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CHARACTER OF RANDOM INLET PRESSURE FLUCTUATIONS

DURING FLIGHTS OF F-111A AIRPLANE

by William G. Costakis

Lewis Research Center

SUMMARY

Compressor face dynamic total pressures from four F-lll flights were analyzed.
Statistics of the nonstationary data were investigated by treating the data in a quasi-
stationary manner. This was achieved by analyzing short time segments. During these
short time segments the data remained relatively constant. Changes in the character
of the dynamic signal are investigated as functions of flight conditions, time in flight,
and location at the compressor face. The results are presented in the form of rms
values, histograms, and power spectrum plots. These results show that the shape of
the power spectra remains relatively flat through the frequency range of the data and
that the histograms exhibit an approximate normal distribution.

INTRODUCTION

The effect of steady-state total pressure distortion on stall margin has been well
documented. It has become quite apparent that dynamic total pressure distortion at
the compressor face can also decrease the stall margin. In general, the compressors
are sensitive to a combination of steady-state and dynamic distortion. The manner in
which these two types of total pressure distortion combine to effect the engine stall mar-
gin has become of great interest.

Some attempts have been made to correlate instantaneous distortion amplitudes
with stall (e. g., refs. 1 to 3). Other studies have expressed the dynamic activity in
terms of rms values. The rms values, then, are correlated to steady-state distortion
at stall (and consequently to stall margin loss). Reference 4 shows that the steady-
state distortion tolerance decreases as turbulence rms increases; in reference 5 the
turbulence was transformed into an equivalent square wave pattern having the same ef-
fect on stability.

An index that correlated well with exhaust nozzle area of a turbofan engine is pre-



sented in reference 6. This index combined both steady-state and dynamic distortion
(in the form of rms values) for the same angle of extent. With this index a clear bound-
ary was established between the stall and the nonstall regions. A general conclusion
on the validity of this method could not be made, however, because the data from this
test were limited to a narrow band of engine speeds and one flight condition.

There is a need for a suitable index that can be used as a control signal in a scheme
designed to avoid stall. An instantaneous index would appear to be the most logical con-
trol signal. Unfortunately, it has two serious drawbacks. First, the short interval
between the stall-causing disturbance and the resulting stall do not allow sufficient time
for a slowly moving controlled parameter to react. Second, a calculation of an instan-
taneous distortion index requires a large number of dynamic pressure signals. This
requirement is impractical for an in-flight control. The process of selecting the max-
imum instantaneous distortion from such a large number of dynamic transducers is also
costly and time consuming.

Some attempts to simplify this process through statistical analysis, using rms
levels and power spectra, are described in references 7 to 10. The rms value of a
dynamic signal could be used to account for its effects on stall if a correlation exists
between the rms value and the highest peaks of the dynamic signal. The correlation
must hold true for a wide range of flight conditions and locations at the compressor face.
With such an index, corrective action could be taken before the stall-causing peak
occurs. Thus, a control parameter would have time to. act.

The purpose of this study was to determine whether rms values of nonstationary
dynamic total pressure signals from four F-lll flight runs could be used to predict dy-
namic pressure peaks. A quasi-stationary approach was used by analyzing the data over
short-increments of time. During these short increments of time the data remained
relatively constant. If the rms values were to be used to predict the highest peaks ex-
pected, two items had to be determined: (1) the character of the dynamic signals, and
(2) whether this character remains relatively unchanged for different flight conditions,
locations at the compressor face, and time in flight. The results are presented in terms
of power spectrum plots, histograms, and rms values.

SYMBOLS

f frequency

f(x.) frequency of occurrence

h total number of pressure classes

ni ith moment about mean value /n



engine speed, rpm

corrected engine speed

n total occurrence
n

APT rmg rms value of dynamic portion of total pressure, N/m (psi)

rms root mean square

s skewness

W corrected flow, kg/sec (Ib/sec)
\s

n

Xj pressure class mark, N/m (psi)

/3n kurtosis

M mean value

a standard deviation

DESCRIPTION OF APPARATUS

Airplane

The F-111A airplane is a tactical fighter with variable sweep, high mounted wings.
The test airplane was powered by two TF 30-P-l engines. A more detailed description
of the airplane and its propulsion system can be found in reference 3.

Instrumentation

The compressor face total pressure instrumentation (shown in fig. 1) consisted of
eight high response rakes fitted with miniature differential pressure transducers. The
rakes were a special type with an in-flight nulling capability to compensate for zero
shifts of the transducer signal. The frequency response of the rakes was flat to
400 hertz. Details of the design and in-flight evaluation of the nulling rakes are de-
scribed in reference 11.

