
LARGE-SCALE PERIODIC SOLAR VELOCITIES: 

AN OBSERVATIONAL STUDY 
(NASA-CR-153256) LARGE-SCALE PERIODIC SOLAR N77-26056
 
ElOCITIeS: AN OBSERVATIONAL STUDY
 
Stanford Univ.) 211 p HC,A10/F A01
 

CSCL 03B Unclas
 
G3/92 35416
 

by 

Phil Howard Dittmer 

Office of Naval Research
 
Contract N00014-76-C-0207
 

National Aeronautics and Space Administration
 
Grant NGR 05-020-559
 

National Science Foundation 
Grant ATM74-19007 
Grant DES75-15664 

and
 

The Max C.Fleischmann Foundation 

SUIPR Report No. 686 T'A 

>kj, JUN 1977 

March 1977 RECEIVED
NASA STI FACILITY 

This document has been approved for public INPUT B N 
release and sale; its distribution isunlimited. 4 ,. 

INSTITUTE FOR PLASMA RESEARCH 

STANFORD UNIVERSITY, STANFORD, CALIFORNIA 



UNCLASSIFIED
 
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) 

INSTRUCTIONSREPORT DREADDOCUMENTATION PAGE BEFORE COMPLETING 	 FORM 
I- REPORT NUMBER 2 GOVT ACCESSION NO. 	 3. RECIPIENT'S CATALOG NUMBER 

SUIPR Report No. 686
 

4. TITLE (and Subtitle) 	 5 TYPE OF REPORT & PERIOD COVERED 

Large-Scale Periodic Solar Velocities: Scientific, Technical
 
An Observational Study
 

6. PERFORMING ORG. REPORT NUMBER 

7. 	 AUTHOR(s) 
8 CONTRACT OR GRANT NUMBER(s) 

Phil Howard Dittmer 	 N00014-76-C-0207
 

S PERFORMING ORGANIZATION NAME AND ADDRESS 10. 	 PROGRAM ELEMENT, PROJECT, TASK 
AREA & WORK UNIT NUMBERSInstitute for Plasma Research 

Stanford University 
Stanford, California 94305 12. REPORT DATE . 13. NO. OF PAGES 

11. 	 CONTROLLING OFFICE NAME AND ADDRESS March 1977 211 
Office of Naval Research 
Electronics Program Office 	 15. SECURITY CLASS. (of-this report) 

Arlington, Virginia 22217 	 Unclassified 
14. MONITORING AGENCY NAME & ADDRESS (if diff. from Controlling Office) 

15a. 	DECLASSIFICATION/DOWNGRADING 
SCHEDULE
 

16. DISTRIBUTION STATEMENT (of this report) 

This document has been approved for public release and sale;
 
its distribution is unlimited.
 

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from report) 

18.SUPPLEMENTARY NOTES
 

TECH: OTHER
 

19 KEY WORDS (Continue on reverse side if necessary and identify by block number) 

solar pulsations
 
five-minute oscillations
 
large-scale solar velocities
 

20. 	 ABSTRACT (Continue on reverse side if necessary and identify by block number) 

Observations of large-scale solar velocities have been made using the mean
 
field telescope and Babcock magnetograph of the Stanford Solar Observatory.
 
Observations were made in the magnetically insensitive iron line at 5124 A,
 
with light from the center (limb) of the disk right (left) circularly polarized,
 
so that the.magnetograph measures the difference in wavelength between center
 
and limb. Computer calculations are made of the wavelength difference produced
 
by global pulsations for spherical harmonics up to second order, Computations
 
are also made of the signal produced by displacing the solar image relative
 

UNCLASSIFIED
DD 1 731473 
EDITION OF 1 NOV 65 IS OBSOLETE 	 SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) 



UNCLASSIFIED 

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) 

19. KEY 'WORDS (Continued) 

20 ABSTRACT (Continued) 

to polarizing optics or diffraction grating. Such displacements are the
 
probable source of slow drifts in the observed signal. Individual observations
 

clearly show the five-minute oscillations. From power spectra, the amplitude 

is '2.0meters/second, and the period is 312.9 ± ,0.9 seconds. The amplitude 

gives evidence for a horizontal wavelength greater than 20000 kilometers, and 

the period is larger than reported for smaller apertures. Six months of almost 

daily observations have been examined for changes in.oscillatory power'or period
 

that might be'associated with large-scale coronalahd solar-wind strdctures as
 

identified by solar sector boundaries, thb amplitude of the mean magnetic field,
 

or the C9 index- No'evidence for large-scale organization of the oscillations
 

-hasbeen found.
 

-The average power spectrum has no statistically significant features at
 

periods between seven and seventy minutes. Independent calculations support
 

Hill's claim that the presence of a large portion of the downward propagating
 

solution would give his technique added sensitivity at these periods. However,
 

this explanation is unlikely to explain differences between Hill's observations
 

and those presently reported beacuse (1) radiative damping greatly 'reduces the
 

downward propagating solution, (2) the observed increase in five-minute
 
amplitude with height is too small, and (3) the observed ratio of fivez to ten­

minute power is too large. Questions are also raised concerning the statistical
 

significance of the peaks in the power spectra of Hill -andBrown.
 

Using analysis similar to that used in the Crimea, no 160 minute
 

oscillation is observed. Calculations show that the absence of signal cannot
 

be explained by vignetting, different polarization dimensions, incorrect choice
 

of period, or subtraction of a parabolic fit. As a result of a data exchange
 
with the Crimea, it was found that (1) twelve-hou period drifts in the
 
-Stanford data can produce a signal at 160 minutes, (2) integer fractions of a
 

day other than 160 minutes are favored in the Crimea data, and (3)-editing can
 

produce a 160 minute signal in the Stanford data, though it is of small
 

amplitude and present only in the final one-third of the data.
 

DDI FORM jft7'_(BACK) 
JAN 0314, UNCLASSIFIED. 

EDITION OF 1 -NOV 65 'IS OBSOLETE SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) 



LARGE-SCALE PERIODIC SOLAR VELOCITIES: AN OBSERVATIONAL STUDY
 

by
 

Phil Howard Dittmer
 

Office of Naval Research
 
Contract N00014-76-C-0207
 

National Aeronautics and Space Administration
 
Grant NGR 05-020-559
 

National Science Foundation
 
Grant ATM74-19007
 
Grant DES75-15664
 

and
 

The Max C. Fleischmann Foundation
 

SUIPR Report No. 686
 

March 1977
 

Institute for Plasma Research
 
Stanford University
 

Stanford, California
 

Ph.D. Dissertation
 

March 1977
 



ACKNOWLEDGMENTS
 

The author would first like to thank those most responsible for
 

the length and breadth of this study. His adviser, John M. Wilcox,
 

first directed his interest to the area of periodic solar velocities.
 

He made available financial support and the use.of telescope and
 

computer facilities which enabled this study to be undertaken. His
 

careful and thorough approach to research has extended the time and
 

effort required to obtain the results obtained herein, but with greater
 

confidence therefore justified in these results. This study could not
 

have been conducted without the velocity subtraction technique developed
 

by Valeri A. Kotov. He and A. B. Severny are also thanked for exchanging
 

data and for causing this investigation to be extended to the two-hour
 

forty-minute range. The work of Henry A. Hill and collaborators has
 

led to a much more thorough investigation of oscillations at periods
 

from five to seventy minutes than would otherwise have been undertaken.
 

Financial support for this investigation has been provided by the Office
 

of Naval Research through Contract N00014-76-C-0207, by the National
 

Aeronautics and Space Administration through Grant NGR 05-020-559, by
 

the National Science Foundation through Grant ATM74-19007 and Grant
 

DES75-15664, and by the Max C. Fleishman Foundation.
 

Appreciation should next be expressed to those who aided in the
 

accomplishment of this study. The assistance of Philip H. Scherrer has
 

been conspicuous at all stages of this investigation, from putting the
 

iii
 



telescope into operation and keeping it operating to data analysis and
 

interpretation. He read the entire manuscript and gave many helpful
 

suggestions, especially on the second chapter. John M. Wilcox, A. B. C.
 

Walker, Jr., and Peter A. Sturrock are also thanked as readers of the
 

dissertation. Eric K. Gustafson, assisted by Steven D. Bryan, performed
 

most of the actual observations. Thomas L. Duvail, Jr. helped improve
 

operation of the telescope, and he, Eric Fossat, Robert Howard, and
 

Leif Svalgaard provided helpful discussions. George A. Kotler'help6d
 

prepare optics and Gerard H. Dewerk helped machine mounts for the
 

polarizing aperture. Marguerite F. Dearborn did an excellent job of
 

typing the final manuscript.
 

Last, but not least, the author wishes to thank those "whose
 

contributions were more personal than scientific. 'He thanks his wife
 

and sweetheart, Janet, for her constant love, her insistent encourage­

ment, and her efforts yhtch succeeded in making the author's residence
 

a home. She also did an excellent job of proof-reading the second and
 

final ,drafts of the manuscript. The author thanks his parents for love
 

and support,, for planting the seed of this project in his initials, and
 

for encouraging attitudes toward education and work which enabled the
 

'seed to bear fruit. He also 'thanks his boys, Andrew and Peter, for
 

being ever loyal but totally unimpressed with this accomplishment.
 

iv
 



TABLE OF CONTENTS
 

Page
 

ACKNOWLEDGMENTS iii
 

ABSTRACT vii
 

Chapter
 
I. INTRODUCTION AND HISTORICAL BACKGROUND 1
 

Five-Minute Oscillations 5
 
Observational techniques 5
 
Observed characteristics 9
 
Theories 20
 

Longer-Period Oscillations 30
 
Theory 31
 
Observations 39
 

II. THE INSTRUMENT 49
 

Velocity Measurements Using the Servo Encoder 64
 
Velocity Measurements Using the Kotov Subtractive
 

Technique 69
 

III. OBSERVATIONS AND ANALYSIS 93
 

General Procedures 93
 

The search for large-scale organization Ill
 

Difficulties in reconciling results with those
 

Five-Minute Oscillations 100
 
Average characteristics 101
 

Periods from Five to Seventy Minutes 119
 
Calculations of the sensitivity of the FFTD 126
 

of Hill 144
 
Statistical significance of the SCLERA peaks 151
 

The Two-Hour Forty-Minute Oscillation 156
 
Instrumental differences 157
 
Examination of data analysis techniques 161
 
Second examination of data analysis techniques 167
 
Stanford analysis of 1975 Crimean data 170
 
Crimean analysis of Stanford data 177
 

IV. SUMMARY AND CONCLUSIONS 184
 

v 



Page 

APPENDIX A. DERIVATION OF THE CALIBRATION EXPRESSION 189
 

APPENDIX B. THE SEPTEMBER 13, 1976 ALIGNMENT AND CALIBRATION 192
 

REFERENCES 196
 

vi 



ABSTRACT
 

Observations of large-scale solar velocities have been made using
 

the mean field telescope and Babcock magnetograph of the Stanford Solar
 

Observatory. Observations were made in the magnetically insensitive
 

iron line at 5124 Angstroms, with light from the center (limb)'of the
 

disk right (left) circularly polarized, so that the magnetograph measures
 

the difference in wavelength between center and limb. Computer calcu­

lations are made of the wavelength difference produced by global pul­

sations for spherical harmonics up to second order. Computations are
 

also made of the signal produced by displacing the solar image relative
 

to polarizing optics or diffraction grating. Such displacements are
 

the probable source of slow drifts in the observed signal.
 

Individual observations clearly show the five-minute oscillations.
 

From power spectra, the amplitude is 2.0 meters/second, and the period
 

is 312.9 + 0.9 seconds. The amplitude gives evidence for a horizontal
 

wavelength greater than 20000 kilometers, and the period is larger than
 

reported for smaller apertures. Six months of almost daily observations
 

have been examined for changes in oscillatory power or period that might
 

be associated with large-scale coronal and solar wind structures as
 

identified by solar sector boundaries, the amplitude of the mean magnetic
 

field, or the C9 index. No evidence for large-scale organization of the
 

oscillations has been found.
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The average power spectrum has no statistically significant
 

features at periods between,seven and seventy minutes,. Independent
 

calculations support Hill's claim that the presence of a large portion
 

of the downward propagating solution would give his technique added
 

sensitivity at these periods. However, this explanation is unlikely to
 

explain differences between Hill's observations and those presently
 

reported because (I) radiative damping greatly reduces the downward
 

propagating solution, (2) the observed increase in five-minute amplitude
 

with height is too small, and (3) the observed ratio of five- to ten­

minute power is too large. Questions are also raised concerning the
 

statistical significance of the peaks in the power spectra of Hill
 

and Brown.
 

Using analysis similar to that used in the Crimea, no 160 minute
 

oscillation is observed. Calculations' show that the absence of signal
 

cannot be explained by vignetting, different polarizer dimensions,
 

incorrect choice of period, or subtraction of a parabolic fit. As a
 

result of a data exchange with the Crimea, it was found that (1) twelve­

hour period drifts in the Stanford data can produce a signal at 160
 

minutes, (2) integer fractions of a day other than 160 minutes are
 

favored in the Crimean data, and (3) editing can produce a 160 minute
 

signal in the Stanford data, though it is of small amplitude and
 

present only in the final one-third of the data.
 

viii
 



CHAPTER I 

INTRODUCTION AND HISTORICAL BACKGROUND 

And God said, Let there be lights in the firmament of the 
heaven to divide the day from the night; and let them be for.
 
signs, and for seasons, and for days, and years; and let them
 
be for lights in the firmament of the heaven to give light
 
upon the earth: and it was so. And God made two great lights;
 
the greater light to rule the day, and the lesser light to rule
 
the night: he made the stars also. And God set them in the
 
firmament of the heaven to give light upon the earth, and to
 
rule over the night, and to divide the light from the darkness:
 
and God saw that it was good. Genesis 1:14-18.
 

Even in today's world of diverse and contending philosophies and
 

ideologies, most men would agree with the statement in Genesis that the
 

sun is good. Not only is it the ultimate source of terrestrial light
 

and energy, but also in its apparent motion across the sky it divides
 

day from night and separates the year into seasons. It is widely agreed
 

today that this motion is an illusion produced by the earth's rotation
 

and the inclination of its axis of rotation relative to the ecliptic.
 

However, developments in astronomy have improved the sensitivity of
 

observations to such an extent that the question of the nature and
 

magnitude of the sun's motions has become one of considerable current
 

interest and of some disagreement. This dissertation will not attempt
 

to answer all questions related to the sun's motions, but only to
 

contribute a few observational results to the discussion.
 

The first change in man's ideas of the sun's motion was part of
 

the Copernican revolution in astronomy, which replaced the idea of the
 

sun as part of a rotating universe with that of the earth as part of a
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heliocentric solarsystem. It is interesting to notice that this con­

clusion was -more the result of careful observation and analysis than
 

the result.of any technological breakthrough, and that it was the
 

result of the study of the other pianets rather than of the sun itself.
 

Even while the rotatingearth explanation of the sun's-transit across
 

the sky was still a matter of controversy, the development of telescopes
 

made possible the systematic observation and study of sunspots, en­

bling Galileo in 1610 to deduce that the sun has a rotation of its own.
 

Christoph Scheiner, one of Galileo's contemporaries, measured a different
 

rotation rate for sunspots at different solar latitudes, but the sun's
 

differential rotation was not widely known until the careful observations
 

of Carrington were made in 1853-1861. Fraunhofer's discovery of absorp­

tion lines in the sun's spectrum -added a valuable tool to astronomers,
 

which enabled Vogel to confirm solar rotation from the Doppler shift of
 

spectral lines in 1871 (Meadows, 1970, p. 28). 'Further work by Duner
 

and later by Halm showed that the differential rotation of the photo­

sphere measured by spectral techniques was substantially the same as
 

inferred from sunspot motions. The accumulation of extensive spectral
 

observations of solar rotation led Halm (1922) to believe that thdre were
 

significant variations in the rotation rate on the time scale of a solar
 

cycle,, while J. S. Plaskett (1915) concluded that yearly averages of
 

rotation were essentially ,constant but that there existed significant
 

variations on a much shorter time scale indicative of local movements
 

or eddy currents of a transitory character. Rotational variations and
 

large-scale horizontal motions -have recently been given new attention,
 

in part due to the extensive observations at the Mount Wilson Observatory
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(Howard and Harvey, 1970; Howard, 1971) and partly because of current
 

theories relating large-scale horizontal motions to differential rotation
 

(Starr and Gilman, 1965; Busse, 1970; Durney, 1970; Yoshimura and Kato,
 

1971), to large scale organization of solar activity (Bumba, 1970), and
 

the sun's magnetic sector structure (Yoshimura, 1971; Wolff, 1974a and
 

b); and by the fact that differential rotation is the energy source in
 

the popular Babcock-Leighton model of the solar cycle (Babcock, 1961;
 

Leighton, 1964) and recent investigations (Eddy, 1976) indicate that
 

changes in the differential rotation may be related to very long-term
 

variation in solar activity. The present work is concerned principally
 

with radial rather than horizontal motions, but it is important to
 

remember that these may be hard to separate, especially when spectral
 

techniques are employed to measure velocities on a spherical sun.
 

The existence of solar radial motions was first revealed through
 

progress in the observation and interpretation of solar granulation,
 

which is well recounted by Bray and Loughhead (1967). Sir William Herschel
 

first noticed "corrugations" in the solar surface in 1801. This discovery
 

was not pursued until the early 1860's when Nasmyth and Huggins established
 

the existence of small bright grains separated by dark lanes, which were
 

named "granules" by Dawes. In 1877 the French astronomer Pierre Jules
 

Janssen announced that he had successfully photographed granulation. A
 

convective origin for granulation was first suggested by Uns~ld in 1930,
 

and Plaskett in 1936 recognized the similarity to cellular convection in
 

thin liquid films as studied in the laboratory by Benard. Confirmation
 

of the radial velocities expected for cellular convection was made by
 

Richardson in 1949 from high resolution spectra made possible by the
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improved gratings of H. D. Babcock at Mt. Wilson. The cellular character
 

was, however, made uncertain by an unexpectedly low correlation between
 

velocity and brightness.. Stuart and Rush.expla-ined this discrepancy by
 

recognizing the existence of large-scale velocity fluctuations uncor­

related with brightness. Though this explanation proved correct, there
 

remained sufficient comtroversy to launch Project Stratoscope by which
 

Richardson and Schwarzschtld obtained.granulation photographs of un­

surpassed resolution from a balloon at 80,000 feet (24.4 km). These
 

photographs as well as those of Leighton at Mt. Wilson confirmed that
 

granules were convective cells rather than turbulent eddies.
 

In order to further understand -the velocity fields associated with
 

convection, Leighton and.co-workers (Leighton et al., 1962) devised
 

ingenious photographic techniques which exposed two solar velocity fields
 

which previously had been little noticed, and by so doing, opened up a
 

mnew era 'in the study of -motions on the sun. One velocity feature was 

observed especiaIly toward the limb and therefore primarily horizontal.
 

Large cells .of - 30,000 km in diameter .ere recognized with the velocity
 

pattern .one of radial outflow from -the center of the cell at a velocity
 

of about 0.5 km/s. A periodic horizontal velocity pattern had previously
 

been recognized 'byHart (1954, 1956), but it was Leighton's work which
 

established its-extent and cellular character and which gave the phenome­

non the name of supergranulation. Further investigation (Simon and
 

Leighton, 1964) showed that the intercellular regions corresponded to
 

stronger magnetic fields, to downflows seen in the H line, and to the
 

chromospheric network as measured by enhanced emission in the Ca-K line.
 

Tanenbaum et al., (1969) found evidence that the downflows persisted
 

down to photospheric levels.
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Five-Minute Oscillations
 

The other velocity field recognized was of smaller scale and espe­

cially distinguished by a temporal periodicity of five minutes. H. H.
 

Plaskett (1954) had already concluded that the limited correlation between
 

granular brightness and velocities could be explained by the existence
 

of a large-scale oscillatory velocity field, but did not measure the
 

period. This period, by which the five-minute oscillations-are known,
 

has made them a favorite of observers since the existence of such a
 

resonant period makes possible or tempting the identification of a solar
 

origin for a signal even when signal-to-noise conditions may be poor.
 

It has also been a challenge for theorists who have been able to devise
 

a surprising variety of physical models which might-produce such a period­

icity. Fortunately, these models vary in other predictions, especially
 

related to spatial scale size and vertical distribution of power, which
 

greatly limit the ability of all but a few to match all of the details
 

of the extensive observations. The different observational techniques
 

that have been used to study the five-minute oscillations will now be
 

discussed, followed by a description of the observational details which
 

have been assembled and the different theories proposed to match these
 

details.
 

Observational Techniques
 

The technique employed by Leighton has previously been mentioned.
 

A solar image was formed by the 150 foot tower telescope in the usual
 

manner, but instead of allowing light from this image to pass directly
 

through the spectrograph entrance slit, a beam splitter and reflecting
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optics were used to replace the light which would normally pass through
 

half of the slit with a duplicate of the light passing through the other
 

half of the slit. Glass plates tilted in opposite directions before the
 

exit slit gave the two pieces of spectrum formed from the identical
 

positions on the sun shifts in wavelength in the opposite directions.
 

The exit slit was positioned on an absorption line so that with the tilt
 

of the glass plates, light from the opposite wings of the absorption
 

line would pass through the slit onto photographic film. The image was
 

scanned past the entrance slit and the film simultaneously scanned past
 

the exit slit so that two spectroheliograms were produced of the same
 

portion of the disk in wavelengths corresponding to the line wings.
 

These two plates were subtracted photographically so that intensity
 

fluctuations would cancel, but since Doppler shifts of the absorption
 

line would change the intensity on the two wings in the opposite direc­

tion, these differences were enhanced by subtraction. The result was a
 

map of the sun with velocity toward or away from the observer recorded
 

as bright or dark places on film. To obtain information about changes
 

in the velocity-field with time, a scan was made in one direction, the
 

film changed, and the scan repeated in the opposite direction. The two
 

velocity maps were then subtracted and the result was a map of velocity
 

change as a function of time. This enabled the discovery of the five­

minute periodicity since it was found that the velocity difference was,
 

large after two and one-half minutes and small after five.
 

This technique has the advantage of producing a detailed two-dimen­

sional velocity map which immediately made clear the cellular nature of
 

supergranulation. It also had several disadvantages which have limited
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its use in-the study of five-minute oscillations since then. The photo­

graphic subtraction itself (three subtractions in the case of the Doppler
 

difference plate) was difficult and time consuming, especially because
 

of the necessity of closely aligning plates before subtraction. Calibra­

tion of velocity amplitude in terms of film exposure was also difficult,
 

and information about the time development of an oscillation was very
 

limited. Video techniques have now been developed which greatly simplify
 

the subtraction procedure (Fister and Hill, 1971) and the addition or
 

subtraction of "Dopplergrams" separated by half an oscillatory period has
 

been used (Sheeley and Bhatnagar, 1971a and b; Lynch and Chapman, 1975)
 

to separate five-minute oscillations from lower frequency velocity changes
 

due to granulation.
 

A second technique to study velocity fields is the use of spectro­

grams, which had been used by Plaskett (1954) to discover a large-scale
 

oscillatory field before the better known finding of Leighton. Spectra
 

are limited to one spatial dimension, but also can sample a wider range
 

of the spectrum than the spectroheliogram. This enabled Evans and col­

laborators (Evans and Michard, 1962a and b; Evans, Michard, and Servajean,
 

1963 and 1965) at the Sacramento Peak Observatory to study velocities
 

over an extended vertical range in the atmosphere by using lines formed
 

at different heights, and at the same time to record changes in continuum
 

intensity. The Ca-K line has been especially useful (Jensen and Orrall,
 

1963; Orrall, 1966; Cha and Orrall, 1966; Liu, 1974) since different wave­

lengths are formed over a wide vertical range in the upper photosphere
 

and lower chromosphere and there is a weaker line (FeIX3931.122) formed
 

in the wing which allows simultaneous measurement of velocity lower in
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the photosphere. The temporal resolution which Plaskett lacked was
 

obtained by taking spectra repeatedly at regular intervals and at the
 

same position on the disk. Besides the limitation to one spatial
 

dimension, this technique has been limited by difficulties in precise
 

measurement of line shifts, though these have been largely overcome by
 

the development of special equipment for this purpose (e.g., Evans, 1963).
 

A third device widely used to measure velocities has been the solar
 

magnetograph (Howard, 1962; Deubner, 1967; Severny, 1967; Tanenbaum
 

et al., 1969). As in the Leighton method, exit slits are positioned to
 

pass the light from the wings of an absorption line, though the intensity
 

is measured by photomultipliers rather than on film. In order to measure.
 

magnetic as well as velocity fields, the difference in intensity is not
 

itself recorded but instead is nulled by a servo mechanism to keep the
 

slits on the line wings. The position of the device which aligns slit
 

and line then gives a measure of the wavelength of the line. This tech­

nique has the advantage of easy calibration and of producing data in
 

digital form. It is limited in spatial resolution by the size of the
 

entrance aperture. It is often used in scanning mode to measure veloc­

ities over an extended portion of the disk, but the extent is limited by
 

the need for finite exposure time at each scan position and the need for
 

temporal resolution much less than the five-minute period.
 

A fourth technique involves the use of an atomic beam (Roddier,
 

1965, 1966, and 1967; Gonczi and Roddier, 1969) or a heated vapor cell.
 

(Fossat and Roddier, 1971; Snider et al., 1974) which utilize resonant
 

scattering of sunlight by atoms to select solar photons of the desired
 

wavelength. If a magnetic field is applied, Zeeman splitting causes
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the light to be scattered from the wings of the absorption line, which
 

can be distinguished since light scattered-from opposite wings will be
 

of opposite circular polarization. This technique has the advantages of
 

great sensitivity, of an absolute wavelength reference, and of not need­

ing a spectrograph with its instabilities due to atmospheric variations
 

or turbulence. It has the disadvantage of being limited to the lines of
 

elements for which cells or beams are available (alkali metals have usually
 

been used in the past) and to magnetically sensitive lines. Its great
 

sensitivity has made it an especially useful technique for observing os­

cillations with large apertures for which amplitudes are very small.
 

Observed Characteristics
 

The first detail of the observations to be considered is the period.
 

Although Leighton's technique enables measurement of the period only by
 

visual estimation of the point of minimum contrast on velocity difference
 

plates, he used many observations and independent determinations to reduce
 

errors and measured a period of 296.1 + 1.3 sec for the low-lying CaX61 0 3
 

line (Noyes and Leighton, 1963). Spectrograms (Evans et al., 1963),
 

magnetographs (Howard, 1962), and resonant scattering devices (Roddier,
 

1967; Fossat and Ricort, 1975a) have all confirmed this result with rare
 

exceptions (Mel'nikov et al., 1973). Evans and Michard (1962b), using
 

spectrograms, estimated the dispersion of periods to be less than 15%
 

of the mean, indicating a strong resonance. Evans, Michard, and
 

Servajean (1963) found a shorter period by measuring individual wave
 

trains (250 see) than from power spectra (295 sec) and suggested the dif­

ference might be due to the largest amplitude oscillations having a
 

shorter period, but later observers (Orrall, 1965; Howard, 1967) have
 

not,-confirmed such a relationship.
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Variations in period for different heights in the atmosphere were
 

recognized early by Evans and Michard (1962b) and by Noyes and Leighton
 

(1963), who reported a decrease in period from 296.1 + 1.3 sec at the
 

height of CaX6103 to 285 + 1.5 sec for NaX5896. The range of height
 

sampled has been extended, especially using intensity fluctuations in
 

the calcium-K line (CaI1X393 3 ) (Jensen and Orrall, 1963; Noyes and
 

Leighton, 1963; Liu, 1974), and the period is observed to drop to 180 sec
 

at the height of formation of the K3 core. As higher frequency power
 

increases with height, the resonant peak is broadened and the periodicity
 

becomes less marked (see also Evans and Michard, 1962b; Evans et al.,
 

1963; Noyes, 1967),
 

A complication in the picture of a single resonant period was sug­

gested by Frazier (1966, 1968a and b) who found distinct 265 sec and
 

345 sec peaks in power spectra made from spectrograms. His observations
 

indicated that the decrease in period with height was due to an increase
 

in amplitude of the shorter period (265 sec) peak relative to the longer
 

zone. A different multi-peak character with a central peak and two smaller
 

sidelobes has been reported by Gonczi and Roddier (1969) and Snider et al.
 

(1974) from resonant scattering devices, which they suggest might be the
 

signature of modulated wave trains. Modulation or interference of wave
 

trains was further suggested by phase shifts near 7tobserved by Musman
 

and Rust (1970) and by observations with high spatial resolution per­

formed by Reif and Musman (1971). Observations using longer time periods
 

and larger apertures have not shown such a multipeaked structure. A
 

careful study of the waveform from an information theory viewpoint (White
 

and Cha, 1973; Cha and White, 1973) identifies the oscillation as a
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narrow-band Gaussian random process and gives convincing argument that
 

the multiple peaks reported are not statistically significant. The
 

report of Frazier has nevertheless been very important in terms of en­

couragement given theorists seeking a modal description of the oscillation.
 

