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A LOW SPEED TWO-DIMENSIONAL STUDY OF

FLOW SEPARATION ON THE GA(W)-I AIRFOIL

WITH 30-PERCENT CHORD FOWLER FLAP

Summary

Experimental measurements of flow fields with low speed-

turbulent boundary layers have been made for the GA(W)-I airfoil

with a 0.30c Fowler flap deflected 40 ° at angles of attack of 2.7 ° ,

7.7 ° , and 12.8 °, at a Reynolds number of 2.2 x 106 , and a Mach num-

ber of 0.13. Details of velocity and pressure fields associated

with the airfoil-flap combination are presented for cases of nar-

row, optimum and wide slot gaps. Extensive flow field turbulence

surveys were also conducted employing hot-film anemometry. For

the optimum gap setting, the boundaries of the regions of flow

reversal within the wake were determined by this technique for

two angles of attack. Local skin friction distributions for the

basic airfoil and the airfoil with flap (optimum gap) were ob-

tained using the razor-blade technique.

The results of this investigation indicate that with an

optimum gap, the airfoil lower surface boundary layer and the

flap upper surface boundary layer at the slot exit are separated

by a constant energy core of finite width. This core fl0 w van-

ishes near the mid-flap chord location. Local skin friction mea-

surements on the basic airfoil compare favorably with theoretical

values where the flow is attached at pre-stall angles of attack.

Measurement difficulties were encountered with pressure-type in-

struments in regions of high turbulence. In these regions the

hot-film anemometer provided meaningful data. It is recommended

that studies of this type be conducted for intermediate flap set-

tings, and for new airfoils of greater thickness.



INTRODUCTION

Significant progress has been achieved during this
decade in the state of the art of computational fluid
mechanics related to airfoils. Highly sophisticated
computational routines are now available to account for
the interactions between potential and viscous flows
associated with single- and multi-element airfoils (for
example, Reference I). The theoretical model of Refer-
ence 1 works reasonably well for multi-element airfoils
when the flow is attached and flap deflections are small
(Reference 2). However, this theoretical model fails
to simulate regions of reversed flow on the airfoil and
the flap (or vane(s)) and in the wake. The theoretical
model employs subroutines for slot flow and confluent
boundary layer analyses which also have the following
limitations:

I. The slot geometry is assumed to exhibit a smooth
continuous area distribution with no flow separation.
Many practical construction wing-flap systems have abrupt
contour changes in the flap cove, with separation and
reattachment ahead of the slot. Limited lower surface
flow studies carried out during the research reported
in Reference 2 indicate separation and reattachment

even for a fairly smooth flap cove geometry.



2. In order to have a definable slot, the flap
overlap must be at least 0.01c. Practical configura-
tions exist which do not meet this requirement.

3. A semi-empirical method based on a limited set
of experimental data is employed to define the pressure
distribution throughout the slot reqion.

4. In the region of the confluence of the bound-
ary layers of airfoil and flap with the slot flow, the
maximumvelocity must be equal to, or greater than, the

velocity at the outer edge of the confluent boundary

layer. Also restrictions on the values of streamwise

gradients of non-dimensional maximum velocity and wake

velocity are imposed. These restrictions are based

on fully attached flow conditions on both airfoil and

flap. But at angles of attack near stall the flap flow

can be attached, and separation can be present over

the aft portion of the main airfoil (Reference 2). In

such cases it is probable that these limits have been

exceeded.

Previously reported work does not provide all the

types of data needed to eliminate the limitations of

the mathematical model of Reference i. Experimental

work reported in Reference 3 is concentrated on the

flow around an airfoil with a single slotted flap.

The report contains data for two specific flap de-

flections of I0 ° and 30 °, with various flap gap set-

tings at pre-stall angles of attack. An extension of

this work was carried out by Ljungstr_m (Reference 4),

in which details of the flow around an airfoil with mul-

tiple slotted flaps were obtained. The flap deflections



were again limited to 30° and only pre-stall angles

of attack were considered, with various flap gap set-

tings. The results of References 3 and 4 emphasize

mainly determining the flow conditions which exist

at optimum flap gap and positive overlap of greater

than .01c. The choices of pre-stall angles of attack

and flap deflection appear to have been made to in-

sure attached flow conditions on airfoil and flap.

Extensive total pressure surveys at the slot exit

and on the flap were carried out mainly to study the

influence of the wing wake on the boundary layer de-

velopment on the flap. A qualitative description

of the flow mechanism and performance characteristics

of an airfoil-flap combination is given by Smith

(Reference 5). While Smith's paper deals with the

gross effects of mutual viscid and inviscid interac-

tions of multi-element airfoils, details of confluent

boundary layer development over the flap have not been

completely discussed. Also, none of the above three

works discuss the details of wake development associ-

ated with airfoil and flap.

