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1.0 SUMMARY

This note discusses the problem created by the presence of

"wild" or outlying data points among orbital tracking data.

Consideration is given to the pernicious effects of such

outliers on the orbit determination process, and new methods

for minimizing or even eliminating these effects are pro-

posed after reviewing previous methods. Some preliminary

efforts implementing these new methods are described, and

the results thus far obtained are summarized. Based on these

ideas and results, recommendations are made for future in-

vestigation.

2.0 INTRODUCTION

The basic input to an orbit determination (OD) computer

program consists of some form of orbital tracking data. These

data may be of a single type, or they may be of a variety of

types such as range, range-rate, angles, etc. Such data may

come from a single earthbound tracking station, a network of

such stations, or they may originate from a satellite - to -

satellite indirect tracking system. But whatever . their origin

or type may be, or however sophisticated the OD program may be,

the quality of the tracking data will decis-O:ely affect the

quality of the final results.

The quality of orbital tracking data i, a function of several
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factors. Firstly, it depends on the inherent capability of

the measurement process to produce accurate results. Secondly,

the tracking data quality depends on the noise superimposed

on the data. Lastly, it is affected by the presence of "wild"

data points or statistical outliers whose cause is something

other than noise. OD results can generally be improved by

lessening the deliterious effects of any of these factors

affecting input, as well as by improving the OD algorithms

and techniques themselves. This paper will focus on the last

factor mentioned - the problem of outliers.

3.0 DISCUSSION

3.1 Background, Recent Solutions and Their Limitations

Considering the effect of statistical outliers among

tracking data on the OD process, it is immediately

apparent that the dividing line between very noisy data

points and outliers is rather indistinct. However, this

fact need not preclude considering outliers a problem

distinct from noise since their borderline can be de-

fined rather arbitrarily without any damaging consequences.

Whatever the cause of their deviation, any data differing

significantly from the central tendency of the bulk of

the data can be considered outlying by definition. If

something definite is known about tracking measurement

do-

errors or noise, this knowledge may be used to define

outlying data points more precisely. But all that actually



need be assumed is that the noise does not completely

obscure the tendency of the data to cluster or concen-

trate about a slowly varying function.

Having thus roughly defined tracking data outliers, their

effect on the OD process can be considered more specific-

ally. If their presence is essentially ignored, then

they will seriously affect the convergence of the differ-

ential correction process. At best the rate of conver-

gence will be decreased, while at worst convergence

will become erratic and may not even occur. Such

effects will almost always be observed when data with

outliers is used as input to a least squares 00 program.

This occurs largely because the least squares (LS) cri-

terion minimizes the sum of squared devi4tions about the

mean, and both this sum as well as the mean itself are

very strongly affected by outliers. Nevertheless, for

historical and other reasons the LS method continues to

dominate OD programs. Possible alternatives will be

considered later.

Realizing that the inclusion of tracking data outliers

will usually lead to serious convergence problems as

well as produce results disproportionately affected by

these outliers, it would appear that their elimination

prior to further OD processing would be wise. However,

il
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to eliminate them it is first necessary to detect them

and this in effect transforms the problem into what is

commonly called data smoothing or pre-filtering or ed-

iting. Solutions to this latter type of problem have 	 •

shown that although it is not difficult to devise simple

and effective means to detect and expunge strongly deviant

data, accomplishing this task for slightly deviant data

is much more difficult. Outlying tracking data points,

for example, may differ from their proper values by only

one part in 105 or so, and thus very sensitive detection

methods are required. But many sensitive techniques

cannot simultaneously detect a wide range of deviant points.

The development of effective and fast data editing algorithms

capable of smoothing orbital tracking data is therefore a

formidable task, especially if they must smooth data whose

spacing and density vary widely and whose outlying points

deviate over a very wide range.

