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FOREWORD

i
	j	 This report describes the work accomplished under NASA Contract NAS3-19759 and

modification 1 thereto by the Pratt & Whitney Aircraft (P&WA) Division of United Technologies
Corporation for the Lewis Research Center of the National Aeronautics and Space Adminis-
tration. The technical effort was initiated on 2 October 1975 and completed on 31

L December 1976.

Dr. Robert C. Bill of the National Aeronautics and Space Administration (NASA) wus the Pro-
ject Manager and Mr. Leonard W. Schopen of the NASA Research Center was the Contracting
Officer.

Mr. Lawrence T. Shiembob was the Program Manager for Pratt & Whitney Aircraft.

Appreciation is extended to the following P&WA personnel for their assistance: Oscar L.
Stewart, Senior Experimental Engineer, for overall program assistance; William D. Marscher,
Senior Analytical Engineer, for contributions to the crack propagation study and general
guidance and assistance with the thermal stress analysis; and Peter W. Schilke, Assistant
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assistance in determining materials properties and metallurgical analyses.
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1.0 SUMMARY AND CONCLUSIONS

1.1 SUMMARY OF RESULTS

The plasma sprayed graded layered Y 203 stabilized Zr0 2/CoCrA1Y seal system evaluated for
1589K (2400F) applications under contract NAS3-18565 was selected, for further develop-
ment and characterization. Abradability, erosion and thermal fatigue rig tests of the baseline
sprayed Zr0 2/CoCrAlY seal system were performed- under simulated engine conditions.
Results indicated satisfactory abradability and erosion resistance and encouraging thermal
fatigue performance.

Use of a 12-bladed rotor for the abradability tests resulted in better than an order of magni-
tude improvement in blade tip to seal volume wear ratio (VWR) over the performance with
a single bladed rotor demonstrated under NAS3-18565. A strong sensitivity to the incursion
rate between the seal and the rotor was demonstrated, with an optimum rate of approximately
0.0254 mm/sec (0.001 in/sec).

Erosion rates showed a strong dependence on average impingement angle. Test results corre-
lated very well with Bitter's equation for brittle materials. Erosion rates increased as a
function of increasing impingement angle. Extrapolated erosion rate at 45 degrees correlates
well with other non-metallic seal materials (sintered. NiCoCrAIY and plasma sprayed CoCrA1Y)
previously evaluated by P&WA.

Thermal fatigue tests results were encouraging in that all specimens survived 100 simulated
engine idle-sea level takeoff-idle cycles without spallation of the Zr02/CoCrAlY coating.
Radial cracks were observed on the Zr02 surface within the first few thermal cycles. Laminar
cracks were masked by the specimen holding fixture and, therefore, could not be observed
until post test disassembly. Abradability and erosion specimens which were fabricated under
contract NAS3-18565 demonstrated somewhat better thermal fatigue resistance than
similar specimens fabricated under this program. Although similar cracks developed in

E

	

	 specimens from both contracts, radial cracking did not initiate until approximately midway
through the test in the NAS3-18565 specimens. ` Metallography of a specimen from each
contract showed that radial cracks initiated at the surface and extended through the Zr02
layer to or slightly below the interface with the Zr02/CoCrAlY intermediate layer. The
extent of cracking in the NAS3-18565 specimen was less than in the specimen fabricated
under this program. Laminar cracks occurred at or slightly below the Zr02 layer interface	 r.
in both specimens and joined some of the radial cracks in the specimen from this program.
Microstructural and thickness differences in the Zr02 layers were identified which may have

t	 contributed to the performance differences noted. Processing variations which may have
caused the microstructural variations were also identified.

Plasma spray process modifications aimed at producing an increased porosity Zr02 surface
E

	

	 layer to improve abradability of the baseline system were defined experimentally. Spray
parameters to produce an increase porosity surface layer were utilized to spray a nominally
0.635 mm(0.025 in.) thick layer on selected baseline specimens for abradability and erosion	 {
rig tests. Abradability and erosion test results, and metallography proved that the attemptto
produce an increased porosity surface layer was not very effective. 	 !,



Modulus of elasticity, ultimate tensile strength and strain to failure, thermal expansion co-
efficient, thermal conductivity, thermal stability, and residual stress state in an as-sprayed
erosion specimen were measured. Modulus of elasticity and ultimate tensile strength were
observed to decrease with increasing temperature for some of the ZrO 2/CoCrAlY layers, and
increase for others. All layers were found to be dimensionally unstable at elevated tempera-
ture, especially during the first 20 or 30 hours. The ZrO2 layer exhibited shrinkage due to
sintering (Also noted during thermal coefficient of expansion tests.) The Zr0 2 f CoCrAlY
layers exhibited growth due to oxidation of the CoCrAlY. Residual stresses up to approxi-
mately 73% of the measured average ultimate strength of the material were indicated in the
as-sprayed erosion specimen.

The steady state and transient thermal stress distributions in the abradability specimen for
the measured thermal fatigue test cycle and specimen layer thicknesses were calculated	 a
using measured properties and existing P&WA computer programs. Local stresses were
compared with local material strength and used as the basis for crack initiation predictions.
These analytical predictions correlated well with experimental results with regard to radial
cracking. Laminar cracking, however, was not predicted and could have been caused by
combined residual and thermal stresses, edge defects, thermal instabilities and/or geometry
variations such as pyramiding. Residual stresses and the effects of thermal instabilities and
geometry variations such as pyramiding at the edges of the coating were not incorporated
in the analysis.

i
Analysis of the baseline ZrO2/CoCrAlY seal system in a typical gas turbine engine configura-
tion physically larger than test specimen size showed similar but somewhat higher maximum
stress distributions. Therefore, similar performance would be predicted for the engine
application.

j	 A seal geometry optimization study was conducted to identify the layer thicknesses, to
j	 minimize thermal stresses in the abradability specimen. Results indicated that, although

thermal stresses in the ZrO2 layer can be reduced significantly by thickness optimization,
they cannot be reduced sufficiently to eliminate the probability of tensile stress cracking.
The most promising configuration was selected with the approval of the NASA Project
Manager and fabricated for abradability, erosion and thermal fatigue testing and metallo-
graphic evaluation. The surface hardness of these specimens was slightly less than the
baseline system hardness and seems to correlate with abradability and erosion`test results.
Abradability was slightly improved and erosion resistance was slightly reduced compared to
the baseline system. Both optimized configuration specimens, subjected to thermal fatigue
testing, successfully survived 100 cycles without coating spallation. Radial cracking was less
severe in the optimized specimen than in the baseline specimen and generally only propagated
partially through the ZrO 2 layer. Laminar cracking initiated in the pyramiding at the edge
of the optimized specimen and propagated along the ZrO2 layer interface only a short dis-
tance. Microstructural evaluation indicated generally good correlation with previous specimens.
Control of the ZrO2 layer thickness varied somewhat and the average thickness was greater
than targeted.
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An analytical study of crack propagation in the sprayed Zr02/CoCrAIY seal system was
conducted. This study included; l) a literature review to identify applicable, theory,
2) analytical application of the theory to define improvements to the sprayed Zr02/CoCrAIY
seal system to increase crack initiation and propagation resistance, and 3) definition of
approaches to implement and evaluate methods of inhibiting crack initiation and growth
and substantiating postulated crack growth mechanisms. Although they might ultimately
hold potential for developing crack propagation resistant ceramic structures, none of the
cyclic crack growth mechanisms proposed in the technical literature provided a suitable
basis for predicting cyclic crack growth phenomena. A new mechanism, cyclic crack
interaction, is proposed to explain cyclic crack growth observed experimentally during ther-
mal fatigue tests. Analysis of the baseline seal system based on the Griffith criterion (34) as
applied by Irwin (35) for crack growth in brittle materials, i.e.; crack tip stress intensity
factor equals or exceeds the critical stress intensity factor for the material, indicates that in
the first thermal cycle cracks would be expected to initiate at the Zr02 layer surface and
propagate radially through the Zr02 layer into the intermediate layer where it will stabilize
or turn and propagate along or parallel to the ZrO ,) layer interface, depending upon the
local flaws encountered. Further thermal cycling would propagate these cracks or initiate
new cracks by the cyclic crack interaction mechanism. Applicability of these mechanisms
to the sprayed Zr02/CoCrAIY seal system must be experimentally verified.

Various nonhomogeneities were considered as methods of inhibiting crack initiation and.
propagation in the Zr02 layer. Second phase particles shove the best potential of those
nonhomogeneities considered. However, modification of the seal system fabrication
processing to eliminate tensile thermal stresses by generating compressive prestresses is
believed to offer the best prospects for success. In any case, pursuit of microstructural
modifications to inhibit crack initiation and propagation should be postponed until the
proposed crack propagation model has been substantiated.

1.2 CONCLUSIONS

In general, the results of this program indicated that the abradability and erosion resistance
6	 of the sprayed Zr02/CoCrAIY seal system is acceptable and improvement to the thermal
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	 fatigue resistance is required. Improvement can be realized by optimizing the coating layer

thicknesses to minimize thermal stresses but not sufficient to eliminate tensile stress
cracking in the Zr02 layer. However, experimental test results indicate that radial cracks can
be arrested in the Zr0 2 layer by design of the seal system and that laminar cracks may not be
extensions of the radial cracks:

E	 Residual stresses in the sprayed materials are tensile and are believed to be contributing to
r

s the tensile stress cracking observed during thermal fatigue testing. Processing modifications
to generate compressive residual stresses in the sprayed coating are considered feasible and
would be expected to improve the thermal fatigue resistance of the seal system.

a
Present analytical methods satisfactorily predict radial cracking initiation but do not predict
laminar cracking observed experimentally. Further effort to identify and eliminate the
cause of the laminar cracking is required. Since coating pyramiding at the specimen edges
is one possible cause, the edges of all future thermal fatigue specimens should be machined

r to eliminate this factor. Other factors not currently accounted for in the analysis are the 	 3
effects of residual stresses and dimensional instabilities, interlayer bond strengths, material
properties degradation due to thermal aging, and surface temperature variation.	 i
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Considerable effort will be necessary to develop and substantiate a reliable life prediction
system for the sprayed Zr02/CoCrAlY seal system. Since both experimental and analytical
results presently indicate seal system cracking during the initial or first few cycles, efforts
should first be directed toward eliminating crack initiation prior to tackling the long term 	 l
life prediction task.
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2.0 RECOMMENDATIONS

The plasma sprayed Zr02/CoCrAIY seal system evaluated in this program demonstrated
reasonably good abradability and erosion characteristics and an encouraging degree of
cyclic thermal stress tolerance. The potential for further improvement of thermal fatigue
resistance was demonstrated by the "optimized configuration" test results. Substantial
properties data, which would have to be duplicated for any substitute system, were
obtained and permit use of existing analytical tools to predict the effect of seal system
modifications. Therefore, ^;ontinued development of this basic system to obtain an acceptable
level of thermal fatigue resistance is recommended as the most effective approach to meeting
the long range goals of this effort.

Further optimization to reduce thermal stresses to an absolute minimum and processing
modification to create compressive prestress to offset tensile thermal stresses are recom-
mended. Continuation of the optimization study initiated under this program to evaluate
the effect of layer thickness modifications on thermal stresses in both the axial and circum-
ferential planes and to investigate changing the ratio of the mixed Zr0 2/CoCrA1Y layers
component materials to vary properties is recommended as the next step. Sufficient informa-
tion to pen-nit estimation of properties for spray powder materials with different weight
ratios of Zr02 and CoCrAIY than used in the baseline system was obtained in this program.

In combination with geometric and material optimization efforts to reduce thermal stresses
(both stress level and stress range) processing modifications to create compressive residual

A

stresses to offset tensile thermal stresses and maintain a reasonable safety margin between
maximum thermal stresses and material strength is recommended. This would be expect-,d
to prevent crack initiation and is, therefore, considered the most promising approach to
increasing thermal fatigue resistance of the sprayed Zr02/CoCrAIY seal system. Three
methods of creating compressive residual stresses in the sprayed coating are considered
feasible: 1) preheating the substrate and maintaining the seal at an elevated temperature
while spraying; 2) mechanically prestressing the metal substrate while spraying, and
3) heat treating the seal after fabrication to relax out initial residual stresses and establish
a stress free temperature or temperature gradient. Analytical evaluation and selection of
the most promising method in combination with the optimized seal design for fabrication
and experimental evaluation is recommended. To accomplish this, it will be necessary to
establish a procedure for estimating the residual stresses and the combined residual and
thermal stresses at operating cycle points.

Continued development of a life prediction system for sprayed ceramic/metal seal systems
should also be pursued.
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3.0 INTRODUCTION

3.1 BACKGROUND

Gas path sealing is a proven and accepted method of improving gas turbine engine perfor-
mance and, thereby, reducing fuel consumption.. Generally, the turbine section of the enl:ine
presents the greatest potential for efficiency gains through the use of gas path sealing.

Turbine abradable gas path seals perform two primary functions 1) permits operation at
minimum clearances by reducing the potential of rotor damage during rotor-seal interactions,
and 2) protects critical turbine parts from excessive temperatures by providing a thermal
barrier between the hot turbine gas and the turbine static structure. 	

`i

Gas turbine engine development trends are toward higher turbine inlet temperatures (TIT)
to obtain improved performance with minimum engine size and weight. Projections indicate
that growth versions of current commercial aircraft engines will approach 1811 K (2800F)
TIT, while future engine generations for the 1980's will approach 2033K (3200F). High
pressure compressor bleed air is used to cool the turbine gas path seals to maintain them 	 a
within acceptable material operating temperature limits. This results in an engine perfor-
mance penalty due to the loss of high pressure air from the cycle. Seal materials with in-
creased temperature capability will permit reduction in cooling air requirements and result
in improved engine efficiency. If the thermal conductivity of the gas path seal is sufficiently
low, so that the supporting structure is thermally protected and requires less cooling,
further reductions in cooling air requirements with attendant engine efficiency improvements
can also be realized. In this situation, significant cost reductions may also be affected in the
seal support structure because of the possible use of lower temperature, less expensive
materials and less sophisticated engines.

Reduced operating clearances limit the loss of high energy, high pressure gas from the main
gas path without extracting useful work from it (reduced leakage), thereby, resulting in in-
creased turbine efficiency. Current estimates for a typical commercial gas turbine engine
are that a 0.254 millimeter (0.010 inch) reduction in ,first stage high pressure turbine blade
tip average operating clearance would result in approximately one percent increase in tur-
bine efficiency.

I	 Reduced operating clearances will result in inadvertant rubs between the turbine rotor and
static gas path; seal components due to differential heating and cooling rates, case distortions
such as ovalization due to circumferential heat flux variations and imposed, loads, and rotor
shift or bending. The seal must be capable of tolerating these nibs without catastrophic
failure such as blade destruction. The gas path seal component should be abradable to wear
preferably during rotor seal interaction to minimize the effect of a rub on average operating

f	 clearance by restricting the clearance increase to the local rubbed arc area.

Turbine gas path seals must also be capable of withstanding exposure to the scrubbing action
of the high temperature gas and entrained' particulate matter, such as ingested dirt and dust,
wear debris and unburned carbon,' without excessive degradation caused by oxidation or

.	 erosion for the life cycle of the seal. The durability of the seal to withstand the harsh turbine

^l
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environment not only affects its replacement rate, but also extends the life of other related
critical turbine parts and, therefore, can reduce overhaul and maintenance costs considerably.

Ceramic materials offer the high temperature and insulation capability required for turbine
outer air seal application. Of all the alternative approaches, the one offering the most benefits
is the sprayed concept. The sprayed concept is more flexible and less costly than other
concepts such as a sintered ceramic braze bonded to a metal substrate. An additional benefit
is the possibility of repair and/or refurbishment directly at an overhaul facility using existing
spray facilities.

The sprayed ^ 303 stabilized Zr02/CoCrA1Y seal systems evaluated under NASA Contract
NAS3-18565	 demonstrated promise for 189K (2400F) applications but required further
development and evaluation. Two spray processes, layered and continuously graded, and the
addition of Ce0 2 to each process as a solid high temperature lubricant were evaluated. All
four systems demonstrated the capability of operating at surface temperatures up to 1589K
(2400F) during abradability and erosion tests without evidence of any thermal distress. Hot
particulate erosion rates compared favorably with other seal systems evaluated by P&WA
under in-reuse and other contractural programs. Some slight grooving of the seal surface
occurred du Ling abradability testing indicating that a desired degree of abradability might
be provided with additional modification. The Ce0 2 additive did not have any discernable
effect on the abradability of these seal systems.

The effort described in this report, which was conducted under contract NAS3-19759, is a
continuation of the effort to develop abradable gas path seals for gas turbine engines. Pre-
vious effort conducted in 1975 (1) and 1974(2) evaluated the abradability and erosion
characteristics of several seal systems for use in 1144-1366K (1600-2000F) applications and
initiated evaluation of selected seal systems with 1366-1589K (2000-2400F) capability.

3.2 PROGRAM OBJECTIVE

The long range goal of the effort reported herein is development of a durable abradable
blade tip seal material system capable of gas turbine engine operation at seal surface tempera-
tures up to 1589K (2400F). Specific objectives of this program were to define the capability
of a sprayed graded zirconia/metal turbine blade tip seal system and develop the technology
required to identify the pertinent elements of, and make recommendations for, a long range
program to substantiate the sprayed ceramic seal system for engine applications.

3.3 APPROACH

One of the four plasma sprayed graded Y 203 stabilized Zr02/CoCrAIY seal systems
evaluated under contract NAS3-18565 which demonstrated the greatest potential for success-
ful engine applications up to 1589K (2400F) seal surface temperature was selected, with the
approval of the NASA Project Manager, for further evaluation and development. Abradability,
erosion and thermal fatigue characteristics of the selected seal system were evaluated by rig
testing under simulated engine conditions. Plasma spray process modifications to increase

tthe Zr02 surface porosity in an attempt to improve abradability were investigated. The most

l

- ... I

7



promising process change was selected, specimens were fabricated, and abradability and
erosion characteristics were evaluated by rig testing. Post test metallography was utilized to
evaluate micros tru ctu ral characteristics of the sprayed sea] materials and phenomena such as
crack initiation sites and extent of cracking in the seal, extent of blade tip metal transfer to
the seal during rub interaction, and evidence of densification of the abradable surface.

Physical and mechanical properties of the sprayed seal materials, long term thermal exposure
effects on weight and dimensional stability and residual stress were also determined.

