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VARIATIONAL ENERGY PRINCIPLE FOR
COMPRESSIBLE, BAROCLINIC FLOW
I, FREE-ENERGY FORM OF
HAMILTON’S PRINCIPLE
Lawrence A. Schimid

Goddard Space Flight Center, Greenbelt, Maryland 20771

ABSTRACT
The first and second variations are calculated for the irreducible form of Hamilton’s
) Principle that involves the minimum number of dependent variables necessary to describe
the kinematics and thermodynamics of inviscid, compressible, baroclinic flow in a specified
gravitational field, The form of the second variation shows that, in the neighborhood of
a stationary point that corresponds to physically stable flow, the action integral is never-
theless a complex saddle-surface in parameter space. Thus it would be extremely difficult
to solve a problem by minimizing this action integral. There exists, however, an aliernative
form of Hamilton’s E?rincip}e' for which such a direct solution of a flow problem is possible.
This second form is related to the first by a Friedrichs transformation of the thermody-
namic variables. This introduces an extra dependent variable, but the first and second var-
iations are shown to have direct physical significance, namely they are equal to the free
energy of fluctuations about the equilibrium flow that satisfies the equations of motion.
If this equilibrium flow is physically stable, and if a very weak second-order integral con-
straint on the correlation between the fluctuations of otherwise independent variables is
satisfied, then the second variation of the action integral for this free-energy form of
Hamilton's Principle is positive~-definite, so the action integral is 2 minimum, and can serve
as the basis for a direct trial-and~esror solution. The second-order integral constraint

states that the unavailable energy must be maximum af eqguilibrium, ie. the fluctuations



must be 50 correlated as.to prpducen a:second-order.decrease in- the total unavailable
energy. In a numerical calgulation this constraint is easy-to-impose, but its effect in most
problems is_so. weak that it can be ignored altogether. The free-energy form of Hamilton’s
Principle has the further advantage thatsit allows easy handling of the free-boundary

problem.
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VARI._ATIONA_LL ENERGY PRINCIPLE FOR
C(}MPRKESS!-BLE, BARGCLINIC FLOW
L. FREE-ENERGY :’F{}I}{M OF
HAMILTON’S PRINCIPLE

I ~ INTRODUCTION AND SUMMARY
. At the beginning of the preceding paper (which will be referred toas Paper I) it m;as
remarked that the goal of ‘these papers is to develop a variational energy -principle that will
be st;itable for direct (i.e. trial-and-error) solutions of fluid flow problems. For ihis pur-;
pose it is necessary that, at Ieast in the case of physically stable flows,. the action integral
whose minimization serves as the basis of the calculational procedure must indeed be a
‘minimum, rather than a saddle point, for the desired solution that satisfies the equations
of motion. In order o test whether a given action integral has this property, it is-neces—
sary o calculate its second variation. The mathematics necessary to do this was developed
in Paper I, in which boundary and terminal conditions were a1§ﬁ discussed " in detail, as was
the connection belween physical stability and the curvature properties (i.e. the sign of the
second variation) of an action integral that can be interpreted as the time-average total

‘free energy of the fluid system.

in this paper it will be shg)wn that such an action integral does in fact a?xist. This is
demonstrated (in Section VII A) by carrying out an explicit calculation of the first and
_second variations, and showing that the necessary condition for the vanishing of the first
variation is the fulfillment of the known equations of motion, and that the second vari-
ation is iﬁdeed equal o the second—-order change in the free energy that is g\seociated with

fluctuations in the fluid.



