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ABSTRACT

This study concentrates on the engineering aspects of implementing

P

a stratosphere-monitoring3iid ‘ﬁﬁé%ﬁéould be used aboard the NASA CV990

or some similar large Jet a1rcraft capable. of operating anywhere in the
” 1)1\ x‘.,a‘_ ‘,,'?11’, ”,(.f‘. #4",{.35‘ H
world. The princ1pa&-object1ve was. to” deflne‘j ‘system that would be

scanning solar photometeré to be flown aboard the Nimbus G and AEM-B satellites

currently scheduled for launching in late 1978 and mid-1979, respectively.

A system analysis section provides background data on expected
signal and noise levels, a variety of hardware options are proposed
spanning a range from use of the existing SRI Mark IX ruby lidar plus
an expanded digital data recording system to the development of

completely new lidar employing a high prf Nd:YAG laser.

To gain a relatively large receiver collection aperture without
requiring extensive modifications to the aircraft, a modular, multiple-
telescope receiving concept is developed. This concept, together with
the choice of a specific photodetector, signal processsing, and data
recording system capable of maintaining approximately 1% precision

over the required large signal amplitude range, is found to

be common to all of the options.

It is recommended that development of the lidar begin by more
detailed definition of solutions to these important common signal

detection and recording problems.
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I INTRODUCTION, BACKGROUND, AND OBJECTIVE

Ground-based and airborne lidar systéms have been used effectively
to determine the vertical distribution of aerosol particulate back-
scattering in the stratospheric region. By applying appropriate optical
scattering models, backscatter data can be interpreted in terms of aerosol
optical parameters (such as extinction) and physical parameters (such
as mass concentration) required for evaluating the likely climatic impapt

of natural and anthropogenic straﬁospheric modification.

For upper atmosphere investigations, an airborne lidar system
possesses two distinct advantages over ground-based equivalents. First,
it can provide data in global regions where surface-based measurements
are difficult to make, as for example over the oceans or in winter polar
regions. Second, for a given lidar configuration, system accuracy and
precision are improved both by locating the lidar closer to the targets
being measured and through elimination of the highly variable path

attenuation of clouds and other tropospheric aerosols.

The principal impetus for this particular study is the anticipated
need to obtain corroborative data on the vertical distribution of upper
atmosphere aerosols where and when measurements are to be made by the

SAM~IT and SAGE limb-scanning photometer instruments on the Nimbus G and AEM-B

satellites, currently scheduled for launching in late 1978 and mid-1979, respectively.

The detailed objectives as spelled out in the contract work state-
ment and addressed in this report can be interpreted generally as the
consideration of available options for fielding the desired data validation
experiments both before and after the satellite launch. The principal
instrument platform considered is the NASA Convair 990 flying laboratory
based at Ames Research Center, Moffett Field, California. The information

desired was:



® The performance to be eipected if the existing SRI
general-purpose atmospheric ruby.(Mark IX lidar
were flown.

® Modifications that might be made to the Mark IX lidar
to facilitate obtaining more useful data at minimum
expense.

® Definition of a new lidar design, specifically directed
toward the needs as now defined.

® Time and cost factors for the various options.

The precision, spatial resolution, and temporal resolution that
should be sought in order to provide a valid check on the results of the
SaM-11 experiment currently are being studied by members of the SAM-1i
Nimbus Experiment Team (NET). Their findings, together with the information
in this report on capabilities and limitations of available hardware,
should permit valid decisions to be made about how to proceed before and

during the actual data validation phase.




IT METHOD OF APPROACH

In Section III (System Calculations) the expected performance of the
existing SRI Mark IX lidar is examined assuming airborne operation against
typical stratospheric aerosol targets. The results of this examination
disclosed early in the investigation that while the existing equipment
configuration might be useful in providing baseline checks relatively
quickly, there was a strong probability that the performance at either wave-
length would be considered marginal for use during the SAM II mission. That
is, even if a pulse-counting capability were added it would require barely
tolerable amounts of integration time to produce results competitive with

those expected from SAM II.

It was also apparent that significant improvements in overall system
performance could be expected through changes in the receiving system
alone and that these changes could be implemented relatively easily at

moderate cost.

One such change would involve the subsitution of a newer, higher
quantum efficiency photomultiplier that would increase the number of
photoelectron counts per photon by a factor of approximately six. Another
change would be to employ a larger receiver collection aperture. For
operation at relatively short ranges in the lower troposphere the existing
6" diameter receiving telescope is quite adequate and helps provide a
compact lidar. On the other hand, for long range, upper atmosphere studies
it is axiomatic that one strives for as much receiver light-collecting
area as possible. The first step in this direction would be to attempt
to utilize most if not all of the clear aperture of one of the upward-
looking windows of the CV 990 aircraft for receiving. By transmitting
through a separate, adjacent window, one could minimize problems of

receiver paralysis and of background due to residual pump light and/cor

laser rod fluorescence, by backscattering from the window. An effective



area increase by a factor of 4.6 could be obtained by converting to a
single l4-inch receiving telescope. Still more collecting area could be
realized by using more than one window for receiving. This line of
reasoning led to the concept of a modular receiver, employing an optional
number of relatively low-cost receiving telescopes, all converged on the
same transmitter beam and having their optical outputs channeled to a

single high quality photodetector.

This modular receiver design concept has been considered in some
detail during this study and appears to be well suited to the needs of
an airborne stratospheric lidar. It provides a desirable flexibility
to adapt to currently unknown amounts of space that may be available on
the CV 990, to possible use on other aircraft, and to available hardware
budgets. Thus the material that follows addresses not only (1) the

provision of an existing lidar, and (2) a completely new lidar system,
as specified in the contract work statement, but also something of a

continuum of options between these two extremes.

To provide some perspective on the relative amount of space devoted
in this report to the multiple receiver concept, it must be admitted that
the author's early goals for aperture-derived measurement precision were
greater than could be defended for the SAM II and SAGE application later
in the study after more thought and discussions with Dr. P.B. Russell about
other error sources (see Section III-C). However, descriptions of the multiple
receiver design options have been retained in the event that they might prove

useful, perhaps, for another application.

As previously mentioned, attention has been confined to two wavelength
regions. The ruby wavelength remains a strong contender not only
because it is one that can be implemented most quickly and at least cost
using existing field-proven hardware, but also because of a strong conviction
that for atmospheric probing it provides a near-optimum compromise among a
number of conflicting system constraints. The basis for this conviction is

set forth in the sections to follow.



In Section ITI-C it is shown that for equivalent transmitted energy,
one must integrate approximately three times as long at 1.06 um to achieve
the same measurement precision as can be obtained at 0.694 um. To attain even
this level of comparison, one must exploit the very significant recent
advances in 1.06 um detector performance (that is, a factor of 40 increase
in quantum efficiency (q.e.) combined with much lower internal noise).
In Section VIII it is pointed out that these improvements command a
very real premium both in dollars and in operating at 1.06 um is the desire
to make measurements at the same wavelength employed by the SAM-II instrument,
thereby eliminating some of the uncertainties involved in comparing back=
scattering at one wavelength to extinction at another. It is also important
to note that for a given aerosol particle concentration, the ratio of
_particulate to molecular backscattering at 1.06 um is appreciably larger than
at 0.69 ym. Hence, a larger uncertainty in measurement of the lidar
signal can be tolerated and still lead to smaller relative errors in the
infrared particulate component of backscattering or extinction. Another
factor in favor of Neodymium is the ability to frequency double to achieve
0.530 ym (green), a wavelength that is possibly of use for particle size

distribution experiments.

For these reasons, we consider in Sections IV-B and V what would be

required to convert the Mark IX lidar to operate at 1.06 um.

For a brand new lidar dedicated to airborne stratospheric aerosol
probing, the weight of evidence appears to be more completely on the side
of neodymium largely because of the greater amount of military-sponsored
engineering effort that has gone towards reducing size, weight, and power
consumption of reliable Nd:YAG laser systems. An airborne lidar
system design incorporating a state-of-the-art, high repetition rate
Nd:YAG laser operating in conjunction with one or more of the modular

l4-inch receiver units is described in Section IX.
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III SYSTEM CALCULATIONS

A. General

In order to simplify the task of evaluating how various proposed
changes in system parameters affect the accuracy of the final output
data products, we will maintain separate accounts of four major components
of the lidar output signal. These four components will be called NR’

N NB’ and NI’ and are defined as the photoelectron count rate for any given

P’
range interval that results from Rayleigh molecular backscattering (NR),

from Mie or particulate backscattering (NP) from sky background light

(NS), and from spurious internal system noise (NI).

NR and NM can be calculated from the lidar equation:
2
T T
N = T 1
R 2h R?

2
T
UTAR 0 Ta A BP 1

N = —— (2)
P 2h R
where:
U_ = transmitter energy per pulse actually radiated (Joules)
T . .
(The transmitted pulse length is assumed to be much
less than the range integration period)
: 2
AR = receiver effective aperture area (m ) (Includes effect
of all mechanical aperture blockages but not of optical
transmission factors.)
T0 = overall optical transmission factor for all receiver
components in tandem
2 . .
Ta = two-way atmospheric transmission factor to range R and

for wavelength A

A = operating wavelength (meters)



w

-

w
]

volume backscattering coefficients (at wavelength 1)
for molecular Rayleigh and particulate scatters,

respectively. -1 -1
(meters - steradian )

q = detector quantum efficiency at wavelength A

h = Planck's constant; 6.625 x 10-34 Joule - second.

R

slant range to the point of measurement (peters)

Background Noise

NB = is a function of the receiver only and can be either
measured empirically or calculated from Equation (4)

of Section 1I1I-B4.

NI is determined by the type and temperature of the detector. It
must be estimated from manufacturer's specification and/or measured for

the specific components used.

Although we find it convenient to speak of pulse '"counts'" while
tracing the effects of varlous system design alternatives on the statis-
tics of the detection and measurement process, we should point out here
that for stratospheric aerosol monitoring the photoelectron pulse rate
often will be too high to separate and count reliably in an actual digital
counter. Instead, a measure of the photoelectron count (photon absorption
rate) will be obtained by integrating the (amplified) current pulses in a
storage capacitor and measuring the accumulated voltage at the end of each
range interval with a fast analog-to-digital converter, that is, a Biomation
Model 8100 transient recorder. The "counting' type of signal-to-noise
(S/N) analysis will still apply as long as the total number of photoelectrons
per range interval is large enough to effectively smooth the spurious
pulse-to-pulse variations in photomultiplier current gain. In order to
make this assumption as nearly valid as possible, we propose the use of
a photomultiplier specifically designed to minimize the spread of the
single electron pulse height distribution. The Varian VPM164M (visible) or
VPM164A (infrared) appear to be such devices, when fitted with the Gallium

Phosphide first dynode option.



B. Performance at 0.6943 pm and 1.06 um

In this section we calculate performance at both A =0.6943 um and
A = 1.06 um for several systems designed around nominal 1 Joule per
pulse, 1 pulse per second transmitters. The results provide a set of
data that not only is easily scaled for other transmitter characteristics
but also is directly applicable to the SRI Mark IX lidar transmitter,
either in its existing ruby configuration or after conversion to use a
Nd:YAG laser rod. Since the ruby lidar could be fielded most quickly
and at least expense it will be considered the baseline system. Parameters

differing at the neodymium wavelength will be listed as required.

1. Equipment Parameters

Table I lists numerical values for the pertinent lidar system

parameters.

