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Abstract

The results of uniaxial tensile tests conducted on a variety of
graphite/epoxy laminates containing narrow rectanqular slits, square
or circular holes with various aspect ratios are discussed. The
techniques used to study stable crack or damage zone growth--namely,
birefringence coatings, COD gages, and microscopic observations are
discussed. 1Initial and final fracture modes are discussed as weil as
the effect of notch size and shape and laminate type on the fracture
process. Characteristic lengths are calculated and compared to each
other using the point, average and inherent flaw theories. Fracture
toughnesses are calculated by the same theories and compared to a
boundary integral equation technique. Finite width K-calibration

factors are also discussed.



Introducticn

Many efforts have beer made to use linear elastic fracture mechanics
(LEFM) to interpret the fracture behavior of fiber reinforced materials
-1, 1n general, these investigations have shown usual LEFM tech-
niques to be an adequate analytical tool only under a Timited set of
circumstances. A common practice by a number of investigators has been
the incorporation of a damage zone or characteristic length ahead of the
implanted flaw. With this procedure, fracture has been defined to occur
when the size of the damage zone reached a critical value analogous to
the method of incorporating yielding into LEFM for metals. To date, the
damage zone size or characteristic length has been shown to be a material
and geometrical property as studies have shown the dimension to be both
dependent upon the length of flaw and type of composite material.

Obviously, the measurement or quantification of the damage zone
size is of paramount importance if LEFM which includes the parameter are
to be used in the design of composite structures. Among the methods
presently in use for this purpose are photoelastic coatings,[]2] idealized
photoelastic mode]s,[]3] scanning electron microscopy,[]4’]5] thermography,
[16] special x-ray procedures[]7] and crack opening displacement (COD)
gages.[a] In this connection, perhaps the least defined and the most
controversial issue is the question of what constitutes failure and
damage.

The purpose of the study contained herein was to investigate the
nature and cause of the intense energy or stress field in front of notches
or cracks as tensile samples were ramp loaded to failure. The experi-

mental techniques selected for use were the COD gage, in-situ microscopic



observations, photoelastic coatings and post-mortem microscopic exami-
nations. Laminate orjentations of [O°]SS, [0“/90“]45, [0"/145"/0"]2S
and {t45°]45 of T300/934 graphite/epoxy materials were investigated.
These orientations were selected to provide a range of properties from
quasi-isotropic to orthotropic and highly anisotropic. The notch
geometries selected for three laminate orientations were crack-like
slits and square cutouts or slots. Four aspect ratios were studied for
the purpose of measuring notch sensitivity effects as a function of both
cutout width and height. That is, comparison of notch effects for square
slots to those of crack-like slits was to be performed for each aspect
ratio. The [#45°] laminates were investigates using slits and holes of
the same aspect ratio for the purpose of comparing notch effects for

these two geometries for this one laminate.

Experimental Procedures

The 16 ply panels of T300/934 graphite/epoxy were manufactured by
Lockheed, Sunnyvale. Tensile strip specimens with dimensions of 1 in x
10 in x 0.1 in (2.54 cm x 25.4 cm x 0.254 cm) were cut from the panels
using a diamond impregnated wheel or saw. Fiberglass end tabs were
bonded to the specimens such that the unreinforced length was approxi-
mately 7 in (15.24 cm). Crack-like slits and square slots were ultra-
sonically machined in the center of the [0°]g,, [0°/:45°/0°], and
[0°/90°]4S laminate samples. Similarly, slits and holes were machined
in the center of the [:45°],. laminate samples. The slit height (dimen-
sion parallel to the load) was approximately 0.01 in (0.0254 cm) in all

cases. The aspect ratios (slit width to specimen width, 2a/w) varied



from 0.15 to 0.45 with increments of 0.1 for all geometries, i.e.,
narrow slits, square slots, and circular holes.

Three replicates of each notch geometry were tested in tension
using an MTS closed loop hydraulic testing machine at a head-rate of
0.05 in/min (0.127 cm/min).* Two replicates each contained a photo-
elastic coating. In-situ microscopic observations and COD measurements
were made on the third replicate.