In order to be able to identify the various terms in the second variation with the
various types of displacement and céfnpress{on work in a stratified atmosphere and with
the changes in unavailable ehergy that are associated with entx:apy fluctuations, a great
deal of preliminary discussion, g;venm Section If, is necessary. In Section II C a general-
"ization of the buoyancy displacemenf work is derived that does not assume either that the
volume of the displaced sample of fluid remains constant (Boussinesq approximation), or
that it adjusts itself so that the.internal pressure is always equal to the iocagextemal pres-
sure (Viisdla-Brunt approximation). Rather, the generalized e'xpression allows for a com-
pletely arbitrary vrolume change, which physically corresponds to ghe case of fast sponta-~
neous dispiacements in which inertial forces corresponding to internal turbulence within
the saﬁ}piex account for the difference between the internal and external pressures. Sections
J1 B, D, E, and F treat various éspects of the use of dual state functions to descgibgﬁt_lfle;
fluctuations about equilibrium that occur in a turbulent fluid. This involveg interpreting
the inequality that is satisfied by dual molar internal energy functions in terms of a fiue-
tuating enfropy density. This inequahty constitutes a statgmant of the Seatfmd Law of
Thermodynamics. The generalization of this basic thermodynamic inequality from a homo—
geneous fluid at rest to a compressible fluid in an arbitrary state of motion is shown in

Section VII E fo be equivalent to the corresponding inequality that is satlsﬁed by the freew

energy form ‘of Hamilton’s Principle.

The important thermodynamic issues involved in the variational treatment'tof fluid
motion come to light already in the static case of fluctuations about hydrostatic equilibrivm
in a stratified atmosphere. - It is shown in Sections IV and V that two differen; \;ariational
:energy principles exist for a static atmosphere. The first is' the well-known st_ataament1

that at equilibrium the fotal potential energy E (i.e. the sum of the intemal thermal energy

and the gravitational energy) is minimum. The proof of this that is given in Section IV,

L



unlike thé one available in the Iiterature,l does not make use of non-holonomic differential
expressions, but rather is based on a direct calculation of the first and second variations of

an explicitly defined integral functional for the fotal energy of the atmosphere.

_ The second variational energy principle, which is discussed in Section V., is the state~
ment that at equilibrium the total free energy A of a static atmosphere is minimum, Th;‘
free energy in question is the available energy of the non-equilibrium fluctuations, and its -

“introduction is not simply a matter of replacing the thermodynamic internal energy with
the Helmholtz or Gibbs functions, since both of these refer to equilibrium conditions.
Rather, it is-necessary to demonstrate by explicit calculation that the first and second varn-
ations of the integral functional that is alleged to represent the total‘ free energy of the
fluctuating atmosphere do in fact have the form of a change in free energy, namely the
wozk pérfc;med minus fhe increase in unavailable energy. The equilibrium value A of the
total free potential energy can be e;djusied to any desired value by means of an additive ‘
constant. The choice of constant made. in this paper is such that 2\j= ~€. With this choice,
. the principles based on E and A are related to each other through a Friedrichs transfor-
maﬁ:i@n}2 and can be used in concert to give a minimax description of a static atmosphere
that is the analog of the well-known minimax description of static elastic structures that

is a consequence of the Friedrichs transformaiion..

The two variational minimum principles for a static atmosphere can be regarded as.
dualladaptations of the Principle of Virtual Work to 2 co'ntinuum‘ This approach is dis—
cussed in Section III where if is noted that these dual principles of virtual work arc equiv-
alent to the two competing approaches to clastic struciures that are embodicd m the prin-

ciples of Dirichlet and Castigliano.3



The two alternative variational minimum principles for a static atmosphere can both
be adapted to an atmosphere in fnotion by including kinetic energy in the action integral.
This iea&s t6 two different fa:rms'of Hamilton’s Principle depending on Whetﬁe'r the poten—
tial energy is represented b}ir the total energy E or by the free energy A. The ﬁré:t case,
which is discussed in Section VI, has the advantage of involving the minimum possible
number of dependent variables, and so is called the irreducible form qf Harnilion™s Prin-
ciple. It has the great disadvantage, however, that the integrand of the action integral,
which is the difference of kinetic and potential energy, is not a phygically tneaningful
energy. '}‘his is reflected in the fact that the second va,riation of the irreducible form of
Hamitton’s Principle is indefinite in sign, which means that the action surface in parameter
space {i.e. the plot of the action i}}tegral as a function of all the adjustable parameters in-
volved in the trial functions) is an intricate saddle-surface at the stationary pgint‘ repre~
senting flow tl@at obeys th;{ equations of motion. This means that any a-tterppt to “home~
in” on this poin:t by successive iterations of the parameters chosen so as to decgﬁase the

value of the action integral would almos{ certainly be doomed fo failure. ’