Thermal shock capability of the rub specimen for the thermal cycle used in the cyclic
thermal stress tests was analyzed using existing P&WA analytical programs and the materials
properties ineasured during this program. Analytical predictions were correlated with rig
test results.

Applicability of the selected seal system to an engine application, which was selected joint-
ly by NASA and P&WA, was assessed analytically. Recommendations for further develop-
ment to substantiate use of this seal system for the specific engine application were formulated
and discussed with the NASA Project Manager.

Analyses to optirnize the layer thicknesses to minimize thermal stresses were performed. The
resulting seal systern configuration was fabricated and rig tested to evaluate abradability,
erosion and thermal fatigue characteristics. Metallography was utilized to verify the actual
configuration and microstructural characteristics obtained and the probable initiation sites
and extent of thermal stress cracking. Analysis and test results were then correlated to
assess the accuracy of the analysis.

The applicability of cyclic crack propagation theory to the sprayed Zr0 2 seal system was
evaluated and an experimental approach to investigate crack propagation was defined.
Possible microstructural improvements to the sprayed structure to increase cyclic crack
propagation resistance were also identified.

8



4.0 TECHNICAL PROGRAM

4.1 SEAL SELECTION

The sprayed graded layered Y20 3 stabilized Zr02/CoCrAlY seal system shown in
Figure 1 was selected, with the approval of the NASA Project Manger, for further evaluation
under this contract. Selection was based on the following considerations:

1. Preliminary results from contract NAS3-18565 indicated:

a. The Ce02 additive, intended to improve rub tolerance of the ZrO')_, had
no significant effect on abradability or erosion resistance,

b. For all practical purposes, abradability of both the sprayed graded layered
and sprayed continuously graded Y203-ZrO2/CoCrAlY seal systems were
equivalent; both systems exhibited slight grooving during abradability tests,

C. Both systems withstood Zr02 surface temperatures up to 1589K (2400F)
without apparent distress.

2. The sprayed graded layered Y203-Zr0 ,)/CoCrAlY seal system does not involve
spray processes which are proprietary to the fabricator. This permits more
positive control and better understanding of the system.

3

3. Significant improvement in abradability was demonstrated by using a 12-bladed
rotor instead of the single bladed rotor used for NAS3-18565. The 12-bladed
rotor more closely simulates engine nib parameters such as blade passing
frequency and chip thickness (as shown in Table I) and the post test appearance
of rub tested specimens more closely resemble ribbed engine hardware. Rig
tests using 12 blades have demonstrated improved abradability of an order of
magnitude or more as compared to single bladed test results.

In addition to the baseline system, evaluation of a system with a goal of increased porosity
Zr02 layer as a method of improving abradability was included in the program. Two
abradability and one erosion specimens with 0.508-0.762 mm (0.020-0.030 in.) thick
additional Zr02 layer sprayed with a modified procedure to effect an increased porosity
surface layer were fabricated and tested:

A porosity of-50-60% was targeted. Fabrication process modification was considered
necessary to achieve this porosity increase. A screening test program consisting of metallo-
graphic evaluation of manually sprayed tabs fabricated using various spray parameter
variations was used to select spray parameters for fabrication of the increased porosity test
specimens. Several variations of two basic approaches, i.e., l) reduced power level to the
spray gun and 2) co-spraying Zr02 and iron powder and subsequent leaching out of the iron 	 3

with dilute nitric acid, was initially evaluated without success. A third method, increased
gun stand-off distance, from 12.7 cm (5 in.) to 20.32 cm(8 in.) showed potential for some

9



increase in porosity and was selected for fabrication of the test specimens. Due to inter-
ference of the gun with the spray fixture it was necessary to reduce the spray angle from
90 degrees to approximately 60 degrees to obtain the increased standoff distance.

4.2 PERFORMANCE TESTS

4.2.1 Abradability Tests

The capability to tolerate blade tip rubs without catastrophic failure was evaluated by
abradability rig tests. Six tests, four on the baseline sprayed Zr02/CoCrAlY system and two
on the system modified to increase the porosity of the Zr02 layer, were conducted under
simulated conditions of seal surface temperature, blade tip speed and incursion rate
combinations indicated in Table H.

One additional test on a seal system specimen optimized with respect to geometry to reduce
thermal stresses was also conducted and will be discussed in a later section of this report.

All abradability tests were performed with P&WA's high temperature abradability test rig
shown in Figure 2. Simulated turbine blade tips were mounted in the periphery of a disk
driven at the required speed by a compressed air turbine. The seal segment specimen was
mounted in a fixture at the end of a horizontal post attached to a moveable carriage 	 -
assembly. The carriage assembly injects the specimen radially into the rotor assembly at the
required incursion rate. The seal specimen was heated from both sides of the rotor by
oxygen-acetylene torches directed at the seal surface. Heating torches were also mounted
off the carriage assembly. Firing rate and distance between the torches and seal specimen
was varied to control the seal surface temperature.

Seal surface temperature and blade tiptemperature were monitored by optical pyrometers._
Carriage travel was monitored by a linear differential transformer. A load cell in the carriage
feed system permitted determination of the average normal force between the seal specimen
and blade tips. All data were recorded continuously on a strip chart.

Blade tip and seal wear was determined through pre and post test rneasurements. Relative
abradability between different specimens and different seal systems was assessed on the
basis of the volume wear ratio (VWR); the blade tip wear volume divided by the seal wear
volume. The smaller the volume wear ratio, the better the abradability of the seal system.

In order to simulate typical engine rub conditions more closely, as discussed earlier, a twelve—
bladed rotor was used for abradability tests under this contract instead of the single-bladed
rotor used for testing under contract NAS3-18565. Replaceable blades cast out of B-1900,
a nickel base high temperature turbine blade alloy, were mounted in the periphery of a test

4 rig disk and ground to uniform tip radius prior to testing. The tips of these blades were
nominally 6.35 mm (0.25 in.) wide by 3.175 mm (0.125 in.) thick. -

Abradability test results are summarized in Table III. The initial test in this sequence was
scheduled to be at 1366K (2000F) and 304.9 m /sec (1000 ft/sec). The windage produced by	 j

3
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the twelve-bladed rotor necessitated reducing rotor speed to 249.9 m/sec (820 ft/sec) to
obtain a 1366K (2000F) seal surface temperature. Analysis of the rig set up offered possible
approaches to increasing the temperature-speed capacity with the twelve-bladed rotor. The
most promising approach, shortening the rotor blades, was incorporated and resulted in
successfully meeting the maximum temperature and speed requirements of subsequent tests
without further difficulty.

Test results summarized in Table III indicate:

1. Abradability of the sprayed ZrO2/CoCrAlY seal system is highly sensitive to
incursion rate as shown in Figure 3. An optimum incursion rate for minimum
blade tip wear and blade tip metal transfer to the seal and maximum seal grooving
occurs in the vicinity of 0.0254 mm/sec (0.001 in. sec). Greater blade tip wear
and transfer occurred at both lower and high incursion rates. The maximum
incursion rate of 0.254 mm/sec (0.010 in/sec) was most severe in that maximum
blade tip wear and transfer and no seal grooving occurred. At the slower
incursion rate, 0.0025 mm/sec (0.0001 in/sec), some seal grooving resulted
initially and was followed by blade tip transfer.

2. A possible sensitivity to temperature level is also indicated by test No. 1. An
unusual blade wear pattern shown in Figure 4 occurred which may identify a
dependence of abradability on seal temperature. One side of the blade wore
significantly more than the other, 1.143 mm (0.045 in.) and 0.127 mm (0.005 in.),
respectively. Visual examination of the seal specimen, Figure 5, indicates that the
side of the seal which grooved deeply (minimum blade tip wear) was significantly
hotter than the side which wore the blade heavily. The variation. in seal surface
heating is attributed to the difficulty in adjusting the heating torches due to
excessive blade tip windage. (Surface temperatures were more uniform in sub-
sequent tests using shorter blades.) The magnitude of temperature difference is
unknown because the pyrometer monitoring seal surface temperature was focused
on the transition area between the deep and shallow grooves and was, therefore,
probably measuring some average value. Additional testing would be required to
substantiate the relationship between temperature and abradability.

3. Axial cracks shown in Figure 6 were present in the blade material transfer in the
rub path. Some of these cracks did not extend to the edges of the specimens. As
a result, it is suspected that the transfer of blade material, because of thermal
stresses and/or mechanical forces during the rub interaction, is a site of crack
initiation. It is, therefore, desirable to reduce and/or eliminate blade material
transfer to the seal segment. This can be accomplished' by use of suitable blade
tip treatment.

4. Results of testing the specimens fabricated by a modified process in the expecta-
tion to produce`a more porous structure, showed no discernable improvement in
abradability. (Metallograph results discussed later in this report indicated there
was no discernable increase in porosity.)

1
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5. As expected, use of the 12-bladed rotor greatly improved abradability. The actual.
improvement, assuming no variation in the sprayed system, was a factor of 8.

The blade tips picked up metal deposits on the leading side near the tip as shown in Figure
7, apparently from plowing the transferred material off the seal. The amount of these
deposits varied proportionately to the amount of transferred material on the seal and
therefore, the severity of the test conditions.

Downstream of the rubbed area on the seal specimen, metal particles, which were apparently
sprayed off the blade tips in a semi-molten state by centrifugal action, were deposited on
the seal surface as shown in Figure 8. Again the amount varied proportionately to the
amount of transfer to the seal in the rubbed area.

The specimen shown in Figure G was sectioned in the axial and circumferential direction
and metallographically examined. This specimen incorporated the increased porosity surface
layer and was tested at 1589K (2400F), 304.8 m/sec (1000 ft/sec) and 0.0254 min/sec
(0.001 in/sec) (Abradability Test No. 3). Metaliographic observations are summarized as
follows:

1. Small amounts of blade tip residue were seen on the sections of the rub path
which were examined. Deposit thicknesses up to approximately 0.0051 mm
(0.0002 in.) were found. as shown in Figure 9 (a).

2. Some apparent densification of the ceramic layer at the rub path surface 	
7

extending to a depth of 0.0508-0,1016 mm (0:002-0.004 in.) occurred as
shown in Figure 9(a) and (b). This may partially account for the change in
mechanism from grooving the seal to blade tip wear and transfer.

j
3. The increased porosity Zr02 surface layer could not be distinguished from

the baseline ceramic layer. This correlates with hardness measurements and
abradability and erosion data which indicate that efforts to produce an increased
porosity Zr02 surface layer were unsuccessful.

3
4. Layer homogeneity was considered good. Areas of increased density or porosity

were not detected in the sections analyzed. Metallic distribution in the
intermediate layers appeared uniform.

5. Most cracks present on the surface propagated from the surface through the
Zr02 layer and into the composite Zr02/CoCrAlY layer to a depth of approxi-
mately 0.203 mm (0.008 in.). Some cracks stopped in the Zr0 2 layer at the inter-
face with the composite layer. Typical cracks are shown in Figure 10. The pre-
sence of a few cracks outside the rub path indicate that a mechanism in addition
to that' postulated with reference to the blade material transfer as proposed earlier
was active, possibly thermal stress rupture.

12



4.2.2 Erosion Tests

Erosion resistance of the sprayed Zr02/CoCrAlY seal system was evaluated by hot particu-
late rig testing at various impingement angles and temperatures as shown in Table IV. Three
specimens with the baseline coating and one with the additional Zr02 layer sprayed to
produce a more porous structure were tested.

Erosion tests were performed in the hot particulate erosion rig shown in Figure 11. The
specimen was positioned at the specified distance and impingement angle relative to the
end of the combustor exit nozzle by a compound vise. The specimen was heated by
impinging JP fuel and air combustion products on the Zr02 surface of the specimen through
a 1.905 cm (0.75 in) diameter exit nozzle. Specimen temperature and exit gas velocity
were controlled by varying fuel and air flows. During initial startup of the combustor the
specimen was positioned out of the hot gas stream. It was slowly moved into the hot gas
stream in a manner designed to minimize thermal shock to a predetermined position after
the combustor was stabilized, Final adjustments to obtain the specified seal temperature
and exit gas velocity were made after the specimen was in the filial position.

l
After the specimen temperature and gas velocity were stablized, particulate flow was
initiated. The particulate matter was gravity fed into a tube connected into the combustor
exit nozzle approximately 5.08 cm (2 in.) upstream of the nozzle end where it was picked
up and accelerated to the specimen surface by the hot gas stream. Particulate flow rate
was controlled by a precalibrated orifice in the storage hopper discharge line. The weight
of particulate used and the duration of particulate flow during the test was monitored to
check the particulate flow rate.

Specimen temperature was measured optically on the ZrO? and metal substrate surfaces.
Erosion wear was determined by measuring the weight loss of the specimen at five minute
intervals.

The erosion specimen shown in Figure 12 consists of the composite coating system sprayed
on a flat Hastelloy X plate nominally 3.81 by 5.08 by 0.254 cm (1.5 by 2.0 by 0.1 in.).. A
3.81 cm2 (1.5 in 2),a section of the substrate is coated, leaving a 1.27 cin (0.5 in.) uncoated
end for mounting in the test fixture.

`Test conditions and results are summarized in Table V. Test results on the optimized seal
configuration are included in Table V, but will be discussed later. Posttest photographs of
the baseline and "increased porosity" specimens are shown in Figure 13. Data presented in
Table V indicate that both surface temperature and impingement angle have a significant

< effect upon erosion rate. The specimen tested at 1366K (2000F) and 15 degrees impingement
angle (Test No. 1) exhibited an erosion rate approxiinatelysix times greater than specimens
tested at 1589K (2400F) at the same impingement angle (Tests No.'s 2, 3 and 5). The
specimen tested at 1589K (2400F) and 90 degrees impingement angle (Test No. 4) exhibited
an erosion rate approximately 20 times greater than specimens tested at the same temperature
and 15 degrees impingement angle (Tests No.'s 2, 3 and 5). As would be expected based on
the microstructural evaluation of the abradability specimen discussed earlier, the erosion
rate was not significantly different between the baseline and the specimens fabricated with
the intent to increase porosity (Test No's 2 and 3).

I; 13
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A simplification of Bitter's equation (3), given below, was used to investigate erosion results.

1 /2 M(Vsin a-K)2
Q=

where: Q = wear due to repeated deformation — cm3
M = total mass of impinging particles — gf-sec2/cm
V = particle velocity before collison — cm/sec
K = constant related to target properties - cm/sec
a = impingement angle
e = deformation wear factor

For simplification K was assumed to be negligible in comparison to particle velocity - an
assumption substantiated in the literature, reference (4). With this assumption the equation
correlates well with the 1589K (2400F) data obtained under this contract as shown in
Figure 14. The quantity MV2/2 was evaluated at the 90 degree point by equating it to the
measured erosion rate. Data measured at 1366K (2000F) under this contract and at 1589K
(2400F) under contract NAS3-18565 are shown for information. Also the range of other
high temperature seal systems such as sintered NiCoCrAlY and plasma sprayed CoCrAlY
evaluated by P&WA under in-house programs is indicated. The cause of the large scatter in
the 1589K (2400F) data at 15 degrees is not known but there are several possible explana-
tions. They are`. 1) batch to batch reproducibility of the sprayed ZrO2 structure, 2) weight
loss measurement error due to partial delamination of the coating during testing of the
NAS3-18565 specimen, or 3) a tendency toward ductile behavior. One or both of the first
two are considered most likely since three out of four data points correlate very closely.

Generally speaking, the erosion, resistance of the sprayed ZrO2/CoCrAlY seal system
appears to be marginally satisfactory for engine application. Some improvement is
desirable if it can be obtained without much sacrifice in abradability or thermal fatigue
resistance.

i
j	 4.2.3 Thermal Fatigue Tests
I

The durability of the sprayed. ZrO2 /CoCrAlY seal system in an engine application will depend
greatly oil 	 capability to successfully survive the initial and subsequent thermal cycles
corresponding to the engine operational conditions. This is the most difficult parameter to
satisfy with _a ceramic seal because of the relatively low strength (especially tensile strength)
of ceramic materials and the large mismatch in thermal growth between ceramic and metallic
materials. The graded, layered system was selected specifically to modify the layer difference
in thermal expansion between the metal substrate and ceramic. Thermal and mechanical
properties of each of the individual layers in the graded ZrO2/CoCrAlY stricture and the metal
substrate as well as the geometry of the seal segment affect the thermal stresses generated
during thermal cycling.

t
r
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Thermal fatigue characteristics were evaluated by rig tests which subject seal specimens to a
simulated gas turbine engine thermal cycle from idle to sea level takeoff (SLTO) and back to
idle. Appropriate temperatures are maintained on the Zr02 surface and the back of the sub-
strate. Typical cycles are shown in Figures 15 and 16 for abradability and erosion specimen
configurations. The "proposed" or engine cycle is the same for both specimens. The actual
temperature obtained, however, varied somewhat between the abradability and erosion
specimen largely because of the specimen geometry.

The thermal fatigue test rig is shown in Figure 17. The specimen was mounted in a water
cooled copper fixture. A combination of oxygen-propane torches and cooling air jets were
used to achieve the desired thermal cycles on the Zr0 2 and metal substrate surfaces. The
torches were mechanically moved toward or away from the specimen at controlled rates
to provide the required thermal cycle. Fixed cooling air jets were turned on or off or the
flow was changed at predetermined intervals to meet the cycle requirements.

The Zr02 and metal substrate surface temperatures were monitored continuously with an
optical pyrometer and thermocouples, respectively, and recorded, on a strip chart.

Three abradability and two erosion specimens of the baseline sprayed graded Zr02/COCrAly
seal system were tested. Test conditions and results are summarized in Table VI. All specimens
tested completed 100 cycles without gross failure (delamination). However, all specimens
exhibited both radial and laminar cracking as shown in Figures 18 through 22.

i
The specimens used in tests 1, 2 and 4 were fabricated under this contract. Tests 1 and 2
resulted in nearly identical results. Radial cracks were visible on the surfaces of both speci-
mens in less than 15 cycles and tended to become progressively more pronounced as the
test proceeded. Post test visual inspection indicated extensive laminar cracking in the vicinity
of the Zr02 layer interface. Since interfacial cracking cannot be observed during testing
because it is masked by the specimen holding fixture, the point in the thermal cycle at
which laminar cracking initiated could not be identified.