The present investigation was undertaken to deter-

mine the pressures and velocities in the external flow

field, at the slot exit, &n the confluent boundary

layer, and in the wake of a two-component airfoil with

attached and separated flow conditions to aid the fu-

ture formulation of an improved (relative to Reference

i) mathematical model for multi-component airfoils.

The GA(W)-I airfoil with a 0.30c Fowler flap was se-

lected for this investigation because a complete set

of force data had been measured and reported (Reference

2) on this configuration and this airfoil was of con-

siderable interest to the general aviation community.



The flap deflection angle of 40° was selected for the

present investigation because at the optimum gap set-

ting this deflection had resulted in the highest maxi-

mum lift coefficient for this configuration. The op-

timum setting for the 40 ° flap deflection from the

two-dimensional tests (Reference 2) was found to have

a gap of 0.027c and an overlap of -.007c. However,

during the design for the Advanced Technology Light

Twin Aircraft (Reference 6), Robertson Aircraft Com-

pany suggested a gap of .03c with zero overlap to

simplify flap track fabrication. This configuration

was evaluated and a comparison is shown in Figure I.

In view of the good agreement between the two flap

settings, the .03c gap with zero overlap was chosen

for the present tests.

Three angles of attack (2.7 ° , 7.7 ° , 12.8 ° ) repre-

senting three distinct flow patterns observed on this

configuration during tuft studies (Reference 2) were

chosen for the current evaluation. These flow pat-

terns are the following:

(i) At low angles of attack (up to 2.7°),

a shallow region of separation is pre-

sent at the flap trailing edge.

(2) The flap separation decreases with in-

creasing angle of attack and the flap

is attached at 7.7 ° At higher angles

of attack, through stall (_ = 10.3 ° ) sep-

aration appears and progresses upstream

on the main airfoil.



(3) At the post-stall (_ _ 12.8 ° ) angles of

attack the region of separation continues

to progress forward towards the leading

edge of the main airfoil with the flow

remaining attached on the flap.

SYMBOLS

To the maximum extent possible, physical measurements are

presented in the non-dimensional form. Where dimensional quan-

tities are required, they are given in both International (SI)

Units and U.S. Customary Units. Measurements were made in U.S.

Customary Units. Conversion factors between SI Units and U.S.

Customary Units are given in Reference 7. The symbols used in

the present report are defined as follows:

Chord of basic airfoil (flap retracted)c

c_ Local skin friction coefficient, !
q_

c£ Airfoil section lift coefficient, section lift
q c

Cps Static pressure coefficient, Ps-P_
q_

Cpt Total pressure coefficient,
Pt-P_

qoo

h Razor blade thickness/2

Ps

Pt

P_

Local static pressure

Local total pressure

Free stream static pressure

qoD

RN

Free stream dynamic pressure

Reynolds number based on wing chord

Curvilinear distance along the airfoil surface



T

U

u

ue

um

uw

ux

Turbulence, ratio of peak perturbation velocity to
local mean, from hot-film trace

Velocity at the edge of the boundary layer, non-
dimensionalized with respect to free stream velocity

Local velocity, non-dimensionalized with respect to
free stream velocity

Velocity at the outer edge of the confluent boundary
layer, non-dimensionalized with respect to free stream
velocity

Maximumvelocity of the confluent boundary layer, non-
dimensionalized with respect to free stream velocity

Wake minimum velocity of the confluent boundary layer,
non-dimensionalized with respect to free stream velo-
city

Component of local velocity in the free stream direc-

tion, non-dimensionalized with respect to free stream

velocity

Uoo

x
a

xf

x
w

z

Free stream velocity

Coordinate along airfoil chord

Coordinate along flap chord

Streamwise coordinate in wake, zero at flap trailing

edge

Coordinate normal to free stream, zero at local surface,

or zero at flap trailing edge in the wake

Ap

f

Angle of attack, degrees

Pressure difference between the pressure reading with

razor blade in position and the true undisturbed sta-

tic pressure

Flap deflection angle, measured from flap chord line

in the retracted position

Density of air

Kinematic viscosity

T Shear stress



APPARATUSANDPROCEDURE

TESTS

The experimental investigations were carried out in the

WSU 213cm x 305cm (7' x 10') low speed wind tunnel fitted with

a 213cm x 91.4cm (7' x 3') two-dimensional insert employing a

17% thick GA(W)-I airfoil section with a .3c Fowler flap (Fig.