The dual 'form of Hamilton’s Principle ﬁat results when the potential energy is rep-
resented by the fiee energy A is called the free—energy form of Hamilton’s Principle; and
is discussed in Section-VIL. In addition to the dependent variables involved i ﬂ'{c :if'réd’{zc-n
ible form of the principie, the fres-enérgy form invoives the molar énthalps} H. This extra
degree: of freedom makes it possible to describe fluctuations in molar entropy S about the
specified average value. The great advantage of the free energy form of Hamilton's Prin-
ciple is, that- the action integral is the f;ime integral of the sum of the kinetic and free
potential energy, and so {(when diviflizd by the total time interval) can be interpreted s the
time-average of the total free energy of the fluid system. This is reflected in the fact that

the second variation has the form of the total second-order change in kinetic and potential



energy minus the increase in upavailable energy that results from the fluctuation in entropy
(which is represented indirectly through the flucutations in the enthalpy and pressure).
Thus the fluctuations in the dependent variables faithfully generate the fluctuations in total
free energy that occur in a turbulent fluid, One physical feafure t‘hat the mathematics does
not automatically duplicate is the subtle kind of correlation that resulis bet’ween the other-
wise independent fluctuations in enthalpy and particle displacement because of the Second
Law. This is a very weak second—order ¢onstraint that requires that a certain space-time
integral (Eq. {120b)) involving products of the otherwise independent fluctuations must be
non-negative. When this constraint is satisfied, the second variation of the fice~energy
form of Hamilton’s Principle is positive~definite if the flow is physically stable, and this
fact means that ifs action integral can be used as the basis for a direct saéution of flow
‘problems. The Second-Law constraint must be imposed on the successive changes in the
parameters only in the neighborhood of an extremum where the second variation is com-
parable in magnifude fo the first variation. There are several ways in which this can easily
be done, but for most problems it should be possiinle to ignore the constrgint altogether.

These matiers are discussed in greater detail in Section VI F.

The free-energy form of Hamilton’s Principle has the further important advaniage
that it is very well suited to free-boundary problems. This feature, which is closely re~
lated to the well~known advantage of the Castigliano Principle over the Dirichlet Principle
in fitting boundary conditions when loads rather than deflections are specified, is discussed

in Section VII B.

Aside from its utility for direct solutions, the free-energy form of Hamilton’s Prin-
ciple provides an efficient way of deriving sufficient criteria for stability. This is illustrated
in Section VII D by a derivation of the weli-known cﬁteﬂon4’ 5 for buoyancy stability of

4 shearing wind.



The coﬁsﬁucﬁon of the free-énergy form of Hajmiltor!fs Principle amounts o the ex—
‘tension of thermodynamic formalism and methodology to a heterogeneous continuum in
an arbitrary state of motion. It is pointed out in Sections VII E and VIII that this sug-
-éests som;a possibly fruitful new appré)aciles to the problem_s of fluid d-yilamics and di,r—

namical meteorology.

A brief survey of the literature relevant to variational pn‘ncip_les for a fluid is given in

the Appendix.

Notation

The notgtior} of Paﬁer 1 vyill be continued. In general, lower case _letters wi-llAbe used
for den;fities of extensive quantities (;uch as the mole deénsity ni, and ‘ordinary f:apitals will
desi;gnate either molar quantities (such as thie molar entropy S), or intensive.quantities (such
as the temperature T). .Sans serif capitals will designate t;)tél extensive quantities (such as
total volume V). To'a;'oid confusion with the fluid speed 'V = (V « V)% molar volume
will be designated by ’\7 Because the letter W has already been assigned to Kinetic energy,
work (Arbeit) will be designate_d iay 8A. Since free—energy is just the work functiod, A
will also represent the molar ‘free-pot:antia'l energy. A script capital will-fepresent either
the bounding surface %, the molzir deformation force &9, or a total action — £ for the

4

irreducible form of Hamilton’s Principle, and .7 for the free-energy form.