Two types of photoelastic coatings were used (PS-1E and PS-2C
supplied by Photolastic Inc., Malvern, PA). Each coating was applied to
the samples after the flaw was implanted. The less sensitive coating,
PS-1E with a material fringe value of 7.6 ksi/fr/in (131 MPA/fr/in),
contained a flaw with the same geometry as the underlying composite
laminate. That is, a jeweler's saw was used to cut a flaw in the coat-
ing using the flaw in the sample as a template. The more sensitive coat-
ing, PS-2C with a material fringe value of 1.9 ksi/fr/in (33.3 MPA/fr/cm),
was applied continuously over the cutout or flaw in the sample, i.e., this
coating contained no flaw. Modeling clay was used to fill the flaws such
that the coating adhesive would not penetrate or fill the flaws in the
samples. The coatings had negligible reinforcing effects on the speci-
mens.

Photographs were taken of each specimen during testing. In addi-

tion, after failure, samples were sectioned and photomicrographs

(60 x mag.) were taken.

*Tensile properties were determined for all laminates using un-
notched 0.5 in (1.27 cm) wide samples. These tests were performed on an
Instron testing machEne at a head rate of 0.05 in/min. Tnese results are
reported separately.[18]



Experimental Results and Discussion

COD Measurements

Crack opening displacement (COD) gages were used to measure the
relative motion of the center of the opposite faces of all notches and
holes in the direction of the remote ten<ile load. The load-COD traces
obtained for the crack-like slits are shown in Figure 1 for all lami-
nates. Similar traces were obtained for laminates containing square
slots and circular holes. In general, as indicated by Figure 1, the
£0°/t45°/0°]25 samples exhibited nearly linear response while that of
the [0"]8S and [t45°]4S were highly non-linear. Displacements exceeded
the range of the COD gage for the latter two orientations.

Gagger and Broutman[g] attributed non-linear behavior and discon-
tinuities in COD measurements to deformations at the notch tips. They
suggested a compliance matching procedure to quantify the amount of
actual or apparent crack extension at any arbitrary load level.

In the following, for comparison purposes, we will assume that the
compliance procedures suggested by Gagger and Broutman can be used for
all notches and holes, i.e., crack-like slits, square slots and circular
holes. Our calculations are based upon the assumption of self-similar
crack growth. It is recognized, however, that actual self-similar growth
of the implanted flaw may not have occurred and that the change in
compliance may represent local damage or microcracking.

As illustrated in Figure 1, the initial compliance was taken as
the inverse of the initial gradient or slope of the straight portion of
the 10ad-COD response. The final compliance was taken as the inverse of

the slope of the line drawn from the origin to the point of final



fracture on the load-COD response. These values were multiplied by the
specimen thickness, t, to eliminate variations caused by this parameter.

The results of the above calculations for initial and final
compliances are shown in Figures 2-4. Final compliances are not shown
for the [0°]8S and [t45°]45 laminates as the extensions exceeded the range of
the COD gage. In addition, due to their non-linear nature, it was un-
clear whether final compliances would have been very meaningful anyway.

In general, the square slots and circular holes were more flexible
than the slits for the same aspect ratios as is evident by the respective
higher values of compliances shown in Figures 2-4. Presumably, the
removal of the extra material in the case of slots and holes lowered the
restraint against deformation in those cases. That is, while damage
zones might have had comparable 1inear dimensions transverse to the load,
dimensions in the direction of the load were likely larger for the cases
of slots and holes as opposed to the case of narrow slits. In other
words, the areas of damage were likely greater for slots and holes than
for slits of the same aspect ratio.

Using the initial and final compliance curve for a laminate, the
amount of real crack extension or damage zone size growth prior to
catastrophic fracture was obtained. Consider for example the
[0°/:45°/0°]2S laminate with a narrow slit of initial aspect ratio of
2a/w = 0.25. As shown in Figure 2, the total amount of crack extension,
including both tips, was found by measuring the horizontal relative dis-
tance between the final and initial compliance curves where the value

2a/w = 0.25 was located on the final compliance curve. Use of the same



procedure for square slots as for narrow slits indicated little self-
similar type growth for slots in [O°/:45°/0°]2S laminates. On the

other hand, self similar growth appeared about equal for slots and slits
in the [0°/9O°]4S laminate. Such arguments tend to indicate large dif-
ferences between the fracture behavior of square slots and narrow slits
in [O°/_+45°/0°]2S materials and close similarities in the fracture be-

havior of square slots and narrow slits in [0°/90”]4S laminates.