2). The basic airfoil section has a chord of 61cm (24") and

a span of 91.4cm (36"). Details of the model construction,

supporting disks and the surface pressure taps are given in

Reference 2. Reynolds number of the test was 2.2 x 106

based on the airfoil chord and Mach number was 0.13. Tran-

sition was ensured by employing 2.5mm (0.i") wide strips of

80# Carborundum grit at .05c on both upper and lower surfaces.

Details of the flow fields were investigated on both upper and

lower surfaces. Angles of attack for the 40 ° flap deflection

were 2.7 °, 7.7 ° and 12.8 °, and those for the flap nested con-

dition were 10.3 ° , 14.4 ° and 18.4 ° . At each angle of attack,

about fifteen chordwise survey stations were selected, cover-

ing airfoil and flap upper and lower surfaces and the wake.

Surveys were also conducted at the slot exit for three typical

slot geometries representing narrow, wide and optimum gaps.

INSTRUMENTATION

Velocities were obtained by employing a five-tube pres-

sure sensing pitch-yaw probe of 3.2mm (.125") diameter (Fig.

3). The details of the construction and operation are given

in References 7 and 8. In addition to the five-tube pressure

probe, a boundary layer mouse (Fig. 4) consisting of 28 total

head tubes of 0.711mm (.028") diameter was employed to obtain

total pressure data very near the surface and up to about 22mm

(0.96") above the surface.



Hot-film surveys were also conductedto scan the regions
of moderate and heavy turbulence employing a 0.05mm (.002")

diameter probe with linearizer (Fig. 5).
Local skin f_iction was measured by the technique outlined

by East (Ref. i0), employing commercially available razor blades
of 0.094mm (.0037") thickness. Eachblade was trimmed to a 3.2mm
(.125") square and was positioned at the surface static pressure
orifice where the local skin friction was to be evaluated. De-
tails of the razor blade dimensions are given in Figure 6. Un-
bonded strain gage pressure transducers with a range of ±17.2
kilonewtons/m 2 (±2.5psi) were used for all pressure measurements.

METHODS

Surface pressures were obtained through a system of pres-

sure switches and transducers with digital data recorded on

punch cards. Flow velocity data was acquired by initially

tilting the five-tube probe to align with the local slope of

the airfoil surface at the mid-span of the model. The probe

was then yawed into the plane of the local fiow and all five

pressures were recorded on punch cards along with probe posi-

tion. Total pressure measurements were obtained by aligning

the boundary layer mouse in the direction of the local sur-

face. The airfoil and flap combination was inverted while

scanning the lower surface flow. Measurements in the wake re-

gions were made with the probe tilted to align with an average

downwash within the wake and yawed as required into the local

flow.

Hot-film surveys were made with the traversing mechanism

employed for the five-tube survey probe. The fixture was

suitably modified to hold the hot-film probe and the support

gear. Photographs of the velocity fluctuations displayed on

the oscilloscope were also recorded.
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Local skin friction was measured by positioning the razor
blade as shown in Figure 6. This method involves relating the
skin friction (_) to the difference between the pressure re-
corded by the static hole with the blade in position, and the
true undisturbed local static pressure (blade removed). Geo-
metrical limitations such as the ratio of the static pressure
orifice diameter to the blade height, bevel angle of the blade,
blade width and length, and positioning of the blade with re-

spect to the static pressure hole are discussed in detail by East
(Ref. 10). Important dimensions are tabulated in Figure 6, for
the present experimental setup.

DATAREDUCTION

Local static and total pressures, velocities and flow in-
clinations were determined from five-tube probe measurements
using a computerized data reduction program based upon the
probe calibration data given in Reference 9. Pressures and
velocities are non-dimensionalized with respect to remote free
stream conditions. Velocity profiles were plotted using a com-
puter-controlled digital plotter. All pressure instrumentation
employed in the present tests is heavily damped and hence re-
cords time-averaged values.

In contrast, the hot-film anemometer instrumentation is

capable of measurements up to several thousand Hertz. Typical

traces from the hot-film probe were photographically recorded

on an oscilloscope and average digital voltmeter readings were

recorded manually. The hot-film was calibrated from time to

time during the course of the tests to compensate for tunnel

temperature variations. Maximum calibration shifts amounted

to 6% of free stream velocity.

Local skin friction coefficients were calculated from

pressure measurements with the razor blade, utilizing the

following equation (Ref. i0).

