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APPLICATION OF SYSTEM IDENTIFICATION TO ANALYTIC ROTOR MODELING

FROM SIMULATED AND WIND TUNNEL DYNAMIC TEST DATA

Part II of Final Report under Contract NAS2-7613

Abstract

This report begins with an introduction to aircraft state and parameter
identification methods. A simplified form of the Maximum Likelihood method
is selected to extract analytic;l aerocelastic rotor models from simuiated
and dynamic wind tunnel test results for accelerated cyclic pitch stirring
excitation. The goal is to determine the dynamic inflow characteristics
for forward flight conditions from the blade flapping responses without
direct inflow measurements. The rotor blades are essentially rigid for
inplane bending and for torsion within the frequency range of study, but
flexible in out-of-plane bending. Reverse flow effects are considered for
high rotor advance ratios.

Two inflow models are studied; the first is based on an equivalent
blade Lock number, the second is based on a time delayed momentum inflow.

In addition to the inflow parameters, basic rotor parameters like the blade
natural frequency and the actual blade Lock number are identified together
with measurement bias values. The effect of the theoretical dynamic inflow
on the rotor eigenvalues is studied. A relation between the accuracy of
the idecrtified parameters and the length of the input data is established in
simulation studies.

It is found that the first inflow model using an optimized equivalent
blade Lock number is very accurate for rotor advance ratios of .4 and above,
while for lower advance ratios, the second inflow model using a time
delayed momentum inflow provides better accuracy. For the first inflow
model the identified equivalent lLock number deviates systematically from
theoretical values established in the literature. The identified analytical
models are verified by predicting the test results not used in the

identification process.



Preface to Final Report under Contract NAS2-7613

Work under Contract NAS2-7613 started on July 1, 1973. _The contract
was originally awarded for a 3 year period. |

Due to the slower than anticipated progress of the experimentaf work,
not all research goals had been achieved by 30 June 1976. Since less than
the anticipated cost for personnel and equipment had been spent, the
research contract was extended by a year without increase in funding.

The research goals as stated in the ccntract were:

(a) Assess analytically the effects of fuselage motions on stability
and random response, The problem is to develop an adequate but not
overly complex flight dynamics analytical model and to study the
effects of structural and electronic feedback, particularly for
hingeless rotors,

(b) Study by computer and hardware experiments the feasibility of ade-
quate perturbation models from non-linear tri-» conditions. The
problem is to extract an adequate linear perturbation model for the
purpose of stability and random motion studies. The extraction is
tc be performed on the basis of transient responses obtained either
by computed time histories or by model tests.

(c) Extend the experimental methods to assess rotor wake-blade
interactions by using a 4-bladed rotor model with the capability
of progressing and regressing blsde pitch excitation (cyclic pitch
stirring), by using a 4-bladed rotor model with hub tilt stirring,

and by testing rotor models in sinusoidal up or side flow.



Including the final report, 10 reports under Contract NAS2-7613
have been submitted. They are listed as P. 1 to P. 10 at the end of
the Preface. P. ) and P. 10 pertain to research goal (a). P. 2, P. 4,
P. 6, P, 7, P, 8, P. 9, pertain to research goal (b). P. 3 and P. §
pertain to research goal (c). The latter is not as yet complete since
neither hub tilt stirring nor testing is sinusoidal up or side flow
has been performed. While P. 10 describes only work done during FY 1977,
P. 8 and P. 9 combine both FY 1977 work results and summaries of earlier
results, so that the three parts of the Final Report can be read without
recourse to the earlier reports. P. 8 includes much new material not
available when the preceding Yearly Report P. 7 was written. The
experimental data of P. 9 have all been obtained in FY 77.

So far 3 publications came out of the research under Contract NAS2-7613.

They are listed as P. 11, P. 12, P. 13.
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APPLICATION OF SYSTEM IDENTIFICATION TO ANALYTIC ROTOR

MODELING FROM SIMULATED AND WIND TUNNEL DYNAMIC TEST DATA

1. INTRODUCTION

System Identification is a method of correlating a mathematical
model of a system with transient responses obtained either
experimentally or from the time history of a more complete analytical
model of the system. It is particularly useful if a linear
perturbation model of a basically non-linear system is to be identified.

Methods for state and parameter estimation from transients are
widely used in aircraft testing (1)*, (2), (3) and (4). The problem
is to obtain optimum estimates (based on certain performance criteria)
of initial states and of unknown parameters (derivatives) from noisy
measurements of some inputs and response variables. In most cases
of airplane parameter identificatior a constant coefficient system
is used as an analytical model. Foxr lifting rotor applications,

a periodic coefficient system model may be required (5).

*The numbers in parantheses in the text indicate references in
the Bibliography.



While the identification of stability and control derivatives for
fixed wing and rotary wing aircraft from transients is by now a
well established method, the question arises whether or not similar
methods can also be used to obtain some insight with respect to
aeroelastic rotor characteristics. When using linear perturbation
equations from a non-linear trim condition, frequency response
testing is one way to correlate a mathematical model with
experimental dynamic data. This method has been occasionally used
for wind tunnel rotor model tests (6) and (7). A less laborious
and less time consuming method of rotor dynamic testing is to
extract analytical perturbation models from transient rotor responses.
The study described herein is the first attempt of accomplishing
this objective for an aeroelastic rotor model in forward flight
conditions. Since new ground is covered by extending aircraft
identification methods to aeroelastic rotor problems, extended
simulation studies have to be performed to assure the feasibility
of the identification process.

A lifting rotor is both structurally and aerodynamically a
highly complex system that has not as yet been fully explored.
Each blade has natural modes with predominantly out-of-plane
(flapping), inplane (lead-lag) and torsional motions that are
structurally and aerodynamically coupled. Furthermore the various
blades of a rotor are also coupled by hub angular or linear
motions, by control element motions and by the rotor inflow.

In the following studies a drastically simplified analytical rotor



model will be used, where the blades are essentially rigid in inplane
and torsional motion and where the rotor hub is also rigidly
supported. Thus only out-of-plane (flapping) blade motions are
considered and the only inter-blade coupling is from the rotor
inflow. While there is considerable literature on blade flap-
bending, for example (8), (9) and (10), and while the steady
rotor inflow has been frequently studied, for example in (9),
the only dynamic inflow theory applicable to forward flight conditions
is given in (11). The present study uses for moderate rotor
advance ratio an analytic inflow model that is an extension of that
given in (11). It correlates this model with transient wind
tunnel test data with the help of state and parameter identification.
The corresponding study for hovering conditions is presented in (12).
In addition to the inflow model of (11) a substantially simpler
inflow model will also be studied, based on the replacement of the
blade Lock number by an optimized equivalent value. This concept
was originally suggested for steady rotor conditions in (8) and for
dynamic rotor conditions in (13). Theoretically the equivalent Lock
number should be a complex number but will be assumed here as a real
number, corresponding to a quasi-steady analysis. The results with
the two selected inflow models will be compared to the rotor
responses when the dynamic inflow is entirely neglected as is done

in most current aeroelastic rotor analyses.



It is seen in (14) that in hovering conditions and using the
theoretical inflow model of (11), the damping of the regressing
rotor flapping mode can be substantially reduced, particularly
at low collective pitch setting. The effect on rotor eigenvalues,
of the inflow models studied herein for forward flight conditions,
will be determined to find out the applicability of the various
inflow models and the frequency ranges in which they are suitable.
The sensitivity of the rotor eigenvalues to variations in the

parameters will also be considered.



2. AIRCRAFT STATE AND PARAMETER IDENTIFICATION METHODS

The review of identification methods to be given in the
following is by no means complete. Only the most important methods
are discussed. Only rough outlines are given for the various
methods. Details of the derivations and of the application
algorithms are found in the cited literature.

2.1 ELEMENTS OF SYSTEM IDENTIFICATION FROM TRANSIENTS

System identification is the process of extracting numerical
values for system parameters and other subsidiary parameters
(process and measurement noise covariances, bias, initial states,
etc.) from the time history of control or other inputs and of the
resulting system responses. A schematic for the measurements is
shown in Figure 1. The process of system identification involves
five steps:

1. Selection of a suitable input that insures participation of
all important modes of the system in the transient response.

2. Selection of sufficiently complete and accurate instrumentation
to measure the key input and output variables.

3. Selection of a mathematical model that adequately represents
the actual system characteristics.

4. Selection of an efficient criterion function and estimation
algorithm for the identification of the unknown system

parameters.
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5. Validation of the identified mathematical model by comparing
its results to test results not used for the system identification.

The concept of system identification is illustrated in Figure 2.
The design input is fed both to the actual system and to ifs mathe-
matical model that contains the unknown parameters. The measured
response, polluted by measurement noise, is compared with the
computed response from the mathematical model. The difference
between these two responses, the response error, is used in the
parameter estimation technique based on the criterion function and
optimizing technique. The estimation algorithm may also use
apriori information, e.g., initial statistics of the parameters.
Here we will be mainly concerned with the fourth of the previousiv
listed steps, that is with the various estimation algorithms.

The mathematical representation of the system will be given
in the non-1linear case by:
System equation x(t) = f(x,u,t) + T(t)w(t) (1)
Initial condition x(t =0) = Xq
Measurement Equation y(t) = h(x,u,t) + v(t) )
If the system is linear, equations 1 and 2 reduce to

x(t) = F(t) x (t) + G(t) u(t) + T(t) w(t)

y(t) = H(t) x (t) + D(t) u(t) + g+ v(t) 4 )



2.2 CLASSIFICATION OF TDENTIFICATION ALGORITHMS

The various estimation algorithms can be classified into
two groups presented in Table 1. The first group listed in Table 1
above the double line is based on statistical regression and does
not admit a probabilistic interpretation. The algorithms listed
in Table 1 below the double line are based on probabilistic
interpretation. In the equation error estimate no measurement
noise is modeled; the following 4 methods include both measure-
ment and system noise, while in the output error estimate no
system noise is modeled. The various algorithms listed in Table
1 will be discussed in the following sections.
2.3 EQUATION ERROR ESTIMATES

Fjuation error methods assume a performance criterion that
minimizes the square of the equation error (process noise).
They are least squares techniques and they require the knowledge
of all response variables (states) and their derivatives. In

the so called least squares method the unknown parameters are

selected such that the integral over the square of the state
equation error is minimized, see for example (2). With
equation 1 we have the error function (the upper integration limit

T is the time over which the measurements are taken)

T
J = / [;c - f(x,u,e,t)]T w[;c—f(x,u,e,t)]dt (5)

o
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W is a positive definite weighting matrix. An appropriate

choice for W would be Q'1 where Q is the covariance of the

process noise. For the usual digital data processing, the
variables X, X, u are sampled, and only available at discrete
time points t. Mathematically the sampling process can be
expressed by multiplying the system equation with the deita
function 8(t - t;). The integral of equation 5 then becomes

a sum. One can use instead of the delta function also a different

"method function", for example e St

» that would allow taking the
Laplace transforms.

If the system is linear in the unknown parameters 0, the
system equation can be written in the form

%x(t) = F(x,u,t)e + I'(t) wit) (6)

and the performance criterion (5) becomes
T
J = / [x - P(x,u,t)e]T Wlx = F(x,u,t)0ldt (7)
(]
Since the function inside the integral has continuous deriva-
tives with respect to @ we set
3J/30 = 0 (8)

thus resulting in the closed form sclution

T T
a: [f FT(x,u,t)H P(x,u,t)dt]-l f FT(X,U.t)W x(t)dt

o

(9)
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The first factor is the covariance matrix of the estimate.
If the system is non-linear in the unknown parameters, the solution
equation 9 can be replaced by an iterative solution where F(x,u,t)
is substituted by af(x,u,ek,t)/ae and 8 on the left hand side is
replaced by 6k+1 . It can be shown (for example (1)) that the

parameters in the nth

row of f(x,u,8,t) are independent of all

the elements of X(t) except xn(t). This independence is one of the
drawbacks of the least squares method, in that only one of the
measured state derivatives is used in determining a given row of
the f(x,u,0,t) matrix. If one of the signals has not been measured,
the least squares method does not provide an estimate of the
parameters related to that signal. This independence also illustrates
the fact that the estimate of one row of the f(x,u,8,t) matrix

is obtained independent of the other rows, and no "trade-off"

can be made between elements in different rows to improve the
estimate.

For some applications it is practical to include the state

vectors in the error minimization. In the modified least squares

method a combination of the standard least squares with the
integrated least squares is used. The parameters obtained by this
method not only trace the derivative of the state but also the
state itself over the selected time interval. The performance
criterion now includes in addition to the equation error also the

integrated equation error:
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T t
J = / ||§(t) - F(x,u,t)0 + / x(t)dt -
° °
t
/ F(x,u,7)0 dt||,dt (10)
°

where W is a positive definite weighting matrix and where
|1afl, a AT w A (11)

Minimizing the expression, equation 10 results in the estimate

T t
0 = / {F(x,u,t) + [ F(x,u,t) dt}T W{F(x,u,t) +
o

t
! F(x,u,t) dr} dt |}
(12)
T t t
f{r‘(x,u,t) +/P(x,u.r)dr}TW&(t) + [ x(t) dr}dt
[} o [o]

This method has the same row independence of f (x,u,8,t) as the
standard least squares method.

Since these methods do not allow for measurement errors, they
result in biased estimates when this type of error does exist.
When measurement errors are small, as is increasingly the case
in modern instrumentation, the equation error method &s preferable

over other methods because of its simplicity. It is widely used
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also when measurement errors are substantial and then serves as
start-up technique for the output error and other iterative
methods.

In many applications, measurements of some of the responses
or their derivatives are not availabie. If the response but not
the rate of response is measured, it is tempting to differentiate
the measured response. However, the differentiation of measured
data introduces additional uncertainty so that this technique is
usually inaccurate. If e St is used as a methods function,
Laplace transforms can be used. The estimation theﬁ reduces to
an algebraic manipulation of the data that avoids their differen-
tation. The Laplace transform technique as a substitute of
differentiating measurement data is discussed in (16).

2.4 BAYESIAN AND QUASI-BAYESIAN PARAMETER ESTIMATES

In the preceding methods we specified a cost criterion J
that represented the '"loss'" resulting from an incorrect estimation
of the unknown system parameters. The parameters were then
selected in such a way as to minimize the loss. If a priori
probabilities exist not only for the measurement errors but also
for the unknown parameter vector 6 then one can define an expected
loss and select the parameter vector in such a way as to minimize
this expected loss. Such an estimate is called a Bayesian estimate,

see for example (17).

The form of a Bayesian estimate depends on the form of both
the loss function and of the a priori probability distribution of

the measurement and the parameter vector.
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For the particular case of positive semi-definite quadratic loss
functions, the Bayesian estimate is the mean of 6 conditioned on
the observations. This is true regardless of the distribution of
measurement and parameter vector (18) and (19). It has also been
shown that for the case of unimodal symmetric a posteriori distri-
bution of the parameters given the observations, the Bayesian
estimate is the conditional mean for all loss functions which
are symmetric and convex upwards. For these reasons the Bayesian
estimate can be defined generally as the conditional mean of the
parameter distribution.

In order to compute the conditional Mean,it is first necessary
to determine the conditional probability density for 9. This
density can be written from Bayes rule as (Z is the set of all

observations)

P(8/2) =p(Z/0)p (0)/p(2) (13)

The denominator is a normalizing factor determined from

p(2) = fP(Z/e) P(6) do (14)
all ©

The optimal Bayesian estimate is now given by

o = (1/p(2) ) fep(zm) p(®) do (15)
all o

In general,the evaluation of equations 14 and 15 would require the
solution of the system equations for all possible values of the

parameter vector 6.
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This is a large effort, especially if the dimension of 0 is large.
If p(6/Z) is unimodal and symmetric about its mean value, the
conditional mean corresponds to the mode. Since p(Z) is merely

a scale factor the finding of the mode requires neither the
evaluation of the integral in equation 14 nor that in equation 1S.

The mode ® of 0 has the property

max p (82) ~ max p(2/8) p (8) = p(2/0) p(0) (18)
0

Even if the a priori density p(0) is symmetric it does not follow
that the conditional density p(8/Z) is also symmetric since in
general the observations depend non-linearly on the parameters.
Estimation according to equation 16 is, therefore, called
"quasi-Bayesian" estimation. Another designation used for example
in (3) is maximum a posteriori probability (MAP) parameter estimate.
Since the logarithm is a monotonic function of its argument,we can

replace equation 16 by maximizing the expression
J = log P(2/0) + log P(O) (17)

If no a priori information about the parameters @ is available,
that is, if the a priori density is uniform, p(@) = constant, the
quasi-Bayesianestimate reduces to the "Maximum Likelihood'" estimate
which involves finding the maximum of p(2/9).

2.5 ESTIMATES ASSUMING GAUSSIAN DISTRIBUTIONS

The evaluation of equation 17 becomes particularly convenient

if we assume Gaussian densities for the parameters, for the observations

and for the system states. In linear systems and linear measurement
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equations (equations 3 and 4) one needs only to assume that the
system noise w(t) and the measurement noise v(t) is Gaussian.
It then follows that states x(t) and observations y(t) are also
Gaussian. For non-linear systems with Gaussian noise, p(Z/0)

tends to a Gaussian density as the sampling rate is increased (see
for example (1), p.29). The assumption of Gaussian densities for
all variables is, therefore, a reasonable one. Since 8 is amx 1

vector we now have the a priori density

o6) = |P |72 (21)"™2 oxp - (172)(0-5)T P22 (6-3) (18)
0 (3]

Except for a constant additive term, log p(@) is now given by

-1

0 (0-0) (19)

logp (8) = (-1/2) (0-8)T p

In order to obtain an expression for log p(Z/0) in equation 17,

we assume that Z consists cf N consecutive observations y(1) .. y(N).

