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Analysis of Simultaneous Skylab and
 
Ground Based Flare Observations
 

I. INTRODUCTION
 

The purpose of this program has been to reduce and analyze Hel and 

HeII resonance line data from Skylab and make comparison with HeID 3 line 

intensities taken simultaneously from the Lockheed Eye Canyon Solar 

Observatory. Specifically, we will obtain relative and absolute intensities
 

where possible as functions of position and time within the most interesting
 

solar flare observed simultaneously from Skylab and the ground. The observed
 

intensities will be compared with theoretical calculations made as part of
 

this study with the objective of inferring electron temperatures and
 

densities within the flare as a function of time. 

The investigation described here has been a collaborative effort 

between us and the Skylab NRL principal investigating group. We would like 

to express our appreciation to Dr. R. Tousey for providing data before pub­

lication. Dr. J. D. Bohlin provided us with flare lists and much advice and 

Dr. Fred Rosenberg generously supplied tapes with microdensitometer informa­

tion on many plates taken with the MRL XUV Spectroheliograph. This data is 

discussed in Sec. II.C. 

HeI D filtergrams of tie solar disc were obtained from May 1973 to3 
February 1974 at the Lockheed Eye Canyon Solar Observatory. These filtergrams 

contain the emission within an O.4A band about the center of the b3 line
 

(5876k) and were taken at 15 or 30 second intervals for most of this period. 

The purpose of such patrol observations was to catch active 
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regions in early developing stages. The filtergram field of view is 8' x 10'
 

while the spatial resolution is of the order of i". The filtergrams thus
 

contain a great deal more spatial information than corresponding spectrographs.
 

The D3 data is discussed in Sec. II.B.
 

Recent data show many complex and as yet unexplained phenomena in the
 

D3 line (Ramsey, 1970; Harvey, 1971; Ramsey, et al., 1975). 

The D3 emission has shown intself to have the potential of providing signifi­

cant new information on dense flare centers where its emission is generally
 

concentrated. The following general conclusions have been drawn concerning D3
 

flare structure. D3 is observed in emission and/or absorption against the
 

disc during most flares of importancel or greater. D3 emission is generally
 

confined to larger disc flares and occurs more frequently in limb flares. The
 

emission component of D flares corresponds to the brightest and spectrally
 

broadest parts of the H - a flare. The localized bright centers in D3 are
 

much shorter lived and usually show more rapid changes than can be seen in
 

H - a filtergrams. The brighter emission centers are visible for tens of
 

minutes. In most cases the D3 emission elements were adjacent to or over­

lying sunspots. A wide variety in flare structure has been observed.
 

D3 absorption elements correspond generally to weaker parts of the
 

H - a flare and are longer lasting than D3 emission. The absorption components
 

of D flares aside from filaments, surges and loops, are not visible in the
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red wing at D3 + 0.8j. About half the emission components show an initial
 

red wing brightening usually lasting for about 30 sec. This is interpreted
 

in light of various observational evidence as an initial downward motion of the 

emitting region.
 



For purposes of comparison with Lockheed D3 data it was decided that
 

the NRL experiments could provide the most complete and useful complimentary
 

information. The NL instruments on Skylab were the extreme ultraviolet
 

spectroheliograph (SO82A) and the ultraviolet high-resolution spectrograph
 

(So82B). The S082A instrument is a slitless spectrograph having a short
 

wavelength range 150-335A and a longer range 321-630A. The images of the He
 

resonance lines are fairly well separated, giving total integrated line
 

intensities. S-082A images the entire solar disc for all wavelengths in rapid
 

time sequence. The spatial resolution for the He resonance lines is estimated
 

at 2". Time resolution depends on the exposure time, which varies from the
 

shortest exposure of 2.5 sec. to a maximum manual exposure of 48 min. The
 

S082B instrument also has two wavelength ranges (970-1970& and 1940-390D).
 

Spectral resolution is .04 - .08j with a field of view of 2" x 60". There is
 

no spatial resolution along the slit.
 

We have developed computer codes under the SGAP program which allow
 

for the calculation of total He line intensities and line profiles from model
 

flare regions. A complete description and results are given in our final
 

summary report (Kulander, 1973) which we shall refer to as Rl. These codes
 

incorporate simultaneous solution of the line and continuum transport equations
 

as needed together with the statistical equilibrium equations for a 30 level
 

HeI HeII, HeIII system. The geometrical model is a plane-parallel layer
 

irradiateion one side by the photospheric radiation field. A statistically
 

steady state and uniform electron temperature and density with position were
 

assumed. The energy level model consists of all terms through principal
 

quantum number four- Our study has been confined to conditions we believe
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characteristic of He flare regions, namely electron temperatures between 10
 

and 5 x 10 K and electron densities between 10lO and 1014 cm-3 . Our codes
 

also allow the solution of the statistical equilibrium equations for arbitrary
 

values of the various line and continuum radiation fields. Results of the
 

interpretation of the observed data in terms of these parametric solutions and 

with simultaneous solution of the transport equations are discussed in See. III. 



II. A. Selection of Flare
 

D3 filtergrams were taken at Lockheed during the period May 28, 1973 to Feb. 4, 1974.
 

Generally the regions studied coincided with active regions under observation by
 

Skylab. Photographs were taken every 15 or 30 sec. depending on seeing conditions.
 

This data with observation times, seeing condition% etc., is summarized in the
 

World Data Center A Report UAG-43, Coffee, 1975.
 

A list of flares observed by the NRL S082A instrument was compiled by J. D. Bohlin
 

and V. E. Scherrer and generously supplied to us by Dr. Bohlin. This list is given
 

in Table II.A.I. A total of 17 flares was observed, of which about a dozen had
 

reasonably complete coverage. The list is a result of the merging of flare logs
 

compiled independently from two different approaches. One log was made from a
 

plate-by-plate inspection of the entire mission, using as a criterion whether or
 

not He II 304 was solarized and the presence of emission lines from the high stages
 

of ionization (primarily in the short wavelength band). The other log was com­

piled by comparing SOS2A coverage with the SOLRAD data.
 

Of these 17 flare events we have simultaneous D3 coverage for only 7. These are
 

the flares of 15 June 73, 7 Aug. 73, 9 Aug. 73, 31 Aug-73, 1 Sept. 73, 5 Sept.
 

73, and 7 Sept. 73. Our films for these seven flares were studied in detail.
 

For two of these events only two frames were taken by S082A. Since as we shall see
 

shortly several exposures at each time are normally required for good intensities,
 

these events would not yield much time dependent information. The 15 June 73 event
 

occurred very early in the morning in Los Angeles and our D3 data is of very poor
 

quality. The 1 Sept. event is very close to the limb and the contrast is poor
 

on our film. The 5 Sept. event shows minor activity 'in D3 and our coverage does not
 

begin until after the maximum. For the 7 Sept. event neither NRL nor Lockneed has
 

coverage at flare maximum.
 

Thus, the most promising event where there'is both S082A and D3 coverage through the
 

flare maximum is that of 9 Aug. 73. Flare maximum is near 15:53 UT. NRL has 14
 

frames between 15:20 and 15:58 while we have D3 filtergrams every 30 secs. under
 

good seeing conditions.
 



TABLE II.A.1
 

NRL S082A FLARE LIST
 

Date 


15 June 1973 


7 Aug. 1973 


9 Aug. 1973 


31 Aug. 1973 


I Sept. 1973 


2 Sept. 1973 


4 Sept. 1973 


4 Sept. 1973 


5 Sept. 1973 


5 Sept. 1973 


7 Sept. 1973 


NRL 

Plate 

Nos.
 

1A312-

347 


2A006-

007 


2A022-

035 


2A356-

357 


2A371-

373 


2A376 


2A398-

399 


2A403 


2A419-

420 


2A421-

422 


2A432-

448 


Time 

(UT) 


14:11-

14:38 


18:47 

18:49 


15:20-

15:58 


21:57 

21:59 


21:26-

21:32 


00:46 


11:29-

11:32 


16:36 


18:31-

18:37 


20:15-

20:20 


12:21-

18:28 


Position
 
Angle


°
(50) ) 

N20W45 


NIOW30 


N1OW50 


S05W15 


N05E80 


SlOE70 


S20E70 


NlOE10 


Disk 

Center-


S20W30 


$20W50 


6 

Notes
 

WV LG & ST. M2: Max. 14:14.
 
