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COMPARISON OF FINITE SOURCE AND PLANE WAVE

SCATTERING FROM CORRUGATED SURFACES

D. M. Le Vine

ABSTRACT

The choice of a plane wave to represent incident radiation in

the analysis of scatter from corrugated surfaces is examined.

This is done by comparing the physical optics solution ob-

tained for the scattered fields due to an incident plane wave

with the solution obtained when the incident radiation is pro-

duced by a source of finite size and finite distance from the

surface. The two solutions are equivalent if the observer is

in the far field of the scatterer and the distance from observer

to scatterer is large compared to the radius of curvature at

the scatter points, conditions not easily satisfied with ex-

tended scatterers such as rough surfaces. In general, the

two solutions have essential differences such as in the loca-

Uon of the scatter points and the dependence of the scattered

fields on the surface properties. The implication of these

differences to the definition of a meaningful radar cross sec-

tion is examined. It is shown that the radar cross section

defined from incident plane waves is meaningful for the case

of finite sources and extended scatterers if the far field

conditions are met or, if the scatter is incoherent and the

surface statistically homogeneous, whenever the observer

is far from the surface compared to its radius of curvature

at the scatter points.
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COMPARISON OF FINITE SOURCE AND PLANE WAVE

SCATTERING FROM CORRUGATED SURFACES

The choice of a plane wave to represent incident radiation is a common and use-

ful approximation in scattering problems. On the other hand there are many

situations in active (radar) sensing of the earth from airborne and space plat- 	 ....

forms where the specific phase structure of the incident radiation can be im-

portant. Also, in cases of extended scatterers there is no a priori guarantee

that radar cross section as derived from analysis of plane waves is applicable

for predicting scattered power. It is the objective of this article to compare the

scattered fields obtained by assuming an incident plane wave with those obtained

by assuming a finite source for the case of scatter from stochastic surfaces.

Some obvious differences are manifest, such as amplitude decrease due to wave

spreading, present in the case of radiation from a finite source but not in the

case of plane waves, and differences in the temporal history of the received

signal which are a consequence of the plane phase structure of the incident radi-

ation with plane waves and the curved structure with finite sources. More

subtle differences involving the dependence of the solutions on the parameters

of the surface also appear, and may have consequences in interpretation of

scattering cross section.

The specific example to be considered here is scattering from irregular (i. e. ,

stochastic) surfaces with the restriction to perfectly conducting boundaries
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and two dimensions. This is an idealized model relevant in first order for

scattering from ocean surfaces and relevant to some extent for scattering

from plowed fields and perhaps rough snow and ice. The restriction to two

dimensions has been chosen for the obvious simplification in treating the

vector problem. A physical optics solution (Kirchhoff approximation plus and

asymptotic evaluation of the Helmholtz integral) is obtained, and is a reason-

able approximation for microwave radar scattering near nadir, at least for

ocean surfaces (Bass, et al. , 1968; Barrick, 1968a-b). The object of the

analysis is to compare the fields scattered back to an arbitrarily located

observer when, in the first case, the incident signal is a plane wave, e(r, v)

jk• rEoe	 , and in the second case in which the finite nature of the radar antenna

is taken into account. The geometry is illustrated in Figure 1.

In the following sections the scattered fields will be computed for the two cases

and a comparison made. Then, a radar cross section applicable to extended

scatterers will be defined from the radar equation, and the solutions for the

scattered fields will be used to identify conditions under which this definition

of cross section corresponds to the conventional definition obtained from

incident plane waves.