2= ¥y = {y(1), « « . y(N)) (20)
With successive application of Bayes rule we obtain

p(Y,/0) = p(y(1), . . ., y(N)/O) = p (y(N)/Y, _,,0) p(Y, ,/@)

= 1 ply(§)/y, ,,0) (21)
§=1 3=

Taking the logarithm we have

N
log p(YN/e) = I

log p(y(3)/Y¥;_ ;s ©) (22)
y

1

( y(j)/%i_re) is the observation estimate at time j given all

preceding observations and given the parameters. We denote the
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observations by y(j) and its expected value and covariance
respectively by ¥(i/j-1) and B(j/j-1). We further denote the

"innovation" by

y(3) - y(3/73-1) = v(§) (23)

Since y(j) is a r x 1 observation vector, its Gaussian
density is
py(3)) = |B(373-1)| "2 (20)"7/2 exp{-(l/2)vT(j)
(24)
B3(3/5-10v() }
Taking the logarithm of equation 24, summing according to
equation 22, inserting in equation 17 and inverting the sign we have

now to minimize the expression (see also equation 19)

jz v ()8 (174-1)v(5) + log|B(3/§-1)|}
=1
+ (0-5)7 2t (0-8) (25)

If no a priori information is available before taking observations,
the last term in the expression 25 is constant and we then have
the criterion for the Maximum Likelihood estimation. Bayesian or
quasi-Bayesian estimation is rarely used since a priori densities
for the parameters are in most applications not available.
2.6 MAXIMUM LIKELIHOOD PARAMETER ESTIMATION

According to expression 25, Maximum Likelihoodestimation is

equivalent to minimizing the so-called likelihood function

J(e) = w7 ($)B71(3/4-21)v(4) + log |B(4/4-1)]] (26)

i

n ™M

1
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In the presence of system noise the mirimizaticn of the
expression 26 is very difficult. When going from time j-1 to
time j one first has to solve the prediction equations for the
estimate of the state and for its covariance. Assuming the linear
system equation 3 with zero mean Gaussian system noise w(t) the

prediction is given by

2574-1)

F x(5/9-1) + 3 a(t) , (3-1) <t < § (27)

Br5/5-1) = £ P(j/§-1) + P(5/5-1)F s+ r Q rT (28)

where Q 1is the system noise covariance and P the state covariance.
These equations use the estimated state and its covariance at time

j-1: i(j-l/j-l) and P(j-1/j-1), to predict the state and its
covariance at time j: i(j/j_l) and P(j/j-1). This is the pre-
diction before we know the result of the observations at time j. After
the observations y(j) have been made the optimum estimate is given

by the Kalman filter equations for the state and for its covariance:

x(§/3) = x(§73-1) + K73) (y(§) = H x(j/4=-1)) (29)

P(§/9) = (I - K(§) H) P(§/3-1) (30)

with the filter gain

K(§) = PC3/4-2) H° (it ®(5/5-1) HT + R)~! (31)
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The covariance of the observations B(j/j-1) that occurs in the
cost function 26 is given in terms of the state covariance before

observations by

B(§/4-1) = H P(§/§-1) H' + R (32)

Thus the terms in the expression 26 that is to be minimized require
the solution of the prediction equations 27 and 28 for each time
interval and of the up-date equations 29 and 30 at each sampling
time together with the solution of the measurement equation 4.

(1) gives an algorithm for the solution of the problem. However,
due to its complexity this algorithm has not as yet been applied
to a practical problem of aircraft parameter estimation, see for
example (20).

The problem of minimizing the expression 26 is greatly simpli-
fied if the observation covariance B(j/j~1) can be assumed
constant. This is for example true for zero system noise, when
according to equation 32, B(j/j-1) = R. The problem then reduces

to minimizing the cost function

J(0) = v (5) R™Y weH) (33)

3

"t =

1

where v(j) is given by the innovation term 23. Since equation 33
represents (according to equations 2 and 4) the sum of the measure-
ment error squares, the estimation with equation 33 is also called

output error method of estimation. There are several algorithms
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available to perform the optimization of J(0) from equation 33.

The most widely used is the modified Newton-Raphson or quasilinear-
ization method. It has the advantage that the sensitivity or information
matrix is obtained as a byproduct. The inverted information matrix

gives the Cramer-Rao lower bound for the parameter covarianéé.

This lower bound is found in many applications to be a more meaningful
measure of the accuracy of the parameter estimate than the parameter
covariance obtained from the equation error method (first factor in
equation 9).

A block diagram of the complete and the simplified Maximum
Likelihood identification procedure is shown in Figure 3. The iteration
loop is indicated by double lines. Neglecting the three signals shown
by dashed lines, the Kalman filter reverts to the deterministic
solution of the system equations,

2.7 SOME PROPERTIES OF THE MAXIMUM LIKELIHOOD ESTIMATE

The Maximum Likelihood estimation technique has several
theoretically justifiable properties which makes it the best accepted
estimation technique to date. Some of the proven properties of the
Maximum Likelihood method are:

1. The Maximum Likelihood estimate is consistent, i.e., the parameter
estimates converge (in probability) to its true values as the number
of observations N approaches infinity.

2. The Maximum Likelihood estimate is asymptotically Gaussi=zn.

3. The Maximum Likelihood is invariant, i.e., if 8 is the Maximum

Likelihood estimate of the parameter vector 0, and if u(®) is a



22

function of O with a single valued inverse, then u(é) is the
Maximum Likelihood estimate of u(9).

4. The Maximum Likelihood estimate has a variance that approaches
the Cramer-Rao lower bound asymptotically, i.e., it is asymptotically
efficient.

It can be easily shown that((17) and (19)), from a Bayesian point
of view, the Maximum Likelihood parameter estimates for our model
are unbiased.

The next question of interest would be a comparison of the
covariance of the parameter estimates obtained from different
estimation techniques. It can be seen that an efficient estimator
(i.e., that estimation scheme which gives the parameter covariance
equal to the Cramer-Rao lower bound) can only be the Maximum Likelihood

estimator. An efficient estimator also has to satisfy

% - E)(Z) -o]k(e) (34)

where 5(2) is an unbiased estimate of 0 (i.e., 5(6(2))= 0), J is
the likelihood function and k(0) is any function of O. Hence, if
the likelihood function J does not satisfy equation 34, then
nothing is known about the covariance of the parameter estimates
obtained by the Maximum Likelihood method. In the above condition,
unbiased estimators which give lower covariance than the Maximum
Likelihood estimator may exist, though there does not exist any

general rule for finding them.
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2.8 OUTPUT ERROR METHOD USING QUASILINEARIZATION
We use an iterative method beginning with an initial parameter

estimate 0 = 0 The problem is to find a zero of the gradient

o.
of the cost function 33, 3J/00 = 0. Consider a two-term Taylor

series expansion of 3J/30 about the kth iteration value of @

(33/30)141 = (337 30)y + (325720%); 8 Opyq (35)

where A

(BZJ/BOZ)k is the second gradient of the cost function with respect
to O at the kth iteration. If equation 35 is a sufficiently
close approximation, the change in 0 for the (k+1)th iteration

to make (3J/89)k+1 approximately zero is

B By = - [(323/20%),3°1 (23720); (36),
Using now for v(j) the two term expansion

V() = v * 55 (V) 8 8 an

one obtains for the first and second gradients of the cost function

oo T -1
(3J/30)) = 2 151 35 [V R [v(3)]y (38)
2. .2 N T -1 _3
M = (3°0/30°)) = 2 551 55 [v(I)], R 35 (V)] (39)
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. 9 . .
N? thus need solutions for v(J)k and F T v(J)k . For this purpose
we first solve the system and measurement equations

Y
x 3 £(X, u,t)

(40)

y = h(i.u.t)
for each iteration whereby the initial conditions are either obtained
from the measurements or are included in the unknown parameters 0.
The innovation is now obtained from equation 23. Next we solve the

"sensitivity equations" for each iteration

L -
ax/363 = 3f/30; ¢ AF/3x| _° In/30;

(41)

ay/38y = an/ax|, s 3x/30;

The initial conditions of 3§/39i are zero except when x(0) is
identified as part of the parameters 0. In this case the initial
partials have the value one. With equation 23 we can now compute
the first and second gradient of the cost function, equations 38
39, and then obtain the change in parameters for the next iteration
from equation 36. This involves the inversion of the sensitivity
matrix M (equation39), whereby M-l is the Cramer-Rao lower bound
for the covariance of the parameters.

The method is easily extended to the case with a priori informa-
tion on the parameters, equation 25. The sensitivity matrix 39 is
then augmented by the term 2P;1, and the gradient 38 is augmented

by the term 2P-1 (¢ -@ , see (16).
y 5 ( o k_l) (16)
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2.9 PARAMETER ESTIMATION BY FILTERING

The parameter estimation methods discussed so far can be denoted
as '"global" methods. The performance criterion includes the test
data for the entire duration of the transient. Filtering is an
important tool in state and parameter estimation. It can be used
either in conjunction with global estimates, or it can be used as
a direct approach to state and parameter estimation. An example
of the first type of filter applications is the prefiltering of
test data before using them in a least squares regression estimate,
see for example (3). The Graham digital filter can remove high
frequency noise. A Kalman filter can be used to estimate state
variables and their rates not directly measured. It also removes
the noise in the measurements. The role of the Kalman filter in
Maximum Likelihood estimation has been shown in equations 27 to 31,
where it is used to establish the innouvation sequence.

In addition to applications in global estimation methods,
filters can also be used as substitutes for global methods. The
advantage of such direct filter methods is a reduction in computer
effort particularly in cases with a large number of parameters. The
disadvantage is that unlike the inverted information matrix of the
Maximum Likelihood method that provides a lower bound on the parameter
covariances, no physically meaningful parameter covariances are
obtained with the direct filter methods. The covariance propagation
equations require initial values that are usually impossible to
obtain in any rational way. Though improvements of the filter solution

(forward time integration) can be achieved by smoothing (backward
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time integration), the final parameter covariances remain arbitrary,
since they evolve from arbitrary initial covariance estimates.

Assuming that all state variables and their rates have been
either measured or are otherwise known from manipulating the measure-
ment data, the unknown parameters, if they occur in linear form in
the state equation, can be found by application of a linear filter,
see for example {5). The classical regression method is a special
case of this direct filtering method, namely for infinite initial
parameter covariances. In ciassical regression one obtains a single
value of the error covariance matrix. The direct filter application
allows the use of a finite initial error covariance matrix and it
gives the evolution of this matrix as a function of time. One thus
obtains an indication when to stop processing the test data after
their information contents has been exhausted. As mentioned before,
the absolute values of the error covariances are meaningless, since
one usually does not have a rational way of establishing initial
values for the parameter covariances.

A method that appears to be economic of computer time for
large numbers of unknown parameters was used in (3) for application
to helicopters. The method consists of a simultaneous identification
of states and parameters with the help of a non-linear filter. In
other words, the unknown parameters are treated as additional state
variables. Since there occur products of state variables and para-
meters, the system equation is a non-linear one. The so called extended

Kalman filter appears to be particularly useful for this purpose.
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Either non-linear filtering alone or linear filtering in combination
with smoothing is performed. The absolute values of the parameter
covariances are again of no physical significance since they depend
on the arbitrary initial values. In the following, a brief discussion
of the direct use of filters in parameter estimation is given.
2.10 LINEAR FILTER METHOD OF PARAMETER ESTIMATION
2.10.1 Linear Sequential and Global Estimators

In (5) the parameter identification is performed from a
"system equation"

6=0 (42)
and a "measurement equation"

z = h(x,0)+v (43)
rquation 43 is actually the system equation arranged in & form where
the left hand side contains all terms that are free of the unknown
parameters 8. If the system equation is linear in the state
variables x and in the unknown parameters 0, h(x,0) is a linear
function of the parameters. The noise vector v refers only to
the terms on the left hand side of equation 43. The state variables
that are multiplied by the unknown parameters in h(x,0) must be
noise free. To obtain the parameter O, both £ and x must be
known. If only part of the variables in &z and x have been measured,
Kalman filtering is required in order to reconstitute the missing

terms.
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Optimal parameter estimates O can be obtained, under the
assumption that v is zero mean Gaussian white ncise, by minimizing

the cost function
T

J.(llz)((e(o)-é(o))Tpgl(o)(e(o)-é(o))+4{;;-h(x.e)fn‘1
(44)
(t-h(x,08))dt)

where the a priori estimates 0(0), Py(0) are assumed to be given
together with the noise covariance matrix R. The differential
equations associated with this optimal problem are (see for example

(1) )

D e

= p (an/30)T R71(g - h(x,8)) (45)

_ T -1
Pg = = Py(3h/20)" R™7(3h/30)P (46)

These equations can be integrated with the aid of the initial a
priori estimate for the parameters 0(0) and their covariance
matrix Pg(0), which results in the optimal parameter estimate at
each time t given the preceding measurements. 3ince the initial
parameter covariance is usually not known and the assumed values
are rather arbitrary, the matrix Pg from the integration of
equation 46 is not a useful measure of the actual parameter covari-
ance. However, once Pg has approached zero, the effect of any

further measurements on the estimate @ also approaches zero as is
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evident from equation 45. P,, therefore, is valuable in judging
for what length of time the data should be processed. Equations
45 and 46 represent the "linear estimator' used in (22) and (5).
Instead of the sequential estimation by integrating equations
45 and 46 with some initial estimates 0(0) and Pg(0), one can
also obtain a ''global" estimate directly from equation 44. If one
assumes that one and the same parameter estimate 8 is valid

throughout the time range from 0 to T, one obtains by setting

3J/36 = 0

T
o = [p;}on [(3h/ae)TR-1(8h/86)dt]'l [P;%O)e(o)
(o]

T (47)
+ f (3n/90)R™L (¢ - h(x,0)) dt]

[+

(See for example the appendix of (5).) A convenient assumption is
P;l(O) = 0, which means an infinite initial parameter covariance
matrix. Then the above estimate, equation 47, reduces to the
equation error estimate, equation 9. The initial estimate 6(0)

is then not required and the evaluation of equation 47 is reduced to
the determination of fixed boundary integrals, a matrix inversion

and a matrix multiplication. The parameter covariance matrix at

the time T is given by the first factor of equation 47:

T
Po(T) = [P;io) +/ (3h730)TR"L(an/20)at1"L (48)

[«
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which follows from the integration of equation 46, (see for example
the appendix of (5)). Pg(T) from equation 48 can again be used to
judge whether or not all the significant information contents has
been extracted from the data.
2.10.2 Iterative Equation Error Estimation with Updated Kalman Filter
When using the parameter estimation methods of the preceding
section, it is necessary to first determine, from the noisy deflection
measurements, estimates for the deflections, for their rates, and for
the accelerations. In (22) this was done by passing the noisy
deflection data through a digital filter that takes out the noise
above a certain frequency without distorting the signal in the low
frequency range. The filtered derlections were then either
differentiated twice, or a Kalman filter was applied in order to
obtain the derivatives. Later studies in (22) showed large errors in
the parameters for too low cut-off frequency of the digital filter.
It was then decided in (22) to omit the digital filter and instead
use the Kalman filter in an iterative way. In typical examples,
it was found in (22) that the second iteration was as accurate as
the result with the combined digital and Kalman filter. A block
diagram of the method is shown in Figure 4. The iteration loop is
indicated by the double lines. The system Kalman filter
gives optimal state estimates from incomplete and noisy input
and output measurements. The filter needs estimates of the system

parameters that are updated after each iteration.
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Only simulated noisy blade flapping measurements were used in
the Kalman filter. The filter provided the deflection rates and
accelerations needed for the ''global" parameter estimate, but not
the deflections themselves. In other words, the parameter estimate
was performed with the simulated noisy deflection measurements and
with the rates and accelerations from the Kalman filter. In the
first iteration, a Kalman filter with estimated parameter values
was used (typically 20% error). After updated parameter values
had been obtained, a second pass with an updated Kalman filter was
performed, etc. The deflection data remained the same for each
iteration, but the rates of deflection and the accelerations were
updated. This method worked well for the single blade identification.
2.11 BAYESIAN ESTIMATION AS A FILTERING PROBLEM

If we extend the quasi-Bayesian or maximum a posteriori
probability (MAP) criterion 16 to include both the parameters 0
and the states x(t), we have

max p(x(t),0/Z) ~ max p(Z/x(t),8)p(x(t),0) (49)
X(t),e X(t) »0

Assuming now the non-linear system and measurement equations 1
and 2, and assuming further that states and parameters have Gaussian
distributions of the form of equation 18, the criterion 49 becomes

(see (3) and (23) ) one of minimizing the quadratic function

J = (1/2) [”o(o)-é(o)”ga%o) + H“‘”"““II:?%)

(50)
T

'

{HyCr-neeu,e) |2 s llw(t)ll?o-lrr}dt]
o
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subject to the constraint equation 1. If the system and measurement
equations 1 and 2 are linearized about the current estimates x and @
the recursive solution of the minimization problem 50 results in the

extended Kalman filter equations given for the continuous case by

(see (3) )

2 a -

x = (3£/3x)x + (3f/3udu + P(ahlax)TR'l(y-(ahlax)x)

0 = Pex(ahlax) R (y - (3h/3x)x)

5 = (3£/3x)P + P(3£/3x)T - P(3h/3x) R™L(an/ax)P + @ (51)

+ (3£/30)Pg, + [(3€/30)Pg, 1"

Box = Pg, (38/3%)T + P1(3£/20)T - Pgy(ah/3x)TR-1(an/0x)P

T -1 T
with P' = - Pg (3h/3x)" R™ (3n/3x)P,

Even if the original system is linear, the augmented system is
non-linear and hence the filtering problem must be solved by a
non-linear filtering technique. In (3) the raw data are pre-
processed by a digital filter and by a Kalman filter that does not
use the unknown parameters but merely makes use of the transformation
equations from a space-fixed to a body-fixed reference system
(Euler equations).

Lebacqz in (24) applies basically the same method except for
a discrete instead of the continuous filter formulation. He further
uses a one stage filtering-smoothing algorithm which has the advantages
of reducing the bias due to non-linearities and of making the algorithm
less sensitive to initial conditions. Mehra, in (1), is critical
of using an extended Kalman filter for the augmented state including

the unknown parameters. His arguments are that the uncertainties
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in the states are usually much smaller than the uncertainties in the

parameters. Therefore the assumption of local linearization about the

latest estimate which are acceptable for state estimation with an
extended Kalman filter are generally less valid for parameter
estimation. Moreover, the filter for the augmented state assumes
knowledge of the a priori parameter covariances which are unknown.
As mentioned before, the arbitrary a priori parameter covariance
used as initial conditions for a filter that includes parameters
as state variables gives unreliable confidence limits on the para-
meter estimates. An added difficulty of applying a filter to the
augmented state is that poor a priori estimates of the parameters
make the convergence rate slow or may even cause divergence of the
filter solution. Though improvements can be applied to the extended
Kalman filter like local smoothing and local iteration and smoothing,
the basic shortcomings of this method appear to have been correctly
described in (1). Unfortunately, the application of the complete
algorithm of Maximum Likelihood identification given in (1) is for
a large system much more demanding of computer size and time than the
filter solution with the augmented state. While aircraft parameter
identification with the complete Maximum Likelihood algorithm of
(1) has not as yet been accomplished, the method of filtering the
augmented state has been applied to several aircraft parameter
identification cases, for example in (3) and (24).
2.12 IDENTIFIABILITY PROBLEMS

Identifiability problems can occur no matter what identification
algorithm is used. They are related to the initial 3 steps involved

in system identification as listed at the beginning of this chapter:
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the selection of a suitable input, the selection of the instrumen-
tation, and the selection of the mathematical model. A few comments
are added here to point out some difficulties that have been
encountered due to these three initial.steps.

If the input does not adequately excite some of the system
modes, the associated parameters cannot be adequately identified.
Sometimes it is practical to combine the responses to various types
of inputs into a single identification run, see (3). While each
of the single inputs excites only a limited number of modes, the
combination of inputs provides an adequate excitation of all modes
required for the estimation of the parameters. Efforts have also
been made to design inputs on the basis of certain optimization
criteria. More details on this problem are given in (25).