The specimen used to set the thermal cycle parameters and check operation of the test rig
was residual from contract NAS3-18565 and had the same sprayed seal system. It had
survived 35 varied thermal cycles, several of which were more severe than the test cycle
without any visually detectable radial or laminar cracking. In an attempt to obtain data with
respect to system repeatability it was decided, with the approval of the NASA Project
Manager, to continue testing on this specimen to 100 cyclesas the third abradability specimen
test. Hairline radial cracks became apparent on the surface after approximately 50 cycles, but
did not appear to expand as the test proceeded as did the first two specimens. Post test
visual inspection, also revealed hairline laminar cracks in the vicinity of the Zr02 layer

t	 interface.
1

Results on the first erosion specimen, test No. 4, was similar to the results from the first two
abradability specimens. Therefore, a specimen fabricated under the previous contract was

j	 used for the second erosion specimen, test No. 5. Results on this specimen were similar to
those from the abradability specimen fabricated under NAS3-18565, test No. 3.

1
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The test results indicated a discernable difference in thermal fatigue resistance between the
specimens fabricated under this contract and those fabricated earlier under NAS3-18565.
Hence, metallographic analysis of one specimen fabricated under each contract, to attempt
to identify the cause of the difference in thermal fatigue resistance, was conducted.
Fabrication processing differences were also investigated.

The following micros tructural differences were determined and are considered potentially
significant:

1. The ZrO2 and 70/30 ZrO2/COCrAIY layers of the NAS3-18565 specimens were
approximately 0.254 mm(0.010 in.) thinner than .for the current contract
specimens as shown in Table VII. Other layers were nearly the same thicknesses.

2. The specimen fabricated under the previous contract exhibited largerZrO 2 layer
agglomerate size than the specimen from this contract as shown by comparison
of Figures 23 and 24. Microstructure of other layers was essentially identical.

3. The average pore size in the ZrO-) layer of the previous contract specimen was
larger than the pore size of the current specimen. However, the total pore fraction
and metal fraction of all layers of both specimens were very nearly the same as
shown in Table VIII.'

The following variations in spray processing were determined.

1. Coating deposition rates for the NAS3-18565 specimens were 2 to 2.5 times the
deposition rates of the current contract specimens. A review of possible causes
led to the belief that powder feed port wear was responsible and procedures
were instituted to more closely control this variable.

2. Delay times between coating layers varied by as much as a factor of two but
were not consistently different in one direction for all layers of either specimen
lot. In fact, the average delay times were within 15 seconds of each other.

3. The number of interruptions in spraying to measure coating thickness were the
same except for the _top -ceramic layer. This layer had two more interruptions
for the current specimens than for the NAS3-18565 specimens.

4. Powder lots, spray gun electrodes and spray gun operators were different.

r	 16
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The observed microstructural differences could have been caused by the variations in the
spray process and could also have significantly effected thermal fatigue resistance parameters
such as residual stress and physical and mechanical properties.

Cracks in both specimens appeared to initiate at the surface and to propagate intergrannular-
ly through the Zr02 layer. Most cracks reached the interface with the Zr0 2 /CoCrAIY com-
posite layers and were either arrested or redirected parallel to the interface in the Zr02
layer. It was not clear whether laminar cracks were extensions of the radial cracks or had
initiated at the edge and propagated in to join the radial cracks.

4.3 MATERIALS PROPERTIES

The most cost and time effective approach to high temperature ceramic seal development in-
volves thermal and structural analysis of the preliminary design of the seal system with
subsequent substantiation by selected testing. This approach minimizes the requirement for
time consuming, expensive "build & try" tests. It also provides an insight into the inter-
relationship between environmental temperature and seal geometry factors which reduces
the probability of l) preserving a concept which ultimately would prove unsatisfactory in
an engine or 2) eliminating a potentially good engine system on the basis of failure during
rig test. However, key to this approach is a thorough knowledge of the properties of the seal
system materials and an accurate modeling technique. Material properties are discussed in
this section, analytical modeling in Section 4.4.

Material properties necessary for thermal and structural analysis and evaluation of the
effects of rig tests on the sprayed Zr0 2 /CoCrAIY seal system were measured. Measured
properties included thermal stability and initial residual stress state of the as-sprayed
baseline Zr02 /CoCrAIY seal system.

4.3.1	 Physical and Mechanical Properties

Hardness of the Zr0 2 surface layer, thermal expansion characteristics of each sprayed
material layer, thermal conductivity of the Zr0 2 layer and of the total composite seal
system, modulii of elasticity and rupture, and strain to failure for each sprayed material
layer were measured.

4.3.1.1 Hardness

The Superficial Rockwcl145Y hardness was measured on the abradable Zr02 surface of all
abradability and erosion specimens. Experience has indicated that this property may prove
to be a good non-destructive indicator of coating quality, abradability and erosion character-
istics, anal/or material strength. It is a quick and relatively inexpensive test to perform.

Measurements were taken on thews-sprayed surface at six locations on the erosion specimens
and ten locations on the abradability specimen. All locations were outside the areas expected
to be affected by subsequent testing to minimize the possibility of effects on the test	 -
results.
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Average hardnesses of abradability specimens varied between 72 and 76 with a typical hard-
ness variation of about 12 observed on any given specimen. Average hardness of erosion
specimens varied between 64 and 80, again with a typical hardness variation of about 12
observed on any given specimen. The increased porosity specimens showed reduced hardness,
about 69 for abradability specimens and 65 for the erosion specimen. This data indicates
good repeatability between the two rings of parts sprayed under this contract and also with
parts sprayed under the previous contract, NAS3-18565.

4.3.1.2	 Linear Thermal Expansion Coefficient

The linear thermal expansion coefficient was measured for each material layer in the plasma
sprayed ZrO2 /CoCrAlY seal system in the direction parallel to the spraying direction.
Specimens measuring 3.556 x 0.762 x 0.254 cm (1.4 x 0.3 x 0.1 in.) were machined from
thick plasma sprayed deposits of each individual layer which comprise the total seal structure
after removing the deposits from their respective mild steel backings by immersion in 50%
HNO3.

After being accurately measured in the 3.556 cm (1.4 in.) direction (parallel to the spraying
direction), the specimens were instrumented with a Netzsch Electronic Automatic Recording
Dilatometer. The system was placed in the center zone of a closed chamber which was
evacuated and then backfilled with helium. The mixed ZrO ,,/CoCrAIY specimens were then
programmed for temperature rise and equilibrium at 100K (18OF) intervals from 293K (68F)
to 1073K (1472F) and specimen length and temperature was continuously monitored. An
equivalent program for temperature fall and equilibrium was also implemented. The ZrO')
specimens were scheduled through a similar program up to 1573K (2372F). The mean v
coefficient of thermal expansion was calculated for each individual layer material using:

LT - Lo
U =

Lo (T-To)

where: a	 mean coefficient of thermal expansion from T o to T
IT	measured length at T
Lo	measured length at To
T	 temperature at which measurement was made
To = initial temperature

Results are summarized in Figures 25 through 28. As expected, increasing metal content
caused a slight increase in the expansion. The 1073K (1472F) maximum temperature on
the ZrO2/CoCrA]Y specimens was not .high enough to cause detectable amounts of shrinkage
due to sintering of the constituents; therefore, no irreversible length changes occurred. In-
cipient shrinkage did occur in the 100% ZrO2 specimen above 922K (1200F). This was
intially interpreted as warpage of the specimen and resulted in two arrests of the tests. The
third cycle, which is plotted in Figure 25, consequently measured the expansion of a
partially sintered specimen up to 1589K (2400F) and back down to room temperature. The
effect of further sintering in the form of irreversible shrinkage was evident as shown in
Figure 25.

i
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18



4.3.1.3 Thermal Conductivity

Thermal conductivity was measured on samples of the ZrO^ layer and the complete seal
system. The ZrO ,) layer was applied to a 2.54 ern (1 in.) diameter Mar-M-509 backing 0.635
cm (0.25 in.) thick which had been plasma spray coated with a NiCrAI bond coat 0.0762-
G.127 mm (0.003-0.005 in.) thick. this specimen was machined to 2.286 cm (0.9 in.)
diameter by 0.914 cm (0.36 in.) high cylinder for testing. The complete seal system specimen
was machined from an erosion specimen which was sprayed on a Hastelloy-X substrate 0.254
em (0.1 in.) thick. The specimen was machined to a 2.54 cm (l in.) diameter by 0.635 cm
(0.25 in.) high cylinder.

Both specimens were tested using the comparative cut bar method. A specimen was placed
between two Incone1702 reference standards of known thermal conductivity with thermo-
couples at the inte3•faces. The test stack was placed between the elates of an upper heater,
auxiliary heater and a lower heat sink. A reproducible load was applied to the top of the
complete system to achieve a uniform interface contact. A guard tube which could be heated
or cooled was placed around the system and the interspace and surroundings were filled with
an insulating powder. By adjusting the heaters and heat sink temperatures, a constant
temperature distribution was maintained in the system. Radial heat losses were reduced to
negligible values by keeping the guard tube temperature close to the average temperature
of the sample. Temperatures at various locations in the system were recorded when equili-
brium conditions were attained at average specimen temperatures of 373K (212F), 673K
(752F), 1073K (1472F) and 1473K (2192F) during heatup. Measurements were also recorded
at 973K (1292F) and 473K (392F) during cool down. The thermal conductivity of each
specimen was calculated using:

,i

	

K	 1^2 
(Xs) (KR1 TR1 ) + (KR2 TR2

	

Ks
	

(Ts) (XR1)	
(XR2)

i

where: K = thermal conductivity
X = thickness
T = temperature difference
S = specimen
R 1 	top reference
R2 = bottom reference	 1

Thermal conductivities of the sprayed coatings were then calculated using the resistance
method:

_	 Xc
Kc Xss "m

Ks Km

where: c	 = coating
m	 substrate
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The NiCrAl bond coat was included as part of the substrate material in this calculation. Re-
sults are plotted in Figures 29 and 30. The slightly higher conductivities during cool down
are indicative of sintering and densification.

Thermal conductivities of the mixed ZrO-)/CoCrAIY intermediate layers were estimated
from these results by:	 J

1. Calculating the average thermal conductivity of the composite of the three
intermediate layers using:

K1 =	 XI

U	 v"T	 1.c

where:	 Kl	composite average thermal conductivity of intermediate layers
average thermal conductivity of total coating systemKT 

Kc = thermal conductivity of sprayed ZrO ,)_ layerc	
Xl = intermediate layers thickness
XT = total coating thickness
Xc	ZrO2 layer thickness

2. Plotting the thermal conductivity against intermediate layer thickness assuming:

(a) the thermal conductivity at the ZrO- layer-intermediate layer interface is
equal to the ZrO-) layer conductivity;

(b) the thermal conductivity at the intermediate layer-metal substrate interface
is equal to the substrate conductivity, and

(c) the thermal conductivity at the mean thickness of the intermediate layers
}	 equals KI calculated in step l

s
3. The thermal conductivity of each of the intermediate layers was taken as the

value of the curve drawn through the foregoing points at the center of each	 j
layer.

Estimated; thermal conductivities for each of the ZrO2/CoCrAIY layers are shown in
Figure 31.

4.3.1.4 Modulii of Elasticity and Rupture

Elastic and rupture modulii were determined on specimens representative of each individual 	 3

layer of the sprayed ZrO 2 /CoCrAIY seal system by four point flexure testing. A strain gage,
placed at mid span and center of each specimen, was used to measure specimen deflection
for room temperature tests. Deflectometer measurement of cross-head deflection was used
to determine specimen deflection at elevated temperatures. Test specimens measured
0.254 x 0.762 x 3.556 cm (0.1 x 0.3 x 1.4 in.) and were prepared similar to that previously
described for the thermal expansion specimens.
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Room temperature tests were performed on specimens representative of each layer. Elevated
temperature characteristics were determined at maximum estimated operating temperatures
of 1005K (1350F), 1061K (1450F), 1144K (1600F) and 1589K (2400F) for each of the
layers; 40/60, 70/30 and 85/15 Zr02/CoCrAlY and 100% Zr0 2 respectively.

Modulus of elasticity was calculated using either of the following formuli as applicable:

For strain gaged specimens:

E = 3 5 (P/e)
4 b h2

where:	 E	 elastic modulus
P/e = slope of the load versus strain curve
b	 specimen width perpendicular to the load application
h	 = specimen thickness coincident with the load direction.

For elevated temperature tests where the cross head deflection was measured:

E	
S3 (pie)
8bh3

a

where:	 S	 distance between supports a

P/e = slope of the load versus deflections curve

Modulus of rupture was calculated using:

3 P S
U =u 4 b h2

where:	 au = 'modulus of rupture (bending strength)
P	 maximum load prior to specimen failure

Strain to failure was read directly for strain gaged specimens. For deflectometer measured
specimens, strain to failure (e u) was calculated using:

=—6h X
Cu 

(S-a) (S +2a)

where:	 a	 = 1/2 distance between supports (S/2)
X = deflection at load points at failure (deflectometer reading)

Test results are summarized in Table IX. These results indicate:

1. The strength increases as metal content increases.

t
^i
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2. The strength of the 40/60 Zr0 2/CoCrAIY layer and the all Zr02 layer decreased
with increased temperature. The strength of the remaining Zr02/CoCrAIY layers
increased with increased temperature.

3. The elastic modulus of the Zr02/CoCrAlY layers increased with metal content
but was higher for the all Zr0 2 layer than for the 85/15 Zr0 2/CoCrAIY layer.

4. The elastic modulus of the all Zr0 2 and the 85/15 Zr02/CoCrA1Y layers de-
creased with increased temperature while it increased for the remaining
Zr02/CoCrAIY layers.

5. Strain to failure increased with increasing metal content.

The increased strength and/or elastic modulus with increased temperature displayed by
some of the mixed ZrO ,) /CoCrAlY layers has also been observed in polyphase ceramic
materials with strong anisotropic expansion properties and may be linked to the occurrence
of internal ruptures and recombinations as cited by Buessern(5).

4.3.2 Thermal Stability

Thermal stability and oxidation resistance of four specimens representative of the abradable
Zr02 surface layer and each of the three Zr0 2 /CoCrAlY intermediate layers of the sprayed
Zr02/CoCrAlY seal system were evaluated in isothermal furnace tests in air. Specimens,
0.254 x 1.27 x 3.81 cm (0.1 x 0.5 x 1.5 in.), were prepared similarly to those used in the
thermal expansion tests. Each specimen was measured, weighed and then exposed to estimated
maximum operating temperatures for each respective layer, i.e. 1005K (1350F), 1061K

l

	

	 (1450), 1144K (1600F) and 1589K (2400F) for the 40/60, 70/30, 85/15 Zr02/CoCrAlY
and the all Zr0 2 layers, respectively. Weight and dimensional changes were measured at 20
hour intervals and at the conclusion of the 100 hour test.. Percent changes in specimen
weight, volume and linear dimensions were calculated. Results are plotted in Figures 32

l	 through 3 7.

F	 The dimensional stability of each layer is anisotropic. The greatest change occurs in the
j	 direction normal to the substrate plane (through the coating thickness). Dimensional changes

parallel to the substrate plane were approximately isotropic. The anisotropic behavior of the
Zr02/CoCrAlY composite layers is attributed to oxidation of the metal constituent which
has greater surface area parallel to the substrate plane. Shrinkage of the Zr02 layer is attri-
buted to sintering.

Initial weight loss experienced by the Zr02 layer is attributed to loss of residual moisture in
the test specimen despite normal drying procedures.

4.3.3 Residual Stresses

Residual stress distribution in art erosion specimen was calculated from strain data measured
on the back surface of the metal substrate. The specimen backing was strain gaged and,
following zero adjustments of the gage instrumentation, the specimen was placed in the

t-
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fixture shown in Figure 38 which allowed the specimen to be held without application of
force during grinding operations. The sprayed coating was incrementally machined away using
a 100 grit diamond wheel and material removal rates no greater than 0.0508 mm (0.002 in.)
per pass. After removal of each increment, the specimen was removed from the fixture and
strain readings were recorded. This procedure was repeated until the sprayed structure was
removed completely.

Residual stress distribution through the as-sprayed specimen was calculated by iteratively
computing the stress necessary to cause the measured strain at the substrate surface contri-
buted by each increment as it was added to the substrate and previously added increments.
The stress in previously added increments was corrected for the added deflection.

Calculated residual stress distribution is shown in Figure 39. Compressive prestress is shown
in two of the intermediate layers. It should be noted that the deflections measurements from
which the stresses were calculated were less than the nominal measuring accuracy of the
equipment used and, therefore, the noted stresses shown may be of marginal accuracy. Room
temperature stresses in the Zr0 2 layer up to 73 010 of the average strength of this layer is
indicated. No single stress free temperature exists for the calculated distribution.

4.4 ANALYSIS

As previously discussed, the most cost effective approach to seal design and development is
to establish system capability analytically and conduct selected tests to substantiate the
analytically predicted capability. Since material properties were not available at the initiation
of this program, this approach was not possible within the time constraints of this program.
However, thermal stress analyses were performed on the abradability specimen configuration
for the thermal cycle used in the thermal fatigue tests after material properties were
determined. The analytical results were correlated with experimental results to substantiate
the validity of the analysis. A typical gas turbine engine application of the layered system
was also analytically evaluated,

4.4.1` General Approach
`a

Existing two-dimensional finite element thermal and elastic stress computer programs were
used to calculate steady state and transient temperature and stress distributions through the
seal. Bread slice sections through the center of the seal as illu.-crated in Figure 40 were
modeled to describe the specific seal system geometry, elemental breakup, material proper
ties and boundary conditions. Two-dimensional steady state and transient temperature
distributions through the seal in the axial and circumferential sections were calculated. Then
two-dimensional stress distributions for thermal distributions at selected time points were
computed by the stress program. Three-dimensional stresses Ai ,ere estimated by extrapolation
of this two-dimensional information

x
i

Two stress programs were used, a plane stress finite element elastic analysis program which
assumes zero stress in the out of plane direction and a generalized plane strain finite element
elastic analysis program which assumes plane sections remain plane.. The plane stress pro-

3	 gram was used to analyze stresses in the circumferential section of the thermal fatigue test
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specimen and both the circumferential and the axial sections of the engine specimen. The
| -	 plane strain prognzo^ was used to analyze the axial section stresses in the thermal

	

|	 / 

	

`	 tatigun test specimen since it computes stresses which correlate very closely with three-
dimensional atre»oum in all three planes. ExonriooVo has shown that uoo]iouhi6ty of the

\ generalizednlun^ strain program is restricted to ono^ourut^u^u v^tb oopnotzotiom greater^^^^^^	 ~	 ^
tbuutvvV. It, therefore, was not considered applicable for the engine seal which had uo
as^octratio apDzVuddoguoity	 /
 .
	 ^

|(
^ Three-dimensional stresses were estimated in the thermal fatigue test specimen by assuming
^ the axial otrouo8a computed by the generalized plane strain program ogu/d to three-

dimensional values. The stresses atthe intersection of the axial and circumferential sections
^ analyzed were assumed identical. The generalized plane strain program mdoeo were compared ^

with the appropriate plu000treoxprVgruzuvoluouuttbiointoronotiouuuduoedtVcmtoblisb
a correction factor for the plane stress program output. This factor was then applied to the

(
^ circumferential 	 stresses to  estimate three 'dboeooiouolmtz^o vun^o. 8i^onuoun_

dimensional 	 distribution Yvuo^oxonz^d [diouuomod later), atn:uuoobuuizcuna'i'' 
ferential planes parallel to the plane analyzed were estimated by ratioing the calculated
stresses by the value of the axial section stresses at the center (initial intersection) with the
axial section utnexoou at the ` tcouocdVu with the new plaoe. 	 !

