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ABSTRACT
 

This report contains mathematical models which quantify the relation of
 

wheat yield to selected weather-related variables. Other sources of variation
 

(amount of applied nitrogen, improved varieties, cultural practices) have been
 

incorporated in the models to explain yield variation both singly and in com­

bination with weather-related variables. Separate models were developed for
 

fall-planted (winter) and spring-planted (spring) wheats. Meteorological
 

variation is observed, basically, by daily measurements of minimum and maximum
 

temperatures, precipitation, and tabled values of solar radiation at the edge
 

of the atmosphere and daylength. Two different soil moisture budgets are
 

suggested to compute simulated values of evapotranspiration; one uses the
 

above-mentioned inputs, the other uses the measured temperatures and precipita­

tion but replaces the tabled values (solar radiation and daylength) by measured
 

solar radiation and satellite-derived multispectral scanner data to estimate
 

leaf area index. Weather-related variables are defined by phenological stages,
 

rather than calendar periods, to make the models more universally applicable.
 

The yield models were developed from experimental plot yields and weather data
 

from nearby recording stations. Application of the models on a regional basis
 

is discussed.
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1.0 INTRODUCTION AND SUMMARY
 

This document is the final report for Contract NAS9-14282. In the interest
 

of continuity and completeness we have incorporated results obtained under
 

Contract NAS9-14533. All tasks under both contratts have been aimed at produc­

ing crop calendars and yield models which could be driven by readily available
 

meteorological and satellite-derived observations, augmented by known climato­

logical and agronomic characteristics of wheat-producing regions.
 

Our models were developed from historical experimental plot yield data
 

with meteorological measurements taken at nearby weather stations (see Section
 

2.0). Regional yields, as estimated by the USDA-SRS, were used to determine a
 

mean level adjustment to apply the plot-based models on a regional basis.
 

To develop a model using weather data from differing climates, and yield
 

data for different varieties of wheat, it was essential to standardize in some
 

sense:
 

(a) rate of development over particular periods of the calendar,
 

(b) precipitation effects,
 

(c) a variety's yielding ability.
 

For (a), we needed a model to follow plant development (a crop calendar) and to
 

express rates of development in meteorological units rather than calendar days.
 

For (b), we needed a soil-moisture budget to more properly express the differ­

ential effect of one inch of precipitation under different climates and at
 

different times. For (c), we needed to express yielding ability in terms of
 

a standard (check) variety to remove yielding ability as a source of variation
 

in model development and then to replace it as a contributing factor to yield
 

determination.
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The "standardization" process for (a) was accomplished with Robertson's
 

biometeorological time scale (BMTS)(10). Scalar multipliers were developed
 

to apply the BMTS, originally developed for Marquis spring wheat, to winter
 

wheat climates and varieties (see Section 3.0). No adjustments were made for
 

spring wheat.
 

For (b), Baier and Robertson's versatile soil moisture budget (VSMB)(3),
 

though developed for spring wheat under Canadian climates, was found to give
 

satisfactory results in the middle of the U. S. Great Plains winter wheat
 

region and was assumed sufficiently accurate for universal application. A
 

description of the VSMB and a budget which uses satellite-derived multispectral
 

scanner data appears in Section 4.0.
 

For (c), it was necessary to develop varietal yielding ability (VYA)
 

factors for commonly planted winter and spring wheat varieties. Procedures
 

for development and values obtained for VYA's are given in Section 5.0.
 

Symbols, mathematical forms, and threshold values for the variables which
 

appear in our winter and spring wheat models are shown in Section 6.0. The
 

form and substance of the yield models is given in Section 7.0 together with
 

a discussion on application on a regional basis.
 

Finally, Section 8.0 shows results of applying the models on a Crop
 

Reporting District (CRD) basis and then aggregating to a state level over a
 

ten-year period in-the states of Kansas and North Dakota.
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2.0 DATA SET FOR MODEL DEVELOPMENT
 

To develop a yield model which can be applied with confidence around tile
 

globe, it is necessary to obtain yield and associated weather data over a large
 

range of climates. Climates over the U. S. Great Plains do not include all the
 

variations that may be found but do cover a large proportion of those found in
 

wheat-growing areas of the world.
 

2.1 Yield, phenological, and auxiliary data: source and type.
 

Throughout the U. S. Great Plains, experimental trials have been conducted
 

yearly to substantiate yielding ability, and other characteristics, of popular
 

wheat varieties and to test new varieties for potential acceptance. These
 

varietal trials are conducted at branch agricultural stations (BAES) associated
 

with land-grant universities. Annual reports from thesp branch stations flow
 

into the universities and results of varietal trials are made available to the
 

public in various forms.
 

Results of varietal trials were a primary data source and gave us infor­

mation, though sometimes incomplete, on the following characteristics for each
 

variety in the test:
 

a) average plot yields (over two to four replications)
 

b) planting date
 

c) heading date
 

d) amount of added nitrogen
 

e) cultural practice (fallow, continuous, irrigated).
 

When available, hail, severity of disease, and insect infestation were
 

recorded but such data were used in an auxiliary capacity only and were not
 

incorporated in the model. Ranges of yields, cultural practices, average
 

planting and heading dates, at each location, are shown in Tables 2.1 and 2.2.
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Yields in any given year were averages over three varietal yields, after
 

adjusting each one for yielding ability. Varieties were chosen by examining
 

USDA-SRS data from surveys, conducted within states, measuring percent acre­

age planted to each variety. The three most popular varieties in a particular
 

time frame (five-year intervals prior to 1969) were selected. Some substitu­

tion was inevitable but the procedure reduced the number of varieties while
 

maintaining those that accounted for a major portion of production.
 

Criteria for deleting a given season from the analysis were:
 

a) zero yields (drought, winterkill, etc.),
 

b) occurrence of hail,
 

c) excessive missing weather data.
 

Inclusion of zero yields for drought/winterkill for winter wheat would
 

have increased our data by 44 observations. However, since zero yields do not
 

always represent a "true" zero, they were eliminated to avoid distortions of
 

reality.
 

2.2 Meteorological and climatological data: source and type.
 

Daily weather records, for stations near the BAES's, were secured from
 

the National Weather Center at Asheville, North Carolina for stations outside
 

of Kansas and from the Weather Data Library at Kansas State University for
 

Kansas locations. Items read off the tapes were daily values of:
 

a) minimum temperature (CF)
 

b) maximum temperature (OF)
 

c) precipitation (inches).
 

Tables 2.1 and 2.2 show the weather stations and number of seasons used
 

in yield model development for winter and spring wheat, respectively. Also
 

tabled are long-term average daily temperature in January (ADTJ) and average
 

annual precipitation (AAPR) for each location. Both ADTJ and AAPR play
 

important roles in yield and crop calendar models.
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Weather elements in the data sets represented climates ranging from cold
 

to warm and dry to wet, with a multitude of combinations between these extremes.
 

Consequently, a large range of values for weather-related variables, indivi­

dually and jointly, was obtained. Locations in semi-arid regions included
 

droughty years and years favorable to high yields. At some locations, moisture
 

was almost always a limiting factor while at others it was never Limiting.
 

The 1034 location-years used for winter wheat model development provided
 

a wider range of climates than the 306 for spring wheat. In part, this
 

reflects the fact that spring planted wheat is usually limited to areas where
 

ADTJ < 200 F. This agrees with a statement by Hsieh ( 6) that the -60C (210F)
 

January isotherm is a boundary between spring and winter wheat in China. Con­

versely, fall-planted wheats can be found at locations with ADTJ as low as 100F
 

and as high as 700F. In the latter case varieties planted are genetically
 

spring wheats, as vernalization is not required for flowering.
 

2.3 Application of model on regional basis - USDA yield data.
 

The experimental plot yields plus associated daily precipitation and
 

temperatures formed the basic data set for developing our winter (spring)
 

wheat yield models op an experimental plot basis. The plot-based models sim­

ulate both season-to-season and location-to-location variation. However, on a
 

regional basis, an adjustment is necessary to account for management and pro­

ductivity (MAP) factors which may have a long-term trend effect and vary with
 

soil factors. In Section 7.0, we describe conversion of yields from a plot
 

basis to yields specific to a given region (strata). For the U. S. Great
 

Plains, this conversion was accomplished by using USDA-SRS yield estimates
 

for a region to determine a mean-level adjustment to apply to the plot-based
 

model estimates.
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Table 2.1. Characteristics of locations used in winter wheat model development.
 
(Locations are in descending order by ADTJI). 

Location N 
ADTJT
(OF) 

AAPR § 
inches 

Range of CulturalV 
Yields (bu/A) Practice 

Ave.11 
PLD 

Ave.tt 
HED 

College 
Station, TX 7 51.3 38.7 6-30 F 10-29 4-13 

Denton, TX 20 44.6 32.6 10-46 C 10-25 4-18 

Vernon-
Chillicothe, TX 12 42.5 25.3 9-35 F "i1-1 4-20 

Portageville, MO 8 39.3 46.7 14-41 C 9-30 5-1 

Sikeston, MO 23 37.4 48.2 12-52 C 10-30 5-6 

Stillwater, OK 18 36.9 32.8 6-59 F 10-8 4-30 

Clovis, NM 17 36.7 17.9 4-35 F 10-5 5-5 

Woodward, OK 22 35.9 25.1 15-52 F 10-9 5-1 

Pierce City-
Mt. Vernon, HO 21 35.7 44.4 7-47 C 10-7 5-4 

Amarillo-
Bushland, TX 13 35-3 21.1 5-48 F 10-12 5-8 

Goodwell, OK 8 34.5 17.7 2-26 F 10-2 5-10 

Columbus, KS 44 34.4 42.3 8-57 C 10-22 5-7 

Ripley, OH 12 32.8 40.6 21-41 C 10-10 5-16 

Springfield, OH 6 32.1 37.4 32-51 C 10-8 5-20 

tN = number of years with useable data. 

IADTJ = long-term average daily temperature in January. 

§AAPR = average annual precipitation. 

IF = previous year fallow, C = previous year cropped. 

IIPLD = planting date. 

ttHED = heading date. 
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ADTJt AAPR § Range of Cultural Ave.11 Aveit 
Location N (OF) inches Yields (bu/A) Practice FLD HED 

Vincennes, IN 15 32.0 43.0 24-50 C 10-6 5-16 

Columbia, MO 20 31.0 39.4 15-56 C 10-2 5-20 

Garden City, KS 38 30.9 18.8 3-46 F 10-2 5-20 

Ottawa, KS 3 30.3 37.2 27-39 C 10-30 5-17 

Hutchinson, KS 32 30.2 29.0 2-46 C 10-12 5-13 

Hays, KS 52 29.5 23.0 5-57 F 10-4 5-21 

Farmland, IN 8 29.3 38.9 40-58 C 9-24 5-20 

Columbus 19 29.0 36.6 24-50 C 10-5 6-4 

Colby, KS 42 28.8 18.6 3-67 F 9-23 5-23 

Carpenter, OH 25 28.8 41.8 10-54 C 10-6 5-26 

Tribune, KS 36 28.3 16.8 1-60 F 9-23 6-9 

Manhattan, KS 61 28.1 31.7 12-56 C 10-7 5-16 

Canfield, OH 22 27.5 34.0 18-59 C 10-6 5-30 

Wooster, OH 28 27.4 38.1 21-51 C 10-2 6-10 

Urbana, IL 38 27.1 36.6 18-61 C 9-27 5-21 

Custar, OH 18 27.1 35.3 20-65 C 10-6 5-27 

Vickery, OH 16 27.0 35.0 13-68 C 10-4 6-8 

Yellow 
Jacket, CO 3 26.5 13.3 18-28 F 10-18 6-16 

Julesburg, CO 5 26.4 16.8 23-48 F 9-23 5-30 

Mankato, KS 12 25.9 24.9 12-41 C 10-6 5-25 

Lafayette, IN 27 25.7 36.8 12-61 C 10-5 5-24 

Lincoln, NE 29 25.5 27.3 15-53 C 10-1 5-18 

Akron, CO 25 25.1 17.7 10-43 F 9-19 6-3 
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Table 2.1 (continued)
 

ADTJA AAPR § Range of Cultural Ave.11 Ave.t 

Location Nt (OF) inches Yields (bu/A) Practice PLD HED 

Bethany-
Spikard, MO 14 25.0 33.8 19-56 C 9-27 5-20 

Wanatah, IN 15 24.7 36.0 36-70 C 9-29 5-27 

North Platte, NE 21 24.0 20.7 20-61 F 9-22 5-29 

Mead, NE 1 23.7 27.8 33-44 F 10-5 5-29 

Archer, WY 10 23.1 14.7 10-37 F 9-12 6-13 

Alliance, NE 13 22.9 16.7 8-53 F 9-13 6-7 

Moccasin, MT 9 20.8 14.0 27-46 F 9-11 6-19 

Ames, IA 18 19.5 31.8 10-62 C 9-24 5-31 

Sheridan, WY 8 18.7 16.4 14-56 F 9-11 6-19 

Beresford, SD 6 17.0 23.6 11-35 C 9-23 6-3 

Presho, SD 4 17.0 16.5 26-37 F 9-16 6-5 

Havre, MT 15 16.2 12.3 9-50 F 9-9 6-11 

St. Paul, MN 20 14.6 24.7 17-46 C 9-13 6-4 

Waseca, MN 19 13.6 28.3 17-49 C 9-12 6-11 

Brookings, SD 9 13.4 19.8 5-42 C 9-16 6-13 

Dickinson, ND 14 10.4 15.5 3-33 F, C 9-16 7-4 

Williston, ND 8 10.0 14.1 9-34 F 9-11 6-20 

Minot, ND, 10 7.0 15.4 17-55 F 9-12 7-2 

Grand Rapids, MN 15 6.1 25.7 6-46 C . 9-13 7-13 
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Table 2.2. Characteristics of locations used in spring wheat model development.
 
(Locations are in descending order by ADTJ+). 

Location ADTj$ AAPR § Range of Cultural Ave. Ave. t t 

N± (OF) inches Yields (bu/A) Practice PLD HED 

Moccasin, HT 33 20.8 14.0 10-38 F 4-30 7-8 

-Beresford, SD 7 17.0 23.6 4-29 C 4-13 6-14 

Havre, MT 32 16.2 12.3 7-35 F 4-23 6-25 

Bison, SD 4 15.8 14.2 19-26 F 4-28 7-1 

St. Paul, MN 8 14.6 24.7 24-37 C 4-23 6-20 

Rosemount, MN 10 14.6 24.7 12-39 C 4-21 6-21 

Waseca, MN 15 13.6 28.3 11-48 C 4-20 6-24 

Brookings, SD 14 13.4 19.8 11-36 C 4-17 6-24 

Dickinson, ND 32 10.4 15.5 1-48 F 5-2 7-4 

Williston, ND 11 10.0 14.1 14-32 F 5-6 6-30 

Eureka, SD 10 10.0 16.6 11-35 C 4-27 6-27 

Morris, MN 23 8.0 22.3 19-41 C 4-27 6-22 

Minot, ND 25 7.0 15.4 8-46 F 5-4 7-4 

Grand Rapids, MN 14 6.1 25.7 6-54 C 5-5 7-6 

Fargo, ND 14 5.5 18.3 9-52 F 4-26 6-25 

Crookston, MN 24 4.0 20.2 15-53 C 4-27 6-26 

Langdon, ND 30 1.0 17.6 17-58 F 5-6 7-7 

iN = number of years with useable data. 

tADTJ = long-term average daily temperature in January. 

§AAPR = average annual precipitation. 

F = previous year fallow, 0 = previous year cropped. 

1!PLD = planting date. 

ttHED = heading date. 
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3.0 ADJUSTING ROBERTSON'S BMTS TO WINTER WHEAT
 

To bring yield and weather data from varied climates into a single model,
 

it is necessary to measure the effect of weather-related variables (WRV's) in
 

different stages of plant development rather than over fixed calendar periods.
 

The most sophisticated approach to this problem was taken by Baier( 1). The
 

effects of a basic set of weather-related variables were considered to change
 

daily and the magnitude of change was made dependent on the stage of develop­

ment as measured by Robertson's Biometeorological Time Scale (BMTS) (10). To
 

follow, in principle, Baier's approach to modeling, we investigated the appli­

cability of Robertson's BMTS to winter wheat environments and varietal
 

maturities. Methodology, statistical analysis, and rationale are discussed
 

in Appendix A. Here, we present major findings.
 

3.1 Biases in application of an unadjusted BMTS.
 

Robertson's BMTS was developed from observations on Marquis spring wheat
 

grown in Canadian climates., Two sources of biases (differences between
 

observed and simulated results) might be anticipated when the model is applied
 

to winter wheat. The first is due to differing maturation rates among winter
 

wheat varieties. If the BMTS gives unbiased results for Turkey, a very late
 

maturing variety, it woul4 have to be biased for Triumph class varieties which
 

mature 8 - 10 days earlier. The second source of bias relates to the wide
 

range of climates in which winter wheat is grown. One might anticipate that
 

if the BMTS were unbiased for a Texas climate, where a dormancy period is
 

almost nonexistent, then it might well be biased when applied in North Dakota
 

where the dormancy period is four to five months.
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Our investigation began by programming Robertson's equations to simulate
 

daily increments of development (DID) from planting to ripe stages. Application
 

was made to selected locations using only those seasons when heading dates for
 

both early and late maturing varieties were known. Results of applying the BMTS
 

in an unadjusted (U BMTS) mode are shown in Table 3.1.
 

With the exception of a few anomalies (e.g., Tribune, Kansas), magnitudes­

of the biases increase as one moves from colder/wetter to warmer/drier climates.
 

The range of -15 to +7 days is based on differences between simulated and late
 

maturing varieties. For early maturities the range would be -10 to +16 days.
 

The two climatic variables chosen to help remove biases at specified locations
 

were long-term average daily temperature in January (ADTJ) and average annual
 

precipitation (AAPR). Arguments for use of these two variables are given in
 

Appendix A.
 

3.2 Computation of adjustment factor.
 

Following our initial study of biases using the U_BMTS, we extended the
 

computer program to simulate development from emergence (rather than planting)
 

to heading for different rates of the DID.
 

Increased rates were simulated by multiplying DID's by factors greater
 

than one and decreased rates by factors less than one.
 

In essence, the BMTS was accelerated or decelerated from emergence-to­

heading till zero bias for the sample data was attained. At most, seven
 

multipliers were obtained for a given location to attain zero bias for develop­

ment rates associated with each of the following: early, mid-early, mid-late,
 

late maturing varieties, and varieties popular in 1950, 1960, 1970. Seven
 

regression equations were determined by regressing multipliers against ADTJ
 

and AAPR. Details are given in Appendix A.
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Table 3.1 Comparison of average heading dates for early maturing varieties,
 
late maturing varieties, and a simulated crop calendar (UBMTS).
 

Ave. Heading Dates (Julian Day)
 
No. of
 

Location Seasons Obs. (Early) Obs. (Late) U BMTS Bias (Days)
 

(1) (2) (3) (3)-(2)
 

Waseca, MN 7 159 164 149 -15 
Grand Rapids, MN 4 171 175 164 -11 
Lincoln, NE 16 144 152 142 -10 
Dickinson, ND 4 174 177 169 -8 
Wanatah, IN 15 148 154 147 -7 
Columbia, MO 7 135 144 137 -7 
Tribune, KS 14 143 154 0 147 -7 
Urbana, IL 6 137 147 141 -6 
Manhattan, KS 11 133 142 137 -5 
Lafayette, IN 15 143 152 148 -4 
Wooster, OH 4 147 154 150 -4 
Alliance, NE 8 157 163 161 -2 
Colby, KS 16 139 147 145 -2 
Columbus, KS 18 123 134 133 -1 
Garden City, KS 11 135 146 145 Zl 
Amarillo, TX 18 126 137 137 0 
North Platte, NE 9 152 157 158 +1 
Hays, KS 33 135 144 145 +1 
Woodward, OK 20 121 130 131 +1 
Hutchinson, KS 22 126 137 139 +2
 
Akron, CO 12 147 157 160 +3
 
Goodwell, OK 15 131 138 141 +3
 
Denton, TX 15 107 117 120 +3
 
Hesperus, CO 7 165 171 177 +6
 
Ft. Collins, CO 10 151 160 167 +7
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For application, in the U. S. Great Plains, we recommend use of the 

following equation to calculate a multiplier (M7 0 ) to apply to a given location 

(region, strata): 

M = .5684 + (.025081)ADTJ - (.006139)AAPR, 

where 

M70 = a multiplier for a varietal maturity class defined by varieties 

popular in the U. S. Great Plains in 1970,
 

ADTJ = long-term average daily temperature in January,
 

AAPR = average annual precipitation.
 

Table A.1 in Appendix A exhibits values of M70 for a range of ADTJ and AAPR found
 

in the Great Plains. The multiplier M70 was systematically used for all years
 

and locations to derive weather-related variables (WRV's) specific to given
 

phases of winter wheat development.
 

The most important contribution of the BMTS to yield model development
 

was its usefulness in "standardizing" weather inputs from diverse climates so
 

that a single model could be developed. Of secondary importance was simulation
 

of season-to-season variation in development at a given location. Additional
 

accuracy would have been welcome but it was not necessary to pinpoint major
 

crop stages to within a day or two. Appendix A contains tables showing the
 

precision of estimates of heading dates using the BMTS adjusted by M70 (ABMTS).
 

A test of the model for 186 location-years showed 83% of'the simulated headings
 

within +7 days of the observed heading dates.
 

3.3 Other adjustments to Robertson's BMTS.
 

- In applying the BMTS to winter wheat, we found it necessary to make some 

minor modifications. The first involved the effect of maximum temperature (TX) 

from simulated emergence to jointing. In the original BMTS, the effect was 

quadratic with a concave upward graph. For TX < 23.6 0F (-4.70 C) the BMTS gave 
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positive increments of development. This was modified to give zero contribution
 

from the terms involving TX if TX < 23.6 0F.
 

The second adjustment also involved the simulated emergence to jointing 

phase. Occasional seasons arose when simulated jointing occurred prior to 

dormancy. Since this is physiologically impossible for winter wheat some 

adjustment was required. Accordingly, an algorithm was introduced into the 

program so that if BMTS > 1.85 (BMTS = 2.0 at jointing) on any day prior to 

January 1, then the BMTS value was reset to 1.80 and continued to build up 

from that point. The effect of this modification is shown in Table 3.2.
 

3.4 Computations in Robertson's-BMTS. 

A daily increment of development (DID) in Robertson's BMTS (unadjusted) 

is computed as follows: 

DID = V1 * (V2 + V3) , 

where 

V1 = a1 (DL - a 0) + a 2 (DL - a0)2 

V 2 = bI(TX - b 0) + b 2 (TX - b0)2
 

V 3 = c1(TN - b 0) + c2 (TN - b0 ) 2
 

with I
 

DL = daylength, TX = maximum temperature, TN = minimum temperature, a0 

and b0 (threshold values), and al, a2' bl, b2, c, vary from phenology phasec2 


to phase as shown in Table 3.3 in scientific notation (.12E+02 = .12*102).
 