Critical Fracture Stresses

Figure 5 shows the average values of the critical gross stressec
for the various types of geometries and aspect ratios. The square slots
always fractured at a higher stress level than narrow slits irrespective
of the aspect ratio or laminate orientation. Thus, stresses would be
expectea to be somewhat lower at the flaw tip in slots as opposed to
slits.

The [i45°]4s laminates with holes fractured at about the same or
slightly smaller stresses than the same lamirates with narrow slits of
the same aspect ratios. Examination of the photoelastic fringes in the
birefringence coatings shown in Figure 6a and 6¢c terds to indicate that
the dimensions of the region of intense stress gradient or intense
energy were larger for the hole than for the crack at about the same
remote stress level. Thus fracture stresses of smaller magnitude for
the holes were considered reasonable. This information coupled with
that of Figure 4 tended to indicate that the holes were more critical

than cracks for our [:45"]45 laminates.

-



The trends of variation of the remote critical stress with aspect
ratio were the same for all cutouts for all Taminates. This obser:
tends to substantiate the so-called "Materials Science Mode]"[zo’ I for
fracture by which notch or flaw gecmetrv does not have a major influence
cn laminate strength and where strength ‘s more closely related to the
size and shape of the damage zone surrounding the flaw tip.

It was interesting to note the difference in the character of the
variations of critical stress with aspect ratios as shown in Figure 5.
The variations for [0°/145°/0°]2S and [0°/90°],, laminates were similar
to that normally encountered in metals and other isotropic materials.

In contrast, the variations for the [0°]8S and [+45°]4¢ were of a
decidedly different character. It was felt that these differences might
be partially attributable to a difference in the mode of c+ack or damage
zone size growth. For the [O°/:45°/0"]2$ and [O°/90"]4S 1o (nates sub-
stantial self similar growth was noted. Axial splitting was the primary
crack growth mode for the [0°]g, laminates and crack growth at 45° to

the load was the primary fracture mode for the ['450]45 laminates.

Birefringent Coatings
Figures 6-9 represent typicul results obtained for each laminate
type using both continuous and perforated coatings. The birefringence
observed (see Figures 6a and 6¢c, 7a and 7c, and 8a and 8d) indicated
that the intense stress or energy region adjacent to cracks, circular
holes and square holes were similar with one another for comparable loads
and laminate orientations. Again, this observation tends to substantiate

the "Materials Science Model" for fracture[ZO'Z]].



The major difference between the isochromatics observed with con-
tinuous as opposed to perforated coatings was that the former, even
though a more sensitive coating was employed, exhibited less dense
fringe patterns than the latter. (Note Figures 6c and 6e.) Also,
examination of all Figures 6-9 shows that for continuous coatings, stress
concentration sites at opposite edges of holes and cracks tended to
interfere with each other.

In general, Tor [t45°J4S laminates, the fringe pattern was more
dense in the +45° direction than the -45° direction adjacent to the
hole. As the outer ply was in the +45° in each case, this observation
merely indicated that the outer ply was constrained by the inner ply to
give this effect.

As illustrated by Figures 7 and 8, the intense stress region for
both [0°]8S and [0°/90°]45 laminates was in the direction of the load
and/or the 0° fibers. In the former the isochromatics extended com-
pletely to tre grips prior to failure while in the latter case they did
not. This was taken as evidence of axial splitting in both cases.
Apparently, the 90° plies in the [0°/90°],  laminates prevented complete
axial splitting of the 0° layers prior to final fracture.

The isochromatic patterns for the [0°/t45°/0°]25 laminates were
generally similar to those in isotropic materials, i.e., note the butter-
flv wing shaped pattern in Figure 9d-9f. The direction of initial notch
tip fracture tended tc correspond to the angle of inclination of the
fringes at the notch tip.