Before discussing possible new solutions to the problem posed

by tracking data outliers, it might be well to consider how

NASA's GSFC has approached this problem. Details of their

approach are described in Ref. 1-4. Their approach as sum-

marized in Reference 4 consists essentially of fitting low

order (third or fourth) polynomials to groups of sequential

tracking data points. A LS method is used for the polynom-

inal fits and a 2.5 sigma data rejection criterion is used

6.
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to reject "wild" data. The midpoint values of the

polynominals replace the original data, thus achieving

data compression as well as smoothing. This smoothed

and compressed data is then used as input to a weighted

LS OD program. Among the chief limitations and disad-

vantages of this approach are the following. Low order

polynominal fitting of data only lends itself well to

short areas of fairly dense tracking data. Long arcs of

dense data must be divided into numerous short arcs for

smoothing by this technique, and long arcs of sparse data

can hardly be handled at all. Thus in the first case the

global cohesiveness of the data is substantially lessened

and hence a new source of noise is effectively introduced,

while in the latter case smoothing is hardly possible at

all. Furthermore, the use of least squares polynomial

fitting assumes that tracking data deviations are normally

distributed, a frequently questionable assumption, especial-

ly when outliers are numerous. This assumption is in fact

what necessitates the effort to eliminate outliers from

the tracking data before using the data as input to a LS

OD program, since the data with outliers is not even

approximately normally distributed. These facts emphasize

the point (also made in Reference 6) that LS methods are

in general ill-suited to applications involving leptokurtic

distributions, that is, distributions having "fatter tails"

or appreciably higher fourth central moments (kurtosis)
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than the normal distribution.	 Hence even as the God-

dard approach illustrates, such applications, if success-

ful, will generally be found to use LS methods iteratively

in some way. The contrived nature of such schemes is usual-

ly obvious, and even their relative efficiency is decreas-

ing as the computational advantages of LS algorithms relative

to alternatives steadily diminishes.

Reference 5 documents a NATO technical group's approach

to smoothing or pre-filtering of the orbital tracking data

for an geosynchronous satellite. Their approach, essentially

similar to Goddard's, additionally included using the smoothed

analytical representations of the tracking data directly as

input for their OD program. They reported that this latter

procedure produced very sizable overall reductions in computer

running time for OD.

Several deductions can be made from the discussion so far.

These include the following:

1. The problem of outliers in orbital tracking data can-

not be safely ignored.

2. Outliers should either be eliminated prior - to 00

processing (Approach 2), or the OD process should be

modified to assimilate outliers without convergence

problems resulting (Approach 1).

3. Polynomials are not naturally suited for smoothing

r	 1	 I	 r	 --
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tracking data via Approach 2.

4. LS techniques are poorly suited to handle outlier

contaminated data, and in particular cannot be used

directly in Approach 1.

5. The problem of outliers can best be solved by analyz-

ing it in its proper statistical context instead of

attempting to apply ad hoc remedies.

6. Manual data editing should only be considered as a

LA resort due to its temporal inefficiency.

Before examining the implications of these deductions, it

is necessary to briefly review some basic statistical ideas

and results. Reference 6 is an excellent source for a

deeper discussion of the following concepts.

3.2 Some Pertinent Statistical Concepts

During the past two centuries numerous methods have been

proposed for estimating the central tendency and spread

of a group of independent measurements of a given quantity.

Among the best known point estimators of the central tendency

are the arithmetic average, the median, the mode, and the

midrange. Among the best known point estimators of spread

are the variance or standard deviation, the semi-range, and

the average absolute deviation. Statistical theory shows

that each of these estimators is associated with a particular

distribution of errors it the measurements. In particular,

•
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the arithmetic average and standard deviation are the

best estimators for normally distributed measurement

errors, the midrange and semi-range are the best es-

timators for uniformly distributed errors, while the

median and average absolute deviation are the best

estimators when errors follow a double-exponential

distribution. A natural generalization of these facts

is the following. If the probability density function

f of the measurement errors ( u-u) has an exponential

form given by

(1) f(u -u) = clexp(-c21u-ulp)