The quantities VI, V2, and V3 are forced to be zero or positive. If any
 

one is negative, it is set equal to zero. If V1 = 0, then DID = 0; but that
 

is not necessarily ,true of V2 or V3 '
 

The quantity DL may be read from tables but we have used an interpolation
 

formula developed by Stuff (12). The formula reads as follows:
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DL = 12.14 + [3.37 tan (uX/180)] cos (0.0172N - 1.95), 0 < X < 400 

= 12.25 + [1.6164 + 1.7643 {tan (rX/180)} 2 ] cos (0.0172N - 1.95), X > 40-, 

where 

X = latitude,
 

N = climatological day number (March 1 = 1).
 

The entries in Table 3.3 give DID values equivalent to those that would be
 

obtained by using the coefficients shown in Robertson's paper (10, p. 211) even
 

though the entries in the two tables differ. This is due to the multiplicative
 

form of the model. This can be verified by multiplying out and comparing
 

coefficients for like terms.
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t
 
Table 3.2 Effect of altering BMTS computer routine to force "jointing" to
 

occur after January 1.
 

Jointing Date Heading Date 
(Mo./Day) (Mo./Day) 

Year Before After Before After 

Colby, KS 	 1938 11/10 3/13 5/11 5/12
 
1954 11/16 2/26 5/16 5/16
 
1955 10/21 4/1 5/9 5/13
 
1963 12/7 3/25 5/8 5/9
 
1964 10/30 4/11 5/18 5/20
 

Rangett 	 3/15 to 4/30
 

Columbia, MO 	 1962 10/21 3/9 5/10 5/10
 
1963 10/19 3/13 5/6 5/7
 
1964 11/18 3/3 5/7 5/7
 
1972 1/11 3/11 5/12 5/13
 

Range 	 3/9 to 4/13
 

Pierce City, MO 	 1955 1/4 2/26 4/27 4/28
 
1963 12/28 3/4 4/25 .4/25
 
1965 1/23 2/15 5/2 5/2
 
1966 11/21 3/9 5/5 5/5
 
1971 1/21 2/27 5/3 5/4
 

Range 	 2/2 to 4/4
 

t If BMTS > 1.85 (Robertson scale) before January 1 then BMTS reset to 1.80. 

On January 1 it will have between 0.15 and 0.20 units of development before
 
it reaches 2.00 (jointing).
 

ttRange of simulated jointing dates for years at station when correction in BMTS
 
was not needed.
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I  

Table 3.3 Coefficients for Robertson's BMTS.
 

Phases of Development1
 

P to E E to J J to H H to D D to R
 

a0 .1000E+20 .8413t+0l .1093E+02 .1094E+02 .2438E+02
 

a1 -.1419E-19 .5581-01 .2613E-01 .2021E-01 -.2165E-01
 

*2 0 0 -.1701E-02 -. 1192E-02 0
 

b0 .4437E+02 .2364E+02 .4265E+02 +.4218E+02 .3767E+02
 

b .7652E-01 -.6324E-01 .1047E-01 .1688E-01 .3543E-02
 

b2 -.1571E-02 .9050E-03 0 0 0
 

.6857E-01 .6601E-02 .1396E-01 .21X6E-02 .1811E-01
 

c2 -.1597E-02 -.7710E-04 0 0 0
 

p = planting, E = emergence, J = jointing, H = heading, D = dough, R = ripe. 
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4.0 SOIL MOISTURE BUDGETS
 

A soil moisture budget is a necessary tool to model yields. The precipi­

tation-evapotranspiration sequence, when adequately simulated, provides a
 

means of detecting when plant stress occurs due to lack of soil moisture. In
 

general, one expects that yield expressed as a function of soil moisture stress
 

would be more universally applicable than yield expressed as a function of
 

precipitation.
 

4.1 Baler and Robertson's VSMB
 

Our search for a soil moisture budget, which could be operated with daily
 

meteorological inputs of precipitation and minimum and maximum temperatures
 

(PR, TN, TX), led to one developed by Baier and Robertson ( 3) and known as
 

the versatile soil moisture budget (VSMB). The VSMB has a number of appealing
 

characteristics not the least of which is a potential for universal application.
 

Input requirements were sufficiently unrestrictive to allow us to simulate
 

historical moisture conditions.
 

The most recent description of the VSMB is given in a technical bulletin 

by Baler, et al. ( 5 ). To operate the VSMB, it is necessary to assume values 

for some of the parameters (e.g., water-holding capacity of soil in the root 

zone). Values we have assumed together with the main formulas in the VSMB are 

shown in Appendix B. Discussionto follow will be limited to general character­

istics of the VSMB. 

4.1.1 Potential evapotranspiration (PE). Estimation of PE in the VSMB is
 

based on work by Baier and Robertson ( 2 ) and Baier ( 4 ). Different formulas
 

are given for estimating PE, dependent on amount of input data available. We
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chose to use one requiring minimal daily meteorological measurements, namely,
 

TN, TX, and Q where Q0 = total solar radiation in cal cm- 2 falling on a
 

horizontal surface at the top of the atmosphere during one day. Tabled values
 

of Q are readily available (11).
 

4.1.2 Actual evapotranspiration (AE). Daily AE values are a sum of AE
 

values over six moisture zones. The AE values for each zone are functions of:
 

(1) a crop coefficient, (2) a ratio of plant-available soil moisture to
 

capacity of available water in the zone, (3) an adjustment factor for avail­

ability of moisture under various dryness conditions, (4) an adjustment factor
 

accounting for effects of varying PE rates on the AE/PE ratio, and (5) the
 

value'of PE itself. The first four factors take on values specific to each
 

zone while daily values for the last one are constant for all zones.
 

4.1.3 Precipitation losses. Not all precipitation becomes a part of the
 

budget. Precipitation losses are of three types. One is from run-off and
 

this is simulated by allowing only a portion of the moisture from rainfall to
 

infiltrate the soil. The amount of loss is made to depend on total amount
 

of rainfall for the day and the ratio of plant-available water to capacity
 

of available water in the top zone as derived by Linsley, Kobler, and Paulus
 

( 8 ). The second type of loss simulates drainage when the 24-hour precipi­

tation exceeds the total of AE, runoff, and the sum of moisture deficits
 

over all zones. The third type of loss, due to losses of moisture from a
 

snow pack, is simulated by a snow budget.
 

4.1.4 Fill and withdrawal algorithms. The algorithm for moisture
 

entering the soil profile specifies that the top zone is first filled to
 

field capacity before water infiltrates to the second zone. The same proce­

dure is followed for succeeding zones. There is a provision for modifying
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this algorithm to allow for some infiltration into a lower zone before the
 

zones above it reach field capacity but we have not used this latter option
 

in operating the VSMB.
 

Increases to the VSMB from snow are simulated by a separate snow budget.
 

The snow budget simulates gains in soil moisture when snow melts and losses
 

of potential gains due to blowing and evaporation of snow and runoff.
 

For withdrawal, AE valies are calculated for each zone as indicated in
 

Section 4.1.2. One adjustment, not discussed in 4.1.2, simulates larger
 

rates of absorption of water by roots in the lower zones in periods of
 

drought when the lower zones may still be quite moist relative to the top
 

layers. The adjustment involves a redistribution of the crop coefficients.
 

4.1.5 Stored moisture. The VSMB is divided into six zones for
 

budgeting purposes. Simula~ed evapotranspiration is restricted to the top
 

three zones in the planting-to-jointing phase and when the land is idle.
 

The bottom three zones simulate a reservoir for storage of water to be used
 

in the jointing-to-ripe phases of development when roots are deep enough to
 

draw on moisture reserves. In our yield model we use the contents of zones
 

4 and 5 to define variables related to lack of stored moisture at various
 

stages of development.
 

4.1.6 Continuous cropping and fallowing. The VSMB simulates soil
 

moisture levels not only during the growing season but also while the land
 

is idle. Consequently, during the growing season one can simulate either
 

continuous cropping or fallbw cropping or both and we have programmed the
 

VSMB accordingly. Our computer program carries three budgets simultaneously,
 

two related to fallowing and one for continuous cropping.
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Two budgets are necessary to simulate fallowing because during a growing
 

season one of the budgets simulates conditions under a crop while the other
 

simulates the fallow period. During fallowing, no water is removed from the
 

bottom three zones of the VSMB so there is additional opportunity to increase
 

stored moisture for the next season. Contents of the two fallow-related
 

budgets are switched at planting time.
 

4.1.7 Initial soil moisture levels. To apply the VSMB it is necessary
 

to specify contents for each of the six zones as of the beginning date of
 

processing which is usually, but need not be, a simulated planting date. Con­

tents of the lower three zones are seldom at capacity at planting time in semi­

arid regions. For the U. S. Great Plains, the problem is minimal since we
 

have already processed many years at over 60 locations and, with the aid of
 

continuous weather records, new processing can begin on the date when our pre­

vious processing terminated.
 

One solution for areas outside the U. S. Great Plains is to begin pro­

cessing two years (where fallowing is practiced) or one year (for continuous
 

cropping) prior to the season for which a yield estimate is to be made. The
 

effect of this is to reduce the contents of the lower three zones due to
 

cropping the first year and, for fallowing, to allow the lower zones to refill
 

or stay at low levels if dry conditions prevailed.
 

Where prior weather data are unavailable, it will be necessary to estimate
 

initial contents on the basis of .averageannual precipitation and any precipi­

tation information available on the year prior to the season of interest.
 

Experience with Great Plains data will be helpful in this regard.
 

4.2 Tanner, Ritchie, Kanemasu (T-R-K) Model
 

Kanemasu applied the work of Tanner and Jury (13), Priestley and
 

Taylor ( 9 ), and Jury and Tanner ( 7 ) to winter wheat and estimated
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parameters in the various models using lysimetric data (see Appendix C). In
 

the 	T-R-K model, evapotranspiration is decomposed into its two components:
 

evaporation and transpiration and each component is estimated separately.
 

An impbrtant element in the T-R-K model is the use of leaf area index
 

(LAI) to estimate both evaporation and transpiration. Complementary to this
 

work, Kanemasu has related LAI to multispectral scanner (MSS) band ratios
 

(4/5, 4/6, 4/7, 5/6) using data generated from Landsat I and II (see Appendix D).
 

Kanemasu's work has resulted in a method of simulating actual and potential
 

evapotranspiration under winter wheat using daily inputs of (a)solar radiation,
 

Jk) minimum and maximum temperature, (c) precipitation, and (d) MSS band ratio
 

values from Landsat satellites. This work provides (a) an alternative to the
 

VSMB for estimating the AE/PE ratio used in the yield models presented in
 

Section 7.0, and (b) a direct input into growth and yield models now under
 

development by Kanemasu.
 

4.3 	Comparison of VSMB and T-R-K
 

(a) 	For potential evapotranspiration, both the VSMB and T-R-K require
 

daily minimum and maximum temperature; but the VSMB, as we have
 

applied it, uses tabled daily values of solar radiation at the edge
 

of the atmosphere; the T-R-K requires daily values of measured solar
 

.radiation at ground level.
 

(b) 	For actual evapotranspiration, both models use a measure of reduced
 

transpiration due to soil dryness as measured by the ratio of plant­

available water to water-holding capacity and both measure actual
 

evapotranspiration aq a proportion of potential. However, the method
 

of measuring this proportion is different. The VSMB makes the
 

proportion a functioA of crop coefficients, the ratio of contents to
 

capacity, and (PE-PE) while the T-R-K makes the proportion a function
 

of leaf area index (LAI).
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4.4 Agreement of soil moisture budgets
 

Kanemasu applied the T-R-K model to a Finney County, Kansas and a Riley
 

County, Kansas site, the former in a semi-arid climate, the latter in a sub­

humid climate. The VSMB was applied over the same period. Cumulative
 

evapotranspiration values are plotted against calendar dates, from planting
 

through ripe, in Figure 4.1.
 

The agreement between the two budgets is good, giving credence
 

to the use of the VSMB in winter wheat environments and to use of the
 

T-R-K model as an alternative to the VSMB for soil moisture budgeting.
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Figure 4.1 	 Comparison of VSMB and R-T-K for
 
Riley and Finney Counties, KS.
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5.0 VARIETAL YIELDING ABILITY
 

.One of the first problems encountered in using yield data over many
 

seasons and locations is variation due to differences in varietal yielding
 

ability (VYA). One could restrict the data set to a single variety but that
 

limits the number of observations severely. The other alternative is to assign
 

each variety, used in model development, a VYA factor which measures its yielding
 

ability against that of some standard (check) variety. The latter alternative
 

also provides a basis for determining the contribution of varietal improvement
 

to yield increases over time thus isolating this component of technology. We
 

have chosen the second alternative and in this section we describe the procedure
 

used to determine the VYA's shown in Table 5.1 (winter wheat) and Table 5.2
 

(spring wheat).
 

Data, for determining VYA's, were the same as used for model development;
 

namely, yields from varietal trials at BAES's. For winter wheat, we found
 

that the varieties, Pawnee and Comanche, appeared in more seasons at more
 

locations than other varieties and were generally equally adaptive and produc­

tive. They were given VYA values of 1.00. For spring wheat and durums the VYA
 

for Thatcher was set equal to 1.00.
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Table 5.1. Winter wheat yielding ability (VYA) factors.
 

Variety Name Code VYA Year Released Released by 

Turkey TURK .85 1875 

Kharkof KHAR .86 1900 

Fulcaster FULC .86 1830-71 

Fultz FULT .87 1871 

Early Premium EPR .87 1830-71 

Michigan Amber MI A .88 1830 

Trumbull TRUM .89 1916 Kansas 

Kanred KANR .91 1917 Kansas 

Blackhull BLAC .91 1917 Kansas 

Parkoff PARF .93 1915 Indiana 

Tenmarq TENM .93 1932 Kansas 

Vigo VIGO .97 1946 Indiana 

Fairfield FAIR .97 1942 Indiana 

Yogo YOGO .98 1932 Montana 

Ponca PONC .99 1951 Kansas 

Pawnee PAWN 1.00 1943 Kansas 

Comanche COMA 1.00 1942 Kansas 

Chiefkan CHFK 1.01 1935 Kansas 

Karmont KARM 1.02 1921 Montana 

Wichita WICH 1.02 1944 Kansas, Texas 

Kaw 61 KW61 1.02 1965 Kansas. 

Triumph TRIU 1.02 1940 Oklahoma 

Early Blackhull EBL 1.03 1933 Kansas 
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Table 5.1 (continued) Winter wheat.
 

Variety Name Code VYA Year Released Released by 

Clarkan CLAR 1.03 1934 Kansas 

Super Triumph STR 1.03 1957 Oklahoma 

Thorne THOR 1.04 1938 

Westar WEST 1.04 1944 Texas 

Agent AGEN 1.04 1967 oklahoma 

Cheyenne CHEY 1.05 1933 Nebraska 

Nebred NEBR 1.05 1938 Nebraska 

Warrier WARR 1.05 1960 Nebraska 

Concho CONC 1.06 1954 Oklahoma 

Bison BISO 1.06 1956 Kansas 

Kiowa KIOW 1.06 1950 Kansas 

Tascosa TASC 1.07 1959 Texas 

Guide GUID 1-.07 1967 Nebraska 

Omaha OMAH 1.07 1960 Nebraska 

Parker PARK 1.08 1966 Kansas 

Ottawa OTTA 1.09 1960 Kansas 

Seneca SENE 1.09 1950 Ohio 

Kaw KAW 1.10 1960 Kansas, Oklahoma 

Improved Triumph ITR 1.10 1944 Oklahoma 

Sturdy STUR 1.10 1966 Texas 

Butler BUTL 1.10 1947 Ohio 

Hume HUME 1.11 1967 South Dakota 

Knox KNOX 1.12 1953 Indiana 
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Table 5.1 (continued) Winter wheat. 

Variety Name Code- VYA Year Released Released by 

Triumph 64 TR 64 1.13 1964 Oklahoma 

Monon MONO 1.14 1959 Indiana 

Caddo CADD 1.14 1963 Texas 

Eagle EAGL 1.14 1971 Kansas 

Minter MINT 1.15 1948 Minn. S. Dakota 

Winalta WINA 1.15 1961 Canada 

Gage GAGE 1.15 1963 Nebraska 

Lancer LANC 1.15 1963 Nebraska 

Winoka WINO 1.15 1968 South Dakota 

Danne (D129-16) DANN 1.15 1971 Oklahoma 

Pronto PRON 1.15 1970 Kansas 

Scout SCOU 1.16 1963 Nebraska 

Scout 66 SC66 1.17 1967 Nebraska 

Knox 62 KX62 1.19 1962 Indiana 

Benhur BENH' 1.21 1966 Indiana 

Dual DUAL 1.23 1955 Indiana 

Sage SAGE 1.23 1973 Kansas 

Centurk CENT 1.23 1971 Nebraska 

Redcoat REDC 1.24 1960 Indiana 

Fulton FULT: 1.28 1964 Ohio 

Arthur 71 AR71 1.34 1971 Indiana 

Arthur ART14 1.36 1968 Indiana 
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Table 5.2. Spring wheat and durum varietal yielding ability (VYA) factors.
 

Variety Name Code VYA Year Released 

Marquis MARQ .89 1907 

Reward REWD .92 1928 

Pentad PNTD .93 1911 

Rescur RSCU .94 1947 

Ceres CERS .97 1926 

Conley CNLY .97 1960 

Thatcher TCHR 1.00 1934 

Pilot PILT 1.00 1939 

Regent RGNT 1.00 1939 

Chinook CHNK 1.01 1964 

Carleton CRLT 1.01 1943 

Mindum MNDM 1.03 1917 

Justin JSTN 1.03 1963 

Mida MIDA 1.05 1944 

Renown RENN 1.06 1939 

Hercules HERC 1.07 1968 

Rival RIVL 1.08 1939 

Cadet CDET 1.08 1946 

Pembina PEMB 1.09 1959 

Ramsey RMSY 1.09 1956 

Premier PREM 1.10 1938 

Leeds LEDS 1.10 1966 
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Table 5.2 (continued) Spring wheats and uuLumb.
 

Variety Name Code VYA Year Released
 

Polk POLK 1.12 
 1968
 

Kubanka KUBK 1;12 1909
 

Steward STEW 1.13 1943
 

Redman RDMN 1.13 1945
 

Chris CRIS 1.13 1965
 

Fortuna FORT 1.13 1966
 

Selkirk SELK 1.13 1955
 

Rushmore RUSH 1.14 1949
 

Lee LEE 1.14 1951
 

Langdon LANG 1.14 1956
 

Canthatch CANT 1.15 1959
 

Crim CRIM 1.15 1963
 

Rolette ROLT 1.15 1972
 

Bounty 208 BNTY 1.17 1973
 

Waldron WALD 1.17 1969
 

Ward WARD 1.18 1972
 

Wells WELL 1.18 1960
 

Sentry SNTY 1.19 1965
 

Manitou MANT 1.19 1965
 

Lark LARK 1.23 1971
 

Lakota LKTA 1.24 1960
 

Era ERA 1.26 1970
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5.1 Comparison of pairs of varieties
 

The first step in computing VYA's involved comparing each winter (spring)
 

wheat variety with every other winter (spring) wheat variety. Results are
 

shown in Table E.1 (winter wheat) and Table E.2 (spring wheat) in Appendix E.
 

The entries in the table are values of V.. (i = row, j = column):
 

n..
 

V.. n 1 (Yih/Yh)

1i3 13 h=l
 

where 

V.. = average of ratio of yields of variety i to variety j computed over
ii 

n.. location-years,
 

y. 1
 

Y = yield of variety i in location-year h,
 

YJh= yield of variety j in location-year h,
 

n.. = number of location-years in which variety i and variety j appeared
 

in the same varietal test.
 

No ratios were included in calculating V.. for which either yield was less than
13
 

1.0 bushel/acre. Entries in Tables E.1 and E.2 were limited to the cases
 

where n.. > 20 and/or the standard error of V.. was less than or equal to 0.05
 

and n > 4. Both restrictions were aimed at reducing the variance of our
 

estimates of VYA's.
 

Ratios of yields were preferred to differences as an expression of the
 

superiority of one variety over another. Inspection of raw data suggested that
 

the difference between presently used varieties and older varieties (e.g.
 

Turkey) were larger in good yielding years than in poor years.
 

5.2 Procedure for Estimating VYA
 

Let s denote a standard variety. We considered two different estimates
 

of VYA for variety i. The first was V. itself. The second was

is
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n.
1 

Iv. =n I V. * 
isk= * Vks'
1 


where 

= number of cases for which both Vik and Vks satisfied one of bothn i 

the following conditions: (a) the sample size was > 20, (b) the 

standard error of V values was < 0.05 and the sample size was > 4. 

The quantity, Vis provided a means of estimating VYA for variety i without the 

benefit of varietal tests that contained both varieties i and s. 

As an example, from Table E.l we have 

VFULZ, PAWN = FULZ, TRUM VTRUM, PAWN
 

+ VFULZ, TENM VTENM, PAWN
 

+ VFULZ, VIGO 
 VVIGO, PAWN
 

+ VFULZ, FAIR 
 VFAIR, PAWN
 

+ VFULZ, SENE 
 V SENE, PAWN
 

+ VFULZ, REDC VREDC, PAWN, 

VBULZ, PAWN = (.94)(.94) + (.93)(.88) + (1.00)(1.00) 

+ (.88)(.97) + (.79)(1.21) + (.88)(1.03) 

= 0.90. 

Other considerations ed to a final assignment of VYA = .87 for FULZ = 

Fultz as shown in Table 5.1. 

http:88)(1.03
http:79)(1.21
http:1.00)(1.00
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Final assignment of VYA values involved some subjective judgment. First,
 

VYA values were established for varieties with large sample sizes (Turkey,
 

Triumph, Scout, Arthur for winter wheat; Marquis, Selkirk, Mindum, Lee, Wells,
 

Era for spring wheat and durums). Second, all other varieties had to have
 

VYA values that fit between the values previously established. Third, values
 

for V. and V. helped to establish an initial ordering; and this was followed
 

by rearrangements to make results consistent (if V.. was significantly greater
 

than 1.00, then the VYA for variety i should be greater than that for variety j).
 

Finally, since the rows and columns of Tables E.1 and E.2 are ordered by
 

VYA values, the V.. values should tend to increase as you read down columns,
Ii 

decrease as you read across rows, and elements near the diagonal should be
 

close to 1.00.
 

6.0 VARIABLES IN YIELD MODELS
 

In this section, we define the symbols, mathematical forms, and threshold
 

values for the variables which appear in our winter and spring wheat yield
 

models.
 

6.1 Definitions of Variables
 

Symbols for variables have been chosen to designate both a variable and
 

either a stage, or phase between stages, of crop development to which the
 

given variable applies. Thus, SSM_s, for s = J, would be stored soil moisture
 

deficits at simulated jcinting and SM rs for r = F, s = H is a measure of soil
 

moisture deficits between simulated flag leaf and heading stages.
 