II. PRELIMINARIES

A. Equations of Motion
The' necessary kinematical relations have been given in Section II of Paper 1. In a

convected-frame treaument, the tral functions give the three com;;onents of the position
vector X(A, t). (When used as an argument or subscript, A* will usually be indicated
simply as A.) The molar volume 0 and the velocity V are given by

V= det(i}ij— =X v-= (9—}4(-) = DX (13, b)

aAA 3t fa

where Jﬁ and D, are used to designate the Jaco‘bian and the material time derivative

respectively.

In an inertial-frame treatment, the trial functions give the space-time dependence of
the three families of Lagrange surfaces A® (2, t). The mole density n = U-1, the material
time derivative, and the -velocity are given by

n=3% = (VAl) » (VA2 X VA®); D, = 3, + V + V; (2a,b)

3
= - Z (3,AM) (VAB X VAC)/n ; (A, B, Ccyclic) (2¢)
A=1

where at is the partial with time at a fixed & -position.

It was pointed out in Equation (20) of Paper 1 that in the Lagrange kjnemayics the
conservation equation is identically satisfied, so this need not be included among the equa-

tions of motion.

For reversible adiabatic flow, the local energy equation reduces to the statement that
molar entropy is a constant of motion. In the Lagrange kinematics used here, this require-

ment is very easily satisfied by specifying the molar entropy S to be the appropriate



function of the Lagrange parameters A®. In a convected-frame treatment, the specified

. A

function S(A”) has no varation. The same is true if § = S(A%, t) is'a sﬁec'iffed'fu}iction
of the time as well as of A%, Allowing S to be time~dependent provides a way .of intro-
ducing a specified diabatic heating into the formalism. Thus, in a convected-frame
treatment

.8 = S(AA . t) = specified function ; (3a)

§(1+ 2)g = 0. (Convected Frame) (3b)

In an inertial-frame treatment, the fact that 8A® 7 0 means that 65 ¥ 0. The ex-

pression for this variation was ;gi\‘Jen in Equation (43) of Paper I:

S = S[A%(a, t);t] ; (Inertial Frame) (4a)
§1*2)8 = §A%(3, 8) + %BAAGAB(3, 3,8) (4b)
= -8X + VS + 1(EX5X:VVS).. . (4c)

A .
The simplest way of representing the pressure p is as a known function of V (or n)
and S. (An alternative representation will be introduced in Subsection D below.) Thus
FaN Fay
p = p(V, 8) = H8U/aV), (5)
which follows from the-expression for the first differential of the canonical molar internal

energy state function U(S, (/\):

~ - . .
dU = TdS - pdVv (6)

where T is the absolute temperature. Equations (5) and (6) are appropriate for a convected-

frame treatment. In an inertial-frame treatment, the appropriate canonical state function
is the internal energy density u(S, n) for which

‘du = nTdS + Hdn (7N
* where H is the molar enthalpy. The pressure function p = p(n,’S) is defined in terms

:.‘ u(S, n) as follows:

p = nH - u = n(3ufon); - u. (8)



Thus p is derived from u by a Legendre transformation, and so the two are dual state

functions.

It should be noted parenthetically that the thermodynamic treatment developed in
this paper is a truncated version of a more complete and more symmetric 1:1'ea'tme;n't:“S that
is based on (4, n), where 5; is the entropy density, rather than the molar entropy S. The
present treatment has the advantage of the greater simplicity that results from specifying
the functional form of S(A, t) in advance. The more complete theory is necessary, how-
ever, in fluid problems involving either different chemical constituents, or different phases

of a single constituent.

Since the mass conservation and the energy equations are identically satisfied, the
_ only equation of motion that remains to be satisfied is the staternent of local conservation

of momentum. For inviscid flow this is Euler’s equation:

1 o~
MD,V = - —9p - MV¢ 9)
n

where ¢ = d(«, t) is the given gravitational potential. The tilde has been added to empha-
size that this equation is satisfied by equilibrium flow, i.e. flow for which the local force
balance is everywhere maintained. In a variational context, this corresponds to the extremal

flow for which the first variation of the action integral vanishes.