Data Recording

The output signals were filtered electrically before digitizing. The cutoff frequency
of the filter was 200 hertz. The filtered compressor signals were digitized by two pulse
code modulation (PCM) systems at a rate of 400 samples per second. The output of the
PCM systems was recorded on an onboard tape recorder.



DATA ANALYSIS

The data used in this analysis were recorded on a fourteen channel analog tape re-
corder. The tape was prepared by Dryden Flight Research Center from the original
flight tapes. The recorded transducer locations are shown as solid symbols in figure 1.
The response of these signals is limited to 200 hertz.

The purpose of this analysis is to determine whether the character of the dynamic
portion of the compressor face pressure signals remains the same (1) for different flight
conditions, (2) for different locations at the compressor face, and (3) for different times
in flight.

The nonstationary data were analyzed in a quasi-stationary manner by analyzing
short time increments of the data. The length of the time increments was 2 seconds.
During these 2-second increments the data appear to be reasonably stationary. This
conclusion was based on (1) Visual observation of the data recorded on strip charts and
(2) the examination of the time varying rms values of the signals. An HP 3400A true
rms voltmeter was used for the latter.

Three 2-second segments of data were analyzed for each pressure signal. For
convenience, the three segments will be identified as follows:

Segment A - Two seconds of data just prior to stall or the end of available data, if
stall did not occur.

Segment B - Two seconds of data about the middle of the existing data.
Segment C - Two seconds of data at the beginning of the existing data.

The duration of the data used in this analysis varied from approximately 8. 4 seconds for
flight 43 to 21. 2 seconds for flight 42.

The results are presented in the form of power spectrum plots, histograms, and
rms values. The power spectrum plots were generated using an EMR 1510 real-time
spectrum analyzer. The histograms and the rms values were obtained from an analog
computer. A schematic of the analysis procedure is shown in figure 2.

One histogram from each flight was also fitted with a normal distribution. The
mean and standard deviations of the histograms were determined using the following
expressions:

Mean:



Standard deviation:

The mean and standard deviations, then, were used to generate the normal distri-
bution using the relationship

(X)

The skewness and kurtosis of these histograms were also calculated using the fol-
lowing definitions:

Skewness:

_ 3(u. - median)
CT

Kurtosis:

M4
—
a4

where

h
M, =-

An illustration of the relationship between rms values, histograms, and power
spectra of random noise signals is shown in figure 3. The histogram represents the
fractional frequency of occurrence of the signal in each class interval. The boundaries
of each class interval are shown by the dashed lines. The power spectrum indicates
that the frequency content of the signal is from 0 to f hertz.



RESULTS AND DISCUSSION

Data used in this analysis were obtained from NASA Dryden Flight Research Center.
These data represent part of the data, which were used to study in-flight dynamic pres-
sure phenomena, from F-lll flights. An extensive analysis of the entire flight data
is summarized in reference 3. In this analysis we are only concerned with changes in
the character of the dynamic signal as the location on the compressor face, the flight
condition, and the time in flight change.

Data from four flight runs were analyzed. Flight conditions for these runs are
summarized in table I. The data from flights 41, 42, and 43 included the recording of
a compressor stall, but the flight 45 data did not include a stall.

The rms values of the dynamic pressure signals of each 2-second segment of the
flight are shown in table II. There is a general increase in rms level as stall is ap-
proached for flights 41 and 43. The rms values for flight 42 decrease somewhat as the
flight progresses from approximately 21 seconds before stall to about 11 seconds before
stall. However, the rms values increase again as stall is approached to a somewhat
higher overall level than before. In flight 45, some of the rms levels increase slightly
while others decrease, thus resulting in no appreciable change in rms level as time
proceeds.

Figures 4 to 7 show the power spectra of the dynamic total pressure signals from
the four flight runs. The power spectrum for each of the six pressure signals around the
face of the compressor is shown for each run. The shape of the power spectra was rela-
tively flat for most of the data points presented in these figures. The power spectra of
the signals from flight 45 decrease somewhat as the frequency is increased. The re-
sults from flight 45 also indicate the existence of a resonance at about 23 hertz. Ref-
erence 3 results indicate that this duct resonance was observed at Mach 2. 25 and higher.
The pressure signals from rake eight show a rolloff at a lower frequency than the
others for all four flight runs. This may be due to a different corner frequency of the
filter while recording the data.

Figures 8 to 11 show the histograms of these dynamic pressure signals. Histo-
grams of the three 2-second segments of each signal are plotted. The distributions of
these histograms appear to be symmetrical, and they possess the bell-like shape that
is characteristic of a normal or Gaussian distribution.