Symbols (letters used) for particular points on Robertson's BMTS are
 

given below. The names (letters) for the stages designated by 1.5, 2.5, and
 

3.5 were not a part of the BMTS. They have been chosen more for ease of
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communication than for the closeness of the relation between the BMTS values
 

and physiological occurrences.
 

Robertson's Approximate 

BMTS Stage (r or s) 


0.0 Planting 


1.0 Emergence 


1.5 Tillering 


2.0 Jointing 


2.5 Flag Leaf
 

Main Effects
 

Robertson's 

BMTS 


3.0 


3.5 


4.0 


5.0 


1) Stored soil moisture deficits at stage s 

2) Square of SSMs 

3) Soil moisture deficit between stages r and s 

4) Square of SM_rs 

Approximate
 
Stage (r or s)
 

Heading
 

Milk
 

Dough
 

Ripe
 

SSMs
 

SSMSQ_s
 

SM rs
 

SMSQ_rs
 

5) Average daily minimum temperature between stages r and s ATNrs
 

6) Average daily maximum temperature between stages r and s ATXrs
 

7) Average daily minimum teiperture degree-days over 50'F
 

between stages r and s T50_rs
 

8) Average daily maximum temperature degree-days over 860 F
 

between stages r and s T86_rs
 

9) Precipitation between stages r and s PR rs
 

10) Excessive precipitation between stages r and s XPR_rs
 

11) Average daily range of temperatures between stages r and s RT rs
 

12) Long-term average daily temperature during January ADTJ
 

13) Square of ADTJ ADTJSQ
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14) Amount of added nitrogen, NI
 

15) Wheat planted on fallowed soil FL (= 0 or 1)
 

Interactions
 

16) T50 rs * PR rs T50PR rs 

17) ADTJ * SM rs JTSM rs 

18) ADTJ * SMStrs JTSMQtrs 

19) FL * ADTJ FLJT 

20) FL * ADTJSQ FLJTSQ 

21) NI * XPR rs NIXPR rs 

22) ADTJ * NI * XPR rs JNIXP rs 

Other Basic Variables 

23) Julian day (D) when stage s is reached D s 

24) Number of calendar days from stage r up to stage s = 

(D_r) - (Ds) D rs 

25) Combined contents of zone 4 and 5 in VSMB at stage s CNTNS-s 

26) Minimum and maximum temperature and precipitation on day d TNd' TXd' PRd 

27) Simulated actual and potential evapotranspiration on day d AEd' PEd 

6.2 Mathematical forms and threshold values.
 

All sums (E) in the formulas to follow indicate a summation of values
 

over Julian days (d) from stage r to one day before seage s where r and s are
 

designated in the symbol used to specify the variable of interest. Thus
 

SMJF involves a summation of AE and PE values over the days involved in
 

simulated jointing (BMTS = 2.0) to simulated flag leaf (BMTS = 2.5). 

Another symbol, ( ) or [ ]+, is used frequently to designate that the
 

function inside the parentheses (brackets) can take on values that are zero
 

or positive. Thus
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(Fd)+ = Fd, if Fd > 0 

= 0 if Fd < 0. 

Formulas for calculating AEd and PEd' which appear below are in Appendix B. 

+
 
(1) 	SMrs = [1 - (EAEd/EPEd)/al] 


Stages (rs): PE ET TJ JF FH FH HM MR
 

Threshold (a1): 0.5 0.6 0.7 0.8 0.8 0.9 0.9 (Winter and Spring Wheat)
 

(2) SSMs = [1 - (CNTNS s)/ 2] 
+ 

Stage (s): P E T J F H M D R 

Winter Wheat 
Threshold (a2): 5 5 5 5 4 3 2 2 (Inches) 

Spring Wheat 
Threshold (a2): 3.5 3.5 3.5 3.5 3.0 2.5 2.0 1.25 0.75 (Inches) 

(3) 	XPRrs = [(PRd) - a3 ] + (inches) 

Stages (rs): PE PT Pi PF PH HM HD 

Winter Wheat 
Threshold (a3): 2 4 6 7 8 2 4 (Inches) 

Spring Wheat
 
Threshold (a3): 2 3 4 6 8 2 4 (Inches)
 

(4) 	ATN-rs = (ETNd)/D_rs (OF) 

(5) 	ATX-rs = (ZTXd)/Drs (OF) 

(6) 	RT-rs = ATX rs - ATNrs (OF)
 

(7) 	T50rs = E(TNd - 50)+/D-rs (OF) 

(8) 	T86_rs = E(TXd - 86) /D_rs (OF) 
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Threshold values were used to define all soil moisture and some temper­

ature variables. Ideally, the threshold values would have been estimated,
 

along with other parameters of the model, by mathematical techniques. How­

ever, the literature on nonlinear estimation does not include functions of
 

the type we used. At the same time, it is important to represent effects of
 

variables over their total range of values as accurately as possible.
 

Inspection of preliminary results relating yields to AE/PE values indi­

cated that AE/PE values were limiting "up to a point" beyond which decreases
 

in yields were not detectable. One could fit a quadratic function but the
 

danger is that a small yield may be associated with a large AE/PE value, not
 

because large values of the AE/PE decrease yields, but because some other
 

variable, which should be a part of the model, "caused" the decreased yield.
 

Thus, adoption of thresholds can limit variables to their effective ranges
 

and leave the explanation of yield variation to other variables. These
 

same concepts were applied to other variables using threshold values.
 

In the absence of analytical procedures to determine threshold values
 

for AE/PE we looked at 40 to 50 years of data at each of five locations in
 

semi-arid areas of Kansas. For each phase of development we pick a pair of
 

potential threshold values and used both to define SM values. Variables
 

using each of thresholds were put in the regression run and the stepwise
 

algorithm picked the ones we used in the final analysis. For SSM values,
 

thresholds were picked so that SSM was close to zero if cbntents of zones in­

volved were close to capacity before draw-down and close to maximum possible
 

contents as draw-down proceeded from jointing-to-ripe.
 

Thresholds used in temperature-related variables were based on judgments
 

of a number of agronomists and a plant pathologist. Here again, the stepwise
 

algorithm picked these variables, when they entered, ahead of other forms
 

such as average minimums or average maximums.
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7.0. WINTER AND SPRING WHEAT YIELD MODELS
 

For our yield models (winter and spring), the following mathematical 

form is used to express a regional yield as a function of the major variables 

affecting yield: 

YR = MAP * VYA *Y [7.1] 

and
 

Y = B0 + BIX1 + B2X2 +---+ B r [7.2]
 

where
 

YR = estimated yield (bu./acre) for a specified region (strata),
 

Y = estimated yield (bu./acre) on an experimental plot basis
 
P
 

(standard variety, average productivity over plots at agricul­

tural experiment fields in the U. S. Great Plains),
 

MAP = management and productivity factor used to adjust from an
 

experimental plot productivity level to productivity on a
 

regional level for a given level of management,
 

VYA = varietal yielding ability (a mean level for varieties popular
 

at a particular time),
 

B0, B1,- Br are parameters (coefficients, constants) associated
 

with the variables in the model,
 

X1, X2,--- Xr are the quantities which vary from season to season
 

[weather-related variables (WRV's), nitrogen amounts,
 

cultural practices (fallow or continuous)].
 

For a specified region, the quantity VYA can vary from season to season as
 

higher yielding varieties are introduced. The factor MAP shows some increase
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in time but may be quite stable over a five-to-ten year period. The B-values
 

give the model its universal character in that they are expected to remain
 

constant over regions.
 

In the early stages of our work, an exponential multiplicative form
 

(linear in log YR) was used jointly with the form shown in [7.2]. No particu­

lar advantage was evident for either form so the simpler additive model was
 

retained for use.
 

7.1 Yields on an experimental plot basis.
 

The plot-based models (winter and spring) were derived by
 

regressing agricultural experiment station average plot yields (adjusted to
 

a standard variety) on WRV's, nitrogen amounts, and cultural practices (fallow
 

or continuous). The B-values (equation [7.2]) for the winter and spring wheat
 

models are shown in Tables 7.1 and 7.2, respectively.
 

7.1.1 Coefficients and variables. Entries in Tables 7.1 and 7.2 are the
 

coefficients for the respective variables shown on the right-hand side.
 

Coefficients of equation [7.2] for prior-to-harvest yield predictions are given
 

at the specified B14TS values. End-of-harvest estimates for winter wheat use
 

the equation generated from entries at BMTS = 4.0 since no variables observed
 

after that point in the crop calendar were statistically significant. Thus, an
 

estimated plot yield for winter wheat on fallow at Garden City, KS, for the year
 

1976 was calculated as:
 

YP = 50.84 ­ 7.25(.656) - 16.55(.95) + 0.386(29.36) 

-0.373(0) - 0.154(1.78) ­ 6.40(.084) 

-0.062(73.8) - 0.172(52.6) - 1.008(.29) 

-0.233(1.17) - 0.402(1.12) - 0.598(.71)
 

-0.473(5.30) + 0.1727(16) + 0.01647(0)
 

http:0.473(5.30
http:0.598(.71
http:0.402(1.12
http:0.233(1.17
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-0.00068(0) - 1.051(0) + 0.365(30.9)- 0.00947 (954.8) 

= 28.3 bu/A 

This is an "end-of-harvest' estimate. Predictions can be made
 

on any date during the season using the most recent "prior-to-harvest" equation.
 

Thus, if current weather is available to April I and the BMTS value is 2.2 on
 

that date, then the winter wheat equation with coefficients under 2.0(J) in
 

Table 7.1 would be used.
 

7.1.2 Estimates based on cultural practice. Our models allow the option
 

of estimating yields for dryland wheat planted on either fallowed land or
 

land which was cropped the previous year. With a few assumptions one can also
 

estimate yields for irrigated wheat.
 

Two steps are necessary to differentiate between fallowed and previously
 

cropped land for yield purposes. They are:
 

(a) 	Values for stored soil moisture deficit (SSM) and soil moisture
 

deficit (SM) variables are chosen from one of the VSMB budgets for
 

fallowing and from another budget for continuous (previously cropped)
 

cropping. (See Section 4.1.6).
 

(b) 	For winter wheat only, the variable FL = 1.0 if fallowed and FL = 0.0
 

if previously cropped.
 

We have not developed special models for irrigated wheat. Rather we simply
 

use the dryland models with the following alterations:
 

(a) 	Coefficients for SSM and SM variables are set equal to zero (this
 

assumes that no moisture deficits, as defined by our variables, occur).
 

(b) 	For winter wheat only, FL = 0.0, and six inches of precipitation
 

are added to PR JF (this assumes moist conditions because of irriga­

tion during this period contribute to deleterious effect of high
 

nighttime temperatures).
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Table 7.1. Coefficients for KSU winter wheat yield model. (Entries are
 
standardized to varieties Pawnee/Commanche and "average"
 
experimental plot yield'levels). 

Model at BMTS: 

0.0 (P) 1.0 (E) 1.5 (T) 2.0 (J) Variables 

32.67 33.01 38.90 49.95 1 

-10.69 

-10.02 

-10.37 

-10.29 

SSMSQP 

SSMS_E 

SSMS% T 

SSM J 

-3.09 

-4.33 -11.57 

+0.163 

SMSQPE 

SM ET 

ADTJ * SM ET 

+0.512 

-0.418 -0.074 

-0.252 

ATN ET 

ATXET 

ATX TJ 

+0.1310 +0.1369 

-0.002641 

+0.1448 

+0.04464 

-0.001677 

+0.1589 

+0.03183 

NI 

NI * ADTJ * XPR PE 

NI * XPR PT 

NI * ADTJ * XPR PT 
NI * XPR PJ 

-0.001205 NI * ADTJ * XPR PJ 

+0.255 

-0.01066 

+0.293 

-0.01141 

, +0.640 

.40.01879 

+0.572 

-0.01577 

ADTJ * FL 

ADTJ * ADTJ * FL 

.175 

11.6 

.187 

11.5 

.242 

11.1 

.275 

10.9 

R2 (Plot Basis) 

STD. DEV. 
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Table 7.1 (continued)
 

Model at BMTS:
 

2.5 (F) 3.0 (H) 3.5 (M) 4.0 (D) Variables
 

51.31 52.03 51.01 50.84 1
 

-6.73 
 SSM F 

-7.10 SSM H 

-5.11 SSM M 

-7.25 SSMSQ_D
 

-16.82 -17.05 -16.88 -16.55 SM ET
 

+0.385 +0.392 +0.385 +0.386 ADTJ * SM ET
 

-0.528 -0.346 -0.373
-0.373 ADTJ * SMSQJF
 

-0.250 -0.162 -0.154 ADTJ * SMSQ FH
 

-7.69 -6.40 SMSQ_HM
 

-0.079 -0.073 -0.064 -0.062 
 ATX ET
 

-0.231 -0.221 -0.189 -0.172 ATXTJ
 

-0.999 -0.865 -1.008
-0.906 T50 JF
 

-0.210 -0.2381 -0.2360 -0.233 PR JF * T50_JF
 

-0.426 -0.421 -0.402 T50 FH
 

-0.764 -0.598 T86 HM
 

-0.473 T86 MD
 

+0.1801 +0.1811 +0.1796 +0.1727 NI
 

+0.01988 
 NI * XPR PF
 

-0.000816 
 NI * ADTJ * XPR PF
 

+0.01618 +0.01650 +0.01647 NI * XPR PH
 

-0.000681 -0.000691 -0.000680 NI * ADTJ * XPR PH
 

-1.013 XPR HM
 

-1.051 XPR HD
 

+0.425 +0.327 +0.331 +0.365 
 ADTJ * FL
 

-0.01154 -0.00871 -0.00865 -0.00947 ADTJ * ADTJ * FL
 

R2
.310 .323 .339 .350 (Plot Basis)
 
10.64 10.55 10.44 10.36 STD. DEV.
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Table 7.2. 	 Coefficients for KSU spring wheat yield model (entries are
 
standardized to the variety Thatcher and average experimental
 
plot yield levels).
 

0.0 (P) 

27.05 

Model at BMTS: 

1.0 (E) 1.5 (T) 

26.90 27.10 

2.0 (J) 

27.94 

2.5 (F) 

54.90 

Variables 

1 

-11.09 -8.50 -5.69 -6.04 

-7.50 

SSM P 

SSMSQ F 

+9.92 

-0.99 

+9.73 

-1.154 

+9.31 

-1.125 

+10.74 

-1.253 

SSM PE 

ADTJ * SM PE 

SM ET 

ADTJ * SM ET 

-0.0142 " -0.0186 

-0.364 

ATN TJ * PR TJ 

ATX JF 

+0.0708 
.077 

10.247 

+0.0704 
.108 

10.109 

+0.'0711 
.136 

9.948 

+0.0732 
.140 

9.940 

+0.0861 
.170 

9.781 

NI 
R2(plot basis) 

STD. DEV. 
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Table 7.2 (continued)
 

3.0 (H) 

Model at BMTS: 

3.5 (M) 4.0 (D) 5.0 (R) Variables 

84.66 134.10 186.41 203.59 1 

-6.18 

-5.97 

SSMSQH 

SSMSQM 

+9.18 

-1.127 

+10.63 

-1.491 

+8.22 

-1.036 

+8.58 

-1.650 

-0.287 

+7.64 

-0.763 

+9.56 

-1.7667 

-0.314 

+7.69 

-0.681 

+8.56 

-1.6567 

ADTJ * SM PE 

SM ET 

ADTJ * SM ET 

SMFH 

ADTJ * SMSQ_FH 

-0.0129 

-0.309 

-0.451 

'0.0249 

-0.367 

-0.203 

-0.757 

-0.024 

-0.0236 

-0.327 

-0.285 

-0.481 

-0.026 

-0.884 

+0.507 

-0.0246 

-0.350 

-0.274 

-0.472 

-0.025 

-0.769 

+0.539 

-0.321 

ATN TJ * PR TJ 

ATX JF 

ATX_FH 

ATXHM 

ATXHM * PR EM 

ATXMD 

T56 MD 

ATX DR 

+0.0874 

.219 

9.539 

+0.0904 

.307 

9.012 

+0.0949 

.386 

8.513 

+0.0968 

.401 

8.424 

NI 

R2 (plot basis) 

STD. DEV. 
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7.1.3 Statistical properties. Values of the coefficient of determination
 

(R 2) and the standard deviation of the deviations of observed plot yields from
 

the regression plane are included in Tables 7.1 and 7.2. The values of
 

R2 
= 0.35 and STD. DEV. = 10.36 at BMTS = 4.0'in Table 7.1 and R = 0.40, STD. 

DEV. = 8.4 at BMTS - 5.0 in Table 7.2 are reminders that estimation of a plot
 

yield in a designated year at a designated location based solely on knowledge
 

of applied nitrogen and WRV-values calculated from meteorological data col­

lected, say 1 to 10 miles away, is subject to considerable error. Well­

controlled wheat experiments commonly have standard deviations of 2 to 4
 

bushels per acre for plot-to-plot variability and this increases as the plots
 

are separated in space and time. The 1034 plot yields, used to develop our
 

winter wheat model, had a standard deviation of 12.8 bu./A and the 306 for
 

spring wheat, a standard deviation of 10.6 bu./A. The main purpose of using
 

plot yields for model development was to choose WRV's whose effects were of
 

sufficient magnitudes to be statistically significant in spite Of large
 

variation in observed yields. Further, the WRV's had to be effective over a
 

wide range of environments in order to come into the model. Almost all
 

coefficients shown in Tables 7.1 and 7.2 exceeded their standard errors by
 

an amount sufficient to declare them statistically significant at the 5% level.
 

7.1.4 What the models say. Growth and development of roots, green matter,
 

and grain are biological processes and we have not attempted to model them.
 

Moisture and temperature provide a substantial part of the environment in which
 

the growth occurs, and it is'"their effects we have tried to measure in our models.
 

A model must first and foremost produce results consistent with known
 

phenomena. Our discussion, relative to the results shown in Tables 7.1 and
 

7.2, will indicate what the "model says" and critical judgment can,then be
 

brought to bear on the results by agronomists, meteorologists, and any others
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who have studied some of the phenomena under consideration. Due to repeated 

use of the terms, we will use (WWM) for winter wheat model, and (SWM) for 

spring wheat model, and abbreviations for variables and crop stages given in 

Section 6.1. Bear in mind that WWM was developed for climates with l0' < ADTJ 

< 50'F and SWM for 0' < ADTJ < 20'F. Almost all the discussion will be rela­

tive to WWM at BMTS = 4.0 (D) in Table 7.1 and SWM at BMTS = 5.0 (R) in
 

Table 7.2.
 

Both WWM and SWM show deleterious effects of high
 

temperatures, in almost all phases of development.
 

For WWM, terms measuring temperature effects directly (ATX, T50, T86)
 

appear with minus signs from E to D; for SWM from T to R. For WWM, the
 

deleterious effect is enlarged by precipitation from J to F and for SWM from
 

T to J and H to M and suggests conditions favorable to plant diseases. Terms
 

which reduce the deleterious effects of high temperatures are: (a) T56 MD in
 

SWM, which may help insure maturity before freezing weather, and (b) the
 

combination ATXET and ATX_TJ in WWM. The combined effect of the latter terms
 

is least when it is relatively warm in the fall so that BMTS gets to 1.5 (T)
 

before winter and ATX_ET is greater than ATX TJ because the low winter
 

temperatures are included in computing ATX TJ. This effect is shown more
 

explicitly in the WWM for BMTS = 1.5 where ATNET has a positive influence
 

and ATX ET a negative influence.
 

The magnitude of effects of soil moisture deficits
 

(SM-terms) depend on a climatic factor (ADTJ).
 

Dependence of effects of SM-terms on ADTJ are pronounced both in the WWM
 

and the SWM. The WWM says, "the larger the value of ADTJ, the more pronounced
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the effect of a prescribed level of a soil moisture deficit" during the phases
 

JF and FH, and SWM says the same for phases PE, ET, and FH. For WWM, in the
 

ET hase, the effect of an SM-value is less pronounced for larger values of
 

ADTJ. Geographically, a soil moisture deficit in the fall is more serious in
 

Montana than in Texas, whereas in the springtime, the situation is reversed.
 

It should also be noted that if we compare the SWM with ADTJ = 50F and the
 

WWM with ADTJ = 300 in relatiyely arid climates, that from season to season,
 

temperature swings will dominate yield variation in the SWM whereas soil­

moisture deficits, along with temperatures, will cause yield variation in the
 

WWM.
 

Excessive precipitation during
 

certain phases reduces yields.
 

For the WWM, precipitation in excess of four inches in the HM phase
 

reduced yields by a bushel per inch and for the SWM, any precipitation in the
 

same phase increases losses due to high maximum temperatures. Consequences
 
/J
 

of excess moisture during the EM phase could include disease losses, poor
 

pollination and lodging. Any precipitation during the JF phase of winter
 

wheat or during the TJ phase for spring wheat increased the effect of high
 

fighttime temperatures. Increased severity of disease problems seems a likely
 

result.
 

Beneficial effects of added nitrogen are partially offset by
 

too much precipitation,, especially in climates with high ADTJ.
 

In the humid wheat-growing areas, the leaching of nitrogen from the root
 

zone is well-known and the WWM shows how benefits from a pound of nitrogen are
 

reduced by excess precipitation. For example, with no excess precipitation,
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and assuming nitrogen is added on a "need" basis, it takes about 6 pounds/
 

acre to increase yields by a bushel per acre. However, in a year with about
 

26 inches of precipitation (18 inches excess) from planting to heading, it
 

takes about 10 pounds of nitrogen to produce a bushel. For spring wheat the
 

model indicates that it takes about 10 pounds of nitrogen to produce a bushel.
 

Leaching is usually not a problem in spring wheat areas of the Great Plains.
 

Gains'from fallowing depend in
 

part on a climatic factor (ADTJ).
 

Gains from fallowing appear as a direct effect in the WWM in addition to
 

the indirect effect of smaller deficits in stored moisture and soil moisture
 

and larger values of the AE/PE ratio. Direct gains depend on ADTJ with gains
 

increasing with decreasing ADTJ's. Fallowing increases time available for
 

natural processes to create nitrate nitrogen for succeeding crops and the
 

benefit of this increased time increases as ADTJ decreases.
 

7.1.5 Some shortcomings of the models. A couple factors whose effects
 

are deleterious and are not included in WWM are freezing temperatures at
 

anthesis and winterkill due to very cold temperatures when the wheat is unpro­

tected by snow. Variables to represent these factors were included in the
 

model development stage but neither situation occurred often enough and/or
 

had sufficient influence on plot yields in the varietal trials to be statis­

tically significant.,
 

Just as freezes at anthesis become part of the random error term of
 

the models, so also do severe epidemics of diseases and major outbreaks of
 

insect infestation. These factors (freezes, diseases, insects) are usually
 

localized and responses vary from field to field but, in severe cases, they
 

can reduce yields by 5 to 10 bushels per acre over several million acres.
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A shortcoming of the SWM'is'lack of breadth in climates over which the
 

model was developed. Plot yields were available for climates with 00 < ADTJ
 

< 200F. It would have been advantageous to have yields and weather data from
 

climates with ADTJ as low as -100F to see if interaction terms containing ADTJ
 

would retain the same coefficients.
 