Power spectra have also been used as one of many methods of estimat­

ing a lifetime for the oscillations. White and Cha (1973) measure a 

bandwidth of 0.9 mHz about a peak of 3.4 mHz giving a lifetime of - 20 

min, which compares well with a 23 min value obtained from examining 

individual bursts. This agrees well with the results obtained by Deubner 

(1967), Gonczi and Roddier (1969), and Bhattacharyya (1972) who estimate 

burst lengths from magnetographs, a resonance cell, and spectrograms 

respectively. The latter observer also reported shorter bursts (14.2 min)
 

for chromospheric than for photospheric lines (31.4 min), consistent with
 

the broadening of the resonance mentioned above. Howard et al. (1968)
 

report a shorter lifetime of 630 + 120 see from the autocorrelation
 

matrix created from a magnetograph observation, but the apparent factor
 

of two disagreement may be easily resolved since oscillatory bursts have
 

been shown to have a symmetrical rise-and fall in time (Deubner, 1967;
 

Tanenbaum, 1971). A greater discrepancy in lifetime arises if estimates
 

using photographic subtraction are included--Leighton et al. (1962) give 

a lifetime T - 380 sec, and Sheeley and Bhatnager (1971a) report that 

oscillatory features usually last ! 2 cycles. Such short lifetimes seem 

unlikely, especially in view of the examples of very long phase coherence 

(up to 100 min) reported by other observers (Howard et al., 1968). 

The horizontal scale of the oscillatory velocity field has been the
 

object of much wider disagreement than the period. Leighton et al. (1962)
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reported a scale size of 1700 km (or about 2"5 since 1" =725.3 m) for 

lower lines increasing to 3500 km for lines formed higher. Evans and 

Michard (1962b) obtained a somewhat larger value (2000-3000 km) from 

spectrograms, though Frazier (1968b) estimated a wavelength of about 

5000 km from the same method. Magnetograph measurements have generally 

given values in the 5"-10" range as at first estimated by Howard (1967) 

and later measured by Deubner (6'.6, 1967; 7"-8", 1969; 10'!5, Deubner and 

Hayashi, 1973; 9"-15", 1974) and Howard et al. (7700 + 2300 km, 1968). 

Photographic separation of oscillatory and slowly varying components has 

given estimates of 3000 km (Sheeley and Bhatnager, 1971a) or 6'.9 + 2'l 

(Lynch and Chapman, 1975) from a more sophisticated fit to a random 

spatial signal. Thomas (1972) has suggested that the larger spatial 

scales indicated by recent measurements are due to smaller elements being 

blurred by seeing, an effect demonstrated by computer simulation. in 

contrast, Wolff (1973) has argued that the smaller scales seen by Leighton 

and by Sheeley and Bhatnagar are due to incomplete removal of granular 

velocity fields which are known to be of smaller spatial extent. This 

suggestion is supported by the increase of scale size measured for higher 

lines (Leighton et al., 1962) and in magnetic regions (Sheeley and 

Bhatnagar, 1971a) since granulation is less important in both cases. 

Observational evidence for a larger scale size has also been reported.
 

Deubner (1972b) and Musman and Rust (1970) have reported a much larger
 

coherence length (20" for Deubner, 46000 km for Musman and Rust) for
 

phase than for amplitude, though Deubner and Hayashi (1973) argue that
 

this is due to the high-phase stability and random alignment of inde­

pendent regions. There have also been reports of phase coherence up to
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100" (Musman and Rust, 1970) and of well-defined oscillations for an
 

aperture 25" in diameter (Gonczi and Roddier, 1969). Tanenbaum et al.
 

(1969) have shown that such a result is to be expected for cells oscil­

lating independently at the same period but at random phases. They show
 
that the amplitude should be proportional to (area)-1/2 or Md- I where
 

d is the diameter of a circular aperture or length of a square aperture.
 

This relation is confirmed and a cell size of 3000 km deduced by simu­

lating large apertures from one-dimensional magnetrograph scans. Snider,
 

et al. (1974) use a resonance cell and obtain agreement with amplitude
 

- (area)-0.86 and cell size < 8". From similar resonance techniques,
 

0 7 1 
Fossat and Ricort (1973) reported amplitude - (area)- . in disagree­

ment with Tanenbaum et al. Later work (Fossat and Ricort, 1975a) with
 

much more extensive observations showed better agreement with the ampli­

tude - (area) relation if larger apertures were used, and a cell size
 

of about 20000 km. Fossat further argues (Fossat, 1975) that this value
 

for the wavelength is in agreement with the coherence length of - 5000 km
 

reported by earlier observers because of different mathematical definitions
 

of the charActeristic horizontal scale. The wavelength he obtains is much
 

longer than that estimated by Tanenbaum et al., and would seem to confirm
 

the report of substantial oscillatory power found for X - 30" to 60" by
 

Deubner (1972a).
 

One weakness in the use of statistical arguments from large apertures
 

to determine the spatial wavelength is that these arguments are based on
 

independent cells, which are not observed. Deubner (1969, 1971) has
 

reported that zero lines in the velocity move irregularly within a
 

fraction of a period and do not return to the original position after
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one period, which shows that well-defined cells do not exist. Another
 

possible weakness in the statistical argument would be the existence of
 

large regions where oscillations are not present. Observations are in
 

agreement that this is not the case--oscillations are usually present
 

(Deubner, 1969) even at the level of the K3 core (Liu, 1974), though
 

the percentage of area with oscillations present drops as the threshold
 

used to define an oscillating region is increased (Howard et al., 1968;
 

Bhattacharyya, 1972).
 

There has also been some scatter in values reported for the amplitude
 

of the oscillations, but this is largely explained by the use of different
 

observing apertures and different definitions, since a sinusoid has a
 

peak-to-peak amplitude a factor of 2 ,2= 2.8 times larger than its rms
 

amplitude. Any differences have also been much less closely watched
 

than differences in horizontal scale since the latter have been used to
 

distinguish between different models, as will be explained below. Some
 

difference in measured amplitudes are of physical interest. For example,
 

the amplitude increases monotonically with height in the atmosphere,
 

from 0.25 km/s near the continuum to 0.4 - 0.6 km/s for the upper photo­

sphere where medium-strength Fraunhofer lines are formed, to 1.6 km/s at
 

the height of formation of HQ (Noyes, 1967). Some increase in amplitude
 

is expected from energy conservation since the density drops off rapidly,
 

and details of the vertical amplitude dependence and extent of penetra­

tion help to distinguish between different models and to determine the
 

amount of energy transported or dissipated. Observers have generally
 

agreed (Evans and Michard, 1962b; Howard, 1967) that the amplitude
 

decreases toward the limb in a manner consistent with vertical motion.
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(For an exception, see Gopasyuk and Tsap (1973), who claim a significant
 

horizontal component from a questionable definition of oscillatory
 

power.)
 

A reduced amplitude in plage areas was noticed by Leighton et.al.
 

(1962) and estimated by Howard (1967) to be a decrease of about 25%.
 

Howard et al. (1968) reported a strong decrease in the amplitude of
 

oscillations over penumbrae and their absence over umbrae of spots.
 

Other observers using other lines have found oscillations in umbral
 

photospheres at 310-448 sec (Bhatnagar et al., 1972) and chromospheres, 

especially near 180 sec (Bhatnagar and Tanaka, 1972; Beckers and Schultz, 

1972). Umbral flashes (Beckers and Tallant, 1969) repeating-every - 145 

sec and penumbral waves (Moore and Tang, 1975) may also be related to 

the resonant oscillations in a sunspot region, and it has even been
 

suggested (Glencross and Craig, 1972; Mullan, 1973) that oscillations
 

could be a trigger or energy source for flares. Reports of different
 

periods in plage regions have also been made (Orrall, 1965) and not
 

confirmed (Howard, 1967), and a report (Sheeley and Bhatnagar, 1971a)
 

of an increase in cell size by a factor of three in magnetic regions
 

was previously mentioned. However, attempts to detect a change in
 

character of the photospheric oscillations due to magnetic fields at
 

supergranule boundaries has proven unsuccessful (Tanenbaum, 1971). Some
 

interaction of oscillations with magnetic fields even in quite regions
 

is suggested by the observation of oscillations in the magnetic field
 

by Severny (1967) and Tanenbaum et al. (1971), though the former report
 

was at a period of nine minutes and could not easily be the result of
 

coupling with five-minute velocity oscillations.
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In addition to the decrease in period and increase of amplitude with
 

height, much observational information has been gathered regarding the
 

vertical range and propagation of the oscillations. Though granulation
 

becomes increasingly predominant deeper in the photosphere, the five­

minute oscillation has been recognized in the deepest photospheric
 

lines (Evans et al., 1965; Deubner, 1971) and even in continuum intensity
 

fluctuations (Edmonds, 1966; Frazier, 1968a; Mehltretter, 1971; Tanenbaum
 

et al., 1969).
 

Attempts to extend the observations of oscillations radially outward
 

from the photosphere have involved observations at wavelengths longer or
 

shorter than the visible and results from different techniques have not
 

yet established a clear and consistent picture. Noyes and Hall (1972)
 

report 7% amplitude fluctuations in the line core of a CO line k = 4142.7
 

-l
 
cm (K = 4.667 [L)found near the temperature minimum, which they cal­

culate correspond to peak-to-peak oscillations of 225°K in temperature
 

or 1.3 km/s in velocity. Simon and Shimabukuro (1971) report 180 sec
 

oscillations at 3.3 mm and 3.5 mm due to free-free emission above the
 

temperature minimum. Yudin (1968) and Durasova et al. (1971) report
 

peaks at 280 sec and 400 sec from power spectra of 3.3 cm observations.
 

Sentman and Shawhan (1974) took 285 hours of data at K = 2 cm and found
 

no significant peaks. In addition, they claim an upper limit well
 

below the observation of Noyes and Hall, and question the statistical
 

significance of the results of Simon and Shimabukuro. A negative result
 

is also obtained by Shuter and McCutcheon (1973) from observations at
 

X 9.6 mm, along with argument for a possible atmospheric origin of the
 

Yudin result. Longer periods reported from radio observations will be
 

discussed below.
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Observations at shorter than visible wavelengths have only begun to
 

realize their potential for determining the vertical range of oscillations. 

Jones and Rense (1970) matched high resolution profiles of the 01 triplet 

at 1302-1306 X from rocket spectrograms to a model indicating rms 

velocities of Vrms = 7 km/s. The first claimed observation of a perio­

dicity near 300 sec was the result of Chapman et al., in which three 

EUV lines measured from OSO-7 all had a peak in the power spectrum at 

262 + 25 sec. Sentman and Shawhan (1974) questioned the statistical 

significance of these peaks, and Huber et al. (1973) failed to confirm
 

them, though perhaps in part due to lower resolution (35" x 35" versus
 

10" x 20" for Chapman et al.). Recent observations from OSO-8 have
 

shown oscillations in velocity (+ 2 km/s) and intensity (present perhaps
 

50% of the time) for the upper chromospheric line CII1336 (Chipman et
 

al., 1976) though only rarely visible in the transition zone (Bruner
 

et al., 1976). At higher frequencies, 90 sec and 35 sec periods also
 

seem to be favored (Athay et al., 1976). Semi-periodic fluctuations
 

have also been reported in the corona (Billings, 1959; Noxon, 1966), and
 

the interplanetary magnetic field (Ness et al., 1966), and a possible
 

solar origin has even been mentioned for semi-periodic structure observed
 

in cosmic ray fluctuations at the earth (Dhanju and Sarabhai, 1970) and
 

-
in the terrestrial atmospheric spectrum at 8 cm (Baluteau et al.,
 

1973). Such connections have been challenged stiffly (Gebbie et al.,
 

1974), and are far from being well established.
 

Propagation of the oscillations through the upper photosphere has
 

been readily accessible for examination by comparative studies of absorp­

tion lines formed there. Since Leighton's photographic subtraction
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technique did not permit simultaneous velocity measurements in two dif­

ferent lines, early comparative work was done by Evans and co-workers
 

from Sacramento Peak Observatory spectrograms (Evans and Michard, 1962b;
 

Evans et al., 1962, 1963, and 1965). They found small but measurable
 

lags between the low-lying Ti%5173.75 line and the higher MgX5172.70
 

(b2 ) line. It was also found that somewhat longer lags, perhaps indi­

cative of progressive rather than standing waves, could be found for
 

larger wave trains, early in a wave burst, and at slightly higher frequen­

cies. The vertical range of studies has been extended using the Ca-K
 

line and the weak iron line (FeIX3931.122) in its wing (Jensen and Orrall,
 

1963; Cha and Orrall, 1973) and lags of 30 sec have been found for a
 

700 km separation. This gives a phase velocity well above the - 7 km/s
 

sound velocity, indicating evanescent waves. Even higher phase velocities
 

near 100 km/s have been reported (Musman and Rust, 1970; Canfield and
 

Musman, 1973) from comparisons of photospheric lines.
 

Possible horizontal propagation of the oscillations was first sug­

gested (Mein, 1-965) by an asymmetry in the two-dimensional power spectrum,
 

which identifies periodicities in the spatial as well as the temporal
 

domains. Observations further suggesting horizontal propagation include
 

hyperbolic patterns suggesting an expanding radial front intersecting a
 

slit (Musman and Rust, 1970), a phase difference in oscillatory bursts
 

observed at adjaceAt points (Howard et al., 1968), and the visual impres­

sion from movies made from H wing filtergrams (Sawyer, 1974). However,
 

Lynch (1975) has challenged the interpretation of the two-dimensional
 

Power spectrum as indicative of horizontal propagation, Deubner (1975)
 

has argued that the apparent horizontal propagation is consistent with
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random phase changes, and Deubner and Hayashi (1973) did not confirm the
 

hyperbolic patterns of Musman and Rust in an experiment designed to do so.
 

The existence of appreciable horizontal propagation is therefore left in
 

doubt.
 

Oscillatory intensity fluctuations have also been studied for clues
 

regarding the character of the waves. Maximum intensity corresponds td
 

maximum temperature which occurs at maximum compression, which corresponds
 

to the time of maximum upward velocity for progressive waves and 900
 

earlier for standing waves. If the radiative relaxation time is shorter
 

than the compression time (period/27t), the maximum temperature will be
 

advanced in phase compared with the maximum compression. Observers have.
 

found the maximum brightness leads the maximum upward velocity by approxi­

mately 900 (1200, Frazier, 1968a; 1200, Holweger and Testerman, 1975;
 

93.50, Sivaraman, 1973; 1080 to 135*, Cha and Orrall, 1973), which would
 

indicate waves of a primarily standing character. Tanenbaum et al.
 

(1969), however, record a value less than 900 for lower lines which they
 

believe requires a progressive wave nature in view of the substantial
 

effect of a short radiative relaxation time at these levels. A clear
 

distinction between standing and progressive waves cannot be made since
 

observations agree that some energy'in the wave travels upward and some
 

energy is lost. Attempts to determine the flux of energy delivered higher
 

into the atmosphere (e.g. Canfield and Musman, 1973) are especially sig­

nificant as a test of the importance of five-minute oscillations in heat­

ing the chromosphere and/or corona. It should also be mentioned that
 

broad contribution functions make the determination of phase velocities
 

from phase lags between lines somewhat hazardous (Athay, 1976, pp. 29-30).
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The interpretation of intensity oscillations is complicated by dif­

ferences in model atmospheres or thermodynamics which lead to widely vary­

ing estimates of the temperature fluctuations involved. Hudson and
 

- 2
Lindsey (1974) calculate ATrms - 30K at T5000 = 3.5 x 10 using the 

infrared continuum at 22 4, Holweger and Testerman (1975) calculate AT
rms
 

l0-2 
200K at =50001 from changes in line optical depths, and Noyes and
 

Hall (1972) obtain ATpk-to-pk = 225 0K (- 800K rms) at the temperature mini­

mum from intensity fluctuations in the core of a CO line (2142.7 cm-l).
 

This range in values is in the right direction but much too large to be
 

explained by longer radiative relaxation times--theoretical and experi­

mental uncertainties clearly remain.
 

Theories
 

The five-minute resonance in the solar atmosphere was not anticipated
 

by theory, but several models have been proposed since its discovery.
 

These models may be described by the answers given to three questions
 

about the oscillations: 1) what type of waves are involved, 2) how are
 

the waves generated, and 3) how is the resonant period selected.
 

Before considering the models and comparing them with the observa­

tions, the types of waves present in a gravitationally stratified atmos­

phere will be described. The linearized equations of motion, state, and
 

mass conservation for a plane, isothermal atmosphere in the presence of
 

a constant gravitational field are: (taken from Hines, 1960; see also 

Whitaker, 1963, and Worrall, 1972) 

Po t pg - VP 

-- + U VPo = c (2 "2P 

- + u "P + P 
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where p is the perturbed and p the unperturbed density, P is the perturbed
 

and P the unperturbed atmospheric pressure, u is the perturbation velocity,
 

g= -g 2 is the acceleration of gravity, and c is the unperturbed sound
 

2
 
velocity (c = YPo/Po). Viscous effects, radiative damping, and magnetic
 

fields are neglected. For an unperturbed atmosphere, the first equation
 

becomes
 

Po g -!P = 0 

which gives the barometric law,
 

p pc expi (tLg) = exp (- z/H) 
c
 

2 
where H - c /yg is the scale height. The temporal and spatial dependence
 

of the variable may be specified by assuming
 

P-Pc P-P Ux Uz i Ut -Kx - K Z)
IC o Ae x z
 

where x is the horizontal and z the vertical direction. Substitution into
 

the three equations yields two component equations
 

(2
(-co2 + Kx2 c2) uux+ 2c+(K(xz -ig)ixg)n = 0 equation) 

xzg+ K y 2
c2K K ) u -- Izyg ++
(-iK-ix( + K(y-l)gx ++ (-W2 C2Kz2) u = 0 (2 equation)
 

A solution exists only if the determinant of the coefficients vanishes,
 

which gives the dispersion relation:
 

4 2 2 (K 2 +K )+ K g (Y-l)+w iKzg = 0 

An exponential horizontal dependence is excluded by setting Kx = kx
 

where k is real. Solution of the dispersion relation using the quadratic
x 
2
 

formula shows that real wn can be obtained for K pure imaginary or
 

zz
 
Kz = kz + ig/2e

2 for k2z real. The second form is chosen since a growth
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of amplitude is expected from energy considerations, and the dispersion
 

relation becomes
 

4 [c2(k 2 +kz2)+a 2] 2 Wg2 k 2 c2 =0
 

where
 

0a *Yg/2cand mg g
 

The meaning of this dispersion relation is clarified by solving 

for k 2 
z 

k C2 -m 2
 
z 
 2 i 

cx 

2
and plotting the k = 0 lines in the k - w plane, referred to as the
2 X 

2
 
diagnostic diagram (Figure 1). In regions I and III, k > 0 so k is
 

z z 

real and the waves will propagate, and in region II, k is imaginary and
z 

the waves are evanescent or standing waves. The physical character of
 

waves in the propagating regions may be further clarified by mathemati­

cally eliminating either of the two forces acting on an element of gas.
 

If g = 0, gravity forces are eliminated and % and og go to zero, thus
 

eliminating the waves in region III, which are seen to be gravity waves.
 

iifthe compressibility (-1) vanishes, both a and become
Similarly, i h opesblt y)vnsebt'~ n obcm 

large, eliminating the waves of region I, which are acoustic waves., For
 

the conditions present in the solar atmosphere the two critical frequencies
 

and wog both correspond to periods near 300 sec (Tanenbaum, 1971) and
 

theorists have proposed several ways in which such periods might be
 

selected.
 

Some theories would explain the existence of five-minute oscillations
 

in terms of the distinctive properties of the plane-parallel, isothermal
 

atmosphere. These models generally assume that a broad spectrum of waves
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Figure 1. 	Diagnostic diagram for adiabatic propagation in an
 
isothermal, gravitationally stratified atmosphere
 
with 7 = 5/3.
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extending over a large portion of the diagnostic diagram may be produced
 

by turbulent motions in the convective zone (the Lighthill mechanism).
 

Souffrin (1966, see also Schatzman and Souffrin, 1967) has suggested that
 

the resonant period might be selected by linear filtering which removes
 

low frequencies while high frequencies are less readily excited by the
 

convective source. Such filtering has been given some support from the
 

waveform analysis of White and Cha (1973) as well as from observations of
 

Fossat and Ricort (1975b) who have shown that the shift in period from
 

300 sec in the photosphere to 180 sec in the chromosphere can be produced
 

by such filtering. Related to Souffrin's work have been the calculations
 

showing a divergent response of the atmosphere near one or the other of
 

the critical frequencies (Noyes and Leighton, 1963; Kato, 1966a, b, and
 

c; Worrall, 1972; Moore, 1974). A difficulty of these models in account­

ing for the 300 sec resonance is that calculations indicate (Leibacher,
 

1973) that the waves generated by convective turbulence are strongest
 

at periods shorter than 85 sec. An early proposal which overcomes this
 

difficulty is the suggestion by Moore and Spiegel (1964, see also
 

Zhugzhda, 1972) that a thermal overstability might force excitation of
 

non-propagating modes. Excitation by overstability will be discussed in
 

greater detail below in relation to trapping models. A more fundamental
 

weakness of the atmospheric filtering model is that a high-pass filter
 

can account for the shift of the resonant peak to shorter periods higher
 

up in the atmosphere, but cannot account for the observation of the 300
 

sec period at the upper boundary of the convective zone before the filter­

ing occurs (Schatzman and Souffrin, 1967).
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Another explanation for the oscillations was prompted by the observation
 

by Eyans and Michard (1962b) of a wave train beginning 40 sec after the
 

upward motion of a granule. This was further indicated by the observa­

tion that upper lines lag lower lines appreciably (- 35 sec) early in a
 

wave train and much less later on, suggesting that the granular distur­

bance propagates upward but that as higher lines with their shorter
 

periods "catch up" to the lower line, the oscillation takes on a standing
 

wave character. Two observational difficulties with this model recognized
 

early included the larger scale size of oscillations compared with
 

granules (Schmidt,and Zirker, 1963) and the symmetric rise and fall of a
 

wave trait (Deubner, 1967; Tanenbaum, 1971). Computer modelling of a
 

piston source of the oscillations (Stix, 1970) showed a spatial extent
 

2-3 times that of the granular disturbance and a less abrupt onset, but
 

led to the conclusion that radiative damping would cause lifetimes to
 

peak in the 0.75-1.5 peribd range as contrasted with the observation of
 

Deubner (1967) of a most common lifetime of 15 min. Holweger and
 

Testerman (1975) support this conclusion on the basis of a radiation
 

damping time deduced from observed equivalent width oscillations,-while
 

Souffrin (1972) concludes that radiative damping does not exclude this
 

mechanism but instead argues that granular excitation would be too isolated
 

to produce the oscillations observed. Stix and WFhl (1974) have also
 

found that horizontal Lamb waves prediced for oscillations excited by
 

convective overshoot are not present. The simplest and strongest obser­

vational evidence against this model is the determination by Musman (1974)
 

that granules and oscillations are essentially uncorrelated.
 

It is widely agreed that the solar atmosphere is not isothermal,
 

and several theories have been advanced proposing that the five-minute
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resonance could result from trapping of waves produced by temperature
 

or pressure changes. The first such proposal was that of Kahn (1961,
 

1962) who suggested that acoustic waves might be refracted about the
 

temperature minimum. For a sound velocity c(z) = (ykT(z)/m) 1 /2 and an
 

1 "2
 
assumed parabolic temperature profile T(z) = T + Toz , he calculated
 

that the increase in sound velocity about the temperature minimum would
 

refract obliquely propagating waves in much the same way that shortwave
 

radio waves are bounced off of the ionosphere. A wave packet produced
 

by convective turbulence would be refocused by this refraction 285 sec
 

after its original passage through the temperature minimum, at a horizontal
 

distance of - 2250 km. Observations have shown neither the large hori­

zontal component of motion nor the successive horizontal displacement
 

of oscillating centers predicted by this model.
 

Another proposal for producing the observed resonance by trapping
 

was suggested by Bahng and Schwarzschild (1963) and later reworked by
 

other authors (Stein and Leibacher, 1969; McKenzie, 1971). The basic
 

idea was that acoustic waves would be trapped by the sharp pressure
 

gradient at the base of the photosphere and reflected at the high temper­

ature, low pressure corona, which would act as a free surface. Temperature
 

profiles with a chromosphere at 8 to 15 x 103K between a 6 x 103K photo­

- 5
 
sphere and a corona with T > 105K gave solutions resembling observations.
 

The predicted damping was too small to match observed lifetimes, though
 

lateral energy losses were invoked to correct this difficulty. A more
 

serious difficulty was the prediction of a sharp drop in amplitude going
 

down into the photosphere, which is at variance with later observations.
 

Gravity Waves trapped about the temperature minimum were suggested
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by Uchida (1965, 1967) and later using a different mathematical formu­

lation and atmospheric model by Thomas et al. (1971). Gravity waves
 

would be more susceptible than acoustic waves to generation by turbulence
 

in the convective zone (Stein, 1967). Uchida described trapping in terms
 

of a region in the k-n plane where propagation would be possible at lower
 

2
temperatures but not at higher temperatures, due to a shift in the k = 0
 z 

line defining the cutoff for gravity wave propagation. Thomas et al.
 

instead showed by calculations using the Bilderberg Continuum Atmosphere
 

(Gingerich and de Jager, 1968) that a broad maximum existed in the Brunt­
= 2 1/2 

Vaisala frequency "BV = +(g/T) dT/dz) ,which is the cutoff 

frequency for gravity waves generalized to a non-isothermal atmosphere. 

Uchida calculated eigenfrequencies corresponding to 266 sec, 313 sec, 

- - Iand 347 sec using kx = 3 x 10 8 cm (x = 2 x 10 km), and Thomas obtained 

elgensolutions with periods of 263 sec and 338 sec for a horizontal 

wavelength X = 1500 km. Not only do these periods agree well with thosex 

observed by Frazier, but the 263 sec component would be more important
 

higher up which could account for the decrease in period with height
 

(which Uchida found hard to explain). Both formulations agree that
 

shorter horizontal wavelengths should be favored--Uchida says x < 3000 km
 

and Thomas suggests a maximum for Xx 1500 km. Thomas (1972) has shown
 

from computer simulation that poor seeing could cause an observer to
 

measure X 4200 km for a real 1500 km wavelength, but this cannot
x 

explain the larger wavelength (20000 km) determined by Fossat and Ricort,
 

from statistical arguments using large apertures. A more serious dif­

ficulty is the prediction of a concentration of kinetic energy density
 

near the temperature minimum, whereas observations indicate a monotonic
 

decrease in energy with height.
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The difficulty theories have had in accounting for the presence of
 

oscillations deep in the photosphere has led to the proposal that the
 

convection zone might play an important role in selecting the resonant
 

period. Jones (1969) developed a model in which the outer boundary
 

was approximated by a free surface at the corona as in the Bahng and
 

Schwarzschild model, but the inner boundary condition was a bounded
 

kinetic energy radially inward which could be insured by a large density
 

scale height in the convection zone. Excitation would be by turbulence
 

in the convective zone. Periods less than 200 sec were calculated to
 

have energy concentrated higher in the atmosphere, periods greater than
 

400 sec gave an energy concentration deep in the convection zone, and
 

periods near 300 sec gave a concentration of energy just inside the
 

convection zone. This model claimed to account for the vertical change
 

in amplitude and period and to match the horizontal wavelength as well.
 

Leibacher and Stein (1971) proposed that the oscillations were
 

acoustic waves trapped entirely within the convective zone. Waves would
 

be reflected under the photosphere due to the rapid drop in temperature
 

outward, and another reflection was postulated at a depth of 1600 km.
 

Leibacher has since shown (1973) how waves at (w,kx) near the acoustic
 

cutoff become non-propagating and are therefore reflected if temperatures
 

rise or drop out of a limited range. The resultant trapping of waves in
 

a resonant cavity in the convection zone would cause the whole photo­

sphere to go up and down, thus producing the small phase lags observed
 

between different lines.
 

Ulrich (1970) also proposed a model based on waves trapped in the
 

convection zone, and further suggested that such waves might be over­
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stable and therefore self-sustaining. The idea that dissipation could
 

produce an overstability in a convectively unstable region was developed
 

by Spiegel (1964) and Moore and Spiegel (1966). In the adiabatic case,
 

a destabilizing force displaces an element and the restoring force
 

(compressibility for acoustic waves) will return it to its original
 

position, thus producing symmetrical oscillations. The action of dis­

sipation (such as radiative damping) lags behind the destabilizing force
 

(e.g. density fluctuations driven by unstable buoyancy) and thus reduces
 

this force more when it is opposing the return to equilibrium than when
 

it is driving the displacement. Ulrich calculated that the resultant
 

overstability could drive acoustic waves trapped in the convection zone.
 

This theory made the somewhat distinctive prediction that the trapped
 

modes would exist as diagonal ridges in the k-n two-dimensional power
 

spectrum. The recent report of such ridges in power spectra of obser­

vations by Deubner (1975) and Rhodes et al. (1976) agrees very well with
 

the prediction. Some caution might still be justified by the fact that
 

agreement is very good after the theory was presented, but diagonal
 

ridges were not observed in k-n power spectra (Mein, 1965; Tanenbaum
 

et al., 1969) produced before the theory was developed. Further attempts
 

at confirmation using very different techniques developed by Fossat (1974;
 

Fossat and Martin, 1974) will be awaited with interest.
 

The possible importance of overstability in driving the oscillations
 

is related to the suggestion by Wolff (1972b, 1973) that the resonant
 

oscillations might be high wave number nonradial p-modes of the sun. He
 

calculated that certain modes would be unstable, and found periods in the
 

300 sec range. It was suggested that the X - 5000 km horizontal wavelength
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often reported was much shorter than the actual value due to incomplete
 

removal o granulation velocities. Ando and Osaki (1975) present the
 

results of extensive calculations showing many modes in the 300 sec
 

range to be unstable. They suggest that the modes are excited by the
 

K-mechanism in the hydrogen-ionization zone (by which opacity increases
 

with temperature making the sun a heat engine). Another possibility for
 

excitation is the y-effect, whereby changes in thermal capacity created
 

by ionization during the cycle produce a lag between density and pressure
 

fluctuations.. Wolff (1972a) has even suggested that a large flare might
 

excite observable modes not necessarily restricted to periods near five
 

minutes, and though Fossat and Ricort (1973) report three examples of
 

30 m/s, P = 40 min oscillations following flares, later work (Fossat
 

et al., 1974; Fossat and Ricort, 1975a) shows that a solar origin of such
 

longer periods could not be confirmed because of low frequency instru­

mental variations.
 

