor stage can be treated as a gas thrust bearing. Coping with vibrations by altering the clearances in the labyrinth or in the shaft-end area is examined. The range of measurements of dimensions of labyrinth seal passages and axial clearances of the stage, available for conforming to unstable rotor disk positions, is ascertained.

R D V

Experiments designed to find the coefficient of heat transfer from the gas to the turbine blade surface in effusion cooling are described. A U-tube of rectangular cross section for static blowdown of a planar turbine cascade was devised for the tests. Hot air served as the working fluid and purified air as the heat-transfer medium. Porous effusion cooling brings the temperature of the gas-turbine blades down effectively. Data acquired from experiments run on different cascades using different materials will be analyzed in order to arrive at inferences on cooling methods needed.

R D V

A77-17760 Comparison of energy performance of different types of heat exchangers (Sopostavlenie energeticheskoi effektivnosti teploobmennikov razlichnykh typov) N V Lokai *Aviatsionnaya Tekhnika*, vol 19, no 3, 1976, p 60-65 In Russian

Thermal losses, hydraulic losses, and leakage of working fluid in recuperators, regenerative heat exchangers (rotating or nonrotating), and other types of heat exchangers are examined in a comparison of the efficiency of these exchanger types. The energy efficiency of the heat exchanger is viewed as a parameter similar to efficiencies for other gas turbine engine subsystems such as turbine or compressor. Formulas for calculating heat exchanger energy efficiency are derived, and the usefulness of the method is assessed in optimization of heat exchanger design or selection.

R D V

A77-17761 Optimum distribution of material in rotating disks found from strength conditions (Optimal’noe raspredelenie materiala vo vrahchausheshikh diskah iz uslovi prochnosti) V P Malkov and E A Salganskaya *Aviatsionnaya Tekhnika*, vol 19, no 3, 1976, p 66-71 8 refs In Russian

A procedure for finding the optimum distribution of material in rotating disks of gas turbine engine rotors in the sense of meeting strength requirements and coping with stresses generated by centrifugal forces associated with the mass of the rotor disk and the blades fastened to it, and thermal stresses, is worked out. The characteristics of the rotor disk material are assumed to vary with temperature and disk radius in nonlinear fashion, and a stationary temperature field is assumed. An iterative method is developed for discrete elements of equal strength constituting the disk. Breaking up the disk into discrete annuli and the method of forces are employed in the direct computations.

R D V

A77-17762 Theoretical aspects of optimization of aviation gas turbine engine design variables (Teoreticheskie voprosy optimiz-

The paper investigates the effect of angular velocity of rotation about the longitudinal axis on dynamic stability of a slender elastic body with an elastic hinge in the middle, situated in a supersonic flow of an ideal gas. On the regular motions of the body are superimposed small unsteady motions. The system of differential equations of motion is written with account for the elastic, Coriolis, inertial, and aerodynamic forces, and for section rotary inertia and gyroscopic moments. Slender body theory is invoked, and the equations are solved approximately by the Bubnov method. For a body of constant cross section performing steady harmonic oscillations, it is found that the critical flutter velocity decreases with increasing angular velocity of rotation.

The motion of a curvilinear unrestrained elastic rod is studied. The posed boundary value problem is solved by the Fourier method. A technique is given for determining the eigenmodes and eigenvalues. Analytic relations for a specific example are obtained which make it possible to determine the motion of the subject rod.

We examine the question of optimizing gas turbine engine tests. In the control stage we use all the information accumulated in the process of sequential corrections of the object states. Trimming of the engine characteristics is accomplished by linear programming under the assumption of linear connection between small parameter deviations and regulating element displacements. The described technique was used in conducting gas turbine engine tests, and the results are presented graphically.

We examine the problem of analyzing and evaluating the effectiveness of the automated gas turbine engine test system (ATS). Joint solution of the systems of equations obtained previously by the present authors (1975) for describing the ATS state probabilities makes it possible to obtain the basic ATS characteristics. A numerical example is used to illustrate the problem of optimizing the number of engines simultaneously serviced by a given ATS.

The paper is devoted to numerical solution of the closed system of matrix differential equations obtained by Vakhitov and Larionov (1974 and 1975) for small-aspect ratio wing analysis using a discrete continuous calculation scheme. The solution is obtained with the aid of integrating matrices after the differential equations are transformed into integrodifferential form. The solution is in the form of matrix equations in the sought for unknowns at the design sections.

A77-17960 Development of method for modification of turbojet engine operating in a cycle with stepwise heat removal (Analiz parametrov i charakteristik DTRD, rabotaushchih po tsiklu so stupenchatym otvodom tepla) B Kh Perel'shtein Aviatsionnaya Tekhnika, vol 19, no 3, 1976, p 9-14 8 refs In Russian

A77-17959 Analysis of parameters and characteristics of a bypass turbojet engine operating in a cycle with stepwise heat removal (Analiz parametrov i charakteristik DTRD, rabotaushchih po tsiklu so stupenchatym otvodom tepla) B Kh Perel'shtein Aviatsionnaya Tekhnika, vol 19, no 3, 1976, p 33-39 8 refs In Russian

The paper is devoted to numerical solution of the closed system of matrix differential equations obtained by Vakhitov and Larionov (1974 and 1975) for small-aspect ratio wing analysis using a discrete continuous calculation scheme. The solution is obtained with the aid of integrating matrices after the differential equations are transformed into integrodifferential form. The solution is in the form of matrix equations in the sought for unknowns at the design sections.

A77-17953 Use of discrete-continuous calculation schemes for numerical solution of the closed system of matrix differential equations obtained by Vakhitov and Larionov (1974 and 1975) for small-aspect ratio wing analysis using a discrete continuous calculation scheme. The solution is obtained with the aid of integrating matrices after the differential equations are transformed into integrodifferential form. The solution is in the form of matrix equations in the sought for unknowns at the design sections.
Ideal gas flow around slender blunt bodies of revolution with shock waves similar to the parabolic shock waves of strong blast theory are described by power-law polynomials. The coordinate deformation method is used in solving the basic gasdynamic equation and determining the uniformly-exact values of the flow parameters at the body surface.

Results are presented of an experimental study of the mechanism of stabilization of the position of the 'breakdown point' of the vortices which form at the leading edge of a delta wing, beginning from breakdown initiation. The experiments were made on three delta wing models of different sweep. The results can be used in analysing the unsteady phenomena which develop on delta wings in the takeoff and landing regimes.

The paper examines the problem of determining the stress-strain state of thin wall stiffened wing type structures on the basis of Odnokov's theory. The structure is assumed to be broken down into cells. Cell coupling equations are obtained which have quasi-3D tridiagonal structure and can be easily solved by the matrix pivoting method. Simple matrix formulas are presented for the coefficients of the governing system of equations. The multiply connected cross section is considered a linearized directed graph.

Calculations are made of flow of an ideal gas with adiabatic exponent 1.67 in a converging conical channel with sharp leading edge by the through-the-shock calculation method for approaching flow. Mach numbers M = 5, 10, 15, 20, 25, 30 for three fixed values of a hypersonic similarity criterion. It is shown that hypersonic similarity theory is valid for internal gas flow in such a channel with a system of oblique shocks present in the flow. The error of similarity law satisfaction does not exceed 5% if the local Mach numbers in the channel are larger than four.

In the present article an attempt is made to broaden analytically the region of application of the results of the Miele-Saars problem on the transverse contour of minimal resistance to thicker bodies by introducing a new quadratic term into the functional being minimized. This term accounts for the weak nonlinearity of the problem. New quantitative relations are obtained for the drag coefficients, and the numerical bounds for the minimal drag body cross section radii are broadened.

A supersonic wedge-shaped airfoil moving in an ideal gas at rest is examined, assuming that a supersonic shock front of arbitrary intensity impinges on the edge of the airfoil and that the angle formed by the plane of the shock and the symmetry plane of the airfoil is close to a right angle. The wedge half-angle is a small parameter of the problem. The diffraction of the shock is complicated by irregular interaction of the shock with a plane pressure jump generated by the flow about the wedge. The disturbance of the pressure along the front exhibits a singularity, which leads to a boundary value problem. The solution of this problem yields the pressure disturbances at the wall and along the front, as well as the shape of the front (expressed in elementary functions).

The present state of American commercial aviation technology is critically examined, taking into account the Anglo French development of the Concorde. It is concluded that the US leadership in this field has been lost. It is pointed out that the next five years, or perhaps only two years, will determine what kind of air transport system the US will have for the next 25 years. A number of specific recommendations are made. Attention is given to the development of a second generation of supersonic transport which will meet noise and air pollution objectives, the design of subsonic aircraft that will satisfy noise regulations and the development of aircraft which can replace the 127, DC-8, DC-10, and 747.

Approaches for overcoming financing difficulties are also considered.

The origin of modern computer technology can be traced to the analytical engine concept evolved by Babbage. A revolutionary development occurred in the 1930s with the development of electromechanical digital machines using binary arithmetic. Further advances came with the replacement of relays by vacuum tubes and finally with the use of transistors and integrated circuits in computer technology. Applications of the computing devices in the field of aerospace are considered, taking into account devices for aircraft simulation and pilot training, the solution of air-defense problems, and an employment in air traffic control operations. It is pointed out that modern, light weight, reliable computer capabilities are now integral to nearly all modern high performance aircraft systems and essential to space systems.

Relative advantages of digital and analog techniques and equipment are compared and the importance of IC and microprocessors in on-board systems is emphasized, as well as programmability even in highly dedicated systems because of the inherent fast and inexpensive redesign capability. Further advances are anticipated in digitalized simplification of on-board switchgear and interconnections of aircraft systems. Software problems are considered broadly, with attention given to software-compatible computer architecture, software management difficulties, structured programming, and advantages of higher-level programming languages.

The role of computers in holding rising costs down, while...
improving efficiency, productivity, and safety, in civilian aviation is explored. Uses of computers in ATC, on board flight operations, airline and airport services, and weather forecasting are sketched, and the satellite-based CONUS ATC now under study is mentioned. ATC systems discussed include UG3RD, MSAWS (minimum safe altitude warning system), BUJEC (backup emergency communication), DARCOM (direct access radio channel), DABS (discrete address beacon), and ICP (intermittent position control). On-board navigation and flight operations data processing and display systems of several types are mentioned: CADC (central air data computer), RIANAVA area navigation, CHWS (cockpit hazard warning), ACT (active control technology), and CAS (collision avoidance).

Spring landing gear legs offer simplicity, durability, low cost, and low drag. However, those constructed of solid spring steel are structurally inefficient and thus excessively heavy. By means of selective reinforcement with advanced composites, a large weight saving can be realized with the application of a small amount of material. A computer program was developed to analyze a landing gear leg consisting of an aluminum core stiffened with graphite/epoxy. A half-scale model for an existing aircraft was designed and fabricated. Tests were performed to determine spring, deflections, and stresses. A significant savings in weight was achieved.

Aerodynamic drag on long haul passenger buses (specifically the common MC 7 coach) at flow speeds scalable to typical highway cruising speeds are investigated, using 15 front end configuration models in a wind tunnel. Reduction of fuel consumption via reduction of drag and turbulence with the aid of aerodynamic add-on devices (inflicting no penalties in costs or added total bus length) is studied. Turbulence under the bus is a persistent problem. Rear-end modifications and turning vanes failed to reduce drag. Three front-end modifications show promise and are being tested further. "Top bonnet," "full mask," and "lip removed" configurations. Fuel savings of $834 per bus annually are anticipated if drag can be cut 21% (resulting in 10% reduction in fuel consumption at 55 mph).

A77-18233 Flutter analysis of a cascade of rotor blades G P White (Texas A & M University, College Station, Tex.) American Institute of Aeronautics and Astronautics, Annual Meeting and Technical Display Incorporating the Forum on the Future of Air Transportation, 13th, Washington, D.C., Jan 10-13, 1977, Paper 77-308 8 p 10 refs Grant No AF-AFOSR-74-72008

A classical two-dimensional, bending-torsion flutter analysis of a reference airfoil in a cascade of infinite blades is performed. The unsteady airloads on the reference airfoil are predicted using a numerical lifting-surface theory. Several cascade and flow parameters such as interblade spacing, stagger angle, phase angle between blades, Mach number, and frequency are investigated. The bending torsion flutter speed of the cascaded reference airfoil is studied as a function of the cascade and flow parameters, and the results are compared with that of an isolated airfoil.

A77-18242 Incompressible flow over delta wings J K Nathman (Texas A & M University, College Station, Tex.) American Institute of Aeronautics and Astronautics, Annual Meeting and Technical Display Incorporating the Forum on the Future of Air Transportation, 13th, Washington, D.C., Jan 10-13, 1977, Paper 77-320 13 p 26 refs Navy supported research

The analysis of delta wings in incompressible flow is treated by a numerical lifting-surface theory based upon a velocity potential formulation. This theory has been expanded to include spanwise velocity effects and the leading-edge separation associated with delta wings. The numerical technique has made use of both fixed and free wakes. In the fixed wake model, the analytical results of Brown and Michael (1955) have been used to position the leading-edge vortex. In the more refined free wake model, the leading-edge separation was modeled as a discrete number of vortices attached to the leading-edge, which are allowed to align themselves with streamlines. The iteratively determined position of these vortices resembles the experimentally observed spiral form, while computed lift coefficients reflect the added vortex lift.

Use of sophisticated simulator systems for real-time interactive training of flight crews in projected combat environments is envisaged, beyond the traditional use of simulators as a cheap substitute for training aircraft and to cut costs (in fuel, training, aircraft use). Simulator training of crews in flight control, sensor and ECM operation and interpretation, air combat maneuvering, and tactical decision making is discussed at length. The short time available for "on-the-job training" in a common mission environment in future war scenarios is pointed out, and advances in simulation technology and representation of sensory and visceral cues are noted. Current and future simulator technology brings simulation fidelity to the point where the main constraints are imposed by accuracy of knowledge about hostile capabilities and about the mission environment.

The concept of the "hybrid" envisions a vehicle that flies by combining the aerostatic lift of its helium with aerodynamic lift generated by movement through the air. A use of hybrids makes it possible to conduct airship operations at considerably higher altitudes and speeds. In connection with the possibilities regarding a rebirth of the airship provided by new technological advances, an investigation is conducted concerning the history of the airship, taking into account the lessons which can be learned from the past for the new developments.

Three promising modern airship system concepts and their associated missions were studied: (1) a heavy-lift airship, employing a nonrigid hull and a significant amount of rotor lift, used for short-range transporting and positioning of heavy military and civil payloads; (2) a VTOL (vertical take-off and landing), metal-clad, partially buoyant airship used as a short-haul commercial transport; (3) a fully-buoyant airship used for long-endurance Navy missions.
The heavy-lift airship concept offers a dramatic increase in vertical lift capability over existing systems at significantly lower costs per ton-mile. The VTOL airship transport concept appears to be economically competitive with other VTOL aircraft concepts but can attain significantly lower noise levels. The fully-buoyant airship concept can provide an airborn platform with long endurance that satisfies man Navy mission requirements.

Early airline experience in the 1930's is discussed along with the achievements of civil air transportation during the 1940's and 1950's. Attention is given to the evolution of U S airline aircraft, DC-3 problems, the DC-4 aircraft, the development of an operational cost formula, the stabilized approach system for pilot training, pressurized cabin aircraft, turbine engine potentials, studies for the development of an aircraft with transcontinental nonstop capabilities and a reasonable payload, the jet competition in the U S, aspects of engineering cooperation, professional societies and committee work, energy requirements, airline fuel specifications, questions of productivity, revenue-cost relations, the importance of timing, and future developments.

A77-18265 // Drive mechanisms of flight vehicle control systems Analysis and design Handbook (Mekhanizmy prvodov sistem upravlenia letatel'nymi apparatami Raschet i proektirovanie Spravochnik) M N Shudikov Moscow, Izdatel'stvo Mashinostroenie, 1975 384 p 101 refs In Russian

Essential data, specifications, and computational formulas for the design of the drive and transmission mechanisms of flight vehicle control systems are given in handbook form. The properties of materials used in the production of the components of aircraft servos and control systems are tabulated. Methods for calculating the precision of mechanisms and parts are set forth. Data on tolerance limits, surface roughness, and form deviations are given. Design characteristics and specifications are given for screw joints, hinge-screw mechanisms, cotter joints, tooth and pin joints, gear transmissions, wave gears, worm gears, shafts, and bearing joints.

Recent interest in occupant safety has given the impetus for much research into the energy absorbing potential of metal structures in the automotive and light aircraft industries. Lightweight sheet metal constructions are not, by nature, particularly amenable to simple collapse analysis procedures using the well known limit theorems of plasticity because of the occurrence of local buckling. This paper describes a computer analysis particularly designed to deal with this situation. Compound beam-spring elements are introduced which are capable of describing the reduction in moment of resistance typical of thin-walled members after bending failure has occurred. Geometrical nonlinearities arising from gross distortions are also accounted for. A number of laboratory test results are presented to demonstrate the validity of the program.

A77-18467 // Forecasting the elastic properties of composites reinforced by discrete fibers (Prognozuvannia pruzhnikh vlastnostei kompozitov, zmontenikh diskretnymi voloknami) L P Khoroshun and B P Maslov Akademiai Nauk Ukrainskoi RSR, Visnik, vol 40, Oct 1976, p 21-28 7 refs In Ukrainian

Techniques for forecasting the macroscopic properties of composite materials reinforced with oriented discrete fibers, are described as developed at the Institute of Mechanics of the Ukrainian SSR Academy of Sciences. The work is based on stochastic differential and integral equations of elasticity theory. Tensors of macroscopic constants and the method of conditional moment functions, fluctuations of displacements and of the strain tensor, tensors of up to fourth rank, and media exhibiting transversal isotropic symmetry are discussed, along with applications of the computability equations. The importance of the problem for turbine design and airframe design is pointed out.

A77-18472 // Concorde and the climate (Concorde et le climat) J Bensimon and B DeHove (Symposium de I'Ozone Atmospherique, Dresden, East Germany, Aug 9-17, 1976) L'Aeronautique et l'Astronautique, no 61, 1976, p 17-23 17 refs In French

A one-dimensional thermal model is described for evaluating the climatic effect of various perturbations in stratospheric concentrations of ozone, water vapor, and aerosols. Calculations show that a fleet of 2,000 Concordes would have only a slight effect on the ground level temperature, and the effect of 200 aircraft would be probably insignificant.

A77-18503 // Synthesis of an automatic aircraft control system (Sintez na sistema za avtomatichno upravlenie na letatelen aparat) B Danev and A Kukleva (B'garska Akademia na Naukite, Institut po Tekhnicheska Kibernetika, Sofia, Bulgaria) Problemi na Tekhnicheskata Kibernetika, no 4, 1976, p 53 61 7 refs In Bulgarian

Four distinct approaches are developed for synthesis of an automatic aircraft control system obeying proportional and proportional integral control laws. Control by a state coordinate, synthesis based on assigned poles, optimal synthesis based on models with an optimality criterion, and synthesis of a control system with a proportional control law for the state coordinate and an integral control law for the initial coordinate are considered. Standard programs are compiled, with a program pack run on an ICL-4 50 computer, and results are presented in tabular form.

A77-18545 // Progress in surface finishing and coatings (Progres en traitements et revêtements de surface) R Chevalier (SNECMA, Paris, France) Sciences et Techniques, Dec 1976, p 55 59 In French

Shotpeening, electrochemical/electolytic deposition techniques, metallizing, plasma spraying, paints, and thermochemical diffusion techniques for enhancing the resistance of metal surfaces to wear, friction, fatigue, or stress corrosion are reviewed. Aerospace applications of programmed shotpeening, plasma spray coating, paints with inorganic binders, diffused Ni-Cd coats and anticorrosion anodizing, and shotpeening combined with hard chromizing or hard nickelizing are mentioned. New techniques discussed include multipeening, peening with T-glass shot, a French technique for hard anodizing of Al alloys using a sinusoidal electrolytic current, electrolytic cadmium plating of Concorde landing gear components, application of coats and plating outside of a bath, new casehardening/nitriding techniques for superalloys, and cyaniding treatments to forestall stress corrosion. Advantages and drawbacks of the techniques are weighed.
The velocities, temperatures, equivalence ratios, and the concentrations of oxygen and nitric oxide, as well as the axial profile of combustion efficiency were predicted numerically. This suggests the usefulness of the present model in examining the roles of various parameters in the formation process of nitric oxide. Its capacity in predicting the blowout behaviors of combustors was also noted.

(Author)

A77-18724 Ride control for high speed ground transportation including passenger-seat dynamics and active aerodynamic suspensions N S Nathoo, R O Stearman, A J Healey (Texas, University, Austin, Tex.), and B G Shanahan (Texas, University, Austin, Tex., McDonnell Douglas Corp., Huntington Beach, Calif.) High Speed Ground Transportation Journal, vol 10, Fall 1976, p 297-315 11 refs Research supported by the University of Texas. The feasibility of controlling high speed ground transportation systems responses through the use of active suspension systems in the form of lifting surfaces is studied. Aerodynamically three-dimensional canards are employed to control the pitch and plunge steady-state response of the vehicle and passengers to harmonic gust and excitations. In addition to the model of an air cushion vehicle, a man-seat model is also investigated into the aspect of the vehicle and passenger response has been studied by assuming various control schemes and a parameter optimization technique. A second method to suppress acceleration levels of the vehicle via optimal control theory has also been investigated. Vehicle response at a speed of 300 miles per hour is compared with railway comfort criteria and the ISO riding comfort standards. Except for the actively controlled cases, all results indicate that an uncomfortable ride would result from the vehicle's response. The proposed actively controlled suspension provides a safe and comfortable passenger environment.

(Author)

A77-18725 The automatic navigator M Hirst Flight International, vol 111, Jan 8, 1977, p 67-70 A brief didactic review is presented of onboard navigation equipment from NDB (nondirectional beacon) and VOR (VHF omnidirectional range) to the present RNAV (area navigation) computerized systems DVOR (Doppler VOR), DME (distance-measuring equipment), Loran (long range navigation), INS (inertial navigation), Omega, and VLF navigation aids systems are characterized briefly. Costs and effectiveness are compared for Omega and VLF nav aids against triple majority vote INS. The MNPS (minimum navigational performance specifications) and supplanting of Loran A are discussed. Possible gains in low cost and simplicity for INS, and future advantages of satellite aided navigation, are mentioned.

(Author)

Acoustic emission source location techniques were successfully used on a production-size aircraft wing fatigue test article to monitor crack growths in the range from 0.25 mm to 1.6 mm per load cycle. The AE data showed good correlation with the crack length data. The feasibility of controlling AE monitoring has been attempted for determining crack length over this range of crack growth rates. The fatigue test article was constructed of 7075-T6511 aluminum alloy. The test period lasted 14 days and the results demonstrated that AE has application to aircraft structures.

(Author)

With application to film cooling of turbine blades, experimental investigations are made of the blowing characteristics of a single hole in a circular cylinder in cross flow, and of film cooling with injection from rows of holes located near the leading edge of a flat plate model with a flat nose, and of the change in the flow pattern of the injected flow around the model by a visualization technique. It is concluded that the flow rate coefficient of an ejection hole varies under the influence of the main flow, that the film cooling effectiveness downstream of rows of blowing holes is sometimes lowered by excessive injection, and that the inclination of ejection holes in the spanwise direction shows very high cooling effectiveness.

(Author)

A77-18647 Emissions from gas turbine combustors II - Analytical model and numerical analysis, Y Mizutani and M Katsuki (Osaka University, Souta, Japan) JSME, Bulletin, vol 19, Nov 1976, p 1360-1366 16 refs

An axisymmetrical, two-dimensional model of gas turbine combustors of can-type has been developed in which both turbulent diffusion and chemical reactions of finite rate are taken into account simultaneously. On the basis of this model, the distribution maps of the combustion process are obtained numerically. The distribution maps of diffusion and chemical reactions of finite rate are taken into account.

(Author)
The structure and avionics of various Hawkeye system models are presented in detail, along with use of the aircraft in maneuvers and in the Vietnam war theater. The history of the present E-2A and E-2C systems is traced from the earlier Guardian and Tracker variants, and ATDS (airborne tactical data system) is traced from the U.S. Navy AEW (airborne early warning). Detection avionics, data links, various passive detection and radar processing systems, the OL-77/ASQ central radar data processor, features of displays, the CAINS (carrier aircraft inertial navigation system), and other hardware are described. A cutaway detail drawing of the E-2C Hawkeye is presented. Hawkeye service on station and in loitering in the Vietnam area, and the combined E-2C + F-14A recon/fighter team and its performance, are discussed. R D V

A77-18879 Prediction of aerodynamic out-of-plane forces on ogive-nosed circular cylinders P. L. Lamont and B. L. Hunt (Bristol, University, Bristol, England) *Journal of Spacecraft and Rockets*, vol 14, Jan 1977, p 384-441, 15 refs.

This paper describes an empirical method for predicting the aerodynamic out-of-plane forces and moments on ogive-nosed cylindrical bodies with tangent ogive noses. The method is derived from experimentally determined distributions of out-of-plane force over the cylindrical body. It is applicable to incompressible flow conditions and is based mainly on experimental results where the boundary layer over the body was laminar at separation. An examination of the available experimental data on overall out-of-plane forces and moments suggests that some of this data may have been affected by a form of unsteadiness which is determined by the test facility. The predictions of the present method show good agreement with the limited amount of experimental data which is considered to have general significance. (Author)

Field failure data collected over a span of 7 years for airborne air turbine starters (ATS), which are used to start jet engines in aircraft, offer an opportunity for analysis and determination of reliability parameters. This paper presents (a) changes in ATS equipment MTBF by year, (b) breakdown of removal causes by year, and (c) COF of failure times. (Author)

A77-18960 Analysis of the climbing characteristics of subsonic jet aircraft (Stegfluganalyse subsonischer Strahlflugzeuge) W. Fohrer Munchen, Technische Universitat, Fachbereich Maschinennweisen, Dr.-Ing. Dissertation, 1976, 35 p, 10 refs. In German.

Calculations are conducted concerning the time of climb of subsonic aircraft. The calculations are based on an employment of analytical approximate approaches concerning the relations for the maximum rate of ascent. It is the objective of the reported investigation to find a single analytical relation which can be used as a basis for obtaining satisfactory results in the case of aircraft ascent to arbitrary altitudes, taking into account the whole spectrum of subsonic aircraft types. The equations of motion are greatly simplified to make an analytical calculation of the rate of climb as a function of aircraft parameter data possible. The results obtained with the aid of the described approach are found to be very accurate. G R

Prospects for introduction of advanced technology and increased sales of aircraft in the future are discussed, with emphasis on subsonic conventional aircraft. World service fleet requirements predictions are put forth, historical trends in the civil aircraft development picture and market are reviewed, along with fares and earnings, payload/weight ratios, fuel prices, and direct operating costs, and their interactions. Advances in materials, active control, wing design and reduced wing weight, ATC improvements, fuel efficiency, and their effects on costs and efficiency in airline and airport operation are assessed, along with aircraft and airport noise abatement. A substantial market for new aircraft, even if only to replace aircraft retired from service on a time basis, is predicted for the decade ahead. R D V

Exhaust noise, turbine noise, fan noise, and their aeracoustic interactions, are discussed, with emphasis on noise generated by subsonic engines and its abatement. The authors see a trend toward lower specific thrust for engines, with a revival of propeller use for some short-range applications, along with some improvements in aeroacoustic technology and combustion cycles which should enable 10% noise reduction over the next 15 years. Tradecrafts, likely in mechanical efficiency, fuel conservation, installation weight, cost, and drag reduction are considered. Problems in eliminating ground proximity effects in testing fly-over noise are mentioned. Noise absorbing materials and structures are discussed briefly. R D V

A77-19016 The analytical geometry of a simple skew-hinge mechanism F. M. Burrows (North Wales, University College, Bangor, Wales) *Aeronautical Journal*, vol 80, Nov 1976, p 487-488.