Three-dim elision al stresses were estimated in the engine 	 by applyingthe following

	

^	 fbrmuluxat the intersection of the axial and oircomferen ^ooc^uox^

	

^	 - 

	

N	 + o3D/^ =_ o/\ '	`.	 nr

	

>	 ^	 r
and:

'f	
/'"	
n o3I^C ^~ qC	 }^-^^ v&	^ 	 ^

	

|^	 `	 \^

where:	
"3DA	 three-dimensional stress in axial direction

u3DC = 
three-dimensional stress in circumferential direction

	^	 'A 	 two-dimensional  stress_- in --- direction
Orc	 = two-dimensional stress in circumferential direction

V	 = Poisson's ratio

The ratio of two-dimensional to three-dimensional stress in the circumferential and axial

	

.	 '^.

	

^	 ~. to obtain estimated 	 distributions. 

vvmro 
one-dimensional circumferential temperature profile '-_---'--r-ca.`

The abradability configuration test specimen was modeled and analyzed using the actual
cvoKe thermal- 	cycle '-^--`- -^^ ^^' -'^	 substrate

	

\	 ' dimensional radia temperature distributionphrough thespecimen was	 An 

	

! `	 `	 '	 ^	 '	 `'	 ^ -	 `	 ` 	 <	 ^
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pyrometer scan of the surface indicated that the surface temperature distribution was
uniform within 111K (200F). Temperatures at the three substrate surface points were nearly
the same.

Stresses were calculated for thermal distributions at idle and SLTO steady state conditions
and at 20.5 seconds into the accel (heatup) and 17.5 seconds into the decel (cool down)
portions of the thermal cycle,, the points of maximum and minimum total thermal gradients
through the specimen, respectively. Measured average seal layer thicknesses and material
properties discussed earlier were used. Linear interpolation with respect to temperature was
assumed through average measured values for elastic modulus, rupture strength and strain-
to-failure data. Stresses were assumed symmetric about the center of the specimen in the
circumferential and axial directions.

Results of these analyses are summarized in Figures 41 through 48. Maximum principal
stresses in the planes of the sections were used as the basis for evaluating critical stress
locations since it was assumed that the sprayed materials would behave in a brittle manner
and fail due to exceeding the tensile strength.

Maximum principal stresses were found to generally be parallel to the substrate except near
the edges where the radial stress component became significant at some cycle points.
Generally radial stresses were very low.

Analytical results indicate that the stresses in the Zr0 2 layer exceed the strength of the
material in the central portion of the seal at the surface at the 17.5 sec. decel point (Figure
47) and at the edge of the specimen at the Zr0 2 layer interface with the 85/15 Zr02/
COCrAIY layer at SLTO (Figure 46). However, because of the non-linearity of the stress-
strain relationship, the strain-to-failure was exceeded only at the 17.5 sec. decel point.
Stresses in the 40/60 Zr02/CoCrAlY layer also exceed the rupture strength of the material
at the interface with the substrate at SLTO, but the strain associated with the stress was
within the strain-to-failure.

Since calculated stresses were induced by thermal strains, rupture would not be predicted
until the strain-to-failure was exceeded. On this basis, radial cracks in the central portion of the
Zr02 layer was predicted to initiate at the seal surface during decel. Laminar cracks were 	 i
not predicted on the basis of these analyses.

Residual stresses were not incorporated in these analyses because they were small in compari-
son to the estimated thermal stresses. In addition, since one stress free temperature does not 	 a
exist for this system, incorporation of residual stresses would . require modification to the

I	 current` analytical program. Such effort was beyond the scope of this program.

I	 In summary, thermal stress analysis results would have predicted the radial cracking observed
in thermal fatigue tested specimens due to stress rupture during the first cool down. Laminar 	 i

j`.	 cracking due to thermal stresses alone would not have been predicted, but might have been
^.	 caused by stress redistribution due to radial cracking and/or combined residual and thermal

l`
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stress effects. Other possible contributors to the laminar fracture mechanism are dimen-
sional instability effects in the sprayed material and non-uniform temperature profiles over
the seal specimen surfaces. Some non-uniformity of the circumferential temperature profile
on the Zr02 surface was observed during testing. Whether this non-uniformity, which was
approximately 111K (200F) between the center and the ends, with the center being hotter,
was the cause or the result of the laminar cracking is unknown.

Both analytical and experimetnal results indicate the presence of excessive tensile stresses
in the Zr02 layer. Modifications to the seal system geometry and/or processing to reduce
or preferably eliminate the tensile stresses in the Zr0 2 layer without jeopardizing the
satisfactory performance of the intermediate layers is considered necessary to achieve
acceptable thermal fatigue performance.

4.4.3 Engine Application Analysis

The performance of the sprayed Zr0 2/CoCrAlY seal system evaluated experimentally in
this program was evaluated analytically in a gas turbine application on the basis of thermal
stresses. A typical first stage high pressure turbine blade tip seal was selected jointly with the
NASA Project Manager for this program. Necessary modifications were made to the bill-of-
material seal segment design to permit application of the sprayed coating system within
current engine clearance specifications. The seal segment configuration analyzed is shown in
Figure 49.

A typical idle to SLTO and return to idle gas path and cooling air thermal and flow cycle
was assumed. Temperature distributions through the seal were calculated using the two-
dimensional finite element thermal analysis program with typical engine film heat transfer
coefficients at steady state and selected times during the transient portions of the cycle.
A two.-dimensional temperature distribution was calculated in the axial plane. This distribu-
tion was assumed to be identical at all axial sections `through the seal segment. Figure 50
shows the temperature profile on the Zr0 2 and substrate surfaces of the seal segment at the
hottest spot.

3

Thermal stresses were calculated in the axial and circumferential directions using the plane
stress finite element elastic analysis program. The circumferential section through the hot
spot was selected, for analysis since maximum thermal gradients are experienced through this
plane and, therefore, maximum.thermal stresses would be expected. Stresses were calculated
at steady state idle and SLTO conditions and at 6 second accel and 12 second decel transient
points where the maximum and minimum total thermal gradients occured, respectively.

Results were similar to the results obtained for the thermal fati gue test specimen except that
the Zr02 layer stresses were higher and the difference between axial and circumferential
stresses were not as pronounced. The critical stress conditions occurred at the 12 second
decel point.' Figures 51 through 53 show calculated temperature and maximum principal
stress distributions in the engine seal segment at the 12 second decel point.
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Thermal fatigue cracking similar to that experienced by the thermal fatigue test specimens
would be predicted for this sprayed Zr0 2/CoCrAlY seal system in a typical gas turbine
engine application based on the results of these analyses.

4.5	 CYCLIC CRACK PROPAGATION STUDY
i

Experience under this program and other related programs indicates that improved thermal
fatigue resistance is required for high temperature ceramic blade tip seal systems to perform
satisfactorily in gas turbine engine applications. Two possible approaches toward improving	 ^.
the thermal fatigue resistance of the sprayed graded layered Y 203 stabilized Zr02/CoCrAlY
seal system are modification of the seal materials to inhibit crack initiation and growth and/or
geometric optimization of the seal configuration to minimize thermal stresses.

The current thermal/structural analyses techniques used by P&WA have demonstrated the
capability of predicting the possibility of failure in graded ceramic seals systems during the
first few thermal cycles of their life until cracking initiates. However, no reliable method of
projecting long-term life exists. A study to evaluate the application of cyclic crack propagation
theory in flawed structures to the sprayed Zr02/CoCrAIY seal system and to identify struc-
tural improvements to the seal system to provide increased thermal cracking resistance was
performed.

4.5.1	 Literature Survey

An extensive literature search and review of past investigators' work to assess the state-of-
the-art of crack initiation and propagation in brittle materials and possible application of
current theory to the sprayed Zr0 2/CoCrAlY seal system was performed. Twenty-eight
articles, References 6 to 33, were reviewed.

Fracture in ceramics does not involve 	 simple extrapolation of the techniques found useful
in determining the lives of most metals. Ceramics are brittle, which means they do not
exhibit plastic behavior; in particular they do not exhibit strain hardening. In both ductile
and brittle materials, failura initiates from the largest flaw since stress concentration in-
creases with flaw size. In ductile materials a large number of flaws participate in the failure
due to strain hardening occurring at the crack tips, forcing further loading to be taken up
by the next largest flaw, therefore, it is the average of these flaws rather than the size of the
largest flaw which controls failure. In ceramic materials, the largest initial flaw propagates
unstably and, in theory, secondary flaws have no effect. This has the unfortunate consequence
that strength becomes a function of size as well as material. properties since the probability
of encountering a flaw of critical length increases with specimen size. Conversely, the
statistical variance of strength in a ceramic specimen of a given size is extremely high.

M1

The lack of strain hardening also complicates fatigue analysis. No one has postulated a
mechanism such as the theory upon which the Goodman/Soderberg S-N curves are based 	 -'
(which depend only on mean stress, stress range, and material strength) for brittle materials.

a:
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Strong arguments have been made that, in the absence of plastic flow, such a mechanism is
improbable. Thus, the only avenue apparently open for fatigue investigations in brittle
materials is the most basic — the determination of the growth characteristics of individual
cracks.

Stable crack propagation mechanisms that depend on static, rather than cyclic, stress fields
have been proposed by several investigators (References 6, 7, 8, 16 and 17). These depend
on thermally induced processes such as grain boundary sliding, diffusion, and grain boundary
dissolution. Although the latter can be significant even at room temperature in materials
with large amounts of silica at the grain boundaries (which is not the case with the sprayed
Zr02 materials), as a rule none of these processes is active at temperatures where the ceramic
still retains a sizeable portion of its room temperature strength. Therefore, none of these
mechanisms is expected to apply to the materials in the sprayed Zr0 2/CoCrAlY seal system
in the temperature range of interest to this program.

Nevertheless, mechanically induced crack propagation is still believed to be a controlling
factor in sprayed ceramic seal cyclic failure. Three plausible mechanisms were identified:

1. Static fracture during the first cycle due to local stresses exceeding the strength
of the seal material at that point,

2. A quasistatic fracture which occurs in the same manner as the first mechanism,
but has the additional driving force of material shrinkage or growth with time,
and

3. Progressive crack interaction, which is considered the most likely, in which cracks
that form and stabilize in one part of the thermal cycle act during later portions
of the cycle to redistribute stresses around other cracks which would have been	 3
otherwise stable. These latter cracks can then act in a reciprocal manner to
encourage further growth of the first cracks or to precipitate additional cracks
during the next thermal cycle. This process would continue in a stepwise manner
until enough cracks join together to cause material spalladon. An interesting
aspect of this mechanism is that it requires a stress field which varies in a complex
manner with time so that cracks in various directions and locations are encouraged
to propagate at different parts of the cycle. A four-point bend specimen would

is never exhibit such a mechanism, but a thermally cycled seal certainly could.
i

4.5.2 Analytical Application of Theory

Cyclic temperature and thermal stress fields in an uncracked sprayed Zr02/CoCrAIY engine
seal were defined through the use of the two-dimensional finite element analyses described
earlier. Areas of stress approaching or exceeding the material strength at one or more thermal
cycle points were singled out and broken up more finely. Cracks were then introduced in
these areas approximately perpendicular to the direction of the maximum principal stress.
The plane stress program was then rerun to evaluate the effect of the cracks on stress

I.
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distribution. It should be noted that in this analysis the introduction of cracks did not
significantly affect the temperature distribution until the advanced stages of crack growth,
at which time crack tip temperatures will decrease somewhat.

Because of restraints in the computer program, the crack tip area could not be simulated
in fine enough detail to obtain the absolute value of crack tip stresses. Therefore, a simple
block geometry with an elemental breakup identical to the seal model in the vicinity of the
crack was modeled and run for several different crack lengths with a uniform applied stress.
Both stiff and flexible edge constraints, simulating internal and edge locations respectively,
were evaluated. Crack tip stress to applied stress ratio ( o tip/' applied) versus crack length
(a) was plotted and compared to theoretical results as shown in Figure 55.

	

a theoretical	 KIT	 a
1/2

v applied	= KIC	 a 
0)

where: KIT	 °applied	 7r a
K	 = Q	 lie	 7r a^	 IC	 applied	 o

ao	 = initial flaw length

i

	

	 As shown in Appendix A, a a KI. Comparison of the computed crack tip stress to the
theoretical stress showed the finite element analysis to be of the right order of magnitude.
Hence, a correction factor could be applied to the more complicated seal system program
results under the assumption that the ratio of the finite element crack tip stress to the stress
intensity factor (KI ` a applied 3-ia), for a given crack length and element breakup in the
vicinity of the crack, is relatively independent of geometry and stress distribution. Favorable
comparison of the corrected crack tip stress at the interface with the theory of Strangman14 	 a

gave encouragement that the assumption was correct:

The simple direct criterion of crack extension with K I >,KIC , originally proposed by
Griffith, as applied by Irwin was used as the criterion for crack extension. The biaxial and
triaxial criteria of SO and Drucker and Rice l o were rejected due to questions raised in the
literature concerning the general applicability of such criteria (References 11 and 12) and
the apparent lack of a mechanism for Mode II, shear stress in the direction of the crack open-
ing (edge sliding) and Mode III, shear stress perpendicular to the direction of the crack open-
ing (tearing), crack extension in brittle materials. It was postulated that since brittle material
failure depends primarily on maximum principal stress, and since shear stresses can be re-
solved into principal stress components, crack propagation in ceramics can be dealt with
using Mode I (membrane stress propendicular to the direction of the crack opening) data.
However, a note of caution is issued here, that in spite of the theoretical justification for
neglecting KII and KIII, the Griffith-Irwin criterion does not automatically control fracture
and requires experimental verification for this application.
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The selected crack extension criterion was applied to the cracks in an iterative manner,
breaking elements ahead of the crack in a direction approximately perpendicular to the
maximum principal stress until the crack tip stress intensity factor (KI) dropped below the
critical stress intensity factor (K IC). The iterative distribution of cyclic stress is shown in
Figures 55 , through 57. For simplicity the values are left in terms of maximum principal
two-dimensional stress rather than stress intensity factor. No loss of information results
since KI a a tip and KIC a au and, hence, the criterion K I > KIC can be replaced by a tip
> all , as shown in Appendix A. Stresses at the crack tip have been corrected per Figure 54;
It was assumed that the strain must exceed the strain to failure to initiate cracking but that
the corrected stress at the crack tip need only exceed the strength of the material to
propagate the crack. The center-to-center crack distribution was estimated to be 2.54 mm
(0.1 in.) using the mud-flat theory developed by P&WA which provides a statistically
consistent redistribution of stresses as cracking proceeds.

Although it is projected that these center cracks will stabilize after the first thermal cycle
rather than lead to immediate material spallation, it is believed that they will propagate by
the progressive crack interaction mechanism introduced earlier. Although no datais
available to allow quantitative predictions, the propensity for crack propagation by the
mechanism depends on the probability or nucleating cracks other than those tracked by the
finite element analysis in areas where the stress if fairly high, but below the mean strength
of the material. The probability of nucleating cracks in most ceramics fits the empirical
relation proposed by Weibull and modified, by McClintockl3:

3

1

3

p = 1-ex

(S1-SO'

(So S)

p
	 = probability of nucleating a crack at a given grain boundary or within a

given grain.

SI
in	 a positive empirical constant, normally between 3 and 10

stress level imposed on the crack tip

an empirical constant similar to S e (endurance limit) in S-N theorySL
So = an empirical constant, approximately equal to the matenal s mean

strength

Where: X

For in 3 and SL - O (common values for ceramics), this means there is still a 35%
probability of nucleating cracks at a grain boundary even if the stresses only 75% of the
mean 'strength. Therefore, since several grain boundaries are within the sphere of influence
of a propagating crack at any given time, the probability of cracks cyclically propagating 	 a
by progressive crack interaction for a ;:t^ 0.75 ¢u is high. The stresses shown in Figure 51
are of roughly this magnitude, and crack propagation can be expected to occur rather
quickly.

Experimental evidence as shown in the picture of the thermal shock specimen in Figures 18
through 20 qualitatively verifies the results of the analysis. One or several cracks form in the 	 -
central portion of the seal, extend to the interface, and are then forced to turn, branch, or

30



stop by the higher strength of the intermediate layer and the changing direction of the
principal stresses. Once the cracks are turned so they run parallel to the interface, the direc-
tion of the maximum principal stress and the high strength of the intermediate layer work
together to keep them parallel. Somet of these cracks propagate rapidly and some don't
depending on the flaw density in their vicinity, which will influence the probability of
secondary crack nucleation as discussed earlier.

Edge crack stresses are seen to be lower than center crack stresses, and the probability of
crack initiation and propagation is therefore less. Edge stresses can be effectively increased
by as much as a factor of four by edge discontinuities as shown in Figure 58, but even this
would not be expected to cause edge failure in the average seal with this configuration. If
edge cracks do occur, analysis shows them to be stable, i.e., the tips propagate to regions
of low stress and then stop.