If there are large unaccounted for instrumentation errors,
non-physical parameter values may result. In (26), instrumentation
lags and control measurement errors were found to be most significant.
Static measurement errors and instrumentation lags can be a much
greater source of parameter inaccuracies than white noise. A
detailed analysis of the relationship between static and dynamic
measurement errors in states and control inputs and the accuracy
of the parameter estimates is required.

If the selected mathematical model for the system is inadequate
the parameters are forced to account for some unmodeled effects.

The estimated parameters may, therefore, be quite different from
those determined by aerodynamic theory or wind tunnel tests would

indicate. A good example is given in (27) where a six degree of
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freedom mathematical model for a helicopter gave unrealistic
derivatives, since it had to account for effects of some neglected
modes. A unique six degree of freedom linear model for the heli-
copter flight dynamics does not actually exist. When a nine degree
of freedom mathematical model is used, these difficulties disappear.
Modeling errors are also a major cause for the lack of convergence of
iteration procedures or of parameter identification by filtering
methods. The best remedy against difficulties from modeling errors
is the adoption of a more suitable mathematical model. Some other
measures to improve the convergence of iteration procedures or of
filtering methods will be briefly discussed. In the cases where a
priori values of parameters, for example from theory or from wind
tunnel tests, are available, one can use an a priori weighting
matrix that expresses the confidence in these values and prevents
the algorithm from deviating too much from the a priori values.
Sometimes there exist some relationships between the parameters.
These should then be used as constraintc in the optimization problem
to avoid non-physical parameter estimates. If parameter dependencies
exist, difficulties are encountered in inverting the information
matrix. An exact dependency between parameters should result in a
zero eigenvalue of the information matrix. A rank deficient solution
makes use of the fact that in case of near parameter dependencies
there is a large spread between a set of small eigenvalues and another
set of much larger eigenvalues of the information matrix.

In filter solutions, divergence because of modeling errors can

occur when the covariance matrix becomes prematurely too small, thus
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preventing further test data to be of influence. There are several
ways to prevent premature small covariances. One can provide
fictitious noise input to the system or one can directly increase the
parameter covariance in each time step according to some rule. One
can also overweigh the most recent data thus causing the filter to
reduce its memory of the data of the more distant past. This
indirectly increases the parameter covariance matrix. Since too
short data length and too large errors in the initial parameter
estimates may also result in non-physical parameter values or in
divergence of the identification algorithm, longer transients and
better a priori parameter estimates can lead to the avoidance of
these difficulties.
2.13 VALIDATION OF ESTIMATES

Once a set of parameter estimates has been obtained the question
arises: what confidence can be associated with this set? As
mentioned before, the parameter covariance matrix obtained by
filtering the augmented state is not a good measure of this confi-
dence. The inverted information matrix obtained with the Maximum
Likelihood method represents the Cramer-Rao lower bound for the
parameter covariances and is a better measure of this confidence.
Using the parameter estimates to predict the transients from
which the estimates have been obtained, and computing the rms
error with respect to the measured transients, gives another confidence
measure. However, if the system is inadequately modeled, one may
obtain a small rms error despite the fact that the parameter

values are wrong in comparison to theoretical or wind tunnel results, (27).
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A better way of validation is to compare the prediction with the
results of test data not used in the identification process. In
fact, it is good practice not to use all of the available test
data for the parameter identification but to reserve some of the
runs for such a comparison. Sometimes it is desirable to perform
the parameter identification not just with one mathematical model
but with a variety of models. 1In the case described in (27),
a mathematical model with more parameters gave a much better identi-
fication result than a model with fewer parameters, better in the
sense of an improved correlation with theoreticallr and wind tunnel
generated parameters. However, there are also cases where mathematical
models with a larger number of parameters gave worse identification
results than a model with fewer parameters, see (28). Adequate
parameter estimation from transients requires careful attention to
the many contributing factors in the input, instrumentation,
mathematical modeling, and the estimation algorithm, and the
validation of this process 1 only be considered complete after
the rms errors of the prediction with the estimated parameters
as compared to test data have been found acceptably small for all
types cf possible transient excitations of the system.
2.14 APPLICATIONS TO LIFTING ROTORS

Lifting rotor characteristics are not well approximated by the
usual set of aerodynamic derivatives. One reason is blade modes
that must be considered particularly in rapid transients. Another
reason is the dynamic rotor wake that is produced by the time

varying rotor thrust .nd rotor pitching and rolling moments and that
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has a feedback effect on the rotor forces and moments. The omission
of the blade modes, as shown in (27), results in non-unique and
non-physical rotorcraft derivatives. The identification is better
if separate rotor degrees of freedom are introduced even in the
crud= form of a first order lag as was done in (4).

A variety of identification methods has been used with respect
to lifting rotors. After preprocessing the test data with a
digital filter followed by a Kalman filter that does not contain the
aerodynamic derivatives (transformation or Euler equations), least
squares identification is applied to rotorcraft transient flight
test data in (3) and (27). Each identification run is made with
several transients simultaneously. The least squares results are
then used as start-up values for an extended Kalman filter for
the augmented state. It is not obvious that the extended Kalman
filter actually improves on the least squares results, though filter
convergence is achieved. In (4) the output error method with quasi-
linearization is applied without preprocessing the flight test data.
The flight data of both (3) and (4) were cobtained in calm air. The
equation error method in its filter form was applied in (5) to
simulated noisy blade flapping and torsion measurements at high rotor
advance ratio. The simulated data were preprocessed by a Graham
digital filter, but not by a Kalman filter. (5) assumed that all
states and their derivatives had been measured. In contrast (22)
assumed that only flapping deflections are measured but not flapping
rates or flapping accelerations. For the dynamic wind tunnei tests
simulated in (22) there is no way of applying a Kalman filter that

does not contain the unknown parameters. However, it was found in
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(22) that for the cases studied, a Kalman filter with considerable
errors ir the unknown parameters was useful in obtaining the non-
measured flapping rates and accelerations. The parameter identifi-
cation was then performed by the equation error method in its filter
form.

In (29) the same method (except for using glcbal estimates) is
used in an iterative form. In addition, the c itput error method with
quasilinearization is applied to the same and to more complex rotor

identification problems.
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3. MATHEMATICAL MODELS OF THE FLAPPING RESPONSE

OF A HINGELESS ROTOR

3.1 SINGLE BLADE MODEL
Using the simplest analytical model of a lifting rotor, a
straight blade flapping about the rotor center, one has in a rotating

fram: of reference for the flapping rnglc B the following equation (15).

8+ (Y/2C(R)B + w28 + (/KB = (+/2) (my OF my X)  (52)

One rotor revolution corresponds to t = 2m. For neglected ruversed
flow effects, zero root cut-out and with tip loss factor B, the
functions C(t), K(t), mg(t), my(t) in terms of rotor advance

ratio p are (15):

c(t) = (1/4)B* + (1/3)83 | sin(+) (53)
K(t) = (@/3)B3 u cos(t) + (1/4)B2 u? sin(2t) (54)
mg(t) = (1/8)(B" + B2u2) + (2/3)B3y sin(t)
(55)
- (1/8)8%2 cos (2t)
m(t) = (1/3)8% + (1/2)8% u sin(t) (56)

In the numerical analysis, we use B = 0.97. A simple improve-
ment of this amalytical model that takes into account blade bending
flexibility is possible (30). In transient conditions, the inflow
A includes the dynamic rotor wake in a complicated form.

As a first approximation of dynamic rotor wake effects one can

use in equation 52, instead of the actual blade Lock number, an



equivalent smaller value of y as suggested in (8) and (13).
Such an approximation can be expected to be satisfactory if the
transient is relatively slow. For transients with high frequency
contents, this approximation is invalid (11). In (11) it is seen

that y*/y can be expressed by

Y*/¥ =1 - 1/Q1 + 8v/ca + 16Kjiw/oa) (57

The parameter v is defined in equation 70.

The above formulation is based on single harmonic balance
of the rotor root moment equation. The y* formulation reduces
to the one obtained by momentum theory (9) (equation 58), when the

phase variation is neglected and v = u (i.e., when A = v = 0).

Y*/y = 1/(1 + ac/8y) (58)

Due to rotor induced cross flow in a wind tunnel, the inflow
parameter A will usually not be well known. In addition, the
aerodynamic pitch angle 0, is also not well known due to airfoil
inaccuracies and pitch setting errors. For the wind tunnel tests
considered here, we assume A = 0 and use the equivalent Lock
number yY* as an unknown p-2rameter to be determined from the blade
flapping measurements. In addition we have a transient blade pitch
input @p assumed to be known. The problem then is to determine
from blade flapping transients caused by blade pitch inputs, the
equivalent Lock number y* and the equivalent collective pitch
setting 0,.

In order to obtain a more realistic description of the rotor

dynamic inflow, it is necessary to formulate the rotor theory in
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multiblade coordinates, as is done in the following section. The
identification of y* is also possible with multiblade coordinates
and has, for experimental data, the advantage that the measurements
of all the blades are used, and hence, an averaging effect results,
In fact, after it was found out that the blade pitch angles.differed
for individual blades by fractions of a degree, only multiblade
measurements were used for the y* identification.
3.2 MULTIBLADE FLAPPING EQUATIONS WITH DYNAMIC ROTOR WAKE

It has been noted (10), that for most purposes it would appear
adequate to consider the first rotating mode elastic bending effects.
The noment balance of all the flapping forces on a rotor blade

about the hub is given by (see (10) ):

(/M8 + (U208 + (1/)ais + (/DK(E)B = (1/2) (O, + Om)  (59)
ulA = /UTx dx K = u-[(cos t) U'l‘ X n'dx

mesfurzxdx c--fU.rxndx (60)

Here the actual first rotating mode n(x) 1is replaced by the closed
form expression (see (10) ):
n =x ¢+ [sinh(3.93x)/2 sinh 3.93 + sin(3.93x)/2 sin 3,93

(61)
x. = 0 will correspond to a rigid blade mode.

Since the dynamic rotor inflow that couples the motions ot the
various blades is included, a multiblade representation is necessary.
The relation between single blade and multiblade variables for a

4-bladed rotor is:
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‘Blade flapping angle:

P-
8o

= (1/4)

-

Blade pitch angle:

Induced flow:

The variable

1 1 1 1 T [81]
2cost -2sint -2cost 2eint]| [Bs
(62) .
28int 2cost -2sint -2¢ces t Ba
] -1 1l -1 J B&
6 = 65 - 01 sin Yy + 67 cos ¥y (63)‘ J .

Vk = Vo + vy(r/R)cos ¥y + vpp(r/R)sin ¥

B4 Tepresents differential coning for the 4-bladed

rotor, whereby one pair of opposing blades cones up, the other pair

cones down. Though a linear distribution of the induced flow over

the radius is defined in equation 63, this assumption is not required

for the parameter identification process. Different inflow distri-

butions merely produce different values in the identified parameters

but do not change the form of the equations.

3.2.1 Flapping Equations without Reverse Flow

For low advance ratios the region of reverse flow is small.

Since this region is concentrated near the hub of the rotor, the

reverse flow affects the moment balance, and hence the flapping

response, very slightly. Hence, for low advance ratios (generally

acceptable for u< .4) the flapping equations are greatly simplified

by neglecting the reverse flow effects without an appreciable error

in the flapping response.

Substituting the transformation equations 62 and 63 in the

flapping equation 59, the multiblade representation of the flapping

response is obtained. The limits of the integrals in cquation 60 are

from zero to B to take into account the tip loss factor.
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The closed form first mode expression 61 is substituted in equations
60 which, in turn are introduced into the multiblade flapping
equations. After some algebraic manipulation, the flapping equations

are obtained as follows:
B+ B%/8)8 +ul g + B/ G + 1)
° o T Y Py M I 11

+ /60, - 8*’/8) stn 26 8, - (r/2)¢ (-.028 §

+.014 p éII - 4570 B, + .535,2 By)

»

@*v8 + B*n*1)0, - Pusere, (64)

. 4 . 4
8, + (B Y/8)31 + (wf - 1)8 + (B y/8)(sII + 1)

I

. 2 2 2
+28.+ (B3vu/6)8O + (B Yu2/16)6II + (B'yu /16) (sin 4t B; - cos 4t B..)

L

(B3Yu/6)(sin 2t éd + cos 2t Bd)
+ (v/2) K(.028(8I + BII) + (.886)u B,

+ (.268)1° sin 4t By + (.268)u% (L - cos 4eI8.

+

(.028)y sin 2t éd - (.886)u cos 2t B,)

(de/8 + Bzyu2/16)611 + (Bzvuzllé)(sin 4t 6_ ~ cos 4t 911) (65)

I
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By + /BB, + (wF - 1B+ B'/8) (8, + A ;D)
-2 B+ Bwerd, + @Pnlnes, + @y
- (Bzyuzll6)(cos 4t BI+ sin 4t BII) - (B3Yu/6)(sin 2t By — cos 2t éd)
+ (r/2) x((-.028)u B + (.028)(B - BD)

+ (.268)u2 (1 - cos 4t)BI - (.268)112 sin 4t BII

(.028)u cos 2t éd - (.886)u sin 2t B,)

@¥u/e, - B4y/8 + 3 BPnliiere,

L)

(8212 /16) (cos 4t 6, + sin 4t 6 ;) (66)

o 2 2 3 -
By + (B y/S)Bd +w? B, - (B™yu/12)sin 2t (B  +2 8y + Ap)

+

3 3
(B yu/12)cos 2t (BII -2 BI + A_.)

11
2 2 )
- (B°yu“"/8)sin 2t eo - (y/2)x (-(.014)p sin 2t (BI + BII)
. 2
+ (.014)u cos 2t (BII - BI) + (.535)u" sin 2t Bo
+ (.443)u cos 2t B + (.443)n sin 2t B - (.ozs)éd)

= (Bzyu2/8)cos 2t o - (B3Yu/6)(cos 2t o, + sin 2t ¢ (67)

II)
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3.2.2 Inflow Model

We adopt here the rotor inflow perturbation model of (9) and
(11). The inflow model is based on the relation between the aero-
dynamic rotor thrust and moment coefficients and the perturbaiion
inflow state variables. Equation 33 of (11), written in our

notation, reads

_ 4 - _ -
kM 0 0 \.)o Vo CT
1 . 41 _ 1
= |0 -kIl 0 v | + [Lgld vi | =25 | Oy (68)
0 0 -k v v c
I II 1I L
L % - . - 4 L J

Rotor thrust and moment coefficients Cr, CM, CL are from aerodynamic
contributions only. Lg is the empirical L-matrix defined in (9).

The theoretical values of kM, kIl and kIZ, using potential flow
around a solid disk are given in (9) as kM = .849, kIl = kIZ = .113.
The components of the L-matrix as well as kM’ kIl and kIZ will be
identified from rotor transient tests. From momentum theory, one

obtains according to (11):

r2v 0 0
-1 1
(L] = oa 0 -v/2 0 (69)
0 0 -v/2
| _
With 2 -, -
v = ]J_+ A(A + \’) (70)

(u2 + X2)1/2

where A and ;' are the trim values, about which the rotor inflow

perturbations v,, vy, vy are taken.
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-1 . . . et
The complete l.8 matrix can be defined as a matrix consisting

of 9 parameters as follows:

L L2 Yy,

E a0 | 21 Ly Ly A1)

Lzy L3z L3z
T

Substituting equation 71 in equation 68, we get, on expanding

Vo * /Ky (Ljp)v, + (L12)vy + (Lyzdvy, = (/KYCy (72)

Opp - WO/ (Lgdvg + (Lgy)vy + (L vy = -(1/Kp)C; (74)

The parameters T, T and ty; are now defined as follows:

T
0

nwes

1/KM; T 8 1/!(11; Ty 8 1/|(12

The thrust and moment coefficients CT’ CM and CL 4re obtained

as a function of the state variables, the details of which is given
in 8.2.
To match the perturbation inflow model (equation 68), where the

inflow variables Vg Vys and 11

about its trim values Vo VI and vII’

to be perturbations about certain trim inputs. Since the flapping

are considered as perturbations

the flapping equations have

equations 64, 65, 66 and 67 are linear equations and gizce GT’ c“;

cL in equations 72 to 74 are linearly related to the state variables
( see section 3.2 ), the state variables in equations 64 to 67 and

in equations 72 to 74 can be considered as perturbation variables.
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A, AI' A, now are identical with the induced downwash variables

o II

\)’\)I’\)

o Hence, A = vo; A

o and AII =y

1° V1 I

3.2.3 Plapping Equations with Reverse Flow

11’

With increasing advance ratio, the region of reverse flow becomes
larger and its effects can no longer be neglected. The limits of the
integrals in equation 60 are no longer simply from O to B, but
are split up depending on whether the flow in the region is normal,

mixed or reversed.

Region 1: / g 4 /
0
Region 2: [

o

Region 3: /

The three regions are clearly explained in (15). To obtain

mw 12
!

S~ ™~
Um -}
e
2
]
é\

&
)
g

a closed form analytical solution for the coefficients of all the
states in the flapping equations (and in the thrust and moment
coefficients), a fourier expansion is obtained for all the coefficients
around the azimuth. This gives rise to different sets of coefficients
for different advance ratios. The flapping perturbation equations
as well as the thrust and moment crcfficients are obtained in a manner
similar to those obtained by neglecting reverse flow. The blade is
assumed to be rigid (i.e. kx is assumed to be zero). The coefficients
are provided in 8.4. The flapping equations are listed in 8.3.
3.3 EXCITATION OF PITCH STIRRING TRANSIENTS

For wind tunnel experiments with pitch stirring transients the

initial state of the rotor will be given by prescribing the advance
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ratio, the collective pitch angle, the rotor angle of attack and
the cyclic control setting that will be zero longitudinal cyclic and
1.5° lateral cyclic.