2
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SCATTERED FIELDS

Both solutions for the scattered electric field, es (r, v), can be written as fol-

lows in the case of perfectly conducting boundaries:

TS (F, v) _ -	 3n g(r/r')ds
	

(1)

surface

where g(r/r') is the two-dimensional Green ' s function, j/4 H0(1)r - 1),

and n is a unit vector normal to the surface, Z (y). Assuming perpendicular

polarization ( Eo = Eo x), the Kirchhoff approximation yields the following

result in the case of plane waves:

3 e _ Z j (k • n) _j(P)  Eo x elk- r
3n

where j ( v) is the Fourier transform (temporal) of the incident pulse. In the

case of a finite source, assuming that the source can be represented in

terms of an equivalent current distribution, z j(v) J (x, y), the Kirchhoff

approximation yields the following result (Appendix A) :

3e	 r k2 Z(y , )
3n	 x µ /E j(v) J	 2 11	 J(Y', z') Iio1) (kR) dr	 ( )

source

where R = FY`^ + Z 2 (y') and Hot) (kR) is the derivative with respect to

kR of the Hankel function.

4     
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The scattered fields are obtained by substituting Equation Z or 3, as appro-

priate, into Equation 1. Performing the integration in the limit that kR

by means of a saddle point approximation (Copson, 1971), yields the following

result for backscatter in the case of plane waves:

cos (B-«)	 jk4)(yn)
es(r, V) = _ j Eo x I cos (8+a) e

^ yn

2 cos 6	 R(yn)
1	 cos a cos, (8+a)	 Rc (yn)	 (4)

1 1Z
where 8 = tan -1 I ky I is the angle of incidence; a(yn) = tan-i	 ay J

is the slope of the surface; R(yn) is the distance between the scatter point

at yn and the observer; Rc (yn) is the radius of curvature of the surface at the

scatter point, and

	

(p(yn) = yn sin B - Z(yn) cos B + R(yn)	 (5)

The scatter points, yn , are determined by the requirement that a V i = 0;

y 

and for backscatter the requirement 8 <_ a pertains.

In order to obtain the equivalent expression in the case of a finite source,

Equation 3 must first be evaluated. For this purpose, assume that the surface

is far enough from the source to permit the fraunhofer approximation to be

5
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made in Equation 3. Then, using an asymptotic form for HM I (kR) and using

a binomial expansion for R one obtains (Appendix B) :

ae 
= 1/2 V N /e j(iv)k2 cos ((p-a) Hal)/ (kR) F (y, v)	 (6)

an

where R is the distance from the center of the source to the surface and

F (y, v ), is the Fourier transform of J(yz) evaluated at spatial frequencies,

vy =	 sin (P and v z = - -!L
	

Wcos	 where

- Z (y)
W (Y) = cos -I

li
 R

H is the height of the source above the mean surface (i. e. , the ordinate of

the source). The tilda	 above Holy, (kR) in Equation 6 denotes the asymp-

totic form for large kR, and the prime indicates the derivative with respect

to R: Holy, (kR) a jk z/kR e x p [ j (kR - x /4)' . Substituting Equation 6

into Equation 1, and evaluating the integral in the limit of large kR, one

obtains:

F(yn,v)
_jnf4	 j2kR(yn)

Es (f, v) = Y N/c j(v)	 k/16ir
R

e	
(Yn)	

e
all V 

— !h
R(yn)

1 _ Rc(yn)	 ()

Equation 8 is the electric field scattered back to the finite source.

6
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In order to compare Equations 4 and 8, it is first necessary to find an equiv-

alent in the case of the finite source for the amplitude of the plane wave. For

this purpose assume that the amplitude, E o , of the plane wave, is the magni-

tude in the fraunhofer limit of a cylindrical wave radiated by the finite source.

Since the far field radiated by the finite source in the direction of incidence

of the plane wave (i. e. , 0) is:

e(r, v ) = jkc R Ax

-j 1/4 ejkR	 jk ry sin 0 - zcos 01
j(v) k/8n a	 J(y, z)e L	 dydz

vR f
ejkR

_ - x v/E j (v) k/8^r a-ja/4 VR' F( ® , v )	 (9)

one obtains:

Eoj(v) = -	 µ/t a	 k/8n j(v) F( 0 , v )	 (10)