where c 1 and c2 are constants and p is a positive real

number, then the best estimator, u, of the quantity

being measured is the value which minimizes Q as defined

by
n

(2) Q = E lui-ulP
i=1

where the sum extends over all n measurements. The

A
best estimator, s, of the spread of the measurements

A
around u is given by

(3) S = (-- ) l/P

A
Thus the median, mean and midrange are equal to u in

(2) for p = 1, 2 and infinity respectively. Equations

(1) - (3) also imply that deviant measurements receive

greater weight in determining u as p increases. Fiore

specifically, the case of F = 1 constitutes a natural

'+	 r	 t	 t
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dividing point: for p > 1 deviant points contribute

more to Q than the measure of their linear deviation

from u, while for p < 1 deviant points contribute

less to Q than the measure of their linear deviation

from u. When p. = 1, u is equivalent to the median of

the measurements, and obviously the median is determined

solely by the number of measurements on both sides of it,

riot by the magnitude of their devitations. Hence even in-

tuitively it is clear that the median is unaffected by the

magnitude of outliers, though it does depend somewhat on

their number. This property implies that the median is

an excellent point estimator of the central tendency of

a group of measurement data whenever the majority of

the data is reasonably clustered about a central value

while a minority of the data consists of outliers or

"wild" points. Such a da,a distribution corresponds

quite closely to the kind of distribution usually en-

countered with real orbital tracking data. The insen-

sitivity of the median to the magnitudes of outliers

is in marked contrast to the arithmetic mean, which

shows a direct dependence on these magnitudes. Further-

more, the median is far less sensitive to bias than is

the mean. For example, if a majority of data is well

clustered about some value while a minority of biased

data is outlying in one direction, the sample mean would

be strongly shifted towards the biased data while the
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sample median would be only weakly shifted. And

even in the case of normally distributed data with no

outliers, it has been shown that the sample mean is only

slightly superior to the sample median as an estimator of

the mean.

Although the foregoing	 were developed only for one

dimensional distributions, they can readily be extended

to multi-dimensinnai distributions and multiple regression

as discussed in Reference 6. This suggeststhat there may

be significant advantages to replacing LS algorithms (p=2

in (1) - (3) ) with least sum of absolute deviations (LSAD)

algorithms (p= 1 in (1) - (3) ) in some of the data smooth-

ing and OD programs mentioned earlier. The feasibility

of this approach has been greatly enhanced in recent

years by the development of fast algorithms for solving

overdetermined sets of linear equations in the best p=1

sense, and so the theoretical advantages of this choice are

no longer overwhelmed by computational handicaps when com-

pared to I.S. Details of these new algorithms can be

found in Reference 1 - 10.

3.3 New Solutions

Reverting now to Approach 1 for dealing with the problem

of outliers in orbital tracking data, it would appear

worthwhile investigating whether replacing the weighted

LS algorithm in the differential correction process with a

IL
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LSAD algorithm might largely solve the problem. Total

replacement of second moment concepts in an 00 program

with their analogous first absolute moment concepts

would probably entail some fairly extensive theoretical

development to produce viab'e analogs of such entities

as propagable covariance m4 trices. But such total re-

placement need not be the sine qua non of using LSAD

algorithms for at least determining solutions of the

differential correction problem without concern for the

effects of outliers. Such LSAD solutions could then be

meshed in various ways with subsequent p =2 procedures

in the OD process. Approach 1 therefore warrants develop-

meta and testing.

Approach 2, or the idea of Efficiently eliminating out-

liers before further OD processing, exhibits definite

promise as well, and has in fact already been developed

and tested in a preliminary manner using LSAD techniques.

This approach and its development thus far can be des-

cribed as follows. Considered as functions of time,

tracking data variables such as range and range-rate can

usually be represented to a high degree of fidelity or

accuracy by a linear combination of simple analytical

functions such as sinusoids etc. This suggests that

some simple ideas from the theory of finite dimensional
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vector spaces might be usefully applied to the problem.

The actual application made was to consider the range

and range-rate functions from a given tracking station

over selected time intervals as vectors which could be

represented as linear combinations of a small number of

basis vectors chosen because of their appropriateness

from a physical viewpoint. The coefficients of these

basis vectors were then determined for a best fit in

the LSAD sense, rather than the more commonly

sen LS sense. Residuals were then calculated as the

osolute differences between the best fit and the actual

data, and points with anomalously large residuals were

identified as outliers. Although this technique definite-

ly resembles the Goddard approach described previously,

it also differs with it in several important respects

which overcome the limitations of the Goddard approach.