2. Atmospheric Parameters

Values for the volume backscatter coefficient 8180 due
to the molecular atmosphere at various altitudes are listed in Table II
and plotted in Figure 1. The second column of Table II lists the atmos-
pheric molecular number densities that form the bases for calculating

backscattering. The backscattering coefficients listed for each wave-

length were obtained by multiplying the number densities in Column 1 by

the Rayleigh single particle backscattering cross section, CR, appropriate

to that wavelength as given at the bottom of the table,

Table III lists approximate values for volume backscatter coefficients,
BP(K) due to the particulate content at various elevations for 'moderate
post volcanic'" conditions. The values are derived from the Rayleigh back-
scattering coefficients of Table II and the time-averaged scattering ratios
measured by Russell et al (1976) at A= O.694ﬁm during the 1975 recovery
from the Fuego volcanic injection. Backscattering coefficients for the

neodymium wavelength were derived from the ruby wavelength values by
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MOLECULAR NUMBER DENSITIES
AND RAYLEIGH VOLUME BACKSCATTER

Table II

COEFFICIENTS AT VARIOUS ALTITUDES

Eleva-. J
tion | N, m™3 |BR(0.53 pm), |BR(0.694 um), | Br(1.06 wm),
km (a) m ! srl m lgr-l m-l sr-l
0 2.55E25 1.588E-6 5.391E-7 9.922E-8
10 8.599E24 5.354E-7 1.818E-7 3.330E-8
20 1.849E24 1.152E-7 4 .004E-8 7.370E-9
30 3.714E23 2.312E-8 7.851E-9 1.445E-9
40 8.324E22 5.183E-9 1.760E-9 3.239E-10
50 2.252E22 1.402E-9 4.761E-10 8.763E-11
60 7.262E21 4.521E-10 1.535E-10 2.826E-11
70 2.088E21 1.300E-10 4.414E-11 8.124E-12
80 4.503E20 2.804E-11 9.519E-12 1.752E-12
90 8.309E19 5.173E-12 1.757E-12 3.233E-13
100 1.62E19 1.009E-12 3.425E-13 6.303E-14

Br(M) =N Cg (), where

Cr (0.694 pm)

a
Source:

Designers, ARCRC,

Source:

“Cg (0.694 pm) X (

2.114E-32 m? sr'ib
Cgr (1.06 pm) = 3.891E-33 m2 sr-! .
Cr (0.530 pm) = 6.226E-32 m2 sr-!

U.S. Air Force Handbook of Geophysics for Air Force
1957.

Russell, P. B.; Viezee, W.; and Hake, R. D.: 19769.
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FIGURE 1 VOLUME BACKSCATTER COEFFICIENTS VERSUS ALTITUDE FOR THE MOLECULAR
ATMOSPHERE
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-1
assuming a A  wavelength dependence; that is,

694

B694 nm A2

Plo60 nm _ A1 - (1060) 2 0.655
(3)

This wavelength dependence is consistent with the optical models of the

stratospheric aerosol derived from measurement data by Pinnick et al. (1976).

3. Expected Lidar Signal Returns

Solutions of the lidar equation at both ruby and neodymium
wavelength are plotted in Figures 2,3, and 4 for the lidar parameters,
Rayleigh, and particulate backscatter coefficients just discussed. For
all cases, it was assumed that the lidar was flying at an altitude of

10 km (33,000 ft).

Additionally, these curves agsume perfect receiver/transmitter
convergence at all ranges and thus represent the maximum available signal.
Finilte transmitter-receiver separations will modulate these maximum

predicted signals downward at some altitudes as discussed in Section V.

4, gky Background Signal

The receiver photoelectron count due to background light NB’

is given by:
N =B AT w A\ A
B BROR  he J %)
Where:
BB = background sky radiance in the direction of view

(watts - meter 2 - steradian-l - Angstrom~1l

w_ = recelver solid angular field of view (steradians)

o 2
4 °r

GR = receiver full beamwidth (radians)
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Al

receiver narrow band filter bandwidth (gngstroms)
full width, half amplitude

¢ = velocity of light = 3 x 108 m - sec-1

an< the other parameters are as previously defined.

A plethora of often-conflicting data is available on sky back-
ground radiances, tabulated in a variety of units, relative and absolute.
For the particular geometry involved in validation flights for the SAM-II
experiment; that is, for zenith viewing and low sun elevation, the agreement
among various sources is fair and the values given and referenced in

Figure 5 have been selected for engineering systems evaluation.

The skylight will be étrongly polarized, and for at least some
portions of the experiment this fact might be exploited to reduce the
background noise count by perhaps an order of magnitude., Figure 6 shows
the path geometry, approximately to scale. For the proposed high noon,
sun-synchronous orbit, the zenith skylight viewed from the aircraft will
have its electric vector polarized perpendicular to the plane of the orbit
(and the plane of the paper). For a flight plan designed to sample along
the satellite-to-sun path near the tangent point the aircraft would be
flying either directly into or directly away from the sun, and the sky
background interference could be minimized by orienting the lidar so that
both transmitter and receiver were polarized parallel to the flight line.
Provision for this adjustment has been made in the transmitter and receiver

mounting designs proposed herein.

Background sky count computed from equation (4) for the receiver
parameters of Table I, and sky radiances a factor of ten less than those
given in Figure 5 (to account for polarization) are shown as dashed

lines on the signal return plots, Figures 2 and 3.
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Note that with all other factors unchanged, the background
noise count will match the lidar signal return from some particular

elevation, independent of the size of the receiver aperture.

Nighttime sky radiances are more difficult to predict because
of the effect of the moon and other factors. First order estimates can

be based on the following:

® YWith a full moon near the horizon, zenith sky
radiances should be less than the solar induced
radiances of Figure 5 by about a factor of 10°
(the ratio of sun and moon radiances).

® TFor a full moon close to the zenith (never
attainable in high latitudes), the nighttime
sky radiance might be only 10% less than values
given in Figure 5.

® Minimum values of zenith sky radiance obtainable
on moonless nights will approximate the airglow
which according to Allen (1955) is 7 x 10-10
watts/m? - ster - X at \ = .7 micrometers, a value
actually slightly greater than one might expect
at high altitudes with a full moon near the
horizon (per the first consideration above).
Other references, for example Quasius and
McCanless (1966), quote average values of
5 x 1011 watts/m? - ster - & for the night
sky in the visible region.

5. Internal Detector Noise

The dark noise count versus temperature for the recommended

. photomultiplier tubes, Varian VPM 164M and VPM 164A (formerly VPM 163 and
VPM 164), is given in Figure 7. By comparison with the background noise
count shown on Figures 2 and 3 it can be seen that little or no cooling
is required to keep the Galium Arsenide (ruby wavelength) tube noise

count negligibly small (< 1%) with respect to the expected sky background.
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On the other hand, a temperature of -20°C, which is the lowest that can
be conveniently attained with a thermoelectric cooler, would be barely
adequate to bring the noise count for an Indium Galium Arsenide Phosphide
(Neodymium band) tube down to less than 10% of the expected background

noise count from a polarized 14' receiver.

C. Discussion and Test Cases

Two principal figures of merit were used in this study to compare the
performance to be expected from various system alternatives. Thege criteria are the

particulate and total signal-to-noise ratios, given respectively by

NP
SP/N = (5a)
+ N_+ N
N_ + NR I
and
N, + N
R P
ST/N = (5b)
4 + N
NP + NR B + NI
where NP"NR’ NB’ and NI are the photoelectron pulse counts at the output

of the photodetector, accumulated for a particular range bin,; as a result
of backscattering from aerosol particles, from the Rayleigh molecular
environment, from continuous radiation (background light), and from

internal detector noise.

SP/N (Equation 5a) expresses the ratio of the inferred particle-
responsive component, Np, to the uncertainty in measuring the total lidar
return from a given altitude; its inverse is the lidar-dependent component
of the relative uncertainty in lidar-measured particulate backscattering

at that altitude; that is, it is hasically a measure of instrumental

precision,
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While a number of calculations of SP/N were made during the early part
of this study and are included in this report for reference and completeness,
later discussions with P.B. Russell revealed that because of the way that
upper atmosphere lidars are normally operated SP/N can be both misleading
and over-ambitious as a system figure of merit except, perhaps, for the
relatively infrequent situations where particulate backscattering exceeds
molecular backscattering (scattering ratio R greater than two). For more
usual stratospheric conditions the uncertainty components arising from
sources independent of the lidar equipment parameters will predominate and

provide a practical limit on the instrumental precision worth seeking.

This result comes about because the factor relating SP and the desired
result, the particulate backscatter coefficient, is not a fixed system
constant (even for a given range) but is, in effect, derived for each lidar
shot or group of shots through a normalizing process that assumes molecular
backscattering from clean air (negligible contribution from particulate
backscattering) at some calibration range point on the profile. Any errors
in the validity of this "clean air'" assumption, or any errors in the know-
ledge of either the density profile or the optical transmission between
the normalization range and the measurement range will then contribute
errors to results deduced from the measurement. The magnitude of these
contributing errors or uncertainty factors has been investigated by Russell
et al. (1976a). They found typical. relative uncertainties of 1% each for
the density and transmission factors and 0.1 (Rmax—l) for the normalizing
error, where Rmax is the maximum scattering ratio encountered. In practice,

it is the scattering ratio,

that is most often computed and reported by stratospheric aerosol investigators.

The above-discussed uncertainties were shown to affect the scattering

ratio as follows:

relative error _
in scat. ratio, R = g(R) = (6)
24
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relative error 2 relative error 2 relative error 2 relative error
in clean air + in air density + [ in two-way + introduced
assumption specification optical trans- by lidar
0.1(R -1) = 0.01 mission N/S

max ~0.01 T

The relative uncertainty of the particulate volume backscatter coefficient

derived from the lidar data was shown to be:

2 2
o (BP) _ (o (Bg) + 0(R)> - o(R) R BN

Bp B R-1 R R-1

Study of equations (6) and (7) gives an insight into the lack of
sensitivity of one desired end product, the particulate backscatter

coefficient, to very high lidar measurement precision as measured by N/SP.

Particularly at high altitudes it appears more informative to use
ST/N (equation 5b) as a figure of merit for the lidar instrument. As shown
by equation (6), the inverse of ST/N gives the‘lidar's contribution to the
relative uncertainty in measured scattering ratio, R. This relative
uncertainty in R is also the absolute uncertainty in lidar-measured Bp’
expressed as a fraction of the total backscattering coefficient, BT =
BP + BR' The examples given below will show the usefulness of ST/N as a
figure of merit for those altitudes and wavelengths where BP is only a

few percent or less of BR.