7.2 Estimating regional yields
 

Equations [7.1] shows the relation between our plot-based estimate (Y )^p
 

and a regional estimate (1R). In application, one needs values for VYA and
 

MAP factors.
 

7.2.1 Regional values for VYA. In the U. S. Great Plains, most state
 

offices of the USDA-SRS publish information on the percentage of wheat planted
 

to different varieties of winter and spring wheat and durums. In many states,
 

these are published on a CRD basis. To determine a VYA value for a CRD for a
 

particular year, we calculated a weighted average of five VYA values from
 

Table 5.1 (winter wheat) or Table 5.2 (spring wheat and durums). The five VYA
 

values were those for the five most popular varieties and the weight for a VYA
 

value was the ratio of its proportion to the sum of the proportions for the
 

five.
 

Table 7.3 shows regional VYA values for CRD's in Kansas over the past 22
 

years. These data were prepared for "bootstrap" testing of our model so that
 

the VYA value for a specified year was computed 6n the basis of percentages
 

planted in the previous year. Table 7.4 shows comparable values for North Dakota.
 

7.2.2 Regional values of MAP. As the name implies, we consider the MAP
 

(management and productivity) factor as heavily dependent on the productivity
 

of the soil (its type, slopes, and a myriad of other factors) and management
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Table 7.3 Regional VYA values for CRD's in Kansas. (Values based on varieties
 
planted in the previous year). 

Harvest 
Year NW NC NE WC C EC SW SC SE 

1956 0.99 1.00 1.00 1.02 1.01 1.00 1.03 1.01 1.01 

1957 0.99 1.00 1.00 1.02 1.01 1.00 1.03 1.01 1.02 

1958 0.99 1.00 1.00 1.02 1.00 1.00 1.03 1.02 1.01 

1959 1.01 1.00 1.00 1.02 1.00 1.01 1.03 1.01 1.01 

1960 1.03 1.00 100 1.02 1.00 1.01 1.03 1.01 1.02 

1961 1.03 1.00 1.00 1.02 1.00 1.02 1.03 1.01 1.02 

1962 1.05 1.03 1.01' 1.05 1.04 1.03 1.05 1.03 1.02 

1963 1.04 1.04 1.01 1.04 1.03 1.03 1.04 1.03 1.02 

1964 1.04 1.04 1.02 1.05 1.04 1.05 1.04 1.03 1.02 

1965 1.05 1.08 1.03 1.06 1.04 1.07 1.05 1.03 1.03 

1966 1.06 1.08 1.04 1.07 1.05 1.07 1.05 1.04 1.03 

1967 1.07 1.09 1.05 1.08 1.06 1.07 1.06 1.04 1.04 

1968 1.09 1.11 1.08 1.08 1.07 1.08 1.07 1.05 1.04 

1969 1.11 1.15 1.08 1.12 1.08 1.10 1.10 1.07 1.06 

1970 1.12 1.14 1.10 1.12 1.10 1.10 1.11 1.08 1.06 

1971 1.14 1.15 112 1.12 1.13 1.11 1.12 1.10 1.07 

1972 1.15 1.15 1.11 1.14 1.12 1.09 1.13 1.10 1.06 

1973 1.15 1.13 1.12 1.15 1.12 1.12 1.14 1.10 1.05 

1974 1.16 1.13 1.08 1.16 1.13 1.08 1.15 1.11 1.05 

1975 1.17 1.13 1.13 1.16 1.13 1.08 1.16 1.12 1.06 

1976 1.16 1.16 1.14 1.16 1.15 1.10 1.16 1.12 1.06 
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Table 7.4 Regional VYA values for CRD's in North Dakota. (Values based on
 
varieties planted in the previous year). 

Harvest 
Year NW NC N4 WC C EC SW Sc SE 

1956 1.11 1.10 1.10 1.12 1.10 1.10 1.13 1.13 1.12 

1957 1.12 1.10 1.10 1.12 1.10 1.10 1.13 1.13 1.12 

1958 1.13 1.10 1.10 1.12 1.10 1.10 1.13 1.13 1.12 

1959 1.13 1.10 1.10 1.12 1.10 1.10 1.13 1.13 1.12 

1960 1.13 1.10 1.10 1.12 1.10 1.10 1.13 1.13 1.12 

1961 1.13 1.10 1.10 1.12 1.10 1.10 1.13 1.13 1.12 

1962 1.13 1.10 1.10 1.12 1.10 1.10 1.13 1.13 1.12 

1963 1.13 1.10 1.10 1.12 1.10 1.10 1.13 1.13 1.12 

1964 1.13 1.10 1.10 1.12 1.10 1.10 1.13 1.13 1.12 

1965 1.12 1.10 1.10 1.12 1.10 1.09 1.13 1.13 1.12 

1966 1.12 1.10 1.11 1.12 1.10 1.10 1.13 1.12 1.12 

1967 1.13 1.11 1.12 1.12 1.11 1.11 1.12 1.12 1.12 

1968 1.13 1.12 1.13 1.11 1.12 1.12 1.12 1.11 1.13 

1969 1.14 1.13 1.14 1.11 1.13 1.13 1.12 1.11 1.13 

1970 1.14 1.13 1.14 1.11 1.13 1.15 1.12 1.10 1.13 

1971 1.15 1.15 1.15 1.11 1.15 1.15 1.12 1.12 1.14 

1972 1.16 1.15 1.15 1.14 1.15 1.16 1.14 1.14 1.16 

1973 1.15 1.14 1.14 1.14 1.15 1.15 1.15 1.15 1.15 
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factors. -Management factors have played an important role in yield increases,
 

especially in semi-arid regions. Unfortunately, we do not, at this time, have
 

data to independently estimate effects of certain management practices (larger
 

machines, soil conservation measures, etc.) as we have the application of
 

nitrogen, cultural practices (fallowing and irrigation) and varietal improve­

ment. Nor do we have the necessary data to show the difference in yields
 

between sand and clay soils and the effect of slope on yields.
 

In terms of equation [7.1], MAP is simply a value to relate regional
 

yields to plot-based estimates. As such, it can be estimated, for a given
 

region, by using historical~estimates of YR and calculating Yp with corre­

sponding historical input data. Various statistical estimators may be used
 

to calculate MAP. We suggest the simple form
 

y-10 y-lO 
MAP(R, W, y) = [ E Y(R, h)]/[ E VYA(R, h) * Y (W, h)] [7.3] 

h=y-lh=y-i 


where
 

MAP(R, W, y) =MAP value for estimating a yield for region R, using
 

weather from station W, in harvest year y,
 

Y(P, h) = histprical yield for region R in harvest year h, 

VYA(R, h) = value of VYA for region R in harvest year h, 

Y (W, h) = plot-based estimate of yield, using weather from station p
 

W, in harvest year h.
 

For the U. S., USDA-SRS generated yields can be used for Y(R, h) values. The
 

CRD is the most likely choice of region. MAP values for CRD's in Kansas and
 

North Dakota are given in Tables 7.5 and 7.6, respectively.
 

Clearly, Equation [7.3] could be calculated using less than 10 years of
 

historical data. Based on our experience to date, the 10 years is a compromise
 

between a series so long that it conceals a trend or so short that year-to-year
 

sampling variation is not adequately removed when no trend is present.
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Table 7.5. 	Regional MAP values for CRD's in Kansas for specified weather
 
station locations.t
 

Crop Reporting Districts and Weather Locations
 

Year NW NC NE WC C EC SW SC SE 

CBY MKO MAN TRI HAY OTT GNC HUT CUS 

1967 .81 .70 .79 .97 .77 .78 .77 .71 .74 

1968 .80 .71 .80 1.00 .77 .78 .76 .72 .76 

1969 .80 .71 .80 .95 .78 .79 .72 .71 .78 

1970 .81 .73 .81 .99 .79 .77 .75 .74 .78 

1971 .82 .73 .86 .98 .82 .77 .75 .76 .79 

1972 .87 .75 .88 .96 .84 .78 .74 .76 .80 

1973 .86 .75 .88 .96 .85 .80 .76 .77 .84 

1974 .90 .78 .87 .96 .84 .81 .77 .79 .86 

1975 .89 .75 .84 .95 .79 .78 .75 .78 .84 

1976 .90 .75 .83 .94 .77 .78 .74 .76 .82 

OCBY = Colby, MKO = Mankato, MAN = Manhattan, TRI = Tribune, HAY = Hays; OTT = 

Ottawa, GNC = Garden City, HUT = Hutchinson, CUS = Columbus. 
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Table 7.6 Regional MAP values for CRD's in North Dakota for specified
 
weather station locations.t
 

Crop Reporting Districts and Weather Locations
 

Crop NW 1 NC 2 NE 3 WC 4 C 5 EC 6 SW 7 SC 8 SE 9
 
Year MNT CRB SNH GVL LGN WLN DCN JAM FGO DCN MND EDG
 

1964 .64 .71 .55 .69 .76 .61 .73 .74 .82 .65 .56 .63
 

1965 .66 .73 .57 .74 .77 .63 .76 .76 .83 .67 .56 .64
 

1966 .68 .74 .59 .75 .79 .65 .78 .75 .83 .68 .57 .65
 

1967 .72 .80 .62 .81 .81 .70 .81 .78 .87 .74 .60 .70
 

1968 .71 .80 .64 .84 .80 .71 .82 .77 .88 .75 .60 .71
 

1969 .74 .86 .66 .87 .81 .76 .85 .77 .89 .77 .64 .72
 

1970 .78 .89 .68 .92 .81 .79 .89 .78 .93 .79 .65 .73
 

1971 .78 .90 .67 .93 .81 .82 .89 .81 .95 .80 .66 .76
 

1972 .83 .96 .72 1.00 .82 .89 .92 .88 .98 .82 .67 .80
 

1973 .81 .93 .68 .98 .80 .86 .89 .87 .96 .82 .66 .78
 

MNT = Minot, CRB = Crosby, LGN = Langdon, WLN = Williston, DCN = Dickenson,
 
JAM = Jamestown, FGO = Fargo, MND = Mandan, EDG = Edgeley, SNH = San Haven,
 

GVL = Oranville
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7.2.3 Regional values of added nitrogen (NI). When estimating a regional
 

yield, values for NI to compute plot-based yield estimates (Yp) should be an
 

"averages" for the region of interest. 
No figures are available for nitrogen
 

applied to wheat on a CRD basis. However, data are, and have been, generated by
 

the USDA-SRS on a state level. From these data we calculated the following
 

rqgression equation to estimate dryland nitrogen use in a region R in harvest
 

year y.
 

NI(R, y) = -151 + 1.84 (AAPR)R + 1.81 y; [7.4] 

y = 55, 56 ..... , 73
 

= -151 + 1.84 (AAP R'+ 1.81 (73);
 

y = 74, 75, 76,
 

and R = CRD's in winter wheat areas in the following states: CO, NE, KS,
 

OK, TX, MO, IL, IN, OH.
 

In Equation [7.4], NI(R, y) is in pounds per acre and
 

AAFR =*average annual precipitation for region R in inches.
 

Equation [7.4] was developed using AAPR values for the states shown above with
 

the exception of Texas. For the other states, AAPR values were averages over
 

the main wheat-growing CRD's rather than over the entire state. Results of
 

applying Equation [7.4] in Kansas are shown in Table 7.7.
 

Models, such as Equation [7.4], developed for a given'size unit (a state)
 

sometimes give misleading results when applied to a smaller unit (a CRD). As
 

a further test of the model, two agronomists at Kansas State University were
 

asked to estimate nitrogen use per acre on a CRD. Using sal's data and their
 

many years of experience, they provided estimates which are summarized in
 

Table 7.8. The data attests to the adequacy of the model for Kansas where
 

the rangein amount applied from CRD to CRD is as great as one would find in
 

any state because of the range in AAPR values. We have assumed that the rate
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Table 7.7 Estimated amount of nitrogen (lbs./A) applied under dryland
 
conditions in Kansas by crop reporting district.
 

Harvest
 
Year NW NC NE WC C EC SW SC SE
 

1956 0 0 10 0 0 14 0 0 16
 

1957 0 0 12 0 0 16 0 0 18
 

1958 0 0 14 0 1 18 0 0 19
 

1959 0 1 16 0 3 20 0 3 21
 

1960 0 3 18 0 5 21 0 4 23
 

1961 0 5 19 0 7 23 0 6 25
 

1962 0 6 21 0 8 25 0 7 27
 

1963 0 8 23 0 10 27 0 9 28
 

1964 0 10 25 0 12 29 0 11 30
 

1965 1 12 27 0 14 30 0 13 32
 

1966 3 14 28 2 16 32 0 15 34
 

1967 5 16 30 4 17 34 2 16 36
 

1968 6 18 .32 5 19 36 4 18 38
 

1969 8 20 34 7 21 38 5 20 39
 

1970 10 22 36 9 23 39 7 22 41
 

1971 12 23 37 11 25 41 9 24 43
 

1972 14 25 39 13 26 43 11 25 45
 

1973 15 27 41 14 28 45 13 27 47
 

1974 17 33 43 16 30 47 14 29 48
 

1975 19 33 45 18 32 48 16 31 50
 

1976 19 33 45 18 32 48 16 31 50
 



56,
 

Table 7.8 Comparison of estimates of amount of applied nitrogen on dryland
 
wheat in Kansas (entries are pounds per acre).
 

2
 
Independent Estimates


CRB Agronomist Agronomist
 
Year Sectors USDA-SRS Model "A" "B"
 

1960 	 Western 0 2 0
 
Central 7 4 6
 
Eastern 22 28 11
 

State 8 6 6 	 4
 

1965 	 Western 1 5 1
 
Central 16 12 14
 
Eastern 31 47 21
 

State 11 12 13 	 10
 

1970 	 Western 10 12 3
 
Central 25 25 25
 
Eastern 40 47 36
 

State 24 21 23 	 18
 

1975 	 Western 19 14 5
 
Central 34 30 30
 
Eastern 49 51 40
 

State 32 30 26 	 22
 

'odel based on Crop Reporting Board, USDA-SRS, data reported on a state-wide
 
basis. (See Eq. 7.4)
 

2Based, in part, on fertilizer sales data plus knowledge and experience.
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of application has remained constant since 1973. Actually, it may have dropped
 

somewhat in 1974, the year of a large price increase.
 

Table 7.9 shows estimated amounts of applied nitrogen for North Dakota.
 

The estimates were based largely on two sources of information: (1) USDA-SRS
 

estimates of amount of nitrogen applied to spring wheat in North Dakota, (2) a
 

special survey conducted by North Dakota State University in 1971 which gave
 

estimates of amount of nitrogen applied in various regions of the state. Based
 

on these surveys, we set up the following algorithm to apportion a statewide
 

estimate to western, centrali and eastern tiers of crop reporting districts:
 

(a) 	Let X = (pounds of nitrogen applied per acre on fields receiving N)
 

times (proportion of fields receiving N)
 

= pounds/acre of N on a statewide basis
 

(b) 	Assign (3/8)X to the western tier, (6/8)X to the central tier, and
 

(15/8)X to the eastern'tier.
 

7.2.4 Regional values for cultural practices. As indicated in Section
 

7.1.2, values for Y can be calculated for dryland wheat grown on fallowed and
 p
 

continuously cropped land and for wheat grown under irrigation. Regional
 

estimates should be a weighted average of these three values where the weights
 

are the percent of land under each cultural practice. These percents are
 

available through some of the state USDA-SRS offices. Percents of wheat acreage
 

planted under each of the three cultural practices in Kansas and North Dakota
 

are shown in Tables 7.10 and 7.11, respectively. Since the tabled values were
 

used in a "bootstrap" test, they are actually the proportions for the previous
 

year.
 

This completes our discussion of the type of data needed to apply our
 

models on a regional basis. Though the discussion centered on winter wheat,
 

the same procedures and date are needed for spring wheat and durums.
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Table 7.9 Estimated amount of nitrogen (Tbs./A) applied under dryland
 
conditions in North Dakota by crop reporting district.
 

Year NW NC NE WC C EC SW SC SE
 

1956 0 0 5 0 0 5 0 0 5
 

1957 0 0 5 0 0 5 0 0 5
 

1958 0 0 5 0 0 5 0 0 5
 

1959 0 0 5 0 0 5 0 0 5
 

1960 0 0 5 0 0 5 0 0 5
 

1961 0 0 5 0 0 5 0 0 5
 

1962 0 0 5 0 0 5 0 0 5
 

1963 0 0 5 0 0 5 0 0 5
 

1964 0 0 5 0 0 5 0 0 5
 

1965 1 3 7 1 3 7 1 -3 7
 

1966 1 3 7 1 3 7 1 3 7
 

1967 2 3 8 2 3 8 2 S 8
 

1968 2 4 9 2 4 9 2 4 9
 

1969 2 11 4 1i 14
4 2 11
 

1970 3 7 17 3 7 17 3 7 17
 

1971 4 8 1? 4 8 19' 4 .8 19
 

1972 4 8 21 4 8 21 4 8 21
 

1973 5 9 23 5 9 23 .5 .9 23
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Table 7i10 Percentages of fallowed (F), continuous cropped (C) and irrigated
 
(I) wheat in Kansas by CRD. (Values based on previous year's
 
percentages).tt
 

Harvest NW NC WC C SW SC
 
Year F C I F C F C I F C F C I. F C
 

1956 84 16 0 20 S0 70 30 0 15 85 65 35 5 12 88 

1957 85 15 0 24 76 74 26 0 20 80 67 27 6 20 80 

1958 87 13 0 32 68 69 25 6 24 76 57 19 24 18 82 

1959 86 14 0 38 62 83 15 2 35 65 78 16 6 33 67 

1960 88 12 0 34 66 82 15 3 26 74 69 24 7 21 79 

1961 87 12 1 33 67 81 16 3 25 75 68 25 7 19 81 

1962 89 11 0 31 69 80 17 3 22 78 68 25 7 17 83 

1963 90 9 1 45 55 86 11 3 32 68 75 18 7 25 75 

1964 92 7 1 45 55 84 12 4 34 66 75 17 8 27 73 

1965 .88 11 1 45 55 86 10 4 35 65 77 15 8 28 72 

1966 87 11 1 44 56 86 11 3 35 65 74 16 10 27 73 

1967 93 6 1 46 54 85 12 3 36 64 73 17 10 27 73 

1968 89 10 1 39 61 83 14 3 29 71 70 20 10 22 78 

1969 91 8 1 36 64 85 10 5 28 72 71 18 11 20 80 

1970 93 6 1 43 57 86 10 4 34 66 71 18 11 22 78 

1971 94 5 1 49 51 88 8 4 41 59 78 12 12 30 70 

1972 94 5 1 52 48 90 6 4 42 48 78 12 12 29 71 

1973 94 5 1 52 48 89 7 4 41 59 77 11 11 28 72 

1974 97 2 1 55 45 93 3 4 41 59 82 8 10 27 73 

1975 95 4 1 39 61 89 5 5 36 64 78 11 11 20 80 

1976 95 4 1 35 65 92 3 5 28 72 73 12 15 20 80 

tThe NE, EC, and SE CRD's were 100% continuous cropping (C).
 

ttSource: Annual Reports. Kansas State Board of Agriculture.
 

http:percentages).tt
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Table 7.11 	Percentages of fallowed (F) and continuous cropped (C) wheat in
 
North Dakota by CRD. (Values based on previous year's percentages).t
 

NW NC NE WC C EC SW SC SE
 

Year F C F C F C F C F C F C F C F C F C
 

1956 81 19 43 57 34 66 58 42 34 66 39 61 57 43 26 74 15 85 

1957 78 22 44 56 41 59 49 51 35 65 48 52 65 35 22 78 13 87 

1958 87 13 57 43 54 46 58 42 46 54 54 46 71 29 27 73 20 80 

1959 92 8 75 25 63 37 61 39 55 45 61 39 62 38 32 68 24 76 

1960 92 8 78 22 70 30 59 41 58 42 57 43 59 41 31 69 23 77 

1961 92 8 74 26 71 29 61 39 58 42 59 41 64 36 26 74 23 77 

1962 96 4 80 20 77 23 69 31 64 36 64' 36 68 32 41 59 24 76 

1963 96 4 82 18 75 25 73 27 72 28 71 29 72 28 45 55 37 63 

1964 98 2 87 13 90 10 81 19 80 20 791 21 86 14 55 45 44 56 

1965 97 3 87 13 88 12 80 20 75 25 72 28 82 18 51 49 45 55 

1966 96 4 88 12 82 18 82 18 78 22 73 27 86 14 51 49 42 58 

1967 96 4 85 15 79 21 81 19 75 25 74 26 86 14 50 50 42 58 

1968 93 7 81 19 75 25 79 21 70 30 64 36 85 15 46 54 39 61 

1969 93 7 80 20 72 28 78 22 67 33 65 35 84 16 45 55 36 64 

1970 96 4 88 12 80 20 85 15 80 20 75 25 93 7 61 39 47 53 

1971 97 3 93 7 83 17i 92 8 86 14 76 24 96' 4 71 29 63 37 

1972 95 5 86 14 78 22 89 11 77 23 67 33 94 6 68 32 56 44 

1973 96 4 87 13 74 26 89 11 75 25 57 43 96 4 74 26 55 45 

tSource: North Dakota Wheat Historic Estimates, 1955-70, -and North Dakota
 

Crop and Livestock Statistics - annual summaries compiled by North Dakota
 
Crop and Livestock Reporting Service.
 

I 
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8.0 APPLICATIONS
 

Bootstrap tests of the winter and spring wheat yield models were applied
 

to Kansas and North Dakota, respectively. Results are shown in Tables 8.1
 

and 8.2. Non-weather input data can be found in Tables 7.7 and 7.9 (applied
 

nitrogen); 7.3 and 7.4 (VYA values); 7.5 and 7.6 (MAP values); and 7.10 and
 

7.11 (mix of cropping practices). Daily values for precipitation, minimum
 

and maximum temperatures were recorded at the weather stations shown in
 

Tables 7.5 and 7.6.
 

In a bootstrap test, data used in development of a model are not used to
 

test the model. Accordingly, MAP values were calculated for the ten-year
 

period prior to a test year. VYA values, nitrogen values and the mix of
 

cropping practices (F, C, and I) were calculated from information available
 

for the year prior to the test year.
 

Entries in Tables 8.1 and 8.2 give model-estimated "end of harvest"
 

yields that can be compared with USDA-SRS estimates for each crop reporting
 

district and for each state as a whole. For this test, MAP values were
 

computed and final comparisons made with USDA-SRS yields per harvested acre.
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Table 8.1 Comparison of model(KSU) and USDA (SRS) yields for Kansas using
 
one weather station per CRD (Bootstrap Test). Entries are bushels 
per acre. 