No effort was made to quantify the birefringence results. As

pointed out by Dally and Alfirevich,[zzl the mismatch between the
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properties of the coating and the underiying material (Poisson's ratios
and mcaeii) as well as the anisotropy of the laninate creates diffi-
cultias for proper fringe interpretation. ‘urther, our pruserties were
not constant and changed with stress level similar to the results
reported by others.[23] Perhaps .ore importantly, fringe interpretation
was made difficult because of uncertainties relative to the nature and
strength of the singular stress field for the narrow slits or cracks

and square slots. That is, the nature of the sinqularity of the lamirate
was likely quite different than the nature of the singularity in either

the perforated or the continuous coating.

In-situ and Post Failure Examinations

Each replicate witn a coating was examined visually for evidence
of stable crack growth during the test. Observations of the birefringence
were made as described in the previous section and also the opposite
sides of the laminates were irspected as well. On one replicate a
microscope was used to examine likely fracture or crack growth sites.
Specimens were examined after failure and some samples were sectioned
and photomicroyraphs were taken.

As may be noted by further inspection of Figures 6-9, final fracture
planes were generally in the direction of the fibers for [t45°]4s and
[C’]gs laminates but were generally self-similar for [0°/90°]4¢ laminates.
The final fracture planes for the [0"/:45"/0°]?S laminates were quite
jagged with some 0° and 45° plies separating generally along 45° direc-
tions while other 0° and 45° plies separated normal to the load. No

distinction in crack growth behavior with aspect ratiuv was note for
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notch tips or laminate orientations.

Figure 10 is a schematic representation of the stable crack growth
observed through the microscope. Such observations were difficult to
make as it was not possible to look a. all stress concentration sites
(front and back and each corner) simultaneously. However, the following
remarks regarding observations of stable crack .r damage zone growth aie
thought to be generally proper for the cases investigated.

As mentioned earlier and as noted in Figure 10a, axial splitting
was the initial fracture mode for the [O°]8S laminates. It was possible
to observe this type of crack growth for such laminates and to note that
axial growth continued to the grips long before final separation. Final
fracture was always quite explosive with fragments being expelled con-
siderable distances from the test machine. After fracture, nearly total
separation of fibers and matrix was obvious. That is, final fracture
involved extensive fiber breakage, fiber-matrix debonding, etc. Audible
noise was heard throughout each test, often accompanie.’ by axial crack
growth and small load perturbations or reductions.

Figure 10b indicates the types of initial crack growth noted for
the [0°/90°]4S laminates. Initial growth was usually axial splitting.
However, as noted schematically in Figure 10b, for one specimen contain-
ing a narrow slit, (2a/w = 0.35), the initial growth was self similar
for a short distance (~ 1-2 mm). Axial splitting (~ 4 mm) then proceeded
from the tip of the self similar growth. Final fracture was always
self similar (see Figure 8). Again, audible noise was heard throughout
each test often with the stable growth described above and small load

perturbations or reductions. Significant load reductions v :re noted at
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" 80-90% of ultimate load.

For one [0°/445°/0°],¢ laminate containing a narrow slit
(2a/w = 0.25), self similar growth was noted for ~ 1/2 mm followed by
growth at 45° as noted in Figure 10c. In all other cases only stable
initial growth at 45° was noted. For the narrow slits, audible noise
and load reductions at 80-90% of ultimate accompanied the stable growth.
No stable growth or load reductions were observed for square holes.
Little noise was heard.

For all [:45°]4S laminates, initial stable growth was observed in
the outer ply as noted in Figure 10d and exhibited in Figure 11.
Interestingly, when the test machine was stopped (fixed grip condition)
to observe and photograph the amount of growth, the cracks continued to
grow. This may be viewed in Figure 11 together with an apparent necking
phenomenon. Because of the obvious time dependent nature of the
process, it was decided to see if a delayed fracture process could be
observed. The results are amply demonstrated in Figure 12 which repre-

sents the variation of remote tensile stress with time for several

samples containing cricular holes. For two samples (2a/w = 0.35 and
0.45), the process was allowed to continue until final rupture occurred.
For these tests, even though remote stresses were relaxing or decreasing
with time, creep or stable crack growth was observed in the outer plies.
In other words, relaxation of botk the outer ply and remote stresses
occurred as the crack grew in the outer ply. Some stress was transmitted
to the inner plies causiug additional crack growth in the interior. 1In
this way over-all specimen relaxation was possible with creep rupture

of individual plies. For these cases stresses were within a few percent
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of the ultimate load.