Using this definition, one obtains the following formulas for the scattered

fields:

a) Plane wave

_yi
_	 cos (0-Q) jk4'(.vn)	 2 cos 0	 R(Yn)

es (r. v) = - Eoj ( v ) X I cos ( 0 +a) a	 1-cos & cos2 ( O+o') Re(Yn)
Yn

(I 1a)
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b) Finite source

F(yn, v)	 j2k R(Ynl	
R(Yn)	

_,,;

'ES OF, v) _ - 01(v) x
1*2

	 e	 1 - R (Y)	
(11b)

all yn	
(3 n	 C n

where F(yn , v) = F(yn , :•)/F(8, v). If F( 0, v ) is the maximum value of

F(yn , v) then F(yn , v ) is the relative field pattern for the source (Collin and

Zucker, 1969). Also the following definitions have been made assuming; the

observer to be at (0, H):

Oyn) = R(yn) + Yn sin d - Z(yn) cos
	 (12a)

R(yn) _ [ H - Z(Yn) I2 + Yn2
	

(12b)

EoJ(v) _ - )'/f a-1 
x/4 

7k/8n j(v) F(4, v)	 (12c)

^' i
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:OMPARISON

Y	 In comparing Equations 11a and 11b it is important to keep in mind that

Equation 11a represents the scattered fields when an incident plane wave

(source at infinity) scatters to an observer at some finite distance from the

surface; In contrast, Equation 11b represents the fields in the case of back-

scatter from a source of finite size and at finite distance from the surface.

In the former case, plane phase fronts scatter (in the physical optics limit) as

cylindrical waves back to the source whereas in the latter case, incident

cylindrical waves scatter as cylindrical waves back to the source. This dif-

ference accounts for the additional distance factor, R(yn), in the denominator

in Equation 11b: it represents cylindical spreading of waves on transmission

from the finite source.

Other amplitude differences as well as differences in phase and location of

the scattering points also occur. For example, consider the location of the

scatter points, yn. The physical optics solution requires that in both cases

these be "specular" points -- angle of incidence equals angle of reflection

relative to the local surface normal -- but the geometrical possibilities are

much different in the two cases. In the case of an incident plane wave all

incident rays have the same direction whereas for the finite source they are

all radial vectors emanating from the source. As a consequence, in the case

of the finite source, backscatter requires incident and reflected rays to

9     



coincide and to be perpendicular to the surface at the scatter point. In con-

trast with aii incident plane wave all manner of variations are possible includ-

ing what should rightly be called forward scatter. (See Figure 1.) As a re-

sult the distances, 4^ (yn) and R (yn), are not the same in the two solutions.

Only if one restricts the size of the illuminated surface will 4t (yn), R(yn) and

the location of the scatter points, yn, be compa. ble in the two cases. For

example, if one were to require that the observer be in the "far field" of the

illuminated surface, then expanding R(y) in a binomial series about the

distance Ro from observer to center of the illuminated footprint, one obtains:

R(y) = Ro + y sin 0 - Z(y) cos 0	 (13a)

and consequently

4^(y) 0 R(y) + y sin e - z(y) cos a	 (13b)

' 2 R(y) - Ro

That is, except for the constant phase factor, kR o, which is arbitrary for the

plane wave, the two phase factors are essentially equal when the scattering

surface is small. Consequently, in this case the location of the scatter points

will be the same for either type of incident variations.

But even with the far field restriction, the amplitude terms in Equations lla

and llb are different. That is, even with e = a in Equation lla and assuming

10
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the scatter points are the same, there is a fundamental difference in the

radicals. This is again a manifestation of the different phase structure -- plane

versus cylindrical -- incident at the scatter point in the two cases. Only if the

distance from surface to observer is much greater than the radius of curvature

at the scatter point (i. e. , R(yn)>> Rc(yn)) do the radicals become equal. This

is because in the physical optics solution the incident signal scatters from an

equivalent mirror at the surface with focal length, Rc(yn), and the phase dis-

tribution along this infinitesimal mirro, is functionally different in the two

cases treated here.