In Appendix A, numerical values for both SP/N and ST/N have been calculated
for a number of test cases. The arithmetic is reproduced in sufficient
detail to clearly display the relative importance of the four main noise
sources for each case. Input data were taken from the graphs and tables of
the preceeding section, where all count rates are expressed in units of
pulses per microsecond. For the test cases, the usual pattern was to first
compute $/N for a single lidar shot, using a range integration interval
that appeared consistent with our understanding of the objectives of the
SAM-II data validation program, and with the proposed data recording hardware.
Next, a computation was made to determine how many shots need to be integrated
(or how long the integration time should be) to achieve some desired

measurement precision.
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The effect of system trade-offs other than those considered here
can readily be examined by appropriately modifying the input data and

repeating the simple procedure of these examples.
The case studies can be summarized as follows:

] For measuring particulates at 20 km altitude, from an aircraft
flying at 10 km altitude and using the criterion defined by equation
5a, 17 precision in BP would require integration times of 17.9
minutes using the unmodified Mark IX ruby lidar (Case 4), 31
seconds using the transmitter and a single 14" receiver plus a high
efficiency PMT (Case 1),2.1 minutes with a Nd:YAG 1.06 micron laser
rod in the Mark IX transmitter plus a high efficiency 14" receiver
(Case 2), and 13.6 seconds using a new transmitter utilizing a high
repetition rate (30 pps) Nd:YAG laser (Case 3). Using the alternate
criterion of seeking a precision of 17 of BT in measuring BP
(equation 5b), the corresponding times are: 2.0 min (unmodified
Mark IX, Case 4), 3.5 sec (modified ruby Mark IX, Case 1), 51 sec
(modified NA:YAG Mark IX, Case 2), and 5.7 sec (high PRF Nd: YAG,
Case 3). The range integration interval used for all cases was 0.5 km.
All of these 14" receiver times could be halved by converting to 4-
telescope systems. The predominant noise contributor for the ruby
systems is quantum noise (shot noise) from the Rayleigh signal
component. For the Neodymium systems, quantum noise from the parti-
culate signal component is strongest, by a small margin. For the
20 km altitudes, quite significant changes in beamwidth, bandwidth,
polarization, or PMT cooling will affect the overall S$/N and integration

times only slightly.

For probing at an altitude of 40 km, particulate backscattering BP
is poorly known, and sufficiently small compared to BR that the SP/N
figure of merit is not really meaningful for evaluating lidar
performance. Instead, we use ST/N to show that measurement of BP

to a precision of 1% of BT (a:BR) requires 19.8 min for the 1 pps,
14" ruby system (Case 6), and 9.34 hr for the equivalent 1 joule/sec
Neodymium system (Case 7). When the goal is relaxed to attainment
of a p;ecision of 107 of ( BTQ,BR) over range resolution, lengths of

5 km, 1.2 sec and 31 sec are required with the same respective systems.
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IV TRANSMITTER EQUIPMENT CONSIDERATIONS

A. General

Three transmitting laser options are proposed for achieving the

performance levels discussed in Section III.

(1) Use the existing Mark IX transmitter head. This unit, which

will be described more completely in Section VII, utilizes a Holobeam
series 300 Q switched laser fitted with a 3/8" x 3" ruby rod. It emits
1 joule per pulse, and is capable of operation at rates up to 1 pulse
per second.

(2) Use the existing Mark IX transmitting head, but replace the

ruby with a Neodymium:YAG laser rod as described more completely below.
(3) Construct a new transmitter capable of achieving appreciably
higher average power output at 1.06 pm. The proposed unit employs a
1-50 pulse/second Sylvania Model 618DR Nd:YAG laser, is capable of

12.5 watts average output, and is described more completely in Section IX.

B. Conversion of Mark IX Laser to 1.06 Micron Wavelength

Consultation with the laser manufacturer (Holobeam) indicates that
by substituting a Neodymium:YAG laser rod for the existing ruby, the
Model 321 system could be converted to yield other parameters closely
comparable to those of the ruby. That is, the converted laser system

should meet the following specifications:

Center wavelength, 1060 nanometers

Energy per pulse, 1 joule maximum,
.8 joule, typical

Maximum repetition rate, 60 pulses per minute
Linewidth, .75 Angstrom
Beam divergence

(with collimation) < 3 milliradian, fwhp
Flashlamp pump energy < 1250 joules/pulse
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The principal component, a 3 x 3/8" Nd:YAG rod, is expensive (current
cost $3560) but the alternative of Neodymium doped glass at $915 is
unacceptable because of wide linewidth (80-100 Angstroms) and inability to
operate at rates above about 4 pulses per minute because of thermal

problems.

Additional changes that would be needed in the transmitter include
the following:

Parts Cost
Brewster stack polarizer and rail mount, (addition) ($) 580
1.06 b high reflection mirror (substitution) 345
1.06 p front etalon (substitution) 575
Beam expander, 4x, coated for 1.06 u (subsitution) 585

"§ 2,085

Narrow-band "V'" coatings are used on the beam expander. Broadband
coatings will be used on all other optical components, including possibly,
the aircraft windows. The present Pockels cell is rated for operation

at either wavelength.

Approximately 1 week of down time should be anticipated to make
the conversion the first time and to determine and document optimum pump

levels, adjustments, and so on. After the first time, conversion from
one wavelength and realignment at another normally will require that the

lidar be removed from service for 1 or 2 days.

C. High PRF Nd:YAG Transmitter

Since the SAM-II limb-scanning sunphotometer to be carried by Nimbus G
will operate at 1.06 um, there would be some value in having corroborative
airborne lidar measurements made at the same wavelength to eliminate any
wavelength-dependent assumptions required to compare the data. The system

calculations show that operation at 1.06 pm would require appreciably more

average transmitter output power than would be the case with ruby. For
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Nd:YAG, high average power is more easily and economically attained by

operating a relatively small laser rod at a high PRF than by using the
converse. While there appears to be no inherent advantage to the high

PRF for high altitude probing--in fact it slightly complicates the data
collection process--there is the opportunity to capitalize on the large
amount of technology and hardware development effort that has been ekpended
on high PRF systems for military illuminator and rangefinder applications.
Largely as a result of these efforts, the additional average power required
to roughly match the immediately obtainable "baseline" ruby performance
could be obtained with commercially available Nd:YAG laser systems that

are smaller, more easily maintained, and require less primarily input power
than either the present Mark IX transmitter or readily available, newer

replacements.

Added to the foregoing is the relative ease of doubling the generated
laser frequency to obtain energy near the middle of the visible range
(0.53 ym), thus providing a dual wavelength capability that is of interest

as a means for infering particle size distributions.

Should a brand new laser transmitter seem desirable for the airborne
lidar project, the foregoing arguments present a strong case for a high
PRF Nd:YAG system even though the ruby wavelength still appears near optimum

from the standpoint of detected photons per joule of transmitted energy.

A transmitter design utilizing a commercially available high PRF

Nd:YAG laser is described in Section IX-A.
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V  RECEIVER EQUIPMENT CONSIDERATIONS

A, Existing Equipment

The present Mark IX ruby lidar utilizes a 6" Newtonian telescope
and an RCA 7201 photomultiplier. As the system calculations show, the
received signal levels using this combination are too low to be of
serious interest for high altitude lidar probing. Th% reason for its
being considered at all is that it is immediately available, is mounted
close enough to the transmitter that both will fit under one of the CV 990
windows, and could provide a baseline system of known performance against
which to check newer receivers. The modifications required to incorporate
a cooled PMT housing would be quite substantial, and are not recommended.
That is, if the considerable investment required to convert to 1.06 um
operation is contemplated, either via modification of the Mark IX laser
or procurement of a new one, plus the procurement of an expensive high
efficiency PMT, it would appear poor economy not to also convert to a larger

receiver aperture by one of the means described later in this section.

B. High Performance Photomultiplier Tubes for Operation at 1.06 im

Primarily as a result of work on classified military infrared systems
very significant advances have been made over the last few years in the
performance that can be obtained from photomultiplier detectors operating
at 1.06 micrometers. The Varian VPM 164A appears to represent the current
state of the art in devices available for unclassified projects. Its Indium
Galium Arsenide Phosphide (InGaAsP) photocathode has a quantum efficiency of
2% at 1.06 micrometers. This is a very significant improvement over the 0.05%
previously available in S1 photocathodes, and is about the same efficiency
that has been employed in lidars for many years at the ruby wavelength,
using the S20 cathode. 1In addition, the internally-generated noise level
has been reduced to the point where, with moderate cooling, this noise
component can be made negligible (less than 100 pulses per second), again
comparable to the best performance available at ruby wavelength only a few

years ago. The noise performance of the VPM 164A tube was plotted in Figure 7.
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The price for these improvements is also impressive, however. Not
only is the dollar cost high (currently $5-6K), but the tubes need constant
pampering. They are shipped in dry ice and must be maintained below room
temperature (preferably below -20°C) at all times, whether operating or
not, in order not to invite deterioration and void the manufacturer's
warranty. As a consequence, and as provided for in the receiver designs
of Section IV, the receiver design must provide not only a refrigerated
PMT housing, but also some means for assuring essentially continuous
power for cooling. Thermoelectric coolers are available that operate
simply from low voltage, typically 40-80 watts at 6 volts dc, and this
combined with the good thermal insulation inherent in the cooled housings
provides a means for transporting the tube safely from an aircraft to a
motel room or laboratory between missions, but the annoyance factor

would certainly be very real.

C. Proposed Use of l4-inch Celestron Telescopes

The 1l4-inch '"Celestron' Schmidt-Cassegrain telescope with an
effective focal length of 154 inches (3.91 m) is proposed as a basic
receiver building block. The aperture closely matches the area of the
optical windows in the NASA CV 990 aircraft, the design is compact,
and lightweight yet rugged, and the instrument is produced in sufficient
quantity to be moderately priced. 14" and 16" Celestron telescopes have
been incorporated into two previous SRI lidar designs with entirely
satisfactory results. Figure 8 is a photograph of the standard 1l4-inch
telescope, shown on a tripod and yoke that would not be required for the
lidar. Figure 9 shows the telescope mounted under one of the upward-viewing
65° windows of the CV 990 aircraft. The telescope is mounted atop one
of the "Low Boy'' equipment racks provided by NASA for use in this airplane.
Figure 10 is a plan view and shows the area utilization of the
window and telescope apertures. The resulting clear aperture is .080 m2
(124 inz), the equivalent of a 319 mm (12.6 inch) diameter unblocked
telescope. About 75% of the total window area and 90% of the telescope

are utilized.
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Two different basic designs for focal plane optics have been
considered for use with this telescope. Numerous hybrid variations on

the same theme are possible in the final detailed design phase.

D. Direct Coupled Receiver

If only a single receiver module is contemplated, the field stop,

polarizer, and photomultiplier housing(s) could be rigidly fixed to the

rear of the telescope, and screws could be provided to tilt the whole

receiver assembly to achieve fine convergence with the transmitter beam.

Figure 11 shows an optical schematic for this rigid-detector option
that provides for the narrow band filter, an adjustable field stop,
a polarizer, and a quadrant detector assembly for convergence monitoring
that will be discussed later. Because of the high effective f/D ratio
of the Schmidt Cassegrain telescope, the maximum convergence angle for
light raysAnear the focal plane is small enough k2.6°) that no additional
collimation is required to efficiently use narrow band interference filters
in the bandwidth range of 5 to 10 Angstroms. The drawing shows a Varian
VPM 164 photomultiplier mounted in a thermoelectric cooler (Products for
Research, modified Type TE 102). As discussed further in Section V-B,
cooling is mandatory for operation at 1.06 microns, but optional at the ruby
wavelength. If an uncooled VPM 164 type tube is used, the housing can be
a simple cylinder (3" diameter is standard for all SRI lidars) but the
converging lens shown would still be required to reduce the beam to fit the

small 0.25" recessed photocathode.