Post failure microscopic examination of all notched and unnotched
samples revealed the existence of a large number of microcracks in all
free edges. Typical cracks are shown in the micrographs presented in
Figure 13 for several laminates containing narrow slits. A schematic
in the same figure illustrates the location of the p!otomicrographs,
i.e., on the free edge of machined crack and on the specimen free edge.
As may be observed, numerous cracks were found between plies and even
within plies. Microscopic examination of numerous specimens clearly
indicated more pronounced microcracking effects on the crack free surface
as opposed to the specimen free surface.

For our [0°/:45°/0°],¢ laminates, cracks were always present be-
tween the +45° interface at the specimen free edge. At times such
cracks would branch and connect to cracks between either the 0°/-45°
or 0°/+45° interfaces respectively. Cracks were als alwavs present
between the two 90° middle plies of the [0°/90°]4S lai inates at the
specimen free edge (see Figure 13). Often, this crack would extend all
the way to the gripped regions. The most extensive cracking of all
laminates was noted for the [t45°]4s samples in which microcracks or
delaminations were present between all plies. Such cracks were more
pronounced at the specimen free edges for notched laminates than for
unnotched laminates. This, perhaps, indicated that the notches adversely

affected the stress state at the specimen free edge.

Fracture Mechanics Analysis

As mentioned in the introduction, many efforts have been made to

use LEFM for composite materials. In order to force agreement between
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analysis and theory, some techniques assume a damage zone at the flaw
tip. That is, the crack length is increased by adding an amount which
is characteristic of a particular laminate. In the following, compari-
sons of the characteristic length needed for the point and average
stress criteria of Whitney et a].[s] and the inherent flaw model of
Waddoups, et a].[]] are presented and compared to the COD method of
Gagger and Broutman. Further, fracture toughness as given by the two
former methods are compared to those obtained on the basis of the

boundary integral equation (BIE) method of Cruse.[24]

Characteristic Lengths
The point and average stress criteria of Whitney et al. and the

inherent flaw model of Waddoups et al. can be expressed as, respective-
]y,[s’]]

(1- )72
T [ - e)/(1 + £)1172 (1)
[ag/a + ag]'/

where cn°° is the ultimate tensile strength of an infinitely wide plate
a
with a center crack, oy is the unnotched laminate strength, £ = 3 2 ag

and a is the half crack length. The parameter a, is defined as the
characteristic length for each model. Further, o, = Yo, where Y is a
finite width correction factor and a, 1s the ultimate unnotched strength
of the finite width test specimen.

As all the values necessary were available from our test data for
narrow slits, equations (1) were used to calculate the characteristic

lengths for the laminates tested for all aspect ratios. The results are
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shown plotted in Figures 14 and 15. In addition, the characteristic
length as determined from COD measurements using the compliance method
explained eerlier are given in Figure 15.

For a given laminate all trends are similar regardless of the
criterion used. However, the trends for the [0°]g. and [45°]y¢ Taminates
are opposite to those of the [D°/90"]4S and [0°/,+45°/O°]25 laminates.
These differences may be due to non-self-similar crack growth in the
former two cases contrasted with the quasi-self-similar growth in the
last two cases. It should be noted that the average stress criterion
gave characteristic lengths so large that the equivalent crack lengths,
2(a + ay), were larger than the width of the specimen for the [£45°]4¢
laminates. This fact may be related to the viscoelastic or delayed
failure nature of these laminates or non-self-similar growth discussed
earlier. In any event, use of the theories cited for [145°]4S Taminates
wo''1d have to be viewed with skepticism.

Our results, as displayed in Figures 14 and 15, indicated that
characteristic lengths as determined by the average stress criterion
were about twice those of the inherent flaw model. This confirms Tsai's
observation that these two theories are operationally the same except for
a factor of two in the definition of the characteristic length.[zs]

Characteristic lengths as determined by the COD method were
consistent with those of the inherent flaw model for the [0°/:45°/0°],
laminate. For the [0°/90°]4S laminate trends were opposite to those of
the other three theories.