4.5.3 Methods of Increasing Cyclic Life

The benefits of strain hardening less statistical variation of strength, high strain-to-failure,
and stable crack propagation — can be artifically introduced into ceramics by a dispersion
of non-homogeneties such as second phase particles, pores, and microcracks. These inter-
ruptions in the continuity of the matrix act to lower the stress concentration at the tip of
a crack by blunting it or by absorbing crack strain energy through elastic deformation of the
material ahead of the tip. On the negative side, non-homogeneities also provide new crack
initiation sites and generally lower KIC and au. However, for constant deformation prob-
lems such as occur in thermal stress, this is not a serious liability since the increased strain-
to-failure (e f) means a lower effective modulus and hence lower KI for a given thermal field.
Proper choice of the size, shape, and distribution of the nonho:nogeneities can be expected
to significantly decrease KI/KIC inspite of a lower KIC value.

Lange 15 proposed a widely accepted criteria for 'cracks forming around and tangent to the
surface of second phase particles. The particles separate from the matrix and/or form micro
cracks in their vicinity when

i

(a +Qa)2 R > C

Where: a applied stress
v a = particle/matrix mismatch thermal stress created during cooldown from
fabrication

R = particle radius
C = unknown constant function of the particle shape and particle/matrix phy-
sical properties

l
Once matrix separation occurs, the hole encompassing the particle can be expected to behave
much like a pore. This is generally good if a crack was already present, since the stress concen-
tration function g (a) in the equation KI = a x g(a) is approximately equal to .,/7a fora
through-crack in an infinite plate, while it is significantly lower than this for a pore. However,
if a crack was not already present, then creating a pore is harmful since a stress concentration
site now exists where there was none before. A similar competition between phenomena must

l
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be considered when establishing particle shape. Spherical particles produce pores with the
lowest stress concentration and, for most applications, would absorb incoming cracks the best
and lower KIC the least. However, in more punishing applications, the stress concentration
may still not be low enough to prevent crack propagation, and the mechanism of preventing
failure must shift from halting cracks to mechanically holding together the cracked sections
of the part. This may be accomplished by incorporating long fibers, hollow semi-spheres, or
thistle-shaped particles.

Quantitative analysis to determine optimum particle parameters is prevented by our lack
of knowledge concerning the factor C in Lange's equation. We can, however, set forth an
efficient analytical/experimental procedure to optimize the incorporation of particles to
inhibit crack propagation.

1. Initially use spherical particles since they are the most easily understood.

2. To prevent a decrease in KIC, choose particle radius R such that g (R)
Sao.

3. Choose particle a such that Qa R> C so that beneficial microcracks are
formed which make the matrix more compliant. This will require trial and error,

4. Choose particle E > Ematrix and Qµ > Qµ matrix so that cracks will tend to
stop at a particle or form a pore around it rather than go through it.

5. Initially space particle centers two diameters apart, at which distance their
crack stress fields will not interact extensively (St. Venant's principle), slowing
progressive crack interaction, and yet the particles are close enough to work
together to stop wide crack fronts.

6. Test the resulting microstructure under the thennal stress field expected in
service. If microcracks initiate at the particles, make them smaller. If wide crack
fronts propagate easily past the particles, make them closer together. If cracks
appear to propagate rapidly by progressive crack interaction due to cracks
initiated by the particles, make them further apart. If uisufficient microcracks form
during fabrication, make a and Epart larger. If cracks propagate through particles
rather than around them, make a particle higher.

7. If design iterations based oil 	 6 fail to sufficiently slow crack propagation,
try the odd-shaped particles mentioned earlier, using the same criteria for
particle size, distribution, and properties given for spherical particles, except
choosing a part - a matrix and Epart Ematrix to maintain as much matrix/
particle continuity as possible.

Pores 19 may be used in the same manner as second phase particles to impede crack growth,
and the same tradeoffs apply. Pores have an advantage over second phase particles in that

	

they lower effective modulus to a larger extent and hence the matrix is more compliant 	 3
a

i

1
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at the crack tip and less likely to propagate cracks. However, pores do not provide a mechan-
ism for the formation of beneficial microcracks. More importantly, the shape of a pore is much
more difficult to control than that of a second phase particle, and hence they are not as
effective in lowering stress intensity at a crack tip, which prefers a crack inhibitor to be
perfectly spherical. Odd-shaped pores cannot act, as odd-shaped particles do, to mechanically
hold the matrix together, and in fact may actually aid crack propagation by providing an
automatic extension for cracks that reach them while maintaining or even increasing the
stress concentration function of the crack, g(a). In short, pores are better than no nonhomo-
geneities at all, but are a poor choice compared to second phase particles unless they are
desired for other characteristics such as increased seal abradability.

Microcracks have been mentioned as beneficial because they substantially increase the matrix
compliance ahead of a propagating- crack (References 20 through 24.) By increasing the
surface energy associated with crack extension, they allow the strain energy at the tip of
the crack to be dissipated at such a high rate that crack extension becomes energetically
unsupported. However, microcracks can act as macrocrack nucleation sites if they are too
large or too close together. Hasselman also points out that they may be initially unstable
under thermal stress unless their lengths at the end of fabrication satisfy the criterion (for
plane stress):

1 m > (6 7r N)—V2

Where:	 l. n1	 the crack length at the end of fabrication

N 	 the number of cracks per unit area in the plane of non-zero stress

To maintain as high a value of K I as possible, such instability should be avoided if possible by
making microcracks just large enough to satisfy the criterion. Thermal shock, ultrasonics,
and second phase particles are some of the mechanisms used to create or extend microcracks.
N is not generally a parameter available for optimization, but, according to Reference 21, is
a function of material properties only and hence something that must be accepted and worked
around.

F

Claussen (Reference 25) suggested using dispersed monoclinic Zr02 as a microcrack
generator, and reported significant success. The monoclinic Zr02 undergoes a phase trans-
formation and accompanying shrinkage upon cooldown from fabrication and creates finely
dispersed microcracks within the Zr02 second phase particles. However, it is questionable
whether this is an ideal method of generating microcracks since it is desirable to nucleate
such cracks within the matrix as well as within the second phase Zr02 particles: A fine
enough dispersion of the particles may minimize this negative aspect of the technique.

Development of the plasma spray application techniques to fabricate the structural improve-
ments discussed would require an iterative approach and would be costly. Achieving controlled

F

	

	 nonhomogeneities (i.e., controlled size, shape and distribution) in a plasma sprayed structure
would be very difficult. Addition of second phase particles to the matrix material powders
is feasible, but as-deposited shape and distribution may prove to be highly variable, especially
if the size and; or density of the second phase particles are significantly different from the
matrix material.

i
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It should be noted -,,- g at the model which was used to establish structural characteristics to
inhibit crack initiation and propagation has been proposed but is not yet substantiated. The
model should be substantiated before proceeding with the relatively costly effort to produce
the configuration defined to improve the crack inhibiting capability.

An approach combining experimental and analytical methods is required to substantiate the
model. A number of sub-scale seal specimens would be subjected to closely controlled,
repeatable simulated engine thermal cycles. At predetermined intervals, selected specimens
would be withdrawn from the test for sectioning and analysis to determine the extent of
any damage. Accompanying structural analysis would be used to determine the changes in
the stress field due to the frequence of both major and minor cracks and any possible
plasticity. Results would be correlated with the model and appropriate modifications and/or

{	 new theories of damage mechanisms would be postulated.
I

To support the analysis, measurement of the room temperature stress state of the seal
system, both as fabricated and after the first thermal cycle, would be necessary. In addition
more complete thermal/mechanical properties would be required to permit more accurate
modeling. These would include thermal expansion coefficients to higher temperatures,
modulus of elasticity and ultimate strength at intermediate as well as end points, Poisson's
ratio, and creep properties at operating temperatures.

As a final note on the enhancement of cyclic life, it should be pointed out that, although
nonhomogeneities when properly used can be very effective crack inhibitors, the straight-
forward concept of making the stress field at the crack tip compressive through in-process
prestressing is believed to be the most powerful method of decreasing the sensitivity of
a component to fatigue. This technique has been used with success for years by the pressure 	 !
vessel industry, among others, and provides the extra bonus in dealing with ceramics of
taking advantage of their high compressive/tensile strength ratio (^- 8). This should be
utilized to the fullest possible extent before experimentation with microstructural optimiza-
tion begins.

Since process modifications, such as preheating or prestressing the metal substrate or post
fabrication heat treatment, to generate compressive residual stresses in the as-fabricated
system are fairly straight forward and relatively low risk, this approach should be given
priority over the higher risk 'approaches of microstructural modifications.

4.6 GEOMETRIC OPTIMIZATION OF THE LAYER STRUCTURE

Optimization of the seal system geometry is one method of improving the thermal fatigue
resistance of the sprayed Zr02/CoCrAlY seal system. Since geometric optimization will
not affect the properties of the ceramic it can be accomplished without affecting abradability
or erosion characteristics. Many factors, including seal size and shape, sprayed material layer
thicknesses and properties, externally applied loads, and method of supporting the seal,

i	 will dictate the optimum configuration for a particular application. Obviously, the iterative
experimental approach to arrive at an optimum seal configuration would be both time

i consuming and expensive due to the large number of variables involved. Therefore, once
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I	 again, the most cost and time effective approach is to optimize the seal configuration
analytically and verify the analytical results by selected experimental testing.

a

The optimization study conducted under this program determined a configuration which
would minimize thermal stresses in the thermal fatigue test specimen by using materials
of the baseline sprayed Zr02/CoCrAIY seal system but varying thicknesses of the sprayed
material layers and the -metal substrate. The optimized configuration defined was then
fabricated and rig tested to evaluate abradability, erosion and thermal fatigue characteristics.
Abradability and erosion tests were conducted primarily to obtain data with regard to
performance repeatability. Selected specimens were sectioned and metallographically analyzed
to verify the configuration and microstructure of the seal system and identify initiation
sites and evaluate the extent of thermal fatigue cracking.

4.6.1 Analysis

The thermal cycle and "hot spot" film heat transfer coefficients used for the engine seal
segment analysis discussed earlier was used to compute the temperature distribution in the
seal specimen for each of the configurations evaluated. A one -dimensional temperature
distribution through the specimen was assumed as done for the analysis of the thermal fatigue
test specimen.

Thermal stresses for twelve different seal configurations shown in Table X were evaluated.
Prior analyses of the baseline ( thermal fatigue test specimen) configuration and engine seal
configuration had indicated that maximum stresses in the Zr02 layer occur at the center
of the specimen in the circumferential direction during the point in the decel portion of
the thermal cycle when the thermal gradient was minimum. For this reason it was assumed
that an analysis of the 12 second decel point in the circumferential plane only would be
sufficient for the optimization study.

The results of these analyses are summarized in Table XI. Figure 59 identifies the location
of the temperatures and stresses shown in Table XI. Each individual sprayed material layer
and substrate thickness was arbitrarily varied independently in configurations 1 through 5
while the remaining layers were maintained identical to the baseline configuration. Com-
bining these results with the baseline configuration results permitted evaluating the effect
of thickness changes to each individual layer on stress distribution in the circumferential
plane through the seal system.

Configuration b was selected on the basis of preliminary calculations which indicated approxi-
mately equal average thermal growths of each layer and the substrate at SLTO.

Analysis ofthe results from configurations 1 through 6 indicated stresses would be
minimized by increasing the Zr02 layer thickness and reducing the 70/30 and 40160 Zr02/
CoCrAIY layers and the substrate. The results of the analyses are not necessarily contrary
to results of metallography described in Section 4.2.3 which showed that the specimen with
the thinner ceramic layer performed better in thermal fatigue testing. The difference in
thermal fatigue test results could have been attributable to the described microstructural
differences rather than the ceramic layer thickness variation.
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The thickness shown in configuration 8 were selected for evaluation. However, concern over
the effect of reduced substrate thickness on thermal deflection also led to the analysis of
configuration 7 with the baseline substrate thicknesses.

As predicted, the 12 second decel stresses in configuration 8 were significantly lower than
any of the previously analyzed configurations. The thermal deflection of configuration 8
was slightly greater than configuration 7, but, surprisingly, both configurations 7 and 8 had
significantly less thermal deflection than the baseline configuration. Therefore, configuration
8 was initially selected as the optimized configuration and thermal stresses at the other
thermal cycle points were computed. As shown in Table XI, this revealed that the maximum
Zr02 layer stress for this configuration would occur at the Zr02 layer interface with the
intermediate layer at SLTO.

Configurations 9 and 10 were then analyzed at both 12 second decel and SLTO to further
evaluate the effects of coating layer and substrate thickness variations on stress distributions
at both cycle points. Analysis of these results indicated configuration 12 should result in
approximately equal maximum thermal stresses at the surface and interface of the Zr02
layer during the thermal cycle. However, the effect of substituting additional 40/60 Zr02/
CoCrAIY layer thickness for the 70/30 Zr02/CoCrAlY layer was not clear and there was a
fabrication processing and reduced cost advantage to reducing the number of layers in the
sprayed coating. Therefore, configuration 11 was also analyzed.

Review of the data indicated the expected results for configuration 12. Configuration 11
surface stresses were slightly lower than configuration 12 while the interface stresses were
slightly higher. After consideration of the processing and cost advantages, configuration 11
was selected with the approval of the NASA Project Manager for fabrication for verification
testing. The analysis demonstrated that the Zr02 layer and metal substrate thicknesses
were geometry parameters which effected the Zr02 layer stresses the most.

4.6.2 Verification Tests

Abradability and erosion specimens were fabricated to configuration I I specifications using
the same plasma spray parameters, techniques and equipment employed for fabrication- of
the baseline Zr02/CoCrA1Y seal system. (Because of manufacturing process control
variations in the ZrO2 layerthickness actually obtained was greater than targeted).

Abradability and erosion rig tests were run using the same rigs and test procedures employed
for earlier testing of the baseline system. Test conditions and results are listed in Tables 	 j
X1I and XIIL The volume wear ratio was slightly lower and erosion rate slightly higher
than exhibited by the baseline system tested at the same conditions, indicating slightly
better abradability and slightly poorer erosion resistance. It is interesting to note that these
results correlate with the hardness measurements. The specimens of the optimized configura-
tion were softer on the Rs45Y scale than the baseline specimens.

There was a large difference in hardness between the abradability (70,3) and the erosion
(45.6) specimens. Both specimens were sprayed in the same ring at the same time and there
was no visual evidence of defects such as laminar cracking that might account for this
difference.
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The erosion specimen delaminated at the Zr02 layer interface with the intermediate layer,
Figure 60, after the second five minute exposure period. Inspection of the fracture surfaces
raises questions regarding the soundness of the interlayer bond since the fracture occurred
cleanly at the interface except for a few spots of pullout in the Zr02 layer. Further investi-
gation of the interlayer bond strength should be pursued since the laminar cracking in this
vicinity which also resulted from thermal fatigue testing could be attributable to a low bond
strength.

Another condition of interest exhibited by the erosion specimen was the extent of thermal
cracking. As shown in Figure 61, fairly extensive thermal cracking occurred on the specimen
surface but only one crack propagated through the Zr02 layer.

Two abradability specimens were thermal fatigue tested using the same thermal cycle used
for baseline system tests. Test results are summarized in Table XIV. Both specimens survived
100 thermal cycles without failure but did develop radial and laminar cracks as shown in
Figures 61 and 62. Radial cracks initiated in the first few cycles but did not appear to widen.
to the same extent as in the baseline system specimens. Laminar cracks could not be detected
until removal of the specimen from the holding fixture at completion of the test, therefore,
the time of initiation is unknown. The extent of laminar cracking on the second specimen
tested was greater than on the first as may be seen by comparison of Figures 61 and 62.

One specimen, No. 6, was sectioned in the axial and circumferential directions and metallo-
I

	

	 graphically examined to determine the extent of thermal cracking and to identify crack
initiation sites or conditions which may have contributed to thermal cracking. As shown in
Figures 63 and 64, radial cracks initiated at the Zr02 surface in the central portion of the
specimen and propagated only partially through the Zr02 layer. Laniinar cracks initiated at
the edge in the overspray or pyramid area of the Zr02 layer and propagated a short distance
along the Zr02 layer interface. These results were very encouraging in that, for the first
time, the evidence indicates that radial cracks can be arrested in the Zr02 layer by design of 	 l
the seal system and that laminar cracks may not be extensions of the radial cracks. Analysis
of pyramiding effects on thermal stress distributions in a related program using estimated
material properties indicate that pyramiding of the spray material can increase radial
stresses at the edges by an order of magnitude or more. This could be the cause of the laminar
cracking:

In addition to the thermal fatigue specimens an as-sprayed erosion specimen was also metallo-
graphically evaluated, primarily to determine the actual sprayed thickness in comparison with
the targeted configuration. Metallurgical evaluation of both specimens indicated average thick-
nesses of the 40/60 and 85/15 Zr02/CoCrAlY layers were very close to the 0.762 mm
(0.030 in.) target and that variation in the thickness in both the axial and circumferential
directions was relatively small However, average thickness of the Zr02 layer was greater than
the 2.286 mm (0.090 in.) target. The minimum to maximum thickness in the axial direction
was relatively large, 2.616 mm (0.103 in.) to 3.302 mm (0.130 in.). Thickness measurements
for the erosion and thermal fatigue tested abradability specimens are summarized in Tables
XII and XIII, respectively.
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Porosity and metal volume fractions of each layer were determined for the as-sprayed
erosion specimen by the point count method. Results, summarized in Table XIV, are in good
agreement with values obtained on the baseline configuration thermal fatigue tested specimens
shown in Table VII except the metal volume of the 85/15 Zr02/CoCrAIY layer which is
almost double earlier values.

Microstructural comparison of the optimized specimen with the earlier baseline specimens
fabricated under this contract and NAS3-18565 indicated the Zr02 layer was similar to the
NAS3-18565 specimen, i.e., large Zr02 agglomerate and pores. Other layers appeared
similar to all previous specimens. Figure 65 shows typical microstructure of each layer for the
thermal fatigue tested specimen. It is also typical for the erosion specimen.

4.6.3 Conclusions and Recommendations

Analytical results indicate that the maximum thermal stresses can be reduced by approxi-
mately 40% in the Zr02 layer by layer thickness_ optimization with the constraint of using
the materials used in the baseline sprayed Zr02/CoCrAIY seal system. Further stress reduc-
tion may be possible through modification of the thermal/mechanical properties of the
intermediate layers and/or substrate by changing Zr02 and CoCrAIY ratios and/or changing
the metallic constituent in the Zr02/metal layers or the substrate. It is doubtful, however,

!	 that sufficient thermal stress reduction could be achieved through this optimization effort

f to eliminate the possibility of tensile stress cracking. But, any gain in this direction, especially
if it significantly reduces the total cyclic stress range, should greatly enhance the probability
of success when combined with other methods of inhibiting crack initiation and propagation

i such as manufacturing techniques discussed earlier.