11
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IMPLICATIONS FOR RADAR CROSS SECTION

The restrictions mentioned above are sufficient to insure that Equations 11a

and 11b are essentially term-wise equivalent (with appropriate consideration

given to antenna gain and range effects). That is, if the observer is in the

far field of the scatterer and sufficiently removed that the distance to the

scatterer is much greater than the radius of curvature at the scattering points,

then Equations 11a and 11b differ only in factors due to the radiation pattern

of the antenna and cylindrical spreading of the incident radiation which are

present in the case of the finite source.

The interesting case occurs for extended scatterers such as irregular sur-

faces where one can be far from the surface but receive energy scattered

from a wide range of incidence angles. Such situations arise, for example,

in monitoring ocean surfaces either with an altimeter where the pulse first in-

tersects the surface at nadir and then at increasing incidence angles as a func-

tion of time (Barrick, 1972), or in such off nadir sensing configurations as is

employed with the Short Pulse Radar where a long narrow antenna beam

directs the pulse along the surface from an initial intersection near nadir

to an eventual intersection at 300 or more (Tomiyasu, 1971; Le Vine et al.,

1975).

In case of extended scatterers one might imagine computing the scattered power

as a sum over the power scattered by rays incident at the various angles allowed

12



by the scattering geometry. For example, based on the radar equation, one

might write (in two-dimensions) the following form for the received power:

4 Pt (v) Gt (e) GRM
Pr(O	

.1	 k	 (2 ,rR)Z	 °0(e) ds	 (14)
surface

where a °(g) is a cross section per unit surface (length in this two-dimensional

example). A three dimensional equivalent to this equation has been used to

analyse the performance of a radar altimeter (e. g. , Harger, 1972) and has

been used traditionally in interpretation of radar scatter from the ocean (Kerr,

1951). (See Appendix C for definition of terms. )

O

Equation 14 can be regarded as a definition of a (o): That is, one determines

a° (4) by formally computing the received power using solutions for the scat-

tered fields (such as Equation 11b) and putting the results in the form of

Equation 14. In two important cases this procedure leads to the same cross

section as obtained with the definition b^.sed on incident plane waves (Kerr,

1951; Skolnik, 1970). These cases are: 1) When the observer is in the far

field of the scatterer and far away compared to the radius of curvature at the

scatter points; and 2) When the scatter is incoherent, the surface is statis-

tically homogeneous (i. e. , spatially stationary) and the observer is far from

the surface compared to the radius of curvature at the scatter points.

13
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The equivalence in the first case is a consequence of the discussion in the

previous section. In this case the scatterer can be regarded as essentially

a single point and the conditions of the previous section are adequate to insure

that the two solutions, Equations 11a and 11b are identical.

In order to demonstrate the equivalence in the second case expressions are

necessary for the radar cross section from Equation 14 and as defined by the

assumption of incident plane waves. The expression for the radar cross

section as obtained from plane waves is obtained by a straight forward sub-

stitution of the plane wave solution, Equation 11a, into the definition of cross

section (Kerr, 1951; Skolnik, 1970). With minor generalizations to specialize

the results to two dimensions, pulses and stochastic scatters, one obtains:

1es(r' V) # 

us (f,

 

v)
( pa (0)) 	= L lim 2a p \	 Eo)(v)*Eo)(v)	

(15)

where the brackets ( ) denote an ensemble (statistical) average and the

asterisk-dot ( * ) denotes a convolution of the pairs in a scalar (dot) product.

(The convolution is the frequency domain equivalent of a product in the time

domain and reduces to a simple product in the case of harmonic time depend-

ence and a complex analytic representation of the fields.) L is the length of

the illuminated surface. The scattered field, es (r, v), is given by Equation

11a. In the special case R(y n) » Rc (yn) and incoherent scatterers, Equation

15 becomes:

14
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1^

< 
a p(0 )> = L I	 Rc (yn) elk C,v (Yn) - `^ o > 	 (16)

yn

where `oo is an arbitrary reference phase. When the surface is homogeneous,

this solution reduces to:

< ap(0 )> = nn <I Rc (yn) I elk[(P(yn) - 
(Ro]^	

(17)	 «..

where n is the number of scatterers per unit length.