Longer-Period Oscillations
 

Attention will now be turned to solar oscillations or pulsations. at
 

periods longer than five minutes. Such pulsations are different from the
 

resonant oscillations in that theoretical development anticipated obser­

vational reports by many years. Since this is primarily an observational
 

,work, it is instructive that a review of long period oscillation obser­

vations must be much shorter than that of the five-minute oscillation,
 

even though the former are of great current interest and the area of
 

primary contribution for the present work.
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Theory
 

A-general discussion of the theory of stellar pulsation is far
 

beyond the scope of this work. A very complete treatment including a
 

discussion of both the observations and the pulsation theory of variable
 

stars is given by Ledoux and Walraven (1958). Shorter treatments are
 

given by Ledoux (1965) and Cox and Giuli (1968), and a review on recent
 

developments in nonradial pulsation theory is available (Cox, 1976).
 

Because of the high symmetry of observed properties, most variable
 

stars are best described by the hypothesis of purely radial pulsations.
 

The sun does not show any obvious simple periodic variation, and dis­

cussion has included consideration of nonradial modes, with the form of
 

the perturbation assumed to be
 

f'(r, e, ) =f(r) Y m(E, ) 

m
where Y (6, ) are spherical harmonics. Cowling (1941) found the
 

periods of pulsation for nonradial modes for a polytrope, with this important
 

paper giving rise to the nomenclature for these modes. Ledoux and Walraven
 

(1958) show that Cowling's result can be derived in the general case and
 

later applied to the particular case of polytropes. The derivation out­

lined below is taken from the original paper of Cowling.
 

The three basic equations to be solved are the equation of continuity
 

P1 - div (po x), 

the equation of motion
 

2
 
PO a = grad p1 + p1 grad o + po grad §11
 

and the equation of state
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where the subscripts 0 and I refer to the equilibrium and perturbation
 

values, p is the density, P is the pressure, § is the gravitational
 

potential, 21 /a is the period, x is the vector displacement of a particle
 

from equilibrium (with the radial component) and y is the ratio of
 

specific heats.
 

Since the mass will be concentrated in central regions of the star,
 

oscillations will not produce large changes in gravitational potential.
 

Cowling therefore drops I later showing its effect to be small by pertur­

bation theory. He also considers each of pit P1 and § to be the product
 

of a surface harmonic of order . and a function of r. For a polytrope
 

of order n, the equilibrium density and pressure are related to the central
 
n l+n 

density pc and pressure P by the equations pc = Pcy , Pc = Pcy where 

y satisfies Emden's equation
 

i(x2dy))=-xy
 
dx dx
 

2 2
 
and x is given by x = r/re, where re = (l+n) Pc/4 GPc . Cowling uses 

these variables and the non-dimensional quantities X, e A, and a defined 

by 

x = g/r, 8 = ll/p = 1'c a = (l+f) 2/4jrGpl 

to rewrite the equations in the form
 

,XY e + Xn, dy
 
YA = + Xyny (l+n - yn), y = dy 

y aX T- (1+n) $y" 

a - n 2 2(+I 
a -

x2x 
(ay 2X) + (2-l)E

x 

Further substitution and manipulation reduces the problem to two first­

order equations
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w = fz and 

where 

= ey-(n+l)/y z = Xy (n+l)/y Q = 2(n+l) _n 

-f = yQ [a + 4(Q-n)(n+l) 2-], and q = yQ1) 

These two equations are equivalent to a single second-order equation.
 

For very small a, this equation approaches
 

2 a /x2y Aw+Q -+l) wYQ 
(Q-n)(n+l) x 2 aa 

which has infinitely many solutions for a indefinitely small. For
 

very large a, this equation approaches
 

/Y'-~ )-Qx 
Y (,Yz) = -azy 

which has infinitely many solutions for a indefinitely large. Cowling
 

found the small a (longer period) solutions to correspond to small vari­

ations in pressure and density with motion chiefly horizontal and due to
 

gravity acting to smooth out density differences. These he called g­

modes. The large a (short period) solutions are characterized by large
 

pressure fluctuations and chiefly radial motion driven by pressure vari­

iations, and are hence called p-modes. In addition, there is an inter­

mediate period solution such that and -p1 have the same sign at all
 

points along any radius, which he termed the fundamental (f-) mode.
 

The p- and g- modes are distinguished by a subscript denumerating
 

the number of nodes in the function giving the radial dependence of the
 

perturbed quantities. The p-modes have shorter periods and the g-modes
 

have longer periods with increasing radial wave number. The period of
 

the f, p, and g modes decreases with higher order spherical harmonics.
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The dependence of period'of the different modes on radial wave number
 

and the order of the spherical harmonic may be illustrated schematically
 

by plotting the periods as shown in Figure 2, with periods and format
 

taken from Iben and Mahaffy (1976). It may be seen that the g-modes are
 

present only for £ 2l and the f-mode for .t22. It is also clear that unless
 

consideration is restricted to certain modes or spherical harmonics, on
 

either physical or observational grounds, the interval of periods plotted
 

quickly becomes densely covered with modal periods.
 

Since Cowling's paper on nonradial oscillations, the basic picture
 

remains the same. There has been much added in details and sophistication
 

because of developments in models of stellar structure and evolution,
 

especially fed by improved understanding of nuclear energy generation
 

processes. More detailed models have also been more accessible because
 

of the development of large,, high-speed computers. Recent calculations
 

for the sun (Scuflaire et al., 1975; Then and Mahaffy, 1976; Christensen-


Dalsgaard and Gough, 1976) all give results qualitatively similar to
 

those obtained by Cox (1976) for the n = 3 polytrope. Models with dif­

ferent assumptions about the sun's evolution do yield different periods
 

which could be used to distinguish between the models if measured with
 

sufficient accuracy. Table 1 shows the periods computed for different
 

assumptions. Christensen-Dalsgaard and Gough assume an initial heavy
 

element abundance Z = 0.02 and a mixing length J/H = 1.10. Iben and
 

Mahaffy try three different values of Z (0.01, 0.02, and 0.03) and vary
 

the mixing-length and hydrogen abundance (X) to match the sun's present
 

luminosity and radius. Scuflaire et al. test the effect of a fast mixing
 

of the inner 83% of the total solar mass, with periods computed at intervals
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Figure 2. 	Periods for non-radial pulsations of different modes
 
and different spherical harmonics, from Model 2 of
 
Iben and Mahaffy (1976).
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Table I
 

Periods Calculated for Various Solar Models
 

Mode 

(2=0) 

Pl 

Cox (1976) 

n=3 polytrope 

54.88 

Iben & Mahaffy (1976) 

Model I Model 2 Model 3 

56.22 62.29 66.14 

Scuflaire (1975) 

S M4 

62.05 63.61 

CD&G (1976) 

62.7 

P2 

P3 

(0 =2) 

P1 O 

P9 

P8 

P7 

P6 

40.52 

31.29 

10.91 

11.93 

13.08 

14.51 

16.31 

41.32 

31.31 

10.21 

11.18 

12.33 

13.74 

15.54 

40.94 

30.93 

9.97 

10.87 

11.97 

13.35 

15.10 

40.81 

30.67 

9.84 

10.72 

11.82 

13.18 

14.90 

40.67 

30.93 

10.01 

10.91 

12.01 

13.38 

15.14 

42.84 

31.96 

10.03 

10.94 

12.06 

13.46 

15.23 

43.8 

32.6 

10.4 

11.4 

12.6 

14.1 

16.0 

P5 18.60 17.88 17.39 17.19 17.42 17.55 17..9 

P4 

P3 

21.66 

25.93 

21.10 

25.60 

20.52 

25.09 

20.28 

24.74 

20.56 

25.13 

20.75 

25.48 

21.5 

26.7 

P2 

P1 

32.30 

42.74 

32.61 

43.75 

32.19 

42.50 

32.02 

39.18 

32.27 

42.91 

33.01 

46.76 

34.3 

42.2 

f 58.39 49.19 45.90 43.97 47.19 63.45 46.0 

91 75.31 56.00 55.05 50.40 56.05 55.1 

g2 

93 

99.27 

123.7 

65.21 

77.16 

63.03 

72.58 

58.72 

67.90 

61.5 

70.9 

94 148.2 90.85 83.49 77.03 81.8 

95 172.6 104.7 95.38 86.53 93.0 

96 196.9 118.6 107.7 96.75 105.0 

97 221.3 132.6 120.2 107.6 117.0 

98 245.6 146.7 132.9 118.9 130.0 

99 270.1 160.9 145.9 130.6 142.0 

910 294.2 174.9 158.9 142.6 154.0 
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of time following the presumed mixing. Comparisons show that distinguish­

ing between different models on the basis of observations will be hazardous
 

unless periods are well defined and there is some means of recognizing
 

which pulsational mode is being observed.
 

Cowling originally applied the theory of nonradial pulsations to the
 

problem of .tidal distortion of binary stars, and it has since been applied
 

to such diverse phenomena as nova outbursts (Rose, 1968) and oscillations
 

in many electron atoms (Monaghan, 1973 and 1974). Attention has turned
 

in recent years to the sun in response to observational developments in
 

the area of solar neutrinos and of five-minute oscillations. The relation
 

of these phenomena to nonradial oscillations will next be considered,
 

followed by a discussion of possible direct observations of longer period
 

oscillations.
 

As a probe of the solar interior, Davis and colleagues have attempted
 

to detect neutrinos produced by nuclear reactions in the center of the
 

sun, since neutrinos should pass directly out of the sun instead of being
 

scattered beyond recognition before emerging, as is the case with photons.
 

Measurements have thus far (Bahcall and Davis, 1976) yielded upper limits
 

far below those predicted by models, and theorists have responded with a
 

variety of models to explain this discrepancy. Dilke and Gough (1972)
 

suggested that nuclear evolution of the solar core could result in in­

stability to low order g-modes, which would cause chemical mixing in the
 

core and yield a much lower neutrino luminosity. The suggestion that the
 

sun might be or might have been unstable to low order g-modes has been
 

largely confirmed by more complete calculations by Christensen-Dalsgaard,
 

Dilke and Gough (1974), as well as by Shibahashi et al. (1975) and by
 

37
 



Boury et al. (1975). These calculations have used the quasi-adiabatic
 

approximation, which Christensen-Dalsgaaid et al. point out may not
 

adequately include damping effects of the outer layers of the sun.
 

Ulrich (1973) argues that even if the possible instability to g-mode
 

oscillations is present, it would not produce enough mixing to lower the
 

neutrino flux to the observed values. Christensen-Dalsgaard et al.
 

agree that this might be the case.
 

The other observational development leading to new interest in
 

possible nonradial pulsations of the sun is the discovery and study of
 

five-minute oscillations. As discussed above, the suggestion that the
 

five-minute oscillations might be high order p-modes was made by Wolff
 

(1972b, 1973) and the instability of modes with periods in the five­

minute range has been confirmed by the thorough linear, non-adiabatic
 

calculations of Ando and Osaki (1975). There have also been suggestions
 

that other periods might be observed. Wolff's (1972a) suggestion of
 

possible excitation of nonradial modes by flares was mentioned above.
 

Aleshin (1974) has also suggested that radial oscillations with a period
 

near 50 minutes and an amplitude 6r/r 110- 7 might be excited by a flare.
 

The overstability at a boundary where a convectively stable region over­

lies an unstable region (Moore and Spiegel, 1966) has been proposed as a
 

means of exciting g-modes in the convective core by Souffrin and Spiegel
 

(1967). Kato (1969) suggested that either this overstability or the
 

horizontal velocity shear of differential rotation might excite non­

spherical waves in the convection zone, giving rise to the observed
 

sinusoidal growth in quiescent prominences. A possible connection between
 

such oscillations and large-scale magnetic patterns (Bumba and Howard,
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1965) was also suggested by Kato and independently by Wolff (1974a and b)
 

with relation to the magnetic sector structure (see Wilcox and Howard,
 

1968; Wilcox, 1968).
 

Observations
 

Direct observations of solar oscillations at periods longer than
 

five minutes have been elusive, largely because of the difficulties in
 

obtaining sufficient instrumental stability to enable clear detectioh of
 

a small, slowly changing signal. Deubner (1971) reported a long period
 

mode from magnetograph observations using the low-lying line CiX5052. He
 

found predominantly horizontal motions of about 100 m/s and a repetitive
 

(though not strictly periodic) tendency involving periods of about 40 min.
 

Further work (Deubner, 1972a) in the line CIX5380 gave similar results
 

and also indicated a velocity-intensity correlation as high as for the
 

five-minute oscillation and a spatial anticorrelation in the amplitudes
 

of the five-minute oscillation and the longer period feature. A later
 

paper (Deubner, 1974), including observations in the same line, reported
 

no important periods at 20 minutes or longer. Fossat and Ricort (1973)
 

observed similar oscillations (period - 40 min, amplitude - 30 m/s) from
 

observations using optical resonance techniques and the Na-D1 line. This
 

oscillation was seen in three of ten cases, and in all three, later inves­

tigation showed them to have followed flares of some importance (IN twice,
 

2B once) in support of the flare-excitation suggestion of Wolff and Aleshin.
 

Later work (Fossat et al., 1974; Fossat and Ricort, 1974 and 1975a)
 

did not confirm these longer period oscillations and indeed suggested
 

that they could not be distinguished from low-frequency noise of
 

presumably atmospheric origin. A ten-minute mode was reported in the
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later papers with lifetime < 15 hours, large horizontal scale, and inter­

mittent temporal behavior. There has been no further published confir­

mation of this ten-minute mode by other observers, and in a later paper
 

(Grec and Fossat, 1976) using an improved sodium device, the ten-minute
 

oscillation was not observed, which makes it likely that the effect was
 

of instrumental origin.
 

Longer period oscillations at radio wavelengths (9870, 9670 MHz)
 

have been reported by Kobrin and Korshunov (1972, see also Kobrin et al.,
 

1973). Sensitivity was enhanced by using two telescopes, in one case
 

separated by 1500 km, to rule out an atmospheric origin. An active
 

region source was rejected since the oscillations persist after the
 

region disappears behind the limb. Other possible explanations include
 

supergranulation oscillations or global pulsations. Kalinjak and Vassilyeva
 

(1971) compared a particular feature to the full disk at meter and decameter
 

wavelengths, and found a north-south anisotropy which they interpreted as
 

being due to a gravity wave causing a temporary surface deformation.
 

Kaufmann (1972) also reported oscillations at a period of about 41 min
 

from 7 GHz radio observations. He favors the explanation that the observed
 

periodic signal is produced by an oscillating quiescent prominence (see
 

Kleczek and Kuperus, 1969) which generates oscillations at microwave
 

wavelengths by dissipating its mechanical energy in the surrounding
 

coronal plasma. The recurrent mention of 30-50 minute periods suggests
 

that these oscillations may have a common, presumably solar origin.
 

However, difficulties in confirming oscillations reported at optical wave­

lengths and the availability of alternate explanations for the periodic
 

features observed in radio observations leave considerable room for doubt.
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Current interest in longer period pulsations is especially due to
 

observations from two groups using sensitive new techniques and obtaining
 

different but not necessarily incompatible results. Severny, Kotov, and
 

Tsap (1976a), of the Crimean Astrophysical Observatory have made an
 

ingenious and straightforward modification of the Babcock magnetograph
 

to enable very sensitive velocity measurements. The magnetograph is
 

designed to give a sensitive measurement of the difference in wavelength
 

of the right and left circularly polarized components of an absorption
 

line, since these components are shifted in opposite directions (Zeeman
 

splitting) if a line-of-sight magnetic field is present in the line form­

ing region for a magnetically sensitive line. To measure relative solar
 

velocities using the magnetograph, a non-magnetic line is used, and a
 

circular polarizer is positioned so as to polarize light coming only from
 

the center of the disk. Since light of this polarization is transmitted
 

from any part of the disk while light of the opposite polarization may
 

come only from the limb, the magnetograph now measures the difference in
 

wavelength between the limb and the full disk. Because global pulsations
 

will produce different line-of-sight velocities at center and limb, through
 

Doppler shifts they would also produce an oscillation in the wavelength
 

difference signal.
 

Observations in this mode showed small variations of the signal from
 

the daily pattern with a period near 2 hr 40 min. Simultaneous obser­

vations made using the solar line FeIl5123.7 and the telluric line H20
 

X5901.5 showed that the fluctuations were present in the solar line and
 

not in the telluric line. This fact and the independence of the phase
 

of the oscillations from local time or from the time each observation
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was started led the authors to conclude that this signal was of solar
 

origin. A superposed epoch analysis was performed using periods between
 

2 hr 30 min and 2 hr 50 min in steps of 0.5 min, and the best signal
 

(largest extremum to error ratio) was obtained for a period of 2 hr 40 min
 

+ 0.5 min with the amplitude being + 2 M/s. Data taken in October 1974 

and March 1975 showed the same period and a phase consistent with a period 

of exactly 2 hr 40 min, indicating phase stability over 1900 periods. 

This long period was a surprising and unexpected result. The phase 

stability indicated would rule out a stochastic process such as super­

super granulation, and the period is too long for the oscillations to be
 

limited to the envelope of the sun. If.the pulsations measured are
 

purely radial, the long period measured would indicate a much more homo­

geneous sun than predicted by standard models. The result would be a
 

reduction in nuclear reaction rates which would account for the low
 

neutrino flux but would also leave no known mechanism for the production
 

of the observed photon luminosity. An alternate explanation is that the
 

observed period might be a higher order g-mode, for example a quadrupole
 

gll oscillation which has a period near 2 hr 40 min in current models.
 

Worden and Simon (1976) have suggested that the signal is due to super­

granules- rotating with the sun, though this would not produce a sharply
 

defined period and it would seem that the period would be closer to
 

daykmn km hr 
27 day / (2-Ix 696,000 -/30,000 k ) 4.6 

rot rot super G- super G 

Whatever the explanation might be, the Crimean observers continue
 

to report the 2 hr 40 min oscillations in 1975 and 1976 observations
 

Severny et al. (1976b). They have also seen oscillations in the sun's
 

mean magnetic field with the same period and in the comparative intensity
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of center and limb. These oscillations could all be evidence of a common
 

instrumental problem rather than a solar origin, though it is hard to
 

explain reported 2 hr 40 min oscillations in the intensity of Uranus in
 

this manner because very different instrumental techniques would neces­

sarily be involved. Also impressive is the independent report of oscil­

lations of similar amplitude and period (2.70 + 0.24 m/s, 2.65 + 0.04 hr)
 

by a group from the University of Birmingham (Brookes, Isaak, and van der
 

Raay, 1976). They use a resonant optical scattering device using potas­

sium or sodium vapor Zeeman split in the laboratory by a magnet to scatter
 

light on the wings of sodium or potassium lines (as described in the
 

section on five-minute oscillation observations). Only two of twelve
 

observations yielded usable data, and both showed oscillations near a
 

2 hr 40 min period after fitting out the velocity signal due to the
 

earth's rotation. Power spectra also give peaks at periods of 58 min and
 

40 min which are close to those expected for low order radial or non­

radial modes.
 

A second series of reports of solar oscillations has come from
 

Henry Hill and collaborators working at the Santa Catalina Laboratory
 

for Experimental Relativity through Astrometry (SCLERA) in Arizona. They
 

have used distinctive techniques and analysis and have obtained results
 

bearing much closer similarity to those predicted by standard theories
 

than the 2 hr 40 min period discussed above. Their instrument is designed
 

to make very precise determination of the sun's diameter, in particular
 

so-polar and equatorial diameters can be compared to look for the oblate­

ness reported by Dicke and Goldenberg (1967). The telescope produces an
 

image of the sun below which are placed slits adjacent and parallel to
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the opposite limbs. The image is driven back and forth sinusoidally by
 

the positioning mirror, and the slits are positioned at that point on the
 

limb where the finite Fourier transform
 

1/2
 
F(G; q, a) = S-1/2 G(q + a sin -As) cos 2j s ds
 

vanishes. Here G is the intensity, q is the radial position, and a the
 

scan amplitude. The transform is computed by a minicomputer and the slits
 

are positioned to achieve null, with the slit separation measured by a
 

laser interferometer. Details on the telescope are given in Oleson et al.
 

(1974), the oblateness measurement in Hill and Stebbins (1975), and the
 

use of the finite Fourier transform definition (FFTD) of the limb in Hill
 

et al. (1975). An oblateness of 18.4 + 12.5 arc msec was reported,
 

consistent with a uniformly rotating sun and in contrast with Dicke's
 

value of 43.4 + 3.3 arc msec which would require a rapidly rotating core
 

and which would imply disagreement between the observed precession of the
 

perihelion of Mercury and the prediction of Einstein's General Theory of
 

Relativity.
 

The oblateness measurement requires alternating measurements of the
 

sun's polar and equatorial diameters. Early indications of periodic
 

variations in the signal led the observers to make repeated consecutive
 

measurements of the equatorial diameter in November 1973 and of the polar
 

diameter in the spring of 1975. Power spectra were computed for each set
 

of observations and many peaks were noticed in the 10-50 minute range
 

suggesting their identification with low order p-modes of the sun (Hill
 

et al., 1976a). Observations have been extended and power spectra computed
 

(Brown et al., 1976) and peaks identified. A comparison of the different
 

periods measured (see Table 2) with each other and with the theoretical
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Table 2 

Periods Observed by Hill et al. 

Sept. 1973 Spring 1975 Fail 1975 

52 

33 

47.9 

30.3 

68.3 

45.5 

28.7 

23.8 

16.7 

21.0 

17.1 

24.8 

21.0 

18.8 

15.6 

13.3 

1-. 9 

10.4 

14.6 

11.8 

10.5 

14.7 

13.0 

11.4 

10.8 

9.2 8.8 

9.84 

9.26 

8.53 

7.6 

7.9 7.90 

7.54 

7.0 7.2 7.18 

6.74 

6.28 

6.07 
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values in Table 1 shows there to be fair, though not perfect agreement,
 

with this comparison complicated by different frequency resolution in the
 

different power spectra computed.
 

These results have been welcomed by theorists who have made compari­

sons between the reported periods and solar models of different initial
 

abundances (Iben and Mahaffy" 1976) or at different times from a hypo­

thetical mixing of the interior (Scuflaire et al., 1975). Attempts at
 

confirmation by other observers have been unsuccessful. Brookes et al.
 

(1976) concluded that the velocities they measured at periods of -1 hour
 

were an order of magnitude lower than those required by the Hill result,
 

and Grecand Fossat (1976) reported an upper limit 30 times smaller than
 

they calculated would be present if the SCLERA group were measuring an
 

actual mass motion. Hill et al. (1976a) suggested that their signal
 

was due rather to changes in the limb darkening function, and have calcu­

"lated (Hill et al., 1976b and 1977a) greatly enhanced sensitivity for the
 

FFTD, especially if there is present a substantial portion of the mode
 

which has an exponential growth of energy with height in the solar atmos­

phere, as might be the result of reflections in the chromosphere or
 

corona. Grec and Fossat (1976) have also argued that the peaks in the
 

power spectra are not statistically significant, and Brown et al. (1976)
 

have answered with different reasons for claiming a high statistical
 

significance, most impressive of which is the coincidence of many peaks
 

in power spectra computed from independent samples of the data. Musman
 

and Nye (1976a) submitted an abstract reporting a period of 45 + 4 minutes
 

in measurements of intensity and velocity using the non-magnetic line
 

FeIX5576, but by the time the paper was presented, a negative conclusion
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had been reached, as further discussed in a later paper (Musman and Nye,
 

1976b). Livingston et al. (1977) made direct measurements of temperature
 

by comparing the central depth of the line C15380 with the continuum 

and found no significant temperature variations with a 3 a upper limit of 

0.40K estimated for periods between 5 minutes and 60 minutes. Hill et al. 

(1977b) have challenged the calculations-used to relate intensity fluctu­

ations to temperature fluctuations, and Livingston et al. have recognized
 

that a comparison is difficult since they use a line formed near T = 1.0
 

whereas Hill's technique defines the limb near T = 0.02 where the ampli­

tude of temperature fluctuations might be much greater. The oscillations
 

remain unconfirmed and of great potential value as probes of the structure
 

of the sun's interior.
 

As a summary of past efforts and an introduction to the present
 

work, the following are questions that might be answered by an observa­

tional study of large-scale solar velocities:
 

1. Can five-minute oscillations be observed using present techniques?
 

If so, what are the amplitude and period and how do these values (and any
 

others measurable) agree with other observations and with different
 

proposed theories? Regular bbservations of five-minute oscillations
 

over several solar rotations would also enable the investigation of large­

scale organization of five-minute oscillations in relation to magnetic
 

sector structure or coronal holes. The possibility of some such con­

nection might be expected in view of theories mentioned above (Wolff,
 

1974a and b; Kato, 1969) which identify nonradial oscillations as the
 

source of large-scale magnetic structures. Some connection might also
 

be expected because of observed differences in amplitude or period of
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five-minute oscillations produced by small-scale, active region magnetic
 

fields as discussed above. Five-minute oscillations are also of current
 

interest in theories of coronal heating (see Leibacher and Stein, 1974)
 

and since there are-definite large-scale changes in coronal temperature
 

such as indicated by coronal holes (Munro and'Withbroe, 1972; Altschuler
 

et al., 1974), it would be interesting to know if there are similar
 

variations in the amplitude or period of five-minute oscillations.
 

2. Are the periods identified by Hill and co-workers present or
 

below the threshold of techniques described herein? Can the spherical
 

harmonics or radial wave numbers be identified, and what are the life­

times of the modes present?
 

3. Are the 2 hr 40 min oscillations truly of solar origin? If so,
 

what is their amplitude, period, ,and angular dependence? Is their life­

time measurable, and what mode do they represent? Are there other
 

related modes present, or is there any observational clue as to why-this
 

one is selected?
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Chapter II
 

THE INSTRUMENT
 

The observations used in the present study were made at the Stanford
 

Solar Observatory. This is a new instrument which was dedicated on
 

April 26, 1974 with regular observations of the sun's mean magnetic field
 

beginning iii May of 1975. The telescope is patterned after the 150 foot
 

solar tower telescope at Mt. Wilson, with modifications generally directed
 

toward the goal of observing large-scale magnetic and velocity fields
 

with very high sensitivity. This chapter contains a detailed description
 

of the basic instrument. No other such description has been published
 

at this time, though a somewhat briefer description is in preparation
 

(Scherrer, 1977). More detail will be devoted to an explanation of the
 

modification which Valeri A. Kotov of the Crimean Astrophysical Observatory
 

devised for using the Babcock-type magnetograph to measure relative solar
 

velocities. Included will be a description of calculations and experi­

ments performed to provide a proper calibration and interpretation of the
 

observations. As the different components of the telescope are described
 

in detail below, their location and relation to the whole may be better
 

understood by reference to Figure 3, which is due primarily to Philip H.
 

Scherrer.
 

The Stanford Solar Observatory is located in the foothills south of
 

the academic center of the university on university property. It is at
 

an elevation of 370 + 5 ft' (ll m), latitude N370 24' 35" + 2" and
 

longitude 122' 10' 2' + 2". This location is excellent for the large­

scale, daily observations undertaken because there is a great deal of
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clear weather, especially during the summer months (May through September).
 

It also has the advantage of being only five minutes away from the campus.
 

The advantage of close proximity to campus in a large metropolitan area
 

also carries with it the disadvantage of man-made atmospheric pollution.
 

Resultant loss of transparency can be especially harmful for the present
 

observations if there are sharp local gradients resulting in a variable
 

weighting for different portions of the solar disk. This problem is
 

reduced, especially in afternoons, by prevailing northwesterly winds off
 

of the Pacific Ocean which help keep the air clear. The hilltop location
 

also visibly improves transparency on days with relatively low wind and
 

high pollution.
 

Sunlight is collected by a two-mirror coelostat system, which pro­

duces a nonrotating image of the sun. The 33 cm coelostat mirror rotates
 

about an axis directed at the celestial north pole with a 48-hour clock
 

drive, and reflects the light to the 27 cm second flat mirror which
 

reflects it vertically downward. When the sun's declination is less than
 

° 
+ 9 (September to April), the shadow of the second flat falls on the
 

coelostat at noon, so the coelostat mirror is displaced 50 cm east of
 

the second flat in the morning and 50 cm west in the afternoon, which
 

produces a rotation of the solar image. Rotation of the image can have
 

a large effect on the velocity signal measured when the observing aperture
 

is not perfectly centered because of the sun's large rotational velocity
 

of nearly 2 km/sec. This would make the heliostat system, which uses one
 

mirror but produces a rotating solar image, much less suitable for the
 

observation described herein. An advantage of the heliostat is that the
 

angle of incidence of sunlight does not change during the day, 'whereas
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for the coelostat system, the angles change producing changes in polar­

ization. This polarization is not important for the present observation
 

since the light is passed through a linear polarizer before analysis.
 