Since high efficiency infrared-sensitive photomultipliers require
constant cooling, even during storage, the cooler housing should be
provided with alignment keys and quick-release fittings to facilitate
easy removal from the aircraft during periods when standby power cannot
be guaranteed. The design provides for the addition of a second photo-

multiplier at right angles to the one shown should it be desirable to
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conduct experiments that require simultaneous monitoring of both polariza-
tions of the lidar return. Angular adjustment of the polarization plane
relative to the aircraft (to minimize the sky return) would require

rotation of the entire telescope-detector assembly.

Note that this design, as shown, is not amenable to two-wavelength
operation since everything but a single narrow wavelength band is rejected
as a first step in the optical signal processing. The simplest option
for two-wavelength operation would be to use two separate receivers,
one for each wavelength. While that approach would not make maximum use
of the available total collection aperture, it might be preferable to a
more complex dichroic beam splitting arrangement with its attendant

problems of alignment and losses.

One possibility for a two-wavelength version would be to lower
everything below the sun shutter in Figure 11 approximately one inch and to
insert in the newly created space a 90° dichroic beam splitter, a second
narrow-band interference filter followed by a second field stop plate, then
a fiber-optic collecting cone and single-strand fiber leading to the
alternate-wavelength photomultiplier in a manner analogous to portions of

the design to be discussed in the next paragraph.

E. Fiber Optic Coupled Receiver

To permit significant increases in receiving aperture, operation
with multiple receiving telescopes has been proposed. These would be

optically coupled into a single high quality photomultiplier detector.

For two or perhaps three such separate telescopes, it should be
practical to continue to achieve convergence via the direct manual access
leveling screw arrangement just discussed. For larger arrays, it will
probably be better to provide remotely controllable levelling pads; for

example, motor driven screws or thermally-controlled expansion devices.
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Another remotely-controllable convergence design has been given some
thought and is included here for completeness, though our own current
'preference would be to resort to its additional cost and complexity only
if some basic flaw becomes apparent in the leveling screw arrangement.

T *Fis design, illustrated in Figure 12, the '"field stop" is the entrance

end ¢f a fiber optic light guide that can be moved in the large (3" diameter)

image plane of the Celestron Lelescope by means of a small moiLor-driven

x-y translation table similar to those provided for some microscopes.

The entire assembly mounts in a box that clamps to the rear cell of the
telescope. The telescope itself could be rigidly mounted, with no

requirement for fine adjustment. The dichroic beam splitter could

be either a narrow band interference filter, designed for operation at

the 45° angle as shown,or a less selective dichroic prism followed by

two conventional interference filters. The central large image pickup

fiber is surrounded by four quadrant bundles of smaller optical fibers that
lead to four separate detectors that are used for convergence monitoring.

The main signal fiber is a single strand instead of a bundle in order

to avoid the light loss that would otherwise occur because of cladding and

air spaces (typical active area of bundles is about 75% -85%). The effective
focal length of the Celestron 14'" telescope is 154", so that for a 0.7 miliradian
field of view, the fiber entrance aperture (field stop) should have a diameter
of about 0.100 inch, which is too large to flex conveniently. A diameter of
about 0,020" appears to be more reasonable, Discussions with one leading

fiber optic manufacturer,Galileo Electro-Optics Corp., Sturbridge, Massachusetts,
indicates that flared, bell-shaped sections remain at the furnance end of

a '"drawing down' operation. Normally these flared ends are cut’ off and
discarded, but in a custom order, lengths of 0.020" fiber with one end flared
to the original cane diameter of 0.187" could be provided. The flared sections
could then be cut at the proper point to achieve the desired entrance aperture

size.
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Light entering a tapered optical guide at an angle 6 will emerge at an
angle KO where K is the ratio of entrance to exit diameters. In our case the
maximum entrance angle is 2.6°. Transmission down the guide would then occur
with a maximum angle of 13° which is close to the maximum allowed for high
transmission fibers. The corresponding numerical aperture, N.A., is sin 13°

or 0.22, Available numerical apertures for optical fibers, determined by

the refractive indices of the core and clad glasses, run from 0.66 for low

quality fibers (0.65 dB/meter) to 0.20 for high quality fibers (0.0l dB/meter).

New Tube Design

The relatively small, deeply recessed photocathode of the VPM-164
tube forces several undesirable optical design compromises that would not
be present with a more conventional end-window tube construction, but
have been accepted as part of the price of obtaining high quantum

efficiency.

As this report is being completed, Varian is announcing a new ruby
wavelength high quantum efficiency photomultiplier, VPM-192M, that has
a larger (18 mm diameter) photocathode coated on the inside of an end window

and will be available at less than one-third the cost of the VPM-164.

For the recessed cathode tubes, relay lenses are required to converge
the beam onto the cathode active area, not only for the relatively high
dispersion beams exiting from light pipes but even for the relatively low

divergence, direct-coupled receiver design of Figure 11l. With a larger photo-

cathode having a wider acceptance angle, these relay lenses could be eliminated
and a simpler system with higher optical efficiency would result. For
fiber-optic coupled options employing cooled housings, the additional losses
normally associated with an anti-frost window could be eliminated. The
optical fibers could penetrate the cold wall and terminate either near

the cathode window or, for highest efficiency could be sealed to the

window with an index-matching compound.
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Initially, the VPM-192 design will be available only with a GaAs (red
sensitive) cathode. The advertised quantum efficiency at 700 nanometers is
10%, compared to 15% for the VPM-164M, but apparently this difference is due
not to a technical limitation, but to a current Defense Department security

classification that is expected to be relaxed soon.

Varian expects that it will be at least a year before an infrared-
sensitive version of this new tube type might be available. For this
reason, along with the possibility that further testing of the end-window
tube may reveal some limitation peculiar to the lidar application (refer
to Section X-A for examples) it would be well to keep the receiver

design flexible enough to be able to accomodate either tube type.

F. Convergence Monitoring

Both of the l4-inch receiver design options employ a specially fabricated
four-quadrant grouping of optical fibers surrounding the field stop that
defines the main field of view. With perfect transmitter/receiver alignment
(convergence), all of the returning laser light will be focused through the
field stop and on to the main signal detector, either immediately for the case
of the direct-coupled receiver or via a light pipe for the case of the fiber-
optic coupled receiver, If the convergence is not optimum, a portion of the
focused laser return will fall on one or two of the four pie-shaped fiber optic
bundles surrounding the central field stop. The magnitude and the direction
of the misconvergence can be monitored by an auxiliary detection system
at the exit end of these cables. It is anticipated that any convergence
drift will be slow enough and infrequent enough that one detectér and monitoring
circuit could be time-shared among several quadrants in several telescopes.

For example, Figure 13 shows a possible arrangement for a four-telescope
receiving array. The detector should probably still be a photomultiplier

tube, but it could be a more common and less expensive type than that proposed
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for the main signal. An RCA 7265, with a quantum efficiency of .02, for example,
would be quite adequate for the ruby wavelength. For operation at 1.06

microns, this might be a place for a silicon avalanche diode detector.

For monitoring the convergence detector output, a storage oscilloscope,
Tektronix 7623, Hewlett-Packard 1741A, or equivalent, is proposed. This scope
would also be useful for field testing of the main signal channels in case

of trouble with the digital data acquisition system.

The manually-operated fiber optic selector switches, the storage
oscilloscope, and actuator controls for the motor-driven convergence
assemblies would be grouped together. For the single-telescope, direct-
coupled design, the oscilloscope would need to be located within arm's length
of the telescope tilting screws. During normal operation, the operator would
occasionally cycle through the several convergence monitoring channels,
noting any departures from the expected waveforms, and making any required
convergence corrections, With proper orientation of the quadrants, two
that monitor in the direction toward the transmitter should always display
strong backscatter at close ranges, that is, before the region of optimum
convergence. Monitoring on these two waveforms may prove to be a more
sensitive indicator of convergence than watching for small signals in all

channels at ranges where best convergence is desired.

A fine point of difference between the two receiver designs is that
in the direct-coupled version a choice of several different field stop sizes
is provided (by rotating the mirrored plate) and any laser light that does
not penetrate through the hole is reflected onto the convergence monitoring
sectors. For the fiber optic version, shown in Figure 12, the field of view
is determined by the entrance diameter of the central fiber and is not easily
changed. The field could be reduced by adding a small anular cap to the end
of the fiber, but then there would be:a corresponding anular dead space between

the signal channel and the convergence channels.
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G. Optical Transmission Factors

Optical transmission factors used in the system design considerations
are listed in Table IV. The table breaks down the components of the
approximate efficiency figure (exclusive of mechanical blockage) of 0.25
used in many of the calculations; that is, 0.5 for the narrow band filter

and 0.5 for all other transmission losses.

Contrary to inferences in the CV-990 Experimenters' Handbook,
the optical data available from NASA/Ames about the special optical
windows provided for the aircraft are very meager. However, as a part
of a lidar experiment flown on the CV-990 in 1969 for the BOMEX expedition,
J. Oblanas of SRI made transmission measurements and laser damage checks at
the ruby wavelength on Borosilicate Crown, Pyrex (also a Borosilicate)
and Soda-Lime glass window blanks borrowed from Ames. Of these three
samples, the Borosilicate crown was the best, having measured one-way trans-
mission of 0.96 for both polarizations at the working incidence angle of 25°,
Handbook curves indicate that the transmission factor at 1.06 micrometers

should not be measurably different from that at the ruby wavelength

(0.694 um).
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VI BEAMWIDTH/CONVERGENCE RELATIONS

When the lidar receiver is located some distance from the transmitter,
as proposed here, there is a need to consider the effect of transmitter
and receiver beamwidths on the ranges over which useful convergence
(overlap) of the two beams can be maintained. If background ambient lighting
could be ignored, there would be no problem. The receiver field of view
could be enlarged as necessary to always include the transmitted beam.
However, for all flights coincident with SAM-II observations, there will
be a need to control the sky noise contribution by minimizing the receiver

field of view.

Section VI presents relationships among beamwidths, transmitter-
receiver spacings, and operating ranges in a form intended to expedite
the evaluation of trade-offs among these parameters on systeﬁ performance
for the several lidar options proposed. The geometry is illustrated
in Figure 14, where the region between Rmin and Rmax is where the two

beams are fully converged; that is, share-a common volume. From this

figure, the following simple relationships can be derived:

R. = 6)
min 5+ GR - Op
2
R e S
max @_eR-eT @)
2
where R.min is the closest range for full convergence, in kilometers
Rmax is the greatest range for full convergence, in kilometers
eR/2 and eT/Z are the receiver and transmitter beam half angles, respectively,

in miliradians.
$ 1is the toe-in angle between beam centers, in miliradians, and

S 1is the transmitter-receiver separation, in meters.
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These two equations, and the ratio between them, are plotted in
Figures 15, 16, and 17 for angles and spacings of interest for the CV 990
aircraft installation. Location of the available upward-looking windows
are shown in the plan view of the aircraft, Figure 18. In addition to
those shown, we understand that the aircraft now has two 65° windows

separated by only 19" (0.5 meter).

From Figures 15, 16, and 17, the following observations can be made that

are useful in system design and adjustment:

® For any spacing S greater than zero, a critical parameter
is 0_-6 , the angle by which the receiver beamwidth exceeds
the transmitted beamwidth. If 6=6_, full convergence can
occur at only one range point.