The kinematics and analytical geometry of the simple skew-hinge mechanism are outlined briefly. The device is similar in its kinematics and geometry to the familiar Z-crank. Its use is recommended for handling of relatively small loads in control surface actuating systems, and for installation in regions of shallow depth such as aircraft wings. Operation is 'approximately linear' over a significant range. R D V

A modal control approach developed by Porter and Crossley (1968) for lumped-parameter systems with one or several inputs is presented with an application to stabilization of helicopter flight. Single-input and multi-input systems are discussed separately. Computer algorithms for rotorcraft flight stabilization are worked out, with straightforward algebraic operations so that they are sparing in computer time. Extension of the method to all unstable states of
rotocraft flight presents no great difficulties, and the method can be extended to other applications outside of aviation R D V

A77-19176 The seat belt light is on H E Tolle (United Air Lines, Inc, Chicago, Ill) Exxon Air World, vol 29, no 1, 1976, p 59

Future trends affecting growth and revenues of the airline industry are projected with consideration of factors governing passenger travel demand, the profit picture, competition, political constraints, and fuel costs Success in fuel conservation, the fuel fraction of operating costs, effects of U S (FEA, EPA, FAA, CAB, DOT) government regulations, trends in passenger fares and freight rates, impact of inflation, expected slow and modest technological advances, forecasts of the potential passenger market, demographic trends affecting future passenger travel demand, and the capital investment picture are surveyed, along with European competition Population growth, smaller families, higher incomes, increased leisure time, and increased foreign travel are foreseen as pluses, while higher fares and costs, increased consumer savings, and electronic substitutes for business travel are seen as minuses R D V

A77-19185 The determination of the true vertical direction in flight (Die Bestimmung der wahren Lotrichtung im Flug) V Held Stuttgart, Universitat, Dr Ing Dissertation, 1976 188 p 78 refs In German

An investigation is conducted concerning a number of questions related to the determination of the true vertical in the case of stationary flight operations, taking into account experimental data obtained in flight tests with a uniaxial inertial platform Principal questions regarding the determination of the true vertical in flight with the aid of triaxial, diaxial, and uniaxial platforms are examined An investigation is conducted of the flight and measurement conditions which must be satisfied to obtain with a uniaxial platform the same accuracy as with a triaxial platform Approaches are studied for finding a lower error bound concerning the true vertical determination procedure The various parameters which affect the accuracy of this determination are discussed G R

The papers deal with recent developments in laser semiconductors and low loss optical fibers as well as recent component developments, measurement and analysis techniques, and novel applications in the areas of communications, imaging, and data transmission in general Topics include potential future markets for fiber optics, the status of fiber-optic research in the USA and abroad, the state of the art of integrated optical devices, the current status of integrated optics based on GaAs, recent developments in fiber-optic manufacturing processes, and distributed-feedback GaAs/ GaAIAs diode lasers Other papers discuss methods for measuring the dispersion associated with the propagation of different modes in optical fibers, a technique for calculating bending radiation in an optical fiber, the strength of optical waveguide fibers, and bit-error-rate measurement for evaluating a fiber-optic link Attention is also given to glass fiber-optic dosimetry, uses of fiber optics in medicine, the role of fiber optics in mass spectrometry, electro-optical ion detection, fiber laser gyroscopes, and fiber-optics video transmission Individual items are announced in this issue F G M
STAR ENTRIES

N77-13979# Boeing Aerospace Co., Seattle Wash
AERODYNAMIC DESIGN
Ian H. Rettie In Md Univ Air Transportation for the 1980’s, Jun 1976 p 115-152 Presented at College Park, Md 14 Oct 1975
Avail NTIS HC A17/MF A01
The aerodynamic design of the wide-body type aircraft is discussed with a view toward better performance and more efficient commercial services

N77-13980# Pratt & Whitney Aircraft, East Hartford, Conn
AIR TRANSPORT PROPELLATION FOR THE 1980’S
Avail NTIS HC A17/MF A01
Turbofan engine technology is discussed for use in present and future wide-body aircraft

N77-13981# Douglas Aircraft Co. Inc., Santa Monica, Calif
STRUCTURES AND MATERIALS
Melvin Stone In Md Univ Air Transportation for the 1980’s, Jun 1976 p 227-264 Presented at College Park, Md 2 Dec 1975
Avail NTIS HC A17/MF A01
Aircraft design is discussed with emphasis on structural improvements of advanced composites A state of the art is given for aircraft structures and materials

N77-13982# Lockheed-Georgia Co Manetta
EFFECTS OF ARTIFICIAL STABILITY ON CONFIGURATION DESIGN
Avail NTIS HC A17/MF A01
Applications of advanced technology to the design of future transport aircraft show the potential to provide significant improvements in performance and economics of such aircraft A presentation is given to identify current activities in active controls describe the preliminary design integration process and discuss applications of active controls technology in design including a specific redesign study conducted on the Lockheed JetStar airplane

N77-13983# United Aircraft Corp, East Hartford, Conn
ADVANCED HELICOPTER DESIGNS

Raymond F. Donovan In Md Univ Air Transportation for the 1980’s, Jun 1976 p 317-352 Presented at College Park, Md 6 Apr. 1976 (For primary document see N77-13975 05-01)
Avail NTIS HC A17/MF A01
Techniques are discussed as solutions to problems pertaining to helicopter design A state of the art is given on helicopter design

N77-13986# National Aeronautics and Space Administration
PRELIMINARY STUDY OF EFFECTS OF WINGLETS ON WING FLUTTER

Some experimental flutter results are presented over a Mach number range from about 0.70 to 0.95 for a simple, swept tapered, flat-plate wing model having a planform representative of subsonic transport airplanes and for the same wing model equipped with two different upper surface winglets Both winglets had the same planform and area (about 2 percent of the basic-wing area) however, one weighed about 0.3 percent of the basic-wing weight and the other weighed about 1.8 percent of the wing weight The addition of the lighter winglet reduced the wingflutter dynamic pressure by about 3 percent the heavier winglet reduced the wing-flutter dynamic pressure by about 12 percent The experimental flutter results are compared at a Mach number of 0.08 with analytical flutter results obtained by using doublet-lattice and lifting-surface (kernel-function) unsteady aerodynamic theories

N77-13987# National Aeronautics and Space Administration
WING SURFACE-JET INTERACTION CHARACTERISTICS OF AN UPPER-SURFACE BLOWN MODEL WITH RECTANGULAR EXHAUST NOZZLES AND A RADIUS FLAP
InVESTIGATIoN of aeroDyNaMIC LOADS AT SPiN ENTrY

The second year's work is summarized on an investigation of the aerodynamic load distribution on fighter-bomber type aircraft at inceptor spin entry flight conditions. The principal tasks were development of an asymmetric vortex-lattice computer program for a wing-body in combined pitch and sideslip and water tunnel tests on realistic aircraft nose models. The technical approach on the vortex-lattice program is described, and typical calculative results are shown. The tunnel test program is described. A cooperative test program between ONR and Langley Research Center, NASA, to obtain simultaneous force and moment and flow field measurements on a generalized fighter model at high angles of attack is described. Computer methods have been developed for vortex shedding from circular noses, for the wing-body load induced by an arbitrary distribution of nose vortices, and for afterbody and tail loads. The principal missing features are noncircular nose effects and detailed experimental data to check the methods.

Author

gra

gra

gra
A CONTROL SYSTEM FOR THE WIND TUNNEL MODEL OF A REVERSE-BLOWING CIRCULATION CONTROL ROTOR (RB-CCR)

Kenneth R Reader May 1976 39 p refs

(A-D-A026548, DTNSRDC/ASED-1215) Avail NTIS HC AO3/MF AO1 CSCL 01/3

A pneumatic valving system has been developed to provide cyclic and collective control inputs for a circulation control type rotor over an advance ratio range of 0 to 2.0. The design method and experimental techniques utilized in developing the control system for a wind tunnel model of the reverse-blowing circulation control rotor (RB-CCR) are discussed and a tradeoff is presented between two control systems which have potential for the necessary requirements. A cam-collector nozzle system is considered a better choice for the model rotor configuration than a cam-collector ring control system. It was concluded that a system using the cam-collector nozzle design for the wind tunnel model can be designed by employing the proper area relationships and adhering to a simple design procedure. Author (GRA)

Aversion of the AMSAA helicopter design program has been modified to include a tilt rotor analysis. This modification includes addition of a rotor strip theory performance analysis in the rigid mode. A series of studies have recently been completed with this analysis and this note has been prepared as a record of the procedures used. A discussion of the analysis and some example problems are shown. These indicate the size tradeoffs that are required to obtain the high speed advantage of a typical tilt rotor compared to a helicopter. Author (GRA)

N77-14014# Army Missile Research and Development Laboratory, Redstone Arsenal, Ala. Guidance and Control Directorate

AH-1 HELICOPTER VIBRATION LEVELS FOR STUB WING MOUNTED EQUIPMENT

Gordon D Welford and Joseph S Boland III Sep 1975 148 p

(A-D-A026825 RG-76-301) Avail NTIS HC AO7/MF AO1 CSCL 01/3

This report presents measured translational and angular acceleration inputs to stub wing mounted equipment on the AH-1 helicopter. In this case the wing mounted electro-optical systems were the stabilized platform airborne laser system and the stabilized mirror airborne laser system. The data are presented in the form of power spectral density, amplitude versus frequency, and oscillograph charts. GRA

N77-14015# Naval Intelligence Support Center, Washington DC

AB 212 ASW NEW MULTIPURPOSE HELICOPTER FOR ITALIAN NAVY

22 Jun 1976 9 p Transl into English from Riv Marittima (Italy) Mar 1976 p 140-144

(A-D-A026861 NISC-Trans-3815) Avail NTIS HC AO2/MF AO1 CSCL 01/3

The AB 212 ASW is a four-seat, all-weather single-rotor and twin-turbine naval aircraft entirely made of metal. Specifications are as follows: length-17.39 m, width-2.85 m, rotor diameter-14.63 m, height (with rotor stopped)-4.01 m, and empty weight-3,420 kg. GRA

N77-14016# Naval Postgraduate School, Monterey, Calif

A STUDY OF THE FAILURE OF JOINTS IN COMPOSITE MATERIAL FUEL CELLS DUE TO HYDRAULIC RAM LOADING M Thesis

Henry Speer Ezzard, Jr Jun 1976 81 p refs

(A-D-A027258) HC AO5/MF AO1 CSCL 01/3

The objectives of this research were to show the relative importance of the transverse shearing forces, the bending moments and the tensile forces produced by hydraulic ram loading on military aircraft fuel tank joint designs for composite materials, and to present fuel tank test section designs. With the use of a finite element analysis, it was shown that the transverse shearing force may be a major cause of attachment failure of composites, primarily by an unzipping or pull out mode of failure. It was also shown that failure criteria for transverse shearing stresses in composites are lacking. By comparing several specific aircraft design concepts, designs for a wing fuel test tank and a fuselage fuel test tank were selected. Simplicity, similarity to actual aircraft fuel tanks, and uniformity between experiments were primary considerations in the selection. Author (GRA)
STRUCTURAL STUDIES OF OBLIQUE FOLDING WINGS
R M Rivello Apr 1976 65 p refs
(Contract N00017-72-C-4401)
(AD-A025712 APL/JHU/TG-1296) Avail NTIS
HC A04/MF A01 CSCL 16/4

Design studies on an oblique folding wing for a 34-in-diameter, subsonic, cruise-type missile are described. Aeroelastic divergence and load amplification are investigated. It is found that divergence is not a problem but load buildup on the forward-swept and load reduction on the aft-swept wing result in large rolling moments. Design studies of the wing pivot indicate that a Conrad four-point bearing and a torsion-spring actuator should result in a lightweight, reliable and inexpensive fold mechanism. Weights and volumes of the oblique wing design are computed and compared with results of previous studies of swing-wing and wraparound wing configurations. The wraparound wing is found to be the lightest and provides the greatest fuel volume.

Author (GRA)

N77-14019# Sperry Flight Systems, Phoenix, Ariz
STOLAND Final Report
John Grigorch and Peter Bradbury Nov 1976 157 p refs
(Contract NAS2-6587)
(INASA-137972) Avail NTIS HC A04/MF A01 CSCL 01C

The STOLAND system includes air data navigation, guidance, flight director (including a throttle flight director on the Augmentor Wing), 3-axis autopilots and autthrottle functions. The 3-axis autopilot and autthrottle control through parallel electric servos on both aircraft and on the augmentor wing the system also interfaces with three electrohydraulic servos actuators which drive the roll control surfaces, elevator and rudder. The system incorporates automatic configuration control of the flaps and nozzles on the augmentor wing and on the aircraft on the Twin Otter interfaces are also provided to control the wing flap chokes on the Augmentor Wing and the spoilers on the Twin Otter. The STOLAND system has all the capabilities of a conventional integrated avionics system. Aircraft stabilization is provided in pitch roll and yaw including control wheel steering in pitch and roll. The basic modes include altitude hold and select, indicated airspeed hold and select, flight path angle hold and select, and heading hold and select. The system can couple to TACAN and VOR/DME nears for conventional radial flying.

Author (GRA)

N77-14021# Naval Air Engineering Center Lakehurst, N J
Ground Support Equipment Dept
DATA ITEM DESCRIPTION FOR ACQUISITION OF
DETAILED PERFORMANCE CHARACTERISTICS AND
SIGNAL TRACING DIAGRAMS FOR ELECTRONICS
Final Report
T McGrath 30 Apr 1976 84 p refs
(AD-A026953, NAEC-GSED-Misc-0183-Rev-1-A) Avail NTIS
HC A05/MF A01 CSCL 14/2

The report describes how to record performance characteristics for Avionics UUT's (Units Under Test) in such a fashion that these characteristics can be computer manipulated. It also describes additional documentation required for the proper testing and fault isolation of UUT's.

N77-14023# Defense Systems Management School Fort Belvoir, Va
ADVANCED AVIONICS FOR THE A-10 A DECISION
ANALYSIS MODEL
Jackson A Thomas May 1975 49 p refs
(AD-A027678) Avail NTIS HC A03/MF A01 CSCL 09/3

Using decision analysis techniques a generic decision model for potential avionics enhancements to the A-10 aircraft is developed. Five generic avionics additions and the baseline single seat aircraft are considered in the decision model. Aspects of systems acquisition and the impact of war are also incorporated. The model developed provides the basis for a flexible management tool that can assist the program manager in reaching a decision, if one should be required concerning avionics additions to the A-10 aircraft. The model demonstrates how the decision analysis techniques can a applied to an unstructured decision problem encountered in program management.

Author (GRA)

N77-14024# Illinois Univ Urbana-Champaign Aviation Research Lab
A VERSATILE COMPUTER-GENERATED DYNAMIC FLIGHT
DISPLAY
Bruce Arthur Artwick May 1976 78 p refs
(Contract N00014-76-C-0081 NR Prj 196-133)
(AD-A027419 ARL-76-5/ONR-76-1) Avail NTIS
HC A05/MF A01 CSCL 01/4

This report describes a real-time, dynamic, computer-driven visual display program which is written in the FORTRAN programming language. Versatility efficiency and ease of use are stressed in the development, resulting in an easy to interface to dynamic display which can be implemented economically with a bare minimum of graphics hardware and a sixteen bit mini-computer which has FORTRAN capabilities. Medod structure is stressed and speedup methods are discussed including the use of a matrix multiplier. A unique frame synthesizing feature is described in detail. Sample data base structures and display images conclude the report.

Author (GRA)

N77-14025# National Aeronautics and Space Administration
Lewis Research Center, Cleveland, Ohio
DUAL OUTPUT VARIABLE PITCH TURBOFAN ACTUATION
SYSTEM Patent
Robert H Griswold, Jr (GE, Cincinnati) and Carl L Broman, inventors (to NASA) (GE Cincinnati) Issued 30 Nov 1976
10 p Filed 21 May 1975 Sponsored by NASA
(NASA-Case-LEW-12419-1 US-Patent-3994,128
CSL 21E

An improved actuating mechanism was provided for a gas turbine engine incorporating fan blades of the variable pitch variety. The actuator adapted to rotate the individual fan blades within apertures in an associated fan disc. The actuator included means such as a pair of synchronizing ring gears, one on each side of the blade shanks and adapted to engage pinions disposed thereon. Means were provided to impart rotation to the ring gears in opposite directions to effect rotation of the blade shanks in response to a predetermined input signal. In the event of system failure, a run-away actuator was prevented by an improved braking device which arrests the mechanism.

Official Gazette of the U S Patent Office
The cost/benefits of advance commercial gas turbine materials are described. Development costs estimated payoffs and probabilities of success are discussed. The materials technologies investigated are (1) single crystal turbine blades, (2) high strength hot isostatic pressed turbine disk, (3) advanced oxide dispersion strengthened burner liner, (4) bore entry cooled hot isostatic pressed turbine disk, (5) turbine blade tip - outer airseal system, and (6) advance turbine blade alloys.

ENERGY CONSUMPTION CHARACTERISTICS OF TRANS-PORTS USING THE PROP-FAN CONCEPT

SUMMARY REPORT Final Report

N77-14027
National Aeronautics and Space Administration
Ames Research Center, Moffett Field, Calif.

FURTHER STUDIES OF STATIC TO FLIGHT EFFECTS ON FAN TONE 'NOISE USING INLET DISTORTION CONTROL FOR SOURCE IDENTIFICATION

Brent K. Hodder Dec 1976 42 p refs Prepared in cooperation with Army Air Mobility R and D Lab, Moffett Field, Calif.

(NASA-TM-X-73183, A-6821) Avail NTIS HC A03/MF A01 CSCL 20A

Current experimental investigations have linked static inflow distortion phenomena such as the ground vortex, atmospheric turbulence, and test stand structure interference to the generation of fan tone noise at the blade passing frequency. Since such distortions do not exist in flight, it is important to remove them from the static test environment and thereby improve the static-to-flight tone-noise correlation. In the course of providing evidence for this position, a recent investigation used a distortion control inlet with a modern day turbofan engine to assess atmospheric turbulence effects. Although the initial results were encouraging, they were incomplete. The present investigation continues this work and shows more completely the effect of atmospheric turbulence on tone-noise generation. Further use is made of the distortion control inlet to identify other competing tone-noise sources in the test engine such as a rotor-core interaction which was confirmed by engine modifications.

Author

N77-14029

DEPT. OF PRELIMINARY DESIGN

ENERGY CONSUMPTION CHARACTERISTICS OF TRANS-PORTS USING THE PROP-FAN CONCEPT Final Report

Oct 1976 147 p refs

(Contract NAS2-9104)

(NASA-CR-137937, D6-75780) Avail NTIS HC A07/MF A01 CSCL 01C

The fuel saving and economic potentials of the prop-fan high-speed propeller concept were evaluated for twin-engine commercial transport airplanes designed for 33,336 km range. 180 passengers, and Mach 0.8 cruise. A fuel saving of 9% at the design range was estimated for a prop-fan airplane having wing-mounted engines, while a 5.8% saving was estimated for a design having the engines mounted on the aft body. The fuel savings and cost were found to be sensitive to the propeller noise level and to aerodynamic drag effects due to wing-slipstream interaction. Uncertainties in these effects could change the fuel savings as much as + or - 50%. A modest improvement in direct operating cost (DOC) was estimated for the wing-mounted prop-fan at current fuel prices. This improvement could become substantial in the event of further relative increases in the cost of oil. The improvement in DOC requires the achievement of the nominal fuel saving and reductions in propeller and gearbox maintenance costs relative to current experience.

Author

N77-14030

DEPT. OF PRELIMINARY DESIGN

ENERGY CONSUMPTION CHARACTERISTICS OF TRANS-PORTS USING THE PROP-FAN CONCEPT SUMMARY REPORT Final Report

Nov 1976 50 p refs

(Contract NAS2-9104)

(NASA-CR-137938, D6-75780) Avail NTIS HC A03/MF A01 CSCL 01C

For abstract, see N77-14029

N77-14031
National Aeronautics and Space Administration
Lewis Research Center, Cleveland, Ohio

SMALL LOW COST EXPENDABLE TURBOJET ENGINE 2. PERFORMANCE CHARACTERISTICS

Robert P. Dengler and Lawrence E. Macieco Washington Dec 1976 31 p refs

(NASA-TM-X-3463, E-8775) Avail NTIS HC A03/MF A01 CSCL 21E

A small experimental axial-flow turbojet engine was tested at sea level static conditions and over a range of simulated flight conditions to evaluate its performance as well as to demonstrate the feasibility of low-cost concepts utilized in its design. Testing was conducted at engine speeds as high as 37,000 rpm and at turbine inlet temperatures as high as 1,272 K. For maximum speed the engine produced a net thrust of 31.18 newtons at sea level static operation and 2,318 newtons at its cruise condition of MO = 0.8 and 6,096 meters. Data obtained over a range of inlet Reynolds number indexes for nominal MO of 0.38 revealed similar effects or trends on compressor characteristics of those previously established for much larger engines.

Author

N77-14035
Air Force Flight Dynamics Lab, Wright-Patterson AFB, Ohio

ANALYSIS OF INHERENT ERRORS IN ASYNCHRONOUS REDUNDANT DIGITAL FLIGHT CONTROL SYSTEMS Final Report, 9 Jun - 30 Oct 1975

Vincent J. Darcy and Charles R. Silvinsky Apr 1976 154 p refs

(AF Prod. 2049)

(AD-A026954 AFFDL-TR-76-16) Avail NTIS HC A08/MF A01 CSCL 01/4

The concept of skewed sampling is developed and a single-rate closed-loop state variable model for realistic aircraft control loops is developed. Using this model, a covariance analysis of the channel differences is given. This statistical treatment is based on filtered white noise external inputs, but it is shown how such inputs can be used to generate signals which approximate the true system external inputs. The model and the analysis are general and applicable to a variety of systems. A user-oriented software package using FORTRAN is developed to facilitate the required computations and to allow parametric studies of the effect on inherent errors of control system gains, time constants, sample time and other parameters. The analysis is applied to several examples including time and other parameters. The analysis is applied to several examples, including a study of inherent errors in an asynchronous dual-redundant digital version of the A-7D pitch-axis control augmentation system.

Gra

N77-14037
McDonnell Aircraft Co., St. Louis, Mo.

MATHEMATICAL MODEL FOR LIFT/CRUISE FAN V/STOL AIRCRAFT SIMULATOR PROGRAMMING DATA

(Contract NAS2-9144)

(NASA-CR-151916 MDC-A4571) Avail NTIS HC A12/MF A01 CSCL 14B

124
Simulation data are reported for the purpose of programming the flight simulator for advanced aircraft for tests of the lift/cruise fan V/STOL Research Technology Aircraft. These simulation tests are to provide insight into problems areas which are encountered in operational use of the aircraft. A mathematical model is defined in sufficient detail to represent all the necessary pertinent aircraft and system characteristics. The model includes the capability to simulate two basic versions of an aircraft propulsion system (1) the gas coupled configuration which uses liquid fuels to transmit power between gas generators and fans in the form of high energy engine exhaust and (2) the mechanically coupled power system which uses shafts, clutches, and gearboxes for power transmission. Both configurations are modeled such that the simulation can include vertical as well as rolling takeoff and landing, hover, powered lift flight, aerodynamic flight and the transition between powered lift and aerodynamic flight. Author

G Haley B Silverman, and Y Tajima Sep 1976 91 p refs (Contract NAS2-8835) (NASA-CR-137920) Avail NTIS HC A05/MF A01 CSCL 11D

All available newly developed nonmetallic polymers were examined for possible usage in developing fire resistant nontoxic nonmetallic parts or assemblies for aircraft interiors. Specifically, feasibility for the development of clear films for new decorative laminates, compression moldings, injection molded parts, thermoformed plastic parts and flexible foams were given primary considerations. Preliminary data on the flame resistant characteristics of the materials were obtained. Preliminary toxicity data were generated from samples of materials submitted from the contractor. Authors

N77-14206*# National Aeronautics and Space Administration Ames Research Center Moffett Field Calif THERMOPLASTIC POLYMERS FOR IMPROVED FIRE SAFETY

The thermochemical and flammability characteristics of some typical thermoplastic materials currently in use and others being considered for use in aircraft interiors are described. The properties studied included (1) thermomechanical properties such as glass transition and melt temperature, (2) changes in polymer enthalpy by differential scanning calorimetry, (3) thermogravimetric analysis in anaerobic and oxidative environments, (4) oxygen index, (5) smoke evolution (6) relative toxicity of the volatile products of pyrolysis and (7) selected physical properties. Authors

This report covers a program conducted to assess the environmental resistance characteristics of selected coated polycarbonate and acrylic/metalized/polycarbonate composite aircraft windshield materials when exposed to aggressive laboratory accelerated and outdoor environmental testing. Authors

N77-14272# RAND Corp Washington D.C. THE POTENTIAL OF LIQUID HYDROGEN AS A MILITARY AIRCRAFT FUEL
William T Mikolowsky and Larry W Noggle Feb 1976 15 p refs (AD-A0286666. P-5577) Avail NTIS HC A02/MF A01 CSCL 21/4

Liquid hydrogen does not appear to be attractive as a military aircraft fuel for the immediate future. In a wide variety of mission applications, liquid hydrogen is less cost-effective and less energy-effective than the available alternative indications are that synthetic jet-fuel is the most attractive alternative fuel for very large airplanes. At the least, this conclusion appears valid until coal reserves are substantially depleted. (Even for relatively high growth rates in coal consumption domestic coal production is not likely to peak much before the second quarter of the 21st century) This conclusion is substantially strengthened when one realizes that airplanes using a conventional jet-fuel have the potential for a much greater payoff from advances in fuel-conserving aircraft technology. Furthermore, these conclusions prevailed despite our favorable assumptions toward liquid hydrogen in several important instances (e.g., aerial refueling). In summary there is little if any potential for liquid hydrogen as a fuel for aircraft entering the Air Force inventory between now and the end of the century. Authors

N77-14319# Naval Electronics Lab Center, San Diego Calif FW-CW RANGING MULTIPATH INVESTIGATION FOR NAVY VTOL AIRCRAFT Research Report. May 1975 - Apr 1976
F E Morris S K Miyashiro and B H Humphreys May 1976 45 p refs (AD-A027190 NELEC-TR-1986) Avail NTIS HC A03/MF A01 CSCL 05/4

Evaluation of the range error caused by multipath in a FM-CW ranging system has been accomplished analytically and experimentally. Tests show that the modulation index-frequency product will have to be significantly increased and the multipath signal levels suppressed by narrow-beam tracking antennas or by use of circularly polarized antennas to achieve 1-foot ranging accuracy in a severe multipath environment. Circular polarization provides a significant improvement against single reflection multipath signals from metal surfaces. Multipath tests show that the FM-CW equipment range accuracy is severely degraded in a strong multipath signal environment but that increasing the modulation index can provide an improvement. Authors

N77-14491# Mechanical Technology, Inc., Latham, N.Y ADVANCED COMPRESSOR SEAL FOR TURBINE ENGINES Final Technical Report
Anthony J Smalley and Peter R Albrecht 10 Feb 1976 103 p refs (Contract F33615-73-C-2043 AF Proj 3066) (AD-A026816, MTI-75-T59 AFAPL-TR-75-86) Avail NTIS HC A06/MF A01 CSCL 21/5

This report describes a resilient seal concept entitled the J-Seal. This concept uses a pressure loaded membrane and hydrostatic bearing principles to maintain a minimum rotor stator clearance over a range of axial rotor displacement. Methods of analyzing this concept have been developed. A design study is presented and hardware has been fabricated. Manufacturing inadequacies in a key component caused proof of concept testing to be inconclusive but an adequate test rig for high-temperature testing has been constructed. Authors
and Naval air operations. The establishment of engine emission goals to be incorporated into new engine development programs was performed in conformance with the EPA standards for aircraft and engine noise. The report includes discussion of the methodology and rationale for the survey as well as sample telephone and mail questionnaires. This expression which agrees well with the experimental and theoretical analysis, a major Boeing/Aeritalia test program, and an empirical analysis of test data. As a result, analytical prediction procedures are defined computerized and added to software. The shielding prediction procedures consider individual noise components, inlet fan, compressor, exit fan core, turbine, and jet noise. A new source, jet/edge interaction noise, can also be predicted using the procedures. The collective software incorporating the shielding package, can be used to estimate community noise levels of wing and fuselage shielded turbofan or turbojet engines.

N77-14816# Boeing Commercial Airplane Co., Seattle Wash.

N77-14817# National Aeronautics and Space Administration Langley Research Center, Langley Station Va.

NOISE RESPONSE OF CAVITIES OF VARYING DIMENSIONS AT SUBSONIC SPEEDS Patricia J W Block Washington Dec 1976 36 p refs (NASA-TN-D-8351. L-11045) Avail NTIS HC 03/MF A01 CSCL 20/1

An expression for the Strouhal number of lengthwise cavity oscillations is obtained which includes the effect of length-to-depth ratio. This expression which agrees well with the experimental data which agrees well with the experimental data for the Strouhal number of lengthwise cavity oscillations obtained for the experimental data which agrees well with the experimental data.

N77-14818# Boeing Computer Services, Inc., Seattle, Wash.

AIRCRAFT CONFIGURATION NOISE REDUCTION VOLUME 1 ENGINEERING ANALYSIS Final Report, Aug 1974 - Jun 1976

D G Dunn, L M Butzel, A DiBlasi, L Filler, and L D Jacobs

Contract DOT-FA74WA-3497

This report outlines a test plan for conducting a social survey to determine whether community response to noise from military aircraft operations differs significantly between noise from flight operations and noise from ground runup (maintenance) operations. The report includes discussion of the methodology and rationale for the survey as well as sample telephone and mail questionnaires.

Use of wing and fuselage structures as noise barriers for shielding aircraft engine noise from the community is discussed. Favorable aircraft configurations for community noise reduction of a jet and a turbofan powered aircraft are used. Significant noise reduction potential is illustrated on a hypothetical engine-over-wing (EOW) configuration using high bypass ratio, turbofan engines. Noise shielding estimation procedures are developed for two types of configuration noise reduction concepts, i.e., the engine-over-fuselage (EOF) and the engine-over-wing (EOW). Results are described for a theoretical analysis, a major Boeing/Aeritalia test program, and an empirical analysis of test data. As a result, analytical prediction procedures are defined, computerized and added to software. The shielding prediction procedures consider individual noise components, inlet fan, compressor, exit fan core, turbine, and jet noise. A new source, jet/edge interaction noise, can also be predicted using the procedures. The collective software incorporating the shielding package can be used to estimate community noise levels of wing and fuselage shielded turbofan or turbojet engines.

N77-14819# Department of National Defence Ottawa (Ontario)

RESEARCH AND DEVELOPMENT IN SUPPORT OF CANADIAN MILITARY AIR REQUIREMENTS
E J Bobyn In AGARD 11th AGARD Ann Meeting Feb 1976 p 15-18 (For primary document see N77-14982 06-01) Avail NTIS HC A04/MF A01

The Department of National Defense in cooperation with other government departments and industry initiated V/STOL aircraft research and development. The bulk of the research and development activity was directed towards sub-systems acquisition of technical knowledge, human factors in man/machine interface, avionics systems, analysis, propulsion devices, landing gear, detection devices, navigation aids, data processors, materials, power supplies and weapon modifications and other associated components. Author

N77-14986# De Havilland Aircraft Co of Canada Ltd Ottawa (Ontario)

STOL DEVELOPMENTS

J P Uffen In AGARD 11th AGARD Ann Meeting Feb 1976 p 22-41 refs

Avail NTIS HC A04/MF A01

The characteristics of STOL aircraft which distinguish them from conventional CTOL aircraft are described. Examples of the way in which STOL has evolved are given with discussion of the features of the de Havilland Dash 7. Looking to the future, ways in which STOL has evolved are discussed. The characteristics of STOL aircraft are described. These have differing characteristics which permit selection of optional configurations for particular roles. Author

N77-14992 Engineering Sciences Data Unit London (England)

AERODYNAMIC CENTRE OF WING-FUSELAGE COMBINAIONS

Sep 1976 17 p (ESDU-76015, ISBN-0-85679-151-2) For information on availability of series, sub-series and other individual data items, write NTIS, Attn ESDU Springfield Va 22161 HC A04/MF A01

Data for estimating the aerodynamic center of wing fuselage combinations to aid in aircraft stability calculations are presented. Author

N77-14996# Boeing Co Renton, Wash

TEST DATA REPORT LOW SPEED WIND TUNNEL TESTS OF A FULL SCALE, FIXED GEOMETRY INLET, WITH ENGINE, AT HIGH ANGLES OF ATTACK

W M Sham Nov 1976 119 p refs (Contract NAS2-9215)

An experimental investigation was conducted to verify that the recently developed high-alpha missile roll-damping test mechanism could be used to obtain the roll-damping characteristics of slender missile configurations and to obtain roll-damping Magnus static-stability and axial-force characteristics of a typical missile configuration. The verification tests were conducted with the Basic Finner Model at Mach 0.22 and 2.50. Additional test results were obtained with a Modified Basic Finner Model for Mach numbers 0.6 through 2.5. Author (GRA)

N77-15005# Naval Ship Research and Development Center, Bethesda Md

Aviation and Surface Effects Dept

TWO-DIMENSIONAL SUBSONIC WIND TUNNEL EVALUATION OF A 20-PERCENT-THICK CIRCULATION CONTROL AIRFOIL

Jane Abramson Jun 1976 33 p refs (AD-A027164 DNTSRDC-ASED-331) Avail NTIS HC A03/MF A01

A circulation control uncambered elliptic airfoil section with a thickness-to-chord ratio of 0.20 was tested subsonically to determine its aerodynamic characteristics. Lift coefficients up to 5 were produced at momentum coefficients of 0.24. The initially high unblown drag coefficients, characteristic of bluff trailing edge airfoils were greatly reduced at low values of momentum coefficient. It was therefore possible to produce equivalent lift-to-drag ratios in excess of 30 when Cl = 1.0. The ability to produce high lift coefficients essentially independent of angle of attack is indicated by the results of this investigation. Author (GRA)

N77-15010# Stanford Research Inst Menlo Park Calif

DSTAR DIRECT SEA-TO-AIR REFUELING (INFLIGHT REFUELING OF MILITARY CARGO AIRCRAFT FROM SHIPS AT SEA)

Volume II presents the instructions for installing field-replaceable pockets on CH-54B main rotor blades. It is the end result of experience gained from in-house activity and army personnel installing pockets at Sikorsky's Stratford Conn plant and in the field at Fort Wainwright, Alaska and Fort Eustis, Va. The instruction manual is part of a self-contained kit which has all the necessary components to make a field repair. Volume I contains the results of pocket and adhesive development and evaluation. The final pocket design and adhesive were successfully proof load, fatigue, whirl, and flight tested.