The 1ifting rotor wind tunnel model described in (31) allows
excitation of progressing and regressing flapping modes at various
frequencies. By a minor modification of this model, progressing
or regressing transients can be excited. One can describe such inputs
as pitch stirring transients. In a helicopter, this would amount
to cyclic stick stirring, whereby the amplitude of the cyclic pitch
would remain constant while “he frequency of the stirring motion
changes. At the time ty pitch stirring is initiated. If we
denote the angular pitch stirring speed as w, positive in the
direction of rotor rotation, and the pitch stirring angular acceler-

ation as w, assumed to be constant, we have
w = o(t - tg) (75)

For a progressing mode ® is negative and for a regressing
mode w® is positive. In a rotating reference system the blade pitch

angle is given by

© =0, + 1,5 cos [w(t-t,) + t]

0 for t < t,
w = (76)
w(t - tg) for t > to
In a multiblade representation the blade pitch angle of the kth

blade is

0 = - i (77)
K 90 GI sin wk + GII cos wk
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) for t & t,
o = (78)
1.5 sin w(t=-ty) for t > t,

where

1.5 for t & t,

°II = (79)

1.5 cos w(t=-t ) for t > t,

The meaning of these input equations is the f&llowing. At the
time t = 0, a step lateral cyclic pitch input of 1.5 degrees is imposed.
At time t = to, the response to this input is approximately
stabilized. At this time the pitch stirring acceleration of ; is
introduced which leads to a progressing flapping excitation. The
identification starts at t = to with the pitch stirring transient.
9; represents forward cyclic pitch, 0r; represents left cyclic
pitch. If perturbation equations are considered, the perturbation
at time t, is zero, 9y excitation stays the same but 911 excitation

is now defined as:

0 for t ¢ to

11
1.5 cos w(t-to) - 1.5 for t > to

The wind tunnel experiments are conducted with a variety of pitch
stirring accelerations. Generally, the computer experiments are
conducted with a pitch stirring acceleration of

@ = -.1/n (81)

which is in the progressing sense.
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Since in the non-dimensional time units used here the time of
one rotor revolution is 2w, the angular pitch stirring velocity one
rotor revolution after initiation of pitch stirring is .2, that is
one fifth of the rotor angular speed. Figure 5 shows the time history
of the blade pitch for about two rotor revolutions (t,=0,t =0
to 12) in a rotating frame of reference for © =-_1/%, corresponding
to equation 76. Figure 6 shows the time history of blade pitch in
multiblade representation, that is GI and QII vs. time t for the
same acceleration corresponding to equations 78 and 80. Figures S
and 6 refer to the progressing mode. The physical reason why
regressing modes are less suited for rotor wake identification is the
fact that at a certain regressive excitation frequency the excitation
is in resonance with the regressing flapping mode. At this condition
no induced dynamic rotor wake exists since aerodynamic excitation
and aerodynamic damping cancel each other. Since regressing mode
transients include a frequency region with a weak dynamic rotor wake,
the identification of the wake parameters is not cxpected to be as

good as it is for progressing mode transients.
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Figure 5. Time History of the Blade Pitch in a Rotating Frame of

Reference for

w = =,1/7m in Equation 76.

12
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in Equations 78 and 80.

1

'
l
0 4 t 8 12
i i
l L -
0 4 t 8 12
Figure 6., Time History of the Blade Pitch vy ard o tor w = -.1/7
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4. SIMULATION STUDIES

4.1 SELECTION OF IDENTIFICATION METHOD BASED ON PRELIMINARY
SIMULATION STUDIES
The selection of the identification method used in this thesis is
based on several simulation studies ( (5), (22) and (29) ).
Simultaneous state and parameter identification in (32) and (33)
was conducted using an extended Kalman filter. A major drawback of
the method is that the filter camn easily diverge unless good initial
estimates are available. Particularly in (33) a considerable effort
was applied to obtain such good initial estimates. The test data
was first processed with a digital filter that took out high frequency
noise without distorting the main signals. The data was then processed
with a Kalman filter bhased on the Euler equations, which do not
contain the unknown parameters. Thus keasurement bias was removed
and missing cha nels were reconstituted. Finally a least squares
algorithm was applied to obtain estimates of the unknown parameters.
The subsequent application of the extended Kalman filter led to
modified parameter estimates, however it is 1..t clear whether or not
these modifications represent improvements. In any case the modi-
fications were not large, and the initial estimates appeared to be
satisfactory approximations.
In trying to apply the experience from (33) to wind tunnel
model transients a difficulty arises, in that there is no equivalent
to the Euler equations for the ai..raft. Thus there is no way of
using a Kalman filter which is free of the unknown parameters.

Instead, if a Kalman filter is to be applied, estimates of the parameters
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must be inserted. Another difficulty for our wind tunnel model

tests is that only flapping deflection measurements are made, while
the rates of deflection and the accelerations are not measured. Thus
the Kalman filter with the estimated parameters is called upon to
provide both rates and accelerations.

This method as explained before has several disadvantages.

A priori parameter covariances being generally unknown, give poor
and most often, wrong parameter covariances as scolution of the
Riccati equation. Wrong estimates of the parameter values often
cause the filter to diverge.

Analysis is also made by replacing the least squares algorithm
of (33), by linear sequential estimators and a simpler "global"
estimator. This has the advantage that finite initial parameter
covariances can be used, and that the time history of the parameter
covariance provides a measure for the time beyond which no more useful
information can be extracted from the test data.

The linear sequential estimator as shown before (used in (22))
requires the simultaneous integration of the fijter and of the covariance
differential equations. A simpler '"global" cstimate requires only the
inversion of a system of linear equations for the unknown parameters
and the evaluation of a number of integrals over the time period of
the transient. Therefore, a number of comparisons were made between
these two methods.

For a single blade 2 parameter identification, both the linear
sequential estimator and the '"global' estimator provide auite

accurate parameter estimates. For convenicnce, y and & 4 vy 90 instead

2
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of vy and Oo were identified. Preliminary analysis and comparison
_between the Iterated Equation Error estimation with updated Kalman
filter and the Maximum Likelihood method had given the following
results: For single blade parameter identification from pitch
stirring transients the Equation Error method applied in an iterative
form using a Kalman filter with the latest parameter updates worked
well and required the least computer CPU time. For multiblade
parameter identification this method became impractical because of
slow convergence and high computer CPU time. The Maximum Likelihood
method worked well both for single blade and multiblade applications,
though in case of single blade identification it requires somewhat
more computer CPU time. The parameter covariances from the Maximum
Likelihood method are clearly superior to and more meaningful than
the covariances determined with the Equation Error method. The
Maximum Likelihood method also gave good parameter identifications
in the presence of both measurement and system noise, though most of
the computer experiments were conducted with measurement noise only.

The following Table 2 compares the results of the various
methods on the single blade model (29). The last 4 rows refer to
the Maximum Likelihood method.

The number of iterations indicated in the table is that for
which convergence has been achieved. The Iterated Equation Error
estimation with updated Kalman filter needs the lowest tutal computer
effort, however, the accuracy of the estimate is worst for vy. The
Maximum L°" elihood estimation, due to faster convergence, needs only

moderately more computer effort and yields better accuracy.
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During the last decade the Maximum Likelihcod method of para-
meter identification has been successfully applied to airplane and
helicopter transient testing. This method does not require
preprocessing of the test data and also does not need complete
measurements of the deflections, of their rates and of the accelerations.
The parameter covariance estimates obtained with this method are more
meaningful than those obtained with the linear sequential estimator
used in (22).

From the above study, one can conclude that the Maximum Likelihood
method in its simplified form in which system noise is not modeled,
is, for the applications studied, superior to the Equation Error and
other existing methods and thus will represent the method of choice
for the parameter identification from wind tunnel rotor model tests.
4.2 SIMULATION STUDIES FOR FORWARD FLIGHT USING MAXIMUM LIKELIHOOD METHOD

The Maximum _.<elihood method for our particular case pertains to
the system equation (zero system noise)

x = £(x, u, 0) (82)
0 is the vector of umknown parameters that may include initial values
of the state variables, constant measurement bias, etc. The measure-
ment equation is assumed to be linear and of the form

y=Hx+v (83)
y is the vector of observed quantities, H is a matrix relating the
state variables to the observations, v is the vector of random
measurement errors, assumed to be zero mean white noise with given
covariance matrix R

ECv(t)v’ (1)] = R 8(t, 7) (84)

R is assumed to be constant with time. Though the preceding
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equations do not show bias terms, bias errors could easily be included
in the unknown parameter vector 0.

A sample of measurements Yy Yy - - - Yy is now made during the
time of the transient and the parameter estimate 8 is selected such
that the conditional probability of this sample of measurements given

6 is maximized.

6 = max p(yl « o o ynle) (85)
o

The following steps lead to the maximum of the likelihood function
POy - - - yn/G), though there is no assurance that the maximum is
global. The method outlined here is called quasilinearization with
the modified Newton-Raphson method. It assumes Gaussian distributions
of the random variables.

1. Select an initial parameter estimate 6 = 8,.

2. Solve the system equation 14 with this parameter estimate

% = £(% u, 8) (86)
The initial conditions can either be obtained from the
measurements, or, where this is not fecsible, they can be
included in the unknown parameter vector 0.
3. Calculate for each measurement the "innovation term"
v. =y. - Hx, (87)

J J J
4. Solve the "sensitivity equations"

9 xlek = af/aek + F(t) 3 x/36) (88)

where F(t) = 3F(t)/9 = _
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The initial conditions of ai/aek are zero except when
x(0) is identified as part of the parameter vector 6.

In this case the initial partials have the value one.

S. The likelihood function for zero system noise is
N T
J = log ply, » . y,/8) = = (1/2) T v} R7L, (89
j=1 3 j
Determine now the gradient of this function with respect h
to O
N -1
3J/306 = T v, R ~ 3v. /30 (90)
= ] ]
j=1
where 3v5/26 = - H Izj/ae (91)
6. Compute the information or sensitivity matrix
2.,..2 _ 3 T -1
M = 3°3/30° = I (3v,/30) R av./36 (92)
= b 3
j=1

The inverse M-l of the information matrix provides a lower

bound for the ccsariance of the updated parameter estimates.
7. The updated parameter estimate is

©0=0_+40 (93)
o
-l T

where 40 = =M~ (3J/30) (94)

8. Go now back to equation 86 with the updated parameter

estimate and repeat the steps to equation 93 . Reiterate
until convergence of the information matrix and of the parameter

vector is obtained.
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The Maximum Likelihood method, which was used quite successfully
in the single blade forward flight amalysis and in multiblade hovering
analysis (29), was extended to the multiblade forward flight analysis
with the time delayed rotor inflow L-matrix model as defined before.

To study the question of L-matrix identification,simulation
studies were performed for a hypothetical rotor withk the
characteristics of the model rotor treated in (9), so that the
experimental values of the L-matrix determined in (9) could be
used. The rotor was assumed to have a blade solidity ratio of .100
and a blade flapping frequency of w; = 1.20. The experimental
model rotor has a blade solidity ratio of .154 and is usually run
with a rotor speed corresnonding to a blade flapping frequency of
w; = 1.17. An advance ratio of .4 is the upper limit for a conventional
helicopter. The dynamic rotor wake effects are rather small at
this rotor advance ratio. The dynamic rotor wake parameter identi-
fication should be easier for lower advance ratios where the rotor
wake has substantially larger effects. In order to study the feasibility
of L-matrix identification, the most unfavorable case of .4 advance
ratio was selected.

The inflow model chosen is given by equation 68. The theoretical

values of KM, K

1 and KIZ’ using potential flow around a solid disc
are Ky = .849 and KIl = l(12 8 K;=113. Choosing the values of
the parameters of the L. matrix from (9) at u = .4, the inflow model
is obtained as

—~ — 1 — m
Vo 5 0 0 Vo Cl
vl +|o s -oflvg| = 1.2 |-7.sc, (95,

V11 0 0.3 0.6 V11 —7.SCL
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Here the number 7.5 represents the theoretical value of the ratio
Ky/Ky. We will assume this value as given and identify only Ky,
but not Ky and KI separately. The inflow model is now assumed

to have six unknown parameters 8,to0 8,, so that the above equation

95 is written in the form

Y, 9, 0 0 |]v, Cr
vp|*|0 @2 esffvri | =65 |-7.5C, (96)
\')II 0 eu 95 VII -7.5CL

The flapping equations are the perturbation equations derived
without reverse flow equations 64, 65, 66 and 67). The system
equations have the given parameters aoc = 2%/10, u = 0.4, tip loss
factor B = .97, and the flapping frequency wj; = 1.20. The Lock
number will be assumed given as y = 5.0 for some identification runs
and will be assumed an additional unknown in other runs.

The inflow equations represent a feedback system, whereby most
of the unknown parameters occur in the feedback loop. The feed-
back signal, v, is unknown. The only measured quantities are @,

91, 951, B,» By, Br1, and By. The four other state variables are also
unknown. The identification problem thus has seven unknown parameters
i1 ¢ 1is included, four unknown state variables and three unknown
feedback variables. One of the unknown parameters (96) is a time
constant.

The following studies were made using the above inflow model
(equation 95)

a) The angular acceleration of the pitch stirring shaft was

considered to be & = -.1/%. The time of transient measure-

ment is t = 0 to 12 time units, the campling rate
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At = 0.1 and the standard deviation of the measurement noise
oy= .05. The average least squares fit o2(fit) is also
noted, to determine the accuracy of the identified fit (Table 3).
From the above identification ..un it is seen that
though most of the parameters converge, the accuracy of
the estimates vary. The diagonal terms 0,, 6, and 8g of
the L matrix converge to more accurate parameter estimates
than the off-diagonal terms 6z and 04- v 4 6y is very
sensitive to the response and hence converges faster and
accurately to the true value.
A priori knowledge of the parameter estimates is added to
the likelihood function as a quadratic term involving the
weighted difference between the estimated parameter values

and the priori parameter values, i.e.,
(0; - 6T A (8; - 8) (97)

where A 1is the weighting matrix. The identification rumns
were under the same conditions as in (a}. Two pitch stirring
accelerations of -.05/m and -.1/n are studied. The weighting
matrix A was taken to be 200I. The Lock number, vy, which can
be determined quite accurately, is assumed to be known at y=5.0.
The main point of interest in Tables 4a and 4b is the
improvement in accuracy of Ml values for the different
parameters from & = -.05/% to w = -.1/w. The values in the
latter are about one-tenth the corresponding values for the
M1 values obtained by using the slower acceleration.
There does not seem to be any appreciable change in oz(fit)

between the two cases in Tables 4a and 4b and Table 3.
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A priori weighting does not seem to have helped in obtaining
better ¢stimates of the parameter values. In cases uf para-
meters Og and 0., the identified values are much worse. The
accuracy of most of the identified parameters don't seem to
be ﬁniy good.

(c) Another study of interest is the case where the induced
flow is represented by the equivalent Lock number, y*.
fhe simulated measurement data is obtained by using the full
L-matrix induced flow model in determining the flapping
response. This response is polluted with zero mean,
Gaussian white noise of 0, = .05 to obtain the measure-
ment data (as before). The identification results are
given in Table 5. Other conditions are the same as in
(a) and (b).

The equivalent Lock number, y*, was identified and
converges rapidly. The M-1 value obtained is low which
shows the goodness of the identified value; but incomplete
modeling (i.e., lack of an inflow model) gives rise to a
02(fit) value which is approximately twice as much as
that obtained by using a complete inflow model in Table 4.

(d) In order to identify the elements of the l.E‘1 matTix
directly and also to identify the three mass and inertia
terms separately, the inflow model as given by equation 68

is used rather than the simplified equation 96.



Table 5. Equivalent Lock Number y

Identified from Data

Generated from the Full L-matrix Induced Flow Model
t=0-12; At = 0.1; o, = .05; & = -.0%%.

v o? (fit)
Value of Y " 5.0

Initial Estimate 4.2 .00636
Iteration 1 3.863 .00504

2 3.85 .00504

3 3.849 .00504

4 3.849

M1 .0013
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The identification program was run under the same
conditions as in (a) except that length of the identified
data length is t = 0 to 18 instead of t = 0 tc 12.

The increase in data length was justified on account of
the poor accuracy of the identified parametcrs and the
high values of the Cramer-Rao lower bounds for the
parameters. This increase in data length was verified in
a later chapter on "Optimal Data Utilization". The
results are tabulated in Table 6.

1 matrix,

Once again, the off-diagonal terms of the Lg
show poor identifiability. The oz(fit) v1lue does not
show noticeable change from the results in (a). The improve-
ment in the Cramer-Rao lower bounds with increase of the
data length was expected.

The simulated measured responses together with the
identified responses are given in Figures 7, 8, 9 and 10.

The perturbation identified infiow is plotted in Figures

11, 12 and 13.
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Detailed analysis of the simulation studies for pitch
stirring acceleration of & = .05/w, -.1/7 and .2/w

are given in (34).
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4.3 BIGENVALUE ANALYSIS

The non-umiform downwash is strongly coupled to the moment
response of hingeless rotors (9) and (11). This led to the study
of the effect of the unsteady downwash on the rotor transient response
and also rotor stability. Study of rotor transient response is made
in the identification analysis of dynamic rotor response in the
previous chapter. Stability studies are made by eigenvalue analysis
of the dynamic flapping response of a rotor model.

As mentioned before, it was seen in (14) that, in hovering,
the damping of the regressing flapping mode is substantially reduced
by dynamic inflow effects at low collective pitch angle. In the
following, results of the forward flight eigenvalue analyses are
presented using different analytical models.

A detailed study was conducted using the forward flight model
given by equations 64, 65, 66 and 67. The parameters of the inflow
model given by equation 68 is obtained from Figure 4 of (9). Several
important aspects of this analysis are:

The eigenvalue analysis is first conducted at u = 0.4 wusing
a complete flapping transient model (including the feedback downwash
model) with and without the periodic terms. The comparison of the
eigenvalues is given in Table 7. Another interesting comparison
with the above are the eigenvalues obtained by neglecting the down-
wash in the constant model. For the constant system, the eigenvalues
are obtained directly by taking the Laplace transform of the system
equation and then solving for the roots of the characteristic equation.

The periodic system equations on the other hand, have to be solved by
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Floquet theory as outlined in (35). According to the Floquet theory,
the imaginary parts of the eigenvalues are indeterminate and in their
multiples of one can be added or subtracted.

From Table 7 one can see that the error in representing the
periodic system by a constant system (obtained by neglecting the periodic
terms) is small, and therefore, the conastant system is in our case, an
accurate representation for the set of parameters used. The error
in the eigenvalues in the above comparison are all within 2%. In
contrast, the flapping model without the dynamic inflow model is
significantly in error. The dynamic inflow reduces the damping of
the regressing mode (fourth row of Table 7) by 40%.

The sensitivity of the eigenvalues with variation in parameter
values was also studied for the constant model. The flapping eigenvalues
seem to be insensitive to changes in values of the L-matrix parameters
in the downwash model. Variation in value of the Lock number vy
caused the real part of the eigenvalues to move closer to the imaginary
axis with decrease in the value of .

The sensitivity of the eigenvalues to the parameters y (Lock
number) and mlz (blade natural frequency) is determined. The model

chosen was the constant system without downwash. Change in m12

only
changes the frequency component of the eigenvalues. The real part
of the eigenvalue stays steady at A/2 (i.e., approxima*tely vy/16). Table

8 shows the details.
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Table 7. Comparison of the Eigenvalues Between the Three Different
Forward Flight Models of the Flapping Response.

Bigenvalues at u = 0.4 (y = 5.0; wlz = 1.4)

Periodic System

Constant System
with Downwash

Constant System
without Downwash

-0.256+0.137j
-0.2450.131j
-0.27541.162j
-0.20010.190j
-0.681+0.0j
-1.299+0.0j

-1.682+0.0j

-0.253+2.134j
-0.246%1.130j
-0.277+1.168j
-0.201:0.194j
-0.682+0.0j
-1.316+0.0j

-1.665+0.0j

-0.274+2.16j
-0.276+1.161j
-0.277+1.168j

-0.28040.167j
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The variation in the eigenvalues from hover to an advance ratio
of p=0.4 is given in Table 9. The constant system model with
the complete downwash model is used. The parameter values used
are those at u = 0.4, and given in equation 95. According to (9)
the dynamic inflow parameters do not change much between u = 0 and
u = .4.