The thermal stress analysis was compared with the results of thermal fatigue testing. The
geometry of the fabricated specimen, because of the need for improved spray process

{

	

	 control, compared more closely to configuration 8. For that reason, the stresses for
configuration 8 were considered. As shown in Table XI the maximum stress, considering
two dimensional stresses in the circumferential plane, occurred in the Zr02 at the
intermediate layer interface. Test results showed radial cracks originated at the surface. The
difference in location of cracking and the maximum stress could have resulted from the
simplifying assumption used in the analysis. Interaction of residual stresses, the added effect
of axial stresses, as well as circumferential and axial variations in thickness and surface
temperature distribution could have contributed to a change in location of maximum stress.

Initiation of laminar cracking resulting from thermal fatigue testing was not predicted by
the analysis performed. It is possible that modification of the configuration analyzed to

!

	

	 include pyramiding at the edge would have predicted the laminar cracking. Elimination of
the pyramiding by grinding back the specimen edges prior to testing is recommended for all
future tests to eliminate the effects of spray material pyramiding.

Thickness variations had very little effect on the seal system surface temperatures for the
same boundary conditions in the hot gas and cooling air. Internal temperatures, however, are
significantly affected, especially by the Zr02 layer thickness. The plasma spray fabrication
process requires further evaluation and refinement to define and control the causes of
hardness and microstructural variations noted and to obtain better uniformity and control
of layer thickness.

i
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TABLE I

SINGLE BLADE/MULTI BLADE COMPARISON

RIG TEST CONFIGURATION

Typical Commercial
Modeling Considerations Single Blade	 12 Blade Engine (Est.)

Blade Tip Circumference (C) 65.5 cm (25.8 in.) 	 65.5 cm (25.8 in.) 304.8 cm (120 in.)

Number Blades (n) 1	 12 80 active blades*

Blade Tip Spacing (C/n) 65.5 cm (25.8 in.) 	 5.6 cm (2.2 in.) 3.8 cm (1.5 in.)

Blade Tip Velocity (V) 304.8 m/s (1000 fps)	 304.8 m/s (1000 fps) 365.8 m/s (1200 fps)

RPM (N) 26700	 26700 7500

Blade Pass Frequency 467 cps	 5600 cps 9600 cps
(bpf = 12nV

C

Mech. Feed Rate (v) 0.0025 mm/s	 0.152 mm/s 0.254 mm/s
(0.0001 in/sec)	 (0.006 in/sec) (0.010 in/sec)

Theoretical Chip Thickness 5.463 x 10' 8 m/s	 2.718 x 10'8 _m/s 2.642 x 10' 8 m/s
(d = v/bpf) (2.14 x 10'6 in.)	 (1.07 x 10'6 in.) (1,04 x 10'6 in.)

Seal Rub Length (L) 2.54 cm (1 in.)	 2.54 cm (1 in.) 50.8 cm (20 in.)

Blade Thickness (1)- 0.3175 cm	 0.3175 cm 0.508 cm
(0.125 in.)	 (0.125 in) (0.2 in.)

Total Blade Thickness (nl) 0.3175 cm	 0.3175 cm 40.64 cm
(0.125 in.)	 (1.5 in.) (16 in.)

L/nl 8	 .67 1.25

*60 of total no blades.

TABLE II

ABRADABILITY TEST SCHEDULE

Test Conditions

Temp	 Tip Speed	 Incursion Rate- Baseline	 Modified
° K	 (° F)	 m/s (ft/sec)	 mm/s	 (in/sec) System	 System

1366	 (2000)	 304.8 1000	 0.0254	 (0.001) x
1589	 (2400)	 304.8 1000	 0.0254	 (0.001) x	 xs;

f	 1589	 (2400	 304.8 1000	 0.254	 (0.010) x
-1589	 (2400)	 304.8

:.
1000	 0.00254	 (0.0001) x	 x

I
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! F ^	 ABRADABILITY TEST DATA SUMMARY

6LIDEMATERIAL: B-1900

	

S4 3 	 Post Testlnforn alloys

	

ti	 Test Conditions	 Seal Specimen 	 Illades
Blade	 Bivlc	 Seal Surf 	 Interaction P .tonims	 S.1	 Actual Surf, 	 hl-.Surf.	 Nostril	 Blado

Hardness.	 Tip Dia	 Tp\eloelly	 Tomp,	 Rate	 Depth	 I1 a r,\fax	 Temp•	 Tomp.	 Load, If..	 Wear, Ara.	 Pickup
Test	 ('e	 W	 (incb)	 (fUscc)	 f F)	 6.1.0(inch)	 (nch')	 Transfer	 Rub	 (o)	 1.11	 (Ili)	 (inch)	 first	 (inch)
N. R. 45Y	 Blades	 em.	 °K	 mmis	 mm	 Ira	 To Seal	 Pattern	 K	 K	 N	 mm	 Discoloration	 mm	 Y11•R	 Remarks

Sprayed Graded Y20 1 Stabilized 7.102)CuCrAIY

1	 738	 12 	 18.625)	 . (820)	 (2000)	 (0.001).	 (0.030).	 (0,0128).	 Light	 Continuous	 (1940)	 (3290)	 (6.2)	 (0.0265)	 Negligibl. 	 (-D.331)	 4.57 	 Deep grooxe approx, half blade width with hWeblade

	

`	 21.91	 249.9	 1366	 0.0254	 0,762	 0.3251	 Transfer	 1333	 2083	 2758	 0-6731	 -0.015	 wear. sl ight gr me and so me 3pallso; other half with

	

)`I	 me0dlun	 heavy bide wear. Axial- as in rub path, same

	

tttt	 leading	 propagated to edge. Same thermal cracks ia3uced

	

st	 cdgeat	 dumgsetup. Lower quarter and too corner of
li p	 ceramic layer fractured.

	

ij	 '23	 12	 ( 8.5)	 (1000)	 (2400)	 (0.001)	 (0.030)	 (0.0181)	 Light	 Continuous	 (2440)	 (3245)	 . (10.1)	 (0 .0053)	 Negligible	 (-0.178)	 0 . 3t8	 Axialrracksinollipash . ,tinse pmpaptedtotdge.
21.59	 304.8	 1589.	 0,0254	 0.762	 0.4597	 Transfer	 1611	 2050	 44.93	 0.1346	 -0007	 laminar crack at ceramic layer Interface on

metal on	 one side, Yellowish discoloration along cracks.
leading

	._i.	 side at

;i
lip

1	 727	 12	 (BS)	 (10001	 (2400)	 (0.0001)	 (0.030)	 [0:00651.	 3laderue	 Continuous	 (2430)	 (3050)	 (7.4)	 (0.0242)	 Negligible	 (-0330)	 169	 Axial creeks In rub path. Short laminar crock
21.59	 304.8	 1589	 .0.00254	 0.162	 0.1651	 Transfer	 1605	 1950	 37.92	 0.6147	 ^0.013	 at cemm' layer intertocean onr sine. S-11

y -0.010"	 metal an	 spaOat Fr ee <xdl end.
buildup at	 leading

O
exit end	 idc.t

(^.^s..((

	 tip

F1j N	 6	 12S	 12	 f8.5).	 (1000)	 (2400)	 (0010)	 (0.030)	 None	 11-Y	 Continuous	 (2455)	 (2685)	 (18.0	 (0.0419)	 ))ask Straw. 	 (^0.584)	 Indtter	 Axial crack and one spall in Isander. Short

	

!	 Mme[.	 2159	 3018	 1589	 0.254	 0762	 transfer	 1619	 1747	 8051,	 4.0643	 at tip	 -0023	 mined.	 axial hairlinecracks along one edge Lanor
0023	 metal on	 crack at ecmm:c sayer mterface an lonoodde.

hot P t	 leading	 Top cornet chipped Pretest.
1/9	 xit end	 side

at upY^	
SpnyWGndcd Y203 Stablhzed 2102,CoCr.(IY 11rth lncrnscJ Poroaty

Surface Uycr
s	 3	 688	 12	 (85)	 (1000)	 (2400)	 (0.000	 (0.020)	 (0.0096)	 Light	 Contimuous	 (2440)	 (3260)	 (3.6)	 (0.0023)	 Neglgible	 Slight	 0.354	 Arai a3tks In 14b path, none propagated to edge.
^..(	 21.59	 3048	 1589	 0.0254	 01508	 (12438	 Transfer	 1611	 2066	 MAI	 0.0584	 metal on	 Short lac! cock at cerandebyer interface on

leading	 one side.

	

^	 sideur

	

t	 >1
^
..
.
1sr•. ((	 tip

	

L^	 5- 745	 12	 (8.5).	 (1000)	 (2400).	 (00001)	 (0.020)	 (0.0012)	 Mcderam	 Continuous	 (2435)	 (3105)	 (5 1 5)	 (0.0117)	 Negligible	 (
^

0.356)	 18.4	 Axial rocks in rub path, none propagated to edge.
2159	 3048	 1589	 0.00254	 0308	 01067	 T	 2 Transfer	 1608	 0.980	 24,17	 0.2970314	 Lam ast crack .1 eramielayer interlace unone

0008"	 metal	 side.

	

..1 M+	 buildup at	 on leading
..sit end

	

	 sldeotlip

Sprayed. Graded Y 203 Stabilized
2r021C.CrAtY Optimized COnfig uslion No. 11

7	 703	 12.	 mst	 (1000)	 (2400)	 -(0.001)	 (0.030).	 (0025)	 Moderate	 Continuous	 (2385)	 (>2500)	 (4.0)	 (0.003)	 Negligible	 Slight	 0,098	 Axial and circumferential cracks in rub path propagated
2159	 ..304.8	 1589	 '8.0254	 0.762	 0.635	 Transfer.	 1580	 >1644	 17.79	 0.0762	 metal pre	 to edges Lamlmr sacks at eeramtc layer interGta

leading	 on one side and one end
sidealtip

W



TABLE IV

EROSION TEST SCHEDULE

Test Conditions

Temperature Exposure Impingement Angle Baseline	 Modified
° K (° F) (Min.) RAD	 deg. System	 System	 -A

1366 (2000) 20 0.262	 (15) x	 ..a
1589 (2400) 20 0.262	 (15) x	 x
1589 (2400) 20 1.571	 (90) x

1

i
i

}
i

I

i
^I	 I

t

r
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TABLE V

EROSION TEST DATA SUMMARY

Gas Velocity — 0.35 Mach Particulate:	 Material — Al203
Nozzle to Specimen Distance — 3.81 cm (1.5 in) 	 Size - 80 Grit

Flow — 2.72 kg/hr (6.0 lb/hr.)

Impingement
Surface Backing Angle

Test Temp Temp RAD	 Rs45Y Hardness	 Erosion Rate
No. K(F) K(F) -3(degrees)..	 Avg	 (Range)	 10-3 gm/min	 10	 cc/min

Sprayed Graded Y203 Stabilized Zr02/CoCrAIY

1 1366 811 0.262	 68.2	 (62-72)	 48.4	 9.374
(2000) (1000) (15)

2 ' 1584 905 0.262	 71.0	 (67-74)	 8.5	 1.633
(2400) (1170) (15)

4 1589 889 1.571	 73.7.	 (66-78)	 160.7	 30.869
(2400) (1140) (90)

Sprayed Graded Y203 Stabilized Zr02/CoCrAIY
With Increased Porosity Surface Layer

3 1589 890 0.262	 64.8	 (59-69)	 11.1	 2.132
(2400) (1160) (15)

Sprayed Graded Y203 Stabilized Zr02/CoCrAIY
Optimized Configuration No. 11

5 1589 1089 0.262	 45.6	 (39-62)	 16.5	 3.169
(2400) (1500) (15)

cn

Specific
Erosion	 Max. Thick.	 ^-
(10-4 gm/gm Change

Al203)	 mm(in.)	 Remarks

10.8 0.711
(0.028)

1.87 — Approx. half
ceramic layer
fractured at

15 min.

35.5 2.54 Eroded info inter-
(0.100) mediate ceramic-

metal layers.

2.45 0.305
(0,012)

3.67 — Complete delamina-
tion of ZrO2 layer
interface after

10 min.
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TABLE VI

THERMAL FATIGUE TEST SUMMARY

Config- Test	 Rs45Y --- --
uration ' No.	 Hardness	 Weight Gain Remarks

Avg.	 Range	 gms

1	 74.2	 67-80	 0.0613	 0.082 Surface cracks apparent after 15 cycles. "Mud flat" dimensions approx. 0.9525 cm
(3/8') x 0.9525 cm (3/8") at center of specimen. Laminar cracks at approx. ceramic
layer interface one side and approx. 0.0508 cm (.020") below ceramic layer in
intermediate layers other side near center.

a,
2	 74.0	 67-82	 0.0770	 0.102 Surface crack apparent after 4 cycles. "Mud flat" dimensions vary from approx. 0.635 cm

(1/4") x.9525 cm (3/8') x 0.635 cm (1/2") in center section of specimen. Laminar
cracks approx. 0.0762 cm (.030") below ceramic layer interface in intermediate
layers both sides near center.

d 3	 74.2	 68-79	 0.0089	 0.012 Hairline surface cracks apparent after approximately 50 cycles. "Mud flat" size
approx. 0.4763 (3/16") x 0.635 cm (1 /4")_ Fine laminar cracks both sides in ceramic
layer just above ceramic layer interface. Fabricated under contract NAS 3-18565.

4	 67.8	 53-76	 0.0553	 0A79 Surface cracked into "mud flats" approx. 1.27 cm (1/2") x 1.5875 cm (5/8") to 	 h ----r-
1.905 cm (3/4") x 1.905 cm (3/4") in less than 25 cycles. Brown and grey spots on

CD surface and one end of ceramic layer- cause not known. Laminar cracking at ceramic
C11) interface on thick corner and approx. 0.0762 cm (.030) in intennediate layers on
o thin corner diagonally opposite.

^° 5	 60.6	 46-77	 0.0151	 0.023 Hairline surface "mud flat" cracks approx. 0.635 cm (1/4") x 0.7938 cm (5/16") 	 .. ---
apparent after approximately 50 cycles. Laminar cracks at ceramic interface two sides,
predominate on one side. Fabricated under contract NAS3-18565,

- 6	 -	 -	 0.0723	 0.114 Surface cracked into "mud flats" approx. 0.9525 cm (3/8") x 0.635 cm (1/2") in
Z° center 2/3 of specimen. Laminar cracking at ceramic interface full length of one side

o and one end and approximately 1/3 length along other side and end.

7	 -	 -	 0.0384	 0.060 Surface cracked into "mud flats" approx. 0.9525 cm (3/8") x 0.635 cm (1/2") or
1.905 cm (3/4"). Laminar cracking full length of all sides at ceramic layer interface.

0
U
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TABLE VII

AVERAGE LAYER THICKNESSES
THERMAL FATIGUE SPECIMENS

(Z/M =L'r02/CoCrAIY)

NAS3-18565	 NAS3-19759
(Previous Contract) 	 (Present Contract)

Layer	 Specimen	 Specimen
mm(in)	 mm (in)

Zr02	 1.397 (0.055)	 1.651 (0.065)

85/15 Z/M	 0.787 (0.031)	 0.813 (0.032)	 i

70/30 Z/M , w
	

0.762 (0.030)	 0.991 (0.039)

40/60 Z/M	 0.838 (0.033)	 0.787 (0.031)

1i

TABLE VIII

POROSITY* AND METAL VOLUME FRACTIONS OF
THERMAL FATIGUE SPECIMENS

(DE'T'ERMINED BY POINT COUNT METHOD)

ZrO2	85/15 Z/M	 70/30 Z/M	 40/60 Z/M
Specimen	 Porosity	 Porosity	 Metal	 Porosity	 Metal	 Porosity	 Metal

t

	

	 NAS3-18565	 14	 10	 13	 7	 37	 7	 53
(Previous)
NAS3-19759	 16	 9	 14	 12	 30	 5	 67

E,

*Porosity results obtained by point count method 'have been factored by approximately 2 to approximate
results rendered through density and analysis of similar structures. The reason for the difference between
results of the two methods is unclear. However, pull-out during micropreparation for the metallographic
technique (point count) due to incomplete medium infiltration may be a contributing factor.

f

47
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TABLE IX

AVERAGE MODULII OF RUPTURE AND ELASTICITY
AND STRAIN TO FAILURE TEST RESULTS

Test Modulus Modulus Strain To
Temperature of Rupture of Elasticity Failure

Material °K (°F) 103N/cm2 (103 psi) 103N/cm2	(106 psi) %

40/60 Zr02/CoCrAly 293 (	 68) 22.27	 (32.3) 5.86	 ( 8.5) 0.82
1005 (1350) 10.83	 (15.7) 9.24	 (13.4) 0.39

70/30 Zr02 /CoCrA1Y 293 (	 68) 5.63	 ( 8.16) 3.62	 ( 5.25) 0.43
1061 (1450) 7.03	 (10.2) 4.70	 ( 6.81) 0.47

85/15 Zr02/CoCrAlY 293 (	 68) 4.14	 ( 6.0) 2.54	 ( 3.68) 0.40
1144 (1600) 4.70	 ( 6.82) 1.86	 ( 2.70) 0.34

Zr02 293 (	 68) 2.82	 ( 4.09) 4.69	 ( 6.8) 0.12

is

1589 (2400) 2.24	 ( 3.32) 1.56	 ( 2.26) 0.33

1

i

48
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TABLE X

GEOMETRIC OPTIMIZATION STUDY
CONFIGURATIONS ANALYZED

Zr02 85/15 Z/M	 70/30 Z/M 40/60 Z/M Bond Mar-M-509
Configuration mm (in.) mm (in.)	 mm	 (in.) mm (in.) mm (in.) mm (in.)