N77-15034# Advisory Group for Aerospace Research and Development Paris (France)
NONLINEAR EFFECTS IN AIRCRAFT GROUND AND FLIGHT VIBRATION TESTS

Examples of non-linear vibration behavior in ground resonance tests of an aircraft are shown. Model tests for a simplified system with non-linear properties have been performed to study the effects of friction and backlash with respect to ground resonance test and flight flutter test. With symmetric and asymmetric non-linear stiffness characteristics, effects of amplitude dependent frequencies, mode coupling, mode asymmetries, and the consequences in parameter identification in vibration tests are pointed out and discussed. In case of flutter critical modes the problems of apparent damping caused by non-linear system properties are shown and recommendations are given to reach a representative flutter clearance with respect to this non-linear system behavior.

N77-15036# National Aeronautics and Space Administration Langley Research Center, Langley Station, Va
APPARATUS AND METHOD FOR JET NOISE SUPPRESSION Patent Application

A method and apparatus are described for jet noise suppression through control of the static pressure of the jet and control of the rate of entrainment of ambient fluid into the jet downstream of the exhaust nozzle. The momentum flux is regulated over an extended region of the jet affecting Reynolds stresses in the jet and the spreading angle of the jet. Static pressure is controlled through a long hollow porous nozzle plug centerbody which may be selectively vented to ambient conditions connected to a vacuum source or supplied with fluids of various densities for injection into the stream. Additionally, sound in the jet may be channelled along the nozzle plug centerbody by injecting coolant such as a cryogenic fluid through the centerbody into the jet.

N77-15037# National Aeronautics and Space Administration Lewis Research Center, Cleveland, Ohio
EFFECT OF CERAMIC COATING OF JTBD COMBUSTOR LINER ON MAXIMUM LINER TEMPERATURES AND OTHER COMBUSTOR PERFORMANCE PARAMETERS

The effect of ceramic coating of a JTBD combustor liner was investigated at simulated cruise and takeoff conditions with two fuels of widely different aromatic contents. Substantial decreases in maximum liner temperatures and flame radiation values were obtained with the ceramic-coated liner. Small reductions in exhaust gas smoke concentrations were observed with the ceramic-coated liner. Other performance parameters such as combustion efficiency and emissions of unburned hydrocarbons CO and NOx were not affected significantly. No deterioration of the ceramic coating was observed after about 6 hours of cyclic operation including several startups and shutdowns.

N77-15038# Teledyne Continental Motors Mobile, Ala. Aircraft Products Div.
SCREENING ANALYSIS AND SELECTION OF EMISSION REDUCTION CONCEPTS FOR INTERMITTENT COMBUSTION AIRCRAFT ENGINES

An analysis was conducted to screen evaluate and select three engine exhaust emission reduction concepts from a group of 14 candidate alternatives. A comprehensive literature search was conducted to survey the emission reduction technology state of the art and establish contact with firms working on intermittent combustion engine development and pollution reduction problems. Concept development advantages disadvantages and expected emission reduction responses are stated. A set of cost effectiveness criteria was developed appropriate for relative importance and traded off against each concept so that its merit could be determined. A decision model was used to aid the evaluators in managing the criteria making consistent judgments calculating merit scores and ranking the concepts.

N77-15039# National Aeronautics and Space Administration Langley Research Center, Langley Station, Va
A REVIEW OF SEVERAL PROPULSION INTEGRATION FEATURES APPLICABLE TO SUPERSONIC CRUISE FIGHTER AIRCRAFT

A brief review has been made of the propulsion integration features which may impact the design of a supersonic cruise fighter type aircraft. The data used for this study were obtained from several investigations conducted in the Langley 16-foot transonic and 4 by 4 foot supersonic pressure wind tunnels. Results of this study show (1) that for conventional nozzle installations contradictory design guidelines exist between subsonic and supersonic flight condition (2) that substantial drag penalties can be incurred by use of dry power nozzles during supersonic cruise and (3) that a new and unique concept the subsonic transport turbocans is described herein. A number of unconventional engine concepts were identified and parametrically studied to determine their relative fuel-saving potential. Based on results from these studies, regenerative geared and variable-boost turbocans and combinations thereof were selected along with advanced turboprop cycles for further evaluation and refinement. Preliminary aerodynamic and mechanical designs of these unconventional engine configurations were conducted and mission performance was compared to a conventional direct-drive turbofan reference engine. Consideration is given to the unconventional concepts and their state of readiness for application.
The noise reduction potential is analyzed for the business jet aircraft fleet registered in the United States as of 1975. Noise characteristics of each aircraft are defined at various thrust levels and noise reductions achievable for different design options are determined. Costs and performance penalties are assessed for each option in order to evaluate the consequences of lowering present FAR 36 Appendix C noise levels. The exhaust noise of all engines can be reduced significantly with multi-element nozzles. The addition of a lined ejector provides little additional noise reduction at greatly increased weight and performance penalties. Acoustic liners in exhaust ducts reduce fan or core noise for some engines but inlet liners have little value. To assess noise reductions, a single number criterion is proposed based on the effective perceived noise level contour that circumscribes a two-square-mile area. It is recommended that takeoff noise be measured at 2.5 nautical miles from brake release.

Author

NOISE REDUCTION FOR BUSINESS AIRCRAFT Final Report

The noise reduction potential is analyzed for the business jet aircraft fleet registered in the United States as of 1975. Noise characteristics of each aircraft are defined at various thrust levels and noise reductions achievable for different design options are determined. Costs and performance penalties are assessed for each option in order to evaluate the consequences of lowering present FAR 36 Appendix C noise levels. The exhaust noise of all engines can be reduced significantly with multi-element nozzles. The addition of a lined ejector provides little additional noise reduction at greatly increased weight and performance penalties. Acoustic liners in exhaust ducts reduce fan or core noise for some engines but inlet liners have little value. To assess noise reductions, a single number criterion is proposed based on the effective perceived noise level contour that circumscribes a two-square-mile area. It is recommended that takeoff noise be measured at 2.5 nautical miles from brake release.

Author

ADVANCED SUPERSONIC PROPULSION STUDY. PHASE 3 Final Report

The variable stream control engine is determined to be the most promising propulsion system concept for advanced supersonic cruise aircraft. This concept uses variable geometry components and a unique throttle schedule for independent control of two flow streams to provide low jet noise at takeoff and high performance at both subsonic and supersonic cruise. The advanced technology offers a 25% improvement in airplane range and a 8-decibel reduction in takeoff noise relative to first generation supersonic turbojet engines.

Author

STUDY OF UNCONVENTIONAL AIRCRAFT ENGINES DESIGNED FOR LOW ENERGY CONSUMPTION

A study of unconventional engine cycle concepts which may offer significantly lower energy consumption than conventional subsonic transport turbofans, is described herein. A number of unconventional engine concepts were identified and parametrically studied to determine their relative fuel-saving potential. Based on results from these studies, regenerative geared and variable-boost turbofans, and combinations thereof were selected along with advanced turboprop cycles for further evaluation and refinement. Preliminary aerodynamic and mechanical designs of these unconventional engine configurations were conducted and mission performance was compared to a conventional direct-drive turbofan reference engine. Consideration is given to the unconventional concepts and their state of readiness for application. Areas of needed technology advancement are identified.

Author

ANALYSIS AND DESIGN OF DIGITAL OUTPUT INTERFACE DEVICES FOR GAS TURBINE ELECTRONIC CONTROLS Final Report

A trade study was performed on twenty-one digital output interface schemes for gas turbine electronic controls to select the most promising scheme based on criteria of reliability, performance cost, and sampling requirements. The most promising scheme is a digital effector with optical feedback of the fuel metering valve position was designed.

Author

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Langley Research Center

THERMAL DESIGN AND ANALYSIS OF A HYDROGEN-BURNING WIND TUNNEL MODEL OF AN AIRFRAME-INTEGRATED SCRAMJET

An aerodynamic model of a hydrogen burning airframe-integrated scramjet engine has been designed, fabricated, and instrumented. This model is to be tested in an electric arc heated wind tunnel at an altitude of 35.39 km (116,094 ft) with an inlet Mach number of 6 simulating precompression on an aircraft undersurface. The scramjet model is constructed from oxygen-free high conductivity copper and is a heat sink design except for water cooling in some critical locations. The model is instrumented for surface temperature, heat transfer rate, and thrust measurements. Calculated flow properties, heat transfer rates, and surface temperature distributions along various engine components are included for the conditions stated above. For some components, estimates of thermal strain are presented which indicate significant reductions in plastic strain by selective cooling of the model. These results show that the 100 thermal cycle life of the engine was met with minimum distortion while staying within the 2669 N (600 lbf) engine weight limitation and while cooling the engine only in critical locations.

Author

MINI RPV ENGINE NOISE REDUCTION Final Report, May 1974 - Aug 1975

Ralph M. Shimovetz and Davey L. Smith. 1976. 97 pages. (ARPA Order 2707 AF Proj 2707)(AD-A027638 AFFDL TR-76-28) Available NTIS HC A05/MF A01 CSCL 20/1

The purpose of this effort was to investigate the reduction in radiated acoustic noise associated with two types of engines considered for power plants in small (75-100 lb) remotely piloted vehicles (Mini-RPV) in the class of the Praefer and Calere Aircraft. The engines considered are approximately 5 HP, the first a rotary combustion (RC) the second a two stroke cycle reciprocating (P). The sound pressure levels were recorded using a semicircle arrangement of microphones in a free field and with various engine noise reduction devices installed. The engines were rotated such that a spherical definition of the acoustic pressures were measured. From these data, the sound power levels and directional characteristics were determined. Aural detection analyses are performed for the most desirable noise reduction cases. The conducted acoustic testing altitudes and the most significant sources of noise were defined.

Author (GRA)
Nonlinear multi-input multi-output multi-parameter systems are considered. The design criterion is that the optimal input should minimize statistical correlations between parameters. The performance index for the control design is taken as a linear weighted sum of the squares of the correlation coefficients of the aerodynamic stability and control derivatives as computed from the Cramer-Rao lower matrix. The optimal control is bang-bang when the system is linear in control and amplitude constraint is imposed on the input. Optimal alleron and rudder inputs are designed for an F-8 aircraft with super-critical wing. Reducing the correlation results in improved estimates and confidence levels. Flight tests for parameter identification are designed for a light aircraft using optimal inputs. Simulations are carried out using the optimal inputs and lateral derivatives are extracted from flight data.

N77-15049# Stanford Univ Calif Dept of Aeronautics and Astronautics
CONTROL METHODS FOR AIDING A PILOT DURING STOL ENGINE FAILURE TRANSIENTS
Ernest R. Nelson and Daniel B. Debra Dec 1976 177 p
(Grant NsG-2100)
(NASA-CR-149280) Avail NTIS HC A09/MF A01 CSCL 01C
Candidate autopilot control laws that control the engine failure transient sink rates by demonstrating the engineering application of modern state variable control theory were defined. The results of approximate modal analysis were compared to those derived from full state analyses provided from computer design solutions. The aircraft was described and a state variable model of its longitudinal dynamic motion due to engine and control variations was defined. The classical fast and slow modes were assumed to be sufficiently different to define reduced order approximations of the aircraft motion amenable to hand analysis control design methods. The original state equations of motion were also applied to a large scale state variable control design program in particular OPTSYS. The resulting control laws were compared with respect to their relative responses ease of application and meeting the desired performance objectives.

N77-15083# Chrysler Corp New Orleans La
MATED AERODYNAMIC CHARACTERISTICS INVESTIGATION FOR THE 0.04 SCALE MODEL SFE (BOEING 747-100) OF THE 747-100 AND THE 0.0405 SCALE MODEL 43-8381 OF THE SPACE SHUTTLE ORBITER IN THE NASA LANDLEY V/STOL TRANSITION RESEARCH WIND TUNNEL (CA8), VOLUME 3
Oct 1976 782 p refs 3 Vol (Contract NAS9-13247)
(NASA-CR-147643 DMS-D-R-2290-Vol-3) Avail NTIS HC A98/MF A01 CSCL 01A
Aerodynamic force data are presented in tables and graphs for the NASA Landley V/STOL Transition Research Wind Tunnel tests on a 0.04 scale model of the 747 with a 0.0405 scale Orbiter space shuttle. The investigation included the effects of flap setting stabilizer angle, elevator angle ground proximity and Orbiter tailcone fairing. Data were obtained in the pitch plane only. The test was run at M = 0.15, with a dynamic pressure of 35 psf. Six static pressures were measured on each side of the 747 CAM nose to determine the effects of the Orbiter on the 747 airspeed and altitude indicators. The use of powder metallurgy for the reduction or minimization of the acquisition cost of titanium alloy airframe parts is discussed. The results of studies regarding the following processes are presented: (1) cold isostatic pressing and sintering to produce high density preforms; (2) hot forging in full-density near-net shapes; (3) high isotropic pressing to full-density near-net shapes in a one-step operation. The primary titanium alloys investigated were Ti-6Al-4V and Ti-6Al-6V-2Sn. Advantages disadvantages technological and economic considerations are summarized for each approach and potential future airframe applications are presented.

N77-15020# Monsanto Research Corp St Louis Mo
DEVELOPMENT OF A GAS TURBINE ENGINE OIL FOR BULK OIL TEMPERATURES OF -40 TO 485 F. PART 2 Final Report, 1 Oct 1974 - 22 Sep 1975
F. S. Clark J. F. Herber and S. L. Reid Dec 1975 46 p refs
(Contract F33615-73-C-5079 AF Proj 7343)
(AD-A027068 MRC-SL-538-Pt-2 AFML-TR-74-247-Pt-2) Avail NTIS HC A03/MF A01 CSCL 11/8
This contract involved advanced characterization of three MIL-L-27502 lubricants. These were ester blends designated MCS 1710, MCS 1709 and Fluid 12. Oxidation-corrosion and storage life tests were run on all fluids. This contract involved advanced characterization of three MIL-L-27502 lubricants. These were ester blends designated MCS 1710, MCS 1709 and Fluid 12. Oxidation-corrosion and storage life tests were run on all fluids. This contract involved advanced characterization of three MIL-L-27502 lubricants. These were ester blends designated MCS 1710, MCS 1709 and Fluid 12. Oxidation-corrosion and storage life tests were run on all fluids. This contract involved advanced characterization of three MIL-L-27502 lubricants. These were ester blends designated MCS 1710, MCS 1709 and Fluid 12. Oxidation-corrosion and storage life tests were run on all fluids. This contract involved advanced characterization of three MIL-L-27502 lubricants. These were ester blends designated MCS 1710, MCS 1709 and Fluid 12. Oxidation-corrosion and storage life tests were run on all fluids. This contract involved advanced characterization of three MIL-L-27502 lubricants. These were ester blends designated MCS 1710, MCS 1709 and Fluid 12. Oxidation-corrosion and storage life tests were run on all fluids.
ALTERNATIVE FUELS FOR AVIATION
Research and progress in the development of alternative fuels for aviation are discussed. The impact of using nonoptimum synthetic hydrocarbon based fuels on aeronautical structures and the cost of commercial airfares is explored. Author (GRA)

ENVIRONMENTAL DEGRADATION OF FUELS, FLUIDS AND RELATED MATERIALS FOR AIRCRAFT Final Report, 1 Dec 1973 - 31 Jan 1976
Investigations of the composition and properties of a number of hydrocarbon fuels are described. Fuel analyses for hydrocarbon types, trace metals content, trace organic contaminants and elemental composition are presented. Studies of the fluorescence spectral properties of aircraft exhaust emissions are described as is an investigation of the feasibility of using fluorometric measurements on fuels to supplement coker thermal stability data. An investigation of the experimental parameters of the hot manifold flammability test is discussed along with test results for various hydraulic fluids. Components recovered from aircraft crash sites have been examined to determine factors contributing to aircraft failure. Studies supporting Air Force programs for the formulation and specification development of high density fuels are presented. Author (GRA)

A STUDY OF DIFFRACTION OF ELECTROMAGNETIC WAVES AROUND LARGE STATIONARY AIRCRAFT AND ITS EFFECTS ON INSTRUMENT LANDING SYSTEM GUIDANCE SIGNALS Ph D Thesis
Robert Adnan Rondin 1976 208 p Avail Univ Microfilms Order No 76-27257
The basic scattering theory upon which the theoretical model was based is the vector extension of Kirchoff's diffraction integral for scalar fields. As applied to the problem of scattering of electromagnetic waves by a large aircraft, the solution of the resultant diffraction integral required that a number of simplifying assumptions be made in order to arrive at a numerical result. Mathematical justifications for using the simplifying assumptions were also presented. Dissert Abstr

RADAR SPECIAL EVALUATION REPORT DEGRADATION OF AN/UPX-6 INTERROGATOR SET IDENTIFICATION FRIEND OR FOE/SELECTIVE IDENTIFICATION FEATUREIFF/SIF RETURNS FROM F-4 AND RF-4 AIRCRAFT
Roy A Parker 13 May 1976 51 p (AD-A027417 Rep't-76/68S-17) Avail NTIS HC AO4/MF AO1 CSCL 17/9
This report concerns the degraded identification friend or foe/ selective identification feature (IFF/SIF) returns received from F-4 and RF-4 aircraft by radar facilities using the AN/UPX-6 interrogator set. The specific system investigated was an AN/MPN-13 mobile ground control approach facility. The primary cause of the degradation was that the alignment of the KY-5328/ASQ airborne transponders in the subject aircraft was not compatible with the interrogation pulses transmitted by the AN/UPX-6. Author (GRA)

The subject of this report is the measurement of the power handling capability of a biplanar metallic radome. The radome, which is a double layer of slot arrays is simulated by placing a small piece of the radome in a waveguide and using the images to simulate an infinite array. The power handling capability is determined by raising the incident power in the waveguide until the piece of radome breaks down. The incident breakdown power can be simply related to the breakdown power density of the array in free space. Biplanar radome surfaces able to handle power densities in excess of 4 megawatt/sq m are demonstrated. The knowledge of the breakdown power density of the radome will aid the Air Force in designing airborne radar systems. Author (GRA)

CURRENTS INDUCED ON METAL/DIELECTRIC STRUCTURES FOR TRANSVERSE MAGNETIC PLANE WAVE INCIDENCE Final Report
Yeongming Hwang and W D Burnsde Apr 1976 34 p refs (Contract F29601-75-C-0012 AF Proj 1209) (AD-A027047, AFWL-TR-75-282) Avail NTIS HC AO3/MF AO1 CSCL 18/6
This report introduces and formalizes various topological concepts for defining internal interaction problems. A preliminary examination of presently-used internal interaction models is made, and indications of possible improvements are given. Finally a brief discussion of possible statistical approaches to the internal interaction problem is presented. Author (GRA)

STANDARD ENGINEERING INSTALLATION PACKAGE US ARMY AIRFIELD/HELIPORT AIR/GROUND COMMUNICATIONS
28 May 1976 394 p (AD-A0268913 AC-SEIP-010-C-1) Avail NTIS HC AO17/MF AO1 CSCL 17/2
The U.S. Army Communications-Electronics Engineering Installation Agency (USACE/IEA) is responsible for engineering
and installing Communications-Electronics (C-E) equipment for the upgrade of Air Traffic Control (ATC) and Navigational and Landing Aids (NAV/NAVAIDS) at existing U.S. Army Airfields and Heliports (AAF/AHP) worldwide. The purpose of this Standard Engineering Installation Package (SEIP) is to guide all activities in the selection, acquisition, and installation of air-ground communications equipment for AAF/AHP.

N77-15299# General Electric Co Binghamton N Y Aerospace Controls and Electrical Systems Dept

THE 150 KVA SAMARIUM COBALT VSCF STARTER GENERATOR ELECTRICAL SYSTEM, PHASE 1 Final Report
1 Jun 1974 - 29 Mar 1976
(AD-A026518 ACS-1109 AFAPL-TR-76-8) Avail NTIS HC A05/MF A01 CSCL 10/2

Development and construction of a solid rotor using rare earth samarium cobalt magnets for a 150 KVA Variable Speed Constant Frequency Starter/Generator electrical system is described. The system consists of the solid rotor 14-pole starter/generator which, in the generate mode, is driven at 12,000 to 21,000 RPM and a cycloconverter which converts the 9-phase variable frequency power from the generator to a high quality 3-phase 400 Hz 150 KVA power source. In the start mode, the cycloconverter converts 3-phase 400 Hz power to a 9-phase variable frequency variable voltage which is used to power the starter/generator as a synchronous motor.

N77-15410# Southwest Research Inst San Antonio, Tex

LUBRICANT/METALLURGY INTERACTION EFFECTS ON TURBINE ENGINE LUBRICANT LOAD RATING Final Report
1 Mar 1973 - 1 Mar 1976
(AD-A026208 SwRI-RS-638 AFAPL-TR-76-27) Avail NTIS HC A11/MF A01 CSCL 21/5

This investigation has as its objective the development of an improved methodology for aircraft power spur gear design, with primary emphasis on gear-tooth scuffing (scoring) and secondary emphasis on gear-tooth pitting (surface fatigue). Toward this end, computer models are proposed for scoring and pitting as well as for another relevant but less important failure mode, rubbing wear. Basic data for the scoring and pitting models were derived from sliding-rolling disk tests using the AFAPL disk tester. Gear scuffing and pitting tests were also performed, using two WADD gear machines to evaluate the validity of the two models. The scoring model was found to yield scuff-limited gear power-transmitting capacities to about five percent of the actual. However, the several correlating factors employed in the model require independent confirmation and rationalization. The pitting model was found to yield gear pitting lives about ten times the actual due principally to the weak statistical base of the quantitative data available and also a lack of basic understanding of the pitting process in gears. The wear model which is not within the scope of this investigation was not tested. The investigation has revealed many areas where basic understanding or quantitative data are still inadequate. Recommendations for additional research are presented.

N77-15790# National Aeronautics and Space Administration Langley Research Center Langley Station Va

OPTIMAL ONE-SECTION AND TWO-SECTION CIRCULAR SOUND-ABSORBING DUCT LINERS FOR PLANE-WAVE AND MONOPOLE SOURCES WITHOUT FLOW

A discrete frequency study is made of the influence of source characteristics on the optimal properties of acoustically lined uniform and two section ducts. Two simplified sources a plane wave and a monopole are considered in some detail and over a greater frequency range than has been previously studied. Source and termination impedance effects are given limited examination. An example of a turbomachinery source and three associated source variants is also presented. Optimal liner designs based on modal theory approach the Cremer criterion at low frequencies and the geometric acoustics limit at high frequencies. Over an intermediate frequency range optimal two section liners produced higher transmission losses than did the uniform configurations. Source distribution effects were found to have a significant effect on optimal liner design but source and termination impedance effects appear to be relatively unimportant.

N77-15799# Federal Aviation Administration Washington D C

COLLOCATED FLIGHT SERVICE STATION/AIR ROUTE TRAFFIC CONTROL CENTER AVIATION WEATHER UNIT
TASK 1 Final Report
L J Wuebker, E Spring, E Mandel, J Langston (Kansas City Flight Service Station) and F Blake (Mitre Corp., Washington, D C) Jul 1976 74 p (AD-A031099/5) Avail NTIS HC A04/MF A01 CSCL 04/2
A typical Subject Index Listing:

<table>
<thead>
<tr>
<th>SUBJECT HEADING</th>
<th>TITLE</th>
<th>REPORT NUMBER</th>
<th>ACCESSION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>AERODYNAMIC LOADS</td>
<td>Early operation experience on the EBDA/NASA 100 kW wind turbine rotor blade loads</td>
<td>[NASA-TN-X-71691]</td>
<td>N77-10640</td>
</tr>
<tr>
<td>ABBODIABIC LOADS</td>
<td>Typical Subject Index Listing</td>
<td>APRIL 1977</td>
<td></td>
</tr>
<tr>
<td>A-7 AIRCRAFT</td>
<td>Fiber optics application to A-7 aircraft</td>
<td>A77-19242</td>
<td></td>
</tr>
<tr>
<td>A-10 AIRCRAFT</td>
<td>Advanced avionics for the A-10: A decision analysis model</td>
<td>(AD-A027678)</td>
<td>N77-14023</td>
</tr>
<tr>
<td>A-300 AIRCRAFT</td>
<td>Gasdynamic investigations of explosive decompression of one of the cargo holds of the Airbus A 300</td>
<td>[DGIB PAPER 76-209]</td>
<td>A77-16561</td>
</tr>
<tr>
<td>ACOUSTIC DUCTS</td>
<td>A theoretical study of the acoustic impedance of orifices in the presence of a steady grazing flow</td>
<td>A77-17066</td>
<td></td>
</tr>
<tr>
<td>ACOUSTIC IMPEDANCE</td>
<td>Optimal one-section and two-section circular sound-absorbing duct liners for plane-wave and monopole sources without flow</td>
<td>[NASA-TN-D-8348]</td>
<td>N77-15790</td>
</tr>
<tr>
<td>ACOUSTIC MEASUREMENTS</td>
<td>A theoretical study of the acoustic impedance of orifices in the presence of a steady grazing flow</td>
<td>A77-17066</td>
<td></td>
</tr>
<tr>
<td>ACOUSTIC PROPAGATION</td>
<td>Sound shielding on an engine model and comparison with theory</td>
<td>[DGIB PAPER 76-163]</td>
<td>A77-16573</td>
</tr>
<tr>
<td>ACCELERATORS</td>
<td>AE monitoring of rapid crack growth in a production-size wing fatigue test article</td>
<td>A77-16550</td>
<td></td>
</tr>
<tr>
<td>AERODYNAMIC CHARACTERISTICS</td>
<td>Calculation of curves of constant equivalent levels of enduring sound for implementation of the aircraft noise protection law - Methods and preliminary results</td>
<td>A77-16417</td>
<td></td>
</tr>
<tr>
<td>AIRPLANE LOADS</td>
<td>Dual output variable pitch turbofan actuation system</td>
<td>[NASA-CASE-LW-12019-1]</td>
<td>N77-14025</td>
</tr>
<tr>
<td>ARIZONA BABBLES</td>
<td>The development of a carbon fiber-reinforced plastic rudder for the Alpha Jet</td>
<td>[DGIB PAPER 76-193]</td>
<td>A77-16572</td>
</tr>
<tr>
<td>AERODYNAMIC BALANCE</td>
<td>Aerodynamic centre of wing-fuselage combinations</td>
<td>[B52D-76015]</td>
<td>N77-14992</td>
</tr>
</tbody>
</table>

The title is used to provide a description of the subject matter. When the title is insufficiently descriptive of the document content, a title extension is added separated from the title by three hyphens. The NASA or AIAA accession number is included in each entry to assist the user in locating the abstract in the abstract section of this supplement. If applicable, a report number is also included as an aid in identifying the document.
Trends in the application of advanced powder metallurgy in the aerospace industry A77-15153

A-2
<table>
<thead>
<tr>
<th>SUBJECT INDEX</th>
<th>AIRCRAFT DESIGN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multi-site interlaced positive control algorithms for the discrete address beacon system, revision 2 [AD-A026515]</td>
<td>N77-14006</td>
</tr>
<tr>
<td>Standard engineering installation package, NS [AD-A026513]</td>
<td>N77-15270</td>
</tr>
<tr>
<td>Collocated flight service station/air route traffic control center avation weather unit, tank 1 [AD-A031099/5]</td>
<td>N77-15579</td>
</tr>
<tr>
<td>AIR TRANSPORTATION</td>
<td>A new air transport policy for the North Atlantic --- Book</td>
</tr>
<tr>
<td></td>
<td>LTA - Recent developments --- Lighter Than Air ships</td>
</tr>
<tr>
<td></td>
<td>Overview: A look into the future of U.S. air transport - Keynote remarks [AIAA PAPER 77-251]</td>
</tr>
<tr>
<td></td>
<td>[AIAA PAPER 77-274]</td>
</tr>
<tr>
<td></td>
<td>[AIAA PAPER 77-297]</td>
</tr>
<tr>
<td></td>
<td>[AIAA PAPER 77-356]</td>
</tr>
<tr>
<td></td>
<td>Aerodynamic design</td>
</tr>
<tr>
<td></td>
<td>Air transport propulsion for the 1980's</td>
</tr>
<tr>
<td></td>
<td>Structures and Materials</td>
</tr>
<tr>
<td></td>
<td>Effects of artificial stability on configuration design</td>
</tr>
<tr>
<td></td>
<td>Advanced helicopter designs</td>
</tr>
<tr>
<td>AIRBORNE EQUIPMENT</td>
<td>LTA - Recent developments --- Lighter Than Air ships</td>
</tr>
<tr>
<td></td>
<td>The development and utilization of an engine usage monitoring system with particular reference to low cycle fatigue recording</td>
</tr>
<tr>
<td>AIRBORNE/SPACEBORNE COMPUTERS</td>
<td>Computers in flight - An historical perspective of computation in aviation and aerospace [AIAA PAPER 77-271]</td>
</tr>
<tr>
<td></td>
<td>[AIAA PAPER 77-274]</td>
</tr>
<tr>
<td></td>
<td>A versatile computer-generated dynamic flight display [AD-A027419]</td>
</tr>
<tr>
<td>AIRCRAFT ANTENNAS</td>
<td>Measurement of the power handling capabilities of a planar slot array [AD-A027500]</td>
</tr>
<tr>
<td>AIRCRAFT APPROACH SPACING</td>
<td>The Tetering system concept --- for airport traffic control efficiency</td>
</tr>
<tr>
<td>AIRCRAFT COMMUNICATION</td>
<td>A transportable VHF air-traffic control system</td>
</tr>
<tr>
<td></td>
<td>Experimental cognition for qualification of voice warning systems in aircraft [DGLR PAPER 76-211]</td>
</tr>
<tr>
<td>AIRCRAFT COMPONENTS</td>
<td>Gasdynamic investigations of explosive decomposition of one of the cargo holds of the Airbus 300 [DGLR PAPER 76-209]</td>
</tr>
<tr>
<td></td>
<td>Development of fire resistant, non-toxic aircraft interior materials [NASA-CR-137920]</td>
</tr>
<tr>
<td></td>
<td>Thermoplastic polymers for improved fire safety [NASA-TM-X-73185]</td>
</tr>
<tr>
<td></td>
<td>Aircraft design concept [NASA-CASE-LAR-11852-1]</td>
</tr>
<tr>
<td>AIRCRAFT CONFIGURATIONS</td>
<td>Effects of artificial stability on configuration design</td>
</tr>
<tr>
<td></td>
<td>Aircraft configuration noise reduction. Volume 2: Computer program user's guide and other appendices [AD-A030656/3]</td>
</tr>
<tr>
<td></td>
<td>Aircraft configuration noise reduction. Volume 3: Computer program source listing [AD-A030657/1]</td>
</tr>
<tr>
<td></td>
<td>Aerodynamic centre of wing-fuselage combinations</td>
</tr>
<tr>
<td>AIRCRAFT CONSTRUCTION MATERIALS</td>
<td>New technology for fighter aircraft [DGLR PAPER 76-147]</td>
</tr>
<tr>
<td></td>
<td>Application and effect of the results of stability and structural component studies on current and future aircraft [DGLR PAPER 76-167]</td>
</tr>
<tr>
<td></td>
<td>Contribution of materials technology to progress in propulsion system construction [DGLR PAPER 76-156]</td>
</tr>
<tr>
<td></td>
<td>Development of a carbon fiber-reinforced plastic elevator unit for the Alpha Jet [DGLR PAPER 76-196]</td>
</tr>
<tr>
<td></td>
<td>The development of a carbon fiber-reinforced plastic rudder for the Alpha Jet [DGLR PAPER 76-191]</td>
</tr>
<tr>
<td></td>
<td>Testing procedures for carbon fiber reinforced plastic components --- destructive and nondestructive [DGLR PAPER 76-215]</td>
</tr>
<tr>
<td></td>
<td>Stainless steels and alloys in air and space-craft interior materials</td>
</tr>
<tr>
<td>AIRCRAFT CONTROL</td>
<td>Methods and problems concerning the flight control of RPV's [DGLR PAPER 76-204]</td>
</tr>
<tr>
<td></td>
<td>Adaptation of the lateral controls for the VFW 614 during the flight tests [DGLR PAPER 76-221]</td>
</tr>
<tr>
<td></td>
<td>Drive mechanisms of flight vehicle control systems: Analysis and design. Handbook</td>
</tr>
<tr>
<td></td>
<td>Synthesis of an automatic aircraft control system</td>
</tr>
<tr>
<td>AIRCRAFT DESIGN</td>
<td>Flight dynamics and controllability of large jet airplanes --- Russian book</td>
</tr>
<tr>
<td></td>
<td>New technology for fighter aircraft [DGLR PAPER 76-147]</td>
</tr>
<tr>
<td></td>
<td>Experiences concerning construction and testing in the case of a pressurized fuselage section with a sandwich-construction design [DGLR PAPER 76-197]</td>
</tr>
<tr>
<td></td>
<td>Theoretical determination of the characteristic curves of airfoil profiles with flaps, flow separation and ground effect [DGLR PAPER 76-206]</td>
</tr>
<tr>
<td></td>
<td>Airfoil design for a variable-geometry aircraft [DGLR PAPER 76-153]</td>
</tr>
<tr>
<td></td>
<td>Aerodynamic design and flight testing of the VFW 614 [DGLR PAPER 76-208]</td>
</tr>
<tr>
<td></td>
<td>Layout and flight performance of a hypersonic transport /HST/ [DGLR PAPER 76-198]</td>
</tr>
<tr>
<td></td>
<td>Numerical procedures for the calculation of unsteady air forces on oscillating wings and fuselages [DGLR PAPER 76-155]</td>
</tr>
<tr>
<td></td>
<td>Experience related to the development of high-stress carbon fiber-reinforced plastic structures, taking into account the example of a subsonic inhaled ram [DGLR PAPER 76-195]</td>
</tr>
<tr>
<td></td>
<td>Design of airfoils in transonic flow by the integral method</td>
</tr>
<tr>
<td></td>
<td>Safety concepts and innovations on the B-1 Bomber [NASA-TM-X-73185]</td>
</tr>
<tr>
<td></td>
<td>System safety and the Utility Tactical Transport Aircraft System</td>
</tr>
<tr>
<td></td>
<td>The technical concept of the IL-62M. I</td>
</tr>
<tr>
<td></td>
<td>Concorde has designed-in reliability --- hydraulic control system</td>
</tr>
<tr>
<td></td>
<td>Prediction of light aircraft interior noise</td>
</tr>
<tr>
<td></td>
<td>Turbine engine cycle selection procedures --- fighter aircraft engine and airframe design</td>
</tr>
</tbody>
</table>