Surprisingly, there is negligible change in the eigenvalues
with change in advance ratio. The variation may be more pronounced
if the changes of the inflow parameter values with change in advance
ratio were taken into account.

At higher advance ratio the effect of reverse flow and periodic
terms becomes important. To study this effect a comparison between
three cases is made as shown in Table 10 fcr p = 0.8: Eigenvalues
are compared for the following three models:

(1) A rotor model with the periodic terms,.reverse fiow

effects and the complete infiow model

(2) The zbove complete model neglecting the reverse flow

and periodic terms

(3) The model given in (1) with the downwash equations

neglected.

From Table 10 it is seen that, neglecting the reverse flow and
periodic terms did not affect the flapping eigenvalues significantly.
The eigenvalues corresponding to the downwash were changed greatly.
At high advance ratio, the feedback due to the dynamic inflow

becomes relatively unimportant which is clearly seen in Table 10.



Table 9. Sensitivity of the Eigenvalues to Variation in Advance
Ratio in a Constant Forward Flight Mathematical Model

with Downwash.
Advance
Ratio (u)}f Constant System with Downwash
0.0 -0.259+2,.143); -0.277+1.168j; -0.2574¢1.137j;
-0.717+0j; -1.245+0j; -1.673+0j; -0.197+0.197].
0.1 -0.259+2.1425; -0.277+1.168j; -0.256%1.137j;
-0.715+0j; -1.2540j; -1.672+0j; —0.198+0.1973.
0.2 -0.258%2.140j; -0.277%1.168); -0.254%1.136j;
-0.708+0j; -1.264+0j; -1.671+0j; ~0.198+0.1963.
0.3 -0.256+2.138j; -0.277+1.168j; -0.25121.133j;
-0.697+0j; -1.286+0j; -1.669+0j; -0.19910.196].
0.4 -0.25342.134j; -0.277£1.168j; -0.246+1.130j;
-0.682+0j; -1.316+0j; -1.665+0j; -0.201+0.194].
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Table 10. Comparison of the Eigenvalues Becveen the Three Different
Forward Flight Models at High Advance Ratio {u = 0.8;
ml‘. = 104; Y = 3-2).

Model (1) Model (2) Model (3)
-.181+2.143j -.167+2.143j -.187+2.148j
-.187+1.126j -.174+1.147j -.187+1.151j
-.18721.147j -.177+1.166j -.187¢1.151j
-.17610.190j -.180+0.175j -.187+0.154j
-.580+03 -.268+0j

-2.45120.151j -5.148+0)
-17.937+0j
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4.4 OPTIMAL DATA UTILIZATION FOR PARAMETER IDENTIFICATION PROBLEMS
WITH APPLICATION TO LIFTING ROTORS
In aircraft or wind tunnel transient tesiing the question comes
up as to what kind of transient should be selected. If the transient
is too short, the parameters will be identified with inadequate
accuracy. If the transient is too long, an unnecessary amount of
data must be processed. The question we pose here for the Maximum
Likelihood method is — given a required accuracy of the parameter
estimate, and given an input function, what is the minimal quantity
of measured data necessary to achieve this accuracy? There are some
recent studies where certain criteria were used to define an optimum
input. We will first briefly discuss two of these optimal input
proposals, and then proceed to develop the method of optimal data
utilization for a given type of input.
4.4.1 Two Proposals for Optimal Input Design
General questions uf input design are:
(a) What type of input function should be used?
(b) For what time period should the response data be processed
to enable identification of the system parameters with
a specified accuracy? Are certain time periods of the
response particularly rich in information contents and
should they, therefore, be preferably used?
There usually are some constraints on the input design like amplitude
constraints, smoothness constraints (step or impulse inputs are

mathematical idealizations but often practically not realizable),
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instrumentation constraints, and constraints imposed by the selected
analytical model that usually filters out the higher frequency
contents of the input.

Analytical solutions of the problem of optimal input design
require the minimization of a cost function. Stepner and Mehra
(1) use the sensitivity of the system response to the unknown
parameters as the performance criterion for optimal input design.
The time of the transient is assumed to be fixed. Thus questions

(b) are not involved. The measurement equation is
ym(t) = y(x, 8, u, t) + v(t) (99)

We write the Taylor expansion with respect to the parameter 8 about

the a priori estimate 8, of @ and neglect higher order terms:

3
8

ym(t) = y(x, 04, u, t) + 3 y(x, 8oy U, t)(6-06,)

o
(100)

+ v(t)

In the output error method (8 - 8,) is determined by a least
squares solution of equation 100 for a fixed time period (t,, tg).
For a high degree of accuracy in determining (8 - 8,) the sensi-
tivity function 23y/30 must be large. The scalar performance index
selected in (1) is

J = Trace (WM) (101)

where

t
£ T -1
M = f (ay/38)7 R™L(ay/30)dt (102)

to
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Due to the introduction of R™1 in M, the performance criterion
favors the measurements which are more accurate. The weighting
matrix W is based on the relative importance of the parameter
accuracies.

If we assume linear system and measurement equations

x(t)

Yp(t)

F x(t) + G u(t) (103)

H x(t) + v(t) (104)

together with an "energy constraint" for the input

E = [ nT u dt (105)

the optimum input u can be determined as a two point boundary

value problem whereby the Hamiltonian includes the term
(1/2)n, (u'u - E/t,)
0 £ °

The scalar p, is the time invariant Lagrange factor to be evaluated
from the Euler differential equations of the optimization problen.
It should be noted that the " energy constraint" equation 105 has
no physical significance but is a convenient device to obtain smooth
input functions. Physically, the input will usually be limited
by amplitude rather than by the quadratic criterion (equation 105)
and quite different "optimal" inputs can then be expected.

(36) attacks the problem of optimal input design in an entirely

different way as a time-optimal control problem by minimizing

J = Jr dt (106)
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under the following constraints:

System Equations
[ ]
x=£(x, u, 8, t) , x(ty) = x4 (107)
Sensitivity equations
Ix/3xg = (3£/3x)(3x/dx) , dx(ty)/dx%e = I (108)
3x/30 = (3£/3x)(3x/36) + 0£/36, 3x(ty)/36 = 0 (109)
Information matrix equations
=t = _wcavsae)T rRLcavsae)mn”t (110)

where v is the innovation:

vEy, -y , Q1)

and where the information matrix M is given by equation 102.

Finally, Chen assumes an amplitude constraint
Juf sV (112)
and he prescribes the trace of the information matrix for time te
C, . (tg) = o2 (113)
ii*°f i .

One can show that for linear input u(t) 1into the system equation
and for an input matrix independent of any unknown parameter, the
optimal input is of the ''bang-bang" form between the amplitude
constraints. The solution of this problem requires a computer
search which was not performed (36). Rather, an arbitrary set

of bang-bang inputs in the form of Walsh functions was shown to
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result in a specific case in lower values of M‘l(tf) (given ty)
than those obtained by using Mehra's "optimal input'". This apparent
contradiction can be explained by the differential equation 110
governing Ml Pora particular value of Ml the rate of decrease

of Ml with time is dependent on all elements of

(ay/20)T R™L(ay/20)

while Mehra, in his criterion (equation 101) optimizes only the trace
of WM.

While the input amplitude constraint (equation 112) used by
Chen is physically more significant than the quadratic constraint
(equation 105) used by Mehra, the actual constraints are usually
still more complex. In cases of airplanes or lifting rotors one
usually wishes to limit the response to the linear sub-stall
regime, since the analytical model to be identified is often a
linear one. The stall boundary is, however, a complex function of the
input and cannot be represented by an amplitude constraint for the
input transient. This is particularly relevant for the lifting
rotor, so that neither the Mehra nor the Chen input optimization
criteria is useful for lifting rotor applications, quite apart from
the excessive computer effort involved in obtaining the optimal inputs.
Furthermore, the input matrix usually contains unknown parameters.
In this case,Chen's optimum solution would not be of the bang-bang
type and would be still more difficult to obtain. For all of these
reasons it was concluded that at the present state of optimal input

design methods an attempt to compare our selected inputs with an
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"optimum input'" wculd not be practical. Instead, a more limited
approach has been taken described in the following section.
4.4.2 Optimal Data Utilization for given Input Function

We first point out the difference between the continuous and
the discrete case. In the Maximum Like¢lihood (output error method
for zero process noise) using the Newion-Raphson approach with guasi-
linearization, one obtains for thc parameter update increment the
following expressions:

Continuous case:

tf R -1 t
T £ ,
28 = (22T g2y 4 (AT g1y 4e (118)
50 56
te g

Discrete case:

N -1 N
av,7 -1 _3v ov -1
A0 = L (—). R (=) . I (=) R"" v a
[131 0’1 ae 1] $=1 30 i
_ o=l 07 (115)
=7 G5p)

The Cramer-Rao lower bound has been defined only for a vector of
sampled measurements and not for the continuous case (2) and (18).
For high sampling rate, one can define an approximate differential

equation for M from equation 115 in the following way:

Set 5; 4 (3v/ae), (116)
then
\ N T -1
T -1 . 1 g , At 117

isl i
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‘As N increases, At gets smaller and the right hand side of

equation 117 can be approximated by

teg Nat T
M 3 (1l/4%) § R s dt (118)

M-J':At[ sT =1 g at (119)
o]

Taking the derivative of M-l with respect to tf:

dM‘l/dt, = -M‘lcaM/atf)M‘l

or with equation 118
awtrae, = -/aomwt sT R s w7t (120)

The point is that even in a continuous formulation the time increment
At between samplings must occur. Equation 119 is the correct formu-
lation for the Cramer-Rao lower bound of the covariance matrix for the para-
meters. (36) has a recursive formulation corresponding to equation 120.

We can now use the approximately valid differential equation 120
to obtain some insight into ways of best data utilization. Let us
assume that we wish to prescribe certain values for the parameter
standard deviations o; and that we wish to compare the Cramer-Rao
lower bound with these standard deviations. Since we are dealing
not with the unknown actual parameter covariances but only with their

lower bounds, we should apply some conservatism to the selected gy,
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that is we should select % smaller than we really need for the
specific data processing case. We thus require

0 < MZ% (1, 1) < o: (1an)

e v - .-

whereby M;; is the value of Ml at time te.  For non-zero
values of S, the right hand side of equation 120 is negative
definite and hence M;i (i, i) are monotonically decreasing
functions of tg. There will, thus, be a minimum time for which the
constraints of equation 121 are satisfied.

Another way of reducing the amount of measured data for the
parameter identification is to select for the data processing those

time periods for which the components of the matrix
sTrls

have significant values. It follows from equation 119 that the
Cramer-Rao iower bound M ! then will b particularly small. The
components of M1 also decrease with decreasing time elcment
At between samples.

Since it is impractical to use for the integration of cquation 120
infinity as initial condition, it is recommended to determine M1
for a small time period, say for N - 10, from equation 119 and
integrate equation 120 with the solution to cquation 119 as initial
conditions. Since S includes paramcter estimates, one nceds a
preliminary estimation of the unknown parzmetcrs in order to use

equation 120.
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4,4.3 Application to a Case of Lifting Rotor Parameter Identification
The simplest mathematical model of the single blade flapping
equation as expressed in equation 52 is used to identify the two
unknown parameters: the collective pitch angle 6, and the
equivalent Lock number y. The angular acceleration, in the pitch
stirring transient, is assumed to be & = .1/m and t, = 12.
Here we are concerned with the problem of designing the tests
in such a way that the test data will be sufficient to determine
the two unknown parameters vy and 9, with good accuracy, i.e.,
to determine a suitable value of T that allows an accurate identi-
fication of parameters.
The simulated identification analysis was performed under the
assumption of a random zero mean white noise sequence superimposed
on the analytical flapping transient. This transien* was obtained for
8, = 2°, u=0.4and y = 5.0. For convenience, the parameters
§ = y6, and y instead of @, and y were identified.

System and measurement equations corresponding to equations 103

and 104 are:
§1~ 0 1 X, 0 )
s +
X, -2+ (1/2) R() -(y/2)cte) ] [x, (y/2)mg
(122)
*)
ym = [1 0) + v(t) (123)
X
2
where
E {v(t)) = o E(v(t) v(t)) = 0,2 &(t - 1)

and [x1 x2] = [8 §)
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We first sku~ in Table 11 the effect of data length on the
parameters and their associated M'l (i, i) values. The iteration
of the Maximum Likelihood method was begun with a 20 percent error
in the parameter values. It is seen that a data length of t = 12
- 14 is quite inadequate, a data length of t = 12 - 18 gives
reasonably good parameters, while a data length of t = 12 - 24
is much better and leads to a2 very smali lower bounds of the parameter
covariance matrix. Figure 14 shows the correct flapping response
together with the simulated meésurement data. Pitch stirring is
initiated at t = 12. Figures 15 and 16 show M l(yj and M- 1(8)
from equation 120 between t = 16 and t = 24. Two curves are plctted,
one for the initial crude estimat: of the parameters (y = 4, § = 8),
and one for the final estimate of the parameters for t = 24, (y =
4.91, § = 9.83). The two curves are in this case not much different.
Note the steep descent of the curves to about t = 17.5. It wouid,
therefore, not be acceptable to use the data up to less than the
time 1 = 17.5. However, there is another descent to t = 23.0,
causing the improvement shown in Table 11. From Figures 15 and 16
it is clear that the selection of T = 24.0 is a good cne, that the
use of fewer data would result in substartial decrease in parameter

accuracy, and that the use of additional datz is unnecessary.
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*—9—9 Y = 4.0; § = 8.0
NP Yy = 4.91; 6 = 9.83

T tsseeaa . |
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Plot of the Cramer-Rao Lower Bound of the Parameter covariance

for the Parameter y from the continuous Formulation given by Equation 120.
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Figure 16. Plot of the Cramer-Rao Lower Bound of the Parameter covariance
for the Parameter § from the continuous Formulaticn given by Equation 120.
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Table 11. Parameter Identifiability for Different Data Length —
Single Blade Model (Equations 122 and 123 ) with
Parameters vy and S8 A eo Y-
®

i) t=12- 14

Parameter v 8 iy wl
Initial Estimates 4.00 8.00
Iteration 1 4.29 9.73 48.0 6.5

2 4.17 9.71 37.0 8.1

3 4.10 9.67 37.0 8.0

ii) t=12- 18

Parameter Y 8 Ml wle

Initial Estimates 4.00 8.00

Iteration 1 5.36 9.67 .096 .032
2 5.23 9.73 .100 .035
3 5.23 9.73 .094 .035

iil) t=12-24

Parameter Y S M ley) M—1(5)

Initial Estimates 4.00 8.00

Iteration 1 4.94 9.69 .007 .013
2 4.91 9.85 .008 .015

3 4.91 9.83 .008 .015
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An analogous analysis was made for a forward flight condition,
assuming the same pitch stirring transient and the same measurement
noise. Now seven instead of three parameters must be identified.

Figure 17 is a plot of the standard deviation (square roots
of the Cramer-Rao lower bound) of the various parameter estimates
versus the time of identification. The standard deviation is plotted
as a percentage of the parameter value. The graphs are drawn under
the following specifications:

Parameter values chosen:

O = .5 o, 5,0 0 v, ] e ¢

02= -9 o | +]o 80 |lvy | = |7-56 (124)
93 =-.8 vl o e, 65 || vy 7.5C,

9 = .3 = =S

05 = .5

0 = 1.0

07 = y=4.9

Pitch stirring excitation:
0 = 1.5 sin [u(t - t,)]

051 = 1.5 cos Ju(t - t5)] (125)

0 t < to
where W=
-(0.1)(t - t /v to<t=<T
Measurement noise statistics: Mean = 0

Std. deviation = .05
Sampling time At = 0.1 time units

Advance ratio u = .4
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The plot gives us the degree of identifiability of the parameter
as a function of time length of identification. The Lock number y =
07 1is identifiable with a much higher degree of accuracy than the
various parameters in the perturbation downwash equations. This was
seen clearly in the simulation studies for the identification of the
parameters. Beyond a time length of T = 18 the curves flatten out,
indicating that measurement beyond that time does not improve the
accuracy of the parameters identified. This is in agreement with the
result for zero advance ratio. The above time length seems to be
necessary and also adequate for identification purposes, for the
given sampling rate and excitation.

In our previcus simulation studies we have used a sampling
time of T = 12 time units. From Figure 17 it appears that
inaccuracies in our identified parameters could be attributed to
inadequate data length for identification purposes. This factor
will be taken into consideration in parameter identifications using

test data.
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5. BRIEF DESCRIPTION OF THE EXPERIMENTAL SET-UP

The basic purpose of the experimental set-up is to measure
continuously the flapping response of the rotor blades to cyclic
pitch stirring excitation. A sampled length of the response, together
with the input excitation, is used to identify the dynamic inflow
parameters and hence determine the fccdback effect of the rotor
wake on the flapping response.

The experiment can be split up into three independent circuits:

1. The strain gauge (the flapping response measurement) circuit

2. The pitch resolver circuit

3. The rotor resolver circuit

A brief description of the above circuits are given below.

For a detailed description of the experimental equipment and
procedure see (12).
5.1 STRAIN GAUGE CIRCUIT

Four strain gauges are mounted on the flexure of each blade
to form a Wheatstone bridge. Two strain gauges on the top and
two strain gauges at the bottom of cach flexure are so counnected
that the torsional and the lead-lag motions, if any, are annulled.
The rotor is considered to be very stiff in torsion and lead-lag.