Using the characteristic lengths determined by the three theories

mentioned above, the fracture toughness, KQ, of the specimens containing
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narrow slits were calculated with the aid of equations given for this
purpose by the same three theories. Table 1 represents a comparison of
“hese fracture toughnesses. Also shown in Table 1 are the values calcu-
lated using a numerical boundary integral equation (BIE) method based
upon anisotropic fracture mechanics. This latter method requires no
knowledge of characteristic lengths for Kq calculations.

Toughnesses calculated by the point and average stress criteria
were in close iagreement with each other. The BIE method, though slight-
1y lower, is in good agreement to the point and average stress values.
The inherent flaw model gave consistently high fracture toughnesses.

The fracture toughnesses tended to converge to a common value for all
aspect ratios greater than 0.25 for all laminates except [0°]8S. In

the latter case, nonconvergence likely was the result of non-self-similar
crack growth.

Listed in Table 2 are the K-calibration factors for isotropic
finite width plates and those necessary for the finite width anisotropic
laminates tested. As may be noted, isotropic and anisotropic values
are reasonably similar with differences between the two generally being

less than 10%.

Summary and Conclusions

The results presented herein have indicated that critical fracture
stresses for [0°]g,, [0°/90°]4S and [0°/:45°/0°],¢ laminates containing
square holes were only slightly higher than those containing narrow
slits or cracks. Circular holes for [t45°]4s laminates were slightly

more ¢ritical than narrow slits. On the other hand, COD measurements
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indicated much higher specimen flexibilities for square or circular

holes as opposed to narrow slits. Thus, it would seem that from a stress
standpoint our results tend to indicate little effect of notch geometry
while from a deformation standpoint significant geometry effects were
present. In all cases large variations of both critical fracture
stresses and COD's were noted for increased aspect ratios.

Birefringence studies indicated similar shaped intense energy or
stress regions for all notch geometries and all aspect ratios. Iso-
chromatics were more dense for narrow slits than for holes as expected.
Rather than specifically showing damage zone growth, birefringence coat-
ings simply seemed to give results relevant to regions of high stress
gradient. This was in contrast to the work of Daniel[]2’13]. Dif-
ferences between our results and his might be due to the kinds of
composites investigated and the thickness (number of plies) of the
laminates. Our patterns were similar to those obtained by Durchlaub
and Freeman.[26]

Birefringence coatings gave good qualitative information relative
to regions of high stress. No effort was made to obtain quantitative
results from the coatings. Difficulties relative to property mismatches
and different singular stress fields in coatings and samples seemed to
preclude meaningful quantitative results. Perforated coatinys were
obviously better suited for qualitative studies than continuous coatings.

The magnitude of the characteristic length or the size of the
damage zone was quite dependent upon the theory used for calculation.
This fact seems to emphasize the empirical or two parameter nature of

the mathematical models investigated. It should be noted that
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characteristic lengths varied substantially with aspect ratio in all

cases for all theories. However, variations were most severe fcr the
[0"]8S and [i45°]4s laminates--perhaps indicating the lack of self-similar
growth in these cases. The point stress criterion characteristic length
varied the least with aspect ratio for all laminates. While a constant
characteristic length would in general be inappropriate, it should be
noted that if an average or constant value were used, the various

theories could Tikely he used with reasonable confidence for design
purposes for both [0“/:45°/0"]2S or [O°/90°]4S laminates.

Crack growth was decidedly non-self-similar for {0°]g. and [i45°]4s
laminates. In each case, initial fracture was primarily in the direc-
tion of the fibers. For {O“]85 laminates final fracture included ex-
tensive fiber breakage, matrix cracking and fiber matrix debonding.

Crack growth, while irregular was quasi-self-similar for [O°/90°]4S and
[0°/t45°/0°]25 laminates. Initial growth in the latter two cases, as
noted by in-situ microscopic observations, indicated similarities with
the "Materials Science" fracture model alluded to earlier.[20’2]] No
obvious difference in crack or damage zone growth was noted as a function
of aspect ratio for any laminate.