A-3
AIRCRAFT ENGINES

Variable geometry for high performance aircraft engines

A combined cycle with a partial-oxidation reactor

Comparison of energy performance of different types of heat exchangers

Theoretical aspects of optimization of aviation gas turbine engine design variables

Reliability case history of an airborne air turbine starter

Aircraft propulsion for the 1980's

Cost/benefit analysis of advanced materials technologies for future aircraft turbine engines

Discussion of aircraft air pollution legislation and Naval aircraft operations

Screening analysis and selection of emission reduction concepts for recurrent combustion aircraft engines

Study of unconventional aircraft engines designed for low energy consumption

Aircraft equipment

A study of the failure of joints in composite material fuel cells due to hydraulic ram loading

Aircraft fuel systems

Electrostatics in aviation fuel systems sessions

Aircraft fuels

Liquid hydrogen as propellant for commercial aircraft

Fuel consumption of civil jet transport aircraft

The potential of liquid hydrogens as a military aircraft fuel

Alternative fuels for aviation

Aircraft hazards

Discussion of aircraft air pollution legislation and Naval aircraft operations

Aircraft thought

Overview: A look into the future of U.S. air transport - Keynote remarks

Aircraft instruments

The determination of the true vertical direction in flight --- German book

Low cost radar altimeters

Aircraft landing

The new microwave landing systems (MLS) and their properties, giving particular attention to the German system DLS / DME-Derived Landing System/

MLS - A practical application of microwave technology

Advanced composite landing gear leg

Aircraft maintenance

Maintenance basis for the aircraft Tu-134

Operational experience on engine health monitoring

Aircraft maneuvers

Attitude instability in steady rolling and roll resonance

Flight simulators for air warfare of the future
SUBJECT INDEX

AIRCRAFT NOISE
- Calculation of curves of constant equivalent levels of enduring sound for implementation of the aircraft noise protection law - Methods and preliminary results
 - Air77-16417
- Sound shielding on an engine model and comparison with theory
 - [DGLR PAPER 76-163]
 - Air77-16573
- Sources and characteristics of interior noise in general aviation aircraft
 - Air77-17067
- Prediction of light aircraft interior noise
 - Air77-17069
- Further studies of static to flight effects on fan tone noise using inlet distortion control for source identification
 - [NASA-TR-R-73183]
 - Air77-14027
- The subjective evaluation of noise from light aircraft
 - [NASA-CR-2773]
 - Air77-14615
- Test plan for aircraft runway noise penalty evaluation
 - [AD-A026209]
 - Air77-14639

AIRCRAFT STRUCTURES
- The development of a carbon fiber-reinforced plastic canted for the Alpha Jet
 - [DGLR PAPER 76-193]
 - Air77-16572
- The analytical geometry of a simple skew-hinge mechanism
 - Air77-19046

AIRCRAFT PERFORMANCE
- Parameter identification and study of properties within the scope of flight testing a high-performance aircraft
 - [DGLR PAPER 76-220]
 - Air77-16528
- Layout and flight performance of a hypersonic transport/ /827/
 - [DGLR PAPER 76-198]
 - Air77-16575
- Time-optimal ascent trajectories -- for aircraft flight
 - [DGLR PAPER 76-200]
 - Air77-16585
- A simplified method in flight test techniques for the determination of the range performance of jet aircraft
 - Air77-16600
- Operational behavior of a turboprop engine
 - Air77-17231
- Operational experience with lift plus lift/cruise -- VSTOL aircraft propulsion system performance
 - Air77-17233
- Feasibility of modern airships - Design definition and performance of selected concepts
 - [AIAA PAPER 77-331]
 - Air77-18249
- Investigation of normal shock inlets for highly maneuverable aircraft
 - [NASA-CR-137970]
 - Air77-15026

AIRCRAFT PILOTS
- Experience with the flight simulator
 - Air77-16744

AIRCRAFT PRODUCTION
- Superplastic forming of titanium alloys
 - Air77-17554
- Technology of manufacturing aircraft honeycomb structures /2nd revised and enlarged edition/ --- Russian book
 - Air77-17725
- AK monitoring of rapid crack growth in a production-size wing fatigue test article --- Acoustic Emission
 - Air77-18650

AIRCRAFT RELIABILITY
- Concorde has designed-in reliability -- hydraulic control system
 - Air77-16749
- The impact of dispatchability and civil airworthiness requirements on reliability and engine control system design
 - Air77-17235

AIRCRAFT SAFETY
- Crack propagation in the reinforced structure of a transport aircraft, calculation-experiment comparison
 - [DGLR PAPER 76-218]
 - Air77-16584
- Safety concepts and innovations on the B-1 Bomber
 - Air77-16734
- System safety and the Utility Tactical Transport Aircraft System
 - Air77-16735

AIRCRAFT SYSTEMS
- System safety in the Advanced Attack Helicopter
 - Air77-16736
- The hidden passenger --- hazardous air cargo and flight safety
 - Air77-16737
- Smoke emission of aircraft seat materials
 - Air77-17482
- Environmental degradation of fuels, fluids and related materials for aircraft
 - [AD-A026908]
 - Air77-15214

AIRCRAFT STABILITY
- Aircraft identification and study of properties within the scope of flight testing a high-performance aircraft
 - [DGLR PAPER 76-320]
 - Air77-16528
- Flight-characteristics requirements concerning static stability in supersonic flight
 - Air77-16536
- Theoretical and experimental investigation of the departure characteristics of external stores which are dropped from an aircraft
 - Air77-16569
- Handling qualities evaluation of helicopters with different stability and control characteristics
 - Air77-17409
- Attitude instability in steady rolling and roll resonance
 - Air77-17494
- A modal control technique and its application to stabilization of rotorcraft flight
 - Air77-19039

STOLAND
- [NASA-CR-137972]
 - Air77-14019

AIRCRAFT AIRFOILS
- Development of single-flight cycles for fatigue tests, based on operational stresses, in the case of large aircraft components
 - [DGLR PAPER 76-216]
 - Air77-16543
- Application and effect of the results of stability and structural component studies on current and future aircraft
 - [DGLR PAPER 76-167]
 - Air77-16550
- Holographic determination of thermal and mechanical deformations in the case of structural components and structures of aeronautical and astronautical technology
 - [DGLR PAPER 76-180]
 - Air77-16587
- Technology of manufacturing aircraft honeycomb structures /2nd revised and enlarged edition/ --- Russian book
 - Air77-17725
- Analysis of multicontour thin-wall structures by the cell method
 - Air77-17970

AIRCRAFT WINDS
- Scanning laser-velocimeter surveys and analysis of multiple vortex wakes of an aircraft
 - [NASA-TR-X-73169]
 - Air77-13985
- Predictions of light aircraft horizontal tail onset flows: A review and analysis
 - Air77-15025

AIRFOIL PROFILES
- Theoretical determination of the characteristic curves of airfoil profiles with flaps, flow separation and ground effect
 - [DGLR PAPER 76-206]
 - Air77-16546
- Design of airfoils in transonic flow by the integral method
 - Air77-16599
- Experimental investigation of subsonic turbulent separated boundary layers on an airfoil
 - Air77-17496
- Functional representation of the kinematic properties of two-dimensional blade cascades
 - Air77-17536

AIRFOILS
- A synthesis of unsteady aerodynamic effects including stall hysteresis
 - Air77-17408
- Measurement of post-separated flowfields on airfoils
 - Air77-17499
- Two-dimensional aerodynamic characteristics of several rotorcraft airfoils at Mach numbers from 0.35 to 0.90
 - [NASA-TR-X-73990]
 - Air77-14999

A-5
AUTOMATED TEST EQUIPMENT
Optimizing GTE tests on the basis of sequential Bayesian procedures — Gas Turbine Engine A77-17957
Estimation of automated GTE test system characteristics — Gas Turbine Engine A77-17958

AUXILIARY POWER SOURCES
Some experience with small engines — onboard combined starter and auxiliary power gas turbine engine A77-17959

AVIONICS
Sneak circuit analysis of military systems A77-16732
Data item description for acquisition of detailed performance characteristics and signal tracing diagrams for electronics [AD-A026953] W77-14021
Research and development in support of Canadian military air requirements W77-14984

AXIAL FLOW
Some experimental investigations on the improvement of the off-design performance of a single-stage axial flow fan A77-17242
Supersonic compressors with subsonic and supersonic axial inlet component A77-17243

AXIAL FLOW TURBINES
Reducing secondary losses by blowing cold air in a turbine [DGLR Paper 76-164] A77-16558
Small, low cost, expendable turbojet engine. 2: Performance characteristics [NASA-RT-F-3962] W77-14031

AXISYMMETRIC FLOW
Wavelength in axisymmetrical steady supersonic free jets A77-16421

B-1 AIRCRAFT
Safety concepts and innovations on the B-1 Bomber A77-16734
Internal interaction analysis. Topological concepts and needed model improvements [AD-A027047] W77-15250

BASE PRESSURE
Wake region perturbation for base drag reduction [AD-A027047] W77-13998

BAYES THEOREM
Optimizing GTE tests on the basis of sequential Bayesian procedures — Gas Turbine Engine A77-17957

BEACONS
Development of a discrete address beacon system [AD-A030368/5] W77-14000

BEAMS (SUPPORTS)
Analysis of multicontour thin-wall structures by the cell method A77-17970

BLAST BODIES
Supersonic gas flow around slender blunt body of revolution A77-17961

BO-105 HELICOPTER
High-speed tests with the helicopter BO 105 RHE A77-16590
Ringless rotor for the larger helicopters [DGLR Paper 76-223] A77-16590

BODIES OF REVOLUTION
Supersonic gas flow around slender blunt body of revolution A77-17961

BOEING 747 AIRCRAFT
Bated aerodynamic characteristics investigation for the 0.094 scale model TE 1065 (Boeing 747-100) of the 747 CAB and the 0.0405 scale model (43-0) of the space shuttle orbiter in the NASA Langley Tucker transition research wind tunnel (CA8), volume 3 A77-15083
A study of diffraction of electromagnetic waves around large stationary aircraft and its effects on instrument landing system guidance signals W77-15223

BOUNDARY LAYER CONTROL
Reducing secondary losses by blowing cold air in a turbine A77-16558
Shock wave boundary layer interaction control by means of wall suction in a supersonic cascade A77-17285
Two-dimensional subsonic wind tunnel evaluation of a 20-percent-thick circulation control airfoil [AD-A027164] W77-15005

BOUNDARY LAYER EQUATIONS
Self-adaptive difference method for the effective solution of computationally complex problems of boundary layer theory A77-16564

BOUNDARY LAYER FLOW
Boundary layer calculation of an effusion cooled turbine blade A77-17255

BOUNDARY LAYER SEPARATION
Experimental investigation of subsonic turbulent separated boundary layers on an airfoil A77-17496

BOUNDARY LAYER TRANSITION
Calculation of three-dimensional boundary layers on sweptback wings [DGLR Paper 76-187] A77-16566

BOUNDARY LAYERS
A wall interference problem in a hybrid tunnel at transonic speeds A77-17562

BOUNDARY VALUE PROBLEMS
Dynamics of elastic curvilinear rod with free ends A77-17956

BOX BEARS
The determination of collapse load and energy absorbing properties of thin walled beam structures using matrix methods of analysis A77-18348

BUFFETING
Self-excited oscillations in supersonic flow A77-16413

CANADA
Research and development in support of Canadian military air requirements W77-14984

CABARET CONFIGURATIONS
Ride control for high speed ground transportation including passenger-seat dynamics and active aerodynamic suspensions A77-17824

CARBON FIBER REINFORCED PLASTICS
Development of a carbon fiber-reinforced plastic elevator unit for the Alpha Jet [DGLR Paper 76-194] A77-16571
Experience related to the development of high-stress carbon fiber-reinforced plastic structures, taking into account the example of a subsonic inlet ramp [DGLR Paper 77-192] A77-16581
PMI polyimide/graphite fiber composite fan blades [NASA-CR-135113] W77-15207
Aircraft design concept [NASA-CASE-LAB-11652-1] A77-15027

COMMUNICATION EQUIPMENT
Standard engineering installation package. US Army field/airport air/ground communications [AD-A026913] A77-15274

COMPONENT RELIABILITY
A statistical method for the prediction of component low cycle fatigue life A77-17254

COMPOSITE MATERIALS
Forecasting the elastic properties of composites reinforced by discrete fibers A77-18467
A study of the failure of joints in composite material for cells due to hydraulic ram loading [AD-A027250] A77-19016

COMPOSITE STRUCTURES
Application and effect of the results of stability and structural component studies on current and future aircraft [DGLR PAPER 76-167] A77-16550
Experience related to the development of high-stress carbon fiber-reinforced plastic structures, taking into account the example of a supersonic inlet ramp [DGLE PAPER 76-195] A77-16581
Advanced composite landing gear leg [AIAA PAPER 77-308] A77-18229

COMPRESSIBLE FLOW
Compressible flow, temperature and life calculations with turbine blades A77-17253
Simplified solution of the compressible subsonic lifting surface problem [AD-A027516] A77-13994

COMPRESSOR BLADES
The effect of twist on the aerodynamic investigation of axial compressor blades A77-16786
Flutter analysis of a cascade of rotor blades [AIAA PAPER 77-308] A77-18233

COMPRESSOR EFFICIENCY
The effect of twist on the aerodynamic investigation of axial compressor blades A77-16786

COMPRESSOR ROTORS
Instability phenomena in the flow passages of a gas turbine engine compressor A77-17751

ENGINE COMPRESSION SYSTEM SURGE LINE EVALUATION TECHNIQUES FOR HIGH PRESSURE TESTING

Advanced compressor seal for turbine engines [AD-A026916] A77-14491

COMPUTER DESIGN
Computers in flight - An historical perspective of computation in aviation and aerospace [AIAA PAPER 77-271] A77-18210

COMPUTER PROGRAMMING
Future impact of computers on military aviation [AIAA PAPER 77-273] A77-18212

COMPUTER PROGRAMS
Compressible flow, temperature and life calculations with turbine blades A77-17253
Design comparison between helicopter and tilt rotor aircraft [AD-A027559] A77-14017
A versatile computer-generated dynamic flight display [AD-A027419] A77-14024
Predictions of light aircraft horizontal tail onset flows: A review and analysis A77-15025

COMPUTER SYSTEMS PROGRAMS
Development of a discrete address beacon system [AD-A030368/5] A77-14000

COMPUTER TECHNOLOGY
Expanded use of computers in air transportation [AIAA PAPER 77-274] A77-18213

COMPUTERIZED DESIGN
Prediction of light aircraft interior noise A77-17069

CONCORDE AIRCRAFT
Concorde has designed-in reliability --- hydraulic control system A77-16769
Concorde and the climate A77-18472

CONFERENCES
Hovering craft, hydrol and advanced transit systems; Proceedings of the Second International Conference, Amsterdam, Netherlands, May 17-20, 1976 A77-17026
International Symposium on Air Breathing Engines, 3rd, Munich, West Germany, March 7-12, 1976, Proceedings A77-17226
Fibers and integrated optics; Proceedings of the Seminar, Boston, Va., March 22, 23, 1976 A77-19238

CONGRESSIONAL REPORTS
Alternative fuels for aviation [GPO-79-54c] A77-15212

COURT CASES
The effect of inclined trailing edges and membrane weight on the supersonic flow past conical paragliders with small camber A77-16598

COST EFFECTIVENESS
Hypersonic flow in converging conical channel A77-17971

COST EFFECTIVENESS
Hypersonic flow in converging conical channel A77-17971

COST/RISK ANALYSIS
A modal control technique and its application to stabilization of rotorcraft flight A77-19039

COST/BENEFIT ANALYSIS
Flight dynamics and controllability of large jet airplanes --- Russian book A77-16175
Handling qualities evaluation of helicopters with different stability and control characteristics A77-17409

COST/BENEFIT ANALYSIS

CONVERTIBLE ROCKET NUCES
Hypersonic flow in converging conical channel A77-17971

COOLING SYSTEMS
Efficiency of turbine-blade cooling by air injection through longitudinal slots A77-16325
The application of advanced turbine cooling technology in the NT81 Engine A77-17252
Boundary layer calculation of an effusion cooled turbine blade A77-17255

CORROSION RESISTANCE
Progress in surface finishing and coatings A77-18545

COST ANALYSIS
Life cycle cost impact on design considerations for civil transport aircraft propulsion systems A77-17227
A new development concept for gas turbine engine optimize life cycle costs A77-17228

COST EFFECTIVENESS
Turbojet engine cycle selection procedures --- fighter aircraft engine and airframe design A77-17257
CRACK PROPAGATION

CRACK PROPAGATION

Crack propagation in the reinforced structure of a transport aircraft, calculation-experiment correlation
[DGLR PAPER 76-218] A77-16544

Electroelastics —— phenomenon for investigating metal surface fatigue cracks
A77-17080

A method of monitoring of rapid crack growth in a production-size wing fatigue test article —— Acoustic Emission
A77-18650

CROSS FLOW

Crossflow performance of lift-fans in tandem —— for V/STOL transport aircraft
A77-17265

CROUSE MISSILES

Structural studies of oblique folding wings
[AD-4025712] A77-14018

CROSSWIND PANELS

Fuel consumption of civil jet transport aircraft
A77-17234

Simulation test results for lift/cruise fan research and technology aircraft

Low-frequency noise reduction of lightweight airframe structures

The design and operating features of Vesper Thorncroft skirts
A77-17038

CV-340 AIRCRAFT

STOLLAND
[NASA-CR-137972] A77-14019

CYCLIC LOADS

A statistical method for the prediction of component low cycle fatigue life
A77-17254

CYLINDRICAL SHELLS

Experiences concerning construction and testing in the case of a pressurized fuselage section with a sandwich-construction design
[DGLR PAPER 76-197] A77-16530

DAMPING

Experimental roll-damping, m d m , and static-stability characteristics of two slender missile configurations at high angles of attack
(0 to 90 degrees) and Mach numbers 0.2 through 2.5
[AD-4027027] A77-15004

DATA ACQUISITION

Data item description for acquisition of detailed performance characteristics and signal tracing diagrams for electronics
[AD-4026953] A77-14021

DATA LINKS

Development of a discrete address beacon system
[AD-A030368/5] A77-14000

DATA PROCESSING

Mathematical model for lift/cruise fan V/STOL aircraft simulator programming data
[NASA-CR-151916] A77-14037

DATA TRANSMISSION

Mobile data radio —— transmission quality between stationary transmitter to receiver in motion
[DGLR PAPER 76-166] A77-16540

DE HAVILLAND AIRCRAFT

STOL developments
A77-14986

DECISION MAKING

Advanced avionics for the A-10: A decision analysis model
[AD-A027678] A77-14023

DEFENSE PROGRAM

New technology for fighter aircraft
[DGLR PAPER 76-147] A77-16529

Methods and problems concerning the flight control of BPV's
[DGLR PAPER 76-204] A77-16508

DEFORMABILITY

Holographic determination of thermal and mechanical deformations in the case of structural components and structures of aeronautical and astronautical technology
[DGLR PAPER 76-180] A77-16587

DEGRADATION

Radar special evaluation report: Degradation of AN/DFX-6 interrogator set identification friend or foe/see/selective identification feature IFP/IFP returns from F-4 and EF-4 aircraft
[AD-A0274177] A77-15241

DELTA WINGS

Investigation of airfoils near the ground with nonsymmetrical flow past them
[DGLR PAPER 76-152] A77-16539

Experiments on supersonic lee-side flow past delta wings
[DGLR PAPER 76-154] A77-16562

On the mechanism of vortex breakdown point stabilization for low subsonic flow around a delta wing
A77-17968

Incompressible flow over delta wings
[AI 77 PAPER 77-320] A77-18242

DESIGN ANALYSIS

VT-2 — 100 ton amphibious hovercraft
A77-17037

Analytical and experimental studies of an axial compressor with co-rotating stators
A77-17240

Ejectors for supersonic transport aircraft —
Analytical method
A77-17262

A77-17548

DESTRUCTIVE TESTS

Testing procedures for carbon fiber reinforced plastic components — destractive and nondestractive
[DGLR PAPER 76-215] A77-16580

DIELECTRICS

Currents induced on metal/dielectric structures for transverse magnetic plane wave incidence
[AD-A026896] A77-15253

DIFFERENTIAL EQUATIONS

A technique for reducing the differential wing-flutter equations to integral equations
A77-16311

Theory of small-aspect-ratio wing analysis using discrete-continuous calculation scheme —
Numerical integration of resolving equations
A77-17953

DIGITAL COMPUTERS

Future impact of computers on military aviation
[AI 77 PAPER 77-273] A77-18212

DIGITAL TECHNIQUES

Analysis of inherent errors in asynchronous redundant digital flight control systems
[AD-A026956] A77-14035

Analysis and design of digital output interface devices for gas turbine electronic controls
[NASA-CR-135135] A77-15044

DIRECTIONAL CONTROL

Hovercraft ground contact directional control devices
A77-17032

DISPLAY DEVICES

A versatile computer-generated dynamic flight display
[AD-A027419] A77-14024

DISTANCE MEASURING EQUIPMENT

The new microwave landing systems /DLS/ and their properties, giving particular attention to the German system DLS /DHE-Denved Landing System/
[DGLR PAPER 76-176] A77-16541

DRAG REDUCTION

Determining annual drag of nonslender body
A77-17975

Wind tunnel investigation of devices to reduce bus aerodynamic drag
[AI 77 PAPER 77-307] A77-18232

Wake region perturbation for base drag reduction
[AD-A0269747] A77-13998

DUCKED FLOW

Investigation of the flow pattern at the engine face and methods of the flow pattern simulation at supersonic flight speed
A77-17260

DYNAMIC CONTROL

Optimal input design for parameter identification of dynamic systems
A77-15048
SUBJECT INDEX

ELECTRIC GLOSSARY
A synthesis of unsteady aerodynamic effects including stall hysteresis
ELECTRICITY
Longitudinal stability in supersonic and hypersonic flight
ELECTRIC EXCERPT
Advanced compressor seal for turbine engines
ELECTRICAL ISSUES
Electric power supply in the case of airports. I
ELECTRICITY ETHICS
Study of unconventional aircraft engines designed for low energy consumption
ELECTRICAL PROPERTIES
Energy consumption characteristics of transports
ELECTRICITY ETHICS
Energy consumption characteristics of transports
ELECTRICITY ETHICS
The relationship between the mean depression in a vortex and its rotational kinetic energy
ELECTRICITY ETHICS
The seat belt light is on airline industry
ELECTRICITY ETHICS
Dynamics of elastic curvilinear rod with free ends
ELECTRICITY ETHICS
Forecasting the elastic properties of composites
ELECTRICITY ETHICS
A new air transport policy for the North Atlantic
ELECTRICITY ETHICS
A study of diffraction of electromagnetic waves
ELECTRICITY ETHICS
Theoretical aspects of optimization of aviation
ELECTRICITY ETHICS
Contribution of materials technology to progress
ELECTRICITY ETHICS
A comparison of two transonic compressors designed
ELECTRICITY ETHICS
Variable geometry for high performance aircraft
ELECTRICITY ETHICS
Aircraft considerations for advanced S.S.T.
ELECTRICITY ETHICS
Results of further investigations of a new concept
ELECTRICITY ETHICS
A premised, variable area combustor for a small helicopter/gas turbine
ELECTRICITY ETHICS
Pressure ratio optimization criteria in aircraft
electricity ETHICS
Pressure ratio optimization criteria in aircraft
electricity ETHICS
Hydromechanics in -aviation fuel systems sessions
ELECTRICITY ETHICS
Some experience with small engines onboard
ELECTRICITY ETHICS
The application of microprocessors to the control
ELECTRICITY ETHICS
Aircraft design and materials technology
ELECTRICITY ETHICS
A new development concept for gas turbine engine
ELECTRICITY ETHICS
Aircraft considerations for advanced S.S.T.
ELECTRICITY ETHICS
A new development concept for gas turbine engine
ELECTRICITY ETHICS
A comparison of two modern approaches to propulsion
ELECTRICITY ETHICS
A new development concept for gas turbine engine
ELECTRICITY ETHICS
Variable geometry for high performance aircraft
ELECTRICITY ETHICS
Aircraft considerations for advanced S.S.T.
ELECTRICITY ETHICS
A new development concept for gas turbine engine
ELECTRICITY ETHICS
Aircraft considerations for advanced S.S.T.
ELECTRICITY ETHICS
A new development concept for gas turbine engine
ELECTRICITY ETHICS
Aircraft considerations for advanced S.S.T.
ELECTRICITY ETHICS
A new development concept for gas turbine engine
ELECTRICITY ETHICS
Aircraft considerations for advanced S.S.T.
ELECTRICITY ETHICS
A new development concept for gas turbine engine
ELECTRICITY ETHICS
Aircraft considerations for advanced S.S.T.
ELECTRICITY ETHICS
A new development concept for gas turbine engine
ELECTRICITY ETHICS
Aircraft considerations for advanced S.S.T.
ELECTRICITY ETHICS
A new development concept for gas turbine engine
ELECTRICITY ETHICS
Aircraft considerations for advanced S.S.T.
ELECTRICITY ETHICS
A new development concept for gas turbine engine
ELECTRICITY ETHICS
Aircraft considerations for advanced S.S.T.
ENGINE FAILURE

Analysis of parameters and characteristics of a bypass turbojet engine operating in a cycle with stepwise heat removal A77-17665

ENGINE NOISE

Self-correcting control for a turbofan engine A77-17236

ENGINE INHIBITS

Test data report: Low speed wind tunnel tests of a full scale, fixed geometry inlet, with engine, at high angles of attack [NASA-CR-151927] A77-14996

ENGINE MONITORING INSTRUMENTS

The development and utilization of an engine usage monitoring system with particular reference to low cycle fatigue recording A77-17229

Operational experience on engine health monitoring A77-17230

Operational behaviour of a turboprop engine A77-17231

ENGINE NOISE

Applification of jet noise through engine noise [DGLR PAPER 76-162] A77-16538

Sound shielding on an engine model and comparison with theory [DGLR PAPER 76-163] A77-16573

Sources and characteristics of interior noise in a general aviation aircraft A77-17067

Heat diffusion as a source of aerodynamic sound A77-17413

Engine noise - A look ahead A77-19015

Apparatus and method for jet noise suppression [NASA-CASE-LAB-11903-1] A77-15036

ENGINE PARTS

A statistical method for the prediction of component low cycle fatigue life A77-17254

ENGINE STARTERS

Some experience with small engines --- onboard combined starter and auxiliary power gas turbine engine A77-17232

Reliability case history of an airbornie air turbine starter A77-18937

The 150 KVA samarium cobalt VSCF starter generator electrical system, phase 1 [AD-A026518] A77-15299

ENGINE TESTS

Theoretical and experimental results of the investigation of two different supersonic compressor stages [DGLR PAPER 76-166] A77-16586

Operational behaviour of a turboprop engine A77-17231

Engine compression system surge line evaluation techniques --- fuel step technique for high pressure testing A77-17241

Optimizing GTE tests on the basis of sequential Bayesian procedures --- Gas Turbine Engine A77-17957

Estimation of automated GTE test system characteristics --- Gas Turbine Engine A77-17958

ENGINE NOISE

Concorde and the climate A77-18472

ERROR ANALYSIS

Analysis of inherent errors in asynchronous redundant digital flight control systems [AD-A026595] A77-14035

ERROR CORRECTING DEVICES

A wall interference problem in a hybrid tunnel at transonic speeds [DGLR PAPER 76-169] A77-16562

EUROPEAN SPACE AGENCY

Deutsche Gesellschaft fuer Luft- und Raumfahrt, Yearbook 1975, Volumes 1 & 2 A77-18600