Two objective lenses are'positioned 120 cm directly below the
 

second flat mirror. Light passing through the guiding lens (a single
 

element, anti-reflection coated lens with focal length f = 7.1 m,
 

diameter d = 5.7 cm, and clear aperture 5.4 dm) is reflected off a
 

two-mirror periscope to form a 6.6 cm image of the sun at a position
 

50 cm east and 660 cm below the lens. Two matched pairs of diodes
 

are positioned on the EM and NS edges of this image, and connected bya
 

servo system to EW and NS motors on the second flat mirror. Since the
 

clock drive on the coelostat mirror is not adequate to' track the sun
 

perfectly during the day, this servo system is designed so that if the
 

sun drifts to the north causing the north diode to measure more light
 

than the south diode, this intensity difference is used as a signal to
 

drive the NS motor on the second flat, tilting the mirror to null the
 

signal and correct the drift. Experience indicates that the guiding
 

system has very good sensitivity and stability in keeping the guiding
 

image centered. It also has the dangerous disadvantage of using a dif­

ferent beam for guiding than is used for observing. Evidence will be
 

presented below indicating that the stability of position of the image
 

used for observations is not as good. Attempts to correct this problem
 

by using the same image both for guiding and for observing will also be
 

mentioned.
 

The second lens used is the observing lens (an AR coated singlet
 

with f = 2.7 m, d = 6.3 cm and clear aperture 5.8 cm) which forms
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an image of 2.52 cm (almost exactly 1 inch) diameter at a distance of
 

3.8 m from the spectrograph entrance slit. This image is used instead 

of allowing sunlight to fall on the entrance slit since it is of smaller 

angular extent than the sun itself (2.52cm/3.8m = 1/150, 2 x Rjre = 

2 x 6.96 x 10 cm /1.496 x 10 cm = 1/107) which permits the use of 

,smaller optical components at other points in the system. This image is 

used in the Kotov technique to separate light from different portions 

of the disk for the measurement of relative velocities. Another observ­

ing lens has also been in use which has the same dimensions and 6.5 m 

focal length and which produces a 6.1 cm image of the sun at the 

spectrograph entrance slit. This lens has been used to make daily scans 

of the sun's magnetic field with a three arc-minute aperture. Part of 

the procedure for the scanning observation involves moving the xy-table 

on which the guiding diodes are mounted until the observing image is ­

centered at the entrance aperture, with position controlled by stepping 

motors in steps of 0.001 in (25.4 g) on a 6.6 cm image corresponding to 

1" per encoder count. Table 3 shows a record of center positions for
 

observations during June 1976, showing an instability in positioning of
 

the observing image of , 10" from day to day. Possible sources and
 

effects of such drifts on the measured relative velocity will be
 

discussed below.
 

The coelostat and second flat mirrors, the two objective lenses
 

and the periscope are supported by the main telescope structure, which
 

consists of three triangular concrete walls of about 40 tons each tilted
 

up to form a pyramid shape. The optical elements are housed in a 12-foot
 

aluminum dome, with shutters opening to provide a three-foot wide observing
 

53
 

http:2.52cm/3.8m


Table 3
 

Position of Guiding Image in June, 1976
 

Date 


June 1 


June 2 


June 3 


June 4 


June 5 


June 6 


June 7 


June 8 


June 12 


June 13 


June 14 


June 15 


June 16 


June 17 


June 18 


June 19 


June 20 


June 21 


June 22 


June 24 


June 25 


June 26 


June 27 


June 28 


June 29 


June 30 


Average NS Position = 


Average EW Position = 


NS Position EV Position
 

1535 1480
 

1535 1470
 

1540 1480
 

1535 1480
 

1535 1470
 

1535 1480
 

1535 1480
 

1530 1480
 

1535 1480
 

1535 1480
 

1530 1480
 

1525 1460
 

1530 1470
 

1530 1470
 

1530 1480
 

1530 1480
 

1530 1480
 

1530 1500
 

1530 1485
 

1525 1475
 

1520 1475
 

1520 1475
 

1530 1475
 

1515 1475
 

1630 1480
 

1520 1485
 

1529.81, Variance / 2 = 5.798
 

* 1/2

1477.88, Variance = 6.958
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window. The proper dome position as a function of time of day is calcu­

lated from the Ephemeris parameters for each day of the year, and the
 

3
 
resulting curve is fit to the expression f(t) = A3t + A20(t) + AIt + A0
 

where 9(t) is a step function at noon, and this fit is used by the tele­

scope driver system to keep the dome positioned properly.
 

Light from the observing lens passes through the analyzer, consist­

ing of KDP (KH2PO4 ) and linear polarizer, through a 270 A FW1m bandpass
 

interference filter centered at 5200 A, and an image slicer. The KDP is
 

modulated with a 110 Hz square wave at + 3880 V, which is the quarter­

wave potential for X = 5250 A. This makes the crystal alternately a
 

positive and negative quarter-wave plate retarder for light at this wave­

length. Since for right (left) circularly polarized light, the x-component
 

of the polarization vector leads (lags) the y-component by 900 or 1/4
 

period, if the quarter wave plate is oriented to produce a 90? phase
 

retardation for the x-component, the x and y components are then exactly
 

in (out of) phase, resulting in light linearly polarized with polarization
 

vector 45' to the right (left) of the y-axis. The effect on right and
 

left circularly polarized components is reversed for a negative X/4
 

retardation (see Figure 4). If a linear polarizer is included oriented
 

45' to the right of the y-axis, the analyzer will pass only right (left)
 

circularly polarized light when a positive (negative) voltage is applied.
 

The phase retardation A for KDP is a function of wavelength, = 2i/% 

x V x Q where Q is a constant depending on crystal parameters. It follows 

that an applied potential which produces a phase retardation of 0.57C at 

5250 A will produce a phase retardation = 0 .51 x 5250/5124 = 0.5123r at 

wavelength of 5124 A. This introduces a very small transmission of the 

-undesired circular polarization by a factor of 3.55 x 10 4.
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LINEAR POLARIZER ORIENTED 450 TO RIGHT OF y-AXIS 

Figure 4. Diagram showing how a KDP with a linear polarizer oriented 450
 
to the right of the slow axis can be used topass only right circularly
 
polarized light for a potential applied in one direction, and left
 
circularly polarized light for the opposite potential.
 



The interference filter is included to remove overlapping orders in
 

the spectrograph. For multiple sources or grating rulings separated by
 

distance d, wavelength X will have an nth order maximum at nX = d sin 0,
 

so a grating angle giving 5124 A light in fifth order will also produce
 

6405 A in fourth order and 4270 A in sixth order.
 

The image slicer converts a square beam of light (a required
 

shape for the analyzing optics) into a long, thin beam required for
 

the spectrograph. The instrument consists of an internally reflecting
 

prism which deflects the incident beam horizontally, and a series of
 

mirrors, each sticking successively farther into the beam to "slice off"
 

a piece of this beam and reflect it downward through the entrance slit
 

into the spectrograph. The illustration (Figure 5) shows only 4 slices-­

the actual image slicer used consists of 10 slices, matching the 9mm x 9 mm
 

entrance aperture to the 0.8 mm x 10 cm spectrograph entrance slit, with
 

some light lost. The mirrors are in theory aligned so that each directs
 

light to the center of the Littrow lens at the bottom of the spectro­

graph pit. However, experimentally it was found by taking each slice, one
 

at a time, and masking off the others, that the end slices are not perfectly
 

aligned. A copy of the sketch made showing the positions of the images
 

associated with each slice is shown in Figure 6.
 

The spectrograph is a vertical Littrow spectrograph with a 22.8 m
 

focal length. It is contained in a 75-foot deep pit lined with a 1/2 in
 

steel liner, 6 feet (1.8 m) in diameter. The Littrow lens is six
 

times as large (6 in or 15.36 cm clear aperture) as the mean field
 

observing image and six times as far (22.8 m) from the entrance slit so
 

that a pinhole image of the mean field image will just fit in the Littrow
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Figure 5. 	 Diagram showing side view (top) and top view (bottom)
 
of an image slicer. 
Only four of the ten slices are
 
illustrated.
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SLICES # FROM NORTH AT SLIT 
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Figure 6. 	Diagram made from an experiment mapping the orientation
 
of the different slices of the image slicer. The large
 
circle represents the boundary of the Littrow lens, the
 
smaller circles are the image produced by the central
 
1/4 of the 	solar image for each of the ten slices of the
 
image slicer. The lines are the shadows of masks used
 
to catch reflected light. North is to the right.
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lens. Unfortunately, the entrance slit is not a pinhole, as Point out
 

'in private commuiication by A. B. Severny. The result is that the
 

image at the Littrow lens is not sharp and some vignetting results.
 

Measurements of this effect and its consequences for the present measure­

ment will be discussed below.
 

The Littrow lens (an AR coated triplet of f = 22.8 m diffraction
 

limited within a plane 86 cm in diameter) collimates the light from
 

the entrance slit before incidence on the grating, and in turn focuses
 

the reflected light for the exit slit assembly. The grating is of ruled
 

area 12 in x 6 Liv (30 cm x 15 cm) with 633 lines per num, blazed for
 

maximum efficiency for fifth order in the green. The Littrow lens can
 

be moved up and dowi to focus. The method finally used by Thomas L. Duvall
 

to focus was to find the spectrograph position giving maximum slope for
 

an absorption line, with other optics and electronics aligned and balanced
 

as well as possible.
 

The exit slit assembly of the Babcock-type magnetograph consists of
 

a pair of slits of width 75 mA separated by 18 mA. Physically, these
 

slits consist of prisms'which reflect the desired portions of the spectrum
 

to the photomuitipliers, with the widt' of the slits determined by adjust­

able screens as shown in Figure 7. The light is passed through elongated
 

segments of spherical lenses (to match the slit shape) which produce an
 

image of the grating on the photocathodes of a matched pair of photo­

multipliers type EMI 9656 AM with spectral response S-il. The exit slit
 

assembly can be driven manually along the spectrum, or it can be set to
 

follow-an' absorption line (or an' enfission line) by a servo mechanism.
 

The position of the exit slit assembly is read by a 12-bit encoder to an
 

accuracy of 0.,6 p per encoder count.
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Figure 7. 	Diagram of exit slits used in the Stanford Solar Observatory. Light is collected
 
from the wings of an absorption line and sent to each of two matched phototubes
 
for measurement,
 



Before explaining the Kotov method for measuring velocity fields
 

with the magnetograph, it is appropriate to explain how the magnetograph
 

functions in measuring magnetic fields. A line-of-sight magnetic field
 

removes a degeneracy in atomic energy levels, which is referred to as
 

the Zeeman effect. This in turn produces a splitting in Fraunhofer
 

absorption lines which is given by AX = (Vo/hc) gX2B where Vo is the Bohr
 
- 7
211
 

magneton (9.273 x 10 erg/gauss), h is Planck's constant (6.626 x 1027
 

erg-sec), c is the vacuum speed of light, and g is the Lange g-factor
 

which depends on the quantum numbers of the transition. For example,
 

for the spectral line FeIX5250.216, g = 3 and AX = 3.86 x 10- B for B 

given in gauss. For very large magnetic'fields such as those present in
 

sunspots, the splitting can be observed directly, but this is no longer
 

possible for weak fields since the splitting is much less than the line
 

width. A further property of the Zeeman effect that permits measurement
 

of weak fields is that for Am + 1 and a line of sight magnetic field,
 

the two a components are circularly polarized in the opposite sense as
 

well as being shifted in opposite directions in wavelength. The magneto­

graph is therefore designed to measure very sensitively the difference
 

between left and right circularly polarized components of an absorption
 

line.
 

To understand how this is done, refer to Figure 8 which shows an
 

idealized drawing of the solar spectrum near an absorption line with
 

right circularly polarized (rcp) light represented by a solid line and
 

left circularly polarized (lcp) light by a dashed line. The exit slit
 

assembly is positioned so that one phototube measures the intensity on
 

.the red wing of the line and the other on the blue wing. To avoid
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be made with the measured line profile of Figure 12,
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confusion, the rep and lep light may be distinguished by + and -, and, 

the intensity measured at red and blue slits by R and B respectively.
 

R+ 
then becomes the red wing intensity of rep light, etc. A signal
 

Zeeman E (B -R+ ) - (B- - R-) is defined by driving the KDP crystal
 

with a 110 Hz square wave to pass alternately right and left circularly
 

polarized light. The difference in intensity between red and blue slits
 

is then demodulated by multiplying by a square wave using the same phase
 

as the KDP driver signal. The result is that the Zeeman signal measures
 

any change in wavelength having the same frequency and phase as the KDP
 

driver signal. If the slits are positioned in linear portions of the
 

intensity profile and if the splitting is small, then the amplitude of
 

this signal will be proportional to the splitting. It will also be
 

proportional to the intensity, which proportionality is removed by divid­

ing by the intensity (1+ R- + B+ + B-)/2. To center the exit slit
 

assembly on the line, the average difference in intensity between the two
 

wings, called the DC difference signal R + R-)-(B + B-), is used by(e 


the servo system which drives the slit to null this signal and center the
 

slit assembly on the line. The servo system is designed with a response
 

time that is slow compared to the modulation frequency so that the servo
 

will not respond to shifts in wavelength produced by the KDP modulation.
 

Velocity Measurements Using the Servo Encoder
 

Since the servo keeps the exit slit centered on the line, using an
 

encoder to record the position of the exit slit enables one to measure
 

shifts in wavelength of the line at the same time the magnetic measure­

ment is made. Since a line-of-sight velocity produces a Doppler shift in
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Figure 9. 	Diagram showing how the magnetograph obtains the Zeeman
 
signal.
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wavelength given to first order by AX/X = v/c, the magnetograph has been 

used extensively in the past to measure velocity fields with the added 

advantage of being able to-measure magnetic fields simultaneously. It 

was planned that the Stanford Solar Observatory make such measurements 

over an extended period of time to search for large-scale organization 

of low-amplitude velocities. However, measurements of the average line 

position given by the 'exit slit encoder proved inadequate because of in­

stabilities in the spectrograph at all frequencies of interest. At 

highest frequencies, sensitivity is limited by photon counting and servo re­

sponse time. At low frequencies, the earth's rotation produces a large 

diurnal velocity signal given approximately by Vrot = 2RRe cos(2)sin ((t-t ) 

/24h)/24h, where t is local solar noon and 2 is the latitude. Though 

this component of velocity is well known, removal of its effect from a
 

velocity measurement is more difficult because of its large amplitude
 

( + 367.9 m/s) compared to the velocities of interest. This means that 

small, known corrections to the basic expression as well as small, un­

known nonlinearities in the instrumental response could introduce low
 

frequency drifts of sizable amplitude. Perhaps more serious is the
 

sensitivity of the spectrograph to changes in temperature and pressure.
 

The index of refraction of dry air is given by the expression (Allen,
 

1973): 

P[l + (1.049 - 0.0157T) x 10-6p

n(p,T)-l (n15,760-i) 720.883 (1 + 0.003661T)
 

where T is in 'C and p is in torr. For water vapor pressure f in torr,
 

the refraction factor (n-l)x 106 is reduced by:
 

2
 
0.064 - 0.000680/X
 

1 + 0.003661T
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Since the grating spectrograph measures wavelength which depends on the
 

index of refraction, changes in temperature, pressure, or relative humidity
 

cause changes in wavelength which are hard to distinguish from those
 

which are caused by velocity fluctuations. A wavelength shift cor­

responding to 10 m/s for the FeIX5124 spectral line can be produced by a
 

change of 0.09 torr in pressure or 0.030C in temperature or 3% in relative
 

humidity for ambient conditions of 760 torr, 200C, and 10% relative
 

humidity. Such variations have been previously recognized as being
 

responsible for low frequency components in a velocity signal. For example,
 

Tanenbaum (1971) recorded a 1.4 mA/hr (= 57.2 m/s/hr) trend in velocity
 

measurements which could largely be accounted for by a pressure change of
 

-0.63 torr/hr. Accurate pressure measurements are not yet available
 

for the Stanford Solar Observatory, so such effects could not be removed.
 

Another low frequency drift in wavelength is produced by imperfec­

tions in the computer algorithm used to rotate the grating for observation
 

of different spectral lines. After such motion is performed, a slow drift
 

in the recorded exit slit position is apparent, suggestive of a slow
 

relaxation of some small stress introduced by the change in grating angle.
 

A procedure for moving the grating which removes most of these drifts has
 

been developed by Thomas L. Duvall, though not until after the observa­

tions described herein had been made.
 

Even with these previously known limitations at high and low frequencies,
 

it was hoped that at intermediate periods, especially in the neighborhood of
 

the well-known five-minute oscillation, sufficient spectrograph stability
 

might be obtained to permit a long-term study of amplitude variations in
 

these oscillations observed over the full disk. Attempts to study such
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oscillations directly were unsuccessful due, ironically, to the same 

kind of physical mechanism responsible for vertical motions in the outer 

layers of the sun. Observations and theories currently indicate that 

the outer layers of the sun are convectively unstable because of a super­

adiabatic temperature gradient. The .Stanford vertical Littrow spectro­

graph was found to be convectively unstable because of the geothermal 

temperature gradient. The first indications of such a problem were that 

measurements of rms fluctuations of the measure velocity signal, filtered 

to pass only periods between 1 and 15 minutes, gave an amplitude of 

50-100 m/s. A convective origin was suspected, and measurements were 

made which indicated a temperature of 18.50C at the bottom and 17.50C 

at the top of the spectrograph pit. Consultation with a local geologist 

indicated that such a gradient (I.00C/22.8 m , 45CC/km) could be of 

geological origin. Heaters were installed at the top of the spectrograph 

pit, but did not eliminate the instability because, as revealed by further 

measurements,-the stable gradient was established for only the top third 

(- 25 ft or 8 m)- of the pit. Further confirmation of the convective 

origin was-obtained by forcing air cooled by an air conditioning unit 

into the bottom of the pit, which reduced the amplitude of fluctuations. 

An improvement was also produced by gradual penetration of summer warmth
 

down to a 50 ft depth giving a stable gradient over most of the vertical
 

distance. A thorough-and difficult insulation of the lower 40 ft of the
 

pit was undertaken in an attempt to reduce the conductive transport of
 

heat energy (which drives the convection) into the bottom of the pit.
 

These efforts had little effect on the measured temperature gradient, but
 

may have contributed to smaller fluctuations in the velocity signal.
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Velocity Measurements Using the Kotov Subtractive Technique
 

The history of this investigation might well have ended (without
 

ever being told) were it not for the development by Valeri A. Kotov of
 

the Crimean Astrophysical Observatory of a technique for separating wave­

length shifts of instrumental origin from,those originating in line-of­

sight velocities on the sun. The basic idea is' to measure the difference
 

in wavelength for light originating at different places on the solar disk.
 

This is accomplished very simply by inserting optics at the position of
 

the mean field image to produce right circularly polarized light for the
 

center of the disk and left circularly polarized light fIor the limb.
 

Since the magnetograph is designed to measure the difference in wavelength
 

between the two oppositely polarized a components of a magnetically sensi­

tive absorption line, this modification gives a direct measure of the
 

difference in wavelength between the center and the limb of the disk.
 

The apparatus used in the present investigation is shown in Figure 10.
 

The light first passes through a linear polarizer, then through a quarter­

wave plate. These are aligned to produce lcp light. The light next 

passes through a half-wave plate, mounted on optical quality glass so 

that it covers only the center portion of the image, which changes lcp 

light to rop light. Finally, the light passes through an iris diaphragm
 

which is adjusted so that rcp and lcp components are of equal intensities.
 

This is done since the magnetograph is designed for rcp and lop light of
 

equal intensities.
 

Masks were made to pass only center or limb light and the KDP modu­

lation could be turned off to measure only lcp or rcp intensity. Measure­

ments of these intensities and of the ZI signal produced by displacing
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Figure 10. 	Diagram showing (a) side view of the Stanford polarizing
 
aperture, (b) top view of the Stanford aperture, and
 

(c) top view of the Crimean aperture.
 

70
 



the exit slits from line center while passing only center light were
 

used to calibrate the instrument, using the following expression, derived 

in Appendix A: 

ZI (AXcalib) (Ic+-Ic-)(Ie++ Ic- + -2 

-kc K 2(IC+ 1c c c-)(Ic 2- -1c I +
 

Here X -X is the difference in wavelength between center and limb cor­

responding to a Zeeman/Intensity signal of ZI, AXcalib is the known wave­

length shift introduced in calibration and K is the resulting signal, and
 

the intensities are the continuum intensities measured separately for the
 

two different circular polarizations and the two different portions of
 

the image. An example of the September 13, 1976 alignment and calibration
 

is given in Appendix B.
 

The apparatus used for similar measurements at the Crimean Astro­

physical Observatory is different in two important respects:
 

1) A right circular polarizer of radius 0.663 R is placed over the
 

center of the image of the disk, but there is no circular polarizer over
 

the limb. This means that the apparatus and analyzer will pass light
 

from the full disk for half of the modulation cycle, and only from the
 

limb during the other half. The signal may still be interpreted as the
 

difference in wavelength between center and limb light with the addition
 

of a factor (2 + P)/2, where P is the ratio of center to limb intensity,
 

I /IV The derivation of this factor is similar to that described in
 

Appendix A.
 

2) No iris diaphragm is used to mask off the extreme limb. The
 

two apertures are shown side by side in Figure 10. The consequences of
 

the differences will be discussed in detail below.
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The great advantage of this technique is that the difference in
 

wavelength is measured. Since the non-solar changes in wavelength
 

described above (earth's rotation, changes in temperature or pressure,
 

grating drifts, and convection in the spectrograph) affect center and
 

limb light in the same way, a measure of the difference in wavelength
 

permits the removal by subtraction of most of these effects. Since the
 

magnetograph is designed to measure very small wavelength differences,
 

the result is great sensitivity. This can perhaps best be shown by
 

plotting side by side (Figure 11) the power spectra from a single
 

observation (May 23, 1976) taken in one case from the encoder on the
 

exit slit assembly, in the other case from the ZI signal using the
 

Kotov technique. To quantify the increase in sensitivity, 18 one­

minute observations were made while observing in the Kotov mode. The
 

average standard error was equivalent to 3.68 m/s for the servo encoder,
 

and 1.04 m/s for the ZI signal, which is a factor of 3.55 reduction.
 

From magnetic measurements, an error of only -0.1 m/s would be expected
 

from photon statistics. The remainder is probably due to turbulence,
 

which was shown to affect the ZI signal by turning on a spectrograph fan
 

in the middle of an observation.
 

There are also complications and subtleties in this relative
 

velocity technique that should be explained. Two which proved to be of
 

small importance are differences in center and limb profiles due to
 

rotation and limb red shift. Robert Howard of the Mt. Wilson observatory
 

pointed out that rotation would be expected to broaden the limb line
 

profile more than the center line profile therefore confusing the cali­

bration and/or interpretation of the signal. To examine this effect,
 

line profiles were made in lcp (limb) and rcp (center light, as shown*
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Figure 11. Plots of the velocity signal obtained using (top) the
 
ZI signal using the velocity difference technique, and
 
(bottom) the exit slit position recorded by the encoder.
 
Both are taken from the May 23, 1976 observation.
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in Figure 12. The two line profiles are displaced in intensity and
 

wavelength relative to each other due to misguiding effects discussed
 

below, but their shape is very similar and in particular, the slope at
 

the position of the exit slits is nearly identical. This is further
 

verified by separate calibrations for center and limb light which give
 

almost identical results.
 

Limb red shift would be expected to displace the limb line profile
 

to the-red of the center line profile producing an apparent velocity
 

difference. The magnitude of this effect can be calculated using the
 

following expression for limb red shift in equivalent velocity (Howard
 

and Harvey, 1970):
 

Vls = e (1 - cos 0)
 

where e = 0.339 km/s and e is the angle between the direction to the
 

earth and the direction of the location of the observation (on the solar
 

surface) as viewed from the center of the sun. The result is a measured
 

velocity difference of Vc-V = 24.1 m/s. This is not a negligible
 

quantity, and even the variations could be a source of some of the
 

variations in the measured signal. The standard deviation of the e values
 

in Table II of Howard and Harvey is 0.079 km/s, which would give a devia­

tion of 5.6 m/s in the measured velocity difference signal. Since there
 

is no information given about the variability of this parameter on time
 

scales shorter than a day, it is impossible to determine how large a
 

source of signal variations it may be. In any event, the amplitude of
 

variations thus produced would be much less than those observed, (see
 

Figure 20) which suggests an instrumental rather than solar origin.
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Figure 12. 	 Line profiles for the line Fel?5123.730 A, measured
 

Mey 17, 1976. The top line is for left, the bottom
 
line for right circularly polarized light.
 

75
 



The effect of imperfect centering of the aperture which defines and
 

separates limb and center light may be seen most clearly for an aperture
 

not surrounded by a diaphragm, such .as used in the Crimea (Figure 10).
 

If one neglects differential rotation, it follows directly from spherical
 

geometry-that the line-of-sight component of the rotational velocity on
 

the disk varies linearly with'the distance from the axis of rotation.
 

Since the sun has an equatorial rotational velocity of about 2 km/sec and
 

an angular radius of 960", a displacement of 1" corresponds to a velocity 

of about 2 m/s. If the center circular polarizer is displaced toward 

the east limb by I", not only will every point in the center gain a 

velocity of 2 m/s, but the limb.will also be weighted more toward the
 

west limb and its average velocity shifted in the opposite direction,
 

though by much less. When the apparatus-includes a diaphragm to mask
 

off the limb, a displacement of the apparatus toward the east limb will
 

result in an increase in average velocity measured for both center and
 

limb. If the disk were a circle of uniform intensity, there would be no
 

instrumental signal, but due to the effects of limb darkening, there is
 

'still an error for improper guiding, though of reduced amplitude.
 

A computer calculation was made of the signal produced for an im­

properly centered aperture. The center or limb velocities were assumed
 

to be average velocities weighted for intensity:
 

< V >= VIdT/ IdT
 

The velocity expression used was that computed by Howard and Harvey
 

(1970) from magnetograph observations, which expressed in solar disk
 

coordinates becomes:
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V(r,e) = r sin O(l.93-o.244(rcose) 2 .308(rcose))+ 0.339(1-421-r) 

where r is the distance from the center of the disk in units of R., 8 is 

the angle from solar north, and the velocity is given, in km/s. The 

intensity is taken from the limb darkening expression given by Allen (1973):
 

I(G) = 0.26 + 0.96 cos 9 - 0.22 cos 9
 

where 9 is the angle between the line of sight vector and the sun's radius
 

vector for the point being observed. The effect of improper positioning
 

was simulated by displacing the aperture relative to the disk, and the
 

result is shown for the Crimean and Stanford apertures in Figure 13.
 

It was also possible to simulate this effect experimentally in three
 

different ways:
 

1) The guiding box was displaced and the aperture kept fixed,
 

2) the aperture was displaced with guiding box fixed, and
 

3) the aperture was displaced, with guiding diodes positioned at 

the edges of the aperture so the image would remain in the same position 

with respect to the aperture. - The results are plotted, along with the 

calculated error signal, in Figure 14. 

The first two experiments resulted in an aperture improperly centered
 

on the image and produced errors of a magnitude close to the calculated
 

value. The third aperture also produced an error of similar magnitude
 

even though image and aperture remained in the same relative positions.
 

The reason for this can be seen with the aid of Figure 15. Since the
 

spectrograph entrance slit produces a near pinhole image of the sun at the
 

Littrow lens, if the mean field image is displaced and the slit and Littrow
 

lens are fixed, this pinhole image will be displaced off of the Littrow
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Figure 13. Plot of calculated values of signal produced by guiding
 
errors for the Crimean and Stanford apertures. The
 
dashed line is the curve calculated for a displacement
 
of the Stanford image relative to the grating, the
 
unlabelled solid line for a displacement of the Stanford
 
image relative to the polarizing optics.
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Figure 14. 	 Plot of signal m6asured for solar image displaced
 
relative to polarizing optics and/or Littrow lens.
 
The mask is the polarizing aperture, the box is the
 
box containing the diodes ordinarily used to position
 
the 	guiding image, unless mask guiding is specified.
 
The 	lower solid line shows the calculated signal for
 

comparison--the offset is the actual offset produced
 
by the instrument.
 

79
 



---

MEAN 

APERTURE-


ENTRANCE SLIT-- -

LITTROW LENS 

APERTURE-OLAR 
IMAGE 

SOLAR 
GE IMAGE 

APERTURE 

APERTURE 
-

-

BLURRED 
EDGE OF-. 
LITTROW 

\ 

(a) (b) (c)
 

Figure 15. Diagram of the effect of the different experiments plotted in
 

Figure 14. Figure (a) shows the result of displacing the polarizing
 
aperture while keeping the solar image fixed, (b) shows the result of
 

displacing the image with the aperture fixed, and (c) shows the result
 
if image and aperture are both displaced (together) relative to the
 
spectrograph.
 



lens, and light from the limb will be lost. If the pinhole image formed
 

were perfect, no light would be lost unless the displacement was as great
 

as the portion of the image masked off (- 0.2 R). However, for a finite
 

entrance slit and an imperfect image slicer, the pinhole image is out of
 

focus so that any displacement causes a loss of light which changes the
 

weighting for different parts of the disk and produces a velocity signal
 

due to the sun's rotation. The error signal for such displacements was
 

also simulated on the computer, assuming an isotropic smearing of a point
 

source at the image to approximate the effects of a 9 mm long entrance
 

aperture, Fraunhofer diffraction from the 0.8 mm wide slit, and the im­

perfectly oriented elements in the image slicer. The calculated values
 

are also plotted in Figure 15. The same error results if the image
 

slicer is not aligned properly, causing light to be deflected off of the
 

Littrow lens. A large, abrupt change in the baseline of the velocity
 

signal near the end of June 1976 was caused by such a misalignment,
 

apparently caused by a workman bumping the spectrograph head while most
 

of the observers were at the 148th AAS meeting. Though this misalign­

ment was unfortunately not discovered until August, calculations indicate
 

only small changes in sensitivity to either the five-minute oscillation
 

or to low order global modes. It does not seem likely that drifts in
 

the image slicer could produce the regular diurnal variations in the
 

observed signal.
 