® Rpax/Rpin gets infinitely large if toe-in @ is not larger
than 6g-67 . Beyond that point, we loose rapidly in
2
convergence range as § is increased in an effort to reduce

Rmin-

® Toe-in normally should be adjusted to yield R,j, no smaller
than required by the experiment. At the same time, OR-Op

can be increased until the desired Ry, is reached, orzuntil
the background sky noise becomes limiting, whichever comes
first.
For a one or two receiver installation in the CV 990, S will be on
the order of 1 meter. If an Rj, of 4 km can be accepted, a value of
Or-81 of .25 miliradian appears reasonable, and this is the value that

has been assumed in most of the trial calculations.
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“Belt frames” are numbered by their distance in inches with the nose tip being
referenced at 100. Two possible locations for a central transmitter in a four-
receiver system are shown, at belt stations 548 and 1097.
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VII DATA PROCESSING AND RECORDING

As is evident from Figure 2, the signal levels expected for altitudes
of interest will vary from one photoelectron count per several hundred
microseconds for altitudes above about 70-80 km up to temns of thousands
of counts per microsecond for the region a few kilometers above the air-
craft; that is for altitudes in the region of 15 km. The weaker returns
are clearly in the realm of "photon counting'" while the stronger ones
are well above rates that can be counted by conventional digital techniques
and where analoé recording conventionally has been employed. Midway
between these two extremes is an approximately two decade range (one
to 100 pulses per microsecond) that is in the transition range where
the use of conventional approaches to either pulse counting or ahalog
recording encounters practical problems. Further, these problems occur
in altitudes of particular importance to the SAM II aerosol measurement
program and where it would be desirable to avoid courting still more
troubles by switching scales or recording procedures. The proposed data
recording system attempts to circumvent these problems by employing a
pulse integration scheme that operates in a siﬁgle mode not only through
the critical 1-100 count/microsecond range but over at least one decade
on either side of that range by employing a reliable, repeatable and high
precision scale change method. The basic procedure is illustrated in

Figure 19.

A storage capacitor, C, is provided to accumulate charge delivered
from the photomultiplier anode. Each photoelectron ejected from the
photocathode will result in a short burst (approximately 10 ns due to
transit time dispersion) of G electrons out of the anode, where G is the
operating gain of the PMT. G and the size of the storage capacitor

will be chosen so that the capacitor voltage, VC = Q/C, will be at
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least as large as the least count increment on the Biomation transient
recorder. At the end of each range integration period, the Biomation
unit will sample the accumulated capacitor voltage and the capacitor

will then be immediately discharged to zero by brief (< 50 ns + 57%)
closure of semiconductor switch S1. The switch closure time will be

dead time during which integration will be inactive, but this can be com-~
pensated for as a scale factor in later processing and is considered
preferable to the alternative of providing low level switching to
alternate between two storage capacitors, one being charged while the

other is discharged.

Ideally one would like to use a pulse amplitude discriminator and a
standardized pulse generator between the anode and the integrating capa-
citor. This is not practical because of the difficulty in separating
closely spaced and partially overlapping pulses. As an alternative we
specify a photomultiplier designed and tested to have a narrow pulse
amplitude distribution for single photon events at the cathode. Figure 20
shows Varian measurements of pulse distributions for the VPM 164 series
tubes with standard and galium phosphide first dynodes. The superiority

of the galium phosphide dynode is clearly evident.

Full scale for the Biomation recorder is 256 counts (8 bits), and
the input scale factors cannot be changed during a transient acquisition
cycle. Additional dynamic range can be achieved by changing the range
integration period, the amount of stored charge per photon (varying PMT
gain G), or both. Varying the integration time appears conceptually more
attractive than varying the gain, because pairs of time gates having 'on"
periods in precisely defined ratios can be generated by digital countdown
from a highly stable clock oscillator. However the concept encounters
practical limitations that prevent it from being extended indefinitely

in either direction along the time scale. Obstacles in the fast direction

are minimum time in which the storage capacitor can be discharged and
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the excessive number of range storage bins required to cover the altitude
ranges of interest. In the slow direction, the limit is set by the

longest tolerable range integration period. The standard Biomation 8100
provides for switching between two pre-programmed and digitally derived
sample intervals (range intervals) once during each acquisition. If
necessary, more complete control could be obtained by supplying an external
variable rate clock but this does not appear to be required, at least

initially.

The gain of the PMT can be controlled conveniently over at least two
decades by modulating selected dynodes in a manner that has been used
successfully in the three most recent SRI lidar designs and is described
by Allen and Evans, (1972). We believe that essentially the same procedure
can be applied to the Varian PMTs and that with the provision of suitable
built-in test facilities and operating techniques,* the gain-switching

precision can be maintained to better thamn 1%.

A key point is to provide some flexibility in tailoring the gain
switching points to the needs of a particular experiment without providing
so many options that system calibration or data reduction becomes unduly

complex.

The proposed dumping of the integration capacitor at the end of
each increment (sometimes called "box car'" integration) circumvents a
practical problem that frequently occurs in choosing the amount of video
filtering to be used before display or recording of analog lidar waveforms.

If the bandwidth of the filter is made small enough that the quantum

For example, a gain switch of 10x could be checked by providing two light
pulses, feedback stabilized to differ in amplitude by 10x, timed to occur
before and after the gain switch, and of sufficient amplitude to produce
nearly full scale response in the Biomation digitizer. The pulses could
be generated by light emitting diodes and fiber-optic coupled into the

PMT in an occasional dummy recording cycle interleaved between normal lidar
firings. Digital readout of the stored Biomation values for the two test
range cells would provide both a check and a record of gain-switching

per formance.
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noise fluctuations are averaged to yield a clean (that is, not fuzzy) trace,
the time constant will be long enough that the observed amplitude in any
particular range cell is necessarily affected by the signal return level

in several preceding range cells. While this effect could possibly be
compensated for by digital signal processing, it would require additional
programming and processing time that is not needed when the slate is wiped

clean at the beginning of each range cell.

The procedure just outlined maintains all data recording in a linear
mode, avoiding the need for questions about the accuracy of a logarithmic
response amplifier, and simplifying the arithmetic required to achieve
pulse integration over various combinations of shot numbers and range

integration periods.

As an example, consider the case of the single 14'" receiver in al
joule ruby system. Expected photoelectron counts vs altitude are taken
from Figure 2. Assume that 0.5 microsecond (0.075 km) range increments
will be used for the region between the aircraft and 40 km altitude. This

requires 400 range bins (200 microseconds).

From 40 to 90 km elevation, 5 microsecond (0.75 km) range bins will
be used. This requires an additional 67 range bins covering 333 microseconds

in time.

For these conditions, a barely acceptable recording gamut might be
obtained with the one rate change plus one gain change. The PMT rests in
a very low gain mode (G < 104) in order to prevent anode current overload
from bright sky background during the interpulse periods. Approximately
33 microseconds following emission of the laser pulse,the PMT gain would
be increased to G = 105, which corresponds to a Biomation range of 10 to
2560 counts per range increment or 20 to 5120 counts per microsecond. From
Figure 3 it can be seen that for a normal Rayleigh atmosphere, the system

should emerge from saturation at about H = 16 km and be within recording
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range out to about H = 31 km. To provide some margin for signal variation,
the PMT gain might be switched to G = 106 at an elevation corresponding

to 100 pulses per microsecond, approximately 26 kilometers. The Biomation
recording range would then cover 2 to 512 counts/u sec. which would be
adequate to cover the range out to H = 40 km at which point the sampling
rate would be lowered by a factor of ten to provide another decade
increase in the input signal level to the Biomation. This recording

mode would be good up to 90 km, or whatever altitude recording limit

might be established.

Should it become necessary to record data closer to the aircraft,
an additional segment employing still lower PMT gain could be employed
ahead of the sequence just described. In any case, provision should be
made to log the pertinent data about gain settings, gain transfer range
points, and aircraft‘altitude on the data tape, either as header infor-
mation at the beginning of each record (preferably) or as a header record

at the beginning of each data file.

For operations up to the one shot per second (maximum rate of the
Mark IX lidar) it will be practical to keep a magnetic tape record of
each lidar shot, leaving complete freedom of choice for any later multi-
shot integration procedures. Each 467-sample shot, together with a time
label, a transmitted energy reading, and other supplementary data could
be recorded in the relatively extravagant but convenient scientific

(floating point) notation in 2048 8-bit bytes, using the PDP-11 format.

A 600 foot reel of 800 bpi tape would hold 36 minutes of recording
and either a 4 cm DECTAPE or an 8 cm floppy disc would hold enough data

(> 2 min) to permit the main tape drive to be rewound and reloaded.

For operation with a high prf (30 pps) system the same or very
similar pulse counting procedures, range bins, and recording format would
be applicable. It would be desirable, however, to perform real-time

integration in the computer, both to conserve recording space and to
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provide for more meaningful display and interpretation of the data during
the experiment. A reasonable arrangement would be to integrate 100 shots
(3 seconds) before outputting the summed data to tape, again as a 1024 byte
record of 512 floating point numbers. Each 600 foot tape reel would then
last for 1.8 hours. Unless the laser can be shown to be inherently free
from double pulsing problems, some form of alarm to signal this defect

would be essential.

Hardware

The data processing and recording hardware required to perform these

functions is illustrated in Figures 21 and 22.
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VIIT INSTALLATION OF MARK IX LIDAR
IN CV 990 AIRCRAFT

A. Existing Mark IX System

Table V lists technical specifications for the current SRI general-
purpose atmospheric lidar, system, the Mark IX. Figure 23 shows two
general views of the equipment, as normally maintained in a self-contained
van, including motor-generator power units. Not shown in the picture
is the digital data acquisition, which occupies another full equipment
rack. Of the units pictured in Figure 23(b), only five would be required
to operate the transmitter in an aircraft. Weights, dimensions, and power
consumption for these units are given in Table VI. Figure 24 shows details

of the lidar head assembly.
1. Mechanical

Figure 25 shows a special mounting pedestal suitable for mounting

the Mark IX lidar head for vertical pointing through a 65° window of the
NASA CV 990. The design is well within all of the stress limits specified
in the NASA Experimenters' Handbook (1975) and should be rigid enough

to maintain covergence in a multireceiver system while flying in non-
turbulent air. The main frame is a welded and/or bolted assembly of
aluminum channel that clamps to the floor and side seat tracks. A two-
column yoke is rotatable around a central pivot, but normally would be
firmly bolted to the frame in either of two possible 90° orientations,
to provide transmitter polarization either parallel or perpendicular

to the flight line as discussed in Section III B-4, the fore and aft
mode should be prefered for SAM II missions. In additiom, the head

can be installed in the yoke in either of two 180° options to permit
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(a) MARK IX LIDAR VAN

(b) MARK IX LIDAR AND ASSOCIATED ANALOG
RECORDING AND DISPLAY ELECTRONICS

SA-1976-1R

FIGURE 23 THE SRI MARK IX LIDAR SYSTEM
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(a) PHOTOGRAPH OF MARK IX LIDAR HEAD
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FIGURE 24 HEAD ASSEMBLY FOR THE SRI MARK IX LIDAR
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operation either with the coaxial transmitter/receiver optics of the
present lidar system or directly out of the front of the laser (through

an upcollimator lens) for use with larger, separately mounted receivers.

Figure 26 is an aircraft floor plan showing a suggested arrangement
of the laser transmitter, one or two separate 14" receivers, and all
required power supplies, cooling units, and data recording equipment.
Separate aluminum channel frames, similar to the one shown for the lidar
head are used to secure the main laser power unit (450 pounds), and the
water refrigeration system (200 pounds) to the seat tracks. The 14"
receivers are intended to be mounted atop standard NASA-supplied "low-

boy" equipment racks located under 65° windows.