Complete sequence.
 

C3: Max. 18:47. Both plates LC WV.
 
Many flare images superposed on film
 
defect. Exposure one hour earlier and
 

later still show AR to be very bright.
 

M2: Max. 15:53. May be sequence of two
 
flares, with small limb flare on 2A022
 
the cause of large EPL. Many flare
 
images superposed on film holder defect.
 

Two exp. (WV ST) of small flare.
 
Emission lines well-separated and
 
compact. 

Subflare. Emission lines not distinct.
 
LG & ST WV. Max. 21:15.
 

Subflare. Emission lines not distinct.
 
ST WV. Max. 00:43
 

Twin solarized spots in He II. Bright
 
footpoints in many highly ionized lines
 
WV LG & ST, synoptic pair. Max. 11:30
 

C6: Max. 16:35
 

Distince arch visible
 
ST WV only.
 

Max. @ 20:10. Small flare in NE quadrant.
 
Complex emission structure
 

XI flare w/4 consecutive peaks. Post flare
 
loops over neutral lines esp. apparent.
 
ALl ST WV. Max. 12:10.
 



NRL 
Date Plate 

Nos. 

10 Sept.1973 2A459-

460 

2 Dec. 1973 3A037-

045 


16-17 Dec.73 3A097-

143 


22 Dec. 1973 3A176-

178 


15 Jan. 1974 3A375-

376 


21-22 Jan. 74 3A452-

472 


Time 

(UT) 


02:32 


15:04-

15:17 


19:00-

02:00 


00:22 

01:20 


14:25-

14:28 


23:15-

00:49 


Position
 
Angle 

(+5c) 

S20W60 


SlOW80 


S20E85 


SlOE05 


N10W85 


N30W50 


Notes
 

Synoptic pair may have caught small
 

flare. He II barely solarized. LG
 
& ST WV.
 

MI flare. Max. 15:18 LG & ST WV.
 
Good sequence.
 

Complete sequence on C2 & Ml (Max.
 
00:32 & 00:41) limb flares. 47 plates
 
total.
 

Small flare on 3A176 (ST WV); emission
 
lines still apparent on synoptic pair
 

177 & 178. May only be a very bright
 
AR.
 

Limb flare (C6: Max. 14:25) with
 
sheet-like surge. ST WV only. Surge
 
seen hour earlier as well.
 

C8 flare, full sequence of 21 plates.
 
Max. 23:23.
 

FT 



I. B. D3 Filtergram Data Analysis
 

The flare event of 9 August 73 occurred in the active region designated 185 (NW
 
quadrant) on the NOAA daily charts. Fig. II.B.1 shows the NOAA schematic of the Sun
 

at 14:20 UT. The region was observed in the D3 line at Rye Canyon for several
 

days before and after the flare. As originally observed the spot group was very
 

complex with many small and intermediate size spots. By 9 August only the largest
 

spot and one of the smaller eastern spots remained. The spot centers are about
 

1-1/2' apart and are located roughly at position angle N 100, W 500. The smaller
 

spot lies roughly E of the larger one. The central intensity of the larger spot
 

is as low as 35% of the continuum while in the smaller spot it is about 75%.
 

Figs. II.B.2, 3, and 4 are photographs of the spot region through the D3 filter
 

at 15:46-00, 15-53:30 and 15:57:00. Exposure times were a small fraction of
 

a sec. The first photograph shows the pre-flare undisturbed environment, the
 

second photograph the maximum and the third photograph the decay phase. The W
 

limb is visible in each exposure.
 

The flare or flares occur in the smaller easterly spot. Visual inspection of the
 

film shows two distinct bright emission points on each side of this spot. These
 

two bright flare kernels can best be seen in Fig. II.B.3 at
 

15.53:30. Both kernels lie roughly in a N - S line. The northern kernel is first 

visible at 15:52 fading out at 15:58 while the southern kernel is first visible 

at 15:53 and fades out at about 15:57. Both kernels appear very bright against 

the spot background. They appear to represent two distinct events at different
 

locations.
 

Two sequences of densitometer tracings have been made frbm our original 8-mm
 

film. The first consists of tracings of the four best coincident frames
 

listed in Table i.C.2 at 15:46:00, 15:53:30, 15:54:00, and 15:57:00. The
 

slit size used was 8 x 8 microns. Digital output for intensity was obtained using
 

our R&D curves for 80 x 80 micron and 32 x 32 micron averages. 32 microns corre­

sponds to 1.0" arc. The area traced was 106" x 160" and is shown in Fig. II.B.1.
 

Figs. II.B.5 and 6 show intensity contours of the smaller spot from the tracings
 

at 15:46:00 and 15:53:30. The two distinct emission areas are prominent at
 

15-53:30. The area covered by the Figs. is 25" x 30". The contours are labeled
 

with the percentage of the continuum intensity.
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Fig. II.B.1. 

NOAA SCHEMATIC OF THE SUN FOR
 
AUG 9, 1973 AT 1420 UT 

N 

1858 

1"183 . 

186 1 
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9 



REPRODUIALTY OF TH I
 

ORIGINAL PAGN IS-~I
 



R&PRODUCIBILITY OF THE 

ORTOINAL PAGE IS POOR 

3-3­



OF T114RF2RODTjoIBILITY
(-P-FCJKAL PAGB IS RWR 

12 



: . .. ,_ ,.-,- , ;=,b- - . ...........
 
Eb fi 'mi , n- g.... -M ,i , - ..................
-N N 

Ares Q5 MW p,9"=4 

HEPOUIILT FTE 

iff We IN,14-WAS 101 isEsit 



--------- 

41+, 
4 ## . . 

H 4 	 #: H.
HE E #11 

f4MW 

.......	 -1444. I. .... I 
. .... .
 

I n W TNT 
opt'' 

wr 4+ 

+ 

lot OR 

+
 
pr I ath 4
 

-H!- 4+r +v+
 

I i i 
........... 

EE 

700 9, 

M 
M27 IT 

h4p 
i k
 

#,r-,.
 

...........
 

St InT 

i A-iiiiiiiii. k 

4-4 

A oil 
.... ....
4 . +!-T+ I . ...... 

V? +4 i '11111111 
M low 

+	 

: Ttj TNT
TNT 	 tt TE, 

Figure II.B.6 	 D3 Filtergram Intensities in Percent of Rbimal Continuum.
 

UT 15:53:30
 
Axea 25" x 29" 

14
 



The second sequence of tracings represents a similar area for each of the 

twelve frames taken every 30 sec. between 15:51:00 and 15"56"50 UT. The slit 

size used at this time was 24 x 24 microns or 0.75". Intensity contours for 

these frames are shown in Figs. II.B.7 to II.B.18. The time and average back­

ground intensity axe given on each figure. The contours represent 360, 400, 

440, 480 and 520 arbitrary intensity units. Each figure shows an area of 

The contours are labeled with the relative intensityapproximately 23" x 34". 

Areas within thevalues. The N and W direction is indicated on each figure. 


spot with intensities greater than the normal continuum are shown on a number
 

of the frames. There appear to be many instances of very small bright emission
 

points that last for only one frame, see for instance Figure II.B.8. The
 

southern flare kernel is first seen at 15:52:00 with the northern flare kernel
 

This is followed at 15"53"00 by a slight diminishing in
beginning at 15:52:30. 


intensity in both flares (possibly due to the initial red shifting noted by
 

Ramsey, 1975) followed by the greatest intensities at 15:53:30 in the northern
 

flare.
 

The northern flare becomes much more intense than the sourthern flare. The maximum
 

intensity at any one point relative to the undisturbed continuum is 1.26 in the
 

northern kernel and 1.10 in the southern kernel. With respect to the underlying
 

spot backgrounds these maximum relative intensities become 1.62 and 1.42. The
 

area of the northern region becomes much larger at maximum while that of the
 

southern region remains about the same. The intensities in both regions slowly
 

decay still being slightly above background at 15:56:30. These features are
 

illustrated in Figs. II.B. 19 and 20 where we show the intensities at four dif­

ferent locations within the flare for each frame relative to the initial spot
 

intensity at that location.
 