Photomicrographs gave evidence of extensive microcracking both on
the crack free surface and the specimen free surface or edge. Micro-
cracking seemed to be more severe for the former than for the latter.
Both intra- and interlamina crackinc was noted.

Fracture toughnesses calculated by tiie point stress, average
stress and BIE methods were in close agreement with each other while

those by the inherent flaw model were consistently high. Ko trends
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indicated that larger aspect ratios (- 0.25) represented the more
reliable fracture tests. K-calibration finite width parameters for the
anisotropic laminates tested were only slightly larger (< -. 10%) than
their isotropic counterparts.

The boundary integral equation (BIE) method appears to be an
excallent numerical fracture mechanics approach to investigate the
fracture behavior of composite laminates.

It should be recalled that pronounced viscoelastic effects were
observed at high stress level for the [145"]4S laminates. A delayed or
creep to tailuire phenomenon was observed even though the overall speci-
men was undergoing stress relaxation.

In conclusion, it should be noted that the fracture of composite
laminates is a complex process. Both experimental observations and
analytical calcuiacions are often an over-simplification of the total
process. However, it is our conclusion that there are at least two
distinctly different processes involved in initial and final fracture.
Initial fracture seems to inevitably be related to matrix cracking and
fiber-matrix debonding in all cases. Final fracture seems to inevitably
be related to fiber fracture in most cases, e.g., [O°]85, [0°/90°]45
and [0°/t45°/0°]25. Interply delaminations seem to be intermingled in
both processes for ail laminates but is a primary final fracture mode

for the [i45°]4s laminates.
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T.ble 1. Comparison of Fracture Toughnesses.
Fracture Toughness, Kq ksi vin (MPA vcm)
Orientation 2a/w Point Average Inherent BIE
Stress Stress Stress Method
[0"]8S 0.15 84.75 84.75 156.28 84.01
(931.41) (931.37)  (1717.33)  (923.17)
[0°]8S 0.25 Q3.50 92.50 134.33 91.00
(1027.46)  (1027.46)  (147£.13)  (949.98)
[0°]gs 0.35 91.86 91.86 114.51 86.94
(1309.43) (1009.43) (1°58.33)  (955.37)
[0°]8S 0.45 77.44 77.44 86.4 70.40
(850.97 (850.97) (949.43) (773.61)
[0°/:45°/0°]2S 0.15 27.67 27.68 33.00 27.70
(304.06) (304.17) (362.63) {304.39)
[0°/:45°/0°]2€ 0.25 31.93 31.02 35.07 30.27
{340.98) (340.87) (385.38) (332.63)
[0°/t45°/0°]2S 0.3 - 37.49 32.49 35 69 30.79
(357.03 (357.03) (392.19)  (338.35)
[O°/:45°/0°]2S 0.45 32.46 32.46 34.77 29.50
(356.70 (356.70) (382.08) (324.17)
[0°/90°]4S 0.15 27.99 27.98 32.24 27.50
(307.58) (307.47) (354.28) (302.19)
[0°/90°]4S 0.25 31.70 31.7 35.32 30.93
(348.35) (348.46) (388.13) (339.88)
[0°/90°]4S 0.3 33.08 33.08 32.90 31.52
(363.51) (363.51) (349.50) (346.37)
[0°/90°]4s 0.45 34.67 34.69 36.96 30.59
(380.98) (381.20) (406.15)  (33€.15)
[:45°]4s 0.15 10.68 ~10.88 28.44 10.84
(119.56) (119.56) (312.52) (119.12)
[z45°]4s 0.25 12.90 12.9 24.09 12 .57
(141.76) (141.87) (254.72) (138.13)
[:45°]4s 0.3 13.73 13.72 21.29 13.14
{150.88) '150.77) (233.95) (144.39)
[z45°]4s 0.45 14.62 14.62 20.90 13.36
(160.66) (160.66) (229.67) (146.81)
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Table 2. K-Calibration Factors for Center Notched T300/934 Graphite-
Epoxy Tensile Specimens.
K-Calipbration Factor, F(2a/w)
2a/w Isotropic [0°]gs [0°/+45°/0° ], [0°/90° 14 [+45°]4s
0.15 1.0095 1.0116 1.0142 1.0108 1.0218
0.25 1.0273 1.0322 1.0406 1.0310 1.0614
0.35 1.0563 1.0688 1.0838 1.0642 1.1237
u.45% 1.0993 1.1229 1.1490 1.1469 1.2138