EXHAUST GASES

Empirical validation of turbine engine exhaust measurements A77-16372

Standard reference gases and analytical procedures for use in gas turbine exhaust measurements A77-16373

Status review of NASA programs for reducing aircraft gas turbine engine emissions A77-17246

Emissions from gas turbine combustors, I - An experimental study on a model combustor A77-18646

Emissions from gas turbine combustors, II - Analytical model and numerical analysis A77-18647

Screening analyses and selection of emission reduction concepts for intermittent combustion aircraft engines [NASA-CR-135074] A77-15038

EXHAUST NOZZLES

Wing surface-jet interaction characteristics of an upper-surface blown model with rectangular exhaust nozzles and a radius flap A77-13998

EXPLOSIVE DECOMPRESSION

Gaseous dynamic investigations of explosive decompression of one of the cargo holds of the Airbus A 300 A77-16561

EXTERNAL STORES

Theoretical and experimental investigation of the departure characteristics of external stores which are dropped from an aircraft [DGLR PAPER 76-202] A77-16569

EXTERNALLY BLOWN FLAPS

Wing surface-jet interaction characteristics of an upper-surface blown model with rectangular exhaust nozzles and a radius flap [NASA-TM-D-8107] A77-13998

F-8 AIRCRAFT

Optimal input design for parameter identification of dynamic systems A77-15048

FAIL-SAFE SYSTEMS

Safety concepts and innovations on the B-1 Bomber A77-16734

Electric power supply in the case of airports, I A77-16782

Self-correcting control for a turbofan engine A77-17236

FANS

Some experimental investigations on the improvement of the off-design performance of a single stage axial flow fan A77-17242

FATIGUE (MATERIALS)

The development and utilization of an engine usage monitoring system with particular reference to low cycle fatigue recording A77-17229

FATIGUE LIFE

Compressible flow, temperature and life calculations with turbine blades A77-17253

A statistical method for the prediction of component low cycle fatigue life A77-17254

FATIGUE TESTS

Development of single-flight cycles for fatigue tests, based on operational stresses, in the case of large aircraft components [DGLR PAPER 76-216] A77-16593

AE monitoring of rapid crack growth in a production-size wing fatigue test article --- Acoustic Emission A77-18650

FEASIBILITY ANALYSIS

Hovercraft operation in the Torres Strait between Australia and Papua New Guinea A77-17044

Feasibility of modern airships - Design definition and performance of selected concepts [AIAA PAPER 77-331] A77-18269

F-8 AIRCRAFT

Optimal input design for parameter identification of dynamic systems A77-15048

FAIL-SAFE SYSTEMS

Safety concepts and innovations on the B-1 Bomber A77-16734

Electric power supply in the case of airports, I A77-16782

Self-correcting control for a turbofan engine A77-17236

FANS

Some experimental investigations on the improvement of the off-design performance of a single stage axial flow fan A77-17242

FATIGUE (MATERIALS)

The development and utilization of an engine usage monitoring system with particular reference to low cycle fatigue recording A77-17229

FATIGUE LIFE

Compressible flow, temperature and life calculations with turbine blades A77-17253

A statistical method for the prediction of component low cycle fatigue life A77-17254

FATIGUE TESTS

Development of single-flight cycles for fatigue tests, based on operational stresses, in the case of large aircraft components [DGLR PAPER 76-216] A77-16593

AE monitoring of rapid crack growth in a production-size wing fatigue test article --- Acoustic Emission A77-18650

FEASIBILITY ANALYSIS

Hovercraft operation in the Torres Strait between Australia and Papua New Guinea A77-17044

Feasibility of modern airships - Design definition and performance of selected concepts [AIAA PAPER 77-331] A77-18269
SUBJECT INDEX

FEEDBACK CONTROL
- Research in multicyclic and active control of rotary wings
 [A77-17406]

FIBER OPTICS
- Fibers and integrated optics; Proceedings of the Seminar, Reston, Va., March 22, 23, 1976
 [A77-19238]
- Fiber optics application to A-7 aircraft --- internal data-signal transmission system
 [A77-19242]

FLIGHT AIRCRAFT
- New technology for fighter aircraft
 [DGLR PAPER 76-147] [A77-16529]
- Airfoil design for a variable-geometry aircraft
 [DGLR PAPER 76-153] [A77-16554]
- Spin entry of aircraft
 [A77-16947]
- Turbine engine cycle selection procedures --- fighter aircraft engine and airframe design
 [A77-17257]
- A review of several propulsion integration features applicable to supersonic-cruise fighter aircraft
 [NASA-TM-X-37991] [A77-15039]

FLIGHT COOLING
- Study on film cooling of turbine blades. I - Experiments on film cooling with injection through holes near leading edge
 [A77-18645]

FINITE DIFFERENCE THEORY
- Prediction of the flow and combustion processes in a three-dimensional combustion chamber
 [A77-17251]

FIREPROOFING
- Development of fire resistant, non toxic aircraft interior materials
 [NASA-CR-137922] [A77-14205]

FLAMMABILITY
- Thermoplastic polymers for improved fire safety
 [NASA-TM-X-37185] [A77-14206]

FLAT PLATES
- The velocity field of small Mach number Knudsen flow on the edge of a disturbed plate
 [A77-16422]

FLIGHT CHARACTERISTICS
- Flight dynamics and controllability of large jet airplanes --- Russian book
 [A77-16175]
- Flight-characteristics requirements concerning static stability in supersonic flight
 [DGLR PAPER 76-199] [A77-16536]
- A simplified method in flight test techniques for the determination of the range performance of jet aircraft
 [A77-16600]
- The technical concept of the IL-62M. I
 [A77-16740]
- Spin entry of aircraft
 [A77-16947]
- Analysis of the aliasing characteristics of subsonic jet aircraft --- German book
 [A77-18960]

FLIGHT CONTROL
- Parameter identification and study of properties within the scope of flight testing a high-performance aircraft
 [DGLR PAPER 76-220] [A77-16520]
- Methods and problems concerning the flight control of BWV's
 [DGLR PAPER 76-208] [A77-16545]
- Analysis of inherent errors in asynchronous redundant digital flight control systems
 [AD-A026954] [A77-14035]

FLIGHT CRISIS
- Experience with the flight simulator
 [A77-16744]
- Flight simulators for air warfare of the future
 [AIAA PAPER 77-327] [A77-18246]

FLIGHT INSTRUMENTS
- The determination of the true vertical direction in flight --- German book
 [A77-19185]
- A versatile computer-generated dynamic flight display
 [AD-A0274199] [A77-14024]

FLIGHT OPTIMISATION
- Time-optimal ascent trajectories --- for aircraft flight
 [DGLR PAPER 76-200] [A77-16585]

FLIGHT PATHS
- Theoretical and experimental investigation of the departure characteristics of external stores which are dropped from an aircraft
 [DGLR PAPER 76-202] [A77-16569]

FLIGHT SAFETY
- Experimental cognition for qualification of voice warning systems in aircraft
 [DGLR PAPER 76-211] [A77-16531]
- The hidden passenger --- hazardous air cargo and flight safety
 [A77-16737]

FLIGHT SIMULATION
- Investigation of the flow pattern at the engine face and methods of the flow pattern simulation at supersonic flight speed
 [DGLR PAPER 76-221] [A77-17260]
- Simulation test results for lift/cruise fan research and technology aircraft
 [NASA-CR-137979] [A77-14007]
- Small, low cost, expendable turbojet engine. 2: Performance characteristics
 [NASA-CR-151916] [A77-14037]

FLIGHT SIMULATOR
- Experience with the flight simulator
 [A77-16744]
- Flight simulators for air warfare of the future
 [AIAA PAPER 77-327] [A77-18246]
- Mathematical model for lift/cruise fan T/STOL aircraft simulator programming data
 [NASA-CR-151916] [A77-14037]

FLIGHT TESTS
- Parameter identification and study of properties within the scope of flight testing a high-performance aircraft
 [DGLR PAPER 76-220] [A77-16520]
- Aerodynamic design and flight testing of the VFV 614
 [DGLR PAPER 76-208] [A77-16550]
- High-speed tests with the helicopter BO 105 BHE
 [DGLR PAPER 76-222] [A77-16567]
- Adaptation of the lateral controls for the VFV 614 during the flight tests
 [DGLR PAPER 76-221] [A77-16574]
- Layout and flight performance of a hypersonic transport /HST/
 [A77-16757]
- A simplified method in flight test techniques for the determination of the range performance of jet aircraft
 [A77-16600]
- Fiber optics application to A-7 aircraft --- internal data-signal transmission system
 [A77-16960]

FLOW DISTORTION
- Investigation of the flow pattern at the engine face and methods of the flow pattern simulation at supersonic flight speed
 [A77-17260]

FLOW DISTRIBUTION
- Investigation of the flow pattern at the engine face and methods of the flow pattern simulation at supersonic flight speed
 [A77-17260]
- Measurement of post-separated flowfields on airfoils
 [A77-17499]
- Scanning laser-velocimeter surveys and analysis of multiple vortex wakes of an aircraft
 [NASA-TM-X-37169] [A77-13985]

FLOW EQUATIONS
- Three-dimensional turbomachine flow equations expressed with respect to non-orthogonal curvilinear coordinates and methods of solution
 [A77-17239]

FLOW STABILITY
- Experiments on vortex stability --- on laminar flow wings in wind tunnels
 [A77-17167]

FLOW THEORY
- Max-Planck-Institut fur Stromungsforshung Goettingen 1922-1975: Publication celebrating the 50th anniversary of the Institut --- German and English book
 [A77-16401]
FLOW VELOCITY
One-dimensional analysis of the properties of the elementary supersonic axial-flow compressor cascade
A77-17240
Oblique slot blowing into a supersoniic laminar boundary layer
A77-17428
Incompressible flow over delta wings
A77-18242
FLOW VELOCITY
The velocity field of small-Mach number Knudsen flow on the edge of a disturbed plate
A77-16422
Application of the method of causality to the study of noise from a supersonic jet
A77-17349
Study on film cooling of turbine blades. I - Experiments on film cooling with injection through holes near leading edge
A77-16645
FLOW INJECTION
Fundamental studies of turbulent boundary layers with injection or suction through porous wall. IV - Application of fundamental theoretical analysis to cascaded blades with injection or suction and cascade tests
A77-16299
FLOW MECHANICS
Max-Planck-Institut fuer Stromungsforschung Goettingen 1925-1975: Publication celebrating the 50th anniversary of the Institut --- German and English book
A77-16401
FLUTTER
Preliminary study of effects of winglets on wing flutter
[NASA-TM-1-3433] N77-13988
FLUTTER ANALYSIS
A technique for reducing the differential wing-flutter equations to integral equations
A77-16311
Calculation of pressure distribution on oscillating airfoils in supersonic flow
[DGLR PAPER 76-156] A77-16532
Numerical procedures for the calculation of unsteady air forces on oscillating wings and fuselages
[DGLR PAPER 76-155] A77-16578
Flutter analysis of a cascade of rotor blades
[NASA PAPER 77-308] A77-18233
FOLDING STRUCTURES
Structural studies of oblique folding wings
[AIAA PAPER 77-308] A77-14018
FORCED VIBRATION
Investigation of helicopter airframe normal modes
A77-17410
FORECASTING
The seat belt light is on - - - airline industry economic assessment and forecasts
A77-19175
PRACTOGRAPHY
AE monitoring of rapid crack growth in a production-size wing fatigue test article --- Acoustic Emission
A77-18650
FRACTURE STRENGTH
Optimum distribution of material in rotating disks found from strength conditions
A77-17761
FREE JETS
Wavelength in axisymmetric steady supersonic free jets
A77-17761
FREQUENCY ASSIGNMENT
Mobile data radio --- transmission quality between stationary transmitter to receiver in motion
[DGLR PAPER 76-168] A77-16540
FUEL CELLS
A study of the failure of joints in composite material fuel cells due to hydraulic ram loading
[AD-802758] A77-14016
FUEL CORROSION
Unsteady combustion of fuel spray in jet-engine after-burners
A77-17249
Numerical methods for calculating the performance of air-breathing combustion chambers
A77-17250
FUEL CONSUMPTION
Fuel consumption of civil jet transport aircraft
A77-17734
The metering system concept --- for airport traffic control efficiency
A77-17484
Theoretical aspects of optimization of aviation gas turbine engine design variables
A77-17762
Analysis of parameters and characteristics of a bypass turbojet engine operating in a cycle with stepwise heat removal
A77-17765
Study of unconventional aircraft engines designed for low energy consumption
[NASA-CS-135136] A77-15043
Alternative fuels for aviation
[GPO-76-545] A77-15212
FUEL FLOW REGULATORS
Analysis and design of digital output interface devices for gas turbine electronic controls
[NASA-CS-135135] A77-15044
FUEL INJECTION
Results of further investigations of a new concept of fuel pre vaporization
A77-17247
FUEL SPRAYS
Unsteady combustion of fuel spray in jet-engine after-burners
A77-17249
FUSELAGES
Liquid hydrogens as propellant for commercial aircraft
[DGLR PAPER 76-188] A77-16534
Hypersonic gas flow around slender blunt body of revolution
[NASA-CS-135132] A77-17949
Aerodynamic centre of wing-fuselage combinations
[ESDD-76015] A77-14992
Low-frequency noise reduction of lightweight airframe structures
[NASA-CS-145104] A77-15029
GAS ANALYSIS
Standard reference gases and analytical procedures for use in gas turbine exhaust measurements
A77-16373
GAS DYNAMICS
Gaseodynamic investigations of explosive decompression of one of the cargo holds of the Airbus A 300
[DGLR PAPER 76-209] A77-16561
GAS FLOW
Stability of rotating body in a gas stream
A77-17955
Hypersonic gas flow around slender blunt body of revolution
A77-17961
GAS INJECTION
Study on film cooling of turbine blades. I - Experiments on film cooling with injection through holes near leading edge
A77-18645
GAS TURBINE ENGINES
Empirical validation of turbine engine exhaust measurements
A77-16373
Standard reference gases and analytical procedures for use in gas turbine exhaust measurements
A77-16373
Contributions of materials technology to progress in propulsion system construction
[DGLR PAPER 76-150] A77-16568
Multidimensional solutions for supersonic flow fields in turbomachines
[DGLR Paper 76-165] A77-16577

A new development concept for gas turbine engines to optimize life cycle costs
A77-17228

The development and utilization of an engine usage monitoring system with particular reference to low cycle fatigue monitoring
A77-17229

Some experience with small engines -- onboard combined starter and auxiliary power gas turbine engine
A77-17232

A comparison of two transonic compressors designed for a pressure ratio of 1.68
A77-17237

Status review of NASA programs for reducing aircraft gas turbine engine emissions
A77-17246

A premixed, variable area combustor for a small gas turbine engine
A77-17248

A statistical method for the prediction of component low cycle fatigue life
A77-17254

The application of microprocessors to the control of small /helicopter/ gas turbines
A77-17532

Instability phenomena in the flow passages of a gas turbine engine compressor
A77-17751

Contribution to the investigation of heat transfer in turbine blade cascades in effusion cooling
A77-17754

Comparison of energy performance of different types of heat exchangers
A77-17760

Optimum distribution of material in rotating disks found from strength conditions
A77-17761

Theoretical aspects of optimization of aviation gas turbine engine design variables
A77-17762

Features of the concept of the efficiency coefficient of a turbine with open air cooling operating in a gas turbine engine system
A77-17770

Optimizing GTE tests on the basis of sequential Bayesian procedures -- Gas Turbine Engine
A77-17957

Estimation of automated GTE test system characteristics -- Gas Turbine Engine
A77-17958

Emissions from gas turbine combustors. I - An experimental study on a model combustor
A77-18646

Emissions from gas turbine combustors. II - Analytical model and numerical analysis
A77-18647

Dual output variable pitch turbofan actuation system [Nasa-Cath-12419-1] A77-19025

Advanced compressor seal for turbine engines [AD-A026916] A77-19491

Development of a gas turbine engine oil for bulk oil temperatures of -40 to 465 F, part 2 [AD-A027066] A77-15202

GAS TURBINES

A combined cycle with a partial-oxidation reactor
A77-17534

GRAB TEETH

Lubricant/metallurgy interaction effects on turbine engine lubricant load rating [AD-A026208] A77-15410

GRABS

Lubricant/metallurgy interaction effects on turbine engine lubricant load rating [AD-A026208] A77-15410

GENERAL AVIATION AIRCRAFT

Sources and characteristics of interior noise in general aviation aircraft
A77-17067

Noise reduction for business aircraft [AD-A031149/8] A77-15040

GROUND BASED CONTROL

A study of diffraction of electromagnetic waves around large stationary aircraft and its effects on instrument landing system guidance signals
A77-15223

GROUND EFFECT (AERODYNAMICS)

Investigation of airfoils near the ground with nonsymmetrical flow past them
[DGLR Paper 76-152] A77-16539

Theoretical determination of the characteristic curves of airfoil profiles with flaps, flow separation and ground effect
[DGLR Paper 76-206] A77-16546

Nonlinear effects in aircraft ground and flight vibration tests [AGABD-8-652] A77-15034

GROUND EFFECT MACHINES

Hovering craft, hydrofoil and advanced transit systems; Proceedings of the Second International Conference, Amsterdam, Netherlands, May 17-20, 1976
A77-17026

Studies of the drag of air cushion vehicles overland
A77-17028

Hovercraft ground contact directional control devices
A77-17032

VT.2 - 100 ton amphibious hovercraft
A77-17037

Hovercraft operation in the Torres Strait between Australia and Papua New Guinea
A77-17044

General survey of the studies and testing techniques that led to the definition of N500 performance
A77-17050

GROUND STATIONS

Radar special evaluation report: Degradation of AR/RTI-6 interrogator set identification friend or foe/selective identification feature IFF/SIF returns from F-4 and RF-4 aircraft
[AD-A027417] A77-15241

GROUND SUPPORT EQUIPMENT

A transportable VHF air-traffic control system
A77-16195

Maintenance basis for the aircraft Tu-134
A77-16741

GROUND TESTS

Ground vibration test - A tool for rotorcraft dynamic and aerosolical investigations
A77-17411

GROUND-AIR-GROUND COMMUNICATIONS

Mobile data radio - transmission quality between stationary transmitter to receiver in motion
[DGLR Paper 76-168] A77-16540

Tracals evaluation report. Ground/air/ground communications special evaluation report, Sheppard AFB, Texas
[AD-A02682] A77-14003

GUSTS

Random vibration peaks in rotorcraft and the effects of nonuniform gusts
A77-17498

HANGERS

Maintenance basis for the aircraft Tu-134
A77-16741

HARMONIC OSCILLATION

A synthesis of unsteady aerodynamic effects including stall hysteresis
A77-17408

HEAT EXCHANGERS

Comparison of energy performance of different types of heat exchangers
A77-17760

Analysis of parameters and characteristics of a bypass turbojet engine operating in a cycle with stepwise heat removal
A77-17765

HEAT RESISTANT ALLOYS

Trends in the application of advanced powder metallurgy in the aerospace industry
A77-15153
HEAT TRANSFER COEFFICIENTS

- Contribution to the investigation of heat transfer in turbine blade cascades in effusion cooling [AD-A026246]
- Advanced helicopter designs [N77-13983]
- Investigation of advanced helicopter structural designs. Volume 1: Advanced structural component design concepts study [AD-A026246]
- Investigation of advanced helicopter structural designs: Volume 2: Free planetary transmission drive [AD-A026247]
- Investigation of advanced helicopter airframe normal modes [A77-174012]

HEAVY LIFT HELICOPTERS

- The application of advanced turbine cooling technology in the IT701 Engine [A77-17252]
- Helicopter control research in multicyclic and active conol of rotary wings [A77-17406]
- Optimizing the cyclic control response of helicopter rotors [A77-17407]
- Handling qualities evaluation of helicopters with different stability and control characteristics [A77-17409]
- A modal control technique and its application to stabilization of rotocraft flight [A77-19039]

HELICOPTER DESIGN

- Rotorless rotor for the larger helicopters [DGLR PAPER 76-223]
- The application of advanced turbine cooling technology in the IT701 Engine [A77-17252]
- Advanced helicopter designs [A77-17532]
- Investigation of advanced helicopter structural designs: Volume 2: Free planetary transmission drive [AD-A026247]

HELICOPTER PERFORMANCE

- High-speed tests with the helicopter BO 105 HGH [DGLR PAPER 76-222]
- Crossflow performance of lift-fans in tandem --- for V/STOL transport aircraft [A77-17256]
- Investigation of helicopter airframe normal modes [A77-174010]

HELICOPTER TAIL ROTORS

- Bonded field-replaceable rotor blade pocket for the CH-56B, Volume 1: Design study [AD-A027206]
- Bonded field-replaceable rotor blade pocket for the CH-56B, Volume 2: Instruction manual [AD-A027200]

HELICOPTEBS

- A comparison of air radionavigation systems (for helicopters in off-shore areas) [AD-A030337/0]
- AR-1 helicopter vibration levels for stub wing mounted equipment [AD-A0265825]
- AB 122 ASW: New multipurpose helicopter for Italian Navy [AD-A026861]
- Design comparison between helicopter and tilt rotor aircraft [AD-A027559]

HIGH STRENGTH STEELS

- Stainless steels and alloys in air and space craft [A77-17510]

Hinges

- Stability of rotating body in a gas stream [A77-17550]
- The analytical geometry of a simple skew-hinge mechanism [A77-19016]

Hole distribution (mechanics)

- Boundary layer calculation of an effusion cooled turbine blade [A77-17255]

Holographic interferometry

- Holographic determination of thermal and mechanical deformations in the case of structural components and structures of aeronautical and astronautical technology [DGLR PAPER 76-180]

Honeycomb structures

- Technology of manufacturing aircraft honeycomb structures /2nd revised and enlarged edition/ --- Russian book [A77-17725]

Horizontal tail surfaces

- Predictions of light aircraft horizontal tail onset flows: A review and analysis [A77-15025]

Hovercraft ground effect machines

- The design and operating features of Vosper Thornycroft skirts [A77-17038]

Human factors engineering

- Center-of-gravity problems in the system ejection seat-pilot [DGLR PAPER 76-213]
- Side control for high speed ground transportation including passenger-seat dynamics and active aerodynamic suspensions [A77-18724]

Human interactions

- Test plan for aircraft rushup noise penalty evaluation [AD-A026209]

Human tolerances

- Calculation of curves of constant equivalent levels of enduring sound for implementation of the aircraft noise protection law - Methods and preliminary results [A77-16417]

Hydraulic control

- Concorde has designed-in reliability hydraulic control system [A77-16749]

Hydraulic equipment

- Concorde has designed-in reliability hydraulic control system [A77-16749]

Hydraulic fluids

- A study of the failure of joints in composite material fuel cells due to hydraulic ram loading [AD-A027258]

Hydrocarbon fuels

- Electrostatics in aviation fuel systems sessions [A77-17503]

Hydrodynamics

- Hovering craft, hydrofoil and advanced transit systems; Proceedings of the Second International Conference, Amsterdam, Netherlands, May 17-20, 1976 [A77-17026]

Hydrogen fuels

- Liquid hydrogen as propellant for commercial aircraft [DGLR PAPER 76-180]
- Thermal design and analysis of a hydrogen-burning wind tunnel model of an airframe-integrated scramjet [A77-15045]

Hypercentric aircraft

- Layout and flight performance of a hypersonic transport /MST/ [DGLR PAPER 76-198]

Hypersonic aircraft

- Hypersonic boundary layer self-adaptive difference method for the effective solution of computationally complex problems of boundary layer theory [DGLR PAPER 76-185]

Hypersonic flight

- Longitudinal stability in supersonic and hypersonic flight [A77-16597]

Hypersonic flow

- Hypersonic gas flow around slender blunt body of revolution [A77-17961]
- Hypersonic flow in converging conical channel [A77-17971]
SUBJECT INDEX

HYPERSONIC BREEZE
Self-adaptive difference method for the effective solution of computationally complex problems of boundary layer theory
[DGLR PAPER 76-195] A77-16554

IDEAL FLUIDS
Functional representation of the kinematic properties of two-dimensional blade cascades
A77-17536

IL-62 AIRCRAFT
The technical concept of the IL-62M. I
A77-16740

IMPACT RESISTANCE
Environmental resistance of coated and laminated polycarbonate transparencies
[AD-A026412] N77-14213

INFLUENCE
Theoretical and experimental results of the investigation of two different supersonic compressor stages
[DGLR PAPER 76-166] A77-16586

IN-FLIGHT MONITORING
The development and utilization of an engine usage monitoring system with particular reference to low cycle fatigue recording
A77-17229

INCOMPRESSIBLE FLOW
Functional representation of the kinematic properties of two-dimensional blade cascades
A77-17536

INCOMPRESSIBLE FLUID
Incompressible flow over delta wings
[IAAA PAPER 77-320] A77-18242

INDUCTION MOTORS
Astroglide - The advanced automatic guideway transit system
A77-17030

INTERNAL PLATFORMS
The determination of the true vertical direction in flight - - German book
A77-19185

INLET FLOW
Supersonic compressors with subsonic and supersonic axial inlet component
A77-17243

INLET Nozzles
Experience related to the development of high-stress carbon fiber-reinforced plastic structures, taking into account the example of a subsonic inlet ramp
[DGLR PAPER 76-195] A77-16581

INSTRUMENT ERRORS
Experience with the VOR-navigation system in the German Democratic Republic. I
A77-16739

INSTRUMENT LANDING SYSTEMS
The new microwave landing systems /MLS/ and their properties, giving particular attention to the German system DLS /DDE-Derived Landing System/
[DGLR PAPER 76-176] A77-16501

INSTRUMENT LANDING SYSTEMS
Technical progress in the US development of a Microwave Landing System
[AD-A031150/6] N77-15015

INSTRUMENT LANDING SYSTEMS
A study of diffraction of electromagnetic waves around large stationary aircraft and its effects on instrument landing system guidance signals
N77-15223

INTEGRAL EQUATIONS
A technique for reducing the differential wing-flutter equations to integral equations
A77-16111

INTEGRATION MOTORS
Theory of small-aspect-ratio wing analysis using discrete-continuous calculation scheme - Numerical integration of resolving equations
A77-17953

INTERSUBJECTIVITY
Multi-site intermittent positive control algorithms for the discrete address beacon system, revision 2
[AD-A026515] A77-14006

INTERNAL CORROSION ENGINES
Screening analysis and selection of emission reduction concepts for intermittent combustion aircraft engines
[NASA-CR-135074] N77-15038

INTERNATIONAL LAW
A new air transport policy for the North Atlantic
--- Book
A77-16375

INTERMODULATION
Radar special evaluation report: Degradation of AB/OP-6 interrogator set identification friend or foe/Selective identification feature IFF/SIF returns from F-4 and RF-4 aircraft
[AD-A027417] N77-15241

ITALY
AB 212 ASW: New multipurpose helicopter for Italian Navy
[AD-A026061] N77-14015

JET AIRCRAFT
Flight dynamics and controllability of large jet airplanes --- Russian book
A77-16175

A simplified method in flight test techniques for the determination of the range performance of jet aircraft
A77-16600

Fuel consumption of civil jet transport aircraft
A77-17234

Analysis of the climb characteristics of subsonic jet aircraft --- German book
A77-18960

JET AIRCRAFT NOISE
Amplification of jet noise through engine noise
[DGLR PAPER 76-162] A77-16538

Apparatus and method for jet noise suppression
[AD-A031038] N77-15036

Noise reduction for business aircraft
[AD-A031149/6] N77-15040

JET ENGINE FUELS
Environmental degradation of fuels, fluids and related materials for aircraft
[AD-A026908] N77-15214

JET ENGINE
Unsteady combustion of fuel spray in jet-engine after-burners
A77-17269

Effect of ceramic coating of JT8D combustor liner on maximum liner temperatures and other combustor performance parameters
[NASA-TM-X-73581] N77-15037

JET EXHAUST
Empirical validation of turbine engine exhaust measurements
A77-16372
<table>
<thead>
<tr>
<th>JET FLAPS</th>
<th>SUBJECT INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard reference gases and analytical procedures for use in gas turbine exhaust measurements</td>
<td>LAW (QUISLEPHRODE) Discussion of aircraft air pollution legislation and Naval aircraft operations [AD-4026176]</td>
</tr>
<tr>
<td>Emissions from gas turbine combustors, I - An experimental study on a model combustor</td>
<td>LEADING EDGES On the mechanism of vortex breakdown point stabilization for low subsonic flow around a delta wing [A77-16597]</td>
</tr>
<tr>
<td>Emissions from gas turbine combustors, II - Analytical model and numerical analysis</td>
<td>Study on film cooling of turbine blades. I - Experiments on film cooling with injection through holes near leading edge [A77-17406]</td>
</tr>
<tr>
<td>JET FLAPS Research in multicyclic and active conol of rotary wings</td>
<td>LEADING EDGES On the mechanism of vortex breakdown point stabilization for low subsonic flow around a delta wing [A77-18348]</td>
</tr>
<tr>
<td>JET FLAPS Application of the method of causality to the study of noise from a subsonic jet</td>
<td>Study on film cooling of turbine blades. I - Experiments on film cooling with injection through holes near leading edge [A77-17406]</td>
</tr>
<tr>
<td>JET FLAPS Operationa experience with lift plus lift/cruise --- V/STOL aircraft propulsion system performance</td>
<td>LEADING EDGES On the mechanism of vortex breakdown point stabilization for low subsonic flow around a delta wing [A77-17953]</td>
</tr>
<tr>
<td>JET MIXING FLOW Heat diffusion as a source of aerodynamic sound</td>
<td>Study on film cooling of turbine blades. I - Experiments on film cooling with injection through holes near leading edge [A77-17953]</td>
</tr>
<tr>
<td>JETTISONING Theoretical and experimental investigation of the departure characteristics of external stores which are dropped from an aircraft</td>
<td>LEADING EDGES On the mechanism of vortex breakdown point stabilization for low subsonic flow around a delta wing [A77-17953]</td>
</tr>
<tr>
<td>JP-4 JET FUEL Ames T-3 fire test facility - Aircraft crash fire simulation</td>
<td>Study on film cooling of turbine blades. I - Experiments on film cooling with injection through holes near leading edge [A77-17953]</td>
</tr>
</tbody>
</table>

K

<table>
<thead>
<tr>
<th>KINETIC ENERGY</th>
<th>LAW (QUISLEPHRODE) Discussion of aircraft air pollution legislation and Naval aircraft operations [AD-4026176]</th>
</tr>
</thead>
<tbody>
<tr>
<td>The relationship between the mean depression in a vortex and its rotational kinetic energy</td>
<td>LEADING EDGES On the mechanism of vortex breakdown point stabilization for low subsonic flow around a delta wing [A77-18348]</td>
</tr>
<tr>
<td>KNUDSEN FLOW</td>
<td>Study on film cooling of turbine blades. I - Experiments on film cooling with injection through holes near leading edge [A77-17953]</td>
</tr>
<tr>
<td>The velocity field of small-Mach number Knudsen flow on the edge of a disturbed plate</td>
<td>LEADING EDGES On the mechanism of vortex breakdown point stabilization for low subsonic flow around a delta wing [A77-18348]</td>
</tr>
</tbody>
</table>