We note the rapid rise to maximum followed by the slower decay. The southern kernel
 

reaches maximum intensity at 15:52:00. *In bothflares there seems to be an oscilla­

tion in intensities with a period of 1 - 1-1/2 minutes.
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II. C. S08Z Data Analysis
 

A list of the 14 NRL plates for the flare of 9 Aug. 73 is given in Table II.C.1
 

along with exposure times, wavelength range covered, and comments. We can see
 

that only the four plates 23, 29, 30, and 31 encompass the wavelength range for
 

the resonance lines of HeT, i.e., the long wavelength range. Plate 23 is vastly
 

overexposed while we note that on plates 29, 30, and 31 the 584 X line is so
 

badly out of focus as to render quantitative analysis impossible. The longer ex­

posures on the short wavelength plates give a solarized flare kernel at 304 X
 

limiting analysis to exposures of 10 sec. or less. Plate 32 is fogged due to pres­

sure of the backing plate against the film. The usable plates for our purposes 

are then 24 - 27, 33, and 34. These plates will only provide information on the 

resonance lines of Hell.
 

Since plates 26 and 27 and plates 33 and 34 are taken at essentially the same time
 

we chose the shorter exposure time plates 26 and 34 for analysis. The four most
 

useful frames together with the closest D3 filtergram times are given in Table
 

11.0.2. There should be no large error due to different exposure times.
 

Fred Rosenberg at NRL has supplied us with tapes containing digitized output 

of microdensitometer scans of S082A data. Plates 20, 24 - 28, 32, 33 and 55 

were scanned for the HeII 304, 256 and 243A images. The H & D curve was 

provided for the 3043 line and it was used also for the 256 and 243A lines. 

Some of these plates were considered for their 256 and 243A intensities even
 

though the 3041 results are solarized. Most of the scans were made of a
 

2500 x 2500 micron region as shown by the dashed lines in Fig. II. A. 1. The
 

slit size used was 10 p. x 10 . With a solar diameter of 18.5 mm. the 10 p 

steps correspond to a 1.04" resolution.
 

We have unpacked the tapes sent to us by NRL and have reconstructed the output
 

and calculated intensities for 20 p. or 2.08" average slit size. 3041 total 

line intensities were obtained for plates 24, 25, 26, 32 and 34. 256 and 

2431 total line intensities were obtained from plates 24, 26, 28 and 32. Figs.
 

11.C.1 - II.C.3 show the sun at 3041 fr6m plates 24, -6 and 34. The flare 

is prominent at the eastern edge of AR 185 in all three photographs. 
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TABLE II.C.1
 

S082 Plates For 9 August 1973 Flare
 

Time Plate Wave 


UT No. Length 


15:20:32 2A022 ST 


15:35 023 LG 


15:46:07 024 ST 


15:30:20 025 ST 


15:54:00 026 ST 


15:54:05 027 ST 


15:54:17 028 ST 


15:54:58 029 


15:55:05 030 LG
 

15:55:27 031
 

15:56:49 032 ST 


15:56:53 033 ST 


15:57:05 034 ST 


15:58:20 035 ST 


ST = Short Wavelength
 

LG = Long Wavelength
 

Exposure
 

Time 


40 


160 


9 


1 3/4 


2k 


10 


40 


2k 


10 


40 


Comments
 

OK but exp is long for Hell. EPL
 
in progress, possibly from small
 
limb flare.
 

Wrong roll and exp. too long
 

Looks good. Exp. short enough so
 
Hell is not solarized
 

OK.exp.very short; flare kernel well­
defined
 

OK.exp.very short; flare kernel well­
defined
 

OK-flare kernel is solarized but still
 

well-defined
 

Exp. much too long for Hell-solarized
 

He I 584 out of focus,
 

Flare fogged by plate defect
 

Flare slightly solarized
 

Flare exposed OK
 

Flare solarized
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TABLE II.C.2 

COINCIDENT FRAME TIMS 
FLARE OF 9 AUGUST 1973 

NRL Exposure 
Plate Time Time 

Number (sec) 

24 15:46:07 9 

25 15:53:20 2 

26 15:54:00 2k 

34 15:57:05 

Closest D3
 
Filtergram
 

Time
 

15:46:00
 

15:53:30
 

15:54:00
 

15:57:00
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Plate 24 has an exposure time of 9 see. and does not appear usually to be
 

greatly solarized. Upon calculating the intensity at the 62500 points in the
 

scanned area we find however, that 21608 are overexposed and do not fall on
 

the established H & D curve. This means that only a lower limit to the 304­

intensity can be established over the entire flare area. Plates 25 and 26
 

have about 900 data points exceeding the limits of the H & D curve. All of
 

these data points are overexposed. The overexposed area is about 15" x 30"
 

with the long axis running N and S. This area corresponds very closely to
 

the D3 flare region. Fig. II.C.4 shows the relative intensity contours for
 

NRL plate 26. The average background intensity is shown on the Fig. The
 

intensities have been averaged over 10.4" x 10.4" areas. The area shown in
 

the Fig. is 135" x 155". Intensities are shown in terms of the maximum
 

intensity of 100. The larger 90 contour represents the D3 flare region. Fig.
 

II.0.5 shows this region on a scale expanded by 5 times. The entire D3 flare
 

region lies within the 100 contour region. The area inside the contour 100
 

is overexposed. Figs. II.C.6 and II..7 show the 256 and 2431 contour plots
 

of the same region. The 256 and 243A images are not solarized. We do not
 

have definitive positions of the limb for these two wavelengths and thus can
 

only postulate that the intense regions here correspond to the intense region
 

in Fig. II.C.5.
 

The normal exposure times for S082A were 160 sec., 40 sec., 10 see. and 2.5
 
sec. Fortunately frame 34 was taken at the unusually short exposure time of 

.31 sec. Fig. II.C. 8 shows intensity contours for this frame. Even at this
 

exposure time the flare center is solarized and we cannot obtain quantitative
 

intensities within the relative intensity 100 contour.
 

S082B observations were taken of the 9 Aug. 73 flare in HeII. Fig. II.C.9 

shows the flare in the H-a line of HeII at 1620j. Unfortunately quantitative
 

information was not available in time for this study.
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III. A Theoretical Model
 

The energy level model we use consists of 19 levels in HeI, 10 in He II
 

and 1 in He III. All terms through n = 4 are included. The Tables in
 

Appendix A show the energy levels and allowed lines in the model.
 

A plane-parallel slab irradiated on one side by a Planckian photospheric­

radiation field at radiation temperature T r was chosen as the geometric model. 

The gas is assumed to be optically thin for all lines and continua unless 

otherwise specified. 

The rat&-equations for a statistically steady state have been set up as
 

discussed in R1; Kulander, 1965; Kulander, 1976. The solution of the rate
 

equations for the level populations is discussed in Appendix B. All radiative
 

and collisional transitions between all terms were considered with the
 

exception that excited levels only produce ground state ions upon ionization.
 

These equations include an external Planckian radiation field at temperature
 

Tr, and an adjustable parameter multiplying each line and continuum radiative
 

intensity. The cross sections and reaction rates used have been discussed in
 

Rl and Benson and Kulander, 1972. Solutions can be obtained parametrically
 

for any arbitrary line and continuum radiation fields for specified election
 

temperature and density.
 

The intensity in the given line from a plane-parallel layer is determined
 

by the radiative transfer equation,
 

dI
 ='UT-- I - S III.A.l 
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where cos-± i represents the angle between the direction of propagation and
 

the outward normal z V fkV is the source function, 1% is the
= Sv 

linear absorption coefficient and I. the specific intensity of the radiation.
 

The source function on a microscopic basis can be written as
 

= 2hv3 1
S =, [(g/g (n/nu)]-l' III.A.2 

where g represents the statistical weight. The populations nu and nY are
 

obtained from solution of the statistically steady state rate equation which
 

for state i is
 

r (n Pji - n.P.) =2n.P.. = 0 III.A.3 

-=-.=- m. 

where P.. is the total transition rate from i to j per second per particle

13 

in the i state.
 

As shown in appendix B the line source function may be written
 

' (J/B)d ± e .A. 