I0



lOgl0\p --0.23 + 0618 °gl°\ lJ 0016s °gl°\p lJ

where T is the local shear stress, £p is the pressure differ-

ence between the surface pressure recorded by the static ori-

fice with the razor blade in position and the undisturbed sta-

tic pressure, h is half the razor blade thickness, and _ and p

are fluid kinematic viscosity and density respectively.

(1)

PRESENTATION OF RESULTS

The results of the present investigation are presented in

the following figures:

T_pe of data Instrument FI_ Gap _ Fi_

timum 2.7 ° 7(a)
Surface -- 40° _. 03c) 7.7 ° 7(b)

Pressure 12.8 ° 7 (c)

Velocity Five-tube probe 40 ° Optimum 2.7 ° 8 (a)
7.7 ° 8 (b)

profiles 12.8 ° 8 (c)

Static Five-tube probe 40 ° Opt_ 2.7 ° 9 (a)
7.7 ° 9 (b)

pressure 12.8 ° 9 (c)
contours

Total Boundary layer 40 ° Optimum 2.7 ° I0 (a)

pressure mouse 7.7 ° I0 (b)

profiles 12.8 o i0 (c)

Slot exit flow

Total pressure

profiles at

.i0 xf/c

Five-tube probe 40 ° .02 to .04c 2.7 ° ll(a)

and Boundary .02 to .04c 7.7 ° ll(b)

layer mouse .02 to .04c 12.8 ° ii (c)

Boundary layer 40 ° .02 to .04c 2.7 ° 12(a)
mouse .02 to .04c 7.7 ° 12(b)

•02 to .04c 12.8 ° 12(c)

ii



Type of data

Velocity and

pressure pro-
files on the

flap

Total

pressure
contours

Wake velocity

and pressure

distributicns

Hot-film

survey

Hot- film

survey

Hot-film surveys

on the flap,

0.15 xf/c

Hot-film surveys

on the flap,

0.25 xf/c

Instrument

Five-tube probe

Five-tube probe

Five- tube probe

Hot-film

Hot-film

Hot-fill

Hot-film

Local skin fric- Razor

tion distributions blade

Local skin fric- Razor

tion distributions blade

Flap Gap

40 ° Optimum

40 ° Optimum

40 ° Optimum

0 o

40 ° Optimum

4O° Optimum

40 ° Op_

0

40 ° Optimum

2.7 ° 13(a)

7.7 ° 13 (b)

12.8 ° 13(c)

2.7 ° 14(a)

7.7 ° 14 (b)

12.8° 14 (c)

2.7 ° 15(a)

7.7 ° 15 (b)

12.8 ° 15(c)

I0.3 ° 16 (a)

14.4 ° 16 (b)

18.4 ° 16 (c)

2.7 ° 17 (a)

12.8 ° 17 (b)

12.8 ° 18 (a)

18 (b)

12.8 ° 19(a)

19 (b)

0.2 ° 20 (a)

10.3 ° 20(b)

14.4 ° 20(c)

18.4 ° 20(d)

0.2 ° to

12.8 ° 21

DISCUSSION

Surface Pressure Distributions: (Figure 7)

At pre-stall angles of attack, the pressure distributions

indicate separation on the flap upper surface, as evidenced by

12



a constant pressure region. For the post-stall angle of at-
tack, the flap flow is attached but separation is observed at
about .70c on the airfoil upper surface.

Velocity Plots: (Figure 8)

Velocity plots obtained from the five-tube probe measure-

ments show the nature of the flow fields for the airfoil and

flap, including boundary layer and wake development. For re-

gions near the surface in the flap cove and at the flap trail-

ing edge station, no data are presented. Measurements made in

these regions indicated that either the local dynamic pressure

was negative for all yaw angles (±180 ° ) or the flow inclination

was beyond the calibration limits of the probe (> 145®I ). This

situation is in contrast to earlier research with the GA(W)-I

plain airfoil (Ref. 8) for which satisfactory measurements

were obtained at angles of attack up to 18.4 ° , with separation

as far forward as .45c_ For the plain airfoil the region of

reversal just downstream of the separation point is quite shal-

low, however, with flap extended, the depth of the reversed

flow region grows rapidly and interactions between forward ele-

ment and flap wakes seem to contribute to flow unsteadiness.

At 12.8 ° angle of attack the separated wake from the airfoil

is swept downstream and its unsteadiness prohibits successful

velocity measurements at many locations above the flap and in

the wake. Several profiles at the post-stall angle (for ex-

ample, mid-flap chord station and flap trailing edge station),

exhibit relatively large changes in velocity between adjacent

measurement points.