A schematic diagram of the strain gauge circuit is shown in Figure 18.
Power is supplied to two arms of the bridge through two slip
rings. The signal is taken out through two other slip rings from the

other two arms of the bridge. The signal is passed through medium-

gain amplifiers and recorded on a six channel FM tapc-recorder.
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SIGNAL POWER SIGNAL

S.R. 1< S.R. 2 S.R. 3 Cbs.n. 4
20 Q 20 @
AMPLIFIER N— -4
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g
POWER

POWER

10 Q

Figure 18. Schematic Diagram of the Balancing Network for each

Strain Gauge Circuit (S.G. - Strain Gauge; S.R. - Slip Ring).
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5.2 PITCH RESOLVER CIRCUIT

The resolver is a rotating transformer whose output varies sinu-
‘e6idally ‘- with the angular position of the resolver shaft. The
resolver shaft is connected by means of a sprocket drive to the inmer
shaft Figure 19 . The relative velocity of the rotor and the inner
shafts provide the pitch stirring excitation. A brief description
of the drive mechanisms will be given later. The input to the
resolver is an oscillator whose frequency and amplitude can be varied
to get desirable output signal from the resolver. The output signal
is of a varying amplitude depending on the angular position of the
resolver shaft with a carrier frequency corresponding to the
input (oscillator) frequency. The signal is then passed through
a full-wave rectifier-low pass filter circuit <o remove the carrier
frequency. The signal is then fed into a low-gain amplifier to adjust
the output level of the signal. It then goes through a 3-way, 2-position
switch which works as follows (Figure 20):

When the switch is in the "OFF'" position, the input to the
recorder is a 2.5 volt D.C. battery signal. When the switch is
flipped to the "ON" position, the following events occur simultaneously:

a. The motor drive to the inner shaft is activated

b. The signal sent to the resolver is no. the resolver signal

c. The solenoid that retains the inner shaft at a fixed (trim)

condition, is released

5.3 ROTOR RESOLVER CIRCUIT

An oscillator provides the input to the resolver which provides
the angular position of the main rotor shaft in a manner similar to the

input to the resolver on the inner shaft. The output of the rotor
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10 Hz - 40,000 Hz
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+
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Figure 20, The Resolver Circuit of the Pitch Stivring Excitation,
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resolver is then passed through a full wave rectifier circuit.
It is then input into a low gain amplifier for output level adjustment
as before. It is then sent to a two-way, two-position switch, the
output of which is input to the tape recorder. In the "OFF"
position the tape recorder input is a 2.5 volt D.C. signal. When
the switch is flipped to the "ON" position, the motor that drives
the rotor shaft is energized and also the rotor resolver signal
is input to the tape recorder. A schematic diugram of the circuit is
shown in Figure 21.
5.4 PITCH STIRRING EXCITATION

The inner shaft is a cylindrical rod which passes through the
hollow shaft with an eccentric pin mounted at the end as shown in
Figure 19. Two sets of pitch control flexures are mounted on the pin.
Each set of flexures is clamped to two opposite biades. Rotation
of the inner shaft is effeccively the same as rotating a tilted
swash plate. The collective pitch of the blades is adjusted by
loosening the pitch lock nut adjusting the blade pitch on the pitch
screw and then relocking the pitch lock nut. The drive is mounted
on the other end of the inner shaft. Basically two drive mechanisms
are used:

1. A motor is used to drive the inner shaft using a sprocket
drive. The acceleration of the motor provides the required
transient excitation. This is seer in Figure 22a.

2. A coil spring mounted on the base of the inner shaft is
used to drive it through 90, 180 and 270 degrees. The

acceleration of the shaft would be proportional to the
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amount that the coil spring was wound prior to its release.
A view of the spring excitation is shown in Figure 22 b.
$.5 BRIEF DESCRIPTION OF THE EXPERIMENTAL PROCEDURE

The stands are adjusted so that the rotor plane is parallel
to the base of the wind tummnel for study of the flapping response
for zero angle of attack. The collective pitch of each blade is set
in the following manner:

In order to make relative collective pitch changes, a beam
of light is focused on the small mirror glued to the root of each
rotor blade as snown in Figures 23a and 23b. At zero collective
pitch setting, the beam striking the mirror at an angle of incidence
of 30° 1is reflected to a position marked X" on the calibrated
scale. On changing the collective pitch Figure 23b, the angle of
incidence of the beam changes, which is reflected to the position
marked X,, which directly reads the change in the collective pitch
setting from the position x".

To set the collective pitch to zero degrees, the zero degree
eccentric is mounted on the inner shaft. The pitch angles of the blades
are adjusted till each of the blades have a minimum flapping response.
This is studied on the scope.

A qualitative judgemenrt regarding the relative accuracy of the
collective pitch settings is made by using the stroboscope. A
photocell reflecting off thin reflecting strips (corresponding to
each blade) on the rotor shaft is used to trigger the stroboscope.
The blades can be observed to have the same flapping angle. If not,

small adjustments have to be made in the collective pitch settings.
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SLIT LIGHT
SOURCE

STRAIN GAUGE

Figure 23a.

SLIT LIGHT
SOURCE

Figure 23b,

Figure 23 a~-b. Reflective Principles used in Relative Coilective
Pitch Setting of the Rotor Blades.
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The zero eccentric on the inner shaft is replaced by the
%t 1.4 degree eccentric. The inner and the rotor shaft resolvers
are now synchronized. This is done by first locking the rotor shaft
and the inner shaft by a locking pin. A screw on the rotor shaft
which is located at the zero azimuth angle is used to activate
a magnetic pick-up which generates a voltage blip. The inner
and the rotor shafts are run in the locked position. The rotor
and the inner shaft resolvers are adjusted such that their zeros
pass through the center of the blip of the magnetic pick-up. The
inner and the rotor shaft resolver positions are now synchronized.
Since the resolver output amplitudes are not exactly sinusoidal for
constant rotational speed, the resolver signals of both the inner
and the rotor shafts are recorded with the two shafts locked. This
provides information for calibration of the resolvers.

The shafts are uncoupled and the drive for the inner shaft is
set up. The strain gauge circuits are balanced as described before.
The flapping deflectionhas now to be calibrated. This is done by
using the following blade specifications:

(a) one inch of tip deflection corresponds to 6.23° flap

{(b) one inch of tip deflection requires a moment of .562 1bf-in

With the above information, a 10 gram mass at 7.17 inch (blade
tip) distance is found to create a deflection of 1.746° flap. The
amplifier gain is adjusted for an output of 1.746 volts, thus giving
a one volt/degree flap deflection. The tape recorder is zeroed

and then calibrated by recording two known levels of D.C. voltages.
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The rotor structure is mounted on a swiveling base so that the
rotor shaft can be tilted for different angle of attack positions.
The rotor shaft tilted at « = -3° is shown in Figure 24a and 24b.

A fairing 1s mounted on the rotor shaft for a strcamline flow past it
and to avoid the effect of the rotor shaft on the blade wake effects.

The motor that drives the rotor shaft is turned on by the switch
MS-2 (Figure 21). The inner shaft is held in position mechanically
by means of a solenoid. The rotor shaft speed is adjusted by a
potentiometer, thereby changing the rotational flap-bending stiffness
w) of the rotor blade. The wind tunnel speed is adjusted for tne
required advance ratio. The tunnel speed is measured by a manometer.

A six channel FM tape recorder,which measures the response of the
four blades and the two resolver signals, is turned on to record the
signals. Switch PS-3 (Figure 20) is in the closed position and PS-2,
the inner shaft drive motor, is in the "OFF'" position. When the
switch PS-2 is flipped, the inner shaft drive motor is turned on and
the solenoid that holds the inner shaft is released at the same time.
The acceleration of the inner shaft drive provides the transient
excitation. Switches PS-3 and PS-2 are turned off in sequence and
the recording stopped. A view of the experimental set-up is seen

in Figure 25.
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6. EXPERIMENTAL DATA ANALYSIS

The transient test results together with the trim conditions
are recorded in analog form on magnetic tape. The two resolver
signals and the signals from the blade flapping strain gauges are
processed on a PDP-8 and PDP-12 mini-computer complex. Prior to the
identification analysis, several preliminary raw data manipulations
are necessary. The analog data are digitized, the data is transformed
from rotating to fixed coordinates and the transient perturbation
results are separated from the trim values. The small bias values in the
blade flapping measurements are removed by identifying the bias values
in each identification rum.

For low advance ratios (ug.4), it is seen (from 4.3) that the
multiblade formulation gives accurate response with the periodic
terms left out. When the periodic terms are neglected, the Bd
equation 67 becomes uncoupled from the rest of the equations. Hence
the B, response can be neglected from the identification procedure.
Even for u = 0.6, a comparison of the y* identification between
a model with the periodic terms, the Bd equation and reverse flow
effects included and a model neglecting all of the above effects

is surprisingly accurate. These are shown in Table 12

and Table 13. Thus it is seen that neglecting the reverse flow and
the periodic terms at low advance ratios is quite acceptable. At
low advance ratios the reverse flow regions are restricted near the
rotor hub, thus having negligible effect on the flapping response

of the rotor blades.
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Comparison of the Identified y* Values Using a

Mathematical Model which Includes Reverse Flow,
Periodic Terms and B8, equation (Table 13) with

a Model Excluding the Above Effects (Table 12)

Using Data at u = 0.6.
Table 12
Parame:er 2Least Squgres fit (R;
Y o 8 o B o 811
Initial
Value 3.00 .01735 . 39835 .06648
Iteration 1 3.529 .00184 .00812 .00767
2 3.654 .00163 .00859 .00754
3 3.654 .00163 .00859 .00754
4 3.654
Table 13
Parameter Least Squares fit (R)
v o8, o8y °2311 °23d
Initial
Value 3.654 .00112 .00816 .00716 .01540
Iteration 1 3.630 .00112 . 00866 .00719 .01542
2 3.595 .00112 .00795 .00726 .01557
3 3.584 .00112 .00781 .00725 .01562
4 3.580
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An interesting observation is that at higher advance ratios the
bias terms are rather large. This is because at high u, the
trim flapping response has (seen experimentally) a small variation
of the amplitude of the trim condition with a large time period. This
can very well cause the trim subtracted from the transient response
to be slightly different from the actual trim at which the transient
was measured, thus giving rise to the bias values.

I1f all the b.ades were identically set, the trim values for
the flapping response of the blades in the non-rotating system would
be nearly constant. From equation 67 it is apparent that B8, has
a moderate 2/rev. in its trim condition, B and Bj; have a smaller
4/rev. input effect,and 80 has a very small 4/rev. for its trim
response. A typical average trim condition data is given in
Figure 26.

If a constant approximation is used for the trim values, it
will correspond to the starting values of the transient responses,
This would ensure response bias values of approximately zerc, though
the 2/rev. and the 4/rev. trim conditions show themselves in the
transient data. If the periodic trim conditions for data obtaired
at low advance ratios are used, then the transient responses will be
rid of both the bias and the 2/rev. and the 4/rev. trim variations.
6.1 PITCH STIRRING EXCITATION

Two rates of acceleration of the inner shaft are obtained by
adjusting the potentiometer setting of the eddy current to the motor
that drives the inner shaft. Plots of the slow and the fast excitation
are shown for normalized Oy; as a function of non-dimensionalized

time in Figure 27 and Figure 28 respectively. Care was taken to use
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a length of data in which the excitation velocity is uniformly
increasing. For both rates of excitation, the frequency of excitation
becomes approximately constant beyond t = 30 and any data utilized
in this range would tend to give biased parameters whose values
depend on this constant excitation frequency.

The inputs are mostly progressive pitch stirring accelerations
of the inner shaft. Data is also gathered using regressive pitch
stirring acceleration and spring loaded pitch stirring excitation.
Details of these inputs are given in (12). These data sets are used
for verification of the identified model response prediction.

6.2 y" IDENTIFICATION RESULTS

Figure 29 is a plot of y° versus advance ratio for different
values of the collective pitch setting at w = 1.18. The values of
y* from momentum theory (6°=0°,‘equation 58) are plotted for comparison.
This analytical result is for low collective pitch settings. As the
advance ratio increases, the rotor wake gets washed away faster and
hence, the feedback effect of the dynamic inflow on the flapping
response decreases. This is seen in the increasing value of the
identified y" with advance ratio for all collective pitch settings.

Figure 30 shows similar results for w, = 1.24. The analytical
model approaches the true value of y asymptotically. The experi-
mental results for 8, = 0° shows that around u = 0.75, y* is
approximately equal to the value of the blade Lock number y. This
shows that at this high advance ratio, the effect of the rotor down-

wash has become negligible.
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Figure 29 and Figure 30 are combined and piotted in Figures 3la
and 31b, where y* is drawn as a function of 8, the collective
pitch setting. The consistent trend seen in these curves is that,
with increasing value of ©, , the y* value first drops and then
increases beyond a collective pitch setting of around 3°. This is
in apparent contradiction to the equivalent Lock number formulation
given by equation 57, which indicates that, since with increasing
collective pitch 6, the induced mean downwash v monotonically
increases (11), the equivalent Lock number increases. The discrepancy,
however, s due to the fact that the tip loss factor B is decreasing
with increasing Go, causing an apparent decrease in the value of the

Lock number which varies as B4.

Also plotted in Figure 29 and Figure 30 are graphs of y* for
trim conditions of eo = 3.5%9;, «= ~-3°. This increases the downwash
over the trim condition of 9 = 3.5, « = 0°, and hence, decreases
the effective angle of attack of the blade. This is seen in the
higher value of y*. This agrees with the trend cof y*versus 9
as found before.

Studies have also been done to determine the effect of a
range of a from 0° to -6°. The shaft tilt corresponds to a combination
of collective and lateral cyclic pitch change of the rotor blades.
This is because the changes in the angle of attack (46) due to a
shaft angle of attack of a are:

At $ = 0 and v (fore and aft positions):

Ao

ua/(r/R) (126)
At ¢ = /2 (advancing side):

40 = ua/(r/R+u) (127)
At y=31/2 (retreating side):

40 = pa/(r/R-u) (128)
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Figures 32a and 32b are plots of Ay* versus shaft tilt angles.
Since these are essentially plots of Y* versus collective pitch
change (on a different scale), the trend of these graphs should
agree qualitatively with those in Figures 31la and 31b. This is an
independent verification of the results shown in Figures 3la and 31b.

v* has been found to have very good identifiability. Data
length study has been done for transient data at w; = 1.24, 8, = 5°,
u=0.3. y* was identified using seven transient data lengths ranging
from two to five rotor revolutions. In all of the cases, the y*
identified to within 4% of one another.

6.3 L-MATRIX MODEL IDENTIFICATION

A simplification in the flapping response of the L-matrix is
made when the B equation is neglected from the set of equations
used for identification (see equation 64). This is done for the
following reason:

Numerous identification tests have shown that both L;; and
'Q,QI/KM have poor identifiability (see equation 71). These are
the two parameters associated with A . The primary effect of

A, 1is on the B, response and the B, transient response is small in

0
comparison to B and Byy responses. Since B, is weakly coupled
with B; and Bjj responses at low advance ratios, the equations

governing the B° and the A  responses can be neglected.
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The reason for the small B8, transient response, and consequently
poor identifiability of the two associated parameters L,, and 7, seems

to be due to the lack of collective pitch excitation. Pitch stirring

excitations in the pitch and roll directions generate adequate @; and

811 responses to identify the parameters associated with them.

The above simplification reduces the identification problem to
one of identifying the four elements Ljj, L33, L3, and Lys of the
L-matrix, vy, Tyy (see equation 71) and Yy, based on the measure-
ments 8, and By, Oy and O;y. vy appears as a product with B2, B3
and B4 in the flapping equations. The tip loss factor B is not
known accurately as a function of the blade pitch angle. Simulation
studies have shown that y identifies very accurately (within 3%
of its true value). Hence the value of B is assumed to be 1.0 and
the Lock number y is assumed as a parameter to be identified. The
identified y will thus represent, not the true value of the Lock
number, but a product of the Lock number and a power of B8 between
2 and 4. Roll and pitch time constants vy and Ty; are assumed
to be identical in theory (1;), but with increasiag advance ratio they
are expected to have increasingly different values.

Figure 33 is a plot of y versus @,. The trend of the curve
with increasing 6,, according to steady momentum theory, should be

decreasing due to decreasing value of the tip loss factor.
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But the value of the Lock number increases and then drops beyond a
certain 9, This trend is also found in a similar plot for hovering
anziysis (12). The plot also shows a decreasing variation of y with
increasing advance ratio (graph drawn for n = 0.2 as compared to the
one drawn at n = 0.1).

Pigure 34 shows a plot of the parameter L22 as a function of
the advance ratio for different identification runs, The corresponding
values predicted by momentum theory are plotted for comparison.

The experimental values are several times larger than those from
momentum theory. L3 is similarly plotted for two different
values in Figure 35.

The parameters L,z and L32 show no consistent trend with
variation of the trim conditions. The values from all the experimental
results lie around the value of zero, as predicted by momentum theory.
All identified values of L,; are between -0.15 and +0.15.

All identified values of Lz, 1lie between -0.15 and +0.4.

From several studies, it is seen that t  and Ty have approxi-
mately equal values at u = 0.1 regardless of their trim conditioms.
The value is very close to the theoretical value in (9 ). At u = 0.2,
the value t; becomes larger and 1 becomes correspondingly smaller.
The ratio of 1t; to t;; ranges from 1.5 to approximately 2.5. A

typical comparison is shown in Table 14.
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Comparison of Identified tl and 17y Values with

Advance Ratio.

o = 075wy = 1.24

Advance Identified Parameters

Trim Values Ratio 11 I
0 W =

o = 5% u) = 1.24 0.1 8.41 7.35

) = 505wy = 1.24 0.2 13.86 6.45

= 0% wy = 1.24 0.2 14.28 8.86

0
0.4 10.79 2.78
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6.4 COMPARISON OF IDENTIFICATION AND PREDICTION STUDIES

As explained before (page 126),the transient data length used
for identification is selected such that the input transient has
a uniform increase in velocity. Progressive input excitations of
the slower type (Figure 27) and their corresponding responses are
generally used for the identification of the parameters.

Once the parameters have been identified, based on a certain
length of data, the goodness of these parameter values, and hence,
that of the corresponding mathematical model, has to be ascertained.
Prediction studies are. hence, required, and are made in the following
manner:

The identified parameter values are “1serted i1un... the mathematical
model. The model is now complete. This complete model together
with the faster transient input (Figure 28) is used to determine
the response of the mathematical model to be compared with the response
of the experimental mode) to the same faster excitation. This
prediction study is done for closely similar trim conditions as
those in the corresponding identification study.

Typical examples of studies done are given here.

0°, w, = 1.24

1. In Figures 36a,36b and 36z, data set with 90 1
and p = 0.4 is modelled using the Y* model aud the L-matrix
model programs. This data is modclled so well with the y" modei
that there is hardly any improvement by using the more complete
L-matrix model.

2. Prediction curves for data with wy = 1.116, 6 _ =5

A comparison of the threce models is studied for prediction

results in Figures 37a and 37b. The three models are:
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(a) vy model (neglecting downwash)
(b) v" model (obtained from data with w, = 1.24, 6, = 5°
and u=.1)
(c) the more complete L-matrix model (parameters obtained from
data with wy = 1.264, 0 = 5% and u = 0.1)
Though the model without downwash shows high r.m.s. fit errors,
the uther two models give good degree of fit prediction.
The vy model gives larger amplitude responses as compared to the
other two. TheALock number y is the ratio of the aerodynamic
forces to the gyroscopic (inertia) forces. Increase in the aero-
dynamic forces increasesthe amplitude of the response." Increase
in the inertia forces decreusesthe amplitude of the response.
Hence, with increasirg value of vy, the response has an increasing
amplitude. This is also verified by the flapping equation 52
which shows that, since vy multiplies the forcing function, the
response is directly dependent on it, even though the damping of
the system is increased by increasing the value of Y.
Prequency response curves show that the y* model has a decreasing
value of the amplitude response with increasing progressive
frequency excitation (beyond a certain frequency), whereas the
true response has an opposite trend (37). This gives rise to
greater discrepancies at higher progressive frequencies between
y* model and the physical mcdel. This is clearly seen in the
By and 8;, prediction curves, since the prediction studies are
made at a much higher frequency of input transient excitation as

compared to the frequency range in which the y* model was determined.
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The initial conditions for these prediction studies were chosen

at their corresponding identified values.