1 + E + 6iB e 

where Jv is the mean intensity, Be is ihe Planck function at Te; v is the 

normalized line profile i* = i/B and e, r and e are non-LTE parameters 

obtained from the rate equation matrix. e, and i are specified in Appendix B. 



III.B.1 Non-Equilibrium Parameters and Optical Depths
 

To obtain estimates of the line intensities we first need to know the non­

equilibrium parameters e , f , and i that enter the source function. 

e is simply the ratio of collisional to radiative de-excitation of the upper
 

line level. T and i must be obtained from the full rate equation matrix.
 

We have obtained these values for the 584, 304 A and D lines for electron
 
4 3 10
 

temperatures 10 through 5 x 10 K and electron densities 10 through 

1014 cm-3 . Tables III.B.1 through III.B.5 illustrate e , q, and i*' 

for selected n and T values for the cases T, 1, 3 and 8 to be discussede e 

shortly. (The number following each entry is the power of 10 by which the
 

entry is multiplied.)
 

For the D3 line i /T is shown in Fig. III.B.1 along with the theoretical
 

limiting value
 

/ k T 
= 1 -ei/ 


which obtains in L9E
 

The values given here are constant with depth since the various rates entering
 

the rate equation matrix have been assumed constant. This is not in general
 

true even for a layer of constant electron temperature since the various radiation
 

fields are functions of position. We may obtain an indication of the effects of
 

these varying radiation intensities by solving for the non-equilibrium parameters
 

with different assumed radiation fields. Basically these radiation fields are
 

functions of optical thickness becoming dominated by the external radiation when
 

thin and approaching equilibrium values when completely thick.
 

In RI we made a parametric study of the effect of optical thickness in the
 

resonance lines and continua upon the level populations. Level iopulations were
 

obtained for various physically meaningful combinations of resonance lines and
 

continua being optically thick or thin. Each resonance line was thus assumed to 

45
 



TABLE III.B.1 

CHARACTERISTIC VALUES OF e, i 

Te(K) 

ne 

(cm-3 ) 

.Line 

() 

Case 

104 10 10 4.1-9 

it 
2.3-4 

It 

2.9-18 

5.1-14 
584 

it 
T 

3 

1.2-8 
t nI 

1.2-8 1.8-28 
ft 

304 
If 

T 
3 

10 4.o-8 2.7-4 9.4-7 584 T 

ft 

" 
It 

it 9.5 -3 1" 
I 

8 

.30 6.1-2 5.8-3 5876 T 

If 

1.2-7 

SIt 

5.0-2 

5.3-2 

5.8-8 
1, 

8.8-3 

7.8-3 

4.8-8 
4.8-8 

5.2-2 

3o4 
" 

t 

1 
8 

T 
1 

8 

1013 4.o-6 
It 

t 

1.5-3 
It 

t 

9.6-5 
It 

1.8-2 

584 
I 

" 

T 
1 

8 

2.3-4 1.02 5.7-2 5876 T 

.84 

.49 
.10 
.18 

it 
It 

1 
8 

1.2-5 
-

4.8-6 
If 

4.7-6 
If 

3o4 IT 
1I 

1014 

If 

4.0-5 
if 

1.2-4 
II 

8.0-3 
ft 

4.8,5 
If 

4.7-2 

4.o-14 
8.3-13 

1.8-24 
If 

It 

5M 

" 

3o4 
nI 

8 

T 

3 

T 
3 
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TABLE 

CHARACTERISTIC 

nU 

-Te(oK) (cm )

e c0 

2 x 10 4 1010 l.1-8 
t 

8.2-9 
f! 


1O 1 1.1-7 
ft 

" 

2.8-4 

ii 

It 

8.2-8 
ft 

I 

13
1 1.1-5 

" 

2.8-2 

8.2-6 
" 

" 

1014 1.1-4 
It 

8.2-5 

I t 

iiI.B.2 

VALUES OF e 

1 

2.3-4 
it 

1.2-8 
ft 

2.6-4 
ft 

f" 

5.4-2 

6.0-2 
6.9-2 


5.5-8 
it 


i 

2.8-3 

" 

1.19 

.92 

.55 
5.7-6 


" 

" 

2.2-2 

it 

5.8-5 

ft 

, i 

Line Case
 
i. (A) 

6.1-13 584 T 
3.8-3 t 3 

2.5-18 3o4 T 
ft ft 3 

8.3-7 584 T 
It nt 1 

1.7-2 88 

3.4-3 5876 T 

2.8-3 "1 
1.9-3 " 8
 

3.4-8 3o4 T 
I' It 1 

6.3-4 It 8 

7.1-5 584 T 

4.2-2 8 

4.2-2 5876 T 

5.9-2 " 1 

8.1-2 " 8 
3.4-6 3o4 T
 
1.2-5 I I 

1.5 -3 " 8 

6.4-9 584, T 

4.9-7 " 3 
2.5-14 304 T
 

ft It 3 
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TABLE III.B.3 

CHARACTERISTIC VALUES OF , ', i 

n 
T(0K (cm) ± Line(i) Case 

3 x 1014 i0 I 0  1.9-8 2.3-4 4.3-11 584 T 
It It It It 3 

6.7-9 1.4-8 6.1-15 304 T 

4.2-9 " 3 
1011 ( o304) (9.8-7) 

1.9-7 2.7-4 9.2-7 584 T 
It TI In It 

(4.2-2)
4.o-2 8 

(6.5-2) (1.5-3) 
3.0-4 7.5-2 1.5-3 . 5876 T 

it i 

(5.7-2)
6.6-2 

(2.2-3)
2.1-3 a8 

6.7-8 
(7.0-8)
7.9-8 3.0-8 3o4 T 

Ii 11 II I 

it 3.0-3 i 8 

1013  
1.9-5 

(3.7-3) 
4.1-3 

(2.2-5) 
7.3-5 584 T 

II I! II II 1 

I(6.9-2)
" 6.8-2 8 

3.0-2 
(.88) 
1.30 3.6-2 5876 T 

It It 1lI 

.68) (5.6-2) 
;68

(1.:1-5) 
5.7-2 8 

6.7-6 1.1-5 3.0-6 304 T 

It " 7.0-3 I 8 

1410 6.7-5 1.2-4 5.8-11 564 T 
11II 1.4-8 1, 35 

1.9-4 3.4-2 4.0-7 304 T 
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TABLE III.B5' 

CHARACTERISTIC VALUES OF 


T (oK) 3cf) 

5 x 104 10 3.8-8 2.3-4 
" 2.o-4 

5.2-9 1.9-8 
I " 

10 3.8-7 2.8-4 
"t - 2.3-4 

3.4-4 8.1-2 
it 6.4-2 

" 4.0-2 


5.2-8 1.5-7 

it 

10 3 
 3.8-5 6.1-3 
" 5.9-3 
" 6.3-3 

3.4-2 1.43 
" .4"o 

" .91" 

5.2-6 2.6-5 

14 


10 3.8-4 2.7-4 

5.8-2IT 

5.2-5 2.7-4 
" " 

) fl i 

* Line(1) Case 

1.6-9 584 T 
9.0-10 It 3 

3.4-12 304 T 

8.1-6 " 3 

1.2-6 584 T 
9.2-7 1 

3.6-2 - 8 

1.2-3 5876 T 
1.1-3 i 1 

8t8 

3.0-8 304 T 

1.2-2- 8 

8.6-3 58k4 T 
" " 1 

.1 I" 8 

2.8-2 5876 T 
1 

4.o-2 8 

2.7-6 304 T 

2.5-2 8 

3.0-8 3o4 T 
3 

3.0-8 304 T 
2.7-5 " 3 
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have a net radiative bracket (NBB) of either 0 (completely thick) or 1 (thin).
 

For each specified electron temperature, calculations were made for combinations
 

of net radiative brackets corresponding to layers of varying total thickness.
 

There are three resonance lines in the model for both HeI and HeI. These
 

six lines together with the Lyman continua for each ion are allowed to become
 

optically thick in our calculation. Thus, there are eight lines and continua
 

which can be optically thick or thin depending upon the physical thickness of
 

the layer.
 