L

<table>
<thead>
<tr>
<th>LAMINAR BOUNDARY LAYER</th>
<th>LAW (QUISLEPHRODE) Discussion of aircraft air pollution legislation and Naval aircraft operations [AD-4026176]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oblique slot blowing into a supersonic laminar boundary layer</td>
<td>LEADING EDGES On the mechanism of vortex breakdown point stabilization for low subsonic flow around a delta wing [A77-18348]</td>
</tr>
<tr>
<td>LAMINAR FLOW</td>
<td>LEADING EDGES On the mechanism of vortex breakdown point stabilization for low subsonic flow around a delta wing [A77-18348]</td>
</tr>
<tr>
<td>Experiments on vortex stability --- on laminar flow wings in wind tunnels</td>
<td>LEADING EDGES On the mechanism of vortex breakdown point stabilization for low subsonic flow around a delta wing [A77-18348]</td>
</tr>
<tr>
<td>LAMINATES</td>
<td>LEADING EDGES On the mechanism of vortex breakdown point stabilization for low subsonic flow around a delta wing [A77-18348]</td>
</tr>
<tr>
<td>Environmental resistance of coated and laminated polycarbonate transparencies</td>
<td>LEADING EDGES On the mechanism of vortex breakdown point stabilization for low subsonic flow around a delta wing [A77-18348]</td>
</tr>
<tr>
<td>LANDING GEARS</td>
<td>LEADING EDGES On the mechanism of vortex breakdown point stabilization for low subsonic flow around a delta wing [A77-18348]</td>
</tr>
<tr>
<td>Development of single-flight cycles for fatigue tests, based on operational stresses, in the case of large aircraft components</td>
<td>LEADING EDGES On the mechanism of vortex breakdown point stabilization for low subsonic flow around a delta wing [A77-18348]</td>
</tr>
<tr>
<td>Advanced composite landing gear leg</td>
<td>LEADING EDGES On the mechanism of vortex breakdown point stabilization for low subsonic flow around a delta wing [A77-18348]</td>
</tr>
<tr>
<td>[AIAA PAPER 77-304]</td>
<td>LEADING EDGES On the mechanism of vortex breakdown point stabilization for low subsonic flow around a delta wing [A77-18348]</td>
</tr>
<tr>
<td>Landing gear/skin interaction development of criteria for aircraft operation on soil during turning and multipass operations</td>
<td>LEADING EDGES On the mechanism of vortex breakdown point stabilization for low subsonic flow around a delta wing [A77-18348]</td>
</tr>
<tr>
<td>[AD-4027422]</td>
<td>LEADING EDGES On the mechanism of vortex breakdown point stabilization for low subsonic flow around a delta wing [A77-18348]</td>
</tr>
<tr>
<td>LANDING LOADS</td>
<td>LEADING EDGES On the mechanism of vortex breakdown point stabilization for low subsonic flow around a delta wing [A77-18348]</td>
</tr>
<tr>
<td>Development of single-flight cycles for fatigue tests, based on operational stresses, in the case of large aircraft components</td>
<td>LEADING EDGES On the mechanism of vortex breakdown point stabilization for low subsonic flow around a delta wing [A77-18348]</td>
</tr>
<tr>
<td>[DGLR PAPER 76-216]</td>
<td>LEADING EDGES On the mechanism of vortex breakdown point stabilization for low subsonic flow around a delta wing [A77-18348]</td>
</tr>
<tr>
<td>LANDING SPEED</td>
<td>LEADING EDGES On the mechanism of vortex breakdown point stabilization for low subsonic flow around a delta wing [A77-18348]</td>
</tr>
<tr>
<td>STOL developments</td>
<td>LEADING EDGES On the mechanism of vortex breakdown point stabilization for low subsonic flow around a delta wing [A77-18348]</td>
</tr>
<tr>
<td>LASER DOPPLER VELOCIMETERS</td>
<td>LEADING EDGES On the mechanism of vortex breakdown point stabilization for low subsonic flow around a delta wing [A77-18348]</td>
</tr>
<tr>
<td>Scanning laser-velocimeter surveys and analysis of multiple vortex wakes of an aircraft</td>
<td>LEADING EDGES On the mechanism of vortex breakdown point stabilization for low subsonic flow around a delta wing [A77-18348]</td>
</tr>
<tr>
<td>[NASA-TR-1-73169]</td>
<td>LEADING EDGES On the mechanism of vortex breakdown point stabilization for low subsonic flow around a delta wing [A77-18348]</td>
</tr>
<tr>
<td>LATERAL CONTROL</td>
<td>LEADING EDGES On the mechanism of vortex breakdown point stabilization for low subsonic flow around a delta wing [A77-18348]</td>
</tr>
<tr>
<td>Adaptation of the lateral controls for the YFV 614 during the flight tests</td>
<td>LEADING EDGES On the mechanism of vortex breakdown point stabilization for low subsonic flow around a delta wing [A77-18348]</td>
</tr>
<tr>
<td>[DGLR PAPER 76-221]</td>
<td>LEADING EDGES On the mechanism of vortex breakdown point stabilization for low subsonic flow around a delta wing [A77-18348]</td>
</tr>
</tbody>
</table>

LOW COST

<table>
<thead>
<tr>
<th>LOW COST</th>
<th>LAW (QUISLEPHRODE) Discussion of aircraft air pollution legislation and Naval aircraft operations [AD-4026176]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small, low cost, expendable turbojet engine. 2: Performance characteristics</td>
<td>LOW COST Small, low cost, expendable turbojet engine. 2: Performance characteristics [NASA-TE-3663]</td>
</tr>
</tbody>
</table>
The potential of liquid hydrogen as a military aircraft fuel
[AD-A026666] A77-14272
Research and development in support of Canadian military air requirements
[AD-A030051] A77-14944

MISSILES

ATC automation with minicomputers
[AD-A026666] A77-17483

MISSILE DESIGN

Experimental roll-damping, Magnus, and static-stability characteristics of two slender missile configurations at high angles of attack (0 to 90 degrees) and Mach numbers 0.2 through 2.5
[AD-A027027] A77-15004

HEATING LENGTH FLOW THEORY

Boundary layer calculation of an effusion cooled turbine blade
[AD-A027027] A77-17255

MODAL RESPONSE

Random vibration peaks in rotoceptor and the effects of nonuniform gusts
[AD-A027027] A77-17408
A modal control technique and its application to stabilization of rotoceptor flight
[AD-A027027] A77-19039

MOTOR VEHICLES

Wind tunnel investigation of devices to reduce bus aerodynamic drag
[AD-A027027] A77-18232

MTBF

Reliability case history of an airborne air turbine starter
[AD-A027027] A77-18937

MULTIPLE TRANSMISSION

PW-CW ranging multipath investigation for Navy VTOL aircraft
[AD-A027190] A77-14319

NASA PROGRAMS

Status review of NASA programs for reducing aircraft gas turbine engine emissions
[AD-A027027] A77-17246

NAVIGATION AIDS

Experience with the VOR-navigation system in the German Democratic Republic. 1
[AD-A027027] A77-16739
The automatic navigator -- onboard aircraft navigation aids systems
[AD-A027027] A77-18725

NAV

PW-CW ranging multipath investigation for Navy VTOL aircraft
[AD-A027190] A77-14319

NBAE WAKES

Characteristic wake data for local blade propeller stalling
[AD-A027027] A77-17497

NETWORK ANALYSIS

Squawk circuit analysis of military systems
[AD-A027027] A77-16732

NEW GUINEA (ISLAND)

Hovercraft operation in the Torres Strait between Australia and Papua New Guinea
[AD-A027027] A77-17044

NOISE GENERATORS

Sources and characteristics of interior noise in general aviation aircraft
[AD-A027027] A77-17067
Heat diffusion as a source of aerodynamic sound
[AD-A027027] A77-17413
Engine noise - a look ahead
[AD-A027027] A77-19015

NOISE MEASUREMENT

The subjective evaluation of noise from light aircraft
[AD-A027027] A77-19015

NOISE POLLUTION

Test plan for aircraft runup noise penalty evaluation
[AD-A027027] A77-14639

NOISE REDUCTION

Calculation of curves of constant equivalent levels of enduring sound for implementation of the aircraft noise protection law - Methods and preliminary results
[AD-A027027] A77-16417

APPLICATION OF JET NOISE THROUGH ENGINE NOISE
[AD-A027027] A77-16538
Sound shielding on an engine model and comparison with theory
[AD-A027027] A77-16573
Prediction of light aircraft interior noise
[AD-A027027] A77-17069

Further studies of static to flight effects on fan tone noise using inlet distortion control for source identification
[AD-A027027] A77-16027
Aircraft configuration data noise reduction. Volume 1: Engineering analysis
[AD-A027027] A77-18814
Aircraft configuration noise reduction. Volume 2: Computer program user's guide and other appendices
[AD-A027027] A77-18815
Aircraft configuration noise reduction. Volume 3: Computer program source listing
[AD-A027027] A77-18816
Low-frequency noise reduction of lightweight airframe structures
[AD-A027027] A77-15029
Apparatus and method for jet noise suppression
[AD-A027027] A77-15036
Noise reduction for business aircraft
[AD-A027027] A77-15040
Advanced supersonic propulsion study, phase 3
[AD-A027027] A77-15041
Max BFV engine noise reduction
[AD-A027027] A77-15046

LOW-FREQUENCY NOISE REDUCTION OF LIGHTWEIGHT AIRFRAME STRUCTURES
[AD-A027027] A77-17246

NONDESTRUCTIVE TESTS

Holographic determination of thermal and mechanical deformation in the case of aircraft structural components and structures of aeronautical and astronautical technology
[AD-A027027] A77-16573
Testing procedures for carbon fiber reinforced plastic components --- destructive and nondestructive
[AD-A027027] A77-16578
Exoelectrons --- phenomenon for investigating metal surface fatigue cracks
[AD-A027027] A77-17080

NONFLAMMABLE MATERIALS

Thermoplastic polymers for improved fire safety
[AD-A027027] A77-14206

NOISES (FOREBODIES)

Prediction of aerodynamic forces on ogive-nosed circular cylinders
[AD-A027027] A77-18879

NOISES (JETS)

Self-excited oscillations in supersonic flow
[AD-A027027] A77-16413
Wavelength in axisymmetric steady supersonic free jets
[AD-A027027] A77-16421

NOISES (HELICOPTERS)

Experience related to the development of high-stress carbon fiber-reinforced plastic structures, taking into account the example of a subsonic inlet ramp
[AD-A027027] A77-16591
Numerical analysis
[AD-A027027] A77-16596
Numerical control
[AD-A027027] A77-16847
The application of microprocessors to the control of small helicopter/ gas turbines
[AD-A027027] A77-17532
Numerical flow visualization
[AD-A027027] A77-16537
Numerical integration
[AD-A027027] A77-17953
SUBJECT INDEX

OBLIQUE WINGS
Structural studies of oblique folding wings [AD-A025712]
Ocean Surface
DST: Direct Sea-To-Air Refueling (in-flight refueling of military cargo aircraft from ships at sea) [AD-A026750]
Offshore Platforms
A comparison of air radionavigation systems (for helicopters in off-shore areas) [AD-A030337/0]
Orifices
Prediction of aerodynamic out-of-plane forces on ogive-nosed circular cylinders
Operational Hazards
Electrostatics in aviation fuel systems sessions
Operational Problems
Hovercraft ground contact directional control devices
Optical Communication
Fiber optics application to A-7 aircraft --- internal data-signal transmission system
Optical Density
Smoke emission of aircraft seat materials
Optimal Control
Optimizing the cyclic control response of helicopter rotors
Synthesis of an automatic aircraft control system
Optimization
A new development concept for gas turbine engine optimize life cycle costs
Theoretical aspects of optimization of gas turbine engine design variables
Optimal one-section and two-section circular sound-absorbing duct liners for plane-wave and monopole sources without flow [NASA-TN-D-8348]
Orifice Flow
A theoretical study of the acoustic impedance of orifices in the presence of a steady grazing flow
Oscillating Flow
Self-excited oscillations in supersonic flow
A theoretical study of the acoustic impedance of orifices in the presence of a steady grazing flow
Oxidation
A combined cycle with a partial-oxidation reactor
Ozone
Concorde and the climate

P
Parachute Descents
Center-of-gravity problems in the system ejection seat-pilot [DLR PAPER 76-213]
Paragliders
The effect of inclined trailing edges and membrane weight on the supercritical flow past conical paragliders with small camber
Parametrisations
Simple complex method of selection of the main design parameters of turbine stages for turbine-engines
Passenger Aircraft
Flight dynamics and controllability of large jet airplanes --- Russian book
Aerodynamic design and flight testing of the VFW 614 [DLR PAPER 76-208]
Payloads
STOL developments
Performance Prediction
A simplified method in flight test techniques for the determination of the range performance of jet aircraft
Prediction of light aircraft interior noise
Numerical methods for calculating the performance of air-breathing combustion chambers
Performance Tests
General survey of the studies and testing techniques that led to the definition of N500 performance
Effect of ceramic coating of JT8D combustor liner on maximum liner temperatures and other combustor performance parameters [NASA-TN-X-73581]
Perturbation
Wake region perturbation for base drag reduction [AD-A026147]
Phase Arrays
APS - A practical application of microwave technology
Photoelastic Analysis
Holographic determination of thermal and mechanical deformations in the case of structural components and structures of aeronautical and astronomical technology
Pilot Performance
Experimental cognition for qualification of voice warning systems in aircraft
Center-of-gravity problems in the system ejection seat-pilot
Pilot Training
Experience with the flight simulator
Piston Engines
Maxi RPV engine noise reduction
Pitch (inclination)
Optimizing the cyclic control response of helicopter rotors
Plane Waves
Optimal one-section and two-section circular sound-absorbing duct liners for plane-wave and monopole sources without flow
Plastic Aircraft Structures
Development of a carbon fiber-reinforced plastic elevator unit for the Alpha Jet [DLR PAPER 76-198]
The development of a carbon fiber-reinforced plastic rudder for the Alpha Jet [DLR PAPER 76-193]
Testing procedures for carbon fiber reinforced plastic components --- destructive and nondestructive
Plastic Deformation
Superplastic forming of titanium alloys
Pneumatic Equipment
A control system for the wind tunnel model of a Reverse-Blowing Circulation Control Rotor (BB-CCB) [AD-A0265608]
Pollution Control
Status review of NASA programs for reducing aircraft gas turbine engine emissions
A premixed, variable area combustor for a small gas turbine engine
Screening analysis and selection of emission reduction concepts for intermittent combustion aircraft engines [NASA-CR-135074]

A-21
POLYCARBONATES

Environmental resistance of coated and laminated polycarbonate transparencies [AD-4026442] A77-14213

POLYIMIDE RESINS

PBR polyamide/graphite fiber composite fan blades [NASA-CR-135113] A77-15101

POLYTHER FILE

Development of fire resistant, nontoxic aircraft interior materials [NASA-CR-137920] A77-14205

POIKOS BOUNDARY LAYER CONTROL

Fundamental studies of turbulent boundary layers with injection or suction through porous wall. IV - Application of fundamental theoretical analysis to cascaded blades with injection or suction and cascade tests A77-16299

POSITION SENSORS

Experience with the VOR-navigation system in the German Democratic Republic. I A77-16739

POTENTIAL FLOW

Incompressible flow over delta wings [AAIA PAPER 77-320] A77-18242

POWER METALLURGY

Trends in the application of advanced powder metallurgy in the aerospace industry A77-15153

Near-net powder metallurgy airframe structures A77-15176

POWER EFFICIENCY

Operational behaviour of a turboprop engine A77-17231

PREDICTION ANALYSIS TECHNIQUES

Prediction of the flow and combustion processes in a three-dimensional combustion chamber A77-17251

A statistical method for the prediction of component low cycle fatigue life A77-17254

Forecasting the elastic properties of composites reinforced by discrete fibers A77-18467

Prediction of aerodynamic out-of-plane forces on ogive-nosed circular cylinders A77-18879

PRESSURE DISTRIBUTION

Calculation of pressure distribution on oscillating airfoils in supersonic flow [DGLR PAPER 76-156] A77-16532

A comparison of two transonic compressors designed for a pressure ratio of 1.88 A77-17237

Pressure ratio optimization criteria in aircraft turbojet-engines design A77-17258

PRESSURE OSCILLATIONS

Wavelength in axisymmetric steady supersonic jet A77-16421

PRESSURE SENSORS

Measurement of post-separated flowfields on airfoils A77-17498

PRESSURIZED CABINS

Experiences concerning construction and testing in the case of a pressurized fuselage section with a sandwich-construction design [DGLR PAPER 76-197] A77-16530

PRODUCTION ENGINEERING

Technology of manufacturing aircraft honeycomb structures /2nd revised and enlarged edition/ --- Russian book A77-17725

PROJECT MANAGEMENT

Advanced avionics for the A-10: A decision analysis model [AD-4027678] A77-14023

PROJECTILES

Wake region perturbation for base drag reduction [AD-4026167] A77-13998

PROPELLANT TESTS

Liquid hydrogences as propellant for commercial aircraft [DGLR PAPER 76-188] A77-16534

PROPELLER BLADES

Sources and characteristics of interior noise in general aviation aircraft A77-17067

Characteristic wake data for local blade propeller stalling A77-17497

PROPELLER FANS

Further studies of static to flight effects on fan tone noise using inlet distortion control for source identification [NASA-TN-X-73183] A77-14027

Energy consumption characteristics of transports using the prop-fan concept [NASA-CR-137937] A77-14029

PROPELLERS

Energy consumption characteristics of transports using the prop-fan concept [NASA-CR-137937] A77-14029

PROJECTION SYSTEM CONFIGURATIONS

Life cycle cost impact on design considerations for civil transport aircraft propulsion systems A77-17227

Pressure ratio optimization criteria in aircraft turbojet-engines design A77-17258

Variable geometry for high performance aircraft engines A77-17264

A review of several propulsion integration features applicable to supersonic-cruise fighter aircraft [NASA-TN-X-73991] A77-15039

Advanced supersonic propulsion study, phase 3 [NASA-CR-135148] A77-15041

PROPOSITIONS IN aerodynamics

International Symposium on Air Breathing Engines, 3rd, Munich, West Germany, March 7-12, 1975, Proceedings A77-17226

Life cycle cost impact on design considerations for civil transport aircraft propulsion systems A77-17227

A new development concept for gas turbine engine optimize life cycle costs A77-17228

Operational experience with lift plus lift/cruise --- V/STOL aircraft propulsion system performance A77-17233

Fuel consumption of civil jet transport aircraft A77-17234

Aircraft considerations for advanced S.S.T. propulsion systems A77-17259

PROPOSITIONS IN aerodynamics

Pressure ratio optimization criteria in aircraft turbojet-engines design A77-17258

A review of several propulsion integration features applicable to supersonic-cruise fighter aircraft [NASA-TN-X-73991] A77-15039

PROTECTIONS IN clothing

Electromotrics in aviation fuel system's emissions A77-17503

PROTECTIONS IN coatings

Progress in surface finishing and coatings A77-18545

PSYCHACOUSTICS

The subjective evaluation of noise from light aircraft [NASA-CR-27773] A77-14615

PULS DOPPLER RADAR

Low cost radar altimeters A77-19246
Radar Beacons
Multi-site intermittent positive control algorithms for the discrete address beacon system, revision 2
[AD-A026515] A77-14006

Radar Equipment
Hawkeye - A new dimension in tactical warfare
[AD-A026515] A77-18733

Radar special evaluation report: Degradation of AN/FPX-6 interrogator net identification friend or foe/ selective identification feature IFP/SIF returns from F-4 and BF-4 aircraft
[AD-A027417] A77-15241

Radiator Cooling
Efficiency of turbine-blade cooling by air injection through longitudinal slots
A77-16325

Radiation Effects
A study of diffraction of electromagnetic waves around large stationary aircraft and its effects on instrument landing system guidance signals
A77-15223

Radiative Heat Transfer
Prediction of the flow and combustion processes in a three-dimensional combustion chamber
A77-17251

Radio Altimeters
Low cost radar altimeters
A77-19246

Radio Communication
Mobile data radio - transmission quality between stationary transmitter to receiver in motion
[AD-A027610] A77-16540

Tracal evaluation report. Ground/air/ground communications special evaluation report, Sheppard AFB, Texas
[AD-A026823] A77-14003

Radio Navigation
A comparison of air radionavigation systems (for helicopters in off-shore areas)
A77-14002

Radomes
Measurement of the power handling capabilities of a blipper slot array
[AD-A027500] A77-15247

Rail Transportation
Astroglide - The advanced automatic guideway transit system
A77-17030

Ramps (Structures)
Experience related to the development of high-stress carbon fiber-reinforced plastic structures, taking into account the example of a subsonic inlet ramp
[AD-A027605] A77-16561

Random Vibration
Random vibration peaks in rotorcraft and the effects of nonuniform gusts
A77-17498

Range Finders
FW-CW ranging multipath investigation for Navy VTOL aircraft
[AD-A027610] A77-14039

Rapid Transit Systems
Astroglide - The advanced automatic guideway transit system
A77-17030

Recirculative Fluid Flow
Prediction of the flow and combustion processes in a three-dimensional combustion chamber
A77-17251

Rectangular Wings
Investigation of airfoils near the ground with nonsymmetrical flow past them
[AD-A027610] A77-16539

Reentry Physics
Self-adaptive difference method for the effective solution of computationally complex problems of boundary layer theory
[AD-A027610] A77-16569

Refrigeration
Electrostatics in aviation fuel systems sessions
A77-17503

DSTAR: Direct Sea-To-Air Refueling (inflight refueling of military cargo aircraft from ships at sea)
[AD-A026750] A77-15010

Refrigerators
Comparison of energy performance of different types of heat exchangers
A77-17760

Analysis of parameters and characteristics of a bypass turbojet engine operating in a cycle with stepwise heat removal
A77-17765

Regulations
Noise reduction for business aircraft
[AD-A031499/0] A77-15040

Reinforced Shells
Development of method for modification of thin-wall fuselage-type reinforced shells and construction of a practical calculation algorithm
A77-17952

Reinforcing Fibers
Forecasting the elastic properties of composites reinforced by discrete fibers
A77-18867

Reliability Method (Mathematics)
Transonic cascade flow calculation using the relaxation method
[AD-A026763] A77-16537

Reliability Analysis
Reliability case history of an airborne air turbine starter
A77-18937

Reliability Engineering
Concorde has designed-in reliability - hydraulic control system
A77-16749

The impact of despatchability and civil airworthiness requirements on reliability and engine control system design
A77-17235

Self-correcting control for a turbofan engine
[AD-A026765] A77-17236

Performance measurement system for major airports
A77-16004

Remote Regions
Hovercraft operation in the Torres Strait between Australia and Papua New Guinea
A77-17044

Remotely Piloted Vehicles
Mobile data radio - transmission quality between stationary transmitter to receiver in motion
[AD-A027610] A77-16540

Methods and problems concerning the flight control of BPVs
[AD-A027610] A77-16545

Riders: BPV engine noise reduction
[AD-A026738] A77-15046

Refueling
Bonded field-replaceable rotor blade pocket for the CH-54B. Volume 1: Design study
[AD-A027206] A77-15032

Bonded field-replaceable rotor blade pocket for the CH-54B. Volume 2: Instruction manual
[AD-A027206] A77-15033

Research Aircraft
Deutsche Gesellschaft fuer Luft- und Raumfahrt, Yearbook 1975. Volumes 1 & 2
A77-18600

Research and Development
General survey of the studies and testing techniques that led to the definition of N500 performance
A77-17050

Research and development in support of Canadian military air requirements
A77-14984

Rheolectric Simulation
Electric analog modeling of temperature fields in gas turbine blades for transient modes of operation
A77-16305

Riding Quality
Ride control for high speed ground transportation including passenger-seat dynamics and active aerodynamic suspensions
A77-18724

Rigid Rotors
High-speed tests with the helicopter BO 105 EGB
[AD-A026722] A77-16567
S

SAFETY DEVICES
Concorde has designed-in reliability --- hydraulic control system A77-16749

SAFETY MANAGEMENT
Safety concepts and innovations on the B-1 Bomber A77-16734

SAFETY MANAGEMENT
System safety and the Utility Tactical Transport Aircraft System A77-16735

SAFETY MANAGEMENT
System safety in the Advanced Attack Helicopter A77-16736

SAFETY MANAGEMENT
The hidden passenger --- hazardous air cargo and flight safety A77-16737

SANDWICH STRUCTURES
The 150 KVA samarium cobalt VSCF starter generator electrical system, phase 1 A77-15299

SANDWICH MATERIALS
Experiences concerning construction and testing in the case of a pressurized fuselage section with a sandwich-construction design [DGLR PAPER 76-197] A77-16530

SCALE MODELS
Stated aerodynamic characteristics investigation for the 0.04 scale model TE 1065 (Boeing 747-100) of the 747 CTS and the 0.0405 scale model 43-0 of the space shuttle orbiter in the NASA Langley V/STOL transition research wind tunnel (CAB), volume 3 [NASA-CH-167043] A77-15083

SEALS (STOPPERS)
Advanced compressor seal for turbine engines [AD-A026515] A77-14919

SEATS
Smoke emission of aircraft seat materials A77-17612

SECONDARY FLOW
Reducing secondary losses by blowing cold air in a turbine [DGLR PAPER 76-164] A77-16558

SELF DECORATION
Self-excited oscillations in supersonic flow A77-16613

SELF REPAIRED DEVICES
Self-correcting control for a turbofan engine A77-17236

SEPARATED FLOW
Spin entry of aircraft A77-16947

SEPARATED FLOW
A synthesis of unsteady aerodynamic effects including stall hysteresis A77-17008

SEPARATED FLOW
Experimental investigation of subsonic turbulent separated boundary layers on an airflow A77-17096

SEPARATED FLOW
Measurement of post-separated flowfields on airfoils A77-17499

SEQUENTIAL ANALYSIS
Optimizing GTE tests on the basis of sequential Bayesian procedures --- Gas Turbine Engine A77-17957

SERVICE LIFE
Development of single-flight cycles for fatigue tests, based on operational stresses, in the case of large aircraft components [DGLR PAPER 76-216] A77-16543

SERVICE LIFE
Life cycle cost impact on design considerations for civil transport aircraft propulsion systems A77-17227

SERVICE LIFE
A new development concept for gas turbine engine life cycle costs A77-17228

SHARP LEADING EDGES
Hypersonic flow in converging conical channel A77-17971

SHARP LEADING EDGES
Interactions and merging of line vortices [AD-A027717] A77-13997