The sensitivity to solar rotation would not be a problem if the
 

guiding system positioned the image perfectly, and could even be of little
 

consequence were it a constant offset. However, as mentioned above,
 

there is good evidence that there is a variable error in the relative
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positioning of image and polarizing aperture and/or of the image and
 

aperture relative to the Littrow lens. This is believed to be the
 

principal cause of slow drifts in the observed velocity difference signal.
 

The best example of cause and effect is from the observation made August 26,
 

1975 as shown in Figure 16. The position of the image with respect
 

to the aperture was recorded at various times during the observation, and
 

later analysis showed good qualitative agreement between image displace­

ment and signal. There are at least three possible sources of such
 

variations in image position:
 

1) The mirrors and lenses are supported by the basic pyramidal
 

support structure, consisting of three tilt-up triangular concrete walls.
 

These were originally painted only with a clear sealer and absorbed sun­

light readily. It is postulated'that the southeast wall would heat up
 

and expand in the morning and the southwest wall in the afternoon, thus
 

causing displacements of the top of the building to the west in the
 

morning and to the east in the afternoon. Since the mount for the polar­

izing aperture is a beam suspended from the mirror support structure and
 

attached at the floor, displacements of aperture and image relative to
 

each other might be small. However, since the image would still be dis­

placed relative to the fixed entrance slit and Littrow lens, an artificial
 

velocity could still be produced as demonstrated by the third experiment
 

above. The error which would be expected over the course of a'day agrees
 

in sign with observed diurnal shifts in signal. The support structure
 

was painted white to reduce heating effects, and the diurnal drift was
 

reduced but not eliminated. This might suggest that the other effects
 

described below are important, though they would not be as likely to
 

produce a regular daily pattern.
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Observation of August 26, 1975. The image position
 
relative to the polarizing aperture was estimated
 
visually (in units of approximately 0.3 - 0.5 mm)
 
as follows: (a) centered, (b) 1/2 - 1 unit SE of
 
center, (c) centered, (d) 1/4 unit SSW of center,
 
(e) 3/4 - 1 unit E of center, (f) 3/4 - 1 unit E
 
of center, (g) 1/2 - 3/4 units E of center, and
 
(h) 1/2 - 3/4 units ENE of center. The aperture
 
used was of different dimensions and geometry than
 
that illustrated in Figure 10.
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2) Since guiding is done on a different beam of light than observ­

ing, any shifts in relative position will introduce an error. Such shifts 

have been noticed, as mentioned above, with an amplitude of - 10". This 

is believed to be due to shifts in position of the two mirrors of the 

periscope'which displaces the guiding beam. Such distortions may in turn 

be due to stresses in the beam supporting the mirrors, which are caused 

by thermally induced shifts-in the support structure. A similar effect 

was produced experimentally by having an observer twist the beam holding 

the periscope mirrors. 

3) As mentioned previously, the polarizing aperture is mounted on
 

a steel beam suspended from the pyramidal telescope support structure and
 

fastened at the bottom to the spectrograph head to prevent relative
 

lateral displacement. If there are temperature gradients in the room
 

sufficient to heat one side of the beam more than the other, the beam
 

would bend like a bimetallic strip in a thermostat, displacing the aperture
 

relative to the image. Early observations showed large irregular devia­

tions in signal with 30-60 minute periodicities. Since the air-condition­

ing system was known to have a cycle time in this range, the temperature
 

was recorded during observations and the temperature variations seemed
 

well correlated with many of the 30-60 minute variations. A first order
 

solution was possible with the coming of cooler fall weather when the air
 

conditioner could be turned off if doors in the observing room were left
 

open. This modification greatly reduced'the signal fluctuations in the
 

30-60 minute period range. The air conditioner was later modified with
 

ducting and more delicate controls to maintain a constant temperature in
 

space and time in the observing room.
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Since painting the building white and remodelling the air conditioner
 

did not eliminate slow drifts in the signal, guiding diodes were placed
 

at the aperture to eliminate relative motions of image and aperture.
 

This also failed to eliminate the slow drifts. It is not clear whether
 

the modifications were insufficient to eliminate positioning errors or
 

whether there might be some other source of slow drifts. One possibility
 

is that the changes in mirror polarization which are believed to be
 

responsible for the non-zero magnetic field observed in a nonmagnetic
 

line might find their way into the signal. Such a possibility seems un­

likely because the amplitude of the drift in the velocity signal indicates
 

a much larger wavelength shift than that corresponding to the magnetic
 

field error. A more promising possibility is that atmospheric transparency
 

gradients cause different weighting for different portions of the disk
 

and create a velocity signal due to the sun's rotation (see Grec and
 

Fossat, 1976; Grec et al., 1976). Simple arguments suggest that this
 

effect would produce a monotonic drift during the day rather than the
 

inverted U shape observed. Whether the slow drifts are of atmospheric
 

origin or, as seems more likely, of instrumental origin, they are present
 

throughout the data used in the present investigation and must be further
 

contended with in the analysis of results.
 

One other important feature of the Kotov apparatus is its dependence
 

on the geometry of any velocity fluctuations observed. The five-minute
 

oscillations are'believed to have a small spatial coherence length relative
 

to the aperture used. We may approximate them by independent cells of
 

=
period Pi 5 min, line of sight amplitude Ai, and random phase i:
 

jtA. sin
V. = 
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The total velocity for many such cells will be a sum weighted for intensity
 

SI.A. sin (23vt/p i + 

The apparatus measures V - V
 c V 
l.. in2~t/.+.) Z .A. s in(/i+) 

z center iAi sin(2t/Pi+i) limb i (2Pi ) 
<V>c- <V> =center Ii 
 limb Ii
 

Subtraction of the contribution from limb cells is equivalent to shifting
 

the phase by it. Since the phases are assumed to be random, one defines
 

c
center = i' i limb r + , , and the average velocity difference 

signal is the same as would be obtained by directly measuring the velocity 

over the full aperture:
 

+ €<V> <V>reener +limbI.iA. sin(27ct/P iR center + limb . i
<VC - <V center +limb~i 

For velocity fields of global coherence scales, such as might result. 

from normal mode oscillations of the sun, the effect is more complicated. 

For example, if the sun is expanding radially, at the same time as the 

center of the disk is moving toward the observer, the limb also has a 

smaller component of velocity toward the observer. For the Stanford 

aperture, for example, the velocity difference signal V - V will be 

only 0.208 times the actual radial expansion velocity V . Calculations 

have been made of this sensitivity factor (V - V )/V for different 

spherical harmonics and different apertures as shown in Table 4. It
 

follows from a comparison of different instrumental sensitivities that
 

for a spherical pulsation of amplitude 1.75 m/s using the Crimean apparatus,
 

the Stanford apparatus would measure only 1.04 m/s, and for the reported
 

amplitude of 2.75 m/s from the Birmingham group, the Stanford instrument
 

would measure only - 0.8 m/s.
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Table 4
 

Sensitivity Factors for
 

Different Apertures and Spherical Harmonics
 

Spherical Aperture Stanford 

Harmonic Stanford Crimea full disk Crimea 

radial motion with Y0 0  0.208 0.349 0.716 0.596 

angular dependence Y 0.165 0.240 0.282 0.688 

given by spherical Y 0.168 0.238 0.279 0.706 

harmonic Y2 0  0.204 0.298 0.077 0.685 

Y21 0.227 0.256 0.141 0.887 

Y22 0.218 0.253 0.139 0.862 

Ylln 0.243 0.303 0.357 0.802 

Y20n 0.266 0.340 0.106 0.782 

Y22n 0.387 0.378 0.210 1.024 

horizontal motion Ylln 0.245 0.374 0.323 0.655 

with angular Y 0.218 0.292 0.282 0.747 

dependence given Y22n 0.210 0.310 0.496 0.677 

by negative Y22 0.141 0.208 0.329 0.678 

gradient of Y20n 0.334 0.250 0.388 1.336 

spherical harmonic YlOn 0.0 0.0 0.0 

Y 0.170 0.239 0.224 0.711 

Y20 0.261 0.194 0.308 1.345 

87
 



A further difficulty in this interpretation is that A. B. Severny
 

has suggested (private communication, 1976) that the optical arrangement
 

described herein could produce extreme vignetting with only a small fan
 

beam in the center of the disk actually producing the signal. To examine
 

such a possibility, two different methods were used to measure the amount
 

of light actually registered by the instrument from different portions of
 

the mean field image. One method was to place apertures of radial extent
 

RJ8 and varying angular extent at different positions on the disk to
 

produce a complete map of intensity. The average of two maps is shown
 

in Figure 17. From it one learns the following:,
 

1) The masks used are not perfectly centered on the image. Since
 

the image was centered visually at the top of the polarizing aperture,
 

this indicates a tilt in the cylinder holding the polarizers which results
 

in a horizontal displacement as the light passes vertically through the
 

different optical elements. This has since been corrected.
 

2) The edge of the %/2 separating center from limb is a finite,
 

largely nontransmitting bevelled edge extending from approximately 0.50 RE
 

to 0.55 R.
 

3) The intensity is less going toward north and south limbs than
 

going toward east and west limbs. This is probably due to a combination
 

of imperfections in the image slicer which are largely in the NS direction
 

and vignetting produced by the finite extent of the spectrograph entrance
 

slit, as first pointed out by Severny. Since each slice of the image is
 

9 mm long, the image formed at the Littrow lens will be smeared by 6.3 cm
 

in the NS direction, so some light from the north and south poles falls
 

off the Littrow lens and is not reflected by the grating.
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Figure 17. Map of intensity transmitted through the optical system as
 
a function of position on the solar image. The units are
 
arbitrary, and the numbers are average values from two
 
different measurements.
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Two other experiments substantiated the above results. The NS/EV
 

asymmetry was confirmed by rotating on the solar image a wedge shaped
 

aperture of angular extent 45O. The intensity as a purely radial function
 

of position on the solar image was then measured by stepping the iris
 

diaphragm (ordinarily used to mask off the extreme limb) in and out in
 

steps of 1 mm. The drop in intensity at the edge of the X/2 was again
 

apparent, and more important for the sensitivity to large-scale velocity
 

fields is the fact that the iris diaphragm experiment showed an intensity
 

profile vs radius very close to the limb darkening expression given by
 

Allen, at least out to the 0.8 RD radius used in the present observa­

tions. If opposite limbs are averaged to correct for misalignment, the
 

intensity map also gives a result reasonably close to the standard limb
 

darkening curve for both the NS and the DV directions. These results are
 

shown in Figure 18. On the basis of these experiments, there is ample
 

justification for using the Allen limb darkening expressions for guiding
 

error and sensitivity calculations. It would also appear on this basis
 

that the suggestion that extreme vignetting effectively limits observa­

tions to a small portion of the disk can be safely excluded.
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Figure 18b. 	 Intensity as a function of radial position on the solar image, taken
 

from the map shown in Figure 17. The value calculated from the limb
 

darkening expression of Allen (1973) is again included for comparison.
 



Chapter III
 

OBSERVATIONS AND ANALYSIS
 

General Procedures
 

The three major questions under investigation in the present study
 

(as detailed at the end of Chapter I) are: 1) Does the five-minute
 

oscillation show variations related to large-scale magnetic structures
 

observed in the photosphere, corona, and solar wind? 2) What can be
 

learned about the oscillations reported by Hill and co-workers (Hill
 

et al., 1976a; Brown et al., 1976) at periods between 5 and 70 minutes?
 

3) What can be learned about the 2 hr 40 min oscillation reported by
 

Severny et al. (1976a and b)? In order to investigate these three
 

questions, the plan of the present study was to obtain several months of
 

daily observations of length 2 hr 40 min or longer with no changes in
 

procedure or instrument. Long individual observations were needed to in­

vestigate the 2 hr 40 min oscillation and would also give better frequency
 

resolution at 5 to 70 minute periods and better definition of the ampli­

tude and period of the five-minute oscillations. The search for large­

scale organization of five-minute oscillations required several solar
 

rotations of daily observations using identical procedures and instrument,
 

which would also aid in the study of longer periods by improving signal-to­

noise ratios.
 

The goal of identical procedure was well achieved by having most of
 

the instrumental setup performed directly by computer (PDPll/10) with
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software developed specifically for this purpose. Functions which
 

could not be performed directly by computer (such as initial mirror
 

alignment) were performed by an operator in response to computer instruc­

tions. The basic procedure used is as follows:
 

1. Telescope set up. (This is not performed if done previously for
 

another observation.) Covers are removed from optics and grating, dome is
 

opened, and computer dome positioning is begun. Coelostat and second
 

flat mirrors are aligned, the 48-hour clock drive on the coelostat and
 

the guiding servo on the second flat are turned on.
 

2. Find the line in the spectrum. The grating is set at the proper
 

angle using an encoder. The spectrum is scanned until two lines of desired
 

separation are found and the exit slits are then positioned on the X5123.730
 

line.
 

3. The polarizing aperture is moved into position at the mean field
 

image (the line finding routine is done previously since light leyels are
 

higher). The KDP voltage is turned on with 110 Hz modulation.
 

4. Balance and zero. The exit slit assembly is moved to X5122.502
 

where the spectrum is flat. The operator makes a manual adjustment so
 

intensity measured in the two phototubes, hence in the two exit slits, is
 

equal. Then a shutter is closed cutting off light to the phototubes and
 

the intensity and Zeeman zero levels are set to zero. The difference in
 

dark signal in the two phototubes is zeroed. Then the shutter is opened
 

and the exit slit assembly is positioned on the X5123.730 line.
 

5. The exit slit servo is turned on and the observation begins.
 

Two signals are measured continuously and an integration is performed
 

every 0.1 second giving the average for the previous 0.1 second, which
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is converted to a digital number by 14-bit A/D encoders. The two signals
 

measured are:
 

Intensity E CR+ + R_ + B+ + B-)/2 

Zeeman E (B - -(B - R-) 

Two additional signals are obtained at the end of each 0.1 second interval-­

the signal ZI E Zeeman/Intensity by digital division performed in soft­

ware, and the signal Doppler by reading the exit slit position from the
 

encoder. A fifth signal, the DC difference signal,
 

DCA (B+ - e ) + (B- - R-) 

is used to drive the exit slit servo.
 

Digital integration of 150 consecutive 0.1 second measurements is
 

performed in software, and the 15-second averages of the four signals
 

mentioned above are recorded on tape along with the start time of each
 

15-second integration. In addition to these quantities, a long list of
 

instrumental parameters is recorded at the start and end of each observa­

tion, including such things as the observer and the position of the
 

guiding mechanism.
 

Observations used in the present study were made at the Stanford
 

Solar Observatory in the summer of 1976. The period of time with best
 

observational coverage was from April 13 through August 6, which interval
 

is included in all data analysis. On two occasions during this period
 

(April 29 - May 6 and June 25-30) calibration showed a loss of sensitivity
 

due to improper alignment of the linear polarizer and the quarter-wave
 

plate which loss of sensitivity was confirmed by reduced power measured
 

throughout the frequency spectrum--these intervals were excluded from the
 

analysis. A wider interval extending from March 11 through September 21
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was included in investigations of periods shorter than an hour, but
 

generally was not used in the search for 2 hr 40 min oscillations
 

since the data are more intermittent and a broader interval would
 

require greater frequency resolution in searching for an oscillation of
 

constant period and phase. In addition to these observations, velocity
 

measurements using the same apparatus were made from November 1975 to
 

February 1976 and polarizing optics of different dimensions were used
 

between July and November of 1975. The velocity was also measured from
 

a smaller portion of the disk in October and November of 1976 using
 

the Doppler servo.
 

For each observation, plots were made of the intensity and of the
 

velocity signal as functions of time. An example is plotted in Figure 19,
 

for the May 23, 1976 observation. The observation is four hours in
 

length consisting of 960 15-sec integrations. There were sometimes
 

large, sharp deviations present in intensity and velocity due to clouds
 

or to errors in the dome positioning program. When such excursions
 

occurred, the questionable integrations were replaced by dummy values
 

so that they were not included in later analysis but timing was preserved.
 

Three other features may be pointed out in this example. One is that
 

the velocity has an average value of - +55 m/s, compared with a value of
 

-24.1 m/s calculated from the limb darkening expression of Allen (1973)
 

and the rotation and limb red shift parameters of Howard and Harvey
 

(1970). The difference between measured and calculated baseline was
 

probably due to improper positioning of the solar image which resulted
 

in uneven weighting of different parts of the disk, giving a velocity
 

signal due to the sun's rotation. Attempts to correct this baseline
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Figure 19. 
 Plots of intensity (top) and ZI signal calibrated in
 
relative velocity (bottom) for the May 23, 1976
 
observation.
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offset by'more careful adjustment were not successful, but the result
 

of these adjustments was that the baseline was changed. Changes.were
 

also produced by the midday change in coelostat position in observations
 

before April 30, which rotated the sun's image and shifted the baseline
 

since the aperture was not perfectly centered. A large shift was also
 

produced between June 24 and July 1 due to the image slicer misalign­

ment mentioned above. Calculations show that a misalignment of 0.30 RG
 

would produce a velocity signal of 210 m/s (which is close to that
 

observed) with a reduction in the radial mode sensitivity factor,
 

(V - V 2)/V of less than 1%.
 

Another feature apparent in Figure 19 is a slow drift in the signal
 

from 65 m/s to 40 m/s having a direction which generally coincided with
 

the change in intensity during the day. This inverted U shape is clear
 

in both morning and afternoon observations (with the former predominant
 

before May 22 and observations made only in the afternoon after that
 

date). This drift is seen clearly in Figure 20 which is a plot of the
 

velocity signal as a function of time of day with each observational
 

mean subtracted to remove baseline shifts, This drift could be explained
 

by a non-linearity in the electronics causing the velocity signal to be
 

a function of intensity, though this possibility was excluded by ,experi­

ments using neutral density filters to alter intensity. A more likely
 

explanation would be a shift in the observational support structure to
 

the west in the morning and to the east in the afternoon caused by thermal
 

expansion of the walls of the support structure. This explanation, which
 

was discussed in detail above, would correctly account fnr the inverted
 

U shape of the observed diurnal drift. The drift was of large amplitude
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Figure 20. 	 Plot of the daily drift in the Stanford signal.
 
The observational mean has been subtracted from each
 
observation to remove the effect of base-line shifts,
 
and data have been averaged as a function of time
 
of day. Local noon is at UT 2000.
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compared to the expected signals and left the dilemma of either removing
 

the drift (along with some possible signal) by fitting, or of leaving
 

the drift and introducing spurious signals of instrumental origin.
 

Five-Minute Oscillations
 

The third feature evident in Figure 19 is an oscillation of period
 

near 5 min and peak-to-peak amplitude of 5-10 m/s. A more precise
 

determination of period and amplitude may be made by computing the power
 

spectrum. Since the theory of power spectral calculation is based on
 

Gaussian random processes with zero averages, baseline offsets and
 

diurnal drifts are removed by subtracting from the observation a least­

squares fit to a straight line., The autocorrelation is then computed
 

out to a lag of 200 point (50 min) following Blackman and Tukey (1958).
 

For a record consisting of n equally spaced values x,x 2,x3 . . Xn,
 

the autocorrelation at lag 2 is given by
 

i n£ xixi+
 
-(n-f) i_ i
 

2
0=2 =1 

The power spectrum is then given by the cosine transform of the auto­

correlation
 

P(f) = + 2 cos -- + C m cos (fT)
0 =1 m 


This was smoothed by convoluting with a hanning window 

p'(f) = 0.25 P(f - tf) + 0.5 P(f) + 0.25 P(f + Af), 

where Af = 2/mAt, which is equivalent to weighting the autocorrelation
 

with a function
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(0.5 (1 + cos 7Icjm), > m
D = 

0.0 =m 

giving a modified autocorrelation C' = D CR Fi gure 21 shows the auto­

correlation and Figure 22 the power spectrum computed for the May 23
 

observation. The five-mihute resonant oscillation is again apparent,
 

with the recurrence of peaks in the autocorrelation and the position of
 

the peak in the power spectrum both indicating a period slightly longer
 

than five minutes.
 

Average Characteristics
 

A total of 475 hr 41.5 min of observation was reduced for the period 

between April 13 and September 21, 1976. Since the aperture used was 

of diameter 0.8 R = 768", the area observed was about 1.85 x 106 arc 
2 14 10,2 

sec , or about 1.85 x 10 times as great as with a (10") aperture. If 

five-minute oscillations are assumed to be independent at points 

separated by 10", the present set of observations would in a sense be 

equivalent to observing with a (10") 2 aperture for about 103 years. 

Unfortunately, the lack of spatial resolution in the present observations
 

means that only limited information can be gained as to the nature of
 

the five-minute resonant oscillation in general. This information can
 

be well displayed by computing the average of all the power spectra
 

measured, weighted by the length of the observation. The result is
 

plotted in Figure 23. A very smooth peak may be seen near five-minutes,
 

with no evidence of the multiple periodicities described by Frazier
 

(1968a and b). Frequency resolution is not good with the lag in the
 

autocorrelation only extended to 50 minutes, and further smoothing is
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Figure 21. The autocorrelation of the velocity difference signal,
 
calculated for the May 23 observation (Figure 19b).
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Figure 22. 	 The power spectrum of the velocity difference
 

signal calculated for the May 23, 1976 observation,
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Figure 23. 	 Average power spectrum for the Stanford data.
 
In performing the averaging, each individual
 
power spectrum is weighted for the length of
 
the observation.
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introduced by use of banning. Power spectra computed with greater
 

resolution and no smoothing (Figure 28) are less smooth, but fluctuations
 

are not separated from a smooth curve by more than might be expected for
 

random fluctuations.
 

Two parameters characterizing the average power spectrum as shown
 

are somewhat different than might be expected from small scafe observa­

tions. One is the amplitude of the oscillation, which was measured by
 

taking the area under the curve between frequencies corresponding to
 

periods of 10 min and 3-1/3 min and thensubtracting the portion due to
 

noise power as estimated by taking the area under the curve between
 

3-1/3 min and 2 min where the spectrum is flat as might be expected
 

for white noise. The power measured in this manner is 4.03 (m/s)2 cor­

responding to an rms amplitude of V = 2.01 mis. This result agrees
rmns
 

well with the value of V = 2.4 m/s published by Fossat and Ricort
 rms
 

(1975a). Since they used the line NaIX5896 (D1) for which oscillations
 

are 1.5 times as large as for FeIX5124 (Deubner, 1971), and have used
 

an aperture including the full disk, they might be expected to record an
 

amplitude 1.5 x 0.8 = 1.2 times as large as that presently reported.
 

Agreement may not be as close as it appears since their published value
 

did not include correction for noise power.
 

A discrepancy with small scale determinations of amplitude and scale
 

size arises if one accepts the amplitude = (diameter) rule derived by
 

Tanenbaum. This relation was derived by representing the oscillating
 

regions or cells by harmonic oscillators of identical amplitude and
 

period and random phase. The amplitude of the ensemble average varies
 

-
as N 1/2 where N is the number of cells, so for a slit one would expect
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1/2 
amplitude to vary as (length)- and for a round or square aperture,
 

the amplitude should vary inversely with the linear dimension for
 

apertures greater than the cell size. Tanenbaum simulated a long slit
 

by averaging one-dimensional magnetograph scans, and found his results
 

to be consistent with a cell size of 3000 km. However, for an rms
 

amplitude of 100 m/s at 3000 km, this would imply an amplitude of about
 

0.25 m/s for an aperture of 0.8 R® as used in the present investigation.
 

The 2.0 m/s amplitude presently measured is more nearly consistent with
 

the 20000 km cell size estimated by Fossat and Ricort (1975a).
 

Because the sun is 'a sphere rather than a disk, a calculation of the
 

amplitude to be expected for an aperture as large as presently used
 

should include the effects of limb darkening, foreshortening, and the
 

decreasing line-of-sight component of radial velocity as one approaches
 

the limb. In addition, the assumptions used to derive the amplitude " 

(diameter)- rule will no longer apply since oscillations will not be of
 

equal amplitude and since the existence of well-defined cells is not
 

supported by observations. A relation similar to that derived by
 

Tanenbaum may be derived with somewhat greater generality using the work
 

of Cha and White (1973). They have shown from velocity records made with
 

a 10" aperture that the five-minute oscillation has the behavior of a
 

narrow-band Gaussian random process. The signal may be represented in
 

the form V(t) = A(t) exp Li(21T t + t(t)] where i is the average frequency,
 

A(t) the amplitude, and j(t) the instantaneous phase. For a narrowband
 

process, the probability distribution function for the phase is a constant
 

1 

W (for p(t)) 2
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and for the amplitude it is a Rayleigh function
 

2
A -A2/2V ,m
r2s
 
W (for A(t)) = 2 


rms
 

The velocity signal weighted for intensity for a given aperture may be
 

thought of as a two-dimensional random walk in the complex plane with
 

length proportional to the intensity times the velocity. The vector
 

sum of many such random walks will have a distribution equivalent to that
 

of a single random walk of length given by the square root of the sum of
 

the squares of the contributions from all of the individual apertures.
 

For N identical oscillators of identical intensity, the velocity times
 

intensity signal will therefore go as
 

N
 

,
(vi)2]I /2 = VI(N)1/ 2 
i=l
 

and since the intensity will be NI, the velocity signal measured will
 

1/2 V 1/2

be VI(N)I/2/NI = VN , as derived by Tanenbaum. Using this approach,
 

calculations were made of the amplitude to be expected with the present
 

instrument for independent elements of various dimensions, and the result
 

is shown in Table 5. Since the calculation is greatly simplified for
 

circular geometry, the linear dimension used is the radius of a circular
 

aperture, with the length of a square aperture of equal area obtained by
 

multiplying by fl. The 2.0 m/s amplitude reported above would be con­

sistent with an average independent region of radius 14500 km, corre­

sponding Lo a square of length 25700 km. Since noticeable decreases in
 

coherence are observed over much smaller horizontal differences (e.g.
 

Lynch and Chapman, 1975), it follows that an "average" independent size
 

of 25700 km requires there to be some power at larger physical wavelengths.
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Table 5
 

Calculated Amplitudes for
 

Independent Regions of Various Sizes
 

Each with an Amplitude of 100 m/s
 

Radius of 


Independent Region 


(103 kin) 

1.5 


2.0 


2.5 


3 


4 


5 


6 


8 


10 


12 


14 


14.5 

15 


16 


18 


20 


30 


40 


50 


60 


80 


100 


Amplitude with
 

Stanford Aperture
 

(m/s) 

0.21
 

0.28
 

0.35
 

0.42
 

0.56
 

0.70
 

0,85 

1.13
 

1.40
 

1.69
 

1.91
 

1.99
 

2.09
 

2.19
 

2.60
 

2.75
 

4.16
 

5.54 

7.52
 

7.91
 

9.63
 

15.28
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This conclusion is further supported by direct measurements of five­

minute amplitude from the Doppler servo encoder and using a (3)2 

aperture. An amplitude of Vrms = 10.56 m/s was measured, which using 

the same calculations as above, is consistent with an amplitude of 

Vrms = 1.02 m/s using the 0.8 R aperture. This result indicates that 

even regions as large as 3' (130000 km) are not totally independent. 

Though this conclusion is weak since obtained in a very indirect way, 

it does support a global excitation mechanism for the five-minute 

oscillation. 

The other parameter measured with a different result from that 

expected was the period. The frequency of the resonant peak was deter­

mined from the individual power spectra in three different ways. The
 

simplest was to measure the frequency of the high point in the resonant
 

region. The other two ways involved taking the weighted average of the
 

power spectrum in the resonant region. In one case, this was done by
 

measuring the noise level in the 5.0 - 8.33 mHz region and then finding
 

the centroid of the resonant power above this level. In the other case
 

it was done by taking the centroid of the power in the 1.67 - 5.0 mHz
 

region with correction for the noise power. As might be expected, the
 

latter two determinations agreed very closely, giving values of 312.1
 

+ 1.3 see and 312.8 + 1.0 see respectively from 110 power spectra between
 

April and August. Inclusion of September data, making a total of 135
 

power spectra, changed the latter result to 312.9 + 0.9 sec. When the
 

frequency of the resonant peak was used, the period obtained was 320.2
 

+ 2.2 sec, indicating a slight asymmetry in the resonant peak due to.the
 

high frequency tail which becomes dominant at higher levels in the
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atmosphere. Every period determination gives a result longer than
 

Leighton's original report of 296.1 + 1.3 sec from the CaIX6103 line
 

(Noyes and Leighton, 1963). The difference in measured period is not
 

large--only about 5%--but is much larger than the statistical errors.
 

.One possible explanation for the difference in period is that dif­

ferent lines were used. Attempts to settle this question directly by
 

comparing measurements made in the same line (NaIX5896) were inconclusive.
 