Nine solutions for the level populations were made for each T and n
e e 
These refer to a solution where all lines and continua were optically thin 

(labeled T) and eight other solutions labeled 1-8 which correspond to the 

combinations of optical thick lines and continua given in Table III.B.6. In 

this Table (1), (2) and (3) refer to the 584, 537 and 522 A lines of HeI 

respectively, and (4) refers to the Lyman continuum of Hel. Similarly the 

numbers (5-8) refer to the 304, 256, 243 A lines and the Lyman continuum of 

HeII respectively. When a number appears in Table III.B.6 the corresponding 

transition has been assumed optically thick (i.e., in radiative detailed balance) 

in obtaining rate coefficients for the level population solutions. Transitions 

not appearing in the Table are assumed optically thin. It is noted that 

progressing from Case 1 to 8 corresponds in general to the layer becoming 

thicker. Case 8 always corresponds to all eight lines and continua becoming 

optically thick. For example, -with T = 30,000 K Case 4 represents thee 

M B = 0 in the first three resonance lines of Het and the first resonance line 

of HeI. 

In RI we also determined the optical depths in a number of lines of a 1000 km
 

thick layer. Since these results are very pertinent here we shall reproduce
 

them again. For each of the same cases given in Table III.B.6 we have obtained
 

the line center optical thickness in the 584, 304, 10830 A, 3 lines and at
 

the threshold of the Lyman continua of Hel and II. 
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Table III.B.6 

OPTICALLY THICK LINES CHOSEN 

Case Number 

Temper­
ature 

104 

1 

1 

2 

1,2 

3 

1-3 

4 

1-4 

5 

1-5 

6 

1-6 

7 

1-7 

8 

1-8 

2x10 4 1 1,2 1-3 1-3 
5 

1-3 
5,6 

1-3 
5-7 

1-3 
5-8 

1 1-8 

5 5,6 5-7 1 

5-7 

1,2 

5-7 

1-3 

5-7 

1-3 

5-8 

4x104 5 5,6 5-7 5-8 1 

5-8 

1,2 

5-8 

1-3 

5-8 
1-8 

5x104 5 5,6 5-7 5-8 1 

5-8 

1,2 

5-8 

1-3 

5-8 
1-8 
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The optical thicknesses are given in Tables III.B.7 through III.B.11. The
 

number following each entry is the power of 10 by which the entry is multiplied.
 

We note that the 10830 and D3 lines can become thick for high electron densities
 

even at 50000 K. These lines do not become thick at 10,000 K. There are many
 

cases in which a number of lines and continua are optically thick. This does not
 

mean, however, that simultaneous transport equations must be solved for these
 

lines and continua. Which line and continuum radiation fields must be obtained
 

simultaneously depends upon the level population being sought as well as the
 

temperature, density, and layer optical thickness.
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Table III.B.7 

OPTICAL THICKNESS - 1000 KM LAYER
 

T = 10,000 0 K
 

Case 

TRANSITION ne T 1 2 5 4 5 6 7 8 

1010 

584 3.7 +4 1.3+4 

5o4 7.6 = = - 4.1-= = 

5876 2.8-8 1.1-5 2.1-5 2.7-5 8.o-4 = = -

10830 2.6-7 i.o-4 1.9-4 2.5-4 7.4-3 .... 

3o4 1.,5-2 9.6 8.6+2 .... 

228 1.4-6 9.3-4 1.8-3 2.4-3 8.3-2 = = = = 
loll 

584 3.7+5 ...... - -

504 76 .. - -

5876 1.3-6 I.7-4 2.2-4 3.7-4 6.7-3 = = -

10830 1.2-5 1.2-3 2.1-) 3.4-3 6.2-2 .... 

304 .046 1.6+3 , = -

228 4.4-6 1.0-5 1.9-3 3.1-5 .15 .... 
lO12 

584 3.7+6 ........ 

5o4 7.6+2 = = = = - - -

5876 1.5-5 1.1-3 2.4-3 4.7-3 1.5-2 .... 

1O830 1.2-4 8.6-3 2.0-2 5.7-2 0.12 = 
304 0.10 1.5+3 .... 

228 9.3-6 1.0-3 2.8-3 6.0-3 1.2-1 = = = 

1013 

•584 3.7+7 

504 7.6+3 .. = = 

5876 2.1-4 1.o-2 3.1-2 4.1-2 6.2-2 = = = 

1o83o i.4-3 4.7-2 0.13 0.17 0.26 = = = 

304 0.56 1.3+22 2.52 1.1+3 = = = 

228 5.4-5 2.7-3 1.3-2 2.4-2 1.0-1 = = = = 

1014 

584 3.7+8 -...-.. 

504" 7.6+4 

5876 5.6-3 0.15 0.24 0.26 0.29 = - - = 

1o83O 1.4-2 0.37 0.54 0.59 o.66 = - - -

30A 4.7 1.7+2 5.0+2 6.1+2 9.3+2 = - = = 

228 4.5-4 1.6-2 4.8-2 5.9-2 9.0-2 .... 

* The number follo.tng each entry is the power of 10 by which the entry is multiplied. 
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Table III.B.8 

OPTICAL TFICKNESS - 1000 KM IAYER 

T = 2 x 1O4 0 K 
e 

Case 

TRANSITION ne T 1 2 3 4 5 6 7 8 

1010 

584 1.7+3 3.4 0.92 0.52 = = 7.0-3 = 

5a4 0.36 7.2-4 1.9-4 1.1-4 = = 1.5-6 = 

5876 1.7-5 1.8-5 1.7-3 .... 9.6-4 

10830 1.6-2 1.7-2 1.6-2 - = = 9.3-3 -

304 1.5+3 2.8+3 ..... 2.0+3 -

228 0.10 0.19 .... 0.13 = 

1011 

584 2.0+4 2.2+2 61. 26. 1.0 = 

504 5.7 6.3-2 1.7-2 7.4-3 = = = 2.9-4 = 

5876 4.3-2 0.11 .... 3.3-2 -

1o830 0.38 1.0 o.86 0.93 = = = 2.9-4 = 
5o4 5.1+5 2.1+4 = = = -

228 o.43 1.8 ....... 

584 2.3+5 i.o+4 2.0+3 5.6+2 = - = 100. 

504 65. 2.8 0.56 0.16 = = = 2.8-2 = 

5876 0.90 4.3 4.o 3.1 = - 1.0 

10830 5.3 24. 22. 17...... 

3o4 3.3+4 2.0+5 = = = = - = 

228 2.7 16. = ...... 

1013 

584 2.0+6 1.2+5 1.7+4 8.5+3 = = 5.2+3 

5o4 6.1+2 37. 5.2 2.6 = - 1.6 

5876 18. 63. 48. 38. = - = 28. 

10830 37.. 1.3+2 90.. 69. 52. 

304 4.0+5 1.9+6 ...... 

228 
10i14 

36. 170. = -
-_ 

..... 

584 2.0+7 1.2+6 3.8+5 3.0+5 = 2.6+5 = 

504 5.8+3 350. 11o. 87. 75. 

5876 2.8+2 7.7+2 5.4+2 5.1+2 = = 4.8+2 

10830 3.3+2 8.8+2 5.8+2 5.4+2 = = - 5.1+2 

304 5.1+6 1.9+7 = - ..... 

228 450. 1.7+3 = = ..... 
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Table Ill.B.9
 

OPTICAL THICKNESS - 1000 KM LAYER
 

T = 3 x 1O4 ,K
 
e
 

Case
 

TRANSITION ne T 1 2 3 4 5 6 7 8 

1010 

584 23. 22. 21. 2.5-2 5.2-3 2.7-3 1.7-5 1.6-5 

504 8.4-3 = 8.2-5 i.o-6 2.0-7 1.0-7 5.9-6 6.0-ii 

5876 1.3-3 = = 1.2-3 7.7-4 7.0-4 = 4.3-6 3.2-6 

10830 1.2-2 = = 1.1-2 7.2-3 6.5-3 6.4-3 4.0-5 3.0-5 

304 1.6+3 ...... 10. 