The equivalent expression for distributed scatterers is obtained by computing

scattered power from Equation 11b and putting the result in to the form of

Equation 14. The received power is obtained from Equation 11a as follows:

	

G R (r ' v)	 GR (r+ v)

< Pr( v )> =	 E/N < ^ es (r, v)	 k/4	 J' L esff, v)	
k/4	 J	 (18)

GR (r. v )
where

k/4	
is the equivalent "area" of the receiving antenna and G R(r, u)

its gain (Friis and Lewis, 1947). Assuming that R(yn) >> Rc (yn) and the scatter

is incoherent, one obtains (Appendix Q:

	

4 Pt(v) G R (Yn) Gt(Yn)	 j2k [R(Yn) - R01l
<Pr(v)> - <I 

k	 [2 7rR(Yn)]Z [ 
n IRc(Yn)I e	

J >(19)all Yn	 J

Assuming homogeneous surface statistics and neglecting the small dependence

of the antenna parameters (and distance) on the surface heights, this

15    



expression can be written:

4 Pt(P ) I G R Gt] 2	 j2k [R(yn) - Ro]
(Pr (W	 ,f k	 (2irR)Z	

r ^► n^I Re(Yn) e 	 ^dY
L	 J

surface

(20)

Comparison with Equation 14 yields the following form for ( u'(0))  .

C	 j2k [R(yn) - Ro]
( a ( 8 )) = n n <IRc (Yn) ) e	 >	 (21)

which is the same as Equation 17 and is the two dimensional equivalent of re-

sults which have appeared in the literature on scattering from ocean surfaces

(Barrick, 1968; Kodis, 1966).

The important point to be made here is not so much the equivalence of Equa-

tion 17 and 21, but rather that the equivalence is the consequence of several

assumptions (far field, R(yn) >> Rc (yn), incoherence and homogeneity). These

assumptions are, of course, not universally true. It was shown above that

the expression for the scattered fields, assuming incident plane waves and

waves incident from a finite source, are not identical unless the observer is

in the far field of the surface and much further away then than any significant

radius of curvature on the surface. It follows, that the plane wave expression

for cross section, a o (o), is not always applicable for use in Equation 14.

16
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CONCLUSIONS

It has been shown that in order for the scattered fields obtained using a

finite source and incident plane waves to agree, two conditions must be sat-

isfied: 1) The scatter must be of finite extent with the observer in the far

field of the scatterer; and 2) The distance from scatter points to the observer

must be much greater than the radius of curvature of the surface at the scatter

point. These conditions guarantee that the solutions differ only in the obvious

spreading due to the cylindrical nature of the incident energy in the case of a

finite source. If the preceding two conditions are met, and one properly

keeps track of the spreading, then a radar cross section can unambiguously

be defined using the definition based on plane waves. Otherwise, the equiv-

alence of radar cross section as defined for incident plane waves and from

the radar equation only pertains in special cases. One such special case occurs

for incoherent scatter from statistically homogeneous surfaces if the observer

is far from the surface as compared to the radius of curvature of the surface at

the scatter points.

17
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APPENDIX A

FIELDS DUE TO A SOURCE ABOVE

A PERFECTLY CONDUCTING PLANE

Consider the two dimensional problem of finding the electric field due to a

current source which is above a perfectly conducting plane and directed par-
....

allel to the surface. In the case of an x-directed current, the x-component

of magnetic potential is adequate to describe the fields, and the electromag-

netic fields are given by:

e(r, v) = jck Ax(r, v) x	 (A 1)
1

h(r, v) = µ p x IAx(r, v) x l	 (A2)