Longitudinal moduius, Eqy
Transverse modulus, Exp =

Shear modulus, Gyp = 1.22

X

19.89 x 108 psi (137.14 x 103 MPA)

17 x 105 psi (14.96 x 103 MPA)

106 psi (8.41 x 10° MPA)

Poisson's ratio, vi2 = 0.352
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COMPLIANCE, x 10-7 in/1b

& INITIAL
SLIT
o FINAL |
O INITIAL
SLOT 11.50
104+ A FINAL
2% - TOTAL AMOUNT OF CRACK n
EXTENSION =
=
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o
>
"
(&5 ]
=
-
-
=
[e]
40.75 ©
0.5+
[0°/+45°/0° 15
0 ’ ’ % :
0.1 0.2 0.3 0.4

NOTCH SIZE (2a/w)
Fig. 2. Compliance vs. Notch Size for [0°/t45°/0°]25 Laminate.
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Fig. 3. Compliance vs. Notch Size for [0°/90°]4S Laminate.
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Fig. 4. Compliance vs. Notch Size for [0°]gg and [+45°],. Laminates.
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a) 13.10 ksi
(90.29 MPA)

c) 13.22 ksi d) Fracture

. o d.
e) 16.39 ksi f) Fracture
(113.00 MPA)

Fig. 6. Isochromatics of [+45°] laminate with perforated
(a-d) and continuous (e,f) coatings (2a/w = 0.45).
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a) 71.78 ksi
(494.92 MPA)

)
!

o
k!

e) 26.61 ksi
(183.48 MPA)

g
——

i) 43.07 ksi

(296.97 MPA)

a) Slit, 2a/w
Stit, 2a/w

e-h)

Fig. 7.

(

f)

369.37 MPA)

'
N .,
' i

33.27 ksi

(229.40 MPA)

J)

47.72 ksi
(329.03 MPA)

b)
i-1)

continuous (i-1) coatings.

ORIGINAL PAGE g
Ol Poulk QUALITY

c) 72.92 ksi
(502.

g) 36.59 ksi

4

d) Fracture
78 MPA)

h) Fracture

(252.29 MPA)

k) 53.38 ksi 1) Fracture
(361.16 MPA)
Slit, 2a/w = 0.25 c-d) Slot, 2a/w = 0.15
Slot, 2a/w = 0.35

Isochromatics of [O°]8S laminates with

perforated (a-h) and



a) 46.12 ksi b) 48.54 ksi
(317.97 MPA) (334.71 MPA)

d) 45.81 ksi e) 50.15 ksi f) Fracture
(315.86 MPA) (345.79 MPA)

g) 44.53 ksi h) 47.32 ksi i) Fracture

(307.06 MPA) (32C.25 MPA)
a-c) Slit, 2a/w = 0.25 d-f) Square slot, 2a/w = 0.25

g-i) Square slot, 2a/w = 0.25

Fig. 8. Isochromatics of [0°/90°] ¢ laminate with perforated
(a-f) and continuous (g-i? coatings.
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a) 43.48 ks

: o S
d) 29.21 ksi e) 39.28 ksi f) Fracture
(201.37 MPA) (270.81 MPA)

Fig. 9. Isochromatics of [0°/145°/0"]2 laminate with
continuous (a-¢) and perforatea (d-f) coatings
(s1it, 2a/w = 0.25). :
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b) [0°/90°]4

2m
' ):%3 <35°
o / 2a N
45 E’&f a {tjmm

c) [0°/:45°/0°],,

L

e

d) '[t45°]4s

Fig. 10. Schematic representation of stable crack
growth observations.
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Fig. 12. Delayed or Time Dependent Fracture of [:45°]4S 7300/934
G/E with Circular Holes.
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