Baseline 1.651 (0.065) 0.8128 (0.032)	 0.9906	 (0.039) 0.7874 (0:031) 0.1016 (0.004) 2.54 (0.100)

F	 No.1 1.143 (0.045) 0.8128 (0.032)	 0.9906	 (0.039) 0.7874 (0.031) 0.1016 (0.004) 2.54 (0.100)	 -
No.2 1.651 (0.065) 1.504 (0.060)	 0.9906	 (0.039) 0.7874 (0.031) 0.1016 (0.004) 2.54 (0.100)
No.3 1.651 (0.065) 0.7874 (0.031)	 2.032	 (0.080) 0.7874 (0.031) 0.1016 (0.004) 2.54 (0.100)
No.4 1.651 (0.065) 0.8128 (0.032)	 0.9906	 (0.039) 1.524 (0.060) 0.1016 (0.004) 2.54 (0.100)
No.5 1.651 (0.065) 0.8128 (0.032)	 0.9906	 (0.039) 0.7874 (0.031) 0.1016 (0.004) 3.81 (0.150)
No. 6 2.286 (0.90) 0.762 (0.030)	 0.381	 (0.015) 0.381 (0.015) 0.1016 (0.004) 2.54 (0.100)
No. 7 3.048 (0.120) 0.8128 (0.032)	 - -	 - - 0.381 (0.015) 0.1016 (0.004) 2.54 (0.100)
No. 8 3.048 (0.120) 0.8128 (0.032)	 - -	 - - 0.381 (0.015) 0.1016 (0.004) 1.27 (0.050)
No. 9 2.286 (0.090) 0.8128 (0.032)	 - -	 - - 0.381 (0.015) 0.1016 (0.004) 1.27 (0.050)
No. 10, 2.286 (0.090) 0.762 (0.030)	 0.381	 (0.015) 0.381 (0.015) 0.1016 (0.004) 1.27 (0.050)
No. it 2.286 (0;090) 0.762 (0.030)	 - - -	 _ - 0.8128 (0.030) 0.1016 (0.004) 1.27 (0.050)
No. 12 2.286 (0.090) 0.762 (0.030)	 0.8128	 (0.030) 0.381 (0.015) 0.1016 (0.004) 1.27 (0.050)

k	 Notes:	 1. Z/M = Zr02 - CoCrAlY, preceding numerals indicate weight ratio of constituents in spray powder. I
-	 2.

^

Bond coat is sprayed NiCrAI material and was analyzed as an integral part of the substrate.
I

a
S
i
l
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TABLE XI

GEOMETRIC OPTIMIZATION STUDY
SUMMARY OF RESULTS

NOTE! NEGATIVE NOS. INDICATE COMPRESSIVE STRESSES

Conflg- Thermal	 Max 2-D Circumferential Stress, N/cm2	Temperature, °IC
oration Cycle Point	 all	 0'12	 all	 022	 0'31	 032	 a41	 0'42	 0'51	 0'52	 tl	 t2	 t3	 t4	 is	 1`6	 Remarks

Base-	 12 Sec. Decal 5852	 2490	 -1466	 -924	 -3321	 -559	 1158	 8004	 -5986	 -2504	 953	 1203	 1045	 950	 839	 805	 Temps. in paranthesis
line	 (1573) (1248) (1150) (1044) 	 (962)	 (945)	 are at SLTO for

1	 12 Sec. Decal 6572	 3849	 - 785	 -623	 -2603	 -459	 1194	 8344	 -6599	 2548	 255	 1065	 1038	 951	 847	 810

	

(1568) (1304) (1192) (1068)	 (970)	 (950)	 Configs. l — 7

2	 12 Sec. Decal 6501	 1771	 -2653 -1139	 -3529	 -728	 1114	 8408	 -5929 -1872	 955	 1137	 1052	 948	 834	 803

	

(1575) (1575) (1129)	 (1033)	 (958)	 (943)	 Circ.deflections;
3	 12 See Decal 7295	 2226	 2206	 2155	 6459	 94	 2049	 9666	 3374	 942	 962	 1149	 1127	 401	 837	 805

	

(1576) (1298) (1217) (1031)	 (957)	 (943)	 B/L 0.047 mm
4	 12 Sec. Decal ,7229	 2529 ' 1977 -1660 " -6252 -4387	 -7793	 9934	 -4585	 -1378	 962	 1128	 1099	 1029	 837	 802

	

(1575) (1026) (1194) (1102) 	 (959)	 (944)	 Config.
5	 L2 Sec, Decal 7547	 3610	 - 908	 -414	 -2173	 299	 1768	 8150	 -8777	 -1349	 952	 1099	 1058 '	 971	 871	 788	 8	 0.030 mm

	(1573) ' (1251)	 (1154) (1051)	 (970)	 (945)	 9	 0.024 mm
6	 12 Sec Decal 5091	 3158	 142	 849	 1245	 2713	 4121	 8326	 9239	 3555	 953	 1770	 929	 881	 828	 799

	

(1574) (1140) (1041)	 (999)	 (960)	 (944)
7 '	 12 Sec. Decal 4379	 3729	 665	 2106	 7367	 -7725	 -3167	 962	 983	 874	 821	 794

	

(1578) (1079)	 (986)	 (953)	 (947)

	

12 Sec. Decal 2941	 2502	 221	 1829	 6969	 -5994	 -4205	 962	 963	 843	 784	 770
8	 Idle	 4200	 1768	 1109	 1777	 6115	 3454	 1946	 846	 574	 509	 481	 477

	

6 See.Accel. -11347	 5565	 3196	 3630 <	 10377	 5204	 2784	 1510	 593	 557	 560	 567
SLTO	 -3055	 61.38	 2277	 3592	 11712.	 -7757	 -5703	 1578	 1075	 981	 947	 940

9	
12 Sec. Decal. 3006	 2509	 138	 1675	 6269	 -7509	 -5342	 949	 958	 844	 786	 773
SLTO	 -2541	 5242	 1769 3345	 11477	 =7440	 -5612	 1573	 1108	 995	 953	 945

10	 12 Sec, Decal 3188	 1825	 - 701	 452	 1427	 6410	 -7096	 -4978	 952	 995	 903	 849	 789	 775
SLTO	 -2697	 4459	 889	 2297	 5415	 11484	 -7556	 -5546	 1574	 1133	 1035	 992	 952	 944

	

12 Sec. Decal 3269	 1884	 663	 488	 -165	 6672	 -6840	 -4780	 952	 995	 903	 789	 775
11	 Idle	 -4340	 598	 299	 1006	 3720	 6705	 2527	 1363	 842	 613	 548	 485	 480

	

6 See. Accel. -11386	 3536	 2093 2916	 9665	 10206	 4767	 2524	 1510	 646	 579	 562	 569
SLTO	 -2716	 4437	 869 2282	 5875 11533	 -7654	 -5621	 1574	 1133	 1035	 952	 944

	

12 Sec. Decal. 3545	 1.235	 -1471	 -512	 -1427	 1638	 6878	 -6023	 -4133	 956	 1034	 956	 853	 790	 777
12	

Idle-4169	 327	 61	 576	 1909 2939	 5986	 3104	 1659	 844	 630	 571	 513	 483	 479

	

6 Sec. Accel -11335	 3180	 1790	 2648	 5501	 6123	 10326	 5100	 2668	 1510	 660	 591	 558	 560	 568
SLTO	 -2757	 3690	 67	 1418	 3255 5640	 11680	 -7510	 -5544	 1575	 1160	 1069	 989	 950	 943



TABLE XI (Cont'd)

GEOMETRIC OPTIMIZATION STUDY
SUMMARY OF RESULTS

NOTE: NEGATIVE NOS INDICATE COMPRESSIVE STRESSES

Config- Thermal 	 Max 2-D Circumferential Stress, psi	 Temperature, OF
uration Cycle Point 	 611	 0'12	 621	 022	 031	 032	 041	 042	 051	 052	 t1	 t2	 t3	 t4	 t5 t6	 Remarks

Base-	 12 Sec. Decel 	 8488 3612	 -2126	 -1340	 -4816	 811	 1680 11609	 8681 -3632	 1256	 1505	 1422	 1251	 1051	 989
line	 (2372)	 (1787) (1611) (1420)	 (1271) (1242)	 Temps. in parenthesis ( )

'

	

1	 12 Sec. Decel	 9532 5582	 1139	 1251	 1458	 1409	 1252	 1054	 998903	 3775	 666	 1732 12101	 9570 -3695	 are at SLTO for
(2363) (1888) (1685) (1463)	 (1287)	 (1251)
1268	 1586	 1434	 1246	 1041	 985	 ConGgs. l — 7

2	 12 Sec. Decel	 9428 2569	 -3848	 -1652	 -5118	 -1056	 1615 12194	 8599 -2715	 (2376) (1866) (1573) (1400)	 (1264) (1238)

	

3	 12 Sec. Decel	 10580 -3228	 -3199	 -3125	 -9367	 - 136	 2971 14019 - 4893 -1366 	 1271	 1608	 1569	 1267	 1047	 989
(2377) (1876)	 (1730) (1396)	 (1263) (1237) Circ.deflections;

	

4	 12 Sec. Decel 	 10484 3668	 -2868	 -2408	 -9068	 -6363	 -11302 14408 -6650 -1999	 1271	 1571	 1519	 1393	 1046	 989	 B/L 1.85 x 10'3 in.
(2375) (1846) (1689) (1523)	 (1266) (1239)

	

5	 12 See. Decel	 10945 5235	 1317	 1254	 1519	 1445	 1288	 1108	 958	 Co g.

	

601	 3151	 433	 2564 11820	 12729 -1956 (2372) (1792) (1618) (1432)	 (1286). (1242)	 8 1.18 x 103 in.

	

6	 12 Sec. Decel 	 7383 4580	 - 206	 1231	 1805	 3935	 7427 12075	 -13400 -5156	 1256	 1363	 1213	 1126	 1031	 979	 7 0.96 x 10-3 in.
(2374) (1592) (1414) (1338) 	 (1268) (1239)

	

7	 12 Sec. Decel ' 6351 5408	 965	 3054	 10684	 11204 4593	 1271	 1310	 1113	 1018	 970
(2381) (1482) (1315)	 (1255)	 (1245)

12 Sec. Decel	 4266 3629	 320	 2652	 10107	 8693 -6098	 1272	 1273	 1057	 951	 927

	

8	 Idle	 - 6092 2564	 1609	 2577	 8869	 5009 2823	 1063	 573	 457	 406	 399
6 Sec.Accel. 	 -16457 8071	 4635	 5264	 15050	 7548 4038	 2259	 608	 542	 548	 561
SLTO	 - 4402 8902	 3303	 5209	 16986 -11250 -8271	 2381	 1475	 1306	 1245	 1233

	

9	 12 Sec, Decel. 	 4360 ` 3639 <	 200	 2429	 9092 -10891 -7748	 1248	 1265	 1060	 955	 932
SLTO	 3685 7602	 2566	 4852	 16645 -10791 -8146	 2372	 1535	 1331	 1255	 1242

10	
12 Sec. Decel.	 4623 2647	 -1016	 656	 2069	 9297 -10292 -7220	 1254	 1331	 1166	 1069	 960	 936
SLTO	 3912 6467	 1290	 3331	 7854	 16655 -10958 -8043	 2374	 1580	 1404	 1326	 1253	 1240

[	 12 Sec, Decel. 	 4741 2733	 - 961	 708	 240	 9677 - 9920 -6933	 1254	 1331	 1166	 960	 936

`	 11	 Idle	 6294	 868	 433	 1459	 5395	 9725	 3665 1977	 1056	 643	 527	 413	 405
6 Sec.'Accel. -16514 5129	 3035	 4229	 14017 14802	 6914 3660	 2258	 703	 583	 552	 564

'	 SLTO	 - 3939 6435	 1268	 3310	 8520 16727 -11101 -8153	 2374	 1580	 1404	 1253	 1240
12 Sec. Decel. 	 5141 ` 1791	 -2134	 742	 -2070	 2376	 9976	 8735 -5994	 1261	 1402	 1261	 1076	 963	 938

	

12	 Idle	 6046	 474	 - 89	 835	 2768. 4263	 8682	 4502 2406	 1060	 674	 568	 464	 409	 402
6 Sec. Accel.	 16439 4612	 2596	 3840	 7978	 8881	 14976	 7396 3869 2258	 728	 604	 545	 549	 562
SLTO	 3998 5351	 97	 2057	 4721	 8180	 16940	 10892 -8041	 2376	 1628	 1464	 1320	 1251	 1238
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TABLE XII

OPTIMIZED CONFIGURATION EROSION SPECIMEN MEASURED LAYER THICKNESS

Layer 1 2 3 4 Average
mm (in) mm (in) mm (m) mm (in) mm (in)

Bond Coat 0.1473 (0.0058) 0.1092 (0.0043) 0.1321 (0.0052) 0.0965 (0.0038) 0.1219 (0.0048)
40/60 Zr02/C'oCrA1Y 0.8534 (0.0336) 0.7544 (0.0297) 0.7061 (0.0278) 0.5969 (0.0235) 0.7290 (0.0287)
85/15 Zr02/CoCrAlY_ 0.6325 (0.0249) 0.7544 (0:0297) 0.7315 (0.0288) 0.6325 (0.0249) 0.6883 (0.0271)
Zr02 3.3071 (0:1302) 3.2101 (0.1264) 3.0277 (0.1192) 2.6111 (0.1028) 3.0404 (0.1197)
Total 4.9403 (0.1945) 4.8285 (0.1901) 4.5974 (0.1810) 3.937 (0.1550) 4.5771 (0.1802)
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1

TABLE XIV

*POROSITY(%) AND METAL CONTENT (V/OM) OF COMPOSITE LAYERS DETERMINED
BY A POINT COUNT METHOD FOR AS-SPRAYED OPTIMIZED CONFIGURATION

Layer

Metco 202NS	 85/15 ZrO2/CoCrAlY 40/60 ZrO2/CoCrAIY

% Porosity	 % Porosity	 v/oM % Porosity	 v/oM	 r

15	 9	 23	 5	 61

*The porosity results obtained by point count have been factored by 2 to approxhnate results
rendered through density analysis of similar structures. While the reason for the difference in	

1

results of the two methods is unclear, pull-out during micropreparation for the point count
procedure due to incomplete medium infiltration may be a factor.

I

f((
I

1i

1

1
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DESIGN
MATERIAL
	

THICKNESS
MM IIN.%

YSZ
	

1.65111.397

10 065!0.0551
0 8
^^

NOTES:
	 85/15 YSZ/CoCrALY	 (0 035i0.025)

0889/0.635
• NUMERALS INDICATE

	
70/30 YSZ/CoCrALY	 (0 035/0-025)

SPRAY POWDER WEIGHT 	 0889/0635
PERCENT YSZ& CoCrALY

	
40/60 YSZ/CoCrALY	 10 035/0.025)

NICrAI
	

0 12 7/0,0767
YSZ • Y 20 3 STABILIZED	 10 005!0.0031

Zr02 1 1 9% YTTRIA)

Mar-M 509	 2.79412.286
(0.110/0.090)

Figure I	 Plasma Sprayed Graded Layered Y')03 Stabilized Zr021C60AIY Seal System

"/ V

Note: Near side heating torcli not shown.

Figure 2 ffigh Temperature AbradabilitY Test Rig
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Note: Leading face of blades shown.

Figure 4 Abnormal Blade Tip Wear (A brada bility Test No. 1)

Rub Direction

Note: Spallation at lower end and upper corner due to thermal shocking while setting test
conditions. Excessive windage necessitated approx. 8 heating and cooling cycles
before achieving test conditions.

Figure 5	 Test Specimen (Abradability Test No. 1)

ORIGINAL PAGE 19	
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At

Ail

0--, -A
- 0

Figure 6	 Axial Cracks in Ruh Path, (Abradahi1ii .v T(,st.,Vo. 3)
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Di rection of travel

8 7
,.

.W ,Im

lu	 11	 12

Direction of travel

Figure 7	 Metal Pickup on Leading Side of Blades, (Abradability
Test No. 6)

Rub direction

Figure 8	 Metal Deposits on Seal Specimen Downstream of Rubbed
Area, (Abra(lability Test.No. h)
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500 X	 A

100X	 B

i
I
I

Observation direction

Densification observed along length
of rub path

Crack origin appears to be at surface

Rub direction

M sy ^+ ^log  '

Of

t4 	 ^
F	 ..

Densification observed at surface
of ruh path .002-.004 in.

Deposit (transfer) remnants also
observed at surface approx.
.00024 in. thick

Rub direction	 ---►
Observation direction — - - - -.

Figure 9	 Metal Transfer and Seal Densification in Rub Path, (AbradabilitY
Specimen No. 3)
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do- j

. 1	 .1w,

Figure 10 Tvpical Cracks in Circumferential Section, (Abradability Test No. 3)
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IMM

Figure 11 Hot Particulate Erosion Rik

Figure 12 Erosion Test Specimen
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T

TEST CONDITIONS:

SURFACE TEMP. - AS NOTED	 TEST DURATION -- 20 MIN.

IMPINGEMENT ANGLE - AS NOTED	 GAS VELOCITY - 0.35 MACH.

PARTICULATE - NO. 80 GRIT Al 203	NOZZLE DIAMETER - 0.75 IN.

PARTICULATE FLOW - 60 LB/HR.	 STAI\ -)nFF !)ISTANCE 1 5 IN	 r

,a

2000"F	 150

TEST NO. 1

a

i

2400 F	 15^

-IEST NO. 2

TOP HALF OF CERAMIC LAYER

DELAMINATED AND SPALLED AT

INTERMEDIATE LAYER INTERFACE

AFTER 15 MINUTES.

2400OF	 90U

TEST NO. 4
BOTTOM HALF OF CERAMIC LAYER

FRACTURED AT INTERMEDIATE LAYER

INTERFACE WHEN ACCIDENTALLY

DROPPED POST TEST.

2400QF	 15

TEST NO. 3
INCREASED POROSITY SURFACE

LAYER.

Figure 13 Tested Erosion Specimens

63
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2000
3000

ACTUAL CYCLE (TYPICAL)
CERAMIC SURFACE	 PROPOSED CYCLE

2500
€ 1500

LU	 2000

'Q 
LL 1500

w0
0 Y METAL BACKING

1000-

F-	 1000

500 500-

300
_...

0
0 10	 20	 30	 40 50	 60	 70	 80	 90	 100	 110	 120	 130	 140	 150	 160	 170	 180

TIME - SECONDS

Figure 15

i

1

Thermal Fatigue Test Cycle, Abradability Specimen
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r

2000

3000 ACTUAL CYCLE (TYPICAL)
-.. PROPOSED CYCLE

2500

1500

2000- '

W I
rr '

F-
{

	

LL 1500 YP	 0

9L

0
1000-

/

Lu

/

r~ / ^•f 1. 000 / 001

500- --^
500

300

0 0 10	 20	 30	 40	 50	 60	 70	 80	 90	 100	 110	 120	 130	 140

TIME — SECONDS=.