The magnetic vector potential A x (—r, v) can be expressed in terms of the two

dimensional Green's function, gx (r/r ' ), as follows:

Ax(r, v) = µ JxCi v) gx (r/r ') dr '	 (A3)

The Green's function can be represented as a sum of a free space (no bound-

aries) Green's function plus a scatter term due to the boundaries:

g	 ox(r/r ') = g 
(r/r ,) + 

gX 
kl -,)	 (A4)

and the scattered term can be obtained by finding the plane wave representa-

tion of gX (r/r ') and then constructing gX (r/r') out of the same superposition

but using the scattered (reflected) plane waves (Clemmow, 1956). Doing so,

18
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one obtains:

gX (r/r ,) _ ^ Ho ^) (k 7)	 (A5)

9 (r/r ') 	 - 4 
H(oi) (k 7)	 (A 6)

where for a source at (y'; z') (Figure 2) one has:

y= (y -Y' ++ (z-z^

y ° N(7: y, ) 2 + ( z + z')2

The scatter component is just the free space Green's function due to a point

source at z' units below the surface with current in the negative x-direction.

Using Equations A5 and A6, one obtains the following result for the x-compo-

nent of the magnetic vector potential:

Ax(r, v) = 9
	

Jx(r; v) [HS I ) (k 7) - HSI) (0)] dr'	 (A7)

Substituting this expression for Ax (-r, v) into Equation Al, one obtains

ex (F, v) _ - µ/ E k/4 Jx^; v ) 1H (1) (k7) - Ho)) (ki )l dr'	 (A8)

It is trivial to check that this expression is zero in on the surface (i. e. , at

7 = 'I ) .  The derivative of ex(F, v) normal to the surface is also easily com-

puted:

aex(r,v)	 z - z'	 z+z'
µ/e k2/4 ix (F-" v)	 HOB) (k7)-	 Hoy) (ki)	 dr' (A9)

a 	 —	 7	 7

19
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i

and when evaluated on the surface yields:

3ex(T, v)r r-- k2 z' JX
(r, v ) Ho y) (k -y) dr'	 (A10)

dz	 0 J c^ 27
z-

z

Figure 2. Geometry for the Calculation of the Fields Due to a
Source Above a Perfectly Conducting Plane
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APPENDIX B

INTEGRATION OVER THE SOURCE COORDINATES

It was shown in Appendix A that in the case of a line source, J x (r, P), above

a perfectly conducting plane, the derivative of electric field intensity normal

to the surface and evaluated on the surface (z = 0) is:

aex(r, v)	 µ	 k2z'	 ^^^'J (r , v) Ho (ky) &	 (B1)

a 	 z = O y	
a
	

x

where

y (r') _	 (y - y') 2 + (z')2.

The coordinates in Equation B1 refer to the configuration shown in Figure 2;

however, because this analysis is to be applied to a plane tangent to the

stochastic surface, Z(y), at many different points, it is necessary to express

all coordinates in terms of a reference coordinate system (y, z) as shown in

Figure 3. The coordinates in which Equation B1 is presently expressed are

the primed system in Figure 3. The origin of the primed system has been

chosen so that the z' axis passes through the center of mass of the source

because it is convenient to do the integration over the source coordinates in a

center of mass system. Letting the center of mass system be ( 71, t) with axes

parallel to those of the reference system, Equation B1 becomes:

21
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aex I -	 _ kz [Z '( t,i7)] J( 71,t, v ) HS O" (0) dry dt	 (B2)
az	

z= o	
e J	 2,y(n,t)	 -

where:

7(n, ) _ [ p (Y) cos w + ]2 + [ p (Y) sin V - nJ2

Z'(n, ) = P (y) cos (SP - a) + [ cos a - n sin a ]

p(y) = [Rcos9 - Z(y)J 2 + tR sin B + y]z

- r R cos a- Z(y)

Y 

1
(y) = tan 1	 R sin 8 +	 J

Although this integration can not be done in general, it can be approximated

in the important special case in which the source is in the far field of the sur-

face in terms of the distance, P (y), between its center of mass and the point

at which the plane is tangent to z(y). In this case, employing an asymptotic

form for the Hankel function, Equation B2 oecome.