SHARP LEADING EDGES
Investigation of normal shock inlets for highly maneuverable aircraft [NASA-CH-137970] A77-15026
Oblique slot blowing into a supersonic laminar flow...
<table>
<thead>
<tr>
<th>Subject Index</th>
<th>THERMOPLASTIC RESINS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERSOONIC JET FLOW</td>
<td>The pay-off for advanced technology in commercial aircraft design and operation A77-19012</td>
</tr>
<tr>
<td>Wavelength in axisymmetric steady supersonic free jets</td>
<td>Engine noise - A look ahead A77-19015</td>
</tr>
<tr>
<td>SUPERSOONIC TRANSPORTS</td>
<td>TECHNOLOGY ASSESSMENT</td>
</tr>
<tr>
<td>Aircraft considerations for advanced S.S.T. propulsion systems</td>
<td>LTA - Recent developments — Lighter Than Air ships A77-17024</td>
</tr>
<tr>
<td>Ejectors for supersonic transport aircraft - Analytical method</td>
<td>LTA history and its significance for current events — Lighter-Than-Air aircraft [AIAA PAPER 77-328] A77-18247</td>
</tr>
<tr>
<td>SURFACE CRACKS</td>
<td>TECHNOLOGY UTILIZATION</td>
</tr>
<tr>
<td>Exoelectrons — phenomenon for investigating metal surface fatigue cracks</td>
<td>Future impact of computers on military aviation [AIAA PAPER 77-273] A77-18212</td>
</tr>
<tr>
<td>SURFACE FINISHING</td>
<td>TEMPERATURE DISTRIBUTION</td>
</tr>
<tr>
<td>Progress in surface finishing and coatings</td>
<td>Electric analog modeling of temperature fields in gas turbine blades for transient modes of operation A77-16305</td>
</tr>
<tr>
<td>SURFACE ROUGHNESS EFFECTS</td>
<td>Compressible flow, temperature and life calculations with turbine blades A77-17253</td>
</tr>
<tr>
<td>Studies of the drag of air cushion vehicles overland</td>
<td>Emissions from gas turbine combustors. I — An experimental study on a model combustor A77-16646</td>
</tr>
<tr>
<td>SURFACES</td>
<td>THERMAL FACILITIES</td>
</tr>
<tr>
<td>An experimental investigation of vortex flow control for high lift generation [AD-A027524]</td>
<td>A transportable VHF air-traffic control system A77-16195</td>
</tr>
<tr>
<td>SURGES</td>
<td>TEST EQUIPMENT</td>
</tr>
<tr>
<td>Engine compression system surge line evaluation techniques — fuel step technique for high pressure testing</td>
<td>Ground vibration test — A tool for rotocraft dynamic and aeroelastic investigations A77-17411</td>
</tr>
<tr>
<td>SUSSPENSION SYSTEMS (VEHICLES)</td>
<td>TEST FACILITIES</td>
</tr>
<tr>
<td>Ride control for high speed ground transportation including passenger-seat dynamics and active aerodynamic suspensions A77-18724</td>
<td>Ames T-3 fire test facility — Aircraft crash fire simulation A77-17479</td>
</tr>
<tr>
<td>SWEPT WINGS</td>
<td>TRIAS</td>
</tr>
<tr>
<td>Investigation of airfoils near the ground with nonsymmetrical flow past them [DGLR PAPER 76-152]</td>
<td>Trajectory evaluation report. Ground/air/ground communications special evaluation report, Sheppard AFB, Texas [AD-A026823] A77-14003</td>
</tr>
<tr>
<td>SYSTEM EFFECTIVENESS</td>
<td>THERMAL DIFFUSION</td>
</tr>
<tr>
<td>The metering system concept — for airport traffic control efficiency</td>
<td>Heat diffusion as a source of aerodynamic sound A77-17413</td>
</tr>
<tr>
<td>The networking concept — for aircraft traffic control efficiency A77-17404</td>
<td>THERMAL EXPANSION</td>
</tr>
<tr>
<td>Computers in flight — An historical perspective of computation in aviation and aerospace</td>
<td>Holographic determination of thermal and mechanical deformations in the case of structural components and structures of aeronautical and astronautical technology [DGLR PAPER 76-180] A77-16587</td>
</tr>
<tr>
<td>The automatic navigator — onboard aircraft navigation aids systems A77-18725</td>
<td>THERMAL SIMULATION</td>
</tr>
<tr>
<td>SYSTEMS ENGINEERING</td>
<td>Ames T-3 fire test facility — Aircraft crash fire simulation A77-17479</td>
</tr>
<tr>
<td>A transportable VHF air-traffic control system A77-16195</td>
<td>THERMAL STRESSES</td>
</tr>
<tr>
<td>Computers in flight — An historical perspective of computation in aviation and aerospace</td>
<td>Holographic determination of thermal and mechanical deformations in the case of structural components and structures of aeronautical and astronautical technology [DGLR PAPER 76-180] A77-16587</td>
</tr>
<tr>
<td>[AIAA PAPER 77-271]</td>
<td>Compressible flow, temperature and life calculations with turbine blades A77-17253</td>
</tr>
<tr>
<td>Technical progress in the US development of a Microwave Landing System [AD-4031150/5]</td>
<td>THERMOHYDRAULIC CYCLES</td>
</tr>
<tr>
<td>[AIAA PAPER 77-271]</td>
<td>Analysis of parameters and characteristics of a bypass turbojet engine operating in a cycle with stepwise heat removal A77-17765</td>
</tr>
<tr>
<td>[NASA-TB-X-73185]</td>
<td>THERMOHYDRAULIC EFFICIENCY</td>
</tr>
<tr>
<td>The pay-off for advanced technology in commercial aircraft design and operation A77-19012</td>
<td>Efficiency of turbine-blade cooling by air injection through longitudinal slots A77-16325</td>
</tr>
<tr>
<td>Engine noise — A look ahead A77-19015</td>
<td>Pressure ratio optimization criteria in aircraft turbojet-engines design A77-17258</td>
</tr>
<tr>
<td>TECHNOLOGY ASSESSMENT</td>
<td>Comparison of energy performance of different types of heat exchangers A77-17760</td>
</tr>
<tr>
<td>LTA - Recent developments — Lighter Than Air ships A77-17024</td>
<td>Features of the concept of the efficiency coefficient of a turbine with open air cooling operating in a gas turbine engine system A77-17770</td>
</tr>
<tr>
<td>LTA history and its significance for current events — Lighter-Than-Air aircraft [AIAA PAPER 77-328] A77-18247</td>
<td>THERMOELASTICITY</td>
</tr>
<tr>
<td>TECHNOLOGY UTILIZATION</td>
<td>Forecasting the elastic properties of composites reinforced by discrete fibers A77-18467</td>
</tr>
<tr>
<td>Future impact of computers on military aviation [AIAA PAPER 77-273] A77-18212</td>
<td>THERMOPLASTIC RESINS</td>
</tr>
<tr>
<td>[NASA-TB-X-73185]</td>
<td>Thermoplastic polymers for improved fire safety A77-18206</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subject Index</th>
<th>THERMOPLASTIC RESINS</th>
</tr>
</thead>
<tbody>
<tr>
<td>TANKERS</td>
<td>The pay-off for advanced technology in commercial aircraft design and operation A77-19012</td>
</tr>
<tr>
<td>DSTAR: Direct Sea-To-Air Refueling (inflight refueling of military cargo aircraft from ships at sea) [AD-A0426750]</td>
<td>Engine noise — A look ahead A77-19015</td>
</tr>
<tr>
<td>TECHNOLOGICAL FORECASTING</td>
<td>TECHNOLOGY ASSESSMENT</td>
</tr>
<tr>
<td>New technology for fighter aircraft [DGLR PAPER 76-167]</td>
<td>LTA - Recent developments — Lighter Than Air ships A77-17024</td>
</tr>
<tr>
<td>[NASA-TB-X-73185]</td>
<td>TECHNOLOGY UTILIZATION</td>
</tr>
<tr>
<td>[NASA-TB-X-73942]</td>
<td>TEMPERATURE DISTRIBUTION</td>
</tr>
<tr>
<td>[NASA-TB-1-73185]</td>
<td>Electric analog modeling of temperature fields in gas turbine blades for transient modes of operation A77-16305</td>
</tr>
<tr>
<td>[NASA-TB-1-73185]</td>
<td>THERMAL FACILITIES</td>
</tr>
<tr>
<td>A transportable VHF air-traffic control system A77-16195</td>
<td>THERMAL EXPANSION</td>
</tr>
<tr>
<td>[NASA-TB-1-73185]</td>
<td>THERMAL SIMULATION</td>
</tr>
<tr>
<td>Ames T-3 fire test facility — Aircraft crash fire simulation A77-17479</td>
<td>THERMAL STRESSES</td>
</tr>
<tr>
<td>[NASA-TB-1-73185]</td>
<td>Compressible flow, temperature and life calculations with turbine blades A77-17253</td>
</tr>
<tr>
<td>[NASA-TB-1-73185]</td>
<td>THERMOHYDRAULIC CYCLES</td>
</tr>
<tr>
<td>Analysis of parameters and characteristics of a bypass turbojet engine operating in a cycle with stepwise heat removal A77-17765</td>
<td>THERMOHYDRAULIC EFFICIENCY</td>
</tr>
<tr>
<td>Efficiency of turbine-blade cooling by air injection through longitudinal slots A77-16325</td>
<td>Pressure ratio optimization criteria in aircraft turbojet-engines design A77-17258</td>
</tr>
<tr>
<td>Comparison of energy performance of different types of heat exchangers A77-17760</td>
<td>Features of the concept of the efficiency coefficient of a turbine with open air cooling operating in a gas turbine engine system A77-17770</td>
</tr>
</tbody>
</table>
THIN WALLED SHELLS

Development of method for modification of thin-wall fuselage-type reinforced shells and construction of a practical calculation algorithm

A77-17952

THIN WALLS

Analysis of multi-contour thin-wall structures by the cell method

The determination of collapse load and energy absorbing properties of thin walled beam structures using matrix methods of analysis

A77-18348

THIN WINGS

Simplified solution of the compressible subsonic lifting surface problem

[AD-A027514]

THREE DIMENSIONAL BOUNDARY LAYER

Calculation of three-dimensional boundary layers on sweptback wings

[DLR PAPER 76-197]

THREE DIMENSIONAL FLOW

Multidimensional solutions for supersonic flow fields in turbomachines

[DLR PAPER 76-165]

Three-dimensional turbomachine flow equations expressed with respect to non-orthogonal curvilinear coordinates and methods of solution

A77-17239

THRUST AUGMENTATION

Crossflow performance of lift-fans in tandem --- for V/STOL transport aircraft

A77-17265

TILT ROTOR AIRCRAFT

Design comparison between helicopter and tilt rotor aircraft
[AD-A027559]

TIME OPTIMAL CONTROL

Time-optimal ascent trajectories --- for aircraft flight

[DLR PAPER 76-200]

TITANIUM ALLOYS

Superplastic forming of titanium alloys

A77-17554

Near-net powder metallurgy airframe structures

A77-15176

TOPOLOGY

Internal interaction analysis. Topological concepts and needed model improvements
[AD-A027047]

TOXICITY AND SAFETY HAZARD

The hidden passenger --- hazardous air cargo and flight safety

A77-16737

TRAILING EDGES

The effect of inclined trailing edges and seaplane weight on the supersonic flow past conical paragliders with small camber

A77-16598

TRAINING DEVICES

Experience with the flight simulator

A77-16744

TRAJECTORY ANALYSIS

Theoretical and experimental investigation of the departure characteristics of external stores which are dropped from an aircraft
[DLR PAPER 76-202]

A77-16569

TRAJECTORY OPTIMIZATION

Time-optimal ascent trajectories --- for aircraft flight
[DLR PAPER 76-200]

A77-16585

TRANSIENT HEATING

Electric analog modeling of temperature fields in gas turbine blades for transient modes of operation

A77-16305

TRANSLATIONAL MOTION

The velocity field of small-Mach number Knudsen flow on the edge of a disturbed plate

A77-16422

TRANSMISSION LOSS

Low-frequency noise reduction of lightweight airframe structures
[NASA-CR-151040]

A77-15029

TRANSMISSIONS (MACHINE ELEMENTS)

Drive mechanisms of flight vehicle control systems: Analysis and design. Handbook

A77-18265

SUBJECT INDEX

TRANSMITTER RECEIVERS

Nadir special evaluation report: Degradation of AN/GPI-6 interrogator set identification friend or foe/selector identification feature IFP/SIF returns from F-4 and EF-4 aircraft
[AD-A027417]

TRANSMITTERS

Mobile data radio --- transmission quality between stationary transmitter to receiver in motion
[DLR PAPER 76-168]

TRANSONIC COMPRESSOR

A comparison of two transonic compressors designed for a pressure ratio of 1.88

A77-17524

TRANSONIC FLIGHT

Sonic boom focusing --- caustic analysis of transonic flight

A77-171237

TRANSONIC JET ENGINE

A wall interference problem in a hybrid tunnel at transonic speeds
[DLR PAPER 76-169]

A77-16562

TRANSPARENCY

Environmental resistance of coated and laminated polycarbonate transparencies
[AD-A026412]

A77-16413

TRANSPORT AIRCRAFT

Crack propagation in the reinforced structure of a transport aircraft, calculation-experiment comparison
[DLR PAPER 76-218]

A77-16584

Layout and flight performance of a hypersonic transport /HST/
[DLR PAPER 76-198]

A77-16575

System safety and the Utility Tactical Transport Aircraft System

A77-16735

Fuel consumption of civil jet transport aircraft

A77-17234

Aircraft considerations for advanced S.S.T. propulsion systems

A77-17259

Crossflow performance of lift-fans in tandem --- for V/STOL transport aircraft

A77-17265

Energy consumption characteristics of transports using the prop-fan concept
[NASA-CR-137937]

A77-14029

Energy consumption characteristics of transports using the prop-fan concept: Summary report
[NASA-CR-137938]

A77-14030

TRANSPORTATION ENERGY

Alternative fuels for aviation
[GO-78-564]

A77-15212

T-33 AIRCRAFT

Maintenance basis for the aircraft T-33

A77-16741

TURBINE BLADES

Fundamental studies of turbulent boundary layers with injection or suction through porous wall. IV - Application of fundamental theoretical analysis to cascaded blades with injection or suction and cascade tests

A77-16299

Electric analog modeling of temperature fields in gas turbine blades for transient modes of operation

A77-16305

Efficiency of turbine-blade cooling by air injection through longitudinal slots

A77-16325

Compressible flow, temperature and life calculations with turbine blades

A77-17253

Boundary layer calculation of an effusion cooled turbine blade

A77-17255
Simple complex method of selection of the main design parameters of turbine stages for turbine-engines

Contribution to the investigation of heat transfer in turbine blade cascades in effusion cooling

Study on film cooling of turbine blades. I - Experiments on film cooling with injection through holes near leading edge

TURBINE ENGINES
The application of advanced turbine cooling technology in the TF701 Engine

Boundary layer calculation of an effusion cooled turbine blade

Simple complex method of selection of the main design parameters of turbine stages for turbine-engines

Cost/benefit analysis of advanced materials technologies for future aircraft turbine engines (NASA-CR-135107) [H77-14026]

Lubricant/metallurgy interaction effects on turbine engine lubricant load rating (AD-A026208) [H77-15410]

TURBINE WHEELS
Reducing secondary losses by blowing cold air in a turbine (DGLR PAPER 76-164) [H77-16558]

Instability phenomena in the flow passages of a gas turbine engine compressor

Optimum distribution of material in rotating disks found from strength conditions (A77-17761)

TURBOCOMPRESSORS
Theoretical and experimental results of the investigation of two different supersonic compressor stages (DGLR PAPER 76-166) [A77-16586]

The effect of twist on the aerodynamic investigation of axial compressor blades (A77-16786)

Analytical and experimental studies of an axial compressor with co-rotating stators (A77-17240)

One-dimensional analysis of the properties of the elementary supersonic axial-flow compressor cascade

Simple complex method of selection of the main design parameters of turbine stages for turbine-engines (A77-17244)

Flutter analysis of a cascade of rotor blades (AIAA PAPER 77-308) [A78-18233]

TURBOPAN ENGINES
Self-correcting control for a turbopan engine (A77-17236)

Analytical and experimental studies of an axial compressor with co-rotating stators (A77-17240)

Engine compression system surge line evaluation techniques --- fuel step technique for high pressure testing (A77-17241)

TURBOPANS
Dual output variable pitch turbopan actuation system (NASA-CASE-LEW-12437-1) [N77-14025]

TURBOPAN GENERATORS
A combined cycle with a partial-oxidation reactor (A77-17534)

TURBOPAN ENGINES
Theoretical and experimental results of the investigation of two different supersonic compressor stages (DGLR PAPER 76-166) [A77-16586]

Pressure ratio optimization criteria in aircraft turbopan-engines design (A77-17250)

Analysis of parameters and characteristics of a bypass turbopan engine operating in a cycle with stepwise heat removal (A77-17765)

Features of the concept of the efficiency coefficient of a turbine with open air cooling operating in a gas turbine engine system (A77-17770)

Reliability case history of an airborne air turbine starter (A77-18937)

Small, low cost, expendable turbojet engine. 2: Performance characteristics (NASA-TM-X-3463) [H77-14031]

Advanced supersonic propulsion study, phase IV (NASA-CR-135108) [H77-15081]

TURBOMACHINE BLADES
Functional representation of the kinematic properties of two-dimensional blade cascades (A77-17536)

TURBOMACHINE
Multidimensional solutions for supersonic flow fields in turbomachines (DGLR PAPER 76-165) [A77-16577]

Three-dimensional turbomachine flow equations expressed with respect to non-orthogonal curvilinear coordinates and methods of solution (AD-A027717) [H77-17239]

Some experimental investigations on the improvement of the off-design performance of a single stage axial flow fan (A77-17262)

TURBOPROP ENGINES
Operational behaviour of a turboprop engine

TURBULENCE EFFECTS
Random vibration peaks in rotorcraft and the effects of nonuniform gusts (A77-17498)

TURBULENT BOUNDARY LAYER
Fundamental studies of turbulent boundary layers with injection or suction through porous wall. IV - Application of fundamental theoretical analysis to cascaded blades with injection or suction and cascade tests (A77-16299)

Experimental investigation of subsonic turbulent separated boundary layers on an airfoil (A77-17496)

TURBULENTE FLOW
Prediction of the flow and combustion processes in a three-dimensional combustion chamber (A77-17251)

TURBULENCE WAKES
Interactions and merging of line vortices (A77-13997)

TURBULENCE FLOW
Landing gear/soil interaction development of criteria for aircraft operation on soil during turning and multipass operations (AD-A027422) [H77-14008]

TWISTING
The effect of twist on the aerodynamic investigation of axial compressor blades (A77-16786)

TWO-DIMENSIONAL BOUNDARY LAYER
Oblique slot blowing into a supersonic laminar boundary layer (A77-17424)

TWO-DIMENSIONAL FLOW
Transonic cascade flow calculation using the relaxation method (DGLR PAPER 76-186) [A77-16537]

Computations of wave drag for transonic flow (A77-16666)

Two-dimensional aerodynamic characteristics of several rotorcraft airfoils at Mach numbers from 0.15 to 0.99 (NASA-TR-X-73990) [H77-16999]

Two-dimensional subsonic wind tunnel evaluation of a 20-percent-thick circulation control airfoil (AD-A027164) [H77-15055]

U

UN-61A HELICOPTER
Ringless rotor for the larger helicopters (DGLR PAPER 76-223) [A77-16590]

UNSTEADY FLOW
Numerical procedures for the calculation of unsteady air forces on oscillating wings and fuselages (DGLR PAPER 76-155) [A77-16578]
WIND TUNNEL ROSES
A control system for the wind tunnel model of a Reverse-Blowing Circulation Control Botor (RB-CCB) [AD-A026548] A77-14013

WIND TUNNEL TESTS
Theoretical and experimental investigation of the departure characteristics of external stores which are dropped from an aircraft [DGLR PAPER 76-202] A77-16569
Experiments on vortex stability on laminar flow wings in wind tunnels [DGLR PAPER 76-202] A77-16569

WIND TUNNEL WALLS
A wall interference problem in a hybrid tunnel at supersonic speeds [DGLR PAPER 76-169] A77-16562

WIND TUNNELS
A control system for the wind tunnel model of a Reverse-Blowing Circulation Control Botor (RB-CCB) [AD-A026548] A77-14013

WINDSHIELDS
Environmental resistance of coated and laminated polycarbonate transparencies [AD-A026412] A77-14213

WING CAMBER
Calculation of three-dimensional boundary layers on swept wings [DGLR PAPER 76-187] A77-16566

WING FLAPS
Theoretical determination of the characteristic curves of airfoil profiles with flaps, flow separation and ground effect [DGLR PAPER 76-206] A77-16546

WING FLOW METHOD TESTS
Theoretical determination of the characteristic curves of airfoil profiles with flaps, flow separation and ground effect [DGLR PAPER 76-206] A77-16546
Experiments on supersonic lee-side flow past delta wings [DGLR PAPER 76-156] A77-16582

WING LOADING
Investigation of airfoils near the ground with nonsymmetrical flow past them [DGLR PAPER 76-152] A77-16539
Design of airfoils in transonic flow by the integral method A77-16599

WING OSCILLATIONS
A technique for reducing the differential wing-flutter equations to integral equations A77-16311
Calulation of pressure distribution on oscillating airfoils in supersonic flow [DGLR PAPER 76-156] A77-16532
Numerical procedures for the calculation of unsteady air forces on oscillating wings and fuselages [DGLR PAPER 76-156] A77-16578
The effect of inclined trailing edges and membrane weight on the supersonic flow past conical paragliders with small camber A77-16598

WING PLANEFORMS
AH-1 helicopter vibration levels for stub wing mounted equipment [AD-A026625] H77-14014

WING PROFILES
Airfoil design for a variable-geometry aircraft [DGLR PAPER 76-153] A77-16554

WING TIPS
Experiments on vortex stability on laminar flow wings in wind tunnels A77-17167

WINGS
AE monitoring of rapid crack growth in a production-size wing fatigue test article [Acoustic Emission] A77-18650
Preliminary study of effects of winglets on wing flutter [NASA-TM-X-3433] B77-13988
Aerodynamic centre of wing-fuselage combinations [ESDU-76015] A77-14992
PERSONAL AUTHOR INDEX

AERONAUTICAL ENGINEERING /A Special Bibliography (Suppl 82) APRIL 1977

Typical Personal Author Index Listing

BIBBOOS, C. I.
Simulation of an automatically-controlled STOL aircraft in a microwave landing system multipath environment
[NASA-76-X-73154] N77-11063

Listings in this index are arranged alphabetically by personal author. The title of the document provides the user with a brief description of the subject matter. The report number helps to indicate the type of document cited (e.g., NASA report, NASA contractor report). The accession number is located beneath and to the right of the title (e.g., N77-11063). Under any one author's name, the accession numbers are arranged in sequence with the IAA accession numbers appearing first.
BINDER, G.
Investigation of airfoils near the ground with nonsymmetrical flow past them [DGEB-PAPER 76-152] A77-16539

BINGHAM, A. N.
VT. 2 - 100 ton amphibious hovercraft [DGEB-PAPER 76-166] A77-17037

BINGHAM, G. J.
Two-dimensional aerodynamic characteristics of several rotorcraft airfoils at Mach numbers from 0.35 to 0.90 [NASA-TN-X-73990] A77-14999

BISSET, J. W.
Cost/benefit analysis of advanced materials technology for future aircraft turbine engines [NASA-CH-135107] A77-14026

BLAKE, F.
Collocated flight service station/air route traffic control center aviation weather unit, task 1 [D-A031099/5] A77-15579

BLAND, R. P.
Simulation test results for lift/cruise fan research and technology aircraft [NASA-CH-137979] A77-14007

BLOOM, R.
Deutsche Gesellschaft fuer Luft- und Raumfahrt, Yearbook 1975. Volumes 1 & 2 A77-18600

BLOCH, A. I.
Efficiency of turbine-blade cooling by air injection through longitudinal slots A77-16325

BLOCK, F. W.
Noise response of cavities of varying dimensions at subsonic speeds [NASA-TH-D-0351] A77-14817

BLOOM, A. H.
Wing surface-jet interaction characteristics of an upper-surface jet model with rectangular exhaust nozzles and a radius flap [NASA-TH-D-0187] A77-13989

BOYD, R. J.
Research and development in support of Canadian military air requirements A77-14984

BUCCEI, J. D.
Aircraft configuration noise reduction. Volume 3: One-dimensional analysis of the properties of the cascade A77-17059

BOYD, D. H.
Adaptation of the lateral controls for the FFW 614 during the flight tests [DGEB-PAPER 76-221] A77-16574

BODOLOV, E. N.
Features of the concept of the efficiency of a turbine with open cooling operating in a gas turbine engine system A77-17770

BORG, D.
Theoretical and experimental results of the investigation of two different supersonic compressor stages [DGGEB-PAPER 76-166] A77-16586

BORDAN, J. S., III
AH-1 helicopter vibration levels for stub wing mounted equipment [AD-A026825] A77-14014

BORSIN, G.
Smoke emission of aircraft seat materials A77-17482

BOSE, L. J.
Smoke circuit analysis of military systems A77-16732

BOONE, D. W.
Life cycle cost impact on design considerations for civil transport aircraft propulsion systems A77-17227

BRADBURY, P.
Stolgan [NASA-CH-137972] A77-14019

BRECHET, F. A. E.
Supersonic compressors with subsonic and supersonic axial inlet component A77-17243

BROCHEMANN, K.-D.
Theoretical and experimental results of the investigation of two different supersonic compressor stages [DGGEB-PAPER 76-166] A77-16586

BROMAN, C. L.
Dual output variable pitch turbofan actuation system [NASA-CS56-12479-1] A77-14025

BROWN, D. C.
The pay-off for advanced technology in commercial aircraft design and operation A77-19012

BROWN, G.
Layout and flight performance of a hypersonic transport /SST/ [DGEB-PAPER 76-198] A77-16575

BOURHIDE, N. M.
Currents induced on metal/dielectric structures for transverse magnetic plane wave incidence [AD-A026896] A77-15253

BROWN, P. H.
The analytical geometry of a simple skew-hinge mechanism A77-19016

BUSCH, H. E.
ATC automation with microcomputers A77-17483

BUTCHER, H. P.
Effect of ceramic coating of JT9D combustor liner on maximum liner temperatures and other combustor performance parameters [NASA-TH-D-73581] A77-15037

BUTTLER, L. M.

BUSTAMANTE, J. J.

CAMPBELL, J. S.

CAMPBELL, M. T.
Empirical validation of turbine engine exhaust measurements A77-16372

CARDINALLI, C.
Smoke emission of aircraft seat materials A77-17482

CARPER, H. J.
Lubricant/metallurgy interaction effects on turbine engine lubricant load rating [AD-A026208] A77-15410

CASEY, J. J.

CATERHINES, J. J.
Sources and characteristics of interior noise in general aviation aircraft A77-17067

CAVANO, P. J.
PMS polymide/graphite fiber composite fan blades [NASA-CH-135113] A77-15101

CECIL, R. J.

CECEK, V.
Computer program source listing A77-15101

CECEK, J. J.
Computer program user's guide and other appendices [AD-A030656/3] A77-14815

CERITZKOVSKY, K.
One-dimensional analysis of the properties of the elementary supersonic axial-flow compressor cascade A77-17244

CHAPPELL, W. S.
Analytical and experimental studies of an axial compressor with co-rotating stators A77-17240
CONTRIBUTION TO THE INVESTIGATION OF HEAT TRANSFER

Concorde and the Climate

Control methods for aiding a pilot during STOL

Hypersonic Flow in Converging Conical Channel

Investigation of Aerodynamic Loads at Spin Entry

Aircraft Configuration Noise Reduction. Volume 1: Engineering Analysis

Aircraft Configuration Noise Reduction. Volume 3: Computer Program Source Listing

The Design and Operating Features of Vosper Thornycroft Skirts

The Hidden Passengers

Parameter Identification and Study of Properties within the Scope of Flight Testing a High-Performance Aircraft

The Failure of Joints in Composite Material Fuel Cells Due to Hydraulic Ram Loading

Fiber Optics Application to A-7 Aircraft

Some Experience with Small Engines

Test Plan for Aircraft Runup Noise Penalty

Results of Further Investigations of a New Concept of Fuel Precipitator

Engine Control System Design

Internal Interaction Analysis. Topological Concepts and Needed Model Improvements

Engine Noise - A Look Ahead

Sweepback Flutter

Progress in Surface Finishing and Coatings

Boundary Layer Theory

Thornycroft Skirts

Ducting

Aircraft Configuration Noise Reduction. Volume 1: Engineering Analysis

Aircraft Configuration Noise Reduction. Volume 3: Computer Program Source Listing

B-3
FORREER, H. W.
Analysis of the climbing characteristics of subsonic jet aircraft
[DLR PAPER 76-193] A77-17257

FORREER, H. S.
Studies of the drag of air cushion vehicles overland
[DLR PAPER 76-215] A77-16588

FREDERICK, J.
Turbine engine cycle selection procedures
A77-18666

FRICK, H.
The development of a carbon fiber-reinforced plastic rudder for the Alpha Jet
[DLR PAPER 76-193] A77-17257

FRICK, B. S.
Studies of the drag of air cushion vehicles overland
A77-17028

FREDEBECK, J.
Turbine engine cycle selection procedures
177-17257

FREEDERICK, J. J.
The development of a carbon fiber-reinforced plastic rudder for the Alpha Jet
[DLR PAPER 76-193] A77-17257

FREEMAN, J. J.
A new air transport policy for the North Atlantic
A77-16735

FRIGHAUTH, H. H.
Multidimensional solutions for supersonic flow fields in turbomachines
[AD-A031149/8] A77-15040

GALLOWAY, W. J.
Noise reduction for business aircraft
[AD-A031149/8] A77-15040

GALLUS, H. E.
Theoretical and experimental results of the investigation of two different supersonic compressor stages
[DLR PAPER 76-166] A77-16586

GARDNER, G. R.
Random vibration peaks in rotorcraft and the effects of nonuniform gusts
A77-17419

GARANIDIAN, P. R.
Computation of wave drag for transonic flow
A77-16666

GARDEER, D. G.
Standard reference gases and analytical procedures for use in gas turbine exhaust measurements
A77-16373

GARNATZ, P.
Application and effect of the results of stability and structural component studies on current and future aircraft
[DLR PAPER 76-167] A77-16550

GARWIN, R. L.
DSTAR: Direct Sea-To-Air Refueling (inflight refueling of military cargo aircraft from ships at sea)
[AD-A026750] A77-17419

GAY, C. A. J.
Superplastic forming of titanium alloys
A77-17554

GEISSLER, W.
Numerical procedures for the calculation of unsteady air forces on oscillating wings and fuselages
[DLR PAPER 76-155] A77-16578

GERARD, P.
A premixed, variable area combustor for a small gas turbine engine
A77-17248

GEUSEL, G. L.
Low-frequency noise reduction of lightweight airframe structures
[DLR PAPER 76-155] A77-16578

GLOST, G.
Self-adaptive difference method for the effective solution of computationally complex problems of boundary layer theory
[DLR PAPER 76-185] A77-16564

GODWIN, J. B., JR.
Electrostatics in aviation fuel systems sessions
A77-17503

GOEBELICH, J.
Experience with the flight simulator
A77-16744

GOLDSMITH, H. A.
Aircraft considerations for advanced S.S.T. propulsion systems
A77-17259

GORDON, C. G.
Noise reduction for business aircraft
[AD-A031149/8] A77-15040

GOSSE, E. J.
Testing procedures for carbon fiber reinforced plastic components
[DLR PAPER 76-215] A77-16588

GRABER, G.
Wavefront in axisymmetric steady supersonic free jets
A77-16421

GRIGL, A. W. H.
A statistical method for the prediction of component low cycle fatigue life
A77-17254

GROBHICHER, J.
STOELAND
[NASA-CH-137972] N77-15019

GROTH, B. H.
Engine compression system surge line evaluation techniques
A77-17241

GROSSWOLLE, H. H., JR.
Dual output variable pitch turbofan actuation system
[NASA-CH-137972] N77-15025

GROTH, B. H.
Empirical validation of turbine engine exhaust measurements
A77-16372

Standard reference gases and analytical procedures for use in gas turbine exhaust measurements
A77-16373

GRUMBHAULD, K.
Holographic determination of thermal and mechanical deformations in the case of structural components and structures of aeronautical and astronautical technology
[DLR PAPER 76-180] A77-16587

GRUMBHAULD, R.
Calculation of three-dimensional boundary layers on sweptback wings
[DLR PAPER 76-180] A77-16587

GUL, H. W.
Thermal design and analysis of a hydrogen-burning wind tunnel model of an airframe-integrated scramjet
[NASA-TM-X-73931] N77-15045

HAACK, T.
Attitude instability in steady rolling and roll resonance
A77-17494

HAAS, P.
Time-optimal ascent trajectories
[DLR PAPER 76-200] A77-16585

HAIDT, G.
Nonlinear effects in aircraft ground and flight vibration tests
[AGARD-R-652] N77-15034

HALL, O.
Development of fire resistant, nontoxic aircraft interior materials
[NASA-CH-137920] N77-14205

HALL, G.
Compressible flow, temperature and life calculations with turbine blades
A77-17253

HAMILTON, J. H.
AE monitoring of rapid crack growth in a production-size wing fatigue test article
A77-18650