228 o.1& - - 0.17 = = 1.1-3 = 

1011 

584 6.3+2 = = = 2.0 0.43 0.15 8.8-3 2.6-4 

504 0.19 = - - 7.2-4 1.5-4 5.0-5 3.2-6 1.0-7 

5876 6.8-2 = - 5.2-2 4.5-2 = 2.9-3 8.2-5 

10830 0.57 = - - 0.43 0.37 = 2.4-2 7.0-5 

304 1.6+4 ..... 1.0+3 = 

228 1.7 = = - 10.10 
101 

584 7.3+3 = 62. 9.6 2.5 1.0 0.13 

504 2.6 ... .22 3.4-3 8.9-4 3.6-4 4.6-5 

5876 1.5 = i.4 = 1.1 o.42 0.15 

10830 6.8 = = = 6.2 5.9 4.7 1.8 0.63 

3o4 1.6+5 ..... 6.4+4 

228 18. =...- 7.0 

584 4.8+4 = = = 6.5+2 76. 38. 32. 17. 

5o4 17.. 0.23 2.7-2 1.4-2 1.2-2 6.4-3 

5876 22. = = 18. 15. 12. 10. 7.3 

10830 32. = =-25. 19. 15. 13. 10. 

304 i.6+6 . = - I.h+6 = 

228 1.8+2 ...... 1.5+2 

1014­

584 3.1+5 3.3+5 3.7+5 = 5.9+3 1.8+3 1.4+3 = 1.1+3 

"5o4 1.2+2 = 1.3+2 = 2.3 0.69 0.48 = 0.38 

5876 2.0+2 = 2.4+2 = 1.9+2 1.4+2 1.3+2 = 1.2+2 

10830 2.6+2 = 2.1+2 = 1.7+2 1.2+2 1.1+2 1.0+2 

3o4 1.5+7 = = = 1.6+7 .... 

228 1.8+3 =....... 

57 



Table III.B.1O
 

OPTICAL THICKNESS - 1000 KM LAYER
 

T = 4 x O4 oK 
e 

Case 

TRANSITION ne T 1 2 5 4 5 6 7 8 

100 

584 1.9 = 1.5 0.37 1.9-4 1.0-7 1.7-8 8.5-9 5.5-11 

5o4 7.6-4 = 4.5-4 1.5-4 7.6-8 4.0-i 6.8-12 3.4-12 2.2-14 

5876 8.3-4 6.4-4 1.6-4 1.6-8 i.4-8 1.2-8 = 6.6-9 

10830 7.7-3 = 5.9-3 1.5-3 7.7-7 1.3-7 1.0-7 6.o-8 

3o4 1.5+3 1.2+3 2.9+2 2.9-2 = = 

228 o.18 0.11 .035 3.5-6 = = 

1011 

584 4o. 38. 33. 15. 6.7-3 4.3-5 8.0-6 2.7-7 4.7-9 

5o4 1.7-2 = 1.5-2 7.0-3 2.8-6 1.8-8 3.4-9 1.1-10 2.0-12 

5876 0.32 0.31 0.27- 0.13 5.6-6 = 3.8-6 = 1.2-6 

10830 0.26 0.25 0.21 0.11 4.5-5 = 3.9-5 = 1.3-5 

3o4 1.4+4 = i.3+4 7.6+3 2.8 .... 

228 1.8 1.6 o.81 3.6-4 = = = 

1012 

584 4.2+2 4.1+2 3.7+2 2.5+2 0.82 8.1-5 1.1-3 2.5-4 5.3-5 

5o4 0.17 = 0.15 0.11 3.4-4 3.4-6 4.7-7 1.2-7 1.4-8 

5876 0.69 0.67 0.61 0.41 1.4-3 = 1.1-3 4.o-4 

10830 2.6 2.5 2.3 1.5 5.0-3 = 4.9-3 4.0-3 1.4-3 

3o4 1.5+5 1.4+5 1.3+5 8.7+4 2.9+2 .... 

228 18. 17. 16. 11. 3.6-2 .... 

1013 
584 2.7+3 2.5+3 23+3 1.6+3 o.8o- 0.i0 4.5-2 2.0-2 

504 1.0 0.92 0.84 0.68 2.2-2 2.1-4 3.6-5 1.8-5 7.7-6 

5876 9.1 8.7 8.0 5.6 0.19 o.16 0.13 0.10 8.0-2 

10830 11. 10, 9.2 6.5- 0.22 0.19 o.14 0.12 8.5-2 

304 1.5+6 1.4+6 1.2+6 8.8+5 3.0+4 = = -

228 180. 170. 160. 100. 3.6 - = -

584 2.1+4 2.0+4 1.7+4 1.2+4 3.1+3 9.0 

5o4 8.4 7.8 6.4 3.0 0.77 1.3-2 4.0-3 3.2-3 2.2-3 

5876 99.. 95. 83. 58. 15. 12. 10. 9.0 8.3 

10830 76. 72. 62. 45, 11. 10. 7.0 6.6 6.o 

304 1.4+7 = 1.2+7 9.0+6 2.3+6 = -

228 1.8+3 1.7+3 1.4+3 1.2+3 3.0+2 = -
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Table III.B.11
 

OPTICAL THICKNESS - 1000 KM LAYER
 

T 
e 
= 5 x 104 ,K 

Case 
TRANSITION n. T 1 2 3 4 5 6 7 8 

1010 

584 0.35 0.21 4.2-2 5.5-3 2.1-7 -

504 1.5-4 9.0-5 1.8-5 1.5-6 9.0-11 - -

5876 5.4-4 3.4-4 6.5-5 5.3-6 3.2-10 - -

1083o 4.9-3 3.0-3 6.0-4 5.0-5 3.0-9 -

304 1.3+3 7.8+2 1.6+2 13. 7.8-4 = = 

228 0.18 0.11 2.2-2 1.8-3 1.1-7 .... 

1011 

584 6.6 4.o 1.3 0.26 4.0-5 - - -

5o4 3.3o-3 1.8-s 5.9-4 1.2-4 1.8-8 - - -

5876 1.8-2 1.1-2 3.6-3 7.2-4 1.1-7 - - -

10830 o.14 8.4-2 2.8-2 5.6-3 8.4-7 - - -

304 1.3+4 7.8+3 2.6+3 5.2+2 7.8-2 .... 

228 1.8 1.1 0.36 7.2-2 1.1-5 .... 
12 

10 

584 62. 37. 12. 3.1 3.7-3 

5o4 3.0-2 1.8-2 5.8-3 i.5-3 1.8-6 -

5876 0.37 0.22 7.4-2 1.8-2 2.2-5 -

10830 1.2 0.75 0.24 6.0-2 7.2-5 -

3o4 1.3+5 7.8+4 2.6+4 6.5+3 7.8 = = = 

228 18. 11. 3.6 0.90 1.1-3 .... 

1015 

584 4.1+2 2.4+2 82. 20. 0.25 4.o-3 4.5-4 2.3-4 9.0-5 

5o4 0.18 0.11 3.6-2 8.8-3 1.1-4 1.8-6 2.0-7 1.0-7 4.o-8 

5876 4.8 2.9 0.96 0.24 2.9-3 2.6-3 2.2-3 1.7-3 1.3-3 

Io83o 4.9 2.9 1.0 0.25 2.9-3 2.6-3 2.1-3 1.7-3 1.3-3 

o4 1.3+6 7.8+5 2;6+5 6.54 7,8+2 .... 

228 180. 110. 36. 8.8 0.11 .... 

1014 -­

584 3.0+3 1.9+3 5.0+2 160. 19, 0.35 0.11 8.5-2 5.9-2 

5o4 1.4 o.84 0.22 7.0-2 8.9-3 1.6-4 5.1-5 4.0-5 2.8-5 

15876 47. 30. 7.8 2.4 0.29 0.25 0.20 = = 

10830 33. 21. 5.6 1.7 0,21 0.18 D.14 -

3o4 1.3+7 7.8+6 2.1+6 6.5+5 7.8+4 = 

228 1.8+3 1,1+3 2.9+2 9.0+1 1i.1 1 . = 
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III.B.2 D3 Line Profiles and Transmitted Intensities
 

Using the line source function of Eq. III.A.4 for a finite plane­

parallel layer above the photosphere we may obtain the emergent intensity 

[Iv(0)/Be I = Ij(*,) from the surface of a layer of optical thickness tI 

at angle cos -p with respect to the normal, from 
tl
 

IV*(o,0 = f cpV sj erp(- p dVt/[.) dt/p. III.B.1 
a 0 

With p a constant with depth, the photospheric radiation being given by Br
 

and assuming no continuous absorption the emergent intensity becomes
 

(see Appendix B for details) - t l/P]
*1 L - e-(ka+ y /)tl e -katlI e CP 

-I t+-

V (0) V a a + ka + (p- kji) 

-+ccpE- [e ' katle /h-]+(-e tlI) 
Va a ~ cp - tl ( 

Br - p t/
- e III.B.2
 

e
 

This is a homogeneous slab solution assuming an Eddington approximation 

which we shall use in obtaining transmitted intensities. 