For a single receiver installation, an operator seated across the
aisle from the receiver will be able to reach the convergence adjusting
screws of a simple receiver while consulting a storage oscilloscope
display in the equipment rack in front of him. This same arrangement
could be extended to accomodate a second similar receiver, by locating a
seat position and storage oscilloscope adjacent to or across the aisle
from the second telescope. For more than two receiving telescopes,

remote control of the pointing, as suggested in Section V-F, probably
will be required. However, experience may show that stability is good
enough so that convergence could be maintained through occasional trimming
by a roving operator either carrying a portable storage scope or being

coached by telephoned instructions from a second operator at the main panel.

As discussed more completely in Section VII, all of the data processing
and recording equipment will fit into one of the standard two-bay NASA/
CV 990 equipment racks. Receiver power supplies and miscellaneous drawers

can be located in the low-boy racks under the telescopes.

Since these units would be needed even for operation with the present

Mark IX coaxial receiver,the minimum floor space required for either of
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those two options (assuming two operators) would be that shown in solid
lines in Figure 26. The broken lines indicate the space required for
expansion to a two-receiver system or to provide for any additional easily
accessible rack space (for CRT photography.as an example) that may appear

desirable after further experiment planning.

One or two small operator-accessible units (displays, control boxes,
and so on) could be added on top of the main equipment rack shown, but if the

experiment needs to grow beyond that, a second standard-height equipment rack and
seat pair will be required. Each additional receiving telescope station

will require only a suitably located low-boy rack. Though not mandatory,

seat and control locations would preferably be across the aisle from the
equipment, as shown. Any required cross-aisle cabling could be run under

the floor, on the floor under a guard tunnel, or across an overhead

trough.

Lightweight fiber tubes would extend between the laser transmitter

and its overhead window (for eye safety) and between each receiving
telescope and its window. Provision should be made to blow heated air

through these tubes when required for window defrosting.

2. Electrical Power

The electrical power requirements for the proposed Mark IX 1 pps
ruby or Nd: YAG system were given in Table VI. Currently everything
operates from 115/230 volt, single phase 60 cycle power. .

There is a relatively constant load component of 1500 VA represented
by the receiving, data processing, and recording electronics. This load
could be serviced by one of the 20 ampere, 115 volt, 60 cycle outlets
of the CV 990. The power loads associated with the transmitter and
associated water cooling system are both heavier and less constant and

will require special consideration.
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These loads involve:

® TIntermittent, once-per-shot charging of a large 120 joule
energy storage capacitor bank. The source voltage is
230 volts, single phase. The input line current begins
at 28 amperes rms, drops to 14 amperes rms during approxi-
mately 0.8 second, then drops to zero. It has recently
been discovered that this current is highly reactive,
(power factor of approximately .3, lagging). Thus, the
addition of a suitable power factor correction capacitor
should reduce the input volt-amperes required for laser
firing to about 1/3 of its present value.

® Inductive surges on a 115 volt line resulting from occasional
operation of medium sized control relays in the laser power

unit.

® Motor loads associated with two small water circulation
pumps and two refrigerator motors in the laser cooling
system. All of these motors normally run continuously
during operation, but produce normal starting transients
when first energized.

[ ]

A 1350 watt, 115 volt, thermostatically controlled heater which
cycles on-and-off intermittently (approximately 1 minute
period) to control the water temperature.

When the Mark IX lidar van is operating mobile, all of these surge

loads are handled adequately by a 7.5 kva Onan gasoline-driven generator
(a second generator supplies air conditioning and all other loads). If
the NASA Airborne Science Office at Ames can be persuaded to assign to
the laser one of the four 7.5 kva 400-cycle to 60-cycle frequency con-
verters permanently installed in the aircraft, that procedure could
provide the simplest solution to the primary power problem. However,

the CV 990 Experimenters' Handbook expresses considerable reservation
about the surge-handling capability of the CV 990's solid state frequency
converters, and states that all requests for such 60 cycle surge loads

must be cleared individually with the Ames project manager.
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At least two alternatiyes can be offered for transferring the surge

loads to the aircraft main 400 cycle power system where adequate capacity

is available.

First, a separate, dedicated, nominal 5 kva converter unit could be

procured and installed in the forward cargo compartment in the vicinity

of the existing aircraft converters. A suitable unit with a specified abi-
lity to handle surge loads is available from Topaz Electronics, San Diego,
California (Series FX). This converter weighs 325 pounds, has dimensions of

21" x 19", and costs $4,630.

As a second option, the main capacitor charging circuit in the

laser power unit and the cycling 1 kw water heater could be rebuilt to
operate from 400 cycle primary power. A smaller, dedicated 400- to 60-cycle
converter could then be procured to supply any of the remaining motor of
relay loads that could not be handled by the existing aircraft 60 cycle
system. A Topaz 2.5 kva converter adequate to handle all of the motor
and relay loads when plugged into one of the 2.5 kva 3 phase 400 cycle
outlet would weight 240 pounds and cost $3,270. It would be mounted in
the low-boy rack that supports the receiving telescope without exceeding
weight or stress limitations, or at any other convenient location in the
aircraft. Consultation with the supplier of the main power transformer
in the laser power supply indicates that the transformer should operate
on 400 cycles. This will need to be verified, and the Silicon Controlled
Rectifier (SCR) control circuit will need to be suitably modified. A
similar conversion was made on an earlier SRI-built 0.3 —-joule laser and
was successfully flown on the first NASA CV 990 for the BOMEX project

in 1969. Modification of the cycling 1 kw water heater to operate from
one phase of a separate 400-cycle outlet would be straightforward and

no problem is anticipated.
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This second option is our recommended approach since it would
result in less weight, higher efficiency, and fewer components to maintain,

and should be obtainable at comparable or lower cost than the first option.

B. High PRF Neodymium System

If the option is exercised to operate with a high PRF Neodymium:YAG
laser transmitter (as discussed more completely in Section IX) the transmitter
installation would be the one described in that section, the receiver would
be any one of the l4-inch options discussed in Section V, and the data
processing facility would be as discussed and illustrated in the latter

part of Section VII.
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IX A NEW LIDAR EMPLOYING A HIGH REPETITION RATE Nd:YAG LASER

A, Traﬁsmittér

Whilé an exhaustive survey of all of the many currently available
lasers has not been made, the Model 618DR Nd:YAG system manufactured
by GIE Sylvania comes well recommended, appears to be representative of
the current state of the art, and has been investigated in sufficient
detail to determine that it should function well as the transmitter for
an airborne stratospheric lidar. It is a compact unit, well engineered
for both electrical and optical maintainability, and will operate either
from the aircraft 3 phase 400-cycle primary power or from 60-cycle mains
for ground-based testing. It employs an oscillator-amplifier combination
of two identical and parallel 6.3 x 64 mm (.25 x 2.5 inch) laser rods
excited by a single linear flashlamp located between them. (The "DR" in
the model number stands for "double rod".) The unit will operate at any
rate between single pulse and 300 pulses per second, but the maximum
average power (12.5 watts) is obtained at rates between 30 and 50 pps.
A photograph and complete specification sheet for the laser is included as
Appendix B.

Figure 27 shows a simple mounting arrangement wherein
the laser head and a 10x beam expander are contained in a long box that
is bolted to the back side of a standard NASA/CV 990 equipment rack so
that it fires upward through a 65° window. The problem of cooling requires
more attention. The water-to-air heat exchanger that is normally supplied
with the laser could be used, perferably after conversion to 400 cycle
operation. The 3 kilowatts of dissipated heat would represent a
large but apparently tolerable 1load for the aircraft air conditioning
system. One suggestion for relieving this load that came out of discussions
with the Ames engineering personnel would be to replace one or two of

the side windows with solid aluminum plates and use these as part of a heat
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exchanger to transfer heat from the circulating water to the very cold

alr outside the aircraft. The water temperature of such a system could be
stabilized by a small (approximately 1 kilowatt) refrigerator/heater

unit of the type currently used with the Mark IX ruby system. The small
unit would have sufficient capacity to support ground testing for short
periods or at reduced pulse repetition frequency at times when neither

cold outside air nor adequate air conditioning would be available.

B. Receiver, Data Processing, and Recording

The receiving system could be any of the l4-inch options discussed
in Section V, and the data processing and recording facility would be as

discussed and illustrated in the latter part of Section VII.
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X MISCELLANEOUS DESIGN CONSIDERATIONS

A. Mechanical Shutters and Photomultiplier Quirks

Several workers have reported* finding a need to add some form of
high speed mechanical shutter to their stratospheric lidars, either at the
transmitter to block laser rod fluorescence or at the receiver to prevent
strong bursts of light associated with short-range backscattering adversely
affecting the PMT internal noise level for periods lasting many tens of
microseconds. Sometimes both types of shutter are used. The reported
effects were undoubtedly real, since in most cases appreciable work was
expended in adding the shutters as retrofits, not as a precautionary
measure. On the other hand, in at least four different upper atmosphere
probing projects at SRI, involving four different ruby lidar designs,
careful performance checks have failed to disclose any significant anomalies
due to rod fluorescence. Admittedly, the Mark II lidar was intentionally
designed to suppress fluorescence through the placement of a rotating Q
switch between the rod and the exit aperture. But for the other three
systems, thorough transmitter and receiver light shielding combined with
bistatic geometries that made laser-to-receiver transfer via single
scattering highly improbable must have provided sufficient attenuation
of the fluorescence effect. For the separate-window 14" modular receiver
designs proposed herein, unfocused fluorescent radiation from the laser
rod would need to traverse a similarly compléx, multiple-bounce path to

arrive at the detector cathode, and no trouble is anticipated. However

*
Refer, for example, to Kent, Clemesha, and Wright (1966), Fiocco and
Grams (1966), or Pettifer, Jenkins, Mealey, and Chivery (1976).

81



should it be encountered, at least two options for cure are open and

sufficient time and funds should be allowed so that both options could be
implemented, if necessary. First, the Holobeam laser might be rearranged on its
optical bench to locate the Pockels cell Q switch between the laser rod and

the front etalon. Second, a high speed, rotating shutter could be located
between the front etalon and the beam expander and synchronized with the

flashlamp/Pockels cell cycle.

Fluorescent lifetimes in Nd:YAG are shorter than in ruby, so trouble
at 1.06 microns is considered even more unlikely, though it should
certainly be tested for. If fluorescence troubles are encountered with
the high repetition rate Sylvania laser, either a synchronized mechanical

shutter or a second Pockels cell light valve could be tried.

A similar contingency factor must be included to test for transient-
induced noise effects in the Varian photomultipliers. These tubes are
new, and no specification exists to cover the specialized condition of
brief, intense light exposure closely followed by attempts to make
accurate measurements of extremely low light levels-in the photon counting
regime. Historically, photomultipliers have displayed both family charac-

teristics and individual traits in their transient and noise performance.

Pettifer (1975), using a 56TUVP tube, found spurious noise counts
amounting to as much as 5% of the inducing signal level in the
range bin following a cathode irradiance pulse of only 10“13 watt/cmz,
an effect that can hardly be ignored. However, Young (1976) making similar
tests on an EMI 9558B photomultiplier found the effect to be some two

orders of magnitude less severe and thus ordinarily negligable.