In Reference 8, data were presented which show that the

region of flow reversal in the separated wake of a single-ele-

ment airfoil terminates a relatively short distance beyond the

trailing edge. This point, called the reattachment point, was

also characterized by a local maximum static pressure.

13



In the present tests, the reattachment point evidently
occurs between 0 and .06 Xw/C for the two pre-stall angles of
attack. For the post-stall condition, no reattachment is ob-

served for stati.ons as far aft as .3 Xw/C.

Static Pressure Contours: (Figure 9)

The static pressure contours reflect typical airfoil re-

sults, with relatively small regions of highly negative pres-

sure near the upper surface leading edge. The regions of upper

surface separation are reflected by isobars nearly parallel to

the local surface. The flap cove region shows a local region

of increased pressure at all angles of attack. While the re-

search of Reference 8 indicated a local region of increased

static pressure near the reattachment point, the present data

show no such tendency.

Total Pressure Profiles: (Figure i0)

Total pressure profiles obtained from the boundary layer

mouse are useful for determining the extent of the bound@ry laYer

and reduced energy wake, since these regions are identified by

Cpt values less than unity. At the pre-stall angles of attack,

the separation over the rear portion of the flap upper sur-

face and within the airfoil lower surface cove leads to Cpt

values lower than local Cps values. Since the boundary layer

mouse presents an unknown interference to reversed flows, no

data are presented in the regionsrof local flow reversal. Al-

though the flap flow is attached at the post-stall angle, the

upper surface boundary layer is quite thick as evidenced by

the Cpt profiles. In contrast, the flap lower surface exhibits

14



a very thin layer where Cpt < 1.0 for all three angles of
attack. This indicates a very thin boundary laYer in this

region. This is in accordance with expectations, because
of the favorable pressure gradient associated with the flap
lower surface flow.

Effects of Slot Gap Variation on Slot Flow: (Figures ii and 12)

To assess the effects of slot gap variation, limited

tests were conducted with narrow (.02c) and wide (.04c) gaps

in addition to the optimum (.03c) gap. For the three gap

settings, the total pressure profiles at the slot exit for

all three angles of attack show center regions of relatively

constant Cpt even though the free-stream value of CPt = 1.0

is not achieved. The loss in total pressure of 5% to 10% is

believed to be caused by upstream flow separation and reat-

tachment in the flap cove. The characteristic shape of the

Cpt profiles suggests that it is reasonable to refer to a

"core flow" of constant energy, with sheared flows (wing and

flap boundary layers) above and below the core. With the nar-

row gap, the core is essentially non-existent at the 0.10

xf/c location for all three angles. With the wide gap a sub-

stantial core is provided at 0.I0 xf/c at the two pre-stall

angles, but the core is displaced upward compared to the op-

timum gap case, indicating a tendency for boundary layer

thickening on the flap. At the post-stall angle, the wide

gap data show that the flap flow has reversed, indicating

massive flap separation.

Flow Development on the Flap for Optimum Gap: (Figure 13)

Detailed measurements of total pressure, static pressure

and velocity were made at several downstream stations on the

15



flap for the optimum gap case. These data show that the core

flow vanishes at near mid-flap (.15 xf/c) for the pre-stall
angles. At the post-stall angle the core vanishes ahead of
the .075 xf/c location.

Several authors have discussed criteria for an optimum
flap slot. According to Foster, et al, (Ref. 3), the criteria

for the optimum gap is that the two boundary layers (on the flap

upper surface and the lower surface of the airfoil) are just sep-

arated by a potential core at the slot exit (Sketch AI). On the

other hand, LjungstrSm (Ref. 4) discusses the necessity for

achieving "minimum interaction" between wing wake and flap

boundary layer. This would seem to imply the existence of a

potential core as far aft as the flap trailing edge. Smith

(Ref. 5) suggests that an optimum design will permit "dumping"

the forward element wake such that it will have minimum influ-

ence on the flap flow. This would also imply the existence

of a potential core extending at least as far aft as the flap

trailing edge (Sketch A2).

The present data for an optimum slot show that a core flow

of finite thickness is present at the slot exit and that this

core vanishes as the flap and wing boundary layers merge near the

mid-flap-chord location (Sketch A3). Thus it appears that Foster's

criteria is in error, and th&t in fact a finite core must be re-

tained at the slot exit. The present data seem to indicate

that confluence of flap and wing vorticity layers can occur

forward of the flap trailing edge without disrupting the entire

flow. Thus the optimum situation would seem to be a slot which

provides a finite core flow at the slot exit, but it is not nec-

essary that the core persist as far aft as the flap trailing

edge.