D3 line profiles have been calculated for a wide range of values of
 

e, 1 i and t from Eq. III.B.2. Figure III.B.2 illustrates results for
 

-


1 


T = 6000°K, T = 20,0000K, n = 10 cmw for various values of e, f, i 

and t1. 

The D3 filter has a Gaussian profile with a total half width of 0.40 A.
 

The transmission of the filter can be written as
 

v12Tv == Exm 0.20 ADIII.B-.3T 

where v = A%/AXD and
 

6o
 



Some characteristic values for AXD are given in Table III.B.l. The total
 

integrated intensity observed through the filter is
 

ST I dv 

We define the total transmission TT of the filter as
 

dvITT v 

- idv
 

Figure III.B.2 illustrates values of TT for the case e = 10-3, Te = 20,000 ', = 1 
for various values of 11 and i * . The curves are labeled trth.the exponents of 1 

* .. * = 44 -and i, for exanplethe curve 1 10-, a = 10 is labeled 3,4. 

The most useful quantity for our interpretation is the total transmitted
 

line intensity with respect to the total transmitted continuum intensity, i.e.
 

5 Iv dv 

10 5 T dv 
Selected values for R are shown in Figures III.B.3 to III.B.6 for T = 600cPK, 

4- - r 
p l, Te = 2 x 10 and 4 x lO and for e values lo ,102, 10 and l0 

The curve for e - 10-2 = 10-3 i = 10 "4 for example is labeled 2,3,4. 

I has been set equal to B(Tr 
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7 " 

I 	 I 

-Ti	 . z=H=- .. 

-- F-- I 

-Figure III.B.3 	 Total Transmission for T =20,0000 K, e = lO j = *. 

Curves are labeled wth negative exponent values of 11and ± 
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III. C. Electron Temperatures and Densities
 

The maximum flare D3 intensities are about 1.2 times the normal background
 

continuum. For each electron temperature and density we ask whether the
 

corresponding values of e, q and ? will give line profiles yielding trans­

mitted filter intensities greater than the continuum. In order to obtain an
 

absolute D intensity greater than the continuum with a layer no thicker than
 
3 
 1
several thousand kms, ne must be at least l0ll. The following temperatures,
 

densities and optical thicknesses provide sufficient intensity: n = 1013
 
012 o e 3


T = 20000 K - 40000 °K, t1 = 0 - 2; ne l0 , T = 20000 OK, t 1 = lO -

The maximum D3 flux in the flare is approximately 3.4 x2 106 ergs/cm 2/sec/
 

at the sun. The transmitted intensity is 6.0 x 105 ergs/cm /sec. At 20000 OK
 

the total D3 line flux is .157 times the intensity or 5.3 x 105.
 

We cannot determine the maximum 304 intensities due to the solarized
 

condition of plates 24, 25, 26 and 34. On plate 26 the 100 contour is at 40
 

times the background continuum while on plate 34 it is about 140 times the
 

background continuum. By examining various positions within the flare we can
 

determine that the intensities in the flare at 15:57:05 have decreased about 75%
 

from those at 15:54:00.
 

The 256k line intensities on plate 26 have not solarized. If we assume
 

the same ratio of increase from positions near the intensity 100 contour on
 

the 304 contour map as on the 256 contour map we can estimate the 304k central
 

intensities. This yields a maximum 304k flare intensity of 800 times back­

ground intensity.
 

We shall use a quiet sun background intensity in 304 of 8600 ergs/cm2 /sec/st
 

or flux 2.2 x l07 ergs/cm2 /sec. We thus arrive at an approximate 304k to D3
 

flux ratio of 40. Using the intensity curves derived in Rl we can determine
 

the temperatures and densities allowing for a 304k//D ratio between 20 and 60.
 
3o 12
 

We find the following acceptable ranges: T = 3 x 10 K, n = 10 - 1013 cm- 3 ; 

=4xlO4 °Kne = l01 3 x 1 -3
 - cm . In order to have the correct
 
absolute intensities the following optical thicknesses are required: T = 3 x 104
 

e 1 - e 1 
1
ne = 1 t = .1 -.3; T =4 x 10, ne 3 x , t1 = .2 -.5. Comparing
 

these ranges with those consistent with the D emission we find the most
 
3 41013 
 cm3
probable flare condition at-the brightest point to be T 3 x 10 K. ne m
 

and tI .1 - .2.
 

Further interpretation is underway.
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Appendix A
 

ENERGY LEVEL MODEL
 

TABLE I
 

He I, II Energy Levels
 

HeI i =1 

Energy (ev) Wave Nos. 

is 21 IS 0 0
 

2 ls2s 3S 19.821 159850
 

3 ls2s iS 20.618 166272
 
4 ls2p 3p 20.966 169081
 

5 0s2p 2.220
aPO 17129
 

6 Is3s 3S 22.721 183231 

7 ls3s iS 22.923 184859 

8 ls3p 3PO 23.009 185559 

9 ls3d 3D 23.076 186096 

10 isBd in 23.076 186o99 
11 1s3p 1PO 23.o89 1862o4 

12 Is4s 3S 23.596 190292 

13 ls4s 1S 23.676 190935 

314 Isip po 23.710 191211 

15 ls4d 3D 23.738 191439 

16 ls4d ID 23.739 191441 

17 ls4f 3F 23.739 191447 

18 is4f J0 23.739 191447 

19 ls4p 0 23.744 191487 

He II- i= 2 

1 Is 2S 0 0
 

2 2s 2S 40.8099 329179.57 
3 2p 2pO 40.8091 329182.02 

4 3s 2S 48.3662 390140.76
 
5 3P 2pO 48.3664 390141.49
 

6 3d 2D 48.3665 390142.64 

7 4s 2S 51.0113 411476.98 

8 4p 2pO 51.0114 411477.28 

9 4d 2 .51.0115 411477.77 

2F10 4f 51.0117 411477.95 

7O
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TABLE IT
 

He I II Lines
 

He I 

Upper 
Level 

Lower 
Level Notation ?(1) 

A 

(08 /seC) f 

4 2 1 10830 .1022 .5391 

5 1 2 uv 584.4 17.99 .2762 

5. 3 20582 .01976 .3764 

6 4 i0 7065 .278 .0693 

7 5 45 7281 .181 o480 

8 2 2 3889 .09478 o6446 

8 6 4.30+4 .olo8 .896 

D3-4 9 4 11 5876 .706 .609 

9 8 1.86+5 1.28-4 .Ill 

10 5 46 6678 .638 .71­

11 1 3 UV 537.1 5.66 .0734 

11 3 4 5016 .1338 .1514 

11 7 7.43+4 .00253 .629 

12 4 12 4713 1o6 .0118 

12 8 21120 0652 .145 

13 5 47 5049 .0655 .00834 

13 3 21132 .0459 .lo3 

14 2 3 3188 .0505 .0231 

14 6 12538 .oo6o8 .0429 

14 9 19543 .00597 .0205 

14 12 1.09+5 .0505 1.21 

15 4 14 4472 .251 .125 

15 8 17002 .o668 .482 

15' 14 4.39+5 4.16-5 .200 

16 5 48 4922 .202 .122 

16 11 19089 .0711 .647 

17 9 18688 .139 1.02 

17 15 1.43+7 6.o1-io .o033 

18 10 18699 .138 1.01 

18 16 1.67+7 4.34-10 .00253 

19 1 4 UV 522.2 2.46 .930 

19 3 5 3965 .0717 .0507 

19 7 15088 .0137 .140 
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TABLE 11 (Continued). 

He I 

Upper Lower 

Level Level 

19 10 

19 13 

19 16 

He II 

3 1 

4 3 

5 1 

5 2 

6 3 
7 3 
7 5 

8 1 

8 2 

8 4 

8 6 
9 3 
9 5 

10 6 

Notation 
 I(!) 