Experience at SRI with ITT, Amperex, and RCA photomultipliers has
been that the proposed technique of keeping the tube gain low (by
unbalancing the dynode potentials) except for the brief period where high

gain is required has been effective in reducing some types of afterpulsing.
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This is particularly true of the spurious responses occurring after the extremely

high light pulses that may be encountered in lower troposphere lidars, on

the order of > 10-3 watts/cmz. There is, however, no assurance that

these two noise-generating mechanisms are related or that either is
representative of what will be encountered with the high quantum efficiency
Varian photomultiplier tubes. Careful performance tests on controlled
lidar-like light pulses will need to be part of the detailed design and

construction phase.

If a fast receiving shutter is found necessary it should be located
close to the photomultiplier so that only one would be required, even for a
multiple telescope system. The implementation of such a shutter would not
be a trivial matter. At its most accessible ragion, the light for either
the close-coupled design of Figure 12 or at the exit end of a group of
light fibers in a multiple receiver design would be several milimeters
in diameter. To uncover such a beam within a time period of, say, 30
microseconds would require a shutter speed of approximately 100 meters/
second requiring, at the minimum, an 8 cm diameter shutter running at
24,000 rpm (Pettifer used an 11.4 cm shutter at 24,000 rpm). For air-
craft use, the centrifugal forces associated with such high shutter speeds

will present an additional problem to be watched.

The proposed receiver design includes two other shutters. A solenoid-
operated sl;de that is ahead of the focal plane and is spring-closed during stand-

by periods prevents heating of internal components should aircraft maneuvers

point the telescope toward the sun. It would also be desirable to have
this shutter close if average PMT anode current becomes excessive. A
simple shutter or dark slide on the PMT housing is essential to keep the

tube dark during times when the housing is removed from the 1lidar.

B. Window Damage Thresholds

In addition to the transmission tests made on CV 990 optical windows

(Section V-G), SRI has previously tested for mechanical damage by
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repeatedly firing 0.5 joule pulses in a 2" diameter beam through window
samples of all glasses supplied. The average energy density was .025

2
J/em . The windows successfully survived both the Ames vacuum tank

test and many succeeding aircraft flights.

Data on mechanical damage thresholds for various optical glasses
have since been published by Alexander (1975). This source indicates
that laser energy densities in the range of 50-150 J/cm2 normally are
required to effect damage, though the presence of surface dust or
internal flaws can reduce the threshold. The maximum beam energy density
proposed in this report is 0.09 J/cm2 (for the ummodified Mark IX ruby
system). All other systems involve both larger beams and lower pulse
energies. However the average power level for the high repetition rate
Nd:YAG system would be sufficiently high that it would be prudent to run
a demonstration test through a dirty window as a safety measure. (Engine
oil deposits on the windows have caused problems in previous flights of

the CV990.)

C. Possible Use of Silicon Diode Photodetector

Improvements continue to be made in the development of the silicon
avalanche diode (SAD) as a solid state counterpart of the vacuum-filled

multiplier phototube.

While the ruggedness, small size, the much more modest power supply
requirements, and the relative freedom from thermal emission effects are
all attractive attributes of these devices, by far the most enticing
feature for atmospheric lidar applications is the high quantum efficiency
that can be obtained in the near infrared--30% to 60% at 1.06 micrometers
by comparison with 2% for the Varian InGaAsP photocathode or .05% for

the older S1 photomultiplier tubes.

Unfortunately, however, the gain and gain stability performance
of available avalanche diodes, when combined with the thermally-induced
input noise of a succeeding video amplifier, are such that the realizable
overall signal-to-noise performance is still significantly less than for
thoroughbred photomultipliers for low background applications.
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For example, an LE-104 avalanche diode/amplifier combination device
offered by General Electric has a quoted Noise Equivalent Power (NEP) of
2.5 % 10-10 watts at a bandwidth of 1 MHz and a wavelength of 1.06 micro-
meters. To examine this number in the context of an airborne stratospheric
lidar, we recall (with the aid of Figure 3) that for am aircraft flying
at 10 km the Rayleigh-backscattered return from a 1 joule Neodymium trans-
mitter into a 14" aperture receiver via an air mass at an altitude of
22 km is 3.8 x 10-11 watts and.that the incoming background light will be
negligibly small by comparison, even in the daytime. It is, moreover,
not this absolute signal level but the fluctuation component or rms
uncertainty in measuring the signal amplitude that must be compared with
NEP. If a VPM 164A photomultiplier is used to measure the received
radiation, and an integration period of 1 microsecond is used (to be
compatible with the above-specified 1 MHz bandwidth of the solid state
SAD device), the total number of pulses counted per 150 meter range
increment will be 10 and the uncertainty will be 3.16 counts, which
transforms back to an equivalent uncertainty or quantum noise component

of 1.2 x 10-11 watts for the actual 1.06 micron radiation input.

Thus, for this example, the silicon avalanche diode device is still noisier
over an order of magnitude than the state-of -the-art photomultiplier.
There are things that can yet be done to improve the avalanche diode
performance; the quantum efficiency can be improved by heating, the amplifier
noise can be lowered by cryogenic cooling, and the gain an& gain stability
(excess noise factor) may be further improved through device design, but
no proven unit known to the author is yet fully competitive with the PMT.
One of the leading developers of SAD technology, R.J. McIntyre (1972),
has pointed out that it is possible to operate some avalanche photodiodes
in a photon counting mode by increasing the gain to the point of regenerative
breakdown, in a "Geiger-tube'", mode, thereby realizing a responsivity of

a phenominal 50 volts/photon without further amplification, and yielding
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detection probabilitiés comparable to the best available photomultipliers.
Even if this were a possibility for the very low count rates associated
with very high altitude lidar returns, the requirement for a finite
recovery time between photon events would leave a sizeable operating gap
between radiation levels amenable to photon counting and those amenable
to analog recording with silicon avalanche diode devices, that is, for
situations when the background radiation level is much greater than it

is for the cases of interest here.

D. Reference Optical Attenuator

Standard on the Mark IX and nearly all recent SRI lidars is a fiber
optic light path that takes a very small sample from the transmitted
light pulse, passes it through an adjustable optical attenuator, then on
to the PMT, by-passing all other optical components. Once the passive
attenuator has been "calibrated", by comparison to the lidar Rayleigh
return from a reference altitude under optimum operating conditiomns, it
provides a round-trip path and system attenuation bench mark that can
later be used as a rapid check of overall system performance or as a
means of approaching an absolute calibration of the lidar. It is
recommended that some similar optical reference path be incorporated
into the proposed modular receiver design. The reference path fiber
could conveniently enter the PMT housing bundled along with the signal-

carying fibers. .
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XI COST ESTIMATES

Bugetary estimates of costs associated with the several options

discussed in this study are given below.

Option 1 Fly Mark IX Lidar

Install existing SRI Mark IX Lidar system in the

NASA CV 990 aircraft. Rent the required major com-
ponents not now a part of the Mark IX lidar,

(for example, 9-track tape recorder, 400 Hz to 60 HZ power
converter.) Operate and acquire data (analog mode

only) during three test flights.

Ceeeeeenneaeee.. 840,000

Option 2 14-Inch Receiver Module (Master)

Construct and test a l4-inch lidar receiver module,
including a four-quadrant convergence monitoring
system to facilitate operating with a separately-
located laser transmitter. Procure a high performance
photomultiplier tube such as the Varian VPM 164M or
VPM 192M and provide a detailed evaluation of the
applicability of that detector for upper atmosphere
lidar, in both pulse counting and analog recording
modes. The design may use either direct or fiber
optic coupling between the telescope and the main
signal detector, but should be expandable to permit
slaving additional telescopes to the detector via
fiber optic coupling. .
cerserenneseersss$43,000 with VPM 164M
ceescsesesneesss.$39,000 with VPM 192M

Option 3 Slave 1l4-Inch Receivers

Supply additional 1l4-inch receiver modules, following

the design of Option 2 and intended to be slaved to it
via fiber optic coupling for both the main signal and

convergence monitoring. No additional detectors will

be required.

teesrecasessanss$311,500 each
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Option 4  PMT Signal Processor

Design, construct, check out, and document a photo-
multiplier pulse integrator assembly following the
general approach outlined in Section VII of this
report.

tetcarraresesase$26,000

Option 5 Convert Mark IX Lidar to 1.06 p

Convert the SRI Mark IX lidar transmitter for
operation at 1.06 micrometer wavelength, using a
Nd:YAG rod. Nominal output shall be 1 joule at
1 pulse/second. Reusable components will become
government property.

teeeeesesesas...$58,600

Option 6 New High PRF Nd:YAG Lidar

Provide a complete airborne lidar facility following
the general design given in Section IX of this report.
The lidar to consist of:

A high PRF (10-100 pps) Q switched Nd:YAG
laser transmitter capable of operation for
extended periods at an average output power
of approximately 10 watts.

One l4-inch modular receiver, similar to that
of Option 2, but employing a cooled VPM 164A
photomultiplier.

A digital data acquisition system, employiﬁg
principally Digital Equipment Company PDP 11/03
hardware and following the design generally
outlined in Section IX of this report,combined

with pulse integration circuitry similar to
that of Option 4.

ceceeseaseeses$245,000
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Option 7 Augmented Mark IX System

Provide a high performance, 1 joule, 1 pps ruby
system with a separate l4-inch receiver by
combining Options 1, 2, and 4 plus a storage
oscilloscope.

................ $113,000
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XI1 CONCLUSIONS AND RECOMMENDATIONS

While final decisions about the level of equipment performance to
be specified for the proposed airborne stratospheric‘lidar system should
await review of the data presented herein by the SAM-II Nimbus Experiment
Team (NET), this study concludes that the existing Mark IX lidar system
would be of limited utility even if its data processing and recording system
were modified to operate in both analog and pulse counting modes. A
significant increase in system performance could be obtained by providiung
a new receiver that would more effectively utilize the limited aperture
area of available aircraft windows and also would utilize the improved quantum

efficiency and noise characteristics of modern high performance photomultipliers.

This change would result in an increase in the number of detected photoelectrons
per transmitter pulse by approximately 28 times. Still better receiver
performance could be achieved by two or more telescopes operated essentially

in parallel by means discussed herein.

The lidar receiver designs suggested by this study for achieving
these higher levels of system performance entail three major risk areas
and it is recommended that these risk areas be investigated more thoroughly

as the next step in the development.

First,the actual operating performance of one or more samples of the
recommended Varian photomultiplier tubes should be examined with pulsed
light signals simulating the wide dynamic range anticipated from the
lidar. These tests will determine not only the inherent amplitude
linearity of the detector, but also whether a high speed rotating shutter
will be required in the receiver to suppress the shock effect of strong

near-field lidar retur—s.

Second, it should be determined whether the analog pulse integration
and PMT gain switching schemes proposed herein can be made to operate

reliably over the required large dynamic range and with the selected
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photoﬁultiplier. The results should be compared with the more conventional
approach of digital pulse counting at the longer ranges combined with a
separate analog recording system for shorter ranges before the final

data recording system is specified.

Third, if it is determined that receiving apertures larger than can
be achieved through a single aircraft window are desirable, then the extent
to which the proposed multiple-telescope scheme could be expanded should
be investigated by making some simple in-flight measurements of aircraft

flexing using a low-power cw laser and/or a theodelite.