Noyes and Leighton measured a period of 285.8 + 1.5 see, and only four
 

observations were available using present methods, giving a period of
 

294 + 11 sec, which is only 3% longer than the previous value but is
 

within an error bar of being 1% shorter or 7% longer. The use of
 

different lines is unlikely to explain the longer period since the
 

CaIX6103 line is formed low in the photosphere (see Figure I of Noyes
 

and Leighton) as is the FeIX5124 line. In addition, Howard (1962) also
 

measured a period of 296,sec using the FeIX5250 line which is formed at
 

least as low as FeIX5124, which would mean that its period should,be at
 

least as long were identical apertures used. Howard's measurement also
 

makes it unlikely 'that the longer period found herein is due to use of
 

different techniques to define the average period, since Howard determines
 

the period from the secondary maximum in the autocorrelation function,
 

which is closely related to the peak in the power spectrum. Secondary
 

maxima in autocorrelations computed using the present data consistently
 

indicateda period longer than five minutes. An increase in period for
 

large aperture size remains the most likely explanation. Attempts to
 

detect a shorter period by using apertures of (3')2 and (30") 2 were not
 

successful, so if such a shift in period is present, it must occur between
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5" and 30". The physical significance of this 5%, 10 a difference is
 

not clear, but it does agree in sign with the direction of the diagonal
 

lines in the k-n diagram of the Ulrich (1970) model. It would further
 

seem that such a change between 5" and 30" is evidence of the large­

scale character of these oscillations, since a change in period would
 

not be likely if regions separated by 30" were totally independent.
 

The Search for Large-Scale Organization
 

In order to search for large-scale organization of the five-minute
 

oscillation, each observation was characterized by the following para­

meters, calculated from the power spectrum:
 

The peak power - the maximum amplitude of power measured in the
 

interval of periods from 3-1/3 min to 10 min.
 

The noise power - the integrated power over the frequency range
 

5.0 mHz to 8.33 mHz, corresponding to periods of 3-1/3 min to 2 min.
 

The signal power - the integrated power over the frequency range
 

1.67 mHz to 5.0 mHz corresponding to periods of 10 min to 3-1/3 min,
 

with the noise power subtracted.
 

The average resonant frequency - the average frequency of the
 

resonant peak in the 1.67 mHz to 5.0 mHz interval. Correction was made
 

for the noise power by taking the average power above the noise rather
 

than above zero, in the following manner:
 

< f > = 1 f(P(f)- P ) df 

where fl = 1.67 mHz, f2 = 5.0 mHz, P(f) is the power measured at frequency
 

f, and Pn is the noise power per frequency interval measured in the
 

frequency range 5.0 mHz to 8.33 mHz as described above. The calculation
 

of these parameters is illustrated in Figure 24.
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Figure 24. 	 Figure showing how signal power, average 
frequency, noise power, and peak power are 
measured from a power spectrum. The noise 
power is the area under the curve between 
5.0 mH7 and 	8.33 mHz. The signal (or resonant)
 
power is the area under the curve and above
 
the dashed line (which is the noise power)
 
between 1.67 mHz and 5.0 ml!?. The average
 
frequency is the centroid of this same area,
 
and the peak power is the high point of the
 
curve between 1.67 MHz and 5.0 mHZ. 
 "'he
 
power spectrum used is the average power
 
spectrum of Figure 23, plotted with 
a different
 
vertical scale.
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These values were computed for each day's observation. If more than
 

one observation was made during a day, the average of the two power
 

spectra weighted for the length of the observation was used to calculate
 

the parameters for that day.
 

A superposed epoch analysis was then performed about sector bound­

aries as determined by changes in polarity of the sun's mean magnetic
 

field as measured at the Stanford Solar Observatory. The boundary was
 

assumed to be located between two days of opposite polarity, and the
 

average value of the parameter of interest was computed for all days im­

mediately preceding a boundary, for all days two days before a boundary,
 

and so on until an interval of + 7 days about the boundary was included.
 

In performing the averaging, eaqh parameter was weighted for the length
 

of the observation. The superposed epoch of each of the four parameters
 

computed is shown in Figure 25, along with the grand average for each
 

parameter and the computed error bar. In each case, it can be seen that
 

there is no conspicuous organization of the parameter about sector bound­

aries. In addition, the number of daily averaged values falling within
 

one error bar of the grand average is in every case comparable to the
 

68.3% value expected for a normally distributed random variable.
 

There were four other attempts to look for a large-scale organization
 

of five-minute oscillations. One was to superpose the power spectra
 

themselves instead of some parameter about the boundaries to see if any
 

variation is apparent. The result is plotted in Figure 26. Though small
 

variations can be seen in the averages taken at different intervals from
 

the sector boundary, no obvious organization is present, and 453 of the
 

714 points or 63.4% are within one error bar of the grand average, again
 

consistent with normal statistical fluctuations.
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Figure 25. 	 Superposed epoch of five-minute oscillation parameters
 

about polarity reversals of the mean solar magnetic
 
field as measured at Stanford.
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Figure 26. 	 Superposed epoch of power spectra of Stanford velocity difference
 
data about polarity reversals of the mean solar magnetic field.
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Next, the four parameters chosen for each day's observation were
 

used to calculate autocorrelations and power spectra in a search for
 

periodicities near 27 days or integer fractions of 27 days to see if
 

there was any large-scale organization of five-minute oscillations of
 

sufficient persistence to co-rotate with the sun. The results showed
 

a conspicuous lack of any long-term organization, with periods integer
 

fractions of 27 days in no way outstanding.
 

Another investigation of large-scale organization was to make a
 

scatter plot of average frequency <f> and signal power for each day's
 

observation to see if there was any correlation between the two. The
 

result is shown in Figure 27. The calculated correlation coefficient is
 

r = 0.0139. Using the expressions of Bevington (1969, p..124), the
 

probability is P = 0.88 that a correlation coefficient this large or
 

larger would be found if the sample is drawn from an uncorrelated parent
 

population. Both the scatter plot and the calculated probability show
 

no relationship between five-minute amplitude and average period for
 

this data set. Similar scatter plots and correlation coefficients for
 

all four parameters (six pairs in all) gave the following results:
 

Abscissa Ordinate r P (p=0)
 

signal power noise power 0.0186 0.84
 

signal power average freq 0.0139 0.88
 
- 9
 

peak power 0.835 3.7 x 10
signal power 


noise power average freq -0.104 0.26
 

noise power peak power 0.124 0.18
 

average freq peak power -0.103 0.27
 

The probability calculated is again the probability that the sample was
 

taken from a parent population with no correlation (p=O). There is
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Figure 27. 	 Scatter plot of average frequency (ordinate) versus
 
signal power (abscissa) for the Stanford data.
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no evidence for any correlation between the parameters with the con­

spicuous exception of the correlation between signal-power and peak
 

power, which is to be expected. The lack of correlation between signal
 

power and noise power provides encouraging evidence that the definition
 

of signal power used is essentially free from contamination by noise,
 

and also indicates that observed variations are not due simply to changes
 

in instrumental sensitivity, since these would affect signal and noise
 

power in the same manner. The correlations were also calculated without
 

weighting for the length of observation, and the only important difference
 

was an increase of the correlation coefficient between noise power and 

- peak power to 0.236, which has P = 0.010 of being drawn from an uncor­

related parent population. It is reasonable that records with greater
 

noise levels might have higher resonant peaks, and that this effect would
 

be more noticeable without weighting for length of observation since
 

shorter observations would have higher noise levels.
 

One further check on a possible relationship of five-minute oscil­

lations with large-scale structures in the corona and solar wind was made.
 

Sheeley et al. (1976) have shown a very close correlation between coronal
 

holes, solar wind velocity, and the geomagnetic C9 index. Because measure­

ments of coronal holes and solar wind speed were not readily available,
 

the amplitude and period of five-minute oscillations measured herein were
 

compared with the C9 index. In addition, since Scherrer (1976) has found
 

good agreement between the C9 index and the absolute value of the mean
 

solar magnetic field as measured at Stanford, it was also used for com­

parison. The method used was again to plot one quantity as the ordinate
 

and the other as abscissa and to calculate the correlation coefficient.
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Since the C9 index is measured at UTl200 and five-minute oscillation
 

measurements are near local noon (UT2000), the former was lagged in time
 

by five days to approximate the expected 4-1/2 day solar wind transit
 

time. The correlation coefficients and probabilities of being drawn
 

from a parent population with no correlation are as follows:
 

Abscissa Ordinate r P (p=O)
 

mean field signal power -0.0456 0.63
 

mean field average freq 0.131 0.16
 

imean fieldi signal power 0.124 0.20
 

imean fieldi average freq 0.110 0.24
 

C9 signal power -0.129 0.16
 

C9 average freq -0.0412 0.66
 

There is again clearly no evidence for any correlation between the
 

quantities considered.
 

Periods from Five to Seventy Minutes
 

In order to search for periodicities in the data between five and
 

seventy minutes, spectral analysis was again employed. Each observation
 

was again fit to a straight line and the fit subtracted to remove diurnal
 

drifts and changes in baseline. To insure that the filtering effect of
 

subtraction of this fit was minimal, only observations of duration ? 180
 

min were 'used. There were 92 observations used with a total observing
 

time of 420 hr 13 min. To achieve the greater spectral resolution needed
 

to search for longer period oscillations would have required extensive
 

computing time if the cosine transform of the autocorrelation were used to
 

obtain the power spectrum. Instead, the Fourier transform of the data was
 

found by use of the fast Fourier transform (FFT) algorithm of Cooley and
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Tukey (1965) as adapted from the program of Singleton (1969). The power
 

spectrum is then given by the modulus of the Fourier transform, with no
 

smoothing employed. Since implementation of the FFT is greatly simpli­

fied for a number of points equal to an even power of 2, each observa­

tion was centered in an array of length 2048 points (512 min), with the
 

remainder of the array filled with zeroes, before computing the power
 

spectrum.
 

The 92 power spectra computed were then averaged together, weighted
 

for the length of the observation. The standard error of the mean power
 

was also computed for the frequency interval of interest (0 - 4.167 mHz
 

corresponding to periods of P = - to P = 4 min). Figure 28 shows the
 

average power spectrum--the two lines plotted are the average power plus
 

or minus the standard error. Two features evident are the low frequency
 

power with peak at 256 min and the five-minute resonant peak. The latter
 

peak is much less smooth than the previous power spectrum (Figure 19)
 

though fluctuations are not larger than expected from statistical con­

siderations. The low frequency peak is sharpened by the higher frequency
 

resolution, and can be accounted for by diurnal drifts of 24 hour period
 

with frequencies below 1/256 min- 1 filtered out due to the finite obser­

vation times and the subtraction of a linear fit from each observation.
 

Between the five-minute resonance and the low frequency peak, there
 

is no feature in the power spectrum of any prominence. This frequency
 

interval may be seen more clearly if the vertical scale is changed as in
 

Figure 29. The two lines plotted are again the average power spectrum
 

plus or minus the standard error. There are fluctuations but none are
 

large compared with the computed errors. It can then be concluded that
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Figure 28, Average power spectrum of the Stanford observations. The power
 
spectra have been computed using the fast Fourier transform algorithm,
 
and observations shorter than three hours have been excluded. In
 
averaging, power spectra are weighted for the length of the observation.
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Figure 29. 	 Same as Figure 28, with a different vertical scale, The two lines
 
plotted are the average power plus or minus the standard error.
 



the present investigation has detected no pulsations in this interval.
 

Such a null result might perhaps be unworthy of mention were it not for
 

the positive results of other observers, especially those of Fossat and
 

Ricort (1975a) and Hill et al. (1976a). Early attention was directed to
 

the 10-mmn period reported by Fossat and Ricort, but with nosignal
 

seen. A few observations were even conducted using the Na-D1 line (to
 

investigate the possibility that the feature could be located higher in
 

the atmosphere) but with the same result. A more recent paper from Grec
 

and Fossat (1976) has not confirmed the existence of this feature, and
 

its reality is questionable.
 

A comparison with the Hill report of several periods in the five to
 

seventy minute period range is much more challenging. Such a comparison
 

is simpler since both the SCLERA positive report and the present negative
 

report are expressed by use of power spectra. Correction for different
 

units used (arc msec and m/s) and for different quantities measured
 

(displacement and velocity) can easily be made, but there is much greater
 

room for disagreement or error in a comparison because of the very dif­

ferent observational techniques employed. If the fluctuations in the solar
 

diameter measured by the SCLERA group are assumed to be due to actual mass
 

motions, the change in diameter is related to a radial velocity by
 

Ad = 2Ar = Pv/r. Using this expression and the conversion factor 1 arc
 

msec = 725.3 m, the amplitudes of power plotted in Figure 29 have been
 

converted to (arc msec)2/bin and plotted on a copy of the most recent
 

power spectrum of the Arizona group (Brown et al., 1976). The amplitudes 

measured in the present study have been multiplied by a factor of 

1/0.208 = 4.81 since calculations discussed in a previous chapter indicate 
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that the velocity difference signal measured with present techniques
 

would be only 0.208 times the.actual velocity for a radial pulsation.
 

This scaling factor has also been used in the five-minute period range
 

since the area scanned by Hill et al. (2 x 100" x 161':4 since there are
 

two 100" slits and a 6.8 scan at the limb samples a segment of the sun
 

for a (3')2
cgrresponding to 161'.4 at disk center) is about the same as 


aperture, and measurements described above show the amplitude of five­

minute power to be 5.25 times as great with a (3')2 aperture as with the
 

0.8 R aperture used herein. The results of this comparison are plotted
 

in Figure 30, with the logarithm of the power plotted because of the,
 

great range covered. Clearly, if the interpretation of the SCLERA signal
 

as a mass motion is correct, the amplitudes measured in the present study
 

are much smaller and would suggest that the peaks in the SCLERA power
 

spectrum are not of solar origin.
 

As was discussed in Chapter I, this is not the first attempt at a.
 

confirmation of the oscillations reported by Hill et al. using spectral
 

techniques. Brookes, Isaak, and van der Raay (1976), using potassium
 

and sodium cells, measured amplitudes at periods < 1 hr "at least an order
 

of magnitude" less than those reported by Hill. Grec and Fossat (1976)
 

also used a sodium cell and concluded that the amplitudes reported by the
 

SCLERA group were 30 times larger than upper limits they found at similar
 

periods. Hill's response to this apparent conflict has been that "since
 

the FFTD was used to define the solar edge in these data, the observed
 

amplitudes depend on changes in the limb-darkening function as well as
 

actual motions. Consequently, the actual displacement of the surface ­

may be only a small fraction of the observed effect." (Hill et al., 1976a.)
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Figure 30. 	 The upper line is the logarithm of the SOLERA power spectrum
 
(Brown et al., 1976). the lower'line is the logarithm of the
 
limb shift produced by mass motions computed from the power
 
spectrum plotted in Figure 29.
 



In a later paper, Hill, Caudell, and Rosenwald (1977a) have presented
 

calculations to show how a small amplitude oscillation could produce
 

much larger temperature fluctuations, thus changing the sun's limb darken­

ing function and giving a much larger change in the apparent diameter
 

measured by the FFTD than would be produced by actual mass motions.
 

Attempts to measure such temperature changes by looking at the core of
 

the temperature sensitive line CIX5380 (Livingston et al., 1977) or the
 

continuum intensity (Musman and Nye, 1976a and b) have given upper limits
 

smaller than the amplitudes Hill predicts, though Hill et al. (1977a and
 

b) have challenged the interpretations of intensity fluctuations of the
 

other observers and Livingston et al. suggest that their negative result
I
 

may simply be a consequence of looking at deeper levels of the atmosphere.
 

Calculations of the Sensitivity of the FFTD
 

Independent calculations of the enhancement to be expected for the
 

FFTD were made as a part of the present study before the papers of Hill
 

et al. (1976b and 1977a) became available. This calculation was based
 

on expressions relating oscillatory velocity and temperature fluctuations
 

as derived by Noyes and Leighton (1963) with substantial assistance from
 

Lamb (1945).
 

An equation of motion may be derived.from the equation of continuity,
 

"p+ p v • v = O, 
Dt 

the equation of conservation of momentum,
 

Ds 1 
P Dt- VP + pg + (V x B) x B, 
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and an equation of state. For vertical propagation in a planar atmos­

phere (dependent only on the vertical component), the continuity equation
 

becomes
 

p(1 + - Pc 

If magnetic fields are assumed to be unimportant, the momentum equation
 

becomes
 

2
 
PO z -gpo
 

where § is the displacement. From the static relation 6Po/Fz = -gPo 

this may be expressed as 

2 
PO t2 oz (P-Pc) 

If one assumes an ideal gas equation of state,
 

AP AP A2 (or P-P = P 


p P . 0"0P 0
 

-


2 2
 

Defining e AT/To, C 2 YP /Po, and H c2/yg (c is thesound speed
 
o o 0 0
 

and H is the scale height, the equations may be combined and simplified
 

2

22a82 o 2 ae 

2 2 - + - + c (-- )= 0 (1)
2 o 6z H
- cto 2 H z 


Noyes and Leighton introduce a second equation to describe the
 

thermal response of the atmosphere:
 

2
as
7e = - y-(1)---- (2)azta 

The first term on the right-hand side is the radiative cooling which is
 

proportional to the amplitude of the temperature perturbation, with the
 

radiative relaxation time given by I/P. The second term is the adiabatic
 

heating due to the rate of compression a(-6§/6z)at by the wave.
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It is next assumed that and e may be expressed as 

(z,t) 2H A e(p+l)z/2H e-iGt 

- i t
m
e(z,t) = B e(P+l)z/2H e
 

Substitution into equations 1 and 2 permits one to relate A to B and to
 

solve for p:
 

B ('-l) W (p+l) A 

2 1'/2 (3) 

= ±i\- 1 (j0/2eo2H)2 

Since the expression under the radical has the form k + ix with k and i 

both positive, the + sign for p corresponds to a wave propagating upward
 

though heavily damped, and the - sign for p corresponds to a damped wave
 

propagating downward, which means that wave energy increases with height
 

in the atmosphere. Hill argues that the downward propagating solution
 

may be present due to reflections in the chromosphere and corona so the
 

calculations described herein were performed with either choice of sign,
 

though reasons will later be given for a predominance of the upward 

solution. Equation 3 permits the definition of a parameter a relating 

the amplitude of temperature oscillation to the velocity 

C 

= o 
c -icnHA/ct0 2H1'P-iw 

e = a v where ( -l) 

Since the above development assumes the same exponent for the displace­

ment and the temperature perturbation but later gives an expression
 

relating the two that will change with the properties of the atmosphere,
 

it cannot be a good approximation if very large or sudden changes are
 

involved.
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In order to calculate the temperature change for an oscillation in
 

the sun's atmosphere, the Harvard-Smithsonian Reference Atmosphere, or
 

HSRA (Gingerich et al., 1971) was used. An oscillation was put in at
 

the bottom of the atmosphere with amplitude such that if multiplied
 

successively by the local exponential growth rate, v(z2 ) = v(z1 ) exp
 

[(p(zI)+ 1)(z 2 - zl)/2H(z1)], it would reach an amplitude of 1.0 m/s at
 

an optical depth of 0.2; This level was chosen since Athay (1976,
 

p. 170) gives the height of formation of FeIX5124 as 0-200 km and
 

optical depth 0.2 corresponds to the center of this interval. The
 

periods used were those of peaks in the power spectra of Hill et al'.
 

(1976a) (47.9, 30.3, 24.8, 21.0, 17.1, and 14.6 min) plus a 68.3 min
 

period obtained from personal communication and later published in
 

Brown et al. (1976). A 5.0 min period was also used, with an assumed
 

amplitude of 1.0 M/s at-" = 0.2. The values for optical depth (T),
 

temperature (T), pressure (P), electron pressure (P ), opacity (K),
e 

fractional ionization of hydrogen (0), density (p) and vertical 	distance
 

2
 
(r) were taken from the HSRA. The.sound velocity was given by c = yP/P,
 

and the ratio of the specific heats was taken from Cox and Giuli (1968)
 

using the simplifications of Thomas et al. (1971)
 

- 5+-E5/2 + X/kBT] 2 

Y = 2 3+L(3/2 +X/kBT)(5/2 +X/kBT)-X/kBTi 

where X is the ionization potential of hydrogen and kB is the Boltzmann
 

constant (X/kB = 1.578 x 105). The quantity t is given by
 

20vr(I-a)
 
r(l+r)+ avG(1-)
 

where v is the ratio nH/nHe =0.9 in the HSRA and r = ne/(natoms + nions ). 
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The number density of nuclei, natoms + nions = p/1.2877 mH for the 

abundances given in the HSRA, and the electron number density was taken
 
to be n = P /k BT. The inverse radiative -relaxation time was taken from
 

Spiegel (1957)
 

3
16 axT -I 
!= (l - Tcot-t 

i e e
P
 

where U is the Stefan-Boltzmann constant and Te the effective optical
 

thickness of the perturbation, given by Ulrich (1970) to be approximately
 

1 1 1 

T T Tr 
e p 

where -p = ApK127C and A is the horizontal wavelength given by A = 2ARJ 

f-lY+i) for a spherical harmonic of order R (2=2 was used). The specific 

heat at constant pressure was also taken from Cox and Giuli 

- 3c2 ( (3/2 + X/kBT)2 3 
p 2T 3(2+) 

This expression, like the one for y, is taken assuming the radiation
 

pressure to be a small fraction of the total, which is a good assumption
 

5
up to T = 10- though decreasingly good above this level.
 

Using the expressions detailed above and the assumed velocities,
 

Figures& 31-34 show the calculated velocity amplitudes in m/s and temper­

ature perturbations in 0K as functions of height for both choices of sign
 

on the exponential damping factor p and for four of the eight periods
 

studied. Physically, the growth of longer period oscillations with height
 

and the corresponding temperature fluctuations are less than for the five­

minute period because radiative damping becomes increasingly important
 

for longer periods. It is also clear that the change in amplitude of the
 

downward propagating wave is much greater than it is for the upward wave.
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Figure 31. 	 Plots of the logarithm of velocity as a function
 
of position in the solar atmosphere for the upward
 
propagating solution at periods of 5.0, 14.6, 30.3,
 
and 68.3 minutes.
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Figure 33. 	 Plots of the change of temperature (logarithmic scale)
 
as a function of radial position in the atmosphere for
 

the upward propagating solution at periods of 5.0, 14.6,
 
30:*3, and 68.3 minutes.
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Figure 34. 	 Same as Figure 33 for the downward propagating
 
solution.
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The reason is that for an atmosphere of decreasing upward density
 

e - Z/Hp(z) = p(O) 

if the oscillation propagates adiabatically, for its kinetic energy,
 

2
K.E. = 1/2 pv , to remain constant, its velocity amplitude will have an
 

exponential dependence
 

v(0) e+Z/2H
=
v(z) 


If radiation damping is included, it largely suppresses the exponential
 

growth to be expected for an upward propagating wave, but nearly doubles
 

the exponential decay to be expected for a wave propagating downward.
 

At five-minute periods, observational checks can be made on the
 

calculations described above and are encouraging. It has previously
 

been mentioned that Deubner (1971) reported the amplitude of five-minute
 

oscillations to be 1.5 times greater in the Na-D1 line than in FeIX5124.
 

Athay (1976, p. 170) gives the height of formation of the D line as
 

-
400 - 600 km (T = 1.4 x 10- - 5 x 10 5 ) and the present calculation 

gives an amplitude of 155-195 m/s in this range for an oscillation of 

100 m/s at the height of formation of FeI5124. Measurements of five­

minute temperature oscillations give widely scattered results and agree­

ment with present calculations is mixed. Hudson and Lindsey (1974) 

estimate a.309 oscillation from IR continuum measurements corresponding 

to 200 km above T = 1, and present theory predicts a 14K oscillation.
 

Noyes and Hall (1972) measured intensity fluctuations of 275CK peak-to­

peak (80°K rms) in a molecular line which they believe to be formed at
 

-4 
T = 10 , where present calculations predict AT = 26.50K. Holweger 

- rms 

and Testerman (1975) estimate a 200 K rms temperature fluctuation at 
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T = 10- 2 from oscillations in equivaleht widths) and present calculations
 

give 19.20K. These three points are plotted in Figure 35 along with the
 

curves predicted for upward and downward propagating waves-, and though
 

agreement is not g6od in the former case, it is much better than in the
 

latter.
 

Intensity a a function of apparent position on the disk is next
 

calculated, beginning with the following expression, taken from Gibson
 

(1973):
 

I (o,8) = o S (,Cr)exp I ( I X 
2~.. 0 x ( oseI Cos e 

where 0 is the angle between the line of sight and the sun's radius
 

vector and T, is the disk center optical depth of the,contributing
 

layer. When the effect of the sun's s]5hbricity is-included, as it must­

be near the limb, and the integral is changed to a summation over finite
 

layers, the expression becomes:
 

-tAs
T 1 ATr.As.i 
I1X(0,) =Is CT.) exp I ' I -_A

i LAr Ar 

where Ar. is the radial thickness and As. the line-of-sight thickness of1 1 

the layer in question. the intensity Was calculated successively-for
 

rays passing tangentially through each layer in the HSRA, and then through 

layers inward from-the innermost layer of the HSRA (82.6 km below T = 1.0) 

in steps of 10 km to a depth of 5692%6 km-(7'.8). Since the optical depth 

0;.0
in the HSRA is given in steps of 10 , the change in bptical depth ATi
 

is assumed to-be AT. =T. (1) 1 05 ). The change in radius is
1 1 

taken as Ar. =(r+ 1 - r. )/2, and the line of sight thickness is then 
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Figure 35.- Plots of the change of temperature for a wave with
 
5.0 minute period. Upward and downward propagating
 

solutions are plotted, along with the measured
 
values of (left to right) Hudson and Lindsey (1974),
 

Holweger and Testerman (1975), and Noyes and Hall (1972).
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/2
 ri-1)2 	]1
Asi 	 k+2 r 

= ri+r +l 

2 
s 


from the Pythagorean Theorem.
 

Local thermodynamic equilibrium (LTE) is assumed, so the Planck
 

function is used for the source function
 

2hc2 
 -i
 
s==-- [exp (hc/kT)- i3
 

where h is the Planck constant, c the speed of light, and X takei to be
 

5500 A 	since this is the wavelength used by Hill. Rather than compute
 

the intensity for the ambient HSRA and again with the small temperature
 

perturbations, the intensity has been expanded as a function of temper­

ature:
 

5ICT) 

I(T + AT) r_(T) +AT aT 

and calculations were made of the ambient intensity and the change in
 

intensity
 he ( ~ h 
I.L /A exp /X
 

AI 	* k T 
(ep h c / k - 1)

(ep T
 

Layers below the bottom of the HSRA are assumed to have no contribution
 

to the intensity because of the large negative exponential in the source
 

function. Plots of I and AI(n) as functions of vertical distance for
 

upward and downward propagating waves are shown in Figures 36 and 37.
 

The separate calculation of intensity and change of intensity is
 

convenient in calculating the effect on the FFTD limb position because
 

of the linear character of the Fourier transform. The limb is defined
 

to be the position q which causes the following finite Fourier transform
 

to vanish:
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Figure 36. 	 Intensity and change of intensity as a..function of
 
radial position (looking at the limb) for the upward
 
propagating solution at periods of 5.0, 14.6, 30.3,
 
and 68,3 minutes.
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Figure 37. 	 Same as Figure 36 for the downward propagating
 
solution.
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1
 
2
F(G;q,a) = G(q + a sin )Ts) cos 1rs ds , 

-1 

where G is the'intensity, a is the scan amplitude, and s is the integra­

tion variable. The Fourier transform of a-perturbed intensity G + AG
 

is clearly the sum of the Fourier transforms of the ambient intensity
 

and the intensity perturbation. The substitution r = a sin Irs is used
 

to change the transform to
 

1 l2 
1-2t 

-1S G(q+ a t) 
(1-t2 ) 1/2 dt 

where t = r/a and r is the radial distance in physical units . Since the
 

integrand is singular at t = + 1, the intensity is assumed to vary linearly
 

between grid points and the integration is performed explicitly. Defining
 

G= G(q + a t ) and G = G(q + a t2 ), one performs the integration
 

22 
G2 - 22 GI t + Glt 2 -G 2 tl 1-2t dt 

1 1 2lt1/ 

G2_tl (1-t 2)1/2 _(1-tl )1/2 _ 2 (-t2 ) 2+ (1-t2)3/2 

2t -t1 2 1 -(t ) 5 1 

Gt 2-G 2 t1 ( 21/2 1 
+ t2- t 2(l-t) ­

with care taken at tI = -1 to avoid a singularity. Plots of the finite
 

Fourier transform for the unperturbed intensity profile and for the
 

intensity perturbations produced at the'periods used previously are shown
 

in Figures 38 and'39 for upward and downward propagating solutions.
 

The important feature in these figures is the place where the finite
 

Fourier transform crosses zero. In the unperturbed case, the zero crossing
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is at a level 122.6 + 3.32 km below optical depth unity. In the
 

perturbed case, the limb is defined by the zero crossing of the sum
 

of the finite Fourier transforms of ambient intensity and intensity
 

perturbation. Table 6 shows the calculated shift in limb position for
 

the eight periods used and for upward and downward propagating waves. In
 

calculating the numbers given in this table, it was assumed that the
 

oscillatory amplitude at T = 0.2 was the amplitude measured in the 

present study. The shifts in apparent limb position produced by changes
 

in the limb darkening profile for upward propagating waves are clearly
 

negligible. For downward propagation, the apparent limb shift becomes
 

much larger than any actual mass motion.
 