Crop Reporting District and Percent Acreage 

Crop NW NC NE WC C EC SW SC SE 
Year 10% 12% 3% 11% 15% 4% 17% 23% 5% State 

CBY MKO MAN TRI HAY OTT GNC HUT CUS 

1967 KSU 27.9 22.3 20.9 23.7 21.3 21.6 22.9 16.5 25.2 21.7 

SRS 23.0 21.0 26.7 20.4- 17.5 25.0 15.5 17.6 30.1 20.0 

1968 KSU 16.6 27.5 34.2 22.4 23.5 31.9 26.7 29.3 28.8 26.0 

SRS 20.9 30.3 38.7 13.3 27.1 36.4 14.5 28.1 34.3 26.0 

1969 KSU 26.9 32.7 32.7 27.6 31.4 34.8 25.2 29.4 30.7 29.3 

SRS 29.1 33.5 31.0 30.3 29.0 28.2 32.1 32.2 29.5 31.0 

1970 KSU 24.7 32.8 24.9 33.3 25.7 28.0 29.6 26.9 30.8 28.6 

SRS 33.7 33.6 33.0 35.6 30.9 31.1 33.3 32.5 33.0 33.0 

1971 KSU 28.0 33.4 37.8 35.1 31.2 35.2 27.9 30.7 32.6 31.3 

SRS 37.1 40.4 45.2 30.7 33.5 39.3 31.4 32.9 39.1 34.5 

1972 KSU 27.4 33.2 39.7 18.7 31.0 33.3 24.2 28.6 33.3 28.3 

SRS 32.7 34.9 38.2 29.6 33.9 36.1 32.6 34.1 36.7 33.5 

1973 KSU 33.0 35.7 40.7 34.0 39.6 33.9 32.7 33.3 31.4 34.6 

SRS 39.0 43.3 34.7 '34.6 39.1 35.1 33.6 36.5 34.8 37.0 

1974 KSU 39.8 38.1 39.4 35.6 37.3 35.8 29.8 32.5 30.4 34.7 

SRS 32.7 28.4 30.7 31.8 23.1 28.3 26.6 25.8 27.6 27.5 

1975 KSU 29.4 31.6 37.1 29.2 33.9 32.5 26.5' 34.1 32.9 31.4 

SRS 32.3 29.9 31.4 30.1 29.5 30.0 27.1 28.0 25.9 29.0 

1976 KSU 37.5 28.8 36.6 21.0 29.3 35.5 25.- 30.4 32.9 29.4 

SRS 32.0 35.0 31.0 30.0 30.0 25.0 26.0 28.0 26.0 29.5 

tSee Table 7.5 for weather locations. 



Table 8.2 Comparison of model (KSU) and USDA (SRS) yields for North Dakota using one or two weather stationsi
 

per CRD (Bootstrap Test). Entries are bushels per acre.
 

Crop Reporting District and Percent Acreage 

NW NC NE WC C EC SW SC SE 
17% 12% 19% 9% 10% 10% 9% 6% 8% 

CRB MNT SNH GVL LGN WLN DCN JAM FGO DCN MND EDG State 

1964 KSU 20.9 19.1 19.3 15.9 25.3 17.0 15.8 21.5 22.2 14.9 17.1 15.6 20.0 
SRS 25.4 26.4 29.3 21.6 25.5 25.7 18.7 17.3 17.5 -23.8 

1965 KSU 23.4 22.9 20.7 21.8 25.2 19.4 19.3 24.1 28.0 17.8 19;5 20.2 -22.6 
SRS 27.0 26.2 31.2 25.3 22.8 28.9 21.7 21.7 22.6 26.0 

1966 KSU 17.6 18.3 17.7 15.2 25.3 13.3 18.0 15.6 20.3 15.9 14.7 11.7 18.1 
SRS 25.3 24.6 26.4 22.1 21.1 24.8 22.1 19.2 19.6 23.4 

1967 KSU 19.7 20.7 20.7 19.2 32.8 18.7 19.2 22.9 28.7 17.8 16.8 20.3 23.2 
SRS 17.9 20.7 28.9 20.4 20.2 29.7 24.5 17.2 21.5 22.6 

1968 KSU 19.8 24.1 23.6 25.1 32.5 19.0 21.9 28.7 28.5 21.2 20.3 26.8 25.7 
SRS 23.3 24.5 31.4 23.6 29.0 33.6 23.6 22.9 27.1 26.8 

1969 KSU 29.1 27.3 28.8 26.7 34.4 23.6 26.8 28.9 25.1 25.1 20.4 27.1 28.0 
SRS 31.7 30.2 33.8 27.7 30.8 32.4 23.9 23.1 26.0 29.8 

1970 KSU 20.6 23.9 23.6 21.3 26.1 17.7 21.4 14.0 26.4 20.1 16.5 15.8 21.3 
SRS 24.0 22.2 28.1 21.1 23.7 26.7 20.8 16.5 21.2 23.6 

1971 KSU 26.0- 25.4 29.0 23.9 39.9 19.1 23.4 24.2 33.0 21.8 23.5 22.0 27.9 
SRS 29.7 30.7 35.8 27.7 33.4 36.4 27.8 26.5 32.0 31.8 

1972 KSU 39.4 38.3 40.0 36.9 39.5 38.2 38.8 25.5 33.2 35.0 25.1 29.0 35.0 
SRS 29.6 28.5 31.3 30.0 27.0 30.6 28.3 23.8 25.8 28.9 

1973 KSU 26.4 26.2 26.2 27.3 34.3 21.5 21.7 15.5 31.0 19.8 17.6 22.1 25.4 
SRS 29.9 29.4 30.3 26.4 22.0 30.0 28.8 19.7 23.7 27.5 

tSee Table 7.6 for location names.
 



64 

9.0 REFERENCES
 

1. 	Baler, W. 1973. Crop-weather analysis model: Review and model development.
 
Jour. Appl. Meteor. 12: 937-947.
 

2. 	Bajer, W. and G. W. Robertson. 1965. Estimation of latent evaporation from
 
simple weather observations. Can. J. Plant Sci. 45: 276-284.
 

3. 	Baier, W. and G. W. Robertson, 1966. A new versatile soil moisture budget.
 
Can. J. Plant Sci. 46: 299-314.
 

4. 	Baier, W., 1971. Evaluation of latent evaporation estimates and their
 
conversion to potential evaporation. Can. J. Plant Sci. 51: 255-266.
 

5. 	Baier, W., D. Z. Chaput, D. A. Russello, W. R. Sharp, 1972. Soil moisture
 
estimator program system. Tech. Bull. 78 Agrometeorology Section,
 
Agriculture Canada, Ottawa.
 

6. Hsieh, C., 1973. Atlas of China, p. 32, McGraw-Hill, New York.
 

7. 	Jury, W. A. and C. B. Tanner, 1975. Advection modification of the Priestley
 
and Taylor evapotianspiration formula. Agron. Jour. 67: 840-842.
 

8. 	Linsley, R. K., M. A. Kohler, and J. L. H. Paulhus, 1949. Applied
 
hydrology. McGraw-Hill Book Co., Inc., New York.
 

9. Priestley, C. H. B. and R. J. Taylor, 1972. On the assessment of surface
 
heat flux and evaporation using large scale parameters. Mon. Wea.
 
Rev. 100: 81-92.
 

10. Robertson, G. W., 1968. A biometeorological time scale for a cereal crop
 
involving day and night temperatures and photoperiod. Intern. J.
 
Biometeor. i2: 191-223.
 

11. 	 Smithsonian Institute, 1951. Smithsonian meteorological tables, 6th ed.,
 
Washington, D.C.
 

12. 	 Stuff, R. J., 1975. Preliminary evaluation of phenological models for
 
spring wheat. Tech. Memo. #6134, Lockheed Electronics Co., Johnson
 
Space Center, June.
 

13. Tanner,-C. B. and W. A. Jury, 1976. Estimating evaporation and transpira­
tion from a row crop during incomplete cover. Agron. Jour. 68;
 
239-243.
 



A-I 

APPENDIX A
 

ADJUSTING ROBERTSON'S BIOMETEOROLOGICAL TIME
 
SCALETO,WINTER WHEAT CLIMATES
 

AND VARIETAL MATURITIES
 

1. 	'Recommendations
 

For winter wheat in the Great Plains region, we recommend that the daily
 

increments of development (DID), produced by direct application of Robertson's
 

biometeorological time scale (BMTS), be modified by multiplying each DID, by
 

(1) M 70 = .5684 + (.025081)ADTJ - (.006139)AAPR, 

where 

M = a multiplier for a varietal maturity class defined by varieties 

popular in the Great Plains region in 1970, 

ADTJ = long-term average daily temperature for the month of January 

for a specified location or region (e.g. a CRD),
 

AAPR = Average annual precipitation for a specified location or 

region.
 

The scalar multiplier should be applied from simulated emergence to heading
 

only. Values of M70 for various combinations of ADTJ and AAPR are shown in
 

Table A.l.
 

For LACIE areas, other than the Great Plains, we do not have information
 

on popular varieties (and hence varietal maturities) in our data bank. Two
 

possible courses of action for regions in the Northern hemisphere are:
 

a. 	Assume the popular varieties have maturities similar to those found
 

in the Great Plains for the same combination of values of ADTJ and
 

AAPR and use M70 from Equation 1.
 

or
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b. If information is avaiable within a region, on varietal maturities
 

relative to U, S. varletaA maturity classes, then the following set
 

of equations can be used to estimate a multiplier value:
 

(2) Mearly = . 7037 + (.023445)ADTJ - (.006735)AAPR, 

(3) Mmid-early = .7613 + (.018766)ADTJ - (.007251)AAPR, 

(4) Mmidlate = 7905 + (.012568)ADTJ - (.005733)AAPR, 

(5) late = .7243 + (.009613)ADTJ - (.003536)AAPR.
 

Equations (2) through (5) were established using varieties, or varieties
 

similar to those, shown in Table A.2.
 

The remainder of this report deals with methodology used to establish
 

Equations (l)-(5), a test of the results for the Great Plains area, and com­

ments on potential for improved models.
 

2. Methodology and Statistical Analysis
 

To estimate the increase or decrease in calendar days from emergence to
 

heading associated with a given scalar multiplier, a computer program was
 

written to systematically apply a range of multiplier values to DID's given
 

by the BMTS over as few as four and as many as 56 seasons at Branch Agricultur­

al Experiment Station (BAES) locations in the Great Plains. Multiplier values,
 

over a range of 0.55 units, in increments of 0.05, were applied at each loca­

tion. The BMTS was started each fall with either a known planting date or
 

the average of planting dates for a BAES location. A computer printout showed,
 

for each multiplier value, the average Julian day when the adjusted BMTS
 

(A-BMTS) reached 3.0 (heading on the BMTS scale). The average was computed
 

over seasons. A portion of the results are shown graphically in Figure A.l.
 

The next step was to determine, for each location, a multiplier value
 

that would equalize average simulated headings with average observed heading
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dates for specified maturity classes. Two approaches were applied to the
 

problem of defining maturity classes.
 

Approach #1. Varieties for which considerable heading data were avail­

able from varietal trials at BAES were singled out to represent early, mid­

early, mid-late, and late maturities (see Table A.2). For a given location,
 

average heading dates were computed for varieties belonging to the various
 

maturity classes. Graphs similar to those in Figure A.1 were used to associate
 

a multiplier value with.an average observed heading date for a maturity class.
 

The selected multiplier values are shown in Table A.3. For example, the average
 

heading date for Scout (mid-early maturity) at Garden City, Kansas was day
 

number 136.6 and from Figure A.1, this corresponds to the multiplier 1.23,
 

recorded in Table A.3. Approach #1 was used in deriving Equations (2)-(5).
 

Approach #2. For each season, at each BAES, three popular varieties
 

were singled out to provide yield and phenology data. Popular varieties
 

were chosen by examining USDA-SRS data. The average of the average observed
 

heading dates of the three varieties was computed and referred to Figure A.1,
 

and similar graphs, to select a multiplier value. Multiplier values, so
 

selected, changed from year to year only if the selected popular varieties
 

changed. Multipliers for the harvest years of 1950, 1960, 1970 are shown in
 

Table A.3. There is a clear movement toward planting earlier varieties in
 

Oklahoma and Texas during the 1950 to 1970 time frame. If we take the column
 

headed "Late" maturity to represent the period before 1940, then a movement
 

toward planting earlier maturing varieties in the 1940's, throughout the Great
 

Plains, is even more apparent.
 

By following the values of multipliers in Table A.3 from the Late maturity
 

class, through 1950, 1960, and 1970, and then to the Early maturity class one
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concludes that the movement by farmers toward adopting earlier maturing
 

varieties has peaked. For many locations there has been little or no change
 

from 1960 to 1970. This is the basis for the recommendation that Equation (1)
 

derived for varieties popular in 1970 can be used at the present time.
 

The variation in multiplier values from location-to-location shown in
 

Table A.3 suggested that factors existed causing variation in the length of
 

time from emergence-to-heading not accounted for by air temperature and
 

daylength alone (factors of the BMTS). First it was noted that variation
 

in multipliers was related to latitude and elevation of the BAES. (See
 

December Monthly Progress Report for Contract NAS9-14282). While such a
 

relation would help to determine multipliers for points between the BAES's in
 

the Great Plains, it became clear that the formulas would not be applicable
 

in other LACIE regions.
 

Two factors not included in Robertson's BMTS are soil temperature and
 

soil moisture. Soil temperature lags behind air temperature both in the­

period of declining temperatures leading to dormancy and in the period of
 

increasing temperatures coming out of dormancy. The amount of lag coming out
 

of dormancy is dependent on the severity and duration of a cold spell. The
 

more heat that is taken out of the soil, the more that must be restored fol­

lowing dormancy. Hence one might expect to find in the Northern hemisphere
 

that some of the location-to-location variation in multiplier values is
 

associated with long-term average daily temperatures for January (ADTJ).
 

Lack of soil moisture can induce an increased rate of maturity since
 

biological functions are accelerated. Excess soil moisture acts together
 

with sub-freezing temperatures to cause a larger lag between soil and ambient
 

air temperatures than under drier moisture conditions and results in slower
 

plant development in the post-dormancy period. Average annual precipitation
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(AAPR) has been chosen to represent the soil moisture effect at a location.
 

Better explanatory variables can probably be found but values for ADTJ and AAPR
 

are readily available for not only the Great Plains but also other LACIE areas.
 

Values for ADTJ and AAPR are given in Table A.3 for BAES locations in the
 

Great Plains. Regression analyses were performed using multipliers for a
 

maturity class as a dependent variable and ADTJ and AAPR as independent
 

variables. Allowance was made for testing models other than those linear in
 

ADTJ and AAPR. For maturities represented by "1970 varieties", a model which
 

included an interaction term gave a statistically better fit than that with
 

linear terms only but this mbdel is not being recommended in place of (1)
 

because:
 

a. 	The reduction in the standard error of estimate from a = .092 to
 

a = .085 did not appear large enough to warrant dropping the simpler
 

linear model in favor of a model that may give misleading results
 

under extrapolation.
 

b. 	The models for "1950 and 1960 varieties" were linear in ADTJ and AAPR
 

as were those for Early, Mid-Early, Mid-Late, and Late Varieties.
 

c. 	There is no apparent physical explanation to account for an inter­

action term.
 

d. 	The interaction term may have been a result of the particular combin­

ation of locations and varieties used and may not be present with
 

some additional strategically located data points.
 

e. 	Frequency distributions of differences between observed and model
 

estimated heading dates, for 168 location-years between 1965 and
 

1973, were almost identical for both models.
 

Table A.4 summarizes the major statistical results relative to prediction
 

equations for multipliers. Small standard errors for the coefficients and
 



A-6
 

large values of R2 (square of the multiple correlation coefficient) show the
 

importance of ADTJ and AAPR in explaining variation in multiplier values among
 

t 

locations.
 

3. A Test of the Model
 

To test the power of our model to determine a multiplier which will
 

produce simulated headings that age close to actual heading dates, for diverse
 

climates, the multipliers (M70 ) produced by Equation (1) were applied to DID's
 

produced by the BMTS for the years 1965 to 1973 at each location where heading
 

dates were available in our data bank. The results are shown in Table A.5 which
 

give the average observed heading day for three popular varieties, the Julian
 

day when the adjusted BMTS (A-BMTS) reached simulated heading, and the day
 

when simulated heading would have been reached if no adjustment (U-BMTS were
 

applied (multiplier = 1.0).
 

Results from Table A.5 are partially summarized in Table A.6 which shows the
 

frequency distribution of absolute differences between observed headings and
 

A-BMTS simulated headings and between observed and U-BMTS simulated headings.
 

Results in Table A.6 indicate that 83% of the simulated headings would be within
 

+7 days of the average observed heading date of three varieties. A detailed
 

look at the 10 cases for which the absolute difference between observed and
 

model exceeded 11 days showed no particular geographical or temporal pattern.
 

The consequences of not adjusting Robertson's BMTS to winter wheat
 

varieties and conditions is shown rather explicitly in Table A.6. Forty-six
 

percent of the differences are greater than seven days with deviations, as
 

large as 30 days occurring. Clearly, use of equation (1) and application of
 

M70 to DID's, while not as precise as might be achieved with further work,
 

provides a marked improvement over use of an unadjusted BMTS for Winter Wheat.
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4. 	Potential for Improvement
 

An obvious approach to improvement is to look for variables other than
 

the 	average daily temperature in January (ADTJ) and average annual precipita­

tion 	(AAPR) to more accurately reflect location-to-location variation in the
 

crop 	calendar. However, it should be noted that the root mean square for
 

differences between observed and A-BMTS heading dates, shown in Table A.5, is 6
 

days which compares with about 4 days for Robertson's BMTS applied to a single
 

variety of spring wheat. Part of the difference in the root mean squares is
 

due to (a) sets of three varieties used in some location-years had maturities
 

different from those used to estimate M70' (b) variation in observer's defini­

tion 	of heading dates (many different obseYvers provided heading dates at the
 

BAES's) and (c) variation in planting dates between observation and model.
 

For general application of results, one seeks explanatory variables which
 

are available for all LACIE areas and/or simple to calculate from historical
 

data. A search for other explanatory variables may provide some improvement
 

but may not be worth the effort.
 

Relative to year-to-year effects we ran one test which gave negative
 

results. In this test we ran the A-BMTS, season-by-season, using M70' with
 

ADTJ and AAPR inputs from emergence to February 1.
 

On February 1, M70 was recomputed by replacing ADTJ (the average daily
 

temperatures for many seasons) by the average daily temperature for January
 

for that particular season. The simulation from February 1 to heading was
 

completed using this new multiplier. The results for six locations in Kansas
 

for the harvest years 1965 to 1973 showed larger discrepancies (differences
 

between observed and model-generated heading dates) than those in Table A.5
 

where the same value of M70 is used season after season. With hindsight, this
 

result should have been premeditated. While the average daily temperature in
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January (ADTJ), computed over many years, may be a reasonable measure of the
 

average heat loss at a location, relative to other locations, and accounts
 

for some of the spacial variation in multipliers for the daily increments of
 

developments (DID's); it does not follow that the average daily January
 

temperature for a particular year is a precise measure of the heat loss for
 

that year relative to other years.
 

Sizeable improvement in the accuracy of measuring the development rate of
 

winter wheat probably involves going back to the fundamental ideas used by
 

Robertson in developing the BMTS for spring wheat. Our work suggests that
 

some measure of soil temperature and soil moisture should be incorporated into
 

the DID's so that the effects of these factors would be included in simulating
 

both year-to-year and location-to-location variation in the crop calendar.
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Table A.1 Scalar multiplier for adjusting Robertson's biometeorological time to winter wheats.
 

Annual 
Precip. 
(Inches) 

7.5 10.0 12.5 15.0 
January Average Temperature (Fahrenheit Degrees) 

17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0 47.5 50.0 

0.70 0.76 0.82 0.88 0.95 1.01 1.07 1.13 1.20 1.26 1.32 1.38 1.45 1.51 1.57 1.64 1.70 1.76 

15 0.66 0.73 0.79 0.85 0.92 0.98 1.04 1.10 -1.17 1.23 1.29 1.35 1.42 1.48 1.54 1.60 1.67 1.73 

0.63 0.70 0.76 0.82 0.88 0.95 1.01 1.07 1.14 1.20 1.26 1.32. 1.39 1.45 1.51 1.57 1.64 1.70 

25 0.60 0.67 0.73 0.79 0.85 0.92 0.98 1.04 1.10 1.17 1.23 1.29 1.36 1.42 1.48 1.54 1.61 1.67 

0.57 0.64 0.70 0.76 0.82 0.89 0.95 1.01 1.07 1.14 1.20 1.26 1.32 1.39 1.45 1.51 1.58 1.64 

35 0.54 0.60 0.67 0.73 0.79 0.86 0.92 0.98 1.04 1.11 1.17 1.23 1.29 1.36 1.42 1.48 1.54 1.61 

0.51 0.57 0.64 0.70 0.76 0.82 0.89 0.95 1.01 1.08 1.14 1.20 1.26 1.33 1.39 1.45 1.51 1.58 

45 0.48 0.54 0.61 0.67 0.73 0.79 0.86 0.92 0.98 1.04 1.11 1.17 1.23 1.30 1.36 1.42 1.48 1.55 

0.45 0.51 0.57 0.64 0.70 0.76 0.83 0.89 0.95 1.01 1.08 1.14 1.20 1.26 1.33 1.39 1.45 1.52 

c 



A-Il
 

,Table A.2 Winter wheat varieties used to define maturity classes.
 

ADTJ < 200F 

Maturity Hard Wheats 

Early Lancer, Warrier, Hume 

Mid-Early Nebred, Winoka, 
Winalta 

Mid-Late Minter 

Late Kharkof, Yogo, 
Cheyenne 

ADTJ > 200F
 

Hard Wheats 


Triumph class 


Scout class 


Comanche, 

Pawnee
 

Turkey, 

Kharkof
 

Soft Wheats
 

Monon, Benhur,
 
Knox
 

Arthur
 

Dual, Fairfield
 

Trumbull, Redcoat
 



Table A.3 BMTS multipliers which equate average observed heading dates for maturity classes to average
 
simulated heading dates and values of explanatory variables.
 