Investigation into these three risk areas would be equally applicable
to a lidar system implemented with either the present Mark IX laser
éransmitter or with a new transmitter of higher average power and pulse
rate. This choice will be dictated primarily by factors of budget and

time scheduling.
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Appendix A

CALCULATIONS FOR TEST CASES DISCUSSED AND
SUMMARIZED IN SECTION III-C

Case 1

1 joule Ruby
14" Receiver
H=20 km, R =10 km

Cross Polarized Receiver

AR = 0.5 km (3.33 psec), Tpmt = +20°C
S /N = Np ~ 288 X 3.33
P V“p + N + Ny o+ N ~ A/3.33 (288 + 566 + 0.6 + 0.08)
959 959

= 17.97 .

T /959 + 1887 + 2 + 0.27  53.4

For SP/N = 100, we should integrate (100/17.97)2 = 31 shots. Thus,
at a PRF of 1 pps, 31 seconds would be required to measure BP to a

precision of 1%.

Alternatively,
Np ¥ _ 3.33 (288 + 566)
S, /N = WNG N+ N+ No o /3.33 (288 + 566 + 0.6 + 0.8)
. 28 g
T V2846 0 T7° )

For ST/N = 100, we should integrate (100/53.3)2 = 3.5 shots. Thus,
at PRF of 1 pps, 3.5 seconds would be required to measure BP to a

precision of the local BT = BP + BR'



Variations:

If we use an unpolarized receiver, sky background NB will go up

a factor of 10. All other factors are unchanged.
S /N === =17.89 .
For SP/N = 100, need to integrate 31.2 shots.

Conclusions:

(1) Room temperature OK for PMT

(2) Negligible improvement by using polarized receiver.



Case 2

1 joule Nd:YAG
14" Receiver
H=20kn R =10 km

Cross polarized receiver

AR = 0.5 km (3.33 psec), Tpmt = -20°C
S /N - "5 _ 3.33 (38)
P JNP + NR + NB + N T A/3.33 (38 + 21 + 0.008 + 0.001)

126

= Tio6.; - 898

For SP/N = 100, we should integrate (100/8.98)2 = 123,9 shots. Thus,
at a PRF of 1 pps, 2.1 minutes would be required to measure BP to a

precision of 1%.

Alternatively,
Ne* % 3,33 (38 + 21)
Sp/N = M, F N+ N_+ N~ ./3.33 (38 + 21 + 0.008 + 0.001)
196

= 7/196.7 _ 140

2
For ST/N = 100, we should integrate (100/14)~ = 51 shots., Thus, at
a PRF of 1 pps, 51 seconds would be required to measure BP to a precision

of 1% of the local BT = BP + BR'

Variations:
I1f we use an unpolarized receiver, sky background will increase by
factor of 10. All other figures stand.

126

= = b
SP/N 1969 8.98 (same as above),

Conclusions:
(1) Negligible improvement by using polarized receiver.

(2) Negligible improvement by using cooled PMT, but the IR PMT
must be cooled to avoid deterioration.
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Case 3

0.3 joule Nd:YAG (High PRF)
14" receiver

H=20km R = 10 km

Cross polarized receiver

AR = 0.5 km (3.333 usec), T = -20°C
pmt

N
P 3.33 (11.4
S, /N = Al.5)

P vﬁé + N+ NN T J/3.33 (11.4 + 6.3 + 0.008 + 0.0001)

_ 38.0 ___38
T /38 + 21 + 0.027 + 0.0003 A/59.027

= 4,95

For SP/N = 100, need to integrate (100/4.95)2 = 408.8 shots, Thus,
at a PRF of 30 pps, 13.6 seconds would be required to measure BP to a

precision of 1%.

Alternatively,

3.33 (1.4 + 6.3) _

- 7.67
V59,07

ST/N

For ST/N = 100, we should integrate (100/7.7)2 = 170 shots. Thus,
at a PRF of 30 pps, 5.7 seconds would be required to measure BP to a

precision of 1% of the local BT = BP + BR'

Variations:

If we use an unpolarized receiver, sky background will go up by a

factor of 10. All other figures stand.

38

SP/N =759.27 = 4.94 .

For S,/N = 100, need (100/4.94)% = 410.5 shots.

anqlusions:

(1) Extremely slight improvement in using polarized receiver.

(2) PMT cooling not required for S/N, but necessary to avoid
deterioration.



Case 4

Unmodified Mark IX Ruby Lidar
H=20kmn R =10 km
AR = 0.5 km (3.33 usec), T I +20°C

pmt
Cross polarized receiver
N
S /N = P _ 3.33 (8.36)
P’ JNP+NR+NB+NI v/3.33 (8.36 + 16.4 + 0.19 + 0.05)
27.87 27.87

= J27.87 + 54.67 + 0.633 + 0.167 _ /83.34 ~ >3

To get SP/N = 100, need to integrate for (100/3.053)2 = 1073 shots.

Thus, at a PRF of 1 pps, 17.9 minutes would be required to measure‘BP to

a precision of 1%.

Alternatively,

ST/N = 9,03
For Si/N = 100, we should integrate (100/9.03)2 = 122.6 shots. Thus,
at a PRF of 1 pps, 2.0 minutes would be required to measure BP to a

precision of 1% of the local BT = BP + BR'

Conclusions:

(1) While sky and internal noise are not completely negligible, by

far the biggest uncertainty is due to the low quantum count in
the signal.

(2) The integration times may be too long to be useful for a SAM-II
operation, but should suffice for a baseline test run,




Case 5

How long would we need to integrate to get a 1% reading on the

Rayleigh return from 80 km?

1 joule Ruby
14" receiver
H=280kn R =70 km

Cross polarized receiver

BR = 0.5 km (3.33 psec), T = +20°C
N - Np ) 3.33 (0.03) _ 00999
Sp/N = N F N+ N T ./3.33 (0.03 + 0.6 + 0.08) ~ ,/2.366 3

For SR/N = 100, need to integrate for (100/0.065)2 = 2,4 X 106 shots
(657 hours @ 1 pps).

Conclusions:

(1) Integration time completely excessive,

(2) Daytime light biggest contributor to noise. Internal noise
next, but this could be reduced by cooling.



Case 6

How long would we need to integrate to get a 1% reading on partic-

ulates at H = 40 km?

1 joule Ruby

14" receiver

H =40 km R = 30 km
Cross polarized receiver

AR = 0.5 km (3.33 psec), T = -20°C
pmt

Np (3.33) 0.04

Sp/N =R, TN+ N+ N ./3.33 (0.04 + 3 + 0.6 + 0.0000)

_ .13333 ~..1333
T 40,1333 + 9.999 + 1.999 + 0.0003 12.134

= 0,038

For SP/N = 100, need to integrate for (100/0.038)2 = 6.8 X 106 shots,
Thus, at a PRF of 1 pps, 1895 hours would be required to measure BP to a

precision of 1%.

Alternatively,

N, + NR

S../ L

3.33 (0.04 + 3)
N:
T ,\/NP+N

+ N+ N = /3.33 (0.04 + 3 + 0.06 + 0.0001)

= 2.90
R

For ST/N = 100, we should integrate (100/2.9)2 =1,2 X 103 shots.

Thus, at a PRF of 1 pps, 19.8 minutes would be required to measure BP

to a precision of 1% of the local BT (= BR).



Case 7

1 joule Nd:YAG
14" receiver
H=40km R = 30 km

Cross polarized receiver

AR = 0.5 km (3.33 psec), Tpmt = -20°C
N
S /N = P B 3.33 (0. 005)
P'7 TN, + N+ N+ N /3.33 (0.005 + 0.1 + 0,008 + 0.0001)
0.0167 0.0167

= /(0.0167 + 0.3333 + 0.0266 + 0.0003) ~ ,/0.3767 070272

To get SP/N = 100, need (100/0.0272)2 = 13,5 X 106 shots (3750 hours
@1 pps).

Alternatively,

_ 3.33 (0.1 + 0.005)
/N = 73,33 (0.005 + 0.1 + 0.008 + 0.0001)

S = 0,545 .

To get ST/N = 100, need (100/0.545)2 = 3.36 X 104 shots. Thus, at

a PRF of 1 pps, 9.34 hours would be required to measure BP to a precision

of 1% of the local BT (~ BR).

Variations:

What can we do with AR = 5 km and 10% accuracy?

0.167

SP/N =T3.767 - 0.086

2
(__LQ_) = 13,507 shots (3.75 hours @ 1 pps).

0.086
Alternatively, 3.50
Sp/N = J7er - 180
10 2
(I_EB) = 31 shots (31 seconds @ 1 pps).

Thus, at a PRF of 1 pps, 31 seconds would be required to measure BP to a

precision of 10% of the local BT = BR).
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Case 8

How long must one integrate to get 10% reading on particulates with

Ruby system at H = 40 km?

1 joule Ruby
14" receiver
H=40 km R = 30 km

Cross polarized receiver

OR = 5 km (33.33 upsec), Tpmt = -20°C
o/ - Np ) 1.333
P JNP +Np + Ny + N T M1.333 + 99,99 + 19.999 + 0.003

1.333

= /iz1.34 - 0-121

For S /N = 10, need to integrate (10/0.121)2 = 6825 shots (1.9 hours

Alternatively,

101.33

ST/N = —IEITEZ = 9,16

For ST/N = 10 need to integrate (10/9.16)2 = 1.2 shots (1.2 seconds
@1 pps).



Case 9

.1 joule Nd:YAG @ 30 pps
Seven 14" receivers
H=40 kn R = 30 km

Cross polarized receiver

AR = 5 km (33.33 psec), T = -20°C
pmt
S "p ) 33.3 (0.005) (0.3) (7)_
PIT TN, + Np HNp b N, »/33.3 (0.3) (7) (0.005 + 0.1 + 0,008 + 0.0001)
_ 0.350 0.350 0.124
~ ,/0.350 + 7.0 + 0.56 + 0.007 4/7.917 -
To get SP/N = 10, we need:
10 2
(0.124) = 6463 shots, or 3.6 minutes @ 30 pps.
Alternatively,
ST/N = 2.60
To get ST/N = 10, we need (10/2.6)2 = 15 shots, or 0.5 seconds at
30 pps.
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Appendix B

PHOTOGRAPH AND SPECIFICATION
FOR HIGH PRF Nd:YAG LASER



FIGURE B-1

SA-5557-25

SYLVANIA MODEL 618DR PULSED Nd:yag LASER

Table B-1
DESIGN SPECIFICATIONS

SYLVANIA MODEL 618DR LASER

TYPE:
WAVELENGTH:
PR:F.;

OUTPUT PULSED
ENERGY:

PULSE DURATION:
BEAM DIAMETER:

BEAM DIVERGENCE:

INPUT POWER:

DIMENSIONS AND
WEIGHTS:

Nd:YAG, pulsed, Oscillator-Amplifier, Q-Switched
1.064 micrometers
Continuously variable, single shot to 100Hz

> 300 mj/pulse to 50Hz; 150 mj/pulse at 100Hz
Pulse to pulse stability, + 5%

< 25ns (FWHM)

6mm

< 4 miliradians

50/60Hz or 400Hz; 208V, 3 phase

3200 watts, including water/air heat exchanger

Resonator, 17.5 x 5 x inches, 15 pounds

Head Amplifier, 24 x 55 x 8.5 inches, 20 pounds

Power Supply, 105 x 19 x 19.5 inches, 170 pounds
Water/air heat exchanger, 22 x 12 x 19 inches, 65-90 pounds