Difficulties in Reconciling Results With Those of Hill
 

Hill argues (Hill et al., 1-976b and 1977a) that the downward prop­

agating solution (which he calls the + solution) would be present due
 

to reflection from the corona, and that it must be present in signifi­

cant amounts in order to account for the differences in amplitude
 

observed by his techniques and those reported from the spectral techniques
 

used by other observers, such as Brookes et al., Grec and Fossat, and the
 

present group. However, there is physical reason to believe that the 3+
 

solution is not present in significant amounts, and that Hill's amplitudes
 

cannot therefore be reconciled with Xhose of other observers. One of
 

those cited by Hill for the suggestion that downward propagating waves
 

may be present due to reflection is Ulrich (1970) whose discussion of
 

reflection is based partly on the work of Souffrin (1966). As shown in
 

Figure 1, the dispersion relation for an isothermal adiabatic atmosphere
 

2 
divides the k- plane into regions of propagation (kz > 0 and of
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Table 6
 

Comparison of Equivalent Limb Shift from
 

Present Work with SCLERA Signal
 

SCLERA Present Work
 

Period Signal V (m/s) Real Limb Limb Darkening Limb Shift
 rmsa
 

(min) (arc msec) (=0 mode) Shift (msec) Up Prop Down Prop
 

68.3 7.0 1.89 + 0.13 3.40 1.13 x 10- 3 104.6
 

47.9 5.3 1,56 + 0,10 1.97 1.79 x 10- 3 82.4
 

30.3 4.6 1.00 + 0.06 0.80 2.62 x 10- 3 46.6
 

24.8 7.7 0.92 + 0.07 0.60 3.41 x 10- 3 38,0
 

21.0 7.0 0.84 + 0.08 0.46 4.15 x 10-3 30.8
 

17.1 4.2 0.76 + 0.10 0.34 5.33 x 10- 3 23.6
 

14.6 4.0 0,65 + 0.05 0.25 5.96 x 10- 3 17.3
 

5.0 4.8 100.0 assumed 13.17 6.40 249,7
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attenuation (k 2 < 0). Souffrin showed that with the addition of
 

radiative damping, the wave number is no longer purely real or imaginary
 

but complex,-which means that the k-n plane can only be divided into
 

regions that are predominantly propagating or attenuating regions, with
 

the boundary defined by equating real and imaginary parts of the wave­

number. This gives an equation which Ulrich uses to define a critical
 

horizontal wavenumber for reflection:
 

2 2. 2 2 

e a) + - N 

where olR' wo' and N are the inverse radiative relaxation time, the
 

acoustic cutoff frequency, and the VdisHli-Brunt gravity-wave frequency
 

and are given by
 

3
 
16 
T K (1- cot-1 -e), r c/2H,
 

ac e e
 
P
 

and
 

X2gi p\ dz- [(yl) cg d
= [ + dTl (Whitaker, 1963).93

P 

Waves with horizontal wavenumber greater than the critical wave­

number will be predominantly propagating--those with smaller wavenumber
 

will be predominantly attenuated. For a spherical harmonic or order
 

= 2, the horizontal wavenumber is given by kh = (R+l)/R = 3.87 x 10 

-i 2 
cm (Ando and Osaki, 1975), so reflection would be expected at kh
 

-21 -2 2
 
1.50 x 10 cm . Calculations of kh using the HSRA show this condi­

tion not to be met anywhere between T = 25 and T = 10- 5 for the periods 

8
considered in Table 6. For the region between T = 0.5 and T = 10- at
 

2 -19

the periods used which are longer than five min, kh > 3 x 10 , which
 

-means that this is a predominantly attenuating region. For a five-minute
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- 6
 = 2 x 10

period, the Ulrich reflection criterion is satisfied near T 


This indicates that for periods longer than five minutes, reflections
 

occur either at the bottom or above the top of the region tabulated in
 

the HSRA. Waves reflected at or below the bottom of the HSRA will not
 

be present in the line-forming region. If waves are totally reflected
 

-
just above the top of the HSRA (at T = 10 8) so that the amplitude of
 

upward and downward propagating components is the same at T = 10- 8 , the
 

calculations plotted in Figures 31 and 32 may be used to compare the
 

amplitudes present at the height of formation of FelX5124 "( = 0.2). To
 

facilitate comparison, it was assumed that the upward propagating wave
 

was of amplitude 1.0 m/s at T = 0.2. As Table 7 shows, the downward
 

propagating ( +) solution is very unimportant.
 

Further evidence that the downward propagating solution cannot be
 

of large amplitude in this region of the atmosphere comes from a compari­

son with observations of five-minute oscillations. Since there are dif­

ferences both in methods and results between the calculations made here
 

and those described in Hill et al. (1977a), both have been used for
 

comparison. Using the results of the present work, a 100 m/s wave is
 

assumed to be present at the height of formation of FeIX5124 (T = 0.2)
 

and the amplitude is calculated throughout the HSRA. It has been
 

mentioned above that the amplitude for the upward propagating solution
 

increases to 155-195 M/s at the height of formation of the Na-D1 line,
 

in reasonable agreement with the measurements of Deubner (1971). The
 

downward solution would give an amplitude of 1000 - 6000 m/s in the same 

range. In another measurement, Deubner (1969) reported a factor of six 

increase in amplitude between FeIX5250 and H . This compares with a factor 
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Table 7 

Computed Amplitudes for a 1.0 m/s Wave 

Totally Reflected at T = 10 -8 

Amplitude (m/s) 

Period Upward Propagation Downward Propagation 

(rin) T = 0.2 = 10 - 8 T = 10 ­ 8 T = 0.2 

68.3 1.00 1,01 1.01 2.99 x 10 - 6 

47.9 1.00 1.03 1.03 3.07 x 10 ­ 6 

30.3 1.00 1.07 1.07 3.31 x 10-6 

24.8 1.00 1.10 1.10 3.52 x 10 ­ 6 

21.0 1.00 1.14 1.14 3.80 x 106 

17.1 1.00 1.22 1.22 4.33 x 106 

14.6 1.00 1.31 1.31 5.02 x 10 -6 

5.0 1.00 16.92 16.92 8.32 x 10 - 4 
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of 8.22 calculated for the upward propagating solution and a factor of
 

1.02 x 104 for the downward solution. This comparison can only be valid
 

as an order of magnitude argument since the assumptions of the theory
 

are not valid for very large amplitudes, line contribution functions are
 

broad, and measured amplitudes are dependent on details both of observa­

tional technique and of line formation. For example, Deubner (1971)
 

reported a larger amplitude for MgIX5173 (b2) than for NaIX5896 (D1),
 

though Athay (1976, p. 170) assigns a lower height of formation to the
 

magnesium line. With these words of caution in mind, this comparison
 

supports the conclusion that the upward propagating solution is predominant
 

in this portion of the atmosphere.
 

A second comparison was made using the enhancement factors Hill et al.
 

(1976b and 1977a) have calculated for the FFTD technique as compared with
 

spectral velocity measurements. Though the enhancement they calculated
 

3
is in comparison with a spectral line formed at -r= 10 - , comparison of
 

the results at T = 0.2 with observations in the line NaIX5896 mentioned
 

above, and with those of Grec and Fossat (1976) show there to be no
 

important differences. The power spectrum of the present observations
 

converted to Hill's units (Figure 30) has been multiplied by the enhance­

ment factors calculated. It is assumed that the Hill technique will see
 

both the real limb shift and the apparent shift introduced by limb
 

darkening, and that they will agree in phase. The result is shown in
 

Figure 40. For the - solution (referred to herein as the upward propa­

gating solution) the amplitude of the signal presently measured is every­

where too low, especially in the 10-40 minute period range. Addition of
 

the 12 (arc msec)2 error bar found by Brown et al. (1976) brings the two
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Figure 40. 	The line with greatest point-to-point fluctuations is the logarithm
 
of the SCLERA power spectrum. The other two lines are the logarithm
 
of the limb shift calculated from the power spectrum presently measured
 
(Figure 29), multiplied by the enhancement factors calculated by Hill
 
et al. (1976b). The lower line is for the P (upward propagating) solution
 
the smoother upper line is for the P+ (downward propagating) solution.
 



observations into near agreement at five minutes. On the other hand,
 

+
if one uses the (downward propagating) enhancement factors, the two
 

observations nearly agree at 10-40 minute periods but the five-minute
 

power measured in the present experiment becomes too large (and dis­

agreement is substantial because a logarithmic scale is used)'. Any
 

linear combination of the two solutions encounters the same basic dif­

ficulty--using Hill's enhancement factors and geometric scaling cor­

rections that are generous at longer periods and conservative at five
 

minutes; the power measured herein at five minutes is 8 times larger for
 

+ 

-the 
 solution and 100 times larger for the J3 solution than the power
 

measured at ten minutes. A calculation was also made to include the
 

3
effect of the change in amplitude between T = 0.2 and T = 10- , and the
 

+
result is still a five-minute amplitude 4 times larger for and 200
 

times larger for - than the ten-minute value.. Since Hill et al. report
 

a power spectrum that is flat or if anything lower at five minutes than
 

at ten minutes, the two results cannot be reconciled unless the reflected
 

solution is present in greater proportion at longer periods than at five
 

minutes. As the results of the calculations presented in Table 7 show,
 

the opposite is likely to be the case since waves of five-minute period
 

are more likely to be reflected and are reduced less by radiative damp­

ing than those of longer period. The results of the present study and
 

those of Hill et al. are very hard to reconcile, which makes it unlikely
 

that both sets of measurements are entirely of solar origin.
 

.Statistical Significance of the SCLERA Peaks
 

If the peaks observed in the SCLERA power spectra are not solar
 

pulsations, what are they? Grec and Fossat (1976) have suggested that
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the peaks in the power spectrum of Hill et al. (1976a) are no larger
 

than might be expected due to statistical fluctuations. The SCLERA group
 

has responded by publishing a new power spectrum (Brown et al., 1976)
 

with higher resolution and somewhat lower amplitudes, especially at the
 

lowest frequencies. The reduced amplitudes below 0.5 mHz could be in
 

part due to removal of slow drifts in the signal by subtraction of a
 

parabolic fit. Brown gives the following three reasons for arguing that
 

the peaks in the power spectra are significant and of solar origin:
 

(1) Variances computed at a given frequency for eleven independent power
 

spectra are smaller than the signal in the range from 0.2 to 1.0 mHz
 

(see Groth, 1975). (2) The largest peaks are reproducible--when the
 

data are divided in half and the fifteen largest peaks are compared, ten
 

are coincident. (3) The peaks have an average height above the local
 

mean of 9.2 (arc msec)2 in the frequency range from 0.2 to 2.5 mHz com­

pared with a height of 6.0 + 1.2 (arc msec)2 computed for noise alone.
 

A critical examination of these arguments leaves some room to doubt
 

the conclusions. First, the comparison of variance and power does provide
 

evidence for signal power in the frequency interval considered (0.2 ­

1.0 "mHz) but does not give evidence for a concentration of that signal
 

power into discrete peaks. In fact, if one accepts the noise level
 

adopted in this paper (12 arc msec2/frequency interval) and takes the
 

28 points in the 0.2 - 1.0 mHz interval, excluding the 7 peaks above the
 

0.999 confidence level; of the remaining 21 points, 16 have power signi­

ficant at the 0.950 confidence level. The binomial probability of this
 

-17
 
being true of noise is only 3..0l x 19 , which means either that the
 

power must not be concentrated in the peaks or that some contamination
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of the peaks into adjacent frequencies is produced by experimental or
 

analytical techniques.
 

The third argument mentioned above is advanced to support the con­

centration of the power into peaks, since the peaks are larger than
 

calculated statistical fluctuations. However, this calculation would be
 

dependent on the assumed level of noise power--the fact that the observed
 

peaks are larger than those calculated would argue just as well for the
 

noise level being larger than adopted as it would for the peaks being of
 

non-statistical origin.
 

By far the most impressive argument for the concentration of power
 

at discrete frequencies is the second one, their repeatability. It is
 

hard to imagine why background noise of instrumental origin should be
 

concentrated in such repeatable peaks. This argument becomes less
 

persuasive, however, if one compares the most recently published power
 

spectrum (Brown et al., 1976) with the one previously published (Hill
 

et al., 1976a). Figure 41 shows a plot of both power spectra to the
 

same scale. Differences in resolution and smoothing of the earlier power
 

spectrum complicate comparison, as does their complexity, so one might
 

see wonderful agreement or absurd disagreement dependingfon one's point
 

of view. A more quantitative approach is to compare the five or ten
 

largest peaks in the interval from 0.7 to 6.0 mHz for coincidences.
 

Lower frequency comparison is excluded by the qualitative differences in 

the two spectra below 0.7 mHz. If one defines a coincidence by having a 

peak in the higher resolution spectrum (that of Brown) within + 1/2 

frequency bin (+ 0.035 mHz) of a peak in the older spectrum (that of Hill),
 

one obtains two coincidences among the five largest peaks and two among
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Figure 41. 	 The dashed line is the SOLERA power spectrum reported
 
in Hill e t al.. (1976a). The solid line is the SOLERA
 
power spectrum reported in Brown et al. (1976).
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the ten largest peaks. The most impressive degree of alignment is obtained
 

for the largest peaks, with the two coincidences of five having a 3.2%
 

probability of chance occurrence if one assumes that there are 14.4
 

frequency bins per mHz (or 76 in the interval from 0.7 mHz to 6.0 mHz).
 

However, closer examination shows the power spectra not to be flat but
 

to be higher at lower frequencies, causing the largest peaks to be con­

centrated at lower frequencies. If one takes only the interval from
 

0.7 mHz to 2.0 mHz there are still two coincidences among the five largest
 

peaks, but since there are now only 19 frequency bins, the probability of
 

chance occurrence is raised to 39.7%. Though Brown selects the largest
 

peaks in terms of height with respect to surroundings rather than absolute
 

height, the same preference of peaks for lower frequencies is still
 

apparent from examination of the published power spectra, which would mean
 

the probability estimate of 5 x 10- 4 is too low. Whether or not such
 

mistakes were made, the agreement between the two power spectra in Figure
 

41 is not impressive. Differences in length of observation, in frequency
 

resolution, and in analysis (subtraction of a parabolic fit in the later
 

power spectrum) do complicate this comparison and could explain dis­

crepancies, but if the details of the power spectra are strongly dependent
 

on the observational parameters or techniques of analysis, any information
 

they contain about the sun will be of limited reliability. This discussion
 

does not pretend to prove that the SCLERA signal is purely noise--it
 

would be hard to prove this even if the original data were available. Nor
 

can the strength of the argument concerning repeatability of peaks in the
 

power spectrum be denied. But in view of questions raised herein, the
 

statistical significance of these peaks does not seem well established.
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And in view of the negative results of other solar observers at similar
 

frequencies, the solar origin of these peaks would still be open to
 

question even if their statistical significance were well proven.
 

The Two-Hour Forty-Minute Oscillation
 

As mentioned previously, it was not possible to completely eliminate
 

slow drifts in the signal which were probably due to shifts in position
 

of the lenses or the polarizing optics (which were caused by the heating
 

effect of the same solar radiation which was being studied). These
 

slow drifts made any general search for oscillations of very small ampli­

tude and long period hazardous. In the present investigation, attention 

was therefore especially directed at attempts to confirm the oscillation 

reported by Severny et al. (1976a and b). This specific search could be 

conducted with greater confidence because not only were the amplitude 

(+ 2 m/s) and period (2 hr 40 min + 0.5 min) published, but informatton 

was also available through private communication regarding the phase of 

the oscillation and the methods of analysis used. 

To limit ambiguity as much as possible in comparing results, data 

reduction and analysis was performed as nearly as possible in an identical 

manner to that used in the Crimea. Data were first multiplied by the
 

calibration factor to convert to m/s. In most of the analysis, they were
 

then multiplied by - 1.68 to correct for different aperture geometries
 

and opposite sign conventions. Five-minute averages were then found for
 

intervals centered on UT times multiples of five minutes, for example,
 

the average of measurements between UT 2147:30 and UT 2152:30 was computed
 

and assigned to the time UT 2150. This averaging was performed both for
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conformity with the procedurb used in the Crimea and to remove most of
 

the effect of five-minute oscillations. Plots of the original observa­

tions were used to identify and remove features in the new five-minute
 

average data set which were obviously spurious. Each observation was
 

then fitted by least squares to a parabola and the fit subtracted.
 

Observations shorter than two hours were excluded from further analysis
 

at this point. The data were then superposed about keytimes at intervals
 

of 2 hr 40 min and the result of this superposed epoch is shown in
 

Figure 42. There is no indication of the sinusoid of amplitude + 2 m/s 

which Severny et al. obtained from a similar analysis. The values obtained 

using the Crimean data for 1975 are plotted for comparison--the 1976 

Crimean results were not used because there were appreciable differences 

between two available copies of the epoch obtained using 1976 Crimean 

observations. Because of the similarity of methods used, the different 

result obtained was unexpected and led to a careful re-examination of 

observations and analysis in search of an explanation. 

Instrumental Differences
 

One experimental detail with potential for error was the calibration
 

factor (see Appendix B). There was some scatter in values obtained in
 

different calibration measurements, and major losses in sensitivity were
 

known to have occurred at times due to a misalignment of polarizing
 

optics. However, the large amplitude of five-minute power observed, in
 

agreement with previous results, makes such a calibration error very
 

unlikely. In-efforts to be discussed below taking all periods between
 

150 and 170 minutes, the largest amplitude sinusoid measured in this
 

range in the present work is still a factor of two smaller than the
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Figure 42. The solid line is the superposed epoch obtained at *a
 
period of 2 hr 40 min using the Stanford 1976 data.
 
The dashed line represents the same superposed epoch,
 
with adjustment for phase, sign, and sensitivity, -for
 
the Crimean 1975 data.
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Crimean result with correction made for different detector geometries,
 

and a multiplication of the calibration factor by two would give a five­

minute oscillation amplitude much larger than expected from other observa­

tions using small or large apertures.
 

Another possibility, suggested by Severny, is that the optical
 

arrangement used at Stanford could produce extreme vignetting which would
 

give large amplitude five-minute oscillatory power but would reduce
 

sensitivity to global modes. This suggestion and experiments made to
 

determine the extent of vignetting were discussed above in the chapter
 

describing the instrument, with the conclusion being that such extreme
 

vignetting was not present (see especially Figures 17 and 18). This
 

result was further insured by the adjustment of the iris diaphragm
 

regularly performed in alignment and calibration to insure equal intensity
 

of light from center and limb portions of the solar image. This intensity
 

balance is consistent with essentially uniform transmission of sunlight
 

out to - 0.8 R0, and would not be possible for transmission limited to
 

a small spot or long sliver on the solar image.
 

Another possible experimental reason for the detection of a 2 hr
 

40 min oscillation at the Crimea but not at Stanford is (the masking off
 

of the outer 0.20 of the sun's radius to insure equal intensities of
 

center and limb light. Severny has suggested that by so doing, the
 

Stanford apparatus might no longer be sensitive to some non-spherical
 

modes. This masking results in the loss of 0.36 of the area of the solar
 

disk and 0.275 of the total sunlight, and might prove especially critical
 

in reducing sensitivity to the predominantly horizontal motions to be
 

expected for the g-mode oscillations which are theoretically expected at
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such long periods. For radial motions having an angular dependence
 

described by spherical harmonics, Table 4 in the previous chapter gives 

the result of calculations of the sensitivity factors for the different 

geometries used at Stanford and the Crimea. The Stanford geometry is 

always less sensitive~than that used in the Crimea, with the worst 

relative loss of sensitivity being 0.596 for the 2 = 0 spherical harmonic. 

In order to make the same comparison for horizontal motion, it was assumed 

that the displacements were again given by spherical harmonics but that 

the motions were tangential rather than radial with amplitude and direction 

given by the negative gradient of the spherical harmonic. The averaged 

velocity signal was weighted by limb darkening, and an ensemble average 

was taken for all possible observer orientations, with orientations
 

being limited to the e = i/2 'plane for normal orientation calculations
 

(corresponding to the mode being aligned with the ecliptic). The results
 

of these calculations are also given in Table 4, with the Y mode excluded
 
21
 

since it is geometrically equivalent to the Y22 mode. The worst relative
 

loss of sensitivity is for the Ylln mode, for which the Stanford geometry
 

is only 0.655 as sensitive. For both radial and tangential motions, cal­

culation of modes only out to R = 2 appears justified s~nce sensitivities
 

become more nearly comparable for higher order modes. When the 200 m/s
 

shift in baseline was noticed-in early July observations, calculations
 

showed that a displacement of the polarizing aperture relative to the
 

solar image capable of producing such a shift would reduce the sensitivity
 

factor for radial oscillations from 0.208 to 0.152. However, when the
 

baseline shift was found to be due to a misalignment of the image slicer,
 

this calculation was redone and the loss of sensitivity was found to be
 

less than 1%.
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Examination of Data Analysis Techniques
 

Since the instrumental differences do not appear to be sufficient
 

to explain the difference in result, the data analysis techniques used
 

were then re-examined to see if a real 2 hr 40 min signal might not have
 

been missed or removed, An easy way such a period could be missed would
 

be if the superposed epoch used to search for the period were.not of
 

exactly the right period. Data from April 13 through August 6 span
 

about 1036 periods of 2 hr 40 min, so a period error as small as 1.0 sec
 

would produce a phase slippage A0 of 17 min. The reduction of amplitude
 

for an arbitrary phase slippage may be obtained from:
 

N At 
= 1 > cos(x + cos(x + 

N N Ai~ 1 

sin(x + Ao)- sin x = si4O2 cos(x + At). 

So a.total phase slippage of AA will produce a shift in the average
 

phase of AA/2 and a decrease in amplitude by (sin At/2)/(AA/2). To be
 

sure of not missing an important period, the superposed epoch was repeated,
 

stepping the period by 0.1 min from 150.0 min to 170.0 min. Any real
 

period could be missed by at most 0.05 min = 3 sec, giving a total phase
 

shift of AA = 51.8 min = 2.034 radians and a reduction of'amplitude by a
 

factor of 0.836, Rather than plot the 201 resulting epochs, each was
 

fitted to a sinusoid of the same period and the harmonic amplitudes are
 

plotted in Figure 43. No single period is clearly outstanding and the
 

largest amplitude is 0.44 m/s. One of the periods yielding this amplitude
 

is 160.3 min, but it is sufficiently different in amplitude (twice as
 

small) and period (0.3 min gives a phase shift of At = 154.8 min for which
 

(sin At/2)/(AA/2) = 0.034) that it is not likely to correspond to the
 

signal reported by Severny.
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Figure 43. Scan of amplitudes obtained by fitting superposed epochs of 1976 
Stanford data at periods from 150.0 min to 170.0 min to sinusoids. 
Values are multiplied by 1.68 t9 correct for different polarizer 
dimensions, 



An estimate of the amplitude of the upper limit indicated by each
 

superposed epoch was also calculated. First, for the number of points w
 

in the epoch window (33 points for a 160 min period), the probability
 

of there being n points more than an error bar from a true signal is given
 

by
 

3 1 7)n (0 .68 3 )w-n
P(nw) . n!(w-n)'. (0 -

W .
 

This number was computed and added starting with n = 0 until the sum
 
k


Z P(n,w) became 0.05, and then k-l gave the largest number of points 
n=o
 

in the window that a curve could miss before the probability of the curve
 

matching the data dropped below 5% (- 2G). At each period between
 

150.0 min and 170.0 min, sinusoids were stepped in amplitude by 0.01 m/s
 

and in phase by 5 min until the largest sinusoid was found which had 5%
 

probability of matching the curve produced by the superposed epoch.
 

Figure 44 shows a plot of the upper limits thus calculated. The largest
 

value obtained in this interval is 0.81 m/s, which is smaller than the
 

value obtained by fitting an epoch of the Crimean data to a sunusoid
 

and much smaller then the + 2.0 m/s amplitude originally reported. This
 

analysis indicates that there is less than a 5% probability that the
 

Stanford data could contain anywhere in the 150 to 170 minute range of
 

periods a signal of the amplitude reported from the Crimea.
 

Another part of the analysis which could conceivably result in loss
 

of a real 2 hr 40 min signal is the removal of a parabolic fit from each
 

observation. To determine the effect of this fit, a sine curve of
 

amplitude 0.75 m/s was added to the data at a period of 160.25 min. This
 

0.75 m/s sine curve was added to data which had not been multiplied by
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the 1.68 sensitivity factor correction, and so would correspond to a
 

1-26 m/s signal for the Crimean geometry. This period was chosen'to be
 

midway between periods used in the epoch analysis so a maximum possible
 

phase slippage would be present, and also was near one of the largest
 

amplitude epochs (at 160.3 min) which gave a stiff test of possible
 

masking of a solar signal by instrumental background. The sine curve
 

was added at four different phases (separated by -g/2) and the fit was
 

then removed and analysis conducted as previously. Figure 45 shows plots
 

of the superposed epoch of the original data and of data plus sinusoid
 

at 160.2 min and 160.3 min. The sine curve shows up clearly for all
 

four phases at 160.2 min, but at the second phase at a period of 160.3
 

min, it is directly out of phase with the instrumental background and
 

the result is a poor sinusoid of amplitude no larger than the original.
 

It is therefore possible that a solar signal as large as 1.26 m/s could
 

be hidden if its period fell exactly between those used in the scan of
 

epochs and if it was adjacent to and exactly out of phase with the largest
 

instrumental signal in the interval.
 

As a test to determine if any period in the interval behaved like a
 

real signal persisting over the full period analyzed, the data were next
 

divided into three equal segments and a similar scan of epochs was
 

performed over each segment to.see if any period was large over all three
 

segments. The largest twenty epochs, measured by the amplitude of the
 

harmonic fit and separately by the amplitude of the P = 0.05 upper limit,
 

were determined for each third of the data and examined for coincidences.
 

It would be expected that any two sets of twenty numbers drawn at random
 

from 200 values would have two in common, and with three independent
 

segments, six double coincidences would be expected. Seven were found
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Figure 45. 	 The top two curves are the superposed epochs obtained at periods of 160.2 and 160.3
 
minutes using the original Stanford data. The bottom eight curves are the same results
 
obtained using data with a 0,75 m/s sinusoid added at a period of 160.25 min at four
 
different phases,
 



using harmonic amplitudes, and eight using upper limits. No triple
 

coincidences were found--in other words, no period was among the largest
 

twenty for all three data segments. For comparison, if the data with
 

added sinusoid was used, the 160.2 min period was among the largest
 

twenty for all three segments and all four phases using both harmonic
 

amplitudes and upper limits. The 160.3 min period was among the twenty
 

largest in 11 of 12 cases using harmonic amplitudes and 10 or 12 cases
 

using upper limits. This result confirms the above conclusion that a
 

0.75 m/s signal (1.26 m/s with the Crimean geometry) could have escaped
 

detection only if adjacent to and out of phase with a large instrumental
 

signal. It would not appear that a larger Signal, such as the + 2 m/s
 

sine curve originally reported by Severny et al. (1976a) could have
 

escaped detection. The publication of smaller amplitude curves for 1975
 

and 1976 (Severny et al., 1976b) and the use of a different definition
 

of amplitude weaken this conclusion, since the 1975 data fit a sine
 

curve of amplitude only 0.84 m/s,, which is only two-thirds of the test
 

signal used and could therefore conceivably be masked by instrumental
 

drifts.
 

Second Examination of Data Analysis Techniques
 

An unusual opportunity to compare the Stanford result with that of
 

the Crimea has been afforded by an exchange of data between the two
 

observatories, which was suggested by John M. Wilcox. The resulting
 

correspondence also resulted in a re-examination of the Stanford analysis.
 

The first step in this process was a letter suggesting the exchange sent
 

from Stanford to the Crimea, along with the Stanford data. The first
 

response received was a telegram reporting that the 2 hr 40 min
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oscillation was seen clearly in the Stanford data. In order to determine
 

whether this signal could have been missed due to a computer programming
 

error, Philip H. Scherrer wrote independent programs to reproduce the
 

analysis described above. Using the Stanford velocity data with parabola
 

fit subtracted, superposed epochs were produced at periods from 158.5 min
 

to 161.5 min in steps of 0.1 min and the previous results and conclusions
 

were confirmed. In order to investigate the possibility that the parabola
 

fit was somehow removing a real signal, Dr. Scherrer then repeated the
 

analysis, but instead of subtrncting a fitted parabola from each obser­

vation, he removed only the observational mean. The resulting superposed
 

epoch is shown in Figure 46. There is a roughly sinusoidal signal which
 

fits a sinusoid of amplitude 0.87 m/s. Repeating the superposed epoch
 

at adjacent periods in steps of 0.1 min revealed the highest peak to be
 

of amplitude 1.08 m/s and period 159.9 min. The harmonic amplitudes
 

were computed between 150.0 min and 165.0 min and the spike at 159.9 min
 

was found to be outstanding, with a 4 o significance estimated by Leif
 

Svalgaard. A solar origin was suggested by the near coincidence with
 

the Crimean period of 160.0 min and by apparent phase agreement in the
 

two results.
 

This apparent confirmation of the Crimean result did not account for
 

the absence of any significant 2 hr 40 min signal in the Stanford data
 

with parabola removed, especially in view of the ability of an artificial
 

signal inserted at 160.25 min to survive the fit subtraction process.
 

Closer examination also showed the apparent phase agreement to be disagree­

ment since opposite signs were used at the two observatories. Since
 

160.0 min is exactly one-ninth of a day, an investigation of the
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Figure 46. Superposed epoch of Stanford 1976 data at 160
 
minutes with the mean, rather than a parabola,

subtracted from each observation. Values have
 
been multiplied by -1.68 to match the Crimean
 
sign and correct for different polarizer
 
dimension.
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relationship between the daily trend, as shown in Figure 20, and the
 

apparent 2 hr 40 min signal led to a convincing alternate explanation.
 