Prediction curves for data with wy = 1.18, 8, = 5° and u = 0.2.
The L-matrix parameters and y were chosen from che data set with
w, = 1.24, 0 = 5° and u = 0.2. The three models are studied as
before (see Figures 38a and 38b). All the features found in the
previous prediction study with n = 0.1 are found in this study.
An important observation is that the model neglecting the dynamic
inflow (y* model) has a significantly smaller error at p = 0.2
as compared to that at u = 0.1. This indicates the fact that
with increasing advance ratio, the feedback effect of the down-
wash is diminishing.

In Pigures 39a,39b and 39c, data set with 0 = 5%, w, = 1.24

and p = 0.2 is modelled using the y* model and the more complete
L-matrix model (with diagonal terms). The plot shows a signifi-

cant improvement in the fit by using the complete L-matrix model.
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7. CONCLUSION AND DISCUSSION OF RESULTS

Based on the preceding analysis of the feedback effects of the
rotor dynamic inflow on the flapping response of the rotor blades to
accelerated pitch stirring excitation, several interesting results follow.
7.1 CONCLUSION OF METHOD ANALYSIS

Apart from the several theoretically justifiable properties of
the Maximum Likelihood method as outlined in section 2.7, simulation
studies and comparison with other identification techniques give the
following results:

1. The Maximum Likelihood method works well for bLoth the single
blade and the multiblade application in simulation studies.

2. The Cramer-Rao lower bounds for the parameter covariances
obtained from the Maximum Likelihood analysis provide a good
measure of accuracy of the identified parameters and are clearly
superior and more meaningful than the covariance estimates
determined with other known methods.

7.2 RESULTS OF THE SIMULATION STUDIES

1. Single blade identification of Y* and eo together with the initial
values of the flapping responmse at u = 0.4 give good results. This
analysis is not used for experimental data because of small
differences between the different blade responses.

2. The parameters of the entire L-matrix (as given by equation 96)
converge in the simulation identification of the perturbation

flapping response model, though with limited accuracy. The
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off-diagonal terms L23 and L32 and the time constants T 1

and Ty have been found to provide poor identifiability in certain

I
cases.
The Y* identification study provides consistent and fast convergence
under all test conditioms.

Eigenvalue analysis of different forward flight models show

(Table 7) that for the cases studied, at low advance ratios(u€.4),
the error in neglecting the periodic terms in the flapping equatioms
is negligible (< 2% in the eigenvalue compariscna). On the other
hand, neglecting the inflow in the mathematical model gives rise

to significant errors. |

The eigenvalue variation with advance ratio (Table 9) is negligible.
This is based or no variation of the inflow parameter values

with advance ratio,

At high advance ratio (y=0.8), there is negligible change in

the eigenvalues (Table 10) when the {{qdback effects of the inflow

is neglected.

RESULTS FROM EXPERIMENTAL DATA ANALYSIS

The cyclic pitch stirring excitation with approximately constant
stirring acceleration is adequate for identification of the
parameter Y* (equation 72) and some of the L-matrix pzrameters
{equation 74). To identify the parameters associated with the

v, equation accurately (equatiom 74), collective pitch excitation
is probabl~ required.

Progressive transient excitation data gives identifiable parameters.

The same identification study on regressive cyclic pitch stirring
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transient excitation data gives equally good results.
v* is an accurately identifiable parameter for all trim conditions
(the collective pitch setting, the blade rotational stiffness,
the rotor shaft angle of attack and advance ratio). This concurs
with the findings of the simulation studies. In contrast, the
L-matrix parameters identify only upto an advance ratio of

u=0.4. Beyond this advance ratio it is not possible to identify
these parameters.

The identifiability of the parameters from the experimental data
is in close agreement with the findings in the simulation studies.

The time constants Tys T and 1 have increasing identifiability

1
in that order. Their effects on the flapping responses are
lower than those of the parameter: of *° L-~matrix.

The Y* model adequately represents the feedback effects of the
induced inflow on the flapping response for advance ratio u30.4.
At low advance ratios (u<0.4), the L-matrix model provides a
much better correlation to the experimental flapping responses
as compared to the y* model. With increasing advance ratio, the
difference hetween the fits of the two mathematical models and
the experimental results decreases.

The identified values of some of the L-matrix parameters agree
reasonably well with those obtained by using momentum theory

(Figures 34 and 35). Most of the identified values of L,, and

22

L33 fall between the values obtained from momentum theory and

the empirical values given in (10). Empirical L22 and L33 values
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are approximately -0.5 and -0.2 respectivelv, for :dvance
ratios between 0 and 0.4.

L32 and L23 identify to values around the momentum theory value

of zero. They show no consistency or trend in their variation

with the trim conditions. The identified wvalues of L23 lie

between -0.15 and 0.15; L., lies between -0.15 and 0.4.

32
The accuracy of the identified mathematical model is determined
by applying it to tests not used for the identification. Examples
shown in Figures 37 a-b ari 3% a-b show the adequacy and goodness

of the inflow models chat have been used.

AREAS OF FURTHER STUDY

The plots of Figures 31 a-b show a consistent trend that has not
been explained hy thooreotics? models (see 6.2). This suggests

the need for a more complete mathematical model to represent the
variation of the equivalent Lock number Y* with trim condition.

The parameters associated with the perturbation equations for

Vo (equation 74) are not identifiable using cyclic pitch stirring
excitation. In order to make a complete identification, collective
piteh transients will have to be added.

In the preceding study, dynamic rotoxr inflow is couplad to blade
flapping only. It is unlikely that blade lead-lag or torsional
flexibility will have a substantial effect on the dynamic inflow.
However, the effect of the dynamic inflow on lead-~lag and torsional

deflections is expected to be of importance and should be studied.
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8. APPENDICES
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8.1 NOMENCLATURE
B blade tip loss factor

B(3/k) innovation covariance matrix at time t, given
measurements till time tk (equation 32;

c(t) aerodynamic damping (equation 53)

GT rotor thrust coefficlent, positive up (equation 130)

cu rotor pitching moment coefficient, positive nose
up (equation 130)

cL rotor rolling moment coefficient, positive to
right (equation 130}

D(t) measurement input matrix

E energy term (equation 105)

E(©/2) expected value for the probability density of ©
given the measurements 2

F(t) rotor state matrix

G(t) rotor input matrix

H(t) measurement state matrix

I identity matrix

J scalar cost criterion

KM’ KII, KIZ nondimensiona. apparent mass and inertia of
impermiable disk

K(t) aerodynamic stiffness (equation 54)

K({i) Kalman filter gain at time tj

L rotor induced flow gain mwatrix

Lll’ le,.., L33 parameters of the L-1 matrix (equation 73)

M information matrix

Mk moment at the roter hub of the k th blade

P(t) the state covariance matrix

KI when K11=K12=KI
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NOMBNCLATURE (continued)

Pex(t) combined covariance matrix, where the parameters ©
are included in an augmented state

Q system equation noise covariance matrix

[

measurement equation noise covariance matrix and
rotor radius

8i sensitivity matrix at time ti (equation 116)

Tk thrust at the rotor hub of the k th blade

Up relative blade normal velocity (equation 133)

UT relative blade tangential velocity (equation 132)

W positive definite weighting matrix

!& set of observation vectors till time tj (yl, Ypsres yj)

A set of all observation vectors (yl, Vyseses yN)

a blade section lift slope

b, N number of blades on the rotor

c blade chord

£(.) function of variables in paranthesis in the
system equation

h(.) function of variables in paranthesis in the
measurement equation

g vector of measurement bias

me(t), mx(t) aerodynamic flapping moments (equations 55 and 56)

pC.) probability density function
to initial time
tes T final time
8 complex variable in the laplace transform
t nondimensional time for which the period of one

rotor revolution is 27

u(t) input control vector
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NOMENCLATURE (continued)

v(t)
w(t)
x(t)

y(t)

"

By By Bps By

8 =yeo
§(t)
A, A, A

o? "I*° "I1

n(x)

r(t)

measurement noise vector of covariance R

system noise vector of covariance Q

rotor state vector

rotor output or measurement vector

hub pitch angle, positive nose up

flapping angle of the k th blade, positive up
multiblade flapping coordinates: coning, differential

coning (only for even-bladed rotors), longitudinal
and lateral cyclic.flapping. .- e ot

azimuth angle of the k th blade
parame:er identified in the single blade analysis
delta function

nondimensional normal inflow

uniform, longitudinal and lateral inflow components

adaptation factor for the first mode representation
first rotating mode shape of a rotor blade

angular pitch st’._ring speed

blade flapping natural frequency in the rotating system
rotor angular speed

rotor advance ratio

innovation vector at time t, (equation 23)

3

uniform, longitudinal and lateral perturbation
induced inflow components

induced inflow of the k th blade
air density
blade Lock number

system noise matrix (equation 3)
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NOMENCLATURE (continued)

 ®

11

%

Ol. 92.... 66

(4
Superscripts

Subscripts

i

k

o, d, I, I1
B

Symbols

x

4

collective, nose down cyclic and left cyclic
pitch angles respectively

instantaneous blade pitch angle

parameters of the inflow pertusbation model
(equations 102 and 104)

vector of unknown parameters

rotor solidity ratio (be/wR)

standard deviation of the 1 th parameter
positive definite weighting matrix

measured states in the system equation

time derivative

estimated value

mode of the probability density function
transposed matrix

equivalent value

mean or trim value

measured variable

i th sample of the variable
blade number or iteration number
multiblade variables

empirical value

approximate equality

defined by
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NOMENCLATURE (continued)

| I determinant of a matrix or absoliute value of a number

~ equivalent to
n product of the given terms
a increment
z sumnation of the given terms
a definite integral with limits from a to b
3 less than or equal to
> greater than or equal to
T

juj = v'wu eucledian norm
W
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8.2 DRRIVATION OF THE THRUST AND MOMENT COEFFICIENTS CT’ CL AND
CM AS A FUNCTION OF THE STATE VARIABLES
The state of the system 1s
XT'[BEBEB B.. v v. v B, 8.]
o 0 "I"I P11 "I % "1 V11 Pd P4 (129)
o ] —
- ' =~
side up +ve) \\
\
[ \
__L_ Pitch*ng Moment
\ " =9 (Cnfhase up +ve)
\ /
/
/
\ ]
~ — — ~
y=0
N
c = - (1/pn0235)z M cos ¥
k=1
N
2
Cy = - (/om0 RS)Z Mk sin Vi (130)
k=l
N
2.4
Cp = (1/pna’R") Z T,
k=1

We now determine the thrust and moment of each blade to be substituted

into the equations 130.
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Blade pitch angla:- 0 = eo - eI sin y + eII cos Y

(131)
Induced flow: VeV, +vxcos PtV x sin ¢
Rglative tangential velocity:
Up = x +u sin ¢ (132)
Relative normal velocity: (+ are up)
Up= v - xB - uB cos ¢ (133)

The thrust and moment exerted by eacn blade, as given under the

assumption of no reversed flow are:

B
pacfi’R3 2
Tk - > f (UT 6 + Up UT)k dx (134)
0
B
acn2r" 2
0

Equation 132 can be substituted into equation 134 with the aid of the

transformation

k
By =B, + Bd(-l) + B, cos Pyt BII sin y
(136)
l‘ik- éo + !'id(—l)k + éI + Bu)cos by + (éII - BI)sin Yy

The result, after some algebraic manipulation, is:
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2p3
T, = 225" ((8%/3 + m%/2 + BPustn - B® cos 29, /20,

- (Bzulz + (33/3 + 3B p2/4)sin b - Bzu cos 2¢k/2

2 2

= Bu“sin 3vpk/4)9I + ((B3/3 + Buzl&)cos wk + B°u sin 2¢ k/2

2

- Bu“cos 30k/4)eII + (32/2 + By sin wk)vo

2

+ (33 cos wk/3 4+ B®u sin Zwk/lo)vI + (B3sin wk/3 + Bzu/4

- B2ucos 20, /4)v,; - ®3/3 + 82

usin wk/2)(§o + éd (-1)k)
- (8308 4 /3 + 3%y sin 2 b /0 By + B )

- (B3ain wk/g + Bzulb - Bzucos 2wk/4)(éII - BI)

(8% cos ¥, /2 + B’ sin 24, /2) (B, + B, (-1)Y)

(Bzuld 4+ By sin wkla + 32u cos Zwk/4 + By sin ,3lpk/4)8I

2

(Bu cos wk/4 + B“y min 2¢k/4 - Bu cos 3wk/4)BII

€ (B, + By (-1)¥ + B cos ¥, + By sin w) (4411 P

sin 20, + 1.0676 p cos ¥.) + (B + B, (-1 (137)
k k o d

* (éI + Byp)cos ¥, + (én - Bp)sin ¥,) (u sin ¥y (-.2119) - .0838))}
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Equation 130 for Cp is now substituted in the previous equation 137.

The signs of the induced downwash Vg V and vy are changed for

I
the proper Positive down) convention.

¢ = (aa/L8%3 + B2 /206 - BPuive,
- %2 - (Bzu/4)vII - BB, + (Bu?/2)sin 2¢ 8,
- (Bzu/4)é + K (( 4411)u2 sin 2t B
11 (G d
~-.5338u B + -0838 8+ (.1059)y (BII - BI))} (138)

Equation 133can now be substituted in equation 135, and using the
transform~tion equation 136and equation 130 , the following expansions

for CL and CH’ in terms of the state variables, are obtained:
G = -(1/pna™R%) (paca®R* 12) {((8*/4 + Bzu2/4>80

- @we + @+ @wev - @ulb)s;

b
- BB, + B, (DY) D sin w + (2%,
k=1

- @74 + 382 Y8ye + @ wv, + Y16 - B+ By (DY)

b

T 2 2
- BBy - 8 - B8 (12 k;l (1-cos 24
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+ (s + Bh2 1m0+ /0rv; -840 Gy + )

b

- B, + 8, (D5 + E¥se_ ) a2 g: stn 29,
=1

+ (e + o)y, - BW/6) B + 8

b
- B2, + 8, 1 - e /2 g:l (cos ¥, — cos 3 )

+ ((-32;.2/4)00 + (133;113)0I - (B3u/6)"n + @/ 6)(611 - 8p

I

b
- (331115)81)(1/2) Z (sin 3¢k - sin &k) + ((Bzu2/8)01
k=1

b
22 2 2
- (B"u /8)31)(1/2) lgl (cos 2%, - cos .lnhk) + ((-B"y /s)en

b

+ (BzuZIS)Bn)(llZ) kg (sin awk ~ sin 2y)
1

b

+ K ((u)(.886)(sin 2t) (b)sd + Z (.2675)112 (cos Iowk - l)BI
k=1

b

+ 2 (.2675)u2 sin b Byp + (.028)u b ~os 2t
=]

b

- kZ (.028) (L - cosi2 ) (B;; - 8,)))
=1
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(The signs of v,, v; and vyy are now changed for positive down

sign corvention.)

- —(wlé){(283u/3)e 0~ (34/4 + 31;?‘“2/8)0I

- (lszu2 cos 4t,’8)61 - (Bzuzsin lot/8)en. - (Bzu/Z)vo
3 [ 4 * 4 22
- (B ul3)Bo - (8 /’4)(3II - BI) - (B /4)\’11 - (B™u /3)8I

22 29
+ (B“n” cos 5t/8)BI + (B°y -~ sin A:/S)eu
3 . 3
- (B™u cos 2t,3)8d + (B u sin ZtIZ‘l)Bd
+ % ((.886) (u sin 26)8, + (.2675)u” (cos 4t = “)B,

+ (.2675)u2 sin 4t Byp + (-028)u cos 2t B,

- (.028) (B, - 8} (139)

Similarly

Gy = ~(1/ox02R5) (paca?R*/2) {(8*/4 + Bu’/4)e

- e, + B 13+ Eulb)v - @Ou/6)8,

b
- (34/4)(50 + éd SN (Z cos ¥ ) + ( (283 /3)e
k=1

- %4 + B2 8y0 + BPur2d + (B - @@+ By DY

- BBy - 8 - EPE) D)
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b 4 22 4
( E sin 2¢,) + ( (B"/4 + By /8)°II + (B /")"1
k=1

- B0 G; + 8 - Bwe, + 8, DY + 6288
b
W2DCY @ +cos 29)) + (Bu/Do; + (Bu/6)v,
k=1
- @we) B, + 8. - BA/e) 6, + 8, -5 - Bu/e)
b

W2 (Y (stn 9 + sin 33,)) + (-(BZuZ/A)eO + (33"/3)"1
k=1

- Bul6)vyy + Bul6) By - B - ®u/6)8)) (1/2)

b 2.2 2.2
( :E: (cos 3¢, + cos wk)) + ((B°p /8)6I - (B“u /8)81)
k=1

b
@/2) (Y (sin 29, + stn 64)) + (@780 + (857/8)8 )
k=1 '
b b
(1/2) ( Z (cos 29, + cos 4¥9,)) - K ( Z ~(.886)u(1 + cos 2 ¥ )B_
k=1 k=1
b
+ 2 -(.886) u(1 + cos 2;1,1{)(-1)k By +
k=1
b b

:E: -(.886)(u/2)(3 cos % + cos 3 wk)BI - :E: (1.070)(u2/2)(sin Zwk
k=1 k=1
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b
+ sin 4y, /2)8, - :E: (.886) (u/2) (sin 3y + sin ¥ )B4
kel
b b
- }E: (1.070) (u2/4) (1 - cos w8 + Y (0280 sta 2 -k B
k=1 k=1
b -
- Z (.028) (cos 2wk + 1) (BI + 511))}
k=1

The signs of Vo Vg and vy 8re changed for positive down sign coanvention.