16



0

(no core flow)

i. Confluence at Slot Exit

core flow

confluence-

2. Confluence at Flap Trailing

-core flow

3. Confluence near Mid-Flap

Sketch A - Possible locations of confluence point

for optimum flap slot.
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Theoretical Analysis of Slot Flow:

The mathematical model developed by Goradia, et al, for

confluent boundary layer analysis of multi-element airfoils

(Ref. 1 and Sketch B), contains several restrictions which

were imposed because of data limitations or computational in-

stabilities. Some of the restrictions are:

i. Non-dimensional maximum velocity, Um/U e _ i. This was

based on the best experimental data available.

2. Streamwise gradient of non-dimensional maximum velo-

city,

-0.8 _< d c <_ 0.8.

3. Streamwise gradient of non-dimensional wake velocity,

-08 ! _e;/ _;j <_0.8.

Restrictions 2 and 3 were imposed to insure stability of compu-

tations.

Sketch B: Confluent Boundary Layer Model (Ref. 1).

Computer studies using the method of Reference 1 were

conducted as part of the present research for the 40 ° flap

with optimum gap. These studies yielded messages indicat-

ing errors in the confluent boundary layer computations,

18



and the computer results were therefore invalid. In order to
determine whether the program limitations on maximum core velo-

city ratio and on wake and maximum velocity gradients outlined

above are realistic, determinations of these values have been

carried out from experimental measurements near the slot exit.

The experimental values are given in Table i:

Table l: Experimental Velocity Ratios and Gradients -

40 ° Flap, Optimum Gap

xf/c um u u Um/U e u /u d (um/Ue)
w e w e d(s_

d (uJu e)

(s/c)

•075 1.315 1.07 1.387 0.9481 0.7714

2.70 -1.1363

.15 1.058 0.862 1.26 0.8397 0.6841

.075 1.193 0.874 1.337 0.8923 0.6537

7.70 -1.0996

.15 1.000 0.713 1.27 0.7874 0.5614

Note : i. Ax/c of .075 corresponds, to As/c of .0954 at this

location.

2. Gradients are'computed using As/c.

Comparisons of the experimental values with computer program

limits are given in Table 2:

Table 2: Confluent Boundary Layer Parameters -

Theory and Experiment

Parameter

Definition:

Reason Exper_tal
Theoretical for Values

Symbol Limits Limit

u
Non-dimensional m

maximum velocity u
e

Strean_ise gradient

of non-dir_nsional

maximum velocity

Streanwise gradient

of non-din_nsional

wake-ve iocity d (s/c)

Lack

> 1.0 of 0.79 to 0.95

Data

Insta- -1.10 to -I. 14
d (u_u e) -0.8 to 0.8 bility
d(s/c)

Insta-

d (uJu e) -0.8 to 0.8 bility
-0.92 to -0.97
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These data show that the computer program limitations are ex-
ceeded for all three parameters at pre-stall angles of attack
with optimum flap gap geometry.

Total Pressure Contours: (Figure 14)

At the pre-stall angles, these data show that the viscous

wake (Cpt < i) extends to approximately .15c above the flap

and .03c below the flap. At the post-stall angle the wake re-

gion is much wider, and flows essentially straight aft from

the airfoil trailing edge. The lower limit of the wake region

was not reached for this case, due to instrumentation travel

limits, but it appears that the wake extends more than .15c

below the trailing edge.

Velocity and Pressure Distributions in the Wake for Optimum Gap:

(Figure 15)

Total pressure, static pressure and velocity profiles for

a vertical range of about -.10c to .25c at 4 chordwise stations

within the wake show the progressive growth of the wake width

in the longitudinal direction. A rather gentle vertical pres-

sure gradient can also be seen.

In general, the profiles are very smooth at pre-stall

angles of attack and become irregular at the post-stall angles

of attack evidently as a result of intense turbulent fluctua-

tions in the verticai and longitudinal directions. Satisfac-

tory post-stall measurements could not be made even at .30 Xw/C.