2 aex	
E	 2 H(1 ) , (kn)	 cos ( (P - a) •	 (B3)

az
z=0

•J(t,n, v) 
ej2 rr [a (Y) ,1 + b(Y)t]d, dt

where

a (Y) = - 2. sin [ rp(Y)]

b(y) = -!Lc os [ ^ (Y)]
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The limits integration may be formally extended to include the entire T1,

space, and then one obtains:

a z=	 ^`/E 22 Hol?,(kA) cos (W - a) G(y, v)	 (B4)
t = 0

where rT (y, v) is a Fourier transform of the spatial coordinates of the source,

J(n, f , v), evaluated at frequencies v1? = a(y) and Pt = b(y). Whenever the

spatial and temporal dependence in the source are separable [i. e. , J(r, v)

Jr(r) j ( v )] one obtains:

G(y, v ) = j ( v )	Jr (17,	 v77 = a(y)	 (B5)

v, = b(y)

where R denotes a Fourier transform.

An important special case is that in which Jr (n, f ) is a delta function (i. e. ,

one has a point source). In this case the integrations are easily evaluated to

yield:

G(y, v) = j(v)
	

(B6)

It is convenient in employing these results to separate explicitly the spectrum

of the current waveform, j(v), and the spatial character of the source. Thus,

let fly, v) be defined by:

G(y , v ) = j ( v ) F (y, v )	 (B7)

It is the factor, fly, P), which is employed in the text.
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i	 ^

The gain, Gt(^o), of the transmitting antenna is defined to be the power radiated

per unit surface in the direction, gyp, divided by the total power radiated per

unit surface (Coliia and Zucker, 1969). That is:

Gt(0 = 1	 27t 2

29

 
F 2('p)

F ((v) d-v
	 (C3)

0

The power received by an antenna is equal to the incident power density

weighted by the effective area of the receiving antenna (which constitutes a

definition of "effective area"). This effective area can be related to antenna

gain by means of the reciprocity theorem. In the case of two dimensions the

effective area of an antenna with gain, Gr(r, P), is (Friis and Lewis, 1947):

Ar(r, v) _ (4 A) Gr(r , v )
	

(C4)

The received power is given in terms of the effective area, A r (r, 0, and the

scattered electric field, es (r, v), by:

Pr (v) = F/µ [-6r (r, v) Ark, v ) J
	

es (r, v) Ar (r, v ) J

	
(C5)

The form required in the text for received power scattered from the surface is

obtained by substituting Equation llb for the scattered fields into Equation C5

above. Using the preceding definitions Equation llb takes the form:

Io( v )	 Gt((P)	 R(yn)	 J2k [R(yn)-Rc(yn)1
es (r, v) = x ^/e	 2 Tr	 F2( v) dv 1-	 e

all Yn 2 R(yn)	 Rc(Yn)
0

(C6)
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= E 4/k
all y 

which is the form use

where

Io (v) = j (v) I: 1 1dn exp j [2k Ro(Yn) - n/4I	 (C7)

R0 (yn) is the distance from the observer to the mean surface at the scatter

point, yn. It has been introduced here to reference the time of reception

of the scattered pulse to the round trip propagation time between source and

surface. In this way, fluctuations about this mean time due to surface ir-

regularities are included explicitly in the factor: exp j2k [ R(,7 n) - Ro(yn)^

Now assuming that R(yn)> >Rc (yn) and that the scatter is incoherent, one

obtains the following expression for the mean received power:

2n

^Pr (v)^ = µ/e	 4/k <[Io (v) lo(V)	 F2 ((P) dw]

Iall Yn
	 0

GtGR
	

I	 c7r I R (Yn) I e
j 2k IR(Yn) - Ro(yn)

(2 rrR)2 

r
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