= —(ac/4) {(BZu2/8)sin 4t o, + B474) + Bzu2/8)eII

®42/83cos 4t 6, - (8°/4) (B + B + v = (B8,

®2.2/8)sin b4t B, + (8%u/3)sin 26 By + (B7/3)
22

cos 2t Bd - (52112/8)8II + (B u"/8)cos 4t BII

+ ok (-( $uB + (.886)u cos 2t By - (.2675)u2

ein 4t 8 ~ (.2675)u° (L - ecs 4t)B . - (.028)p

sin 2t éd - (.028) (B, + 8, ) (140)
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8.3 MULTIBLADE REPRESENTATION OF THE PERTURBATION FLAPPING EQUATIONS,

INCLUDING REVERSE FLOW

B, + (1/2)(CO + CCh + CHAYB, + (u] + (y/2)PSk sin 4e)8,
+ (v/2)(-(1/2)CS1 + (CS3/2)cos 4t - (CS5/2)cos 4t
+ (PC7/2)cos 8t + PC 1/2 + (PC3/2)cos 4t

+ (PC5/2)cos 4t)8. + (v/2)((CS3/2)sin 4t + (CS5/2)sin L) 8

[

+ (v/2)((C83/2)sin 4t + (CS5/2)ein 4t + (PC3/2)sin 4t
- (PC5/2)ein 4t + (PC7/2)sin 8t)B ; + (v/2)(CSL/2 - (CS3/2)cos 4t
+ (CS5/2)cos 4c) & . + (v/2)(-PS2 sin 2t - PS6 sin 6t)8,
- (v/2)7CC2 cos 2t + CC6 cos 6t)B,
+ (¥/2) (D0 + “Ch cos &t)v, + (v/2)(ES4 sin 4t)v; (141)
+ (y/2)(FO + FC4 cos Iot)vn

= (y/2)(Y0 + YC4 cos 4:)61 + (y/2) (284 sin I;t)en

EI +2 511 - By + (v/2)(CS3 sin 4t + CS5 sin 4:)60

+ (y/2)(CO + CC2/2 + (€CC2/2)cos 4t + CC4 cos 4t
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+ (CC6/2)cos 4t + (Cn6/2)cos St)(éI + BII) + (v/2)((CcC2/2)8in 4t
- (CC6/2)sin 4t + (CC5/2)sin 8t) (B, = B) + (V/2)(PCL +
PC3 cos 4t + PC5 cos 4t + PC7 cos 8t)Bo + mi BI
+ (y/2)((PS2/2)sin 4t + PS& sin 4t + (PS6/2)sin 4t
+ (PS6/2)sin 8:)8I + (y/2) (PS2/2 - (PS2/2)cos 4t
+ (PS6/2)cos 4t - (136/2)cos 8t)8II - (v/2)(CcS1l sin 2t
4+ CS3 sin 2t + CS5 sin 6t)éd - (y/2)(PC1 cos 2t
+ PC3 cos 2t + PC5 cos 6t + PC7 cos 6t)8d
+ (y/2)(DS3 sin 4t + DS5 sin 4t)v0 + (y/2)(EC1 +
EC3 cos 4- + EC5 cos 4t)VI + (y/2)(FS3 sin 4t + FS5 sin 4t)v11
= (y/2)(¥S3 sin 4t + ¥YS5 sin 4t)61 + (vy/2)(zcl +

2C3 cos 4t + ZC5 cos 4t)8.. (142)

+ (y/2)(CS1 - CS3 cos 4t + CS5 cos 4;;&0

+ (y/2)((CC2/2)sin 4t - (CC6/2)sin 4t + (CC6/2)sin 4t
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+ (CC6/2)sin 8) (By + Byp) + (v/2)(CO - C€C2/2 - (CC2/2)cos 4t

4+ CC4 cos 4t ~ (CC6/2)cos 4t - (CC6/2)cos 8t) (f?:II - 8p)

+ (¥/2)(PC3 sin 4t - PC5 sin 4t + (PC7)sin 8:)80

+

(v/2) (PS2/2 - (PS2/2)cos 4t + (P56/2)cos 4t - (PS6/2)

2

cos 8t)81+m1 BII + (y/2)(-(PS2/2)sin 4t + PS4 sin 4t

(PS6/2)sin 4t - (PS6/2)sin 8t)8II + (y/2)(CS1 cos 2t

CS3 cos 2t + CS5 cos 6t)B 4~ (¥/2)(EClsin 2t - PC3 sin 2t
+ PC5 sin 6t ~ PC? sin 6t)sd + (y/2)

(DS1 ~ D83 cos 4t + DS5 cos dt)vo + (v/2) (EC3 sin 4t

EC5 sin lu:)vI + (v/2)(FS1 - FS3 cos 4t + FS5 cos 4t)vII

L}

(v/2) (YS1 ~ YS3 cos 4t + YS5 cos ht)BI + (v/2)(2C3 sin 4t

1

2C5 sin ln;)eII (143)

Bd - (v/2)(CC2 cos 2t + CC6 cos 6t)§0 - (y/2)({Cs1/2)

sin 2t + (CS$3/2)sin 2t + (CS5/2)sin 6t)(éI + BII)
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+ (y/2)((CS1/2)cos 2t - (CS3/2)cos 2t + (CS5/2)cos 6t)
(r?xII - éI) - (v/2) (PS2 sin 2t + PS6 sin 6£)8_

- (y/2)((PC1/2)ros 2t + (PC3/2)cos 2t + (PC5/2)cos 6t

+ (PC7/2)cos 6t)BI - (y/2)((PCl/2)sin 2t - (PC3/2)simn 2t

+ (PC5/2)sin 6t - (PC7/2)sin 6t)6II + (y/2)(CO 4+ CCh cos 4t)
B+ mi By + (Y/2)PS4 sin 4t By - (v/2)(DC2 cos 2t

+ DC6 cos 6t)v - (y/2) (ES2 sin 2t + ES6 sin 6t)vI

- (v/2) (FC2 cos 2t + FC6 cos 6t)vII

= -~ (y/2)(YC2 cos 2t:)8I - (¥/2)(2S82 sin 2t + 2S6 sin 6t)611 (144)

The inflow model is same as that obtained without reverse flow (equation 68)

except the thrust and the moment coefficients C CL and CH are:

T'
CT = (2 ag/b){(-DTO - DTC4 cos 4t)vo + (-ETS4 sin 4t)
Vi + (~FIO ~ FTC4 ccs &t)vII + (PTS4 sir 4t + PTS8

sin 8t}8 + (CTO + CIC4 co- At)éo + (-PTS2 sin 2t
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- PTSG sin 6t)B, + (~CTC2 cos 2t - CTC6 cos 6t)8,
+ (1/2) (PTC3 cos 4t + PTCl + CTS1 - CTS3 cos 4t)8I
+ (1/2) (CTS3 sin 4£)8; + (1/2)(PTC3 sin 4t +

CIS3 sin 4t)By, + (1/2)(-CTS1 + CTS3 cos 4:)511

+ (YIO + YIC4 cos 4t)0; + (2TS4 sin 4t)6 (145)

II}

CL = - (ac/2b){-(2.DS1 + (-2 DS3 + 2 DSS5)cos 4e)v,
- (2 EC3 - 2 EC5)sin 4t vy - (2 PS1 + (-2 FS3
+ 2 FS5)cos At)vII - ((2 PC3 -~ 2 PC5)sin 4t
+ 2 PC7 sin 8:)30 - ((~2 PC1 + 2 PC3)sin 2t +
2 PC7 sin 6t)Bd + (-PS2 + 2 CO - CC2 + (PS2 - PS6
+ 2 CC4 - CC2 - CC6)cos 4t + (PS6 ~ CC6)cos 8!:)8I
+ ((-2 PS4 + PS2 + PS6 - CC2 + CC6)sin 4t +

(PS6 - CC6)sin 8t)8II ~ (2 cS1 + (-2 CS3 + 2 CS5)
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cos ét)éo - ((2 CS1 - 2 CS3)co8 2t + 2 CS5 cos 6t)éd
+ ((-CC 2 + CC6)sin 4t ~ CC6 sin at)éI + ((-2 co
+ CC2) + (-2 CC4 + CC2 + CC6)cos 4t + CC6 cos sc)én
+ (2 YS1 + (-2 YS3 + 2 YSS)cos 4t)eI + (2 2¢3 - 2 ZC5)

146
sin 4t 311} (146)

CM = - (ac/2b){-(2 DS3 + 2 DS5)sin 4t Y,

(2 EC1 + (2 EC3 + 2 EC5)cos 4t)vI - (2 FS3 +

2 FS5)sin 4t 2 + (-2 PC1 + (-2 PC3 - 2 PC5)cos 4t

I

2 PC7 cos 8t)BO + ((2 PC1l + 2 PC3)cos 2t +
(2 PC5 + 2 PC7)cos 6t)6d + ((-2 PS4 -~ PSZ - PS6
4+ CC2 - CC6)sin 4t + (-PS6 + CC6)sin 8t)8I

+ ((-PS2 - 2 CO - CC2) + (PS2 - PS6 -~ 2 CC4 - CC2

CC6)cos 4t + (PS6 ~ CCH)cos 8t)8II + (-2 €83 -~ 2 CS5)

sin 4t §_+ ((° CSL + 2 CS3)sin 2t + 2 CS5 sin 6t)éd
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+ ((-2 €O - CC2) + (-2 CC4 - CC2 - CC6)coe 4t - CCH cos ac)éI
+ ((-CC2 + CC6)sin 4t -~ CC6 sin sc)én

+ (2 Y53 + 2 ¥S5)ein 4t 6y + (2 ZC1 + (2 2C3 + 2 ZC5)cos 4t)0..}  (147)
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8.4 TABLE OF COEFFICIENTS FOR THE FLAPPING EQUATIONS GIVEN IN 8.3

KT(w) = PTC1l cosy + PTC3 cos 3y + PTS2 sin 2y

+ PTS4 sin 4y + PTS6 sin 6y + PTS8 sin 8y (148)
u PTC1 PTC3 PTS2 PTS4 PTS6 PTS8
.5 -.2509 .0157 -.1 ~,0059 -,0009 0
.6 -.3094 0271 -.1379 -.0103 -.0016 -.0005
.7 -.3723 .043 -.1794 ~.0164 -.0026 -.0009
.8 ~. 4404 .0642 -.2234 -.0245 ~.0039 -.0013
.9 -.5146 .0913 -.269 -.035 -.0056 -.0019
1.0 ~. 5955 .1252 -.3151 -.048 -.0077 -.002
CT(w) = CTQ + CTC2 cos 2y + CTC4 cos 4¢ + CIC6 cos 6y
+ CTS!{ siny + CTS3 sin 3¢ + LTS5 sin Sy (149)
U CTo CTC2 CTC4 CTC6 CTs1 CTS3 CTS5
5 =.3131 .0106 ~.D015 -~,0002 -.2195 ~-.005 .0001
.6 -.319% .0183  -.0026 -.0003 ~-,2551 -.0088 .0001
.7 -.3285 .0291 -.0042 -.0005 -.2863 -.014 .0001
.8 -.3404 .0435 -.0062 -, 0007 -.3122 -.021 ,0002
.9 -.3557  .0619 -.0089 -.001 -.3321 -.,03 .0002
1.0 -.3748 0848  -,0121 -.0014 -.3454 -.0413 .0002
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MB' (Y) = YTO + YTC2 cos 2y + YTC4 cos 4y + YTS1 sin ¢

Iy

+ YTS3 sin 3p + YIS5 sin S5y + YTS7 sin 7y (150)

M YT0 YTC2 YIC4 YTS1 YTS3 YIS5 YIS?7

5 =.2506 .2562 -.0054 -.4575 .0489 .0015 ,0002
.6 -,3089 ,318 -.0092 -.,5169 .0667 .0024 ,0003
«7 -.3718 .3867 -.,0146 -.5827 .086 .0038 .0004
.8 -.4399 4619 -.0217 -.6535 .106 .0056 .0006
9 =514 <545 -.0308 -.728 .1262 .0079 .0008
1.0 -.5948 .6373 -.0421 -.8048 .1461 .0108 .001

M, (y) = ZTC1 cos ¢y + ZTC3 cos 3P + ZTIC5 ccs 5¢
11
T 4+ 2182 ein 2¢ + ZTS4 sin 4y + ZTS6 sin 6y (151)

u ZTICl ZTC3 ZTC5 ZTS2 ZTS4 ZTs6

.5 .3578 -.0516 -.0017 .2455 -.0056 -.0002
.6 .,3793 -,0717 -.0028 .3 -.009 -.0002
.7  ,4036 ~.094 -.0046 .3576 -.0148 -.0003
.8 .4304 -,1182 -,0068 .4188 -.0219 -.0003
.9 4593 -,1436 -.0097 .4838 -.031 -.0003
1.0 .49 -.17 -.0133 .5534 -.042 -.0003



L (¢) = DTO + DTC2 cos 2¢ + DTC4 cos 49 + DIS1 sin ¢
0,
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T 4 DTS3 sin 3¢ + DIS5 sin Sy + DTS7 sin 79
W DI0  DIC2 DT2 DISL  DIS3  DISS  DES7
.5 .5329 -.0625 O .3787 .0209 .0028 .0009
.6 .56064 ~-.09 0 .429  .0302 .0041 .0013
7 .5928 -.1226 O  .4708 .0412 .0056 .0018
.8 .6303 -.1601 0  .5042 .0539 .0074 .0023
9 .6727 -.2026 O .529  .0683 .009% .003
1.0 .7201 -.25 0 .545  .0843 .0118 .0037

M (y) = ETC1 cos ¥ + ETC3 cos 3¢y + ETC5 cos 59 + ETC7 cos 7%

v

IT + ETS2 sin 2y + ETS4 sin 4y + ETS6 sin 6y
u ETC1 ETC3 ETC5 ETCT ETS2 ETS4 ETS6
5 .3079 -.0046 .0008 0 1123 .0024 0
.6 .3105 -.0079 .0014 0 .1320 .0043 0
.7 .3141 -.0126 .0023 0 .1503 .0069 ~-.0001
.8 .3188 -.0187 .0034 .C004 .1668 .0104 -.0002
.9 .325 -.0266 .0049 .0006 .1813 .0149 -.0002

1.0 .3326 -.0365 .0067 .0008 .1935 .0205 ~-.0002

(152)

(153)
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H“IIT(W = FT0 + FICl cos p + FIC2 cos 2y + FIC4 cos &)

+ FIS1 sin ¢ + FIS3 sin 3p + FIS5 sin S5¢p + FIS7 sin 7Y (154)

u FT0 FIC1 FIC2 FIC4 FIS1 FIS3 FIS5 FI87

«5 .0551 .0013 -.034 -.,0208 .4171 -.0488 .0053 .0004
.6 .0785 .0012 -.0579 -.0208 .4171 -.0488 .0053 .0004
.7  .102 .0012 -.081% -,0208 .4171 -.0488 .0053 .0004
.8 .1255 .0011 -,105 -.0208 .4171 -.0488 .0053 .0004
+9 .1490 ,0010 -.1285 -.0208 .4171 -.0488 .0053 .0004
1.0 .1726 .00 -.1521 -.0207 4171 -.0487 .0052 .0005
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K(¢) = PC1 cos § + PC3 cos 3¢ + PC5 cos 5¢ + PC7 cos 79

+ PS2 sin 2y + PS4 sin 4¢ + PS6 sin 6¥ (155)
M PCl PC3 PC5 PC7 PS2 PS4 PS6
.5 .154 -.0023 .0004 .00004 .0562 .0012 -.00005
.6 .1863 -.0048 .0003 .00010 .0792 .0026 0
.7 .2198 -.0088 .0016 00019 .1052 .0048 0
.8 .2551 -,015 .0027 .00033 .1334 .0083 0
.9  .2925 -.024 . 0044 . .1631 .0134 0
1.0 .3326 ~.0365 .0067 =0 1935 .0205 0
C(¢) = CO + CC2 cos 2§ + CC4 cos 4y + CC6 cos 6y
+ CS1 sin ¢ + CS3 sin 3¢ + CS5 sin 5y (156)
u Cco cc2 cc4  CCh csl cs3 CS5
.5 .2233 -,0026 .0006 =0 .1485 ,0014 -.0002
.6 .2254 -,0054 .0013 0 .1751 .003 -.0004
.7 .2288 -.01 .0025 0 1993 .0057 -.0007
.8  .2341 -.017 .0043 0 .22 0097 -.0012
9  .2418 -,0273 .0068 0 .2366 .,0157 -.0019
1.0 .2526 -.0416 .0103 0 2476 ,024 -.0028
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uoo(w)-xo-rxcz cos 2¢ + XCA cos 4p + XSl siny + XS3 sin 3¢

» X0 XC2 Xc4 Xsl Xs3
.5 .2781 -.0562 -.0006 -3076 -.0018
N «3019 -.0793 -.0013 .3722 -.0034
.7 . 3289 -.1053 -.0024 «4393 -.0061
.8 <3589 -.1336 -.0042 .5097 -.0103
.9 <3912 -.1633 -.0067 «5844 -.0164
1.0 .4251 -.1937 -.01 .6647 -.0248
Mol(tp) = YO + YC2 cos 2% + YC4 cos 4 + YS1 sin ¢
+ YS3 sin 3¢ + YS5 sin 5%
u YO YC2 YC4 YS1 YS3 YS5
<5 -.1537 1547 -.0008 -.3061 .028 .0004
.6 ~.186 .1879 -.0019 -.3414 .029 .0008
.7 -.2195 .2228 -.0034 -.3815 .0517 .0013
.8 -.2547 .26 -.0057 -.4255 .0649 .0022
.9 -.292 +3004 -.0091 -.4726 .0785 .0035
1.0 -.3321 . 3447 -.0137 -.5217 .0919 .0053

(157)

(158)



184

M, (¢) = 2C1l coe § + 2C3 cos 3% + ZC5 cos 5§ + ZS2 sin 29

H + ZS4 sin 4y + 2S6 sin 6y (159)
pza 2c3 2c5 282 zs4 256

.5 .2501 -.,0285 -.0003 .153 -,0009 0.0
.6 .2626 -,0404 -.0007 ,1845 -.0017 0.0
.7 .2765 -.054 -.0012 ,2167 -.0029 .0002
.8 .2923 -,069 -.0021 .25 -.0048  .0004
.9  .3097 -~.085 -.0034 .2842 -,0075 .0007

1.0 .3284 -,1022 -.0051 .3202 -.0112 .0012

H& () = DO + DC2 cos 2y + DC4 cos 4y + DC6 cos 6¢

° + DS1 sin ¢ + DS2 sin 3y + DS5 sin 5¢ (160)
uw DO DC2 DC4 DC6 DSl Ds3 DS5
.5 .313 -.010¢ .0015 0 .2195 .005  -.0001
.6 .3195 -,0183 .v026 .0003 .2551 .0088 -.0001
.7 .3285 -.0291 .0042 .0005 .2863 .014  -.0002
.8 .3404 -,0435 .0062 ,0007 .3122 ,021  -.0002
.9 .3557 -.0619 .0089 .001  .3321 .03 -.0602

1.0 .3748 -.0848 .0121 .0014 .3454 ,0413 -.0002
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M“ ($) = EC1 cos ¢ + EC3 cos 3p + EC5 cos 5¢
1

+ ES2 sin 2y + BES4 sin 4y + ES6 sin 6y

(161)

) EC1 EC3 EC5 ES2 ES4 ES6
- .2221 -.001 0003 .075 .0005 -.0001
.6 .2228 -.0021 .0007 .089 .0013 -.0003
o7 .2239 -.0038 .0012 ,1025 .0024 -.0004
.8 .2257 -.0065 .0021 .115 .0042 -.00071
.9 .2283 -.0103 .0034 ,1262 .0069 ~-.0011

1.0 .2318 -.0157 .0052 .1359 .0106 -.0016

M () = FO + FC2 cos 2¢p + FC4 cos 4) + FC6 cos 6y + FS1 sin ¢

v

H + FS3 sin 3¢ + FS5 sin 5¢ (162)
] FO FC2 FC4 FCé6 FS1 Fs3 FS5
S5 0742 -.0736 -.0008 .0001 .2245 -.0018 .0002
.6 ,0875 -.081 -.0017 .0002 ,.2280 -.0036 .0006
7 .0996 -.0968 -.0032 .0003 ,2337 -.0064 .0011
.8 .11 -.1052 -.0054 .0005 ,2625 -,0109 .002
.9 .1182 -,1105 -.0088 ,0008 .2554 -.0173 .0033
1.0 .1237 -.1119 ~-.0133 ,0012 .2732 -.0262 .0051
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