In order to determine how closely these histograms approximate a Gaussian distri-
bution, one histogram from each flight was selected and fitted with a Gaussian distribu-
tion. The histograms were scaled for unity area under the curve, and the mean and
standard deviations were calculated and used in the expression for a normal distribu-
tion. The results are shown in figure 12. The results presented in this figure indicate
that these histograms are approximated closely by a normal distribution. The mean
value was nearly zero, while the skewness was small enough to be considered insignifi-



cant. The kurtosis has a value of 3 for a normal distribution. Two of the histograms
had values somewhat lower than 3, while the other two had values somewhat higher
than 3. These values are considered to be within the expected error of the kurtosis
calculation. A significant error can occur in the calculation of the kurtosis because of
the great effect of the extreme values of the frequency function f(x.) on this calculation.
For example, the expected accuracy of f(x.) is considered to be within ±0.001. The
two extreme values of f(x.) for flight 42 are both 0.001. When these two extreme values
are considered in the calculation of kurtosis the value of kurtosis is 3. 43. When they
are excluded the value of the kurtosis becomes 3. 21.

Another characteristic of normally distributed noise is that the ratio of the highest
peaks to the rms values is approximately 3. In figure 13 the highest peaks observed in
constructing the histograms are plotted against the rms values of the corresponding
time segment. Data points from segments A and C were used in this plot. The results
show a linear relationship with a crest factor (ratio of highest peaks to rms values) of 3.

CONCLUDING REMARKS

Compressor face dynamic total pressures from four F-lll flights were analyzed in
a quasi-stationary manner. The following results were obtained:

1. The shape of the power spectra of the dynamic total pressure signals did not
change appreciably for different flight conditions, locations at the compressor face, and
time in flight. A resonance of approximately 23 hertz appeared in one of the flights.

2. Histograms of the magnitude of the dynamic total pressures indicated a fairly
good normal distribution for all locations at the compressor face, flight conditions, and
time in flight. Also, a linear relationship with a crest factor (ratio of highest peaks to
rms values) of 3 was observed in accordance with theory for normally distributed data.

The results of this study indicate that if the rms values of dynamic pressure signals
are calculated over short time segments they can predict the highest peaks expected
within the segment when (1) the segment is chosen to be short enough so that the signal
appears stationary within the segment, and (2) the character of the signal is consistent
as shown by the previous results.

The flat power spectra shape and the normal distribution of the signals are highly
desired characteristics. They can be very useful when implementing the distortion pat-
tern synthesis methods, as well as in the formulation of simple distortion indices that
can be used as the control signal in schemes designed to avoid stall.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, February 18, 1977,
505-05.
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TABLE I. - FLIGHT CONDITIONS

[Angle of attack, ~4° to 5°.]

Flight

41
42
43
45

Run

11B
1JS
3S
13P2

Mach

0.72
1.73
.9

2.32

Altitude

km

9.1
13.7
9.1

14.3

ft

30000
45 000
,30 000
47000

Power
setting,
percent

80
Maximum
Miltary
Maximum

Engine
speed,

rpm

7730
9200
9650
8470

Corrected
engine
speed,

8160
8530
9900
6930

Corrected flow,
Wc

kg/sec

87.54
92.53

106.14
65.77

Ib/sec

193
204
234
145

Bleeds

Seventh

Closed
Open
Closed
Open

Twelfth

Closed

1 '

TABLE H. - RMS VALUES OF DYNAMIC PRESSURE SIGNALS

Time
before
stall,
sec

Ring

3 3 3 3 3 5

Rake

2 3 4 6 7 8
t\

Dynamic pressure signals, AP^, rms, N/cm (psi)

Flight 41, run 11B

2.4
6.6

12.8

0.044 (0.064)
.034 ( .049)
.030 ( .'043)

0.047 (0.068)
.045 ( .065)
.039 ( .056)

0.064 (0.092)
.057 ( .082)
.045 ( .065)

0.106 (0.152)
.101 ( .146)
.063 ( .090)

0.072 (0.104)
.076( .109)
.069 ( .099)

0.099 (0.143)
.086 ( .124)
.053 ( .077)

Flight 42, run US

2.4
11.2
21.2

Oi098 (0.141)
.068 ( .097)
.083 ( .112)

0.089 (0.128)
.074 ( .106)
.089 ( .128)

0.093 (0.134)
.069 ( .100)
.078 ( .112)

0.216 (0.311)
.197 ( .284)
.261 ( .376)

0.172 (0.247)
. 140 ( . 202)
. 169 ( . 243)