Since the basis vectors are chosen for their natural

suitability for tracking data representation, much

longer data arcs can be successfully represented and

smoothed than with polynomials. Another consequence

of this basis choice is that both dense and sparse data

can be smoothed. Furthermore, global cohesiveness of

the data is retained because the data arcs need not be

subdivided. Last but not least, determination of best

LSAD rather than LS fits enables simultaneous detection

and comparison of outliers of widely varying magnitudes.
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The primary difficulty encountered with the previous

technique was the determination of suitable sets of

basis vectors. Initial guidance was supplied by such

sources as Reference 11 - 12, but the limitations of	 •

these sources necessitated further investigation. This

effort resulted in the delineation of two distinct .

methods for the determination of effective basis vector

sets. The first is a theoretical approach such as Ref-

erence 11 - 12 which attempts to determine analytical

representation of the tracking data functions from basic

kinematic theory of satellites. The second approach is

purely statistical and consists of a principal components

analysis (=Karhunen-Loeve analysis = proper orthogonal

decomposition = intrinsic analysis) of an ensemble of

tracking function vectors generated numerically by a

realistic orbit simulation program; the ensemble must

correspond to an orbit similar to that of the data to be

smoothed. This second approach leads (by eigenvector

determination of a second moment matrix) to an optimum

orthogonal basis for the ensemble analyzed, and since

the relative importance of each basis vector is simul-

taneously determined along with a measure of the fidelity

of representation, the least important basis vectors can

be discarded to reduce the size of the set to a reasonable

extent. The basis vectors so determined can either be

used 4 irectly in the data smoothing technique or simple
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analytical approximations of them can be determined by

inspection and used instead. This second approach lends

itself more easily to semi-automation since it is largely

numerically, rather than analytically, implemented. The

first approach can become analytically unwieldy, though

it does perhaps offer the possibility of greater insight.

Results thus far have been based on the first approach,

though both warrant further development and testing.

4.0 RESULTS

Applicat = :.1 of some of the foregoing ideas has thus far been

limited to attempts to smooth range and range-rate tracking data

from a single tracking station. More specifically, these data

were generated by the Madrid station for the ATS-6 geosynchronous

satellite over an eight consecutive day period from 16 July 1975

through 23 July 1975. The method used for detecting outliers

was to fit the data with various sets of simple basis vectors,

with the process of fitting being optimum in the LSAD sense.

Residuals or differences between the actual data and the cal-

culated fitting function were then determined, and significant

residuals were then identifed as outliers. Results obtained

by this method were then compared with a semi-manual analysis

of this same data accomplished by W. L. Gibson and previously

reported in Reference 13.

Based largely on Refe!-ence 11, subsets of basis vectors or

functions for representing the tracking data over various
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intervals were chosen from the following: {t m , cos(nat),

sin(nat), t cos(Mat), t sin(Mat), t 2cos(Mat), t2sin(N4a t),

cos(Nct), sin(Nct), t cos(Mct), t sin(Mct), t2cos(Mct)},

where m = 1, 2, ..., 7, n = 1, 2, 3, 4, M = 1, 2, N = 1,

2, 3, a = 2n/Ts , c = n/T11 Ts = earth's sidereal period,

T1 = lunar sideral period, and t = time. The cardinal num-

bers of the subsets chosen ranged from 3 to 22, and the in-

tervals of representation ranged from one to eight days.

The data analyzed consisted of 43 distinct clusters of

points irregularly spaced over the eight day period, and

hence there was appreciable variation of data spacing and

density. More details of the data distribution are given

in Reference 13.

Since the results obtained are far too voluminous to be

given in detail, only a summary will be given here. Quali-

tatively, the performance of a given basis vector set was

observed to be a function of the span of the data arc and

more weakly of the spacing and density of its component

points. Thus larger basis vector sets were required for long-

er data spans, an expected result in view of the fact that

long-period perturbations only become manifest in a longer

span of data, e.g., lunar perturbations can be represented as

a linear time function during a one day interval but are

better represented as sinusoids over an eight day interval.