18560 


1.81+5 


2.17+6 


3o3.8o 


1640.5 


256.3 


1640.4 


1640.4 
1215.1 

4687.0 


243.03 


1215.1 


4686.8 


4687.2 

1P15.1 

4686.9 


4687.1 


A 

(108/sec) f 

.00277 .ooB58 
5.78-4 .853 

5.65-7 .024 

100. .4162 

1.01 .01359 

26.8 .07910 

3.59 .4349 

lO.3 .6958 
.413 3.045-3 
.294 .03225 

10.9 .02899 

1.55 .1028 

.491 .4847 

.056 .01099 
3.30 .1218 
1.13 .6183 

2.21 1.018 
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Appendix B 

BASIC EQUATIONS
 

In the statistically steady state the rate equation describing the
 

population n. of the state i is
 I 

(n.P.. - nyi.) = s n.P.. = 0
 

JA i jI):j :
 

P.. = - .. A.1
 
'i j/i PI-t
 

where P.. is the total transition rate from i to j per second per particle
it) 

in the i state. In general, P. = R + Ci.. where Ri and C. represent 

the radiative and collisional transition rates respectively. We shall 

assume a Maxwellian distribution for the electrons and helium particles and 

since we also assume a known external radiation field, the transitions 

involving the continuum can be represented by a single term in Eq. A.l. We 

can characterize the system of linear equations A.1 by a matrix whose co­

efficients a.. are equal to P... In representing matrix elements and.
 

co-factors thereof, we shall always let the first subscript refer to the
 

row and the second to the column. Because of the definition of the transi­

tion rate the subscripts of the P's will be reversed when substituted for
 

the matrix elements a. The general solution of Eq.A.l is 

n. = X m , A.2m'm km N 
I m In7 
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where 1m! is the co-factor of the element a . = P. in the coefficient ma­
m3 jm 

trix represented by the i equations of type A.1 and N is the total number
 

3of helium particles per cm . The matrix of coefficients has the property 

that the co-factor of all the elements in a column are equal, i.e. pm is 

independent of m.
 

When the medium becomes optically non-thin for certain frequencies
 

the radiation field producing internal excitation and ionization for these
 

frequencies is no longer merely the external radiation field but is partly
 

dependent on the internal properties of the gas and must be determined from
 

the radiative-transfer equation
 

dI
 

dTT = I v - SV A.3 

-i 
where cos p represents the angle between the direction of propagation and
 

the outward normal z and TV = Sk v dz, S v is the source function, k v is 

the linear absorption coefficient and I is the specific intensity of the
 

radiation. In LTE Sv = B however in the non-LTE case SV must be specified
 

in terms of microscopic processes. In terms of such processes the trans­

fer equation governing the spectral line between upper level u and lower
 

level I may be written as
 

dI 
- 4,,, n1B u hv- n B xjithv + 4ick JC]I 

fn AUihv -41ckkS (T2) A.4 

where kC represents the continuum absorption coefficient at frequency v0 

and S is the continuum source function. B1u Bu and Au are the Einstein 

transition probabilities for absorption, stimulated emission and spontaneous 

emission. j V', and V are the normalized emission, stimulated emission 

and absorption coefficients within the line defined such that
 

jf dv f tdv=~ - jidv & = 1. 
0 0 T 0 
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A.5 

The continuum absorption coefficient is generally very small compared with
 

the line absorption coefficient near the line center and will be neglected
 

in determining the source function within the line. Using the standard
 

relations between the Einstein coefficients and assuming jV = V *V1 

the source function becomes
 

S 3 1 

ul = 2. [(gu/gl)(nl/nu)]-i '
 

where g represents the statistical weight. The minus one term in the
 

denominator represents stimulated emissions.
 

In evaluating the radiative excitation rate R.. for transitions

1
 

between bound levels the line radiation field enters as
 

o0
 fJf) V(T) dv = JTr) 

where
 

JfV(r) = -fIV/'rTp &n 

is the mean intensity and dw represents the solid angle. it is thus con­

venient to formulate the transfer equation in terms of J rather than I .
 V V
 

It is now convenient to separate those components involving the unknown
 

radiation field, ', from the co-factors. This is done by expanding the
 

determinant P'3 in terms of its co-factors Qij. Thus
 

Pin= rn Ik I=P!Qu 41/ lQ 

uJ. ka l lii 

P =r PuQ PQ + Z P Q A.6 
k/u k/u/i 

Actually, Jul may appear in many of the co-factors since the line u-I may 

fall in the ionization continuum of some other transition. The influence 

of Jal as well as the line radiation in general on the bound-free radiative
 

rateb will be neglected. Using the standard relationship between the
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Einstein coefficients, equation A.61 and remembering that 

QUl = Q and Alu = B u Jv vdv the source function may be written as 

ul= Pul + +C A.? 

where B is the Planck function 

v.(Te) = Pul u 

Cul 
 2hv 3 

=Aul
A Pul = 2-

g
gu
1
 

A I PukQk.
 

A Q k u/1
 

The terms entering the numerator of Eq. A.7 each represeht ar method of 

populating the upper level from the lower level. The first term repre­

sents direct radiative excitation, the second direct collisional excitation 

and the third any combination of radiative or collisional processes involv­

ing one or more intermediate levels in going from the lower to the upper
 

level. The denominator, on the other hand, consists of terms indicating
 

transition paths from the upper to the lower level. All the terms are
 

normalized with respect to A21 . The first term represents direct radiative
 

de-excitation, the second direct collisional de-excitation and the third
 

any indirect process going from the upper to the lower state.
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The problem remains of finding a JV (t) to use in evaluating the source 
function. One method we shall adopt is the general procedure of Thomas and 

Zirker (1961) in employing the Eddington transfer equation and replacing the
 

integral in equation (A.2) by a standard quadrature. Specifically, an n-point 

Gaussian quadrature, as discussed by Avrett and Hummer (1965), is employed 

over the central line region where significant transfer of radiation occurs. 

As they point out, the Gaussian quadrature proves much more accurate than the 

Hermite-Gauss quadrature for finite layers. 

The transfer equation for each quadrature frequency v,, assuming 

negligible continuous opacity, is
 

--2 * * *
 
d J .L 2 [j a.J. +e+ i
 
d2 i + 0 + 6i A.9 

where
 

Xi i(
 

xL and n0 are the line and line center absorption coefficients and a. are the
 

weight coefficients of the Gauss quadrature. 

The solution of equation (A.9) regarding e, ' and i as constants for 

a layer of optical thickness tl, is
 

a - t)(tA -tFJ. E La [e xtt + e-k I )]+A+ w F e -

A.10* ­
2
k2-/xl ' I-k2/xi2 

where 

e+i 
A + 6i A.11 

and
 

CU [(l + + -i)] A.12 
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The k are given by 

n wa.
12 2-1- k/x,2 A.13 

i=12 2 /. 

Application of the boundary condition, which requires no incident radiation on 

the top surface of the layer, and an intensity WBr on the bottom surface (W is 

a dilution factor) yields the following expression for the integration constants 

L and F 

a-(a k2(t -t 
a + e 1 - + F e/ A.14 

- d2( - 1 

T amergn inkten X) WB
[Ik, 


The line source function (equation (A.7) then becomes, eS CU ZLale-1a +Ie j+ A+ w 

-kt k[ ttt
The emergent intensity [IjO = (0 ) from the of the(, p4/B] I Vo, surface 

layer at angle cos p with respect to the normal, is 
a o2 lott t A.15 

I *(a, p1) 3' C= ep ' dt/p) dt/g A.16 

With SL given by equation (A.15) and cpv a constant with depth, the intensity
 

becomes
 

(a%,j4) w> <c,s - (e+k.t + e-k atI (-pvt1 /0)~]e*e-( -[it + 6p/o)t I1
V t ,v p)(V- kd±) J1,((0' + e 

+ " - t /I) A.7 
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This equation is the basic equation from which the total integrated line
 

radiation will be obtained. 

When the optical thickness exceeds unity, a self-reversed or apparent
 

absorption region develops near the line center resulting from the rapid
 

increase in the source function with depth in the layer.
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