Figure 16	 Thermal Fatigue Test Cycle, Erosion Specimen 	 - .--
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OPI:	 ^',Mo icrt

(X-43732-A)

w

777=s

FRO% IIEW

1	

-I

1

mw--!--,
t_- j

Ate. r-. -̂-

(X-43729-A)

LAL P YROMETER	 •

TNERMOCOOPEES

FEST S/E61MEN

(I

NEATER

•	
/_0

'	 a.,

BACK VI&W	 (X-43731-A)

Figure 17 Thermal Fatigue Test Rig

ORIGINAL. PAGE IS
OF POOR QUALITY

67



THERMAL CYCLE:

MAX. TEMP.: SURFACE - 1617 'K (2450"F) BACK - 944 'K (1240'F)

MIN. TEMP.: SURFACE - 839^K (1050 ')F) BACK - 600'K ( 620JF)
MAX. GRADIENT: 1142 0 K (1595-F) @ 24 SEC. INTO HEATUP

CYCLE DURATION: HEATING - 88 SEC. COOLING - 92 SEC

NO. CYCLES: 100

r

Figure 18 Thermal Fatigue Specimen (Test No. 1)
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k

THERMAL CYCLE:

MAX. TEMP.: SURFACE - 1600 ('K (2420 F BAC!, - 917 0K (11900F)
MIN. TEMP.: SURFACE - 855 '̂ K (10800F) BACK - 6300K (675'OF)
MAX. GRADIENT: 1236 0K (17650 F) @ 20 SEC. INTO HEATUP

CYCLE DURATION: HEATING - 96 SEC. COOLING - 84 SEC.
NO. CYCLES: 100

Figure 19 Thermal Fatigue Specimen (Test No. 2)

8^^IG&AL PA
R QU,^f^^
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THERMAL CYCLE:
MAX. TEMP.: SURFACE - 1644 0 K (25000F) BACK - 9390K (1230')F)
MIN. TEMP.: SURFACE - 867 0 K (11000F) BACK - 644 0 K (7000F)
MAX. GRADIENT: 11360 K (15850F) @ 20 SEC. INTO HEATUP
CYCLE DURATION: HEATING - 85 SEC. COOLING - 95 SEC.
NO. CYCLES: 100

&mj

I

Figure 20 Thermal Fatigue Specimen (Test ,No. 3)
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40

i

THERMAL CYCLE

MAX. TEMP.: SURFACE - 1555 " K 123400 F) BACK 9220 K (1200 F)

MIN. TEMP.: SURFACE - 811^K (1000 0F) BACK - 544 G K 000
u
 F)

MAX. GRADIENT: 10300 K (13950 F) @ 22.5 SEC. INTO HEAT UP

CYCLE DURATION: HEATING - 75 SEC. COOLING - 68 SEC.

NO. CYCLES: 100

a-

u^

Figure 21 Thermal Fatigue Specimen (Test No. 4)
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THERMAL CYCLE

MAX. TEMP.: SURFACE - 26950 K (24400F) BACK - 1465"K (1210 F)
MIN. TEMP.: SURFACE - 1275 0K (10200F) BACK - 6170K I65p°F)

MAX. GRADIENT: 1119"K (1555 0F) @ 17.5 SEC. INTO HEATUP

CYCLE DURATION: HEATING - 63 SEC. COOLING - 80 SEC

NO. CYCLES: 100

°44

.,

4

Figure 22 Thermal Fatigue Specimen (Test No. S)
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wqpw-
' 4414, kt,

15 YSZ!CoCrALY

50OX

A

aw
70/30 YSZ/COC,ALY 40/60 YSZ/Cc) (. -,LY

20% REDUCTION

Figure 23 Microstnicture of NAS3-18565 Specimen
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A

70/30 ZrO2/CoCrAIY

85/15 ZrO2/CoCrAIY

t

'	 •i

a

r

40/60 ZrO2/CoCrAIY

20% REDUCTION

Figure 24 Microstructure of NAS3-19759 Specimen
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Figure 28 Sprayed 40160 Zr021CoCrAIY Mean Coefficient of Thermal Expansion
from 293°K (68°F)
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Figure 29	 Thennal Conductivity of Sprayed Zr02 Layer
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Figure 30	 Thermal Conductivity of Composite Sprayed Zr021000rAIY Seal Coating
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Figure 31 Estimated Thermal Conductivities for Mixed Z1-021COCrAIY Layers
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RUPTURE
STRENGTH

N/Cm2
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2620
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818 667 663 (Zr02) 621 309 273 2689
1.0

Y
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754 0.9
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798 796 (85/15Zr02/CoCrAIY) 783 702 73 4482718
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0.8
2708 2707 (70/30 Zr02/CoCrAIY)

2702 2617 1459 6412
678

4793 4794 (40/60 2r02/CoCrAIY) 4799 4726 3083 6343
647 0.7 6597 6599 6611 6618 6134 16272

•2 -14 (MAR-M-509) -39 •95 -383 16548

l E 0.6
w
cc

t

Q Z 0.5
Y 6 10 15 -254 992W

643 U

w 0.4 6895 -9 :16 7.39
F

z	 (MAR•M-509)
0.3

1896	 1888	 1790	 2004
638	 0.2

0,1	 4094	 4083	 3990	 3129

ENGLISH UNITS

CONVERSION FACTORS

1.4503774 N/cm 2 = psi

(915) oK — 459.67 = 'F

0.3937 cm = in

635	 0

1	 I	 I	 1	 I	 )	 I	 I
0	 0.5	 1.0	 115	 2.0	 2.5	 3.0	 3.5

WIDTH - cm
g	 NOTE: '. STRESSES ARE SYMMETRICAL ABOUT (L
3	 2. STRESSES ARE MAXIMUM PRINCIPAL

STRESS
3. UNITS: N/CM2

Figure 41 Thermal Fatigue Test Specimen Maximum Principal Circumferential Stresses at
Idle
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I
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Figure 42 Thermal Fatigue Test Specimen Maximum Principal Axial Stresses at Idle
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Figure 44 Thermal Fatigue Test Specimen :Maximum Principal Axial Stresses at 20.5
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Figure 46 Thermal Fatigue Test Specimen Maximum Principal Axial Stresses at SLTO
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Figure 47 Thermal Fatigue Test Specimen Maximum Principal Circumferential Stresses
at 17.5 Sec. Decel.
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Figure 48 Thermal Fatigue Test Specimen Maximum Principal Axial Stresses tit 17.5
See. 'Decel.

Y







ENGLISH UNITS

CONVERSION FACTORS

(9/5) oK-459,67 = of

0.3937 cm = in

U

Y

l

t^

I
J'

1.5
797 949 929 979 964

E 840 988 971 1003 1004'^^

j
1037
1065-1053 1085

10671084
1030
1022''1027

1042
1017'1037 ^p j- 1

to 1.0 1077 - 100 954 951 1014	 f'
to 1079 -.1083 898-840 853 —797 857-805 947-910
w 1082 839 795 804 909
ZY 1057 817 774 783 899

r` U

H
0.5 779	 787 819 818

0 631

1788

669

0 647 774 688

0 0.5	 1.0 1.5	 2.0 2.5	 3.0	 3.5 4.0	 4.5	 5.0 5.5	 6.0	 6.5

WIDTH	 cm

(Zr02)

(85/15 Zr02/CoCrAIY)

(70/30 Zr02/CoCrAIY)

(40/60 Zr02/CoCrAIY)

(MAR-M-509)

7.0



I

i 1.5

10940 9851 5733	 6643 6945 6739-5237
5431 5170 3472	 4023 3119 4325	 4478

_ 134 248 82	 441 1240 59-210_]
1.0 5156 4118 480	 513

12611 1547 5916	 -4512 -1916 -292	 -4182
W 9196 6787 6679	 6292 6661 6016
Y 6384 5366
U 5 265 3419
} 3750 -12519	 8395

0

111877
2315	 612 4277	 2011

lr . 0 .5	 1.0 1.5 '	 2.0	 2.5 3.0	 3.5	 4.0	 4.5 5.0 5.5	 6.0	 6.5

I

WIDTH — cm

(Zr02)
(85115 Zr02 /CoCrAIY)
(70/30 Zr02/CoCrA I Y)
(40/60 ZrO2 /CoCrAIY)
(MAR-M -509)

7.0

NOTE: 1. NEGATIVE NUMBERS INDICATE
COMPRESSIVE STRESSES
	 ENGLISH UNITS

2. UNITS: N/CM2
	

CONVERSION FACTORS

1.4503774 N/cm2 = psi
(9/5)OK — 459.67 = OF

0.3937 cm = in



ENGLISH UNITS
CONVERSION FACTORS

1.4503774 N/cm 2 = psi
(9/5) OK — 459.67 = OF
0.3937 cm	 in

j

i

ii,a

(Zr02)
(85/15 Zr02/CoCrAIY)
(70/30 Zr02/CoCrAIY)
(40/60 Zr02/CoCrAIY)

.8(MAR-M-509)
Ef	

Y860 ° .7

'	 t	 1033 N .6

w 1024 N .5
954 Z .4
844 Y

C1 .3
s	 723
r	 w ,?

^K w $98

4721 10802 11174 — — — — 11189 11182 10984 4721
3488 4564 4840 4851 4845 4702	 3488

13097 -141 13 — — — 19 13 -97 13097

1672 -86- -30
v

`-27 -28 -63 1672

3400 1388 1407 1409 1408 1396 3400

2597 -604 -281 -272 -276 -374 1988

39644 -625 13424 3505 3478	
1

12133 39631

F	 0	 .5	 1.0	 1.5	 2.0	 2.5	 3.0	 3.5	 4.0	 4.5	 5.0	 5.5	 6.0	 6.5	 7.0	 7.5	 8.0

LENGTH —CM

i'
1
i

NOTE: 1. NEGATIVE NUMBERS INDICATE
'	 COMPRESSIVE STRESSES

2. UNITS: N/CM2



10	 FE
FE = FINITE ELEMENT	 LOW CONSTRAINT

PROGRAM	 (CRACK TIP NODE)

i
9	

^^

8	
THEORETICAL FOR
.0508 mm (.002"!

INITIAL FLAW
FE

7	 HIGH CONSTRAINT
(CRACK TIP NODE)

6

W	
4a

Q 5

4

3

I

2

1

0
0	 0.5 _	 1.0 _	 1.5	 2.0	 2.5	 3.0	 3.5

a—mm

0	 0.02	 0.04	 0.06	 0.08	 0.10	 0.12	 0.14
a — INCHES

CRACK LENGTH
4

,	 -

Figure 54 Crack Tip to Applied Stress Ratio vs. Crack Length
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N/m2 (PSI)

241 (-350)
M 855 (1240)

.758 (-1100) ♦
1 —621 (900) /
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N/m2 (PSI)

— 814 (-1186)
  

— 18100620)
x--472 -625)

— 1793 (2600)
— 6206 (9000)

IDLE

--10756 (-15600)
----2069 0000)
--1758 (-2550)
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ZrO2

85/15 Z/M
70/30 Z/M
40/60 Z/M
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85/15Z/M

STRENGTH (0^) TEMPERATURE
N/m2 (PSI)	 °K (°F)

	

867	 (1100)
2551	 (3700)

2620	 (3800)	
672--(750)

4413	 (6400)

6343	 (9200)

20685	 (30000)	 511	 (460)

	

483	 (410)

	

2275 T (3300)	
1517	 (2270)

2620	 (3800)	 (860)
4413	 (6400)	 733

70/30Z/M	 351b(b1ZU)	 1L	 4916(7130)	 6343	 19200)

4016OZ/M	 6343 (9200) 	 1 ► +- 10480 (15200)	 19306	 (28000)

	

594	 (610)

MAR

N1509
(

	

578	 (580)
6 SEC. ACCEL

	

w 552 (-800)	 --2137(-3 0)	 '7509	 (3300)	 1572- (2370)
Zr02	 465 (674)	 ^^ 1338 (1940)	 2413	 (350G)

	

1654 2399	 1233	 (1760)85/15Z/M	 — 1888 (27381	 -2041 (-2960)	 4689	 (6800)
r	 989 (1320)

70/30Z/M	 1827 -2650)	 2972 (4310)	 7033	 (10200)
40/60Z/M	 ^8826 (12800)	 10894 (15800)	 10894	 (15800)

MAR
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r944 	 (1240)

SLTO
EE	

M 8067 (11700)	 2551	 (3700)	
955	 (1260)

-848 (1230)^	 «ZrO2

	

r-24689 (3900)	 M3206 (465O)f	 2482 (3600)	
1089	 (1500)85/15Z/M	

U

62]1830)	 +^ 1214 (-1760	 4689 (6800)
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12411	 (18000)	 811	 (1000)

E
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M509

	789 	 (960)
12 SEC. DECEL

f	 NOTE: 1. AT SEVERAL LOCATIONS U>Q , BUT ONLY THE 12 SEC, DECEL 8067 (11700) SURF. a{	 ,
c IS OVER STRAIN TO FAILURE LIMIT. DO NOT EXPECT EDGE CRACKS.

2. STRESSES ARE MAX. PRINCIPAL STRESS. ARROWS INDICATE DIRECTION.
3. %/M = ZrO2/CoCrAIY

{	 Figure SS Initial Stress Fielde
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STRENGTH TEMPERATURE

O	 CYCLE
N /cm2 (PSI) 0K l^Fl2J	 POINT CENTER*

2551 (3700) 867 (1100)

ZrO2

2620 (3800) 672--(750)
85115Z/M 865 (1255)

4413 (640x, 511 (460)
IDLE 70 /30Z/M 1670 (2422)

6343 (9200)
4016OZ/M 6051 (8776)

20685 (30000) 483--(410)

i

L1509

f

f

CENTER*
2551 (3700) 955 (1260)

ZrO2

2482 (3600) 1089 (1500)

85/15Z/M 5568 (8076)
4689 (6800)

12 SEC. DECEL 70/30Z/M ` 3907 (5667)
7033 (10200)

40/60Z/M 7136(10350)
12411 (18000) 811 (1000)

MAR M509

i 789 (960)

*ALL STRESS ARE PARALLEL TO THE INTERFACE EXCEP'i THE STRESS AT THE
CRACK TIP WHICH WAS ATAPPROXIMATELY 7f/4 RADIANS (45 DEGREES).

UNITS: MAX. PRINCIPAL STRESS —N/cm2 (PSI)

Figure 56 Crack Entering 8511 SZrO2/COCrALY Layer



	

CYCLE	 STRENGTH	 TEMPERATURE

	

POINT	 CENTER*	 N/cm2 (, PSI)	 °K	 ('F)

	

F ^ 	 2551	 (3700)	 867	 (1100)
734	 215-

	j	 (1065)	 (312)

	

i +	 ZrO2	 1556 (2256)	 552 (800)

	

6 (	 2620	 (3800)	 672--(750)
	85/15 Z/M	 69 (100)—•	 ,	 727 (1054)

4413	 (6400)

	

70/30 Z/M	 .--- 1724 (2500,
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MAR M509	 1538	 (2230)
i

	

5902-	 (8560)'

1 483	 (410)
j

N/cm2	 °K
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7033	 (10200)
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t'

'j	 MAR M509
6757**

(9800)

y (960) 789

	

k	 *ALL STRESSES ARE PARALLELTO INTERFACE UNLESS OTHERWISE NOTED
*"BECOMES LTO INTERFACE IF CRACK LEAVES INTERFACE
UNITS: MAX. PRINCIPAL STRESS ^ N/cm 2 (PSI)
Z/M = Zr02/COCrAIY

o	 Figure 57 Crack Allowed to Turn at Interface with 85115 Zr0 2lCoCrAIY Layer	 1
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2689 (3900) 1517 (2200)

1255 (1820) 3598 (3218)

2193 (1590) 2800 (4001)

5654 (8200)	 6247 (9060) 7929 (11500)	 6826 (9900) 	 8550 (12400)

NORMAL	 W/FLAW AT EDGE

NOTE: UNITS= MAX. PRINCIPAL STRESS ^ Pd?CM 2 (PSI)

Figure 58	 Stress at Irregular Edge
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LOCATION OF STRESSES
USED IN LAYER THICKNESS
OPTIMIZATION STUDY

DESIGNATION (TOP TO
a

BOTTOM)

1	 ^ U11

O12
MAR-M-509	

Q21	
yg

40/60 Zr02/CoCrALY	 022
70/30 Zr02 /CoCrALY	 0'31
85/15 ZrO /CoCrALY	 Q32

2	 TEMP. LOCATIONS 	 D
Zr0	 1^	 41

2	
2 0'42

€ 3
Q51

1:	 7 052b .
E
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i

1

1 Figure 59	 Location of Temperatures and Stresses Reported in Table XIII
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Figure 60 Erosion Specimen, Optimized Configuration
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Figure 61 optimized Configuration, Post Thermal Fatigue Test (Test No. 6)
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Figure 62 Optimized Configuration, Post Thermal Fatigue Test 0 rst No. 7)
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Figure 63 Optimized Configuration, Thermal Fatigue Tested Specimen,
Axial Section (Test ,No. 6)
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Figure 64 Optimized Configuration, Post Thermal Fatigue Tested Specimen, Circumferential Section
(Test No. 6)
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Figure 65 Optimized Configuration Microstructure
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APPENDIX A

Singularity at the tip of a through crack at the center of an infinite plate in plane stress:

KI
Q =	 , KI = constant

7r r

At the tip of a crack of tip radiusP,

KI
Qtip	

^p

Therefore, for a given constant p ,

Q tip a KI
j

I

Similarly, the ultimate strength of a body containing such cracks, the largest of which has a
half-length ao, is:

i
_ KIC

4	 au -
ao	 i

y

For a given ao, then,

Qu a KIC

KI	 tip
Therefore,	 =	 X C, where the constant C is implicit in the correction factor i

KIC	 Qu

plot of Figure 6 in that C x v = a	 theoreticaltip	 corrected —	 X Q ti p F.E.°FE (Fig. 54) 
:f	 Thus:

i
a

KI	 = u tip corrected

JJ

	 KIC	 Qu

I 	
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i 	 3
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