Hot-Film Surve?s: (Figures 16 and 17)

Hot-film survey information is presented as maps showing

regions with various degrees of turbulence defined by typical

oscilloscope traces. Since a single-channel hot-film anemometer

is not capable of providing flow direction information, interpre-

tation of the hot-film data for flow reversal is done in the fol-

lowing manner: the flow is considered to be reversing whenever

the trace indicates zero on the oscilloscope. The present data

(Fig. 16) indicate that the regions of flow reversal extend further
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downstream than previous results obtained with pressure-type
velocity probes (Ref. 8). At the edges of reversal zones,
the flow is intermittently reversing (less than 50% of the
time), according to the interpretation used for these data,
whereas a pressure-type velocity probe would probably not
sense intermittent reversals, because of the inherent instru-

ment damping.
Hot-film surveys conducted with 40° flap indicate a

reattachment point (end of flow reversal region) at about

.2 Xw/C for _ = 2.7 ° and beyond .5 Xw/C for the post-stall

angle. The apparent discrepancies in extent of reversed

flow regions between pressure-probes and hot-film probes are

attributed to the different damping characteristics of the

instruments: the hot-film is highly responsive and senses

intermittent reversals while the pressure probes sense only

time-averaged reversal.

The hot-film surveys show smooth (relatively low turbu-

lence) flow within the slot exit at all angles of attack, in-

dicating a near optimum slot.

Discussion of Problems Associated with Measurements in the

Vicinity of Separated Regions:

It is seen from Figure 8 that there are regions in the

velocity profiles on the flap and in the wake at the post-

stall angle of attack where satisfactory five-tube probe mea-

surements were not obtained. This figure also shows a few

profiles which exhibit abrupt changes in the magnitude of

velocity between adjacent points in the vicinity of the flap

surface. Total pressure measurements obtained from the five-

tube probe and the boundary layer mouse did not agree at these

locations. At the pre-stall angles of attack the five-tube

velocity data agree well with the hot-film data (Figs. 8 and

17). The data in Figure 12(c) which was measured with the

boundary layer mouse show a very narrow core flow (Cpt TM i)

at 0.i0 xf/c for the optimum gap, whereas the five-tube
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probe data (Fig. 13(c)) show no core at all at 0.075 xf/c.
The reason for these inconsistencies in the pressure data
remained a mystery until the hot-film measurements were
made.

Manual observations of the hot-film anemometer signal on
the oscilloscope indicated two distinct mean velocity levels

occurring intermittently. The velocity traces in Figure" 18

illustrate this phenomenon. In this figure, two traces were

recorded at different times. By recording a number of sample

traces at a given location it was possible to obtain two con-

secutive traces which contained the high- and low- velocity

levels. On several occasions (Figs. 18(a) and 19(a)), single

traces were obtained showing the abrupt change from one velo-

city magnitude to the other. These observations explain the

apparent discontinuities observed in the velocity profiles

obtained with the pressure probes. Evidently the two velocity

levels observed with the pressure probes are samples from a

flow which is characterized by two distinct modes, with large

changes in velocity occurring as the flow shifts from one mode

to the second. A dramatic change in flow character is seen

at the highest station shown in Figures 18 and 19, as the

probe moves out of the highly turbulent wake flow into an

essentially undisturbed free-stream. The surface pressure

data (Fig. 7(c)) and the flow visualization data (Ref. i)

indicate that the flap flow is attached at the post-stall

angle of attack (_ = 12.8°), but the hot-film data show (Fig.

17(b)) intermittent reversal near .I0 xf/c on the flap. Thus

the flow over the flap aft of this station is characterized

by low velocity and high velocity modes occurring intermit-

tently, combined with high intensity turbulence. It is

therefore clear that the apparent discrepancies in data ob-

tained from the pressure-type instruments are due to the

large changes in velocity as the flow changes from the first

mode to the second. It should also be noted that the regions

of turbulent fluctuations in the flow fields of the multi-
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element configurations at post-stall angles of attack are much
larger than those of the single-element configurations (Fig.
16 and Ref. 8).

Skin Friction Distributions: (Figures 20 and 21)

For the basic airfoil at a low angle of attack (e = 0.2 ° )

the flow is fully attached and the theoretical skin friction

distribution calculated by the method of Reference 1 compares

very favorably with the experimental results. At a moderate

angle of attack of 10.3 ° (about 6 ° below stall), flow separa-

tion was observed at .80 Xa/C (Ref. 8), whereas the theory pre-

dicts flow separation at 0.95 Xa/C (zero skin friction). The

agreement between theory and experiment at this angle of attack

is very reasonable in the attached flow regions (Figure 20(b)).

A gradual loss in the accuracy of theoretical data occurs with

increasing angle of attack as shown by the distribution for an

angle of attack of 14.4 ° (2 ° below stall). At the post-stall

angle of attack of 18.4 °, separation occurs at .45 Xa/C and the

agreement between experiment and theory is poor. It is recog-

nized that the present theoretical model is limited to attached

flows so good agreement is not expected when separation is pre-

sent. These results have been included in order to illustrate

the extent of usefulness of the present theory.