Ilk
l
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The weaker data spacing and density dependence accorded well

with that expected purely on the basis of statistical expecta-

tions, i.e., uniform spacing of noisy data generally conveys

more information about its functional form than does spacing

which is highly irregular. Another noteworthy result was

that basis vector sets which were too large for the quantity

of data to be represented yielded results which were mathe-

matically valid but physically meaningless. This suggested

that it might well be worthwhile to try LSAD solutions with

appropriate side conditions or constraints in some circum-

stances rather than the unconstrained solutions which clear-

ly had too many degrees of freedom. This possibility is

especially attractiv= in light of the fact that algorithms

for such constrained solutions have recently been developed

(Reference 14) by the same author, R.D. Armstrong, who kindly

furnished the FORTRAN listing for the unconstrained LSAD

algorithm actually used.

Some specific results are worth reporting. For range and

range-rate data spanning 19-29 hours, the following two basis

vector sets yielded excellent results: {1, t, cos(at), sin(at),

cos(2at), sin(2at) }, and {1, cos(at), sin(at), t cos(at),

t sin(at), cos(2at), sin(2at) }. Solutions obtained with these

two sets yielded results which agreed very closely, both

qualitatively and quantitatively, with those of Reference 13;

this held true even for the size of the outlier residuals as



determined by these completely different methods. Such com-

parison for longer data spans was rendered difficult because

the results in Reference 13 were based on one day solutions

only, and the variation in these solutions from day to day

indicated that these solutions were not sufficiently cohesive

to afford a basis of comparison with the results obtained by

the LSAD smoothing technique for long data spans. However,

fair agreement was obtained between the results of smoothing

four to eight day data spans using sets of 14 to 18 basis

vectors with the results obtained in Reference 13. Inclusion

of basis vectors representing lunar perturbations definitely

proved necessary for such longer spans. Finally, it should be

mentioned that the same basis vector sets generally proved

effective for both range and range-rate tracking data, though

results for range data were slightly better than for range-

rate. Both types of data were used in their raw form. Attempts

to analyze simple functions of range and range-rate as suggested

in Reference 3, such as range squared and the product of range

and range-rate, did not lead to superior results, but there is

every reason to believe that this suggestion would improve

results for data from low altitude satellites.

5.0 CONCLUSION

The problem caused by the presence of outliers in orbital

tracking data is too severe to be ignored. Outliers must either
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be detected and expunged before the usual OD processing, or

the OD process must be modified to make it insensitive to

outliers while retaining all desirable properties. Manual

data editing assisted by repeated OD solutions is woefully

inefficient in terms of both man-hours and computer time

required, and should be considered only as a last resort.

Existing methods of outlier detection and tracking data

smoothing are of limited applicability and appear to suffer

from a mismatch between the effect desired and the statistical

techniques used to bring it about. The analysis of the prob-

lem described in this paper leads to the conclusion that strong

consideration should be given to replacing some of the LS

solutions with LSAD solutions. The results of some preliminary

efforts in this direction as given previously appears to con-

firm this conclusion. Representing the tracking data by linear

combinations of simple analytic functions chosen for their natural

suitability from a physical standpoint and fitted by the LSAD

criterion appears to lead to a fast and efficient means of

outlier elimination. Because this approach is also capable of

handling data arcs of widely varying lengths and densities from a

single tracking station, it appears to be even better suited to

the coming era of tracking by TDRSS which will supersede

the existing STDN network of earthbound stations. However, the

other approach of introducing LSAD solutions directly into the

OD process should prove effective as well.

In light of the conclusions reached thus far, more extensive
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development and testing of the foregoing ideas and techniques

for overcoming the problem of tracking data outliers appears

well warranted and is therefore recommended. Both.approaches

described should be pursued, and their usefulness and efficiency

should be tested and compared with a variety of both direct

tracking and indirect (relay, or TDRSS) satellite-to-satellite

type tracking data.
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