Maturity Classes Explanatory Variables 

Varieties Popular in; ADTJ AAPR 
Location 1970 1960 1950 Late Mid-Late Mid-Early Early 

Grand Rapids, MN -- .81 -.81 .76 .80 .81 .84 6.1 25.7 
Minot, ND .73 .70 -- .65 .70 .75 .79 7.0 15.4 
Williston, ND .77 .... 76 .77 .80 .82 10.0 14.1 
Dickinson, ND .82 .86 .85 .78 .83 .83 .90 10.4 15.5 
Brookings, SD -- .78 -- .76 .78 .80 .81 13.4 19.8 
Waseca, MN .74 .73 .72 .69 .72 .76 .78 13.6 28.3 
St. Paul, MN .70 .73 .75 .65 .73 .75 .78 14.6 24.7 
Havre, MT .88 .90 .87 .85 .90 .96 1.04 16.2 12.3 
Ames, IA -- .88 .94 .81 .85 .93 1.00 19.5 31.8 
Moccasin, MT .96 .92 -- .84 .90 .96 .99 20.8 14.0 
Alliance, NB 1.10 1.04 1.04 .97 1.08 1.05 1.12 22.9 16.7 
Mead, NB .93 .. .. .83 1.01 1.03 1.15 23.7 27.8 
North Platte, NB 1.05 1.00 1.04 .97 1.09 1.02 1.15 24.0 20.7 
Wanatah, IN .96 .89 -- .82 .85 .93 .98 24.7 36.0 
Akron, CO 1.21 1.22 1.17 .96 1.07 1.24 1.28 25.1 17.7 
Lincoln, NB -- .84 .84 .78 .87 .95 1.00 25.5 27.3 
Lafayette, IN 1.05 1.03 .88 .86 .91 1.04 1.10 25.7 36.8 
Fort Collins, CO 7-.. .. .97 1.08 1.20 1.24 26.0 14.5 
Julesburg, CO 1:17 .. .. .97 1.10 1.20 1.22 26.4 16.8 
Yellow Jacket, CO 1.20 1.18 -- 1.08 1.17 1.22 1.24 26.5 13.3 
Vickery, OH .... .. .83 -- -- 1.01 27.0 35.0 
Urbana, IL .90 .92 .88 .71 .83 .97 1.06 27.1 36.6 
Custar, OH .93 .. .. .84 .... .98 27.1 35.3 

.Wooster, OH 1.03 1.05 1.01 .96 1.00 1.04 1.10 27.4 38.1 



Table A.3 (continued)
 

Maturity Classes Explanatory Variables
 

Varieties Popular in: ADTJ AAPR 
Location 1970 1960 1950 Late Mid-Late Mid-Early Early 

Canfield, OH -- -- -- 1.03 .... 1.11 27.5 34.0 
Manhattan, KS 1.00 1.01 1.03 .88 .97 .99 1.09 28.1 31.7 
Tribune, KS 1.02 1.03 1.05 .88 .... 1.09 28.3 16.8 
Colby, KS 1.27 1.18 1.18 .90 1.14 1231 -1.39 28.8 18.6 
Farmland, IN .. .. .. .80 .96 1;01 1.04 29.3' 38.9 
Hays, KS 1.19 1.21 1.17 .97 1.14 1.22 1.33 29.5 23.0 
Hutchinson, KS 1.29 1.28 1.27 1.04 1.14 1.33 1.45 30.2 29.0 
Ottawa, KS 1.11 .. .. .96 1.02 1.08 1.24 30.3 37.2 
Garden City, KS 1.18 1.22 1.15 .93 1.10 1.23 1.29 30.9 18.8 
Columbia, MO 1.00 1.01 .95 .86 .91 .94 1.07 31.0 39.4 
Springfield, OH .99 .. .. .90 .92 1.04 1.12 32.1 37.4 
Ripley, OH ...... .93 .... 1.12 32.8 40.6 
Columbus, KS 1.25 1.19 1.11 .93 1.06 1.25 1.33 34.4 42.3 
Goodwell, OK 1.21 1.21 1.15 .91 .95 1.16 1.29 34.5 17.7 
Amarillo, TX 1.31 1.25 1.17 1.00 1.02 1.25 1.44 35.3 21.1 
Woodward, OK .. .. .. .91 .99 1.28 1.43 35.9 25.1 
Stillwater, OK 1.47 1.27 1.21 .96 1.10 1.26 1.56 36.9 32.8 
Clovis, NM 1.26 1.16 1.16 1.08 1.18 1.28 1.32 36.7 17.9 
Fortageville, MO 1.31 1.20 -- .97 1.04 1.11 1.33 39.3 46.7 
Chillicothe, TX 1.37 1.36 1.22 .92 1.11 1.28 1.47 42.5 25.3 
Denton, TX 1.65 1.30 1.20 .97 1.03 1.30 1.60 44.6 32.6 
College Station, TX 1.70 1.58 .......... 51.3 38.7 



A-14 

Table A.4 Coefficients, standard errors, and related statistics for models
 
to adjust the BMTS to winterlwheat environments and varietal maturities.
 

Coefficients (COEF) and Their 

Varietal Standard Errors (S.E.) 2 
Maturity Constant ADTJ AAPR a R N 

1970 COEF. .5684 .025081 -.006139 .092 .855 37 

S.E. .0526 .001826 .001779 

1960 COEF. .6522 .019478 -.004599 .086 .838 35 

S.E. .0492 .001547 .001718 

1950 COEF. .7760 .014825 -.005730 .085 .731 28 

S.E. .0660 .001815 .002033 

Late COEF. .7243 -.009613 -.003536 .073 .546 44 

S.E. .0402 .001368 .001291 

Mid-Late COEF. .7905 .012568 -.005733 .084 .635 40 

S.E. .0462 .001569 .001542 

Mid-Early COEF. .7613 .018766 -.007251 .081 .804 40 

S.E. .0449 .001526 .001500 

Early COEF. .7037 .023455 -.006735 .095 .811 44 

S.E. .0522 .001776 .001676 
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Table A.5 Comparison of observed (obs.)t, adjusted BMTS (A-BMTS)t , and 
unadjusted BMTS (U-BMTS)§ heading dates (Julian day). 

Location Multiplier Year 

65 66 67 68 69 70 71 72 73 

Havre, MT OBS. 
.90 A-BMTS 

1.00 U-BMTS 

168 
168 
163 

173 
170 
166 

161 
166 
160 

158 
159 
155 

168 
161 
158 

162 
158 
154 

164 
163 
158 

Moccasin, 
MT 

OBS. 
1.00 A-BMTS 
1.00 U-BMTS 

170 
171 
171 

182 
179 
179 

171 
171 
171 

175 
172 
172 

171 
173 
173 

165 
162 
162 

174 
168 
168 

Minot, ND OBS. 
.65 A-BMTS 

1.00 U-BMTS 

194 
187 
164 

183 
185 
169 

177 
187 
167 

174 
192 
168 

174 
180 
162 

165 
183 
161 

Williston, 
ND 

OBS. 
.73 A-BMTS 

1.00 U-BMTS 

169 
178 
162 

166 
175 
156 

162 
168 
151 

178 
174 
161 

167 
165 
154 

Dickinson, 
ND 

OBS. 
.73 A-BMTS 

1.00 U-BMTS 

173 
184 
171 

178 
185 
168 

177 
189 
172 

St. Paul, 
MN 

OBS. 
.78 A-BMTS 

1.00 U-BMTS 

172 
163 
152 

170 
166 
156 

154 
158 
147 

156 
162 
153 

Waseca, 
MN 

OBS. 
.74 A-BMTS 

1.00 U-BMTS 

162 
164 
150 

Alliance, 
NB 

OBS. 
1.04 A-BMTS 
1.00 U-BMTS 

168 
161 
163 

156 
162 
154 

164 
161 
164 

North 
Platte, 
NB 

OBS. 
1.04 A-BMTS 
1.00 U-BMTS 

157 
159 
161 

154 
158 
159 

146 
149 
150 

157 
161 
163 

153 
154 
154 

Mead, NB OBS. 
.99 A-BMTS 

1.00 U-BMTS 

152 
155 
155 

152 
150 
149 
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Table A.5 (continued)
 

Location Multiplier Year
 

65 66 67 68 69 70 71 72 73
 

Akron, CO OBS. 153 155 146 153 157 146 159
 
1.09 A-BMTS 155 158 148 156 161 150 158
 
1.00 U-BMTS 158 162 154 160 164 154 161
 

Julesburg, OBS. 149 149 147
 
CO 1.13 A-BMTS 147 150 146
 

1.00 U-BMTS 151 157 150
 

Yellow OBS. 172 162 163
 
Jacket, 1.15 A-BMTS 172 162 169
 
CO 1.00 U-BMTS 179 168 174
 

Colby, KS OBS. 140 138 144 141 144
 
1.18 A-BMTS 140 151 149 144 153
 
1.00 U-BMTS 148 158 156 149 159
 

Hayq, KS DBS. 136 138 131 137 140 139 137 140 142
 
1.17 A-BMTS 135 139 142 151 138 140 147 142 141
 
1.00 U-BMTS 141 146 146 155 147 144 154 148 146
 

Hutchinson, OBS. 129 130 123 124 132 130 125 121 136
 
KS 1.15 A-BMTS 131 131 132 135 133 135 138 132 136
 

1.00 U-BMTS 137 137 139 144 139 140 144 137 141
 

Tribune, OBS. 149 143 143
 
KS 1.18 A-BMTS 135 139 136
 

1.00 U-BMTS 151 147 140
 

Garden OBS 138 140 145 138 138 138 136
 
City, KS 1.23 A-BMTS 134k 135 146 138 140 145 137
 

1.00 U-BMTS 142 144 155 147 147 153 145
 

Columbus, 0BS. 124 123 120 128 126 126 
KS . 1.18 A-BMTS 122 125 122 127 128 131 

1.00 U-BMTS 127 133 131 134 133 138
 

Manhattan, OBS. 134 137 142 137 151 135 136 139 137
 
KS 1.08 A-BMTS 129 135 133 133 142 134 135 136 135
 

1.00 U-BMTS 133 138 138 137 146 138 138 138 138
 

Ottawa, DBS 139 137
 
KS 1.10 A-BMTS 136 140
 

1.00 U-BMTS 140 143
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Table A.Q (continued)
 

Location Multiplier Year
 

65 66 67 68 69 70 71 72 73
 

Columbia, OBS. 136 138 135
 
MO 1.10 A-BMTS 131 133 132
 

1.00 U-BMTS 134 138 .135
 

Portage- OBS. 118 125 122 114
 
ville, 1.27 A-BMTS 113 122 125 122
 
MO 1.00 U-BMTS 122 128 130 128
 

Urbana, OBS. 153
 
IL 1.02 A-BMTS 147
 

1.00 U-BMTS 147
 

Lafayette, I 03S 141 144 142 143
 
IN .99 A-BMTS 140 151 144 147
 

1.00 U-BMTS 140 150 144 147
 

Wanatah, OBS. 146 149 144 149
 
IN .97 A-BMTS 141 150 144 149
 

1.00 U-BMTS 140 149 143 148
 

Spring- OBS. 147 156
 
field, 1.14 A-BMTS 144 147
 
OH 1.00 U-BMTS 153 152
 

Wooster, 0BS. 146, 150
 
OH 1.02 A-BMTS 147 154
 

1.00 U-BMTS 147 155
 

Stillwater, OBS. 121 118 116 119 117 113 105 116
 
OK 1.29 A-BKTS 114 122 117 123 122 123 113 126
 

1.00 U-BMTS 123 131 126 131 131 137 126 137
 

Goodwell, OBS. 141 130 120 127 127 119 136
 
OK 1.33 A-BMTS 128 122 118 129 128 116 140
 

1.0D U-BMTS 141 136 132 148 140 127 154
 

Woodward, OBS. '122 117 117 124 122
 
OK 1.31 A-BMTS 119 122 118 128 125
 

1.00 U-BMTS 126 129 127 139 132
 

Clovis, OBS. 126 125 126 128 120 137
 
NM 1.38 A-BMTS 127 122 130 123 117 131
 

1.00 U-BMTS 144 140 144 142 134 148
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Table A.5 (continued)
 

Location Multiplier Year
 

65 66 67 68 69 70 71 72 73
 

Chillocothe, OBS. 128 124 104 115 99 122
 

TX 1.48 A-BMTS 110 107 99 115 102 118
 
1.00 U-BMTS 125 126 116 128 113 131
 

Amarillo, OBS. 120 130 137
 

TX 1.32 A-BMTS 127 123 132
 

1.00 U-BMTS 138 136 141
 

Denton, OBS. 108 ill 102
 

TX 1.49 A-BMTS 106 ill 108
 
1.00 U-BMTS 119 120 118
 

College OBS. 109 106 96 105
 
Station, 1.62 A-BMTS 102 102 95 107
 
TX 1.00 U-BMTS 114 116 108 117
 

Based on average of three popular varieties planted in given year.
 

ttBased on Equation (1) - Maturity class based on varieties popular in 1970.
 

§Based on BMTS without adjustments.
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Table A.6 Frequency and relative frequency of absolute differences between
 
observed and BMTS heading dates shown in Table A.5.
 

Observed Minus A-BMTS Observed Minus U-BMTS
 

Class Interval Frequency Relative Frequency Frequency Relative Frequency
 

0-3 days 83 .494 43 .256
 

4-7 days 56 .333 48 .286
 

8-11 days 19 .113 33 .196
 

12 or greater 0t .060 4 4 tt .262
 

Total 168 1.000 168 1.000
 

tLargest difference was 18
 

ttLargest difference was 30
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FORMULAS AND ASSIGNED PARAMETER
 
VALUES FOR THE VSMB
 

In this section we 'document the pertinent formulas used from Baier and
 

Robertson's versatile soil moisture budget (VSMB). A more detailed descrip­

tion is given in Baler, et. al. ( 5 ).
 

Potential evapotranspiration
 

Potential evapotranspiration is simulated on a daily basis by calculating:
 

PE = 0.0037[0.933 (TX-TN) + 0.928,TX + 0.0486 Q0 - 87.03] if [ ] > 0
 
=0 if[ ]< 

where
 

PE = potential evapotranspiration (inches),
 

TX = maximum daily temperature (OF),
 

TN = minimum daily temperature (0F),
 

-

Q0 = solar radiation at the edge of the atmosphere (cal cm 

2 day -).
 

The quantity Q was linearly interpolated from Smithsonian tables ( 11 ).
 

Actual evapotranspiration
 

Actual evapotranspiration is simulated for a particular day in month m
 

(m = 1, 2,..., 12) by:
 

6 
AE = (PE) [ (S!/S.)(K!)(Z.)exp{[7.91 - 11.0 * (S!/S)][PE - PE ]}j=l J 333m
 

where 

AE = actual evapotranspiration (inches), 

S = plant-available soil moisture in zone j at the end of the previous
3 

day (inches),
 

S. = capacity of zone j for plant-available water (inches) (see Table B.l),3 

http:S!/S.)(K!)(Z.)exp{[7.91
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Kt:3 = adjustable crop coefficient for zone j, which varies with stage of 

development and dryness of zone j according to the formula 

iI-i 

K! = K. {1 + K1i[l - (S!/S
J3 i=l
 

where values of K.(j = 1, 2, ...6) are given in Table B.2,
 

Z. = adjustment factor for zone j using soil dryness curve F, (product of 

SV/S. and associated entry in Table B.3)33
 

PE = long-term average daily PE for month m (m = 1, 2, ... , 12), wherem 

PE 	may be approximated by the quantity
m 

0.0037[0.933 (TX m - TN ) + 0.928 TX + 0.0486Q - 87.03], if [ >> 0 
m m m c
 

or zero if [ ] < 0. 
where
 

TXm , TNm Qom are long-term means for month m.
 

Runoff and Infiltration
 

The amount of water infiltrating the soil from 24-hour precipitation
 

amounts is simulated by the formula:
 

I = 0.9177 + [1.811 - 0.97(S{/Sl)] * logl0 PR, if PR > 1.0,
 

= PR 	 if PR < 1.0, 

where
 

il = amount infiltrating soil (inches),
 

IPR = amount of precipitation (inches),
 

Is?, S~ have been previously defined.
 

Snow!	budget
 

The main decisions to be made in the snow budget are choices of snow
 

coefficients and temperature thresholds for classifying precipitation as snow.
 

For bnow coefficients we chose to use 0.65 for the fallow period for winter
 

I
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wheat and the same for the first winter of fallowing for spring wheat. The
 

second snow coefficient was set at 0.10 for simulating conditions either under
 

a crop for winter wheat or for the second winter under fallow for spring wheat
 

or between crops for continuous spring wheat.
 

Threshold values for differentiating rain from snow were chosen to be
 

33.8°F, both before and after January 1, for all locations in the U. S. Great Plain
 

Table B.1 Values chosen 'for'capacities for VSMB zones.
 

Zones
 

1 2 3 4 5 6 Totals
 

Percent of total capacity
 
5.0 7.5 12.5 25.0 25.0 25.0 100%
 

Capacities (inches)
 

Winter Wheat 0.50 0.75 1.25 2.50 2.50 2.50 10 inches
 

Spring Wheat 0.35 0.525 0.875 1.75 1.75 1.75 7 inches
 

Table B.2 Crop coefficients (K) for VSMB zones.
 

Zones
 

Development Stage BMTS 1 2 3 4 5 6
 

Planting-emergence 0-1 .60 .15 .05
 

Emergence-jointing 1-2 .55 .25 .05
 

Jointing-heading 2-3 .40 .25 .10 .10 .05
 

Heading-soft dough 3-4 .45 .25 .10 .10 .05 .05
 

Soft dough-ripe 4-5 .45 .25 .10 .10
 

Fallow --- .60 .15 .05
 

Kd
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Table B.3 Table F for computing Z values in VSMB (Entries are functions of
 
Z!/Z. from .01 (.01)1.00 in lexicographical order). 

1.00 0.75 0.66 0.50 0.60 0.66 0.85 1.12 1.44 1.66 

1.82 2.33 2.69 3.00 3.33 3.43 3.70 3.89 4.00 4.00 

4.00 4.00 4.00 3.91 3.80 3.69 3.59 3.50 3.41 3.33 

3.20 3.10 3.00 2.92 2.85 2.77 2.69 2.60 2.55 2.50 

2.45 2.37 2.30 2.26 2.22 2.16 2.10 2.07 2.04 2.00 

1.95 1.90 1.86 1.83 1.80 1.77 1.75 1.72 1.69 1.66 

1.63 1.60 1.58 1.56 1.53 1.51 1.49 1.47 1.45 1.42 

1.40 1.38 1.36 1.34 1.32 1.30 1.28 1.27 1.26 1.25 

1.23 1.21 1.19- 1.18 1.17 1.15 1.14 1.13 1.12 1.11 

1.10 1.09 1.08 1.06 1.05 1.04 1.03 1.02 1.01 1.00 
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INTRODUCTION 
1 

One of the most important factors influencing wheat growth and 
2 

subsequent grain yield is soil water availability. In attempts to 
3 

predict wheat production over a large region, the daily estimates of 
4 

evapotranspiration is desirable. Several evapotranspiration (ET) models 

have been proposed (Jensen, 1973; Baier and Robertson, 1966; Ritchie, 
6 

1972; Tanner and Ritchie, 1975) with varying degrees of complexity as 
7 

S 
to input data. On a regional basis, many models are not acceptable 

9 
because of type of meteorological data required. Data requirements 

become critical when such models are applied to countries or locations 

where meteorological data are minimal. Therefore, it would appear 
11 

advantageous to develop a model for daily ET based upon parameters that 
12 

can or have the potential for being estimated by spacecraft. Tanner 
13 

and Ritchie's approach appears to have that application. 
14 

METHODS AND MATERIALS 

16 On October 16, .974 winter wheat [Triticum aestivum (L.) cv. Cloud] 

17 was planted on two I-ha plots at the Evapotranspiration Research Field, 

18 14 km southeast of Manhattan, Kansas. Wheat was planted in 17.8-cm 

19 north-south rows. A weighing lysimeter was located in the center of 

each plot; however, one of the plots had been planted to sorghum and 

21 showed atrazine carryover. Meteorological and physiological measurements 

22 have been described by Brun, Kanemasu, and Powers (1972). Leaf area 

23 index was determined weekly except during dormancy when monthly samples 

21 were sufficient. 

In addition, we maintained 3 test areas in Riley (96037'W,390 8'N), 

26 Ellsworth (98 0 17.5'W, 38 0 43'N), and Finney counties (101 0 5.9'W,380 9.6'N). 

27 In vc. tent flrt'1, 3 Iin," winir whinl fl,,ds (> 40 ha) w.re perlodJnCll 
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1 monitored (usually on clear Landsat overpass dates) for leaf area index
 

2 and soil moisture estimates.
 

3 Near the lysimeter area, five recommended winter wheat varieties
 

4 were planted (33 m x 120 m). Soil moisture and leaf area index were
 

5 estimated every 7 to 10 days except during dormancy when monthly
 

6 samples were taken.
 

7
 
MODEL
 

8
 
Maximum evapotranspi~ation (ET max) is the energy-limited ET
 

9
 
occurring from a well-watered surface. Several investigations (Tanner
 

10
 
and Ritchie, 1975, Davies and Allen, 1973; Jury and Tanner, 1975;
 

11
 
and Priestley and Taylor, 1972) have successfully shown that the
 

12
 
Priestley-Taylor formula estimates ET for conditions of adequate water
 

13
 and leaf area 
index > 2.5: 
14 ET =a [s/(s4y)]Rn [la]
max
 

15
 
wherea is a proportionality constant for a particular crop and climate;
 

16 Y is the psychrometer constant (mb/0K); 
s is the slope of the saturation
 

vapor pressure curve 

17 

(mb/0 K) at mean temperature; and Rn is the 24-hr
 
18
 net radiation (mm water/day). Priestley and Taylor (1972), 
in evaluat­

19
 
ing eleven climatic situations (non-advective conditions), found a mean
 

20 a = 1.26;.will increase with advection (Jury and Tanner, 1975). 
 We
 

21
 evaluated v(by rearranging [1]
 

22 
 ETmax 
[ b
 

23 a = [sI(s+y)iRn [lb] 

2-1 where ET was estimated by lysimetric observations during periods of 
max 

25 full canopy cover and wet soil surface (0-5 cm). Using 24-hour Rn
 

26 in [lb], we evaluated an c of 1.35. In situations in which we did not
 

27 -meesure-24-hour-Rnr-we--used-t--­
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1 Rn = .868 Rs - 2.81 [2a]
 

2 from planting to jointing growth stage and for the remainder of the
 

3 season
 

4
 
Rn = .926 Rs - 2.70 [2b] 

-1'where Rs is the solar radiation (mm day-). Therefore, ETa x may be
 
6
 

determined by [l] and [2] from mean air temperature and solar radiation.
 

7
 
Evaporation. Our method of estimating evaporation from the soil
 

S
 
surface was Identical to that of Ritchie (1972).- Briefly, when the
 

9
 

soiL surface is wet, the amount of energy at the surface is limiting
 

evaporation; thus,
 

11
 

12 Eo = (T/a)ETmax [3]
 

13 where Eo is the evaporation from the soil surface during stage 1 

14 evaporation. Ritchie (1972) found the empirical relationship for 

sorghum to be: 

1~6 
t= Rns/Rn = exp (-.398 TAI) [4] 

17 
where Rns Is the net radiation of the soil surface and AIT is the leaf
 

18
 
area index. Our data would support equation [4] for winter wheat until
 

19
 
heading stage then T - .25. We propose that leaf area index can be 

determined from spacecraft. Evaporation, according to [3], continues
 

21
 
until Eo = U where U is the upper limit of stage 1 evaporation. Evapo­

22
 
ration, when limited by the transmitting properties of the soil (stage
 

23
 
2), is given as
 

24
 

ct1/2 
E - c(t-l)I /2 [5] 

26
 

27?­
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-
I where c (mm day /2 ) is dependent upon the hydraulic properties of the
 

2 soil and t is time (days) after stage I evaporation. Ritchie (1972)
 

3 reported values for U and c for several soils. From lysimeter obser­

4 vations on Muir silt loam, U and c were evaluated to be 10mm and 3o5mm
 
da-1/2
 

day , respectively.
 