Several attempts were made to obtain skin friction data

aft of the separation point by positioning the blade in the

direction of reversed flow. Measurements made in these regions

were inconclusive; that is, a pressure decrease was indicated

for both forward and reversed orientations of the razor blade.

Experimental skin friction data for the case of 40 ° flap

deflection with the optimum gap are shown in Figure 21. Theor-

etical results are not available for this case because of com-

puter program limitations discussed earlier. It is interesting

to note that it was possible to obtain measurements for 10.3 °
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angle of attack which corresponds to the maximumlift coeffi-
cient. Experimental results for angles of attack up to 10.3 °

generally show trends similar to the single element airfoil re-

sults, except for the slight increasing trend in the skin fric-

tion between the .20 and .60 Xa/C stations. The reasons for

this trend are not known. At the pre-stall angles of attack,

separation is present on the flap and therefore satisfactory

skin friction measurements were not obtained beyond .i0 xf/c.

CONCLUSIONS

i. Experimental velocity profiles, static and total pres-

sure distributions and turbulence measurements have been ob-

tained for the GA(W)-I airfoil with a 0.30c Fowler flap de-

flected 40 ° at typical pre- and post-stall angle of attack

conditions for a Mach number of 0.13 and a Reynolds number

of 2.2 x 106.

2. Measurement difficulties were encountered in the

regions of flow reversal. Hot-film surveys in regions of

high turbulence were useful in determining the limitations

of pressure-type velocity instrumentation.

3. For flap deflected with optimum slot gap, the pre-

sent tests reveal that the airfoil lower surface boundary

layer and the flap upper surface boundary layer at the slot

exit are separated by a finite'width core flow of constant

energy. This core vanishes near the mid-flap chord station.

4. Local skin friction measurements were obtained up

to the separation point for the basic and flapped configura-

tions. The measurements on the basic airfoil agree well with

theory for angles of attack below stall.

RECOMMENDATIONS

i. Pre- and post-stall characteristics of the flow field

should be investigated for intermediate settings of the Fowler

flap (less than 40 ° deflection).
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2. Flow field surveys should be conducted for airfoils
having different pressure distributions, such as the thicker
(> 20%) GA-airfoils.

3. Cross film or split film sensors should be employed
to measure the velocities and flow inclinations in the highly

turbulent regions instead of the pressure type probes. In
order to determine static pressure in the highly turbulent

wake, special "dime" or "disc" type static pressure probes

should be employed with miniature pressure transducers.

4. In order to understand the basic character of the

regions of large scale turbulence, spectral analysis of hot-

film data should be carried out.

Department of Aeronautical Engineering

Wichita State University _

Wichita, Kansas 67208

October 1976
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Figure 3 - Five-Tube Probe.
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Figure 7 - Surface Pressure Distribution. 6f = 40 °, Optimum gap.
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Zero Velocity
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RN = 2.2 x 106

_IACH NO. = 0.13

Heavy Turbulence (T>50%)

Heavy Turbulence-Reversed

(a) e = i0-3°

Figure 16 - Hot Film Survey. Flap Retracted.



RN = 2.2X i0 _
MACKNO. = 0.13

[] Smooth

[] Light Turbulence

] Moderate Turbulence

Heavy Turbulence

Heavy Turbulence-Reversed

(b) _ 14.4 °

Figure 16 - Continued.
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[] Heavy Turbulence

Heavy Turbulence-Reversed

(c) a = 18.4 °

Figure 16 - Concluded.
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Figure 17 - Hot Flim Survey. Sf = 40 °, Optimum gap.
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Heavy Turbulence-Reversed

(b) e = 12.8 °

Figure 17 - Concluded.
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(a) z/c = .004 to .052

Figure 18 - Hot Film Survey on the Flap. 6f = 40 °, Optimum gap, e = 12.8 °, xf/c = .15.
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(b) z/c = .083 and .125.

Figure 18 - Concluded.
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_.001 second

= 0.104
z/c = 0.125

(a) z/c = .006 to .125.

Figure 19 - Hot-Film Survey on the Flap. 6f = 40 ° , Optimum gap, _ = 12.8 ° , xf/c = .25.
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001 second

zLc 0_

(b) z/c = .146 to .188

Figure 19 - Concluded.
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for s = 10.3 °
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Figure 20 - Comparison of Experimental and Theoretical Skin Friction

Distributions• Flap Retracted.
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Figure 21 - Local Skin Friction' Distributions.
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6f = 40 °, Optimum gap.