HANSEN, H.
Design of airfoils in transonic flow by the integral method
A77-16599

HARDY, J. M.
Reactors for supersonic transport aircraft - Analytical method
A77-17262
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Title</th>
<th>Conference/Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bax, G.</td>
<td>Gasdynamic investigations of explosive decomposition of one of the</td>
<td>[DGLR Paper 76-209]</td>
</tr>
<tr>
<td></td>
<td>cargo holds of the Alcubia A 300</td>
<td></td>
</tr>
<tr>
<td>Held, V.</td>
<td>The determination of the true vertical direction in flight</td>
<td>A77-17824</td>
</tr>
<tr>
<td>Hene, B.</td>
<td>The development of a carbon fiber-reinforced plastic tube for the</td>
<td>A77-16572</td>
</tr>
<tr>
<td></td>
<td>Alpha Jet</td>
<td></td>
</tr>
<tr>
<td>Hender, J.</td>
<td>Development of a gas turbine engine oil for bulk</td>
<td>A77-15202</td>
</tr>
<tr>
<td></td>
<td>oil temperatures of -40 to 465 F, part 2</td>
<td></td>
</tr>
<tr>
<td>Herber, B.</td>
<td>General survey of the studies and testing</td>
<td>A77-17050</td>
</tr>
<tr>
<td>Higdon, D.</td>
<td>Engine noise - A look ahead</td>
<td>A77-19015</td>
</tr>
<tr>
<td>Hildebrand, C. J.</td>
<td>Thermoplastic polymers for improved fire safety</td>
<td>A77-14206</td>
</tr>
<tr>
<td>Hill, E. J.</td>
<td>Sheet circuit analysis of military systems</td>
<td>A77-16732</td>
</tr>
<tr>
<td>Hischel, T.</td>
<td>Calculation of three-dimensional boundary layers on sweepback wings</td>
<td>A77-16566</td>
</tr>
<tr>
<td>Hischerg, B.</td>
<td>Study of unconventional aircraft engines designed for low energy</td>
<td>A77-15043</td>
</tr>
<tr>
<td>Hiss, B.</td>
<td>The automatic navigator</td>
<td>A77-18725</td>
</tr>
<tr>
<td>Hiscock, R. D.</td>
<td>The dynamics of STOL/The daniel and Florence</td>
<td>A77-19247</td>
</tr>
<tr>
<td>Hodara, B.</td>
<td>Fibers and integrated optics; Proceedings of the Seminar, Boston, Va.,</td>
<td>A77-19238</td>
</tr>
<tr>
<td>Hodder, B. K.</td>
<td>Further studies of static to flight effects on fan</td>
<td>A77-14027</td>
</tr>
<tr>
<td></td>
<td>tone noise using inlet distortion control for source identification</td>
<td></td>
</tr>
<tr>
<td>Hodgeson, F. N.</td>
<td>Environmental degradation of fuels, fluids and</td>
<td>A77-15214</td>
</tr>
<tr>
<td></td>
<td>related materials for aircraft</td>
<td></td>
</tr>
<tr>
<td>Holly, W.</td>
<td>Wing surface-jet interaction characteristics of an upper-surface</td>
<td>A77-13989</td>
</tr>
<tr>
<td></td>
<td>blown model with rectangular exhaust nozzles and a radius flap</td>
<td></td>
</tr>
<tr>
<td>Holl, B.</td>
<td>The development and utilisation of an engine usage monitoring system</td>
<td>A77-17229</td>
</tr>
<tr>
<td>Horn, W.</td>
<td>A new development concept for gas turbine engine optimize life cycle</td>
<td>A77-17228</td>
</tr>
<tr>
<td>Hornrider, T.</td>
<td>A wall interference problem in a hybrid tunnel at</td>
<td>A77-16562</td>
</tr>
<tr>
<td></td>
<td>transonic speeds</td>
<td></td>
</tr>
<tr>
<td>Housou-Mizadis, J.</td>
<td>Variable geometry for high performance aircraft engines</td>
<td>A77-17264</td>
</tr>
<tr>
<td>Howlett, J. T.</td>
<td>Prediction of light aircraft interior noise</td>
<td>A77-17069</td>
</tr>
<tr>
<td>Howlett, R. A.</td>
<td>Advanced supersonic propulsion study, phase 3</td>
<td>A77-15081</td>
</tr>
<tr>
<td>Hube, R.</td>
<td>High-speed tests with the helicopter BO 105 BHE</td>
<td>A77-16567</td>
</tr>
<tr>
<td>Huff, R.</td>
<td>Contribution of materials technology to progress in propulsion system</td>
<td>A77-16568</td>
</tr>
<tr>
<td>Hunsbergs, B. R.</td>
<td>PW-CW range multipath investigation for Navy</td>
<td>A77-14319</td>
</tr>
<tr>
<td>Hunsby, L.</td>
<td>Prediction of aerodynamic out-of-plane forces on ogive-nosed</td>
<td>A77-18879</td>
</tr>
<tr>
<td></td>
<td>circular cylinders</td>
<td></td>
</tr>
<tr>
<td>Hurhty, R. A.</td>
<td>Environmental resistance of coated and laminated polycarbonate</td>
<td>A77-18249</td>
</tr>
<tr>
<td></td>
<td>transparencies</td>
<td></td>
</tr>
<tr>
<td>Huang, Y.</td>
<td>Currents induced on metal/dielectric structures for transverse</td>
<td>A77-15253</td>
</tr>
<tr>
<td></td>
<td>magnetic plane wave incidence</td>
<td></td>
</tr>
<tr>
<td>Januchuk, V. A.</td>
<td>Investigation of the flow patterns at the engine face and methods of</td>
<td>A77-17260</td>
</tr>
<tr>
<td></td>
<td>the flow pattern simulation of supersonic flight speed</td>
<td></td>
</tr>
<tr>
<td>Igarah, Y.</td>
<td>Electric analog modeling of temperature fields in gas turbine blades</td>
<td>A77-16305</td>
</tr>
<tr>
<td></td>
<td>for transient modes of operation</td>
<td></td>
</tr>
<tr>
<td>Illushin, S. W.</td>
<td>The technical concept of the IL-62N. I</td>
<td>A77-16740</td>
</tr>
<tr>
<td>Iskakov, B. L.</td>
<td>Dynamics of elastic curvilinear rod with free ends</td>
<td>A77-17956</td>
</tr>
<tr>
<td>Jacob, J.</td>
<td>Theoretical determination of the characteristic curves of airflow</td>
<td>A77-16586</td>
</tr>
<tr>
<td></td>
<td>profiles with flaps, flow separation and ground effect</td>
<td></td>
</tr>
<tr>
<td>Jacobs, L. B.</td>
<td>Aircraft configuration noise reduction. Volume 1: Engineering analysis</td>
<td>A77-14814</td>
</tr>
<tr>
<td>Jacobetz, A.</td>
<td>A combined cycle with a partial-oxidation reactor</td>
<td>A77-17534</td>
</tr>
<tr>
<td>Jautusch, V.</td>
<td>Calculation of three-dimensional boundary layers on sweepback wings</td>
<td>A77-16566</td>
</tr>
<tr>
<td></td>
<td>[DGLR Paper 76-187]</td>
<td></td>
</tr>
<tr>
<td>Jewke, L. B.</td>
<td>Experimental roll-damping, Magnus, and</td>
<td>A77-16566</td>
</tr>
<tr>
<td></td>
<td>static-stability characteristics of two slender missile</td>
<td></td>
</tr>
<tr>
<td></td>
<td>configurations at high angles of attack</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[AD-A027027]</td>
<td>A77-15004</td>
</tr>
<tr>
<td>JHA, S. K.</td>
<td>Sources and characteristics of interior noise in general aviation</td>
<td>A77-17067</td>
</tr>
</tbody>
</table>

B-5
LABOBT, P. L.

LIEBBHT, C. H.

LAKSON, C. J.

LABIOHOV, H. G.

LABGSTOH, J.

LAHGFBLDBB, H.

LARAB, J. B.

LAFOZB, D. L.

LORAI. B. I.

LBSBYKB, S. I.

LBINBBAHH, B.

L. P.

LEB,

LAflSOH, K. S.

LABGB, fi. B.

KOBAGAI, T.

KOKLEVA, a.

KOKHTA, K. II.

The 150 KVA samarium cobalt VSCP starter generator

Optimal one-section and two-section circular

Technology of manufacturing aircraft honefcoab

Calculation of curves of constant eguivalent

Thermal design and analysis of a hydrogen-burning

The pay-off for advanced technology in commercial

Heasurement of the pover handling capabilities of

Theory of small-aspect-ratio wing analysis using

Longitudinal aerodynamic characteristics of 45 deg

swept wings at Mach approximately 0

Prediction of aerodynamic out-of-plane forces on

Effects of artificial stability on configuration

design

New technology for fighter aircraft

Collocated flight service station/Air Route

Traffic Control Center aviation weather unit, task 1

Simple complex method of selection of the main

design parameters of turbine stages for

turbine-engines

Optimum distribution of material in rotating disks

found from strength conditions

Collocated flight service station/Air Route

Traffic Control Center aviation weather unit, task 1

Numerical methods for calculating the performance

turbine-engines

Thermal design and analysis of a hydrogren-burning

wind tunnel model of an airframe-integrated

scramjet

Calculation of curves of constant equivalent

levels of enduring sound for implementation of the

turbine noise protection law - Methods and

preliminary results

Technology of manufacturing aircraft honeycomb

structures /2nd revised and enlarged edition/

Optimal one-section and two-section circular

sound-absorbing duct liners for plane-wave and

monopole sources without flow

Aircraft considerations for advanced S.S.T.

propulsion systems

Effect of ceramic coating of JT8D combustor liner

on maximum liner temperatures and other

combustor performance parameters

System safety in the Advanced Attack Helicopter

Contribution to the investigation of heat transfer

in turbine blade cascades in effusion cooling
Booth, B. J.

Hayes, B. J.

Hayes, B. J.

Hataf, B. A.

Hobaek, B. B.

Hitasibobo, S. K.

Hills, J. F.

Billab, D. A. J.

Bizotari, Y.

Sitoss, B.

Bobales, D. A.

Biles, J. C.

Hikolet, W. T.

Hikbebbkov, E. L.

Beiebs, J. B.

Besthello, L.

Bbssehb, L. W.

Bllozov, W. V.

Beibb, G. E. A.

Batbb, I. J.

Bcbbabin, j. E.

Bcfarlabd, A. I.

Bibb, H. J.

Baisehgbbb, L. W.

Bbloe, L. V.

BoBBERIEI, F.

Olssob, O.

Oebbbodbiikot, D. A.

Oebbli, B. B.

Odbb, S. A.

Oebbbodbiikot, B. G. V.

Habaiaibdbdtbi, B. G.

Hobata, I.

Hosllbb, J. H.

Holley, G. V.

Oebbe, F. E.

BEHARES, D. A.

Hypersonic gas flow around slender blunt body of revolution

Morgan, R. A.

Internal interaction analysis. Topological concepts and needed model improvements [AD-A027047] W77-15250

Moore, J. K.

Moore, J. K.

The potential of liquid hydrogen as a military aircraft fuel [AD-A026666] W77-14272

Miller, J. C.

Miller, J. A.

Analytical and experimental studies of an axial compressor with co-rotating stators [AD-A026666] W77-15040

Miller, J. F.

Mireklier, P.

NARAYANARKUTTI, R. G.

Some experimental investigations on the improvement of the off-design performance of a single stage axial flow fan W77-17242

Hataf, B. K.

Incompressible flow over delta wings [AIAA PAPER 77-320] W77-18242

Natacco, K. E.

Ride control for high speed ground transportation including passenger-seat dynamics and active aerodynamic suspensions [NASA-CR-135135] W77-15044

Nitezil, E. E.

Study of unconventional aircraft engines designed for low energy consumption [NASA-CR-135136] W77-15043

Nelson, E. K.

Nehra, P. F.

Aircraft design concept [NASA-CASE-LAB-11852-1] W77-15027

Nwright, D. M.

Nogile, L. W.

The potential of liquid hydrogen as a military aircraft fuel [AD-A026666] W77-14272

Noonaf, E. M.

Two-dimensional aerodynamic characteristics of several rotocraft airfoils at Mach numbers from 0.35 to 0.90 [NASA-TH-X-73990] W77-18999

Novelriov, G. V.

The technical concept of the IL-62M. I [NASA-TH-X-73990] W77-17260

Oberreif, F.

Ochera, J.

A pressurized, variable area combustor for a small gas turbine engine [NASA-TH-X-73990] W77-17260

Orell, B. R.

Design comparison between helicopter and tilt rotor aircraft [AD-A027559] W77-17248

CGORKhNIOK, D. A.

Investigation of the flow pattern at the engine face and methods of the flow pattern simulation at supersonic flight speed [NASA-TH-X-73990] W77-17260

Oldead, R. K.

A comparison of two transonic compressors designed for a pressure ratio of 1.88 [NASA-TH-X-73990] W77-17237

Olsoss, O.

RILEY, N.

Oblique slot blowing into a supersonic laminar boundary layer

RIVELLO, R. M.

Structural studies of oblique folding wings [AD-025712]

ROBERTS, D. L.

Multi-site intermittent positive control algorithms for the discrete address beacon system, revision 2 [AD-026515]

ROBERTSON, D. J.

Standard reference gases and analytical procedures for use in gas turbine exhaust measurements

RODEN, R. A.

A study of diffraction of electromagnetic waves around large stationary aircraft and its effects on instrument landing system guidance signals

ROSENBERG, B.

A simplified method in flight test techniques for the determination of the range performance of jet aircraft

ROTH, S.

Development of a carbon fiber-reinforced plastic elevator unit for the Alpha Jet

RUDY, R. A.

Status review of NASA program for reducing aircraft gas turbine engine emissions

SABATONI, J.

Advanced supersonic propulsion study, phase 3 [NASA-CR-135198]

Sachs, G.

Flight-characteristics requirements concerning static stability in supersonic flight [DGLR PAPER 76-199]

Longitudinal stability in supersonic and hypersonic flight

Sakata, K.

Study on film cooling of turbine blades. I - Experiments on film cooling with injection through holes near leading edge

Salganskii, E. A.

Optimum distribution of material in rotating disks found from strength conditions

Sanderson, L.

Stainless steels and alloys in air and space-craft

Sasaki, H.

Study on film cooling of turbine blades. I - Experiments on film cooling with injection through holes near leading edge

Schelk, G. P.

Astroglide - The advanced automatic guideway transit system

Schroeder, M.

Parameter identification and study of properties within the scope of flight testing a high-performance aircraft [DGLR PAPER 76-220]

Concorde has designed-in reliability

Schiick, C.

High-speed tests with the helicopter BO 105 HEG [DGLR PAPER 76-222]

Schmidt, H. M.

Transonic cascade flow calculation using the relaxation method [DGLR PAPER 76-186]

Schmidt, H.

Methods and problems concerning the flight control of RPV's [DGLR PAPER 76-204]

Schneider, R.

The development of a carbon fiber-reinforced plastic rudder for the Alpha Jet [DGLR PAPER 76-193]

Schneider, W.

Self-adaptive difference method for the effective solution of computationally complex problems of boundary layer theory [DGLR PAPER 76-185]

Schoch, W.

Deutsche Gesellschaft fuer Luft- und Raumfahrt, Yearbook 1975. Volumes 1 & 2

Schmidt, B. R.

ATC automation with minicomputers

Seki, K.

Study on film cooling of turbine blades. I - Application of fundamental theoretical analysis to cascaded blades with injection or suction and cascade tests

Seki, H. C.

Experiments on film cooling with injection or suction through porous wall.

Seki, S. K.

Experiments on film cooling with injection through holes near leading edge

Seki, H. C.

Emissions from gas turbine combustors. I - An experimental study on a model combuster

Shanab, R. G.

Ride control for high speed ground transportation including passenger-seat dynamics and active aerodynamic suspensions

Sharpe, A.

The application of microprocessors to the control of small helicopter gas turbines

Shatary, V. G.

Analysis of multicontour thin-wall structures by the cell method

Shcherb, A. V.

Contribution to the investigation of heat transfer in turbine blade cascades in effusion cooling

Shepherd, K. P.

The subjective evaluation of noise from light aircraft

Shibuya, K. I.

Emissions from gas turbine combustors. I - Emissions from gas turbine exhaust measurements

Shimoyama, H. R.

Mini RPV engine noise reduction [AD-027638]

Shimura, K.

Fundamental studies of turbulent boundary layers with injection or suction through porous wall. IV - Application of fundamental theoretical analysis to cascaded blades with injection or suction and cascade tests

Sigala, A.

Aircraft design concept [NASA-CASE-LAB-11852-1]
TRUEN, E. A.
On the mechanism of vortex breakdown point stabilization for low subsonic flow around a delta wing
A77-19242

TUCKER, J. B.
Screening analysis and selection of emission reduction concepts for intermittent combustion aircraft engines
[NASA CR-135078] N77-15038

Tyler, R. A.
Crossflow performance of lift-fans in tandem
A77-17265

UHBO, N. S.
Experiments on vortex stability
A77-17167

UPEER, J. P.
STOL developments
N77-14986

VADE, J. G.
LTA history and its significance for current events
[AIAA PAPER 77-327] A77-18247

VADEBTOV, N. B.
Theory of small-aspect-ratio wing analysis using discrete-continuous calculation scheme - Numerical integration of resolving equations
A77-17953

VENDATUYLO, W.
Some experimental investigations on the improvement of the off-design performance of a single stage axial flow fan
A77-17242

VENDE, J. H.
Flight simulators for air warfare of the future
[AIAA PAPER 77-327] A77-18246

VELEGBO, J. P. K.
Fuel consumption of civil jet transport aircraft
A77-17234

VOG APHEO, F. L.
Hingeless rotor for the larger helicopters
[DGRL PAPER 76-223] A77-16590

WAGNER, C.
The effect of inclined trailing edges and membrane weight on the supersonic flow past conical paragliders with small caser
A77-16598

WALKER, J. K.
Measurement of post-separated flowfields on airfoils
A77-17499

WALLACHY, R. E.
Tracals evaluation report. Ground/air/ground communications special evaluation report, Sheppard AFB, Texas
[AD-A026823] N77-14003

WARRE, E. S.
Some experience with small engines
A77-17232

WEILAND, E.
Hingeless rotor for the larger helicopters
[DGRL PAPER 76-223] A77-16590

WEILFORD, G. D.
AH-1 helicopter vibration levels for stub wing mounted equipment
[AD-A026825] N77-14018

WEILING, W. H. JR.
Experimental investigation of subsonic turbulent separated boundary layers on an airfoil
Measurement of post-separated flowfields on airfoils
A77-17496

A statistical method for the prediction of component low cycle fatigue life
A77-17254

WHITE, G. P.
Flutter analysis of a cascade of rotor blades
[AIAA PAPER 77-308] A77-18233

WHITE, L. P., JR.
An experimental investigation of vortex flow control for high lift generation
[AD-A027524] N77-13991

WHITE, L. W.
Investigation of helicopter airframe normal modes
A77-17410

WHITE, E.
Crack propagation in the reinforced structure of a transport aircraft, calculation-experiment comparison
[DGRL PAPER 76-218] A77-16544

WILBY, J. P.
Noise reduction for business aircraft
[AD-A031149/8] N77-15101

WILKINSON, E.
Safety concepts and innovations on the B-1 Bomber
A77-16739

WILLIAMS, E. E.
The development and utilization of an engine usage monitoring system with particular reference to low cycle fatigue recording
A77-17229

WILLIAMS, D. E.
Fiber optics application to A-7 aircraft
A77-19242

WILLIAMSON, E. G.
Crossflow performance of lift-fans in tandem
A77-17265

WINTERFIELD, G.
International Symposium on Air Breathing Engines, 3rd, Munich, West Germany, March 7-12, 1976, Proceedings
A77-17226

WINTERHUT, G. E.
Environmental resistance of coated and laminated polycarbonate transparencies
[AD-A0266412] N77-14213

WINTER, W. R.
The polyimide/graphite fiber composite fan blade
[NASA CR-135113] N77-15101

WITF, E. H.
Near-net powder metallurgy airframe structures
A77-15176

WOELFE, G.
Sound shielding on an engine model and comparison with theory
[DGRL PAPER 76-163] A77-16573

WOER, E. R.
Development of single-flight cycles for fatigue tests, based on operational stresses, in the case of large aircraft components
[DGRL PAPER 76-216] A77-16543

WOODY, B. J.
Performance measurement system for major airports
[AD-A026224] N77-14004

WU, C.-H.
Three-dimensional turbomachine flow equations expressed with respect to non-orthogonal curvilinear coordinates and methods of solution
A77-17239

WUERKER, L. J.
Collocated flight service station/Air Route Traffic Control Center aviation weather unit, task 1
[AD-A031099/5] N77-15579

YOUNG, R. X.
Optimizing the cyclic control response of helicopter rotors
A77-17407

ZELOUBEY, P. I.
Stability of rotating body in a gas stream
A77-17955
Typical Contract Number Index Listing

HAS2-9177
K77-11066
CONTRACT NUMBER
NASA ACCESSION NUMBER

Listings in this index are arranged alphabetically by contract number. Under each contract number, the accession numbers denoting documents that have been produced as a result of research done under that contract are arranged in ascending order with the IAA accession numbers appearing first. The accession number denotes the number by which the citation is identified either the IAA or STAR section.

<table>
<thead>
<tr>
<th>Contract Number</th>
<th>NASA Accession Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP PROJ. 1209</td>
<td>K77-15250</td>
</tr>
<tr>
<td>AP PROJ. 1369</td>
<td>K77-14008</td>
</tr>
<tr>
<td>AP PROJ. 2049</td>
<td>K77-14035</td>
</tr>
<tr>
<td>AP PROJ. 2707</td>
<td>K77-15046</td>
</tr>
<tr>
<td>AP PROJ. 3048</td>
<td>K77-14010</td>
</tr>
<tr>
<td>AP PROJ. 3066</td>
<td>K77-14491</td>
</tr>
<tr>
<td>AP PROJ. 3165</td>
<td>K77-15299</td>
</tr>
<tr>
<td>AP PROJ. 3763</td>
<td>K77-15253</td>
</tr>
<tr>
<td>AP PROJ. 7231</td>
<td>K77-14639</td>
</tr>
<tr>
<td>AP PROJ. 7363</td>
<td>K77-15202</td>
</tr>
<tr>
<td>AP PROJ. 7381</td>
<td>K77-14213</td>
</tr>
<tr>
<td>AP PROJ. 7633</td>
<td>K77-15247</td>
</tr>
<tr>
<td>AP PROJ. 8219</td>
<td>K77-15004</td>
</tr>
<tr>
<td>AP PROJ. 9781</td>
<td>K77-13997</td>
</tr>
<tr>
<td>AP-APSR-74-27008</td>
<td>K77-18233</td>
</tr>
<tr>
<td>ARD PROJ. 01A-A9A</td>
<td>K77-15004</td>
</tr>
<tr>
<td>ARL ORDER 2504</td>
<td>K77-15010</td>
</tr>
<tr>
<td>ARL ORDER 2707</td>
<td>K77-15046</td>
</tr>
<tr>
<td>DA PROJ. 1F1-63204-8B-38</td>
<td>K77-15033</td>
</tr>
<tr>
<td>DA PROJ. 1F1-63204-8B-38-VOL-1</td>
<td>K77-15032</td>
</tr>
<tr>
<td>DA PROJ. 1F2-62208-KQ-90</td>
<td>K77-14011</td>
</tr>
<tr>
<td>DA PROJ. 1F7-65706-KG-541</td>
<td>K77-14017</td>
</tr>
<tr>
<td>DA-ARO(D)-31-1247-31-612</td>
<td>K77-17407</td>
</tr>
<tr>
<td>DAJ032-73-C-0076</td>
<td>K77-15032</td>
</tr>
<tr>
<td>DAJ032-74-C-0061</td>
<td>K77-15033</td>
</tr>
<tr>
<td>DAJ032-74-C-0061</td>
<td>K77-15033</td>
</tr>
<tr>
<td>DAH15-73-C-0370</td>
<td>K77-15010</td>
</tr>
<tr>
<td>DOT-PAT70A-2240</td>
<td>K77-14006</td>
</tr>
<tr>
<td>DOT-PAT72A-2201</td>
<td>K77-16959</td>
</tr>
<tr>
<td>DOT-PAT72A-X-261</td>
<td>K77-14000</td>
</tr>
<tr>
<td>DOT-PAT74A-X-3997</td>
<td>K77-14816</td>
</tr>
</tbody>
</table>

HAS2-9177
K77-11066
CONTRACT NUMBER
NASA ACCESSION NUMBER

Listings in this index are arranged alphabetically by contract number. Under each contract number, the accession numbers denoting documents that have been produced as a result of research done under that contract are arranged in ascending order with the IAA accession numbers appearing first. The accession number denotes the number by which the citation is identified either the IAA or STAR section.

<table>
<thead>
<tr>
<th>Contract Number</th>
<th>NASA Accession Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP PROJ. 1209</td>
<td>K77-15250</td>
</tr>
<tr>
<td>AP PROJ. 1369</td>
<td>K77-14008</td>
</tr>
<tr>
<td>AP PROJ. 2049</td>
<td>K77-14035</td>
</tr>
<tr>
<td>AP PROJ. 2707</td>
<td>K77-15046</td>
</tr>
<tr>
<td>AP PROJ. 3048</td>
<td>K77-14010</td>
</tr>
<tr>
<td>AP PROJ. 3066</td>
<td>K77-14491</td>
</tr>
<tr>
<td>AP PROJ. 3165</td>
<td>K77-15299</td>
</tr>
<tr>
<td>AP PROJ. 3763</td>
<td>K77-15253</td>
</tr>
<tr>
<td>AP PROJ. 7231</td>
<td>K77-14639</td>
</tr>
<tr>
<td>AP PROJ. 7363</td>
<td>K77-15202</td>
</tr>
<tr>
<td>AP PROJ. 7381</td>
<td>K77-14213</td>
</tr>
<tr>
<td>AP PROJ. 7633</td>
<td>K77-15247</td>
</tr>
<tr>
<td>AP PROJ. 8219</td>
<td>K77-15004</td>
</tr>
<tr>
<td>AP PROJ. 9781</td>
<td>K77-13997</td>
</tr>
<tr>
<td>AP-APSR-74-27008</td>
<td>K77-18233</td>
</tr>
<tr>
<td>ARD PROJ. 01A-A9A</td>
<td>K77-15004</td>
</tr>
<tr>
<td>ARL ORDER 2504</td>
<td>K77-15010</td>
</tr>
<tr>
<td>ARL ORDER 2707</td>
<td>K77-15046</td>
</tr>
<tr>
<td>DA PROJ. 1F1-63204-8B-38</td>
<td>K77-15033</td>
</tr>
<tr>
<td>DA PROJ. 1F1-63204-8B-38-VOL-1</td>
<td>K77-15032</td>
</tr>
<tr>
<td>DA PROJ. 1F2-62208-KQ-90</td>
<td>K77-14011</td>
</tr>
<tr>
<td>DA PROJ. 1F7-65706-KG-541</td>
<td>K77-14017</td>
</tr>
<tr>
<td>DA-ARO(D)-31-1247-31-612</td>
<td>K77-17407</td>
</tr>
<tr>
<td>DAJ032-73-C-0076</td>
<td>K77-15032</td>
</tr>
<tr>
<td>DAJ032-74-C-0061</td>
<td>K77-15033</td>
</tr>
<tr>
<td>DAJ032-74-C-0061</td>
<td>K77-15033</td>
</tr>
<tr>
<td>DAH15-73-C-0370</td>
<td>K77-15010</td>
</tr>
<tr>
<td>DOT-PAT70A-2240</td>
<td>K77-14006</td>
</tr>
<tr>
<td>DOT-PAT72A-2201</td>
<td>K77-16959</td>
</tr>
<tr>
<td>DOT-PAT72A-X-261</td>
<td>K77-14000</td>
</tr>
<tr>
<td>DOT-PAT74A-X-3997</td>
<td>K77-14816</td>
</tr>
</tbody>
</table>
Abstract

This bibliography lists 311 reports, articles, and other documents introduced into the NASA scientific and technical information system in March 1977.
PUBLIC COLLECTIONS OF NASA DOCUMENTS

DOMESTIC

NASA distributes its technical documents and bibliographic tools to ten special libraries located in the organizations listed below. Each library is prepared to furnish the public such services as reference assistance, interlibrary loans, photocopy service, and assistance in obtaining copies of NASA documents for retention.

MASSACHUSETTS
Massachusetts Institute of Technology, Cambridge

MISSOURI
Linda Hall Library, Kansas City

NEW YORK
Columbia University, New York

PENNSYLVANIA
Carnegie Library of Pittsburgh

WASHINGTON
University of Washington, Seattle

Massachusetts Institute of Technology, Cambridge

University of Colorado, Boulder

Library of Congress

Georgia Institute of Technology, Atlanta

The John Crerar Library, Chicago

DISTRICT OF COLUMBIA

CALIFORNIA

University of California, Berkeley

COLORADO

Massachusetts Institute of Technology, Cambridge

University of Colorado, Boulder

Library of Congress

MASSACHUSETTS

Georgia Institute of Technology, Atlanta

ILLINOIS

The John Crerar Library, Chicago

DISTRICT OF COLUMBIA

CALIFORNIA
Massachusetts Institute of Technology, Cambridge

University of Colorado, Boulder

Library of Congress

MASSACHUSETTS

Georgia Institute of Technology, Atlanta

ILLINOIS

The John Crerar Library, Chicago

DISTRICT OF COLUMBIA

CALIFORNIA

University of California, Berkeley

COLORADO

University of Colorado, Boulder

Library of Congress

MASSACHUSETTS

Georgia Institute of Technology, Atlanta

ILLINOIS

The John Crerar Library, Chicago

DISTRICT OF COLUMBIA

NASA publications (those indicated by an "*" following the accession number) are also received by the following public and free libraries:

CALIFORNIA

Los Angeles Public Library
San Diego Public Library

COLORADO

Denver Public Library

CONNECTICUT

Hartford Public Library

MARYLAND

Enoch Pratt Free Library, Baltimore

MASSACHUSETTS

Boston Public Library

MICHIGAN

Detroit Public Library

MINNESOTA

Minneapolis Public Library

MISSOURI

Kansas City Public Library
St Louis Public Library

NEW JERSEY

Trenton Public Library

NEW YORK

Brooklyn Public Library
Buffalo and Erie County Public Library
Rochester Public Library
New York Public Library

OHIO

Akron Public Library
Cincinnati Public Library
Cleveland Public Library
Dayton Public Library
Toledo Public Library

OKLAHOMA

Oklahoma County Libraries, Oklahoma City

TENNESSEE

Memphis Public Library

TEXAS

Dallas Public Library
Fort Worth Public Library

WASHINGTON

Seattle Public Library

WISCONSIN

Milwaukee Public Library

An extensive collection of NASA and NASA-sponsored documents and aerospace publications available to the public for reference purposes is maintained by the American Institute of Aeronautics and Astronautics, Technical Information Service, 750 Third Avenue, New York, New York, 10017.

EUROPEAN

An extensive collection of NASA and NASA-sponsored publications is maintained by the British Library Lending Division, Boston Spa, Wetherby, Yorkshire, England. By virtue of arrangements other than with NASA, the British Library Lending Division also has available many of the non-NASA publications cited in STAR. European requesters may purchase facsimile copy or microfiche of NASA and NASA-sponsored documents, those identified by both the symbols "#" and "*", from ESRO/ELDO Space Documentation Service, European Space Research Organization, 114, av Charles de Gaulle, 92-Neuilly-sur-Seine, France.
NASA CONTINUING BIBLIOGRAPHY SERIES

<table>
<thead>
<tr>
<th>NUMBER</th>
<th>TITLE</th>
<th>FREQUENCY</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA SP-7011</td>
<td>AEROSPACE MEDICINE AND BIOLOGY</td>
<td>Monthly</td>
</tr>
<tr>
<td></td>
<td>Aviation medicine, space medicine, and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>space biology</td>
<td></td>
</tr>
<tr>
<td>NASA SP-7037</td>
<td>AERONAUTICAL ENGINEERING</td>
<td>Monthly</td>
</tr>
<tr>
<td></td>
<td>Engineering, design, and operation of</td>
<td></td>
</tr>
<tr>
<td></td>
<td>aircraft and aircraft components</td>
<td></td>
</tr>
<tr>
<td>NASA SP-7039</td>
<td>NASA PATENT ABSTRACTS BIBLIOGRAPHY</td>
<td>Semiannually</td>
</tr>
<tr>
<td></td>
<td>NASA patents and applications for patent</td>
<td></td>
</tr>
<tr>
<td>NASA SP-7041</td>
<td>EARTH RESOURCES</td>
<td>Quarterly</td>
</tr>
<tr>
<td></td>
<td>Remote sensing of earth resources by</td>
<td></td>
</tr>
<tr>
<td></td>
<td>aircraft and spacecraft</td>
<td></td>
</tr>
<tr>
<td>NASA SP-7043</td>
<td>ENERGY</td>
<td>Quarterly</td>
</tr>
<tr>
<td></td>
<td>Energy sources, solar energy, energy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>conversion, transport, and storage</td>
<td></td>
</tr>
<tr>
<td>NASA SP-7500</td>
<td>MANAGEMENT</td>
<td>Annually</td>
</tr>
<tr>
<td></td>
<td>Program, contract, and personnel</td>
<td></td>
</tr>
<tr>
<td></td>
<td>management, and management techniques</td>
<td></td>
</tr>
</tbody>
</table>

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Washington, D.C. 20546