6 Transpiration. Ritchie (1973) reported that transpiration from
 

7 sorghum or corn is not affected by soil-water deficit until the
 

8 available water in the root zone is less than 0.3 of the maximum
 

9 available moisture content (0ma). Thus, when the available water
 

content in the root zone is between I and .3 of the maximum, transpira­

11 tion (T) is estimated, as suggested by Tanner and Ritchie (1975), for
 

12 crop cover <50% as
 

13 T = ov(l-T)Fs/(s+y)lRn [6a1 

14 and for crop cover >50% as 

T = (a- )[s/(s+Y)'Rn [6b 

16 where ov = (a-.5)/.5. 

17 WThen available soil water content (a) is less than .3 of the
 

18 maximum avialable soil-water content, equations [6a1 and [6ba are
 

19 multiplied by Ks, given as
 

K= 3a [71 
s .30 

21 
max 

Tanner and Ritchie (1975), in surveying the literature, found that .30
22 ma: 

represented 'the critical moisture level for nearly all data. Davies
 
23
 

and Allen (1973) suggested using only the surface soil moisture content
24 

(depth not reported) in assessing the effect of water deficit on
 

evapotranspiration for bare soil and shallow tooting crops but 

27 recognized the limitations of such an approach to deeply rooted crops. 
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1" We consistently underestimated the lysimetric observations on the

1
 

very warm days (>27C) during full canopy cover. To account for those
 
2 

conditions, we added A to [6], where
 
3 

4 A = .1 T when T > 27C [8] 

5 Evapotranspiration (ET) was estimated by summing E (or Eo), T, and A 

C (Table 1). We have no theoretical explanation for [8] except Linacre 

7 (1964) found that well-water leaves in bright sunshine are warmer than
 

8 air when the'ambient temperature is cool, and, at high temperatures,
 

9 leaves are cooler than ambient.
 

10
 

RESULTS AND DISCUSSION
ii
 

12 Figure 1 shows the comparison of lysimeter to model estimates of
 

The 	seasonal cumulative ET
13 	 evapotranspiratibn [ET] for winter wheat. 


for the lysimeter and model was 336 im (13.2 in) and 321 mm (12.6 in),
 
14
 

respectively. Daily model values of ET were usually within 1 mm of
 
'5
 

Lysimeter values. The greater ET estimated by the lysimeter during

16
 

1ovember and December (15 mm) could be attributed to the additional

17 

nergy the lysimeter receives from the soil due to its metal framework.
 

While the
19 ranspiration accounted for 66 percent of the total ET. 


idvective corrective term, A, accounted for only 3 percent.
20
 

From effective precipitation and model evapotranspirationestimates,

21
 

:he soil moisture in the 150 cm profile was calculated. Figure 2 shows
 
22
 

he comparison of soil moisture between the model estimates and those

23
 

bserved from gravimetric samples for the lysimeter area.
 
2.1
 

Table I shows the monthly ET for the five varieties of winter wheat
 
25
 

s estimated by the model. The average seasonal ET was 432 mm (17.0 in)
2(;
 

27 nd _ was nearly identical for all varieties. During the same time period,
 



5 

10

15

20

25

C-7 

1 the model predicted a seasonal ET of 420 m .(16.5 in), 335 mm (13.2 in)
 

2 and 248 mm (9.8 in) for winter wheat in Riley, Ellsworth, and Finney
 

3 counties, respectively (able 2). The difference in ET across the Kansas
 

4 (east to west) is due to the difference in leaf area index (Fig. 3).
 

The greatest difference in ET occurs during March, April and May. That
 

6 time corresponds to the 


7 increasing.
 

8
 

9
 

Ii
 

12
 

13
 

14
 

16
 

17
 

18
 

19
 

21 

22
 

23
 

24 

26
 

period when leaf area indices are rapidly
 



1 

2 

3 

4 

5 

6 

7 

8 
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10 
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12 
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Fig. C.2 	Soil moisture (mm water in the 150 cm profile) 
estimated by the evapotranspiration model compared 
to observed values. 
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Fig.C 3 	Measured leaf area indices (LAI) on three winter
 
wheat fields in Kansas for 1974-1975 growing
 
season.
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Table C.1 Model evapotranspiration estimates for 5 winter wheat
 
varieties at Manhattan, Kansas (planted 10/4/74).
 

EVAPOTRANSPIRATION (mm)
 

Date Centurk Trison Arthur 71 Sage TAM wheat 101
 

10/30/74 25.1 25.1 25.1 25.1 25.1
 

11/30/74 7.8 8.4 8.4 7.8 7.8
 

12/31/74 1.9 1.9 1.9 1.8 1.9
 

1/31/75 4.3 4.5 4.5 4.3 4.3
 

2/28/75 21.1 19.8 19.8 21.0 21.0
 

3/31/75 44.7 51.9 50.1 47.8 49.3
 

4/30/75 96.1 94.3 89.3 92.5 98.3
 

5/31/75 176.7 172.3 178.4 173.3. 174.9
 

6/21/75 54.7 55.7 54.8 55.5 50.0
 

Total (mm) 432.4 434.0 432.3 429.1 432.6
 

(in) 17.0 17.1 17.0 16.9 17.0
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Table C.2 	Model -estimates of average monthly evapotran­
spirational loss (mm) from commercial winter
 
wheat fields (Scout variety) in Riley, Ells­
worth, and Finney counties.
 

Month 	 Riley Ellsworth Finney
 

October, 1974 29.9 29.8 32.7
 

November 7.7 7.1 12.7
 

December 1.9 1.8 2.0
 

January, 1975 4.4 3.9 2.3
 

February 21.0 17.8 2.8
 

March 48.2 32.5 12.1
 

April 93.3 62.2 29.5
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A P P E N D I X D 

ESTIMATING LEAF AREA INDICES OF WINTER WHEAT 
FROM LANDSAT
 

E. T. Kanemasu, D. Lenhert, and J. Heilman
 

ABSTRACT
 

Leaf area index (LAI), ratio of green leaf area to ground area, is
 

an important parameter in both the process of evapotranspiration and
 

crop growth. Plants were collected and LAI was estimated on nine
 

commercial winter wheat fields in Kansas throughout the winter wheat
 

growing season. Multispectral scanner (MSS) bands 4, 5, 6, and 7 from
 

Landsat I and II were correlated with LAI. Landsat predicted LAIs
 

were used in an evapotranspiration (ET) model which predicted seasonal
 

ET in close agreement with those using observed LAIs.
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Leaves are one of the most important plant organs; they are the
 

sites of photosynthesis and transpiration. Most agronomic crops
 

obtain large leaf area indices (ratloof leaf area to soil area) which
 

enables the plant community to absorb.photosynthetic active
 

radiation (visible wavelengths). In general, maximum photosynthesis
 

of a row-crop canopy is reached near a leaf area index (LAI) of 3
 

while for wheat, presumably because of its higher planting rate and
 

tillering capability, obtains maximum photosynthesis at about a LAI
 

of 1.35. Because of the energy demanding nature of evaporation,
 

maximum evapotranspiration rates are obtained at those same LAIs.
 

Therefore after a critical LAI is obtained, mutual shading by the
 

addition of new leaves does not significantly affect photosynthesis
 

(growth) or evapotranspiration. Thus, it is not as important to
 

differentiate between a LAI of 4 or 5 as it is to discriminate between
 

LAI of I and 2.
 

MATERIALS AND METHODS
 

The study areas were 3 commercial wheat fields at each of 3 different 

locations. During the 1973-74 and 1974-75 winter wheat growing season,
 

the fields were ocated in Riley, Ellsworth and Finney counties. Except
 

for snow and extreme cold weather, plants were sampled at 3 locations in
 

each field at each Landsat overpass date. Leaf area was determined at
 

the Ellsworth and Finney sites by measuring the length and breadth of
 

each leaf and converted to area by Teare and Peterson's (1971) equation
 

LA = .813 X - .64 [1]
 

where LA is leaf area (cm2) and X is product of maximum length times
 

breadth. At Riley, the leaf area was measured with an optical planimeter
 



D-3 

Landsat imagery and computer compatible tapes (CCT) were received
 

for cloud free dates (Table 1). Because of the poor satellite coverage
 

at the Ellsworth and Finney county sites during the 1973-74 growing
 

season, only the Riley county fields were analyzed. All fields and
 

CCTs were considered for the 1974-75 season except for Riley county
 

site for which CCTs have not been received.
 

RESULTS
 

As part of an ERTS-1 study on winter wheat, we reported four
 

linear regression equations relating LAI to each of the multispectral
 

scanner (MSS) band ratios - 4/5, 4/6, 4/7, and 5/6. Using those
 

equations we predicted LAI for the current data set. Early in the
 

analysis is became clear that the regression equations using MSS 4/5
 

and 4/6 when summed and divided by two predicted the more reasonable
 

results. The resulting equation was
 

LAI = 1.653(MSS 4/5) - 1.698(MSS 4/6) + .093 

Using [2], we predicted the LAI for the test fields (Fig. 1 and 2). 

The evapotranspiration model was run using the Landsat predicted LAIs 

(Table 2). In general, the seasonal ET values obtained were within 50
 

mm (2 in) of the ET values using measured LAI values. Therefore, it
 

appears that Landsat can estimate LAIs for use in an evapotranspiration
 

model.
 

Further refinement in equation [2] will provide improvement in ET
 

estimates. We are waiting for the 1974-75 CCT for Riley county before
 

revising [2].
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Table D.1 Computer compatible tapes from Landsat for 1973-74 and 1974-75 winter
 
wheat.
 

Riley County - Finney County Ellsworth County 
Date Tape No. Date Tape No. Date Tape No. 

20 Oct. 1973 1454 18 Oct. 1974 1817 10 Sept 1974 1779
 

31 Mar. 1974 1616 23 Nov. 1974 1853 28 Sept 1974 1797
 

18 Apr. 1974 1634 29 Dec. 1974 1889 16 Oct. 1974 1815
 

24 May 1974 1670 20 Mar. 1975 2057 21 Nov. 1974 1851
 

29 June 1974 1706 29 Mar. 1975 1979 9 Dec. 1974 1869
 

17 July 1974 1724 15 Apr. 1975 1996 18 Mar. 1975 2055
 

4 Aug. 1974 1742 3 May 1975 5014 5 Apr. 1975 2073
 

9 Sept 1974 1778 4 May 1975 5015 23 Apr. 1975 2091
 

15 Oct. 1974 1814 18 June 1975 2147 20 May 1975 5031
 

20 Nov. 1974 1850 27 June 1975 5069 16 June 1975 2145
 

7 Dec. 1974 1867 25 June 1975 5067
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Table D.2 Comparison of evapotranspiration estimated by using,observed
 
LAI and Landsat-derived LAI for winter wheat (1974-95). 

ELLSWORTH
 
(Mm) (mm) FINNEY
 

Month Observed Landsat Observed Landsat
 

Oct. 29.9 30.9 35.0 35.5
 

Nov. 7.3 7.7 15.0 14.6
 

Dec. 1.8 1.9 8.1 8.8
 

Jan. 4.0 4.2 5.4 6.2
 

Feb. 18.0 22.0 4.7 7.2
 

Mar. 33.7 46.2 8.9 15.8 

Apr. 58.7 56.1 20.1 29.8 

May 106.2 109.2 97.2 106.5 

June 41.4 60.6 60.0 63.0 

301 mm 338.8mm 254.4mm 287.4mm 
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1974-1975 FINNEY COUNTY
FIELD # 30- WINTER WHEAT 
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Fig.D.1 	Seasonal trends in observed (o) and Landsat­
predicted (0) leaf area index in Finney
 
county test field.
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Fig.D.2 Seasonal trends in observed (o) and Landsat­
predicted (*) leaf area index in Ellsworth
 
county test field.
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APPENDIX E
 

COMPARATIVE YIELDING ABILITY OF
 
WINTER (SPRING) WHEATS
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Table E.1 Comparative yielding ability of winter wheat varieties.
 

Code
 
Name TURK KHAR FULC FULZ E PR MI-A TRUM KANR BLAC 

TURK [ .85] 1.00 1.04 1.02 .92 .90 
KHAR 1.00 [ .86] .94, .96 
FULC .96 [ .86] 1.01 .94 .98 1.12 .95 
FULZ .99 [ .87] 1.06 .94 
E PR [.87] 
MF A .98 1.06 .94 [ .88] 1.04 .95 
TRUM 1.02, 1.06 .96 [ .89] .84 
KANR 1.09 1.06 .89 1.19 [ .91] .98 
BLAC 1.11 1.04 1.08 1.05 1.02 [ .91] 
PARF 
TENM 1.12 1.00 1.20 1.08 1.14 1.12 1.03 
VIGO 1.11 .99 1.00 1.07
 
FAIR 1.09 1.07 1.13 1.05
 
YOGO 1.04 ,
 

PONC 1.16 1.06 1.18
 
PAWN 1.22 1.09 1.06 1.21, 1.15
 
COMA 1.17, 1.10, .96 1.01 1.20, 1.10
 
CHFK 1.23 1.28 1.29 1.10
 
KARM ,
 
WICH 1.18 1.02 .88 1.15 1.10 
KWGI 1.11 , 
TRIU 1.15, 1.01 .97 1.06 
E BL 1.19 1.20 1.12 1.06 
CLAR 1.14 1.15 
S TR 
THOR 1.12 1.17 1.09 , 
WEST 1.11 1.12 
AGEN 
CHEY 1.08 1.10 1.06 1.06 1.04 
NEBR 1.10 1.12 1.12 1.07 
WARR 1.26 1.02 
CONC 1.09 1.07 
BISO 1.22 1.11 
KIOW 1.19 1.09 1.13 

[ ] means numbers on diagonal are values'for VYA for the specified varieties.
 

n > 20 but S.E. > .05.
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Table E.1 (continued) Winter wheat. 

Code 
Name PARK TENM VIGO FAIR YOGO PONC PAWN COMA CHFK 

TURK .89 .90 .92 .86 .82 .85 .81, 
KHAR 1.00, .96 .94 .92 .91 .78 
FULC .83 1.01 .93 1.04 
FULZ .93 1.00 .88 
E PR 
MIA .88 
TRIM .93 .95 .94, .99 
KANR .89 .83 .83 .78 
BLAC .97 .85 .87 .91 .91 
PARF .93] 

TENM [ .94] .95 1.11 .88 .88 .93 .94 
VIGO [ .97] .98 1.00 
FAIR 1.05 1.02 [ .97] .97 1.01 
YOGO .90 [ .98] .79 
PONC 1.14 [ .99] .98 .98 1.06 
PAWN 1.14 1.00 1.03 1.02 [1.00] .99 1.03 
COMA 1.08 .99 1.27 1.02 1.01 [1.00] 1.00 
CHFK 1.06 .94 .97 1.00 [1.01] 
KARM 
WICH 1.17 1.01 1.04 1.47 1.04 1.02 1.03 .88 
KWGI 1.05 1.04 
TRIU 1.09 1.00 1.03 1.04 1.04 1.02 
E BL 1.08 1.02 1.00 .98 1.01 .81 
CLAR 1.06 1.05 1.01 .99 
S TR 
THOR .96 1.03 
WEST 1.17 1.00 1.01 1.03 1.10 
AGEN , 1.01, 1.08 
CHEY 1.12, 1.05 1.09k 1.04 1.03 .91 
NEBR 1.18 1.01, 1.13 1.01 1.06 1.00 
WARR , .99 1.01 .95 
CONC 1.17 1.05 1.08, 1.08 
BISO 1.14, 1.05, 1.08 1.06 
KIOW 1.24 1.10 1.11 1.06 

i[ means numbers on diagonal are values for VYA for the specified varieties. 

n > 20 but S.E. > .05. 
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Table E.1 (continued) Winter wheat.
 

Code 
Name KARM WICH KWGI TRIU EBBL CLAR S TR THOR WEST 

TURK .85 .90 .87 .84 
KHAR .98 .99 .83 .90 
FULC 1.13 .88 .89 
FULZ .85 
F PR .87 
MA 
TRUM .92 
KANR .87 1.03 .89 
BLAC .91 .94 .94 .89 
PARF 
TENM .85 .92 .93 .85 
VIGO .99 1.00 1.04 
FAIR .96 .97 .97 
YOGO .68 .98 
PONC .96 .95 .96 1.00 .94 1.00 
PAWN .98 .96 1.02 .95 .99 
COMA .97* .96 .98 .99* ..99 .97 
CHFK 1.14 1.23 1.01 .91 
KARM [1.021] 

WICH [1.02] 1.02 i.:oi 1.00 1.05 .94 
KWGI .98 [1.02] 1.00 .98 
TRIU .99 1.00 [1.02] .97 .98 .99 .89 
E BL 1.00 1.03 [1.03] 1.03 
CLAR .95 1.02 [1.03] 
S TR 1.02 1.01 [1.03] 
THOR [1.04] 
WEST 1.06 1.12 .97 [1.04] 
AGEN .97* 1.02* 
CHEY 1.01 1.17, 1.15 1.21 .96, .98 
NEBR 1.13 , 1.27, 
WARR 1.00 1.01 1.14 .99 .96 .84 
CONC ,1.02 1.12 1.10 .97, 1.09 
BISO 1.03 1.05 1.02 .90 
KIOW 1.06 1.04 1.05 .97 

means numbers on diagonal are values for VYA for the specified varieties.
 

*n > 20 but S.E. > .05. 
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Table E.1 (continued) Winter wheat.
 

Code
 
Name AGEN CHEY NEBR WARR CONC BISO KIOW TASC GUID
 

TURK .93 .91 .79 .82 .84 .71
 
KHAR .91 .89 .98 .92 .90 .92 .89
 
FULC
 
FULZ
 
E PR
 
MI A .94
 
TRUM 
KANR .94 .89 
BLAC .96 .93 .93 .88 
PARF 

TENM .89 .85 .85 .88 .81 
VIGO 
FAIR 
YOGO .95, .99, 1.01 , , 
PONC .99 .92 .88 .95 .95, .91 .93 
PAWN .96 .99 .99 .93 .93 .90 .88 
COMA .93 .97 .94 1.05 .93 .94 .94 .88 
CHFK 1.10 1.00 
KARM .99* 1 * 1.00 
WICH 1.03 .85 .88 .99 .98 .97 .94 .98 .89
 
KWGI .87* .88, .89 .95 .93 .94,
 
TRIU .98 .83 1.01, .91 .98, .96 1.00 .85
 
E BL 1.04 .79 1.04 1.03 1.11 .95 1.04
 
CLAR 1.19
 
S TR 1.14
 
TOR
 
WEST 1.02 .92 1.03
 
AGEN t 1..047 .93 .95 .97
 
CHEY [1.05] .99 .96 1.07* .99 1.00
 
NEBR 1.01 [1.05] .91 1.01 1.05
 

WARR 1.04, 1.10 [1.051 1.03 , 1.00
 
CONC 1.07 .93 .99, [1.06] .98 1.05 .95
 
BISO 1.01 .95 .97 1.02, [1.06] .99 .92
 
KIOW 1.00 .95 1.01 [1.06]
 

[ means numbers on diagonal are values for VYA for the specified varieties.
 

* n > 20 but S.E. > .05. 
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Table E.1 (continued) Winter wheat. 

Code 
Name OMAH PARK OTTA SENE KAW I TR STUR BUTL HUME 

TURK .73 .79 .75 .77, 
KHAR .90 .81 .83 
FULC .80 .81 
FULZ .79 
E PR 
MA 
TRUM .88 .86 
KANR 
BLAC .77 
PARF 
TENM .94 1.19 
VIGO .91 .93 
FAIR .93 .94 
YOGO .65 
PONC 1.05 1.03 .93 .88 
PAWN 1.00 .90 .93 .83 .86 
COMA .93 .90 .85 .90 
CHFK 
KARM 
WICH .93 .99 1.00 .97 .94 
KWGI .93 1.01 1.02 .90 
TRIU .93 .93 .97 .92 .91 .95 
E BL , .92 .. 96 
CAR 1.07 .91 
S TR .95 
THOR .96 .94 
WEST 
AGEN , .92 1.00 
CHEY .76 '.82 .91 
NEBR .85 .81 .87 
WARR .90 , .83, .90 , .72 
CONC * 1.09 .97 .92 .88 
BISO .79 1.01 .97, .97 
KIOW 

i[] means numbers on diagonal are values for VYA for the specified varieties. 

n > 20 but S.E. > .05. 
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Table E.I (continued) Winter wheat.
 

Code
 
Name KNOX TR64 MONO CADD EAGL MINT WINA GAGE LANC
 

TURK .85 .75 .72 .65,
 
KIIAR .79 .83 .78 .69
 
FULC
 
FULZ
 
E PRMIA 

TUM .88 .83
 
KANR
 
BLAC .86
 
PARF 
TENM
 

VIGO .88 .82 
FAIR 1.00 , , * 
YOGO .73 .74 .93 
PONC .92 .89 .90 
PAWN .88 .85 .88 .89 .83 
COMA .88 .91 .89 .99
 
CHFK
 
KARM 1.07 1.03 .98
 
WICH .99 .99 .99 .90 .87
 
KWGI .95 .89 .88 .91 .91,
 
TRIU .93 .90 .93 .90 , .83 .85
 
E BL .92 , .93 .63 .99
 
CLAR .89 .80
 
S TR .97 .86
 
THOR .99
 
WEST , ,
 
AGEN .86 .94 .87
 
CHEY .89 .88 .83 .75
 
NEBR .85, .67 .76 .65
 
WARR .72 1.06 .76 .93 .92 .98
 
CONC .96 .98 1.00*
 
BISO 1.01 .91 .89 .72
 
KIOW
 

i means numbers on diagonal are values for VYA for the specified varieties. 

n > 20 but S.E. > .05. 
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Tabie E.1 (continued) Winter wheat. 

Code 
Name WINO DANN PRON SCOU SC66 KX62 BENH DUAL SAGE 

TURK .74 .76 .69 
KHAR 1.02 .76 .85 
FULC 

FULZ 
E PR 
MT A 
TRUM .79 .76 .79 
KANR 

BLAC 
PARF 
TENM 
VIGO .84 .76 .83 
FAIR .92 
YOGO .98 
PONC .88 .93 
PAWN .88 .93 .84 .77 .94 
COMA .84 .85 
CHFK 
KARM 
WICH .87 .90 .82 
KWGI .89* .87 
TRIU 1.37 .88 .79 .81 .90 .92 
E BL .87 
CLAR 
S TR .79 
THOR 
WEST 
AGEN .83 .94 .94 
CHEY .86, 
NEBR , .81 .85 
WARR .97 .90 .98 
CONC .94 .93 .94 
BISO .86 .88 .92 
KIOW 

t[ ]means numbers on diagonal are values for VYA for the specified varieties.
 

n > 20 but S.E. > .05. 
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Table E.i (continued) Winter wheat.
 