0.178(0.256)
.140 ( .201)
.158( .227)

Flight 43, run 3S

2.4
6.2
8.4

0.090 (0.113)
.055 ( .079)
.051 ( .074)

0.073 (0.105)
.050 ( .072)
.044 ( .064)

0.065 (0.094)
.064 ( .092)
.064 ( .092)

0.149 (0.215)
.118 ( .171)
.126 ( .182)

0.147 (0.212)
.106 ( .152)
.090 ( .130)

0.159 (0.229)
.131 ( .189)
.118 ( .171)

Flight 45, run 13P2

a2.0
a8.8

a!4.6

0.280 (0.404)
.252 ( .363)
.251 ( .370)

0.443 (0.637)
.408 ( .588)
.426 ( .613)

0.279 (0.401)
.238 ( .342)
.248( .356)

0.360 (0.518)
.364 ( .524)
.374 ( .538)

0.317(0.456)
.302( .435)
. 320 ( . 462)

0.295 (0.425)
.299 ( .431)
.306 ( .440)

These values are times before end of available data.



Rakel

Figure 1. - Compressor face total pressure instrumentation. Solid symbols indicate total
pressures used in this analysis.
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Figure 2. - Schematic of analysis procedure.

'PSdf
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Random noise signal Histogram

Frequency

Power spectrum

Figure 3. - Relationship between rms values, histograms, and power spectra of random noise signals.
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Figure 4. - Power spectra of compressor face total pressure at different times before stall. Flight 41; run 11B;
analysis time, 2 seconds-, maximum range, 0.220 newton per square centimeter rms (0.316 psi rms).
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Figure 4. - Concluded.
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Figure 5. - Power spectra of compressor face total pressures at different times before stall. Flight 42. run US;
analysis time, 2 seconds; maximum range, 0.220 newton per square centimeter rms (0.316 psi rms).
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Figure 6. - Power spectra of compressor face total pressures at different times before stall. Flight 43. run 3S;
analysis time. 2 seconds; maximum range, 0.220 newton per square centimeter rms (0.316 psi rms).
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Figure 7. - Power spectra of compressor face total pressures. Flight 45, run 13P2; analysis time, 2 seconds;
maximum range, 0.695 newton per square centimeter rms (1.0 psi rms).
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Figure 8. - Histograms of compressor face total pressures at
different times before stall. Flight 41, run 11B.
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Figure 9. - Histograms of compressor face total pressures at different
times before stall. Flight 42, run 1JS.
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Figure 10. - Histograms of compressor face total pressures at different
times before stall. Flight 43, run 3S.
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Figure 10. - Concluded.
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(b) Pressure probe on ring 3, rake 2.

Figure 11, - Histograms of compressor face total pressure at different times before stall. Flight 45,
run 13P2.
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(d) Pressure probe on ring 3, rake 6.

Figure 11. - Continued.
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Figure 11. - Concluded,
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(a) Flight 4^ run 11B; probe on ring 3, rake 6; 2-second segment C; mean
value, 11, -0. 0007 newton per square centimeter (-0.001 psj); standard
deviation, a, 0. 069 newton per square centimeter (0.100 psi); kurtosis,
02. 3. 22; skewness, s, 0.036.

a 4

0
-.4 -. 2 -.1 0 .1 .2

Amplitude, N/cm2

.3

-.5 -.4 -.3 -.-2 -.1 0 .1

Amplitude, psi

.2 .3 .4

(b) Flight 42, run US; probe on ring 3, rake 2; 2-second segment B; mean
value, (i, 0. 0014 newton per square centimeter (0. 002 psi); standard
deviation, a, 0. 069 newton per square centimeter (0.100 psi); kurtosis,
02, 3.43; skewness, s, 0.063.

Figure 12. - Fitting of four histograms with Gaussian distributions.
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(c) Flight 43, run 3S; probe on ring 3, rake 2; 2-second segment B; mean
value, ii, 0. 0 newton per square centimeter (0. 0 psi); standard deviation,
a, 0.056 newton per square centimeter (0. 080 psi); kurtosis, (32, 2. 86;
skewness, s, 0.004.

1.51
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Amplitude. N/cm~

.4 1.0
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Amplitude, psi
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(d) Flight 45, run 1 IB; probe on ring 3. rake 4; 2-second segment B; mean value, u, 0.0007
newton per square centimeter (0. 001 psi); standard deviation, a, 0. 239 newton per square
centimeter (0. 344 psi); kurtosis, /32, 2. SO; skewness, s, 0.011.

Figure 12. - Concluded.
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Figure 13. - Correlation between rms values and highest peaks observed.
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