Plotting the daily trend in nine 2 hr 40 min pieces showed most of the
 

data to be in a five-hour section of the afternoon, where the signal is
 

declining. Superposition produces a smoothed sawtooth with 2 hr 40 min
 

period. Proof that such a mechanism could produce the observed result
 

was obtained by replacing the actual observations with a fit of the
 

daily trend to a sinusoid of 12 hr period. A very similar 2 hr 40 min
 

signal was produced'. It was demonstrated that this was the responsible
 

mechanism by smoothing the data (using the data set with the mean
 

subtracted from each observation) with four-hour high- and low-pass
 

filters. As Figure 47 shows, the 2 hr 40 min signal was clearly present
 

when the low-pass filter was used and nearly absent when the high-pass
 

filter was used, which demonstrates that the apparent 2 hr 40 min peak
 

was produced by variations in the data of period longer than four hours.
 

A more general conclusion is that any period that is an integer fraction
 

of a day should be regarded with suspicion, especially when daily trends
 

are present and the observations are evenly spaced about a day apart.
 

Stanford Analysis of 1975 Crimean Data
 

The second communication received from the Crimea contained the 1975
 

Crimean velocity data. Examination of the Crimean data showed there to
 

be present baseline shifts of very large amplitude (the recorded raw
 

velocity signal covered a range of 1000 m/s) and.slow drifts of variable
 

amplitude and no obvious diurnal pattern. The test described in the
 

Nature-article (Severny et al., 1976a) of observing in a telluric line
 

to show that slow signal variations are of solar rather then instrumental
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origin does not preclude an instrumental origin related to guiding
 

errors or atmospheric transparency fluctuations (as described in detail
 

above with relation to the Stanford instrument) since the wavelength of a
 

telluric line does not vary with position on the disk due to rotation as
 

does the wavelength of a line of solar origin. Since the drifts do not
 

show a simple daily variation, guiding errors, if present, would have to
 

be of a very different character from those'at Stanford. Electronic
 

drifts could also be the source, as could polarization changes which could
 

more easily enter the signal since limb light enters the Crimean instrument
 

unchanged, though drifts produced by polarization changes should be of
 

smaller amplitude'and more regular daily variation than the observed
 

drifts. Whatever the origin, these drifts and baseline shifts are of
 

much larger amplitude than the reported signal and could not be of solar
 

origin.
 

The data were analyzed in the same manner as the Stanford data, and
 

the 160 min peak was clearly present with the reported phase and ampli­

tude. For purposes of comparison the Crimean and Stanford results are
 

plotted on the same graph in Figure 42, with the UT phase adjusted to be
 

the same, the Stanfordsign reversed for agreement, and the Stanford
 

amplitude multiplied by 1.68 to correct for different aperture geometries.
 

The reported Crimean amplitude had been obtained by taking the average
 

of the maximum and two adjacent points and the minimum and two adjacent
 

points from the superposed epoch curve. If the curve is instead fit to
 

a sinusoid, the amplitude is only 0.84 m/s which is small enough to be
 

hiddenby instrumental drifts in the Stanford data, judging from the
 

results obtained using the data with 0.75 m/s sinusoid added at a period
 

of 160.25 min.
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However the amplitude is defined, it is readily apparent that the
 

Stanford result is negative. As mentioned above, a comparison with the
 

1976 Crimean result was not made in Figure 42 because there are differences
 

in two available reports of the epoch obtained using 1976 observations,
 

and the data itself was not available for comparison. Both epochs do
 

show a signal at 2 hi- 40 min in phase with the 1975 signal. Though the
 

amplitude is smaller for 1976 than for 1975, it is still large enough
 

to make it unlikely that the absence of signal in the 1976 Stanford data
 

could be explained by a secular change in a real solar oscillation.
 

Further examination of the Crimean data set showed that the 160 min
 

signal was not produced by longer period diurnal drifts. The first
 

indication of this fact was that the plot of the daily pattern of data
 

with parabola removed (Figure 48c) had the character of a noisy and
 

interrupted 2 hr 40 min sinusoid rather than a simple inverted U. Further­

more, if the original data were filtered with a 3 hr 20 min low-pass filter
 

before the parabola was subtracted, the 160 min signal virtually dis­

appeared. However, if fits of polynomial order from zero to three were
 

subtracted and epochs were produced at periods from 115 min to 245 min,
 

it was found that the 160 min period was not exceptional. In addition,
 

it was found that the very process by which data were collected and
 

analyzed could easily result in large signals falling in a certain frequency
 

range, particularly if those periods were integer fractions of a day.
 

To show how this could occur, refer to Figure 48. Figure 48a shows
 

the superposed epoch of the Crimean data about keytimes at UT1200 with
 

a zeroth order polynomial (the mean) subtracted from each observation.
 

Though daily variations are not as regular or repeatable as with the
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Figure 48. 	 The curves at the left are plots of the 1975 Crimean data
 
as a function of time of day with (a) the mean, (b) a linear
 
fit, (c) a parabolic fit, and (d) a cubic fit subtracted
 
from each observation. The curves at the right are the
 
amplitudes of superposed epochs obtained at periods from
 
115.0 min to 245.0 min using the same data with corresponding
 

fits subtracted.
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Stanford data (see Figure 20), they are of sufficient repeatability for
 

67.2% of the points to be different from zero by more than an error bar.
 

The daily trend has a sinusoidal character of period near 4 hr 20 min.
 

It is reasonable to expect that if continuous data were available and
 

no mean were removed, the fluctuations would be of indefinitely increas­

ing amplitude for longer periods. Since observations were of average
 

length 260 min (median length = 215 min), longer periods are filtered
 

out by subtracting the mean, and a broadband peak is produced around
 

four hours. In addition, since observations are limited to daylight hours
 

and diurnal variations are somewhat repeatable, periods near four hours
 

that are integer fractions of a day will be especially favored since
 

they will be in phase with the diurnal pattern from one day to the next.
 

The result is that the scan of superposed epochs in period (Figure 48e)
 

has a very prominent peak of amplitude 6.08 m/s at 240 min (one-sixth
 

of a day). If the scan is extended to 295 min, the second and third
 

largest peaks are at 285 min and 288 min, with the latter being exactly
 

one-fifth of a day.
 

When a first order polynomial fit is removed (Figure 48b) the
 

amplitude of daily variations is reduced with longer periods especially
 

filtered. The scan of epochs (Figure 48f) shows that the 240 min peak
 

is no longer present, and features at 144 min (one-tenth of a day),
 

160.5 min (near one-ninth of a day) and 179.5 min (near one-eighth of
 

a day) are now locally prominent. When the parabola fit is removed, the
 

daily variation (Figure 48c) has excursions of period near 160 min. The
 

scan of periods (Figure 48g) has its three largest peaks at 200 min,
 

144 min, and 160 min in that order, with the latter two being at one­

tenth and one-ninth of a day respectively. The daily variation with
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cubic fit removed (Figure 48d) shows variations of still lower amplitude
 

and higher frequency. The 160 min peak is now the eighth largest out
 

of the 261 surveyed, with six of the seven that are larger falling at
 

periods from 132 min to 149 min.
 

The picture that emerges is that subtraction of polynomial fits of
 

successively higher order results in low-pass filtering leaving broad­

band peaks at successively shorter periods. Some periods stand out
 

because of statistical fluctuations, and periods which are integer
 

fractions of a day are especially likely to be selected because of
 

daily data sampling and recurring daily variations.
 

Though a statistical explanation exists for the reported 160 min
 

signal, it is difficult to prove on the basis of available information
 

that the observed signal is of statistical origin. The report by the
 

Crimean group of 144 min and 180 min peaks is consistent with the ex­

.planation developed above, though it is 
also true as they suggest that a
 

solar pulsation of 160 min would produce ghost signals at 144 min and
 

180 min because of the daily observing pattern. One would then be left
 

with the difficulty of determining which period is a ghost and which is
 

real. The 6.08 m/s, P = 240 min signal in the data with mean removed
 

cannot be explained as a ghost of the 0.82 m/s, P = 160 min'signal
 

present in the data with parabola removed. The large signal present
 

at 240 min clearly demonstrates that the statistical mechanism outlined
 

above for enhancing integer fractions of a day does operate. The near
 

phase constancy from year to year in the Crimean signal could also be
 

explained by diurnal patterns introduced by the instrument, although if
 

the signal continues to advance in phase by 15 minutes each year
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(Severny et al., 1976b) a solar origin would be favored. If the 160 min
 

signal is a statistical artifact, statistical fluctuations should cause
 

it to be absent in some of the data. Examination of the 1976 Crimean
 

epoch (Figure 7 of Severny et al., 1976b) does indeed show the "signal"
 

to be very poorly defined--fully twelve of the sixteen points in the
 

epoch are within an error bar of zero, which is more than the 68.3% one
 

would expect from a normal distribution. One cannot rule out a real
 

decline of a real 160 min solar signal between 1974 and 1976, though the
 

observed decrease of the 160 min signal does favor the statistical ex­

planation. In the absence of a clear test, if a statistical origin for
 

a signal can be found, it should be favored over a physical explanation,
 

though it would be much more satisfying to demonstrate conclusively
 

which explanation is correct.
 

Crimean Analysis of Stanford Data
 

Further filtering and fitting is not likely to settle the question
 

of the source of the Crimean signal, which makes the Stanford attempt at
 

confirmation even more crucial. The third correspondence received from
 

the Crimea detailed the report in the earlier telegram that a positive
 

signal had indeed been found in these data. The Stanford data had been
 

correctly multiplied by -1.68 to correct for changes in sign and geometry.
 

More important, the observations were examined critically to determine
 

whether or not they were of smooth parabolic form, and those that were
 

not were either shortened by editing or were fit with two parabolas.
 

In addition, the data was split into three pieces, consisting of the
 

intervals April 13 - May 31, June 1 - June 24, and July 1 - August 6.
 

The result was that the null result obtained at Stanford was also obtained
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in the Crimea for the second interval, a marginal signal was present in
 

the first interval, but for the third interval, a large signal was
 

present which agreed in phase with the Crimean result. The importance
 

of this segment was amplified by multiplying the measured velocity by
 

4/3 since early calculations at Stanford suggested the misalignment in
 

the image slicer present in July would reduce sensitivity to a radial
 

pulsation by 3/4. The third segment was also edited much less extensively
 

than the previous two, since it was felt to be of higher quality. Using
 

the edited data set with data from July 1 onward multiplied by 4/3, an
 

impressive sinusoid was obtained for the full data set with 2 hr 40 min
 

period and phase agreeing well with the Crimean phase.
 

Since the calculation of a loss of sensitivity by 25% was incor­

rectly based on the assumption that the observed shift in baseline was
 

due to a displacement of the polarizing aperture relative to the solar
 

image, this calculation was redone assuming a displacement of light off
 

of the Littrow lens, and the result was a loss of sensitivity of less
 

than 1%. The Stanford data were edited to duplicate the Crimean work,
 

and without multiplying the July measurements by 4/3, the result shown
 

in Figure 49 was obtained for a 160 min epoch. Though the amplitude is
 

still less than a third of that obtained with the Crimean data (including
 

correction for aperture geometries) the sinusoidal character and agree­

ment with the Crimean phase are impressive. Epochs were produced at
 

intervals of 0.1 min in period for periods from 150.0 min to 170.0 min,
 

and the peak at 160.0 min was now visible, though only the seventh largest
 

in the interval.
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Figure 49. The solid line is the superposed epoch obtained at
 
160 min vith the Stanford 1976 data as edited at the
 
Crimea. The dashed line is the result obtained using
 
the 1975 Crimean data. Correction for sign, phase,
 
and aperture geometry has been made.
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The difference in amplitude remains a problem and could not be
 

explained by a calibration error without making the amplitude of five­

minute oscillations much too large. There are two other difficulties
 

with this apparent confirmation of the Crimean result--the data sub­

division test, and the means by which it was obtained. If the Stanford
 

data are divided into three intervals as was done in the Crimea, it
 

becomes apparent that the 160.0 signal is primarily due to a signal of
 

amplitude 0.57 m/s present in the-third interval of data, from July 1
 

onward. The data before July 1 fit a sinusoid of amplitude 0.11 M/s
 

and are out of phase with the July data by 700. The epochs at 160.0 min
 

for data before and after June 30 are shown in Figure 50. A real change
 

in the sun over this period is not likely to explain the different result
 

because Crimean observations from April 26 to July 8, 1976 give a positive
 

result. For the 160.0 minute signal to be produced by only one-third of
 

the data makes the reality of this signal very questionable unless there
 

is something about the July observations which makes them superior.
 

Examination shows the opposite to be the case. Mathematically, the average
 

variance of the July epoch using unedited data is 2.854 (m/s)2 compared
 

with 2.062 (m/s)2 for the earlier data, and this comparison becomes
 

worse with editing since the July data was edited much less--its variance
 

becomes 2.395 (m/s)2 compared with 1.254 (m/s)2 for the earlier data.
 

Experimentally, the July data are less trustworthy since they were taken
 

when the image slicer was misaligned, resulting in lost light,, uneven
 

weighting of the disk and a sizable baseline offset. In addition, the
 

July data were taken with dangerous regularity, being confined to just
 

over six hours in the afternoon and with only seven days missed out of 36
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Figure 50. 	 Superposed epochs obtained at 160 min using the Stanford
 
data with Crimean editing. The top curve is for data
 
before June 30, the bottom curve is for data after June 30.
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(only 3 of the first 27) which make these data particularly susceptible
 

to enhancement of'periods that are integer fractions of a day. In fact,
 

larger signals (0.67 m/s and 0.69 m/s) were present at 120 min (one­

twelfth of a day) and 144 min (one-tenth of a day) than at 160 min.
 

The data are very sensitive to editing changes--only six of the
 

twenty-nine July observations were edited with a net loss of 43 five­

minute averages out of 1475 (2.9% of the data) and the amplitude of the
 

160.0 min signal was changed from 0.24 m/s to 0.57 m/s. When epochs
 

were produced at each period in steps of 0.1 min from 150.0 min to
 

170.0 min, the 160.0 min epoch is the seventh largest for the edited
 

data set, but ranks 164 out of-201 for the original data set. Two
 

mechanisms would tend to filter the' data to select the observed signal.
 

One is the shortening of the data by editing and especially by fitting
 

some data sets to two parabolas. The result is a suppression of lower
 

frequencies which changes the period of variations in the diurnal signal
 

from - 4 hr to 120-140 min.
 

The other effect is the subjectivity of the editing procedure. The
 

advantage of the Kotov subtraction technique is its ability to distinguish
 

between changes in wavelength of solar and instrumental origin, since
 

many kinds of instrumentally produced changes in wavelength affect center
 

and limb light equally and will be removed by subtraction. If differen­

tiation between solar and instrumental changes is based on the judgment
 

of the observer, two factors likely to affect this judgment are the
 

"smoothness" of the data and the regularity of the variation. 
Selection
 

by smoothness results in broad-band filtering in the frequency domain,
 

and selection by regularity favors enhancement of daily patterns with
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resultant enhancement of integer fractions of a day when observations
 

and patterns are sufficiently regular. The safest approach is to use
 

all data without a known instrumental pecularity, which iii this case
 

could have been used to justify exclusion of the July data and consequent
 

elimination of the 2 hr 40 min signal.
 

It is hoped that someone, somewhere will have the experimental skill
 

and patience to reproduce this observation without the instrumental drifts
 

so that no editing or fitting need be used. Until that time, the Crimean
 

report of a 2 hr 40 min solar pulsation remains unconfirmed but intriguing
 

on theoretical as well as observational grounds, especially by virtue of
 

its coincidence with one-ninth of a day..
 

183
 



CHAPTER IV 

SUMMARY AND CONCLUSIONS 

The most important results of this investigation can be expressed
 

very simply in terms of the three things which were not observed--large­

scale organization of five-minute oscillations was not observed, oscil­

lations at periods from five to seventy minutes were not observed, and
 

two-hour forty-minute oscillations were not observed. Rather than con­

clude this investigation on such a negative note, some of the positive
 

findings of this study should be mentioned.
 

First, the velocity subtraction technique developed by Valeri A. Kotov
 

has been found to be a sensitive and useful technique. The subtraction
 

was quite successful both in reducing the deviations in the five-minute
 

period range caused by convection in the spectrograph, and in removing
 

the longer period drifts produced by grating drifts, changes in spectro­

graph temperature or pressure, and the earth's rotation. The remaining
 

low-frequency drifts could probably be reduced by positioning guiding
 

diodes at the image used for observations and by using a larger Littrow
 

lens or a smaller image to reduce the possibility of losing light off
 

the edge of the Littrow lens. If such adjustments did not succeed in
 

reducing slow drifts, the hypothesis favored herein that these drifts
 

are caused by relative shifts of different optical elements would have
 

to be discarded and another explanation found.
 

184
 



Other measurements might also be performed using similar subtractive
 

techniques. A quarter-wave plate and two semicircular linear polarizers
 

oriented at +450 and -450 could be used to look for 2=1 modes of solar
 

pulsation. Apertures could also be designed to look for other possible
 

pulsational m6des or other large-scale motions such as meridional fibws:
 

Optical subtraction could be used to produce the filter which Fossat and
 

Martin (1974) designed to select a particular horizonal wavenumber, thus
 

permitting mapping of the oscillatory power in the k- plane. The finite
 

Fourier transform used by Hill et al. (1975) to define the position of the
 

solar limb could be calculated directly by optical subtraction, with
 

resultant advantages in light levels and instrumental simplicity over the
 

scanning and minicomputer calculation presently employed.
 

It is because of the sensitivity of the subtractive technique that
 

it has been possible to confirm the result of Fossat and Ricort (1975a)
 

that five-minute oscillations can be observed over the full disk. The
 

observed amplitude of 2.0 m/s is consistent with a large horizontal
 

scale of over 20000 km, and argues in favor of a global rather than local
 

excitation mechanism. The longer period reported here as compared with
 

previous measurements is an interesting result, though of unknown signifi­

cance. The suggesti~n given herein that the longer period is associated
 

with the large aperture used should be confirmed by observations in a
 

singl& lind over a large range of apertures. Until such confirmation
 

exists, this result is not well-established.
 

The significance of the observed lack of large-scale orgaiiization
 

of five-minute oscillations with respect to sector boundaries is somewhat
 

dependent on the establishment of a clear physical connection between the
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oscillations and coronal heating. If such a connection exists, it
 

follows from the present study that the high coronal emission observed
 

near sector boundaries (Antonucci and Duvall, 1974) and the high solar
 

wind velocities and coronal holes found in the center of sectors (Sawyer,
 

1976; Wagner, 1976) are more likely to be the result of different
 

magnetic field geometries than of different energy input. The fact that
 

coronal temperatures and solar wind velocities are organized with relation
 

to sector boundaries while five-minute oscillations are not (to the limits
 

of detection of the present study) does not preclude the possibility
 

that five-minute oscillations are the agent responsible for heating the
 

solar corona. Magnetically determined differences in energy loss from
 

the corona could still explain the observed large-scale structures even
 

if the energy input were uniform (Adams and Sturrock, 1975; Rosner and
 

Vaiana, 1976).
 

The work described herein on the oscillations at periods from five
 

to seventy minutes reported by Hill and co-workers is not likely to
 

terminate conclusively the discussion of these oscillations. Future dis­

cussion should not focus on differences between the eigenfunctions cal­

culated by Hill and those described herein as based on the work of Noyes
 

and Leighton (1963). Both calculations lead to difficulties in attempts
 

to reconcile Hill's measurements with those of observers using spectral
 

techniques--Hill's enhancement factors predict more power at five than
 

at ten minutes, at variance with his observations, and present calculations
 

suggest that a large proportion of the downward propagating solution would
 

produce much greater increases of five-minute amplitude with height than
 

are observed. Though these represent serious discrepancies, Hill and
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colleagues have in the past demonstrated great capacity to explain the
 

failure of other observers (Brookes et al., 1976; Grec and Fossat, 1976;
 

Livingston et al., 1977; Musman and Nye, 1976a and b) to confirm his
 

results. Plausible explanations will therefore probably be devised for
 

the lack of a five-minute resonant bump in the SCLERA power spectrum,
 

for the limited growth of five-minute amplitude with height, and the
 

limited agreement in the two power spectra which have been published by
 

the SCLERA group (Hill et al., 1976a; Brown et al., 1976). Ability to
 

explain a .lack of confirmation is much less convincing than actual con­

firmation would be. Future efforts should probably be devoted not only
 

to determining whether or not Hill's explanation can account for the lack
 

of confirmation in past experiments, but also to predicting what future
 

experiments can be made to confirm Hill's observation if his explanation
 

is correct. For example, if his explanation is correct, velocity and
 

temperature fluctuations should have much greater amplitudes for higher
 

than for lower lines, and the enhancement should be substantially greater
 

for longer periods (- 40 minutes) than at five minutes. Observations
 

should be able to determine whether or not this is the case.
 

The analysis described herein at periods longer than two hours shows
 

that daily observing patterns and diurnal variations can produce impressive
 

signals at periods which are integer fractions of a day. There is, of
 

course, no reason why the sun should be prohibited from oscillating at
 

such a period. If Crimean observations are continued in 1977, it will
 

be interesting to see if the amplitude continues to decline as it did
 

from 1974 to 1976, and to see if the phase continues to advance by 14 min
 

per year. The lack of confirmation with the Stanford instrument raises
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serious doubts about the solar origin of the reported signal. It would
 

be interesting to analyze the Crimean data for 1974 and 1976 to see if
 

the statistical explanation developed herein can account for the observed
 

signals. If sufficient interest and controversy remain to justify
 

further observations at Stanford, these should be done with identical
 

aperture geometry to that used in the Crimea and over the same time
 

interval so that ambiguities of interpretation could be minimized.
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APPENDIX A
 

DERIVATION OF THE CALIBRATION EXPRESSION
 

It is convenient for calculations of instrumental sensitivity to
 

assume triangular line profiles and point slits., The slits are referred
 

to as R and B (red and blue) and the circular polarizations are abbreviated
 

by + (rcp) and - (lcp). For convenience, I + continuum intensity is
 c 

designated by Il, with B1 and R1 the intensities measured by blue and red
 

slits respectively Ic 2 I3 and IY+ 14. Using these defini­slitIresectieIys 14 

tions, the three fundamental signals are: 

Intensity = (B1 + R1 + '2 + R2 + B3 + R 3 '+ B4 + R4)/2 

DC Difference = (B1 + B2 + B3 + B4 ) - (R 1 + R 2 + R 3 + R4 )
 

AC Difference = Zeeman = (BI + B4 -R 1 - R4 - (B2 + B3 - R2 - R).
 

The ratio of core to continuum intensity is denoted by Io, and the
 

slope by mIont so the intensity A% from the line core is given by
, 


(I + mjAxj)I cont. Line core for light from the center of the disk is
° 

designated by Xc, for the limb by Xl, and the slits are at X ± A/2. 

If X >X > and AX/2 >X. -X c, it follows that 

B1 = (I- mA= (1 - m [ ° -AX/2 -xc)1 2
 

B3 = (I° - m [x0 - AX/2 - X0)I3 B4 = (I - m [xo - AX/2 - x )I4° 


R (I° + m [% + AX/2 - X ])ll R2 = (1° + m D.0 + AV2 - Xc]),2 

R3 = (I + m [x° + AX/2 - X 3)1, R4 = (I + m X 0 + AX/2 - X ])14° ° 
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Using these values, the three fundamental quantities become:
 

Intensity = (210 + mAX)(I1 + 12 + 13 + 14)/2
 

DC Difference = -2m(% - Xc)(I + I )-2m(X - X )(I + I4) 
o C 1 2 0o . 3 4 

Zeeman = 2m(X° - XC)(12 - 1)+2m(>, - Xo)(I4 I3) 

A fourth useful quantity is the ratio Zeeman/Intensity = ZI, which 

now becomes: 

4m (=4 -X )(I 2 - I1) + 4m(X - Xe)(I - 13) 

(21 + nAX)(I 1 + 12 + 13 + 14) 

When calibrating the center, the limb is masked off so 13 = 14 = 0.
 

A known wavelength shift is introduced'(AXcalib) = (X° - Xc), and some
 

ZI value K is measured, given by:
 

I)
K 4m(Acalib)(12 ­

(21 + mAX)(I 1 + 12)
 

This expression can be inverted to give 4m/(2Ie + mAX) in terms of
 

measurable quantities, which changes the expression for ZI to:
 

K( 1 + 12) 0oc) 2-I+4-3)
A Xcal ib( 12-11) 11 
 1 + 12 + 13 + 14
 

In normal operation, the servo nulls the DC Difference signal, so it
 

follows that
 

(I I + 12) 

(X -X) I + 1 2) (X - )

29 0 (3 + 14) 0 

Substitution and manipulation yields the expression 

ZI(AXcalib) (12 - I1)(I1 + 12 + 13 + 14)
2 

(X XC = K 2(11 + I2)(I412 - II I ) 
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For limb calibration,.I1 and 14 are interchanged as are 12 and 13' and
 

the expression remains the same with the exception'of replacing
 

(12 - If) (Is -I4 

(12 + II) (13 + £4)
 

For perfect polarizers and perfec't alignment, 12 = 14 = 0 and 1 3 I
1
 

and both expressions reduce to:
 

ZI(Acalib 2
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APPENDIX B
 

THE SEPTEMBER 13, 1976 ALIGNMENT AND CALIBRATION
 

Calibration of the instrument requires a knowledge of the dispersion
 

of the spectrograph at 5124 A. This was measured on July 21, 1976, and
 

was notlrepeated since the measurement showed good internal agreement
 

and since routine measurement of the dispersion at 5250 A had previously
 

demonstrated that variations are small. The dispersion was measured by
 

allowing the exit slit servo to lock on different lines near FeIX5123.730
 

and recording the encoder position. The values obtained (averages of
 

two readings) were:
 

M(A) Encoder Position 

5123.730 398940 

5126.199 447855.5 

5127.368 471096.5 

5123.730 398937 

5121.649 357410 

5123.730 398295 

From these measurements, the'Doppler encoder was calibrated in terms 

of wavelength, which in turn was converted to velocity in m/s using the 

classical Doppler shift expression,"v/c = AX/x. 
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Encoder Velocity (m/s)
 
l
 

Line Pair AX(A) Shift (Encoder Unit)­

5123.730 - 5126.199 2.469 48915.5 2.9533
 

5123.730 - 5127.368 3.638 72159.5 2.9499
 

5123.730 - 5121.649 2.081 41527 2.9321
 

5123.730 - 5121.649 2.081 41519.5 2.9326
 

average = 2.9436
 

-
Hence the value 2.94 m/s (encoder unit) was used for the dispersion.
 

The standard calibration procedure was followed on September.13, 1976,
 

which included measurement of the calibration constant, realignment of
 

polarizers and iris diaphragm, and a second measurement of the calibration
 

constant. To measure the calibration constant, it was first necessary
 

to measure the intensity of right and left circularly polarized light
 

passing through center and limb. Intensity measurements were made with
 

the exit slits 24400 encoder units (1.228 A) to the blue from 5123.730
 

line center. Because of difficultes in directly separating center and
 

limb light due to the bevelled edge of the half-wave plate, this separa­

tion was done mathematically as explained below. 

First, the full aperture intensity was measured (here + means right 

circularly polarized and - means left circularly polarized) 

(Ic+ 1 ) 643, (I + 1 ) + 585c 

c +g c) 

Next, masks were used to allow light to pass only through first the
 

center, then the limb. In order to insure that only center or limb
 

light was passed, the masks were made smaller than the full center or
 

limb aperture:
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= 7, = 292, so I I =i i = 7/292 

=370, 4 3, so /4 /i 0 

So the lep equation above becomes:
 

Ie +1=7/292 1+ + 370/3 1+=643.
c9c 

This may be solved with the rep equation to obtain:
 

I+ + 
= 579.9, I = 5.1.
c 

Substitution then yields
 

i = 7/292 I*c = 13.9, = 370/31= 629.1 

It follows that the intensity factor in the equation derived in Appendix A
 

has the value 1.970 for the,center, and 2.034 for the limb.
 

The effective slope of the absorption line was next measured by
 

moving the exit slit a known number of encoder units off of line center
 

and recording the ZI signal, then repeating symmetrically in the opposite
 

direction. The values obtained were as follows:
 

Encoder
 

Shift ZI Value
 

center 100 10.507
 

200 20.314
 

500 47.329
 

limb 100 10.458
 

200 20.521
 

500 47.975
 

Using the values obtained for an encoder shift of 100 units, it 

follows that for the center, 1 ZI unit 0.0952 encoder units = 
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28.015 m/s x (1.970) = 55..20 m/s,-and for the limb, 1 ZI unit = 0.0956 

encoder units = 28.02 m/s x (2.034) = 55.20 m/s. 

To perform the realignment, the aperture is first centered on the
 

solar image. The mask is next inserted to pass only center light, and
 

the KDP voltage is set to pass only lcp light. The linear polarizer is
 

then rotated to minimize the transmitted light as read on an oscilloscope,
 

which insures that the center passes rcp light and the limb passes lop
 

light. The mask is then removed, the KDP modulation turned on, and the
 

iris diaphragm is adjusted to eliminate the square wave in intensity,
 

again read on an oscilloscope, thus insuring equal intensities of rcp and
 

lap light, and hence of center and limb light. After the realignment
 

performed on September 13, 1976, the calibration constant was remeasured
 

as follows:
 

(Ic + I )+ = (I = 569169 + I ) 

= 287/2 1/1+ = 355/4 

So + 562.633, I- = 3.921, I = 6.367, and I = 565.079.c c22 

The intensity factors are 2.0086 for the center and 1.9914 for the
 

limb. The ZI values for displacements of 100 encoder units were 11.166
 

for the center and 11.403 for the limb. It follows that 1 ZI unit is
 

equivalent to 52.950 m/s for the center and 51.408 m/s for the limb. The
 

calibration factor generally showed good agreement from one measurement
 

to the next, and an overall average value of 54.4 m/s was used in the
 

analysis.
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