Code 
Name CENT REDC FULT AR71 ARTH 

TURK .71 
KHAR .82 
FULC 
FULZ .88 
E PRMIA 
TRUM .77 
KANR 
BLAC 
PARF 
TENM 
VIGO .77 .70 .64 
FAIR 
YOGO .83 
PONC 
PAWN .85 .97 
COMA 
CHFK 
KARM 

WICH 
KWGI .82 
TRIU 
E BL 
CLAR 
S TR 
THOR 
WEST 
AGEN 
CHEY 
NEBR .73 
WARR .90 
CONC .85 
BISO 
KIOW 

t[ ] means numbers on diagonal are values for VYA for the specified varieties.
 

* n > 20 but S.B. > .05. 
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Table E.1 Comparative yielding ability of winter wheat varieties.
 

Code 
Name TURK KHAR FULC FULZ EPR MI A TRUM KANR BLAC 

TASC , 1.12 
GUID 1.40, 
OMAN 1.37 
PARK 1.26 
OTTA 1.33 1.11 
SENE 1.25 1.26 1.13 
KAW 1.30 1.23 1.30 
I TR 1.20 
STUR 
BUTL
HMiE 

1.23 1.23 1.16 

KNOX 1.14 
TR64 1.18 
MONO 1.20 
CADD 1.27 
EAGL 1.33 , 
MINT 1.20 
WINA 1.28 
GAGE 1.38, , 1.16 
LANC 1.53 1.45 
WINO .98 
DANN 
PRON 
SCOU 1.36 1.32 
SC66 1.32 1.18 
1X62 1.26 
BENH 1.32 
DUAL * 1.27 
SAGE 1.44 
CENT 1.40 1.22 
REDC 1.14 1.30 
FULT 
AR71 
ARTH 

t means numbers on diagonal are values for VYA for the specified varieties. 

n > 20 but S.E. > .05. 
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Table E.1 (continued) Winter wheat. 

Code 
Name PARK TENM VIGO FAIR YOGO PONC PAWN COMA CHFK 

TASC 1.08 1.14 1.13 
GUID 
OMAH .95 1.00 
PARK .97 1.11 1.08 
OTTA 1. 06'" 1.54 1.08 1.07 1.11 

SENE 1.10 1.07 1.21 
KAW 1.14 1.16 1.18 
I TR .84 1.11 
STUR 
BUTL 1.08 1.06 
HUME 
KNOX 1.14 1.00 1.09 1.14 
TR64 1.18 1.13 
MONO 1.22 1.12 1.14 
CADD 1.10 
EAGL , 
MINT 1.38, 
WINA 1.36 
GAGE , 1.11 1.12, 1.12 
LANG 1.07 1.20 1.01 
WINO 1.02 
DANN 
PRON 
SCOU 1.14 1.13 1.19 
SC66 1.08 1.18 
KX62 1.19 1.19 
BENH 1.32 1.30 
DUAL 1.21 1.09 1.07 1.06 
SAGE 
CENT 1.20 1.17 
REDC i.30 1.03 
FULT 
AR71 1.40 
ARTm 1.56 

[ ]means numbers on diagonal are values for VYA for the specified varieties. 

n > 20 but S.E. > .05. 
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Table E.1 (continued) Winter wheat.
 

Code 
Name KARM WICH KWGI TRIU E BL CLAR STR THOR WEST 

TASC 1.02 1.07 1.00, .96 .88 
GUID 1.12 1.06 1.18, 
OMAH 1.07 1.07 
PARK 1.01 1.07 1.07 , 
OTTA 1.00 .99 1.03 .93 
SENE 1.04 
KAW 1.03 .98 1.08 1.08 1.10 
I TR 1.06 1.11 1.10 1.04 1.05 
STUR 1.05 
BUTL 1.06 
HUME .93 1.49 
KNOX .93 1.08 1.12 1.01 
TR64 1.01 1.05 1.11 1.09 1.03 
MONO 1.01 , 1.08 1.25 
CADD 1.01 1.12 1.11 1.07 1.16 
EAGL 1.14 
MINT 1.58 
WINA .97 
GAGE 1.11 1.10 1.20, 1.01 
LANC 1.02 1.15 1.10 1.18 
WINO .73 
DANN 1.13 
PRON , 
SCOU 1.15 1.12 1.27 1.15 1.27 
SC66 1.11 1.15 1.23 
X62 1.11 
BENH 
DUAL 1.09 
SAGE 1.22 
CENT 1.22 
REDC 
FULT 
AR71 

ARTH 

means numbers on diagonal are values for VYA for the specified varieties.
 

n > 20 but S.E. > .05. 
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Table E.1 (continued) Winter wheat.
 

Code 
Name AGEN CHEY NEBR WARR CONC BISO KIOW TASC GUID 

TASC 1.05 1.05 1.09 [1.07] 

GUID 1.03 * 1.00 , [1.07] 
OMAR 1.32 1.17 1.11 1.26 
PARK .92, .99 1.04 .99 
OTTA 1.21 1.23 1.08 .95 1.03 1.03 .97 
SENE 
KAW 1.10 1.15 1.11 1.09, 1.03 1.05 
I TR 1.09 1.13 1.04 1.02 
STUR 1.00 
BUTL 1.39 
HUME .96 
KNOX 
TR64 1.16 1.04 .99 1.19 1.10 
MONO 1.38 1.15 
CADD 1.06 1.02 1.05 1.04 
EAGL 1.15 .94, 1.10 
MINT 1.12, 1.18 1.31 
WINA 1.13* 1.49 1.08 
GAGE 1.20* 1.32 1.09 1.12, 1.09 1.10 
LANC 1.33 1.54 1.02* 1.00 1.38 1.08 
WiNO 1.03 1.08 
DANN 1.20 
PRON 
SCOU 1.06 1.16 1.23 1.11 1.06 1.16 1.08 1.06 
SC66 1.06 1.18 1.02 1.07 1.14 1.07 1.10 
KX62 1.10 1.20 
BENH 1.06 1.17 
DUAL 
SAGE 1.09 
CENT 1.30 1.11 1.17 1.14 
REDC 
FULT 
AR71 
ARTH 

means numbers on diagonal are values for VYA for the specified varieties. 

n > 20 but S.E. > .05. 
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Table E.l (continued) Winter wheat.
 

Code 
Name OMAH PARK OTTA SENE KAW I TR STUR BUTL HUME 

TASC .96 .97 .95 .96 
GUID 1.01 1.03 .98 1.04 
OMAH [1.071t .94 .97 
PARK [1.08] 1.07 .94 .94 1.00 
OTTA 1.06 .93 [1.09] .97 
SENE [1.09] , .98 
KAW 1.03 1.06, 1.03 [1.10] .93 1.03 .94 
I TR 1.06 1.08 [l.101 1.08 
STUR 

"BUTL 
HUME 
KNOX 

1.00 
1.02 

,[1.11]
1.11 .97 .97 

.93 [1.10] 
[1.10] 

.94 

TR64 1.02 1.08 1.06 .98 1.08 
MONO .99, 1.16 1.02 1.02 .99 
CADD 1.04 1.00 1.03 1.05 
EAGL 1.00 1.12 
MINT 1.11 .94 
WINA 1.05 1.03 
GAGE 1.18 1.05* 1.10 1.09, .99 .97 1.12 
LANC 1.15 1.17 1.08 1.17 1.06 
WINO 1.03 
DANN 1.05 1.03 
PRON 
SCOU 1.16 1.10 1.13 1.12 1.01 1.07 
SC66 1.15 1.01 1.cI8, 1.18 1.05 1.06 1.10 
KX62 1.05 1.18 1.04 1.01 1.04 
BENH 
DUAL 1.09 1.13 
SAGE 1.08 
CENT 1.09 
REDC 1.11 
FULT 1.10 1.09 
AR71 
ARTH 1.19 

[ ] means numbers on diagonal are values for VYA for the specified varieties.
 

n > 20 but S.E. > .05. 
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Table E.1 (continued) Winter wheat.
 

Code 
Name KNOX TR64 MONO CADD EAGL MINT WINA GAGE LANC 

TASC .84 .95 .92 
GUID .91 .87 .96 , .91 .93 
OMAH . .90 .85 .87 
PARK .98 1.01 .96 1.00 .95 .85 
OTTA .90 .93 .86 .95 .91 .93 
SENE 1.03 .98 
KAW .98 1.00 .92 .85 
I TR 1.02 .97 .89 1.01 
STUR .93 .95 1.03 
BUTL 1.06 1.01 
HUME 1.06 .97 .89 .94 
KNOX [1.12] .82 .93 
TR64 1.22 [1.13] 1.09 1.01 .97 1.02 1.19 
MONO 1.08. .92 [1.14] 1.01 
CADD .99 [1.14] 1.02 
EAGL 1.03 [1.14] 1.40 1.00 1.04, 
MINT . .71 [1.15] .91 .86 1.02 
WINA 1.10 [1.15] .94 1.01 
GAGE .98 .99 .98 1.00 1.16, 1.06 [1:15] 1.01 
LANC 
WINO 

.84 .96 .98 
1.07 

.99 

.96 
.99 
.86 

[1.15] 

DANN .97 1.01 1.06 
PRON 
SCOU 1.04 1.03 1.03 1.00 .91 1.01 1.01 
SC66 1.02 .97 .98 1.06 1.02 1.04 
KX62 1.13 .99 1.04 1.07 
BENH .99 1.17 
DUAL 1.10 1.05 
SAGE 1.07 1A32 1.10 1.13 
CENT 1.08 1.22 1.05 1.10 1.10 1.10 
REDC 1.06 
RULT 1.10 
AR71 1.19 * 

ARTH 1.16 1.19 1.26 

means numbers on diagopal are values for VYA for the specified varieties.
 

n > 20 but S.E. > .05. 
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Table E.1 (continued) Winter wheat.
 

Code
 
Name WINO DANN PRON SCOU SC66 KX62 BENH DUAL SAGE
 

TASC .93 .93 .91 
GUID .93 .94 .91 .83 .85 
OMAH .86 .87 
PARK .95 .91 .99 .95, .93 
OTTA .88 .85 .85 
SENE .96 .92 
KAW .89 .85 .99 

I TR .97 .99 .95 .96 
STUR .94 
BUTL .88 
HUME .97 .93 .91 
KNOX .88 .91 
TR64 1.03 .96 .98 1.01 .93 
MONO .99 .97 1.03 .96 1.01 .95" .76 
CADD .97 1.02 
EAGL .94 1.00 .94 .91 
MINT .93 , 
WINA 1.04 1.10 
GAGE 1.16 .99 .98 .93 .85 
LANC .99 .96 .88 
WINO [ 1 . 1 5 ]t .95 .89 
DANN [1.15] 1.00 .98 .92 .85 
PRON 1.00* [1.15] .90 .85 
SCOU 1.05 1.11 [1.16] .98 .97 .93 
SC66 1.12 1.02 1.02 [1.17] .90 .93 
KX62 1.09 1.03 1.11 [1.19] .91 .98 
BENE 1.10 [1.21] 
DUAL 1.02 [1.23] 
SAGE 1.18, 1.18 1.08 1.07 [1.23] 
CENT 1.14 .95 1.06 1.05 1.00 
REDC 1.10 1.13 1.00 
RULT 1.06 .99 
AR71 1.18 1.14
 
ARTH 1.25 1.28 1.21 1.18
 

I means numbers on diagonal are values for VYA for the specified varieties. 

n > 20 but S.E. > .05. 
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Table E.1 (continued) Winter wheat.
 

Code
 
Name CENT REDC FULT AR71 ARTH
 

TASC
 
GUID .88
 
OMAH 
PARK .92 .84 
OTTA .90 .91 
SENE
 
KAW
 
I TR
 
STUR
 
BUTL .92
 
HUME
 
KNOX
 
TR64 .93 .86
 
MONO .82 .94 .91 .84 .84
 
CADD .95
 
EAGL .91
 
MINT
 
WINA
 
GAGE .91 .79
 
LANC .91
 
WINO .88 
DANN 1.05 .80 
PRON .71 
SCOU .94 
SC66 .95 .78 
KX62 .91 .94 .85 .83
 
BENH .88 .88 .85
 
DUAL 1.00 1.01
 
SAGE 1.00
 
CENT [1.23] .87
 
REDC [1.24] 1.00 1.04 .95
 
RULT 1.00 [1.28]
 
AR71 .96 [1.34] .97
 
ARTH 1.15 1.05 1.03 [1.36]
 

i means numbers on diagonal are values for VYA for the specified varieties. 

n > 20 but S.E. > .05.
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Table E.2 Comparative yielding ability of spring wheat and durum varieties.
 

Code
 
Name MARQ REWD PNTD RSCU CERS CNLY TCHR PILT RGNT
 

MARQ [.89]t 1.00 1.01 .90 1.10 .89 .88 
REWD 1.00 [.92] .96 .92 .92 

PNTD [.93] .93 
RSCU .99 1.04 [.94] .96 .98 .94 .92 
CERS 1.11 1.09 1.04 [.97] .97 .97 
CNLY .91 .91 1.02 [.97] .97 .86 
TCHR 1.12 1.09 1.07 1.06 1.03 1.03 [1.00] 1.00 1.00 
PILT 1.13 1.09 1.03 1.16 1.00 [1.00] 
RGNT 1.00 [1.00] 
CHNK .99 1.01 .99 .96 .95 
CRLT , , .97 
MNDM 1.22 1.02 1.08 1.14 1.07 1.06 1.11
 

JSTN 1.14 1.09 1.03
 
MIDA 1.32 1.05 1.07 1.02 1.03 1:05 1.03
 
RENN ,
 
HERC 1.17
 
RIVL 1.06 1.12 1.08 1.07 1.06 
CDET 1.12, 1.11 1.08 1.06 1.10 
PEMB 1.11 .89 1.09 1.09 
RMSY 1.03 1.13 1.12 1.09
 
PREM
 
LEDS 1.07 1.10
 
POLK , 1.12, 
KUBK 1.21 1.12, 1.07 
STEW 1.13* 
RDMN 1.08 1.13 1.07 
CRIS 1.06 1.13 
FORT .92 1.18 1.13 
SELK 1.11 .91 1.12 1.18 .96 
RUSH 1.10 1.00 .97 1.14 1.00 
LFE 1.35 1.13 1.08 1.00 1.06 1.15 1.03
 
LANG 1.05 1.13 1.17 1.14 
CANT 1.16 1.10 1.06 
CRIM 1.18 1.15 1.14 
ROLT 1.08 
BNTY 1.17 
WALD 1.01 
WARD
 
WELL 1.15 1.26 1.18* 
SNTY 1.03 1.05 1.19 
MANT 1.13 
LARK , 
LKTA 1.19 1.29 1.24*
 
ERA- 1.26 

means numbers on diagonal are values for VYA for the specified varieties.
 

n > 20 but S.E. > .05. 

I 
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Table E.2 (continued) Spring wheat and durums.
 

Code
 
Name CHNK CRLT MNDM JSTN MIDA RENN HERC RIVL CDET
 

MARQ 1.01 .82 .76
 
REWD .95
 
PNTD .98
 
RSCU 1.01 .93. .88 .93 .94 .89
 
CERS .88 .92 .98 .89 .90
 
CNLY 1.01 , .93 .97
 
TCHR 1.04 1.03 .94 .97 .95 .85 .93 .93
 
TILT 1.05 .90 .97 .93, .94
 
RGNT .94 .91
 
CHNK [1.01] 1.01 .95 .96
 
CRLT [1.01] .83 .85 .93 1.03
 
NNDM .99 1.20 [1.03] .93 .99 .92 1.00
 
JSTN 1.05 , 1.08 [1.03] .98
 
MIDA 1.04 1.18 1.01 [1.05] 1.01 1.00
 
RENN [1.06]
 
HERC 1.09 1.02 [1.07]
 
RIVL 1.08, 1.00 .99 [1.08] .98
 
CDET .97 1.00 1.02 [1.08]
 
PEMB 1.00 1.02 1.00 .95
 
RESY 1.07 1.03 1.04 1.01
 
PREM ,
 
LEDS .93 1.06 1.07 .98 1.03
 
POLK 1.14 1.08 1.00
 
KUJBK .98 .95 , .99
 
STEW 1.16 .99, 1.03 1.05 1.19
 
RDMN .93 .98 1.00
 
CRIS 1.06 1.14 1.10 1.01
 
FORT .97 1.03 1.05
 
SELK 1.20 1.09 .98 1.32 1.22
 
RUSH 1.06 1.06 1.06 1.06 1.10,
 
LEE 1.04 1.05 .94 1.17 1.20 1.04
 
LANG 1.06 1.09 1.03 1.04
 
CANT 1.07 1.00 1.00 .98
 
GRIM 1.08 1.18 1.11
 
ROLT 1.10 1.01 1.10
 
BNTY
 
WALD 1.07
 
WARD
 
WELL 1.04 1.15* 1.17 1.02
 
SNTY 1.04 1.28 1.11
 
MANT 1.10 1.12 .92 1.03
 
LARK
 
LKTA 1.09 1.22 1.20
 
ERA- 1.54 1.41 1.20
 

[ ]means numbers on diagonal are values for VYA for the specified varieties.
 

n > 20 but S.E. > .05. 
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Table t.2 (continued) Spring wheat and durums.
 

Code 
Name PEMB RMSY PREM LEDS POLK KUBK STEW RDMN CRIS 

MARQ .97 .83 
REWD 
PNTD 
RSCU .90 .88 .93 .93. 
CERS 1.12 .94 
dNLY * * , 
TCHR .92 .92 .91 .89 .89 .88 .88 .88 
PILT .93 .93 
RGNT 
CHNK 1.00 .93 1.08 .94 
CRLT 1.02 .86 
MNDM .98 .97 .94 .88 1.05 1.01 1.08 .88 
JSTN 1.00 .96 .93 .93 .91 
MIDA 1.05 .99 .97 1.02 
RENN 
HERC 1.02 1.00 .99 
RIVL .97 1.01 .95 1.00 
CDET . .84 
PEMB [1.09] .96 .92 
RMSY 1.04 [1.09] 
PREM [1.10] 
LEDS [1.10] .98 .89 1.01 
POLK 1.02 [1.12] 1.00 
KUBK [1.12] .91 
STEW 1.10 [1.13] 
RDMN 1.12 [1.13] 
CRIS 1.09 .99 1.00 [1.13] 
FORT 1.10 1.04 1.04 1.04 
SELK 1.01 .99 . 9 1 , .99 .89 
RUSH 1.02 .93 .98 1.12, 1.00 .90 
LEE- .93 .95 1.19 1.12 
LANG 1.10 1.04 
CANT .98 .98 1.03 
CRIM 1.08 .96 .98 
ROLT 1.00 
BNTY 1.12 
WALD 1.05 1.06 
WARD 
WELL 1.17 1.09 1.03 1.03 1.05 
SNTY .93 
MANT 1.12 1.02 1.00 .83 1.01 
LARK 
LKTA 1.19 1.11 1.04 1.05 
ERA- 1.19 1.19 1.22 

means numbers on diagonal are values for VYA for the specified varieties.
 

* n > 20 but S.E. > .05. 

I 
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Table E.2 (continued) Spring wheat and durums.
 

Code
 
Name FORT SELK RUSH LEE- LANG CANT CRIM ROLT BNTY
 

MARQ .74 .95 
REWD .88 
PNTD 1.09 
RSCU .90 .91 .93 .88 .86 .85 
CERS .85 1.10 1.00 1.00 .87 
CNLY .89 1.03 .94 .85 .91 
TCHR .88 .85 .88 .87 .88 .94 .88 .93 .85 
PILT 1.04 1.00 .97 
RGNT 
CHNK .83 .94, .96 .94 .93 .93 
CRLT 
MNDM 1.03 .92 .94 .95 .92 1.00 .85 .91 
JSTN .97 1.02, .94 1.06 .97 1.00 .90 .99 
MIDA .76 .94 .85 .96 1.02 
RENN 
HERC .95 .82 , .91 
RIVL .91 .83, 
CDET .96 
PEMB .91 .99 .98 1.07 .91 1.02 .93 
RMSY 1.01 1.08 1.05 .96 1.02 
PREM 
LEDS .96 1.10 1.02 1.04 
POLK .96 1.01 .97 1.00 .89 
KUBK 

STEW .89 .84 
RDMN 1.00 .89 
CRIS .96 1.12 1.11 1.02 
FORT [1.13] 1.06 1.01 1.06 
SELK .94 [1.13] 1.15 1.08 .95 1.00 .89 
RUSH .87 [1.14] .94 .91 1.03 .94 
LEE- .93 1.06 [1.14] .92 .95 
LANG 1.05 1.10 1.09 [1.141 1.08 .96 
CANT 1.00 .97 1.05 .93 [1.15] .89 
CRIM .99 1.12 1.0 1.04 1.12 [1.15] 
ROLT .94 [1.15] .91 
BNTY 1.10 [1.17] 
WALD .98 1.04 K .89 
WARD 
WELL .99 1.15 1.20 1.24 1.00 1.20 1.09 
SNTY .93 1.07 1.00 .92 
MANT .98 1.14 1.11 1.11 1.04 .99 
LARK 1 , , 1.12 1.05 
LKTA 1.00, 1.17 1.20 1.27 1.03 1.23 1.10 
ERA- 1.10 1.25 

L J means numbers on diagonal are values for VYA for the specified varieties.
 

nS 
n > 20 but S.E. > .05. 
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Table E.2 (continued) Spring wheat and durums.
 

Code 
Name WALD WARD WELL SNTY MANT LARK LKTA ERA-

MARQ 
REWD 
PNTD , 

RSCU .87 .77 .84 

CERS * 

CNLY .79 .95, .78 , 

TCHR .91 .85 .84 .88 .81 .79 

PILT .92 

RGNT 
CHNK .96 .96 .91 

CRLT , 

MNDM .87 .78 .89 .82 .65 

JSTN .93 .85 .92 .83 .71 

MIDA .90 
RENN 

HERC .98 .97 .83 

RIVL 
CDET 
PEMB .85 .89 .84 

RMSY .92 1.08 .90 
PREM 
LEDS .97 .98 .96 .84 

POLK .95 .97 1.00 .84 

KUBK 1.20 
STEW 
RDMN 
CRIS .94 .95 .99 .95 .82, 
FORT 1.02 1.01 1.02 1.00 .91 
SELK .87 1.08 .88 .85, .80 

RUSH .83 .93 .90 .83 

LEE- .81 : 1.00 .79 

LANG 1.00 1.09 .97, 

CANT .90 .81 
CRIM .92 .96 .91 
ROLT .96 1.01 .89 
BNTY 1.12 .95 .86 

WALD [1.17] .99 .93 .86 
WARD [1.18] 
WELL [1.18] 1.05 1.02 .97 .84 

SNTY .95 [1.19] .90 

MANT 1.01 .98, [1.19] .98 .80 

LARK 1.07 [1.23] 
LKTA 1.03 1.11 1.02 [1.24] 

ERA- 1.16 1.19 1.25 [1.26] 

i[] means numbers on diagonal are values for VYA for the specified varieties. 

n > 20 but S.E. > .05. 