Non-extremal flows can be tepresented by adding a “deformation” or “displacement”
force @ to the right~hand side of Equation (9). This then represents the effective force
field that would have to be added in order to maintain the force balance {or conservation
of momentum) of an arbitrarily specified flow. The work associated with the imposition

of such a force field is discussed in the following subsection.



B. Virtual Work of Fiuctuatmns
For non—extremal ﬂows ihe Iocal force balance equation can be writtén in the form
D = MD,V - F ! (10a)
wheré

1
F=-—Vp- MY (10b)

For extremal flow, Equation (10) reduces to Eguation (9) and G =0 B cai be inter-
preted as the I;mlar’ d;ﬁiemberi; force, whose vanishing is one way to specify-an equilibrium
flow.w &P can also be regm'déa as a molar displacement force that arises 'when-a virtual
displacement carries a-;}ne-mola sample of fluid away from ifs normal trajectory in the
equilibrium flow. If this flow is stable, then 99 will tend to restore the displaced sample
to its original trajectory, and positive work will be required to produce the displacement.
If §A-is the amount of work required to displace one mqle of: fluid a distance —SX, and

@ (8X) is the displacement force at the end of the displacement, then @, = L @(8X)
13 the average value of & during the displacement, and ‘

DA = -5 - D,y = %X » D(EX). (11)
This work is-of second order in (§X) because it is 8X itself that gives rise to . In the
case of a displacement from a non-equilibrium flow {indicated by an overhead, bar) for
which @ = 0, then the work is of ﬁf:st order in 6X:

BVA= 35X 1D =-6X + MD,V-F) . €12)
where use has been made of Equation (10a). 513 is the corresponding work density
involved in displacing the n moles that occupy unit vc:hime then.

8Ma = #A = 5n - F - MD, %) (13)
where §(1'n = 58X is the first-order mole displacement flux defined in Equatlon (44) of
Paper I The natural second~ordex generalization of Equation (13) is k

1+ 25 = 5(1+2)y « (F - ]—j v) 51+ 22y @ 14)



where, to 02(8X), 5 * 2)n can be written in any of the following forms:

éfl * 2y = (i + 1%6Wn) (X + %X - V5X) (152)
S (R 4 58X + %Y ¢ (BXESX) (15b)
= fi(6X + 86X + V6X) - %V  (6X#ibX) (15¢)
where ‘
§Vn = -v « @AsX) = -v + §n, (15d)

As _notéd in Equation (44) of Paper 1, the first and second-order change in mole‘density‘
,is given by

31+ =y . U2y, . (16)

The. displacement force & (5X) and the corresponding second-order work is calculated
‘in the following subsection for a virtual displacement of a m.ra}e of fluid in a density~
stratified atmosphere. These expressions will help clarify the physical implications implicit
in the second variations presented in Sections IV and V, but the expressions for §‘2)A de~-

rived below enter in no way into the derivations of Sections IV and V.

C. Bueyancy Force and Work

If (%) is the equilibrium density at the fixed observation point #, then if the matfer
" is subjected to a displacement field 56X, the matter at the point & after- the displacement
is that which had occupied the point & - §X before the displacement. If, moreover, the
displacement is of the Boussinesq type, i.e. density-preserving, then the density n'(#) ob~
served at the point & after the displacement is.n' = 7 - 6X * VI = T(1 ~ 6X * V & ).
_If the velocity and acceleration fields are unchanged by the virtual displacement, and F’
is the new force at « after the displacement, then @ is defined by F' = F + @, so that

it follows from Equation {10) that

1}



i 1

BEX)=F -F=-—97+=VYp
.. . n n .
(17)
- - .s 1 -
=-8X *V Qn'ﬁ')(-: v’f;)+ 0%(5X).
R o 1 -
Using this in (11),%it follows that
1 _
5, = + Z—N[(Vﬂn?f) @) :(6X8X) + O*(5X) (18)
n - .

is.the second—order work that _must be performed in order to camry gut“e B_eussinesq dis~
placement §X of one mole of fluid. Using .
VP = -YMYS + F) = -¥M(VE + D, (19)
to eliminate VP in (18) yields
AL = UMV T (VE + DtV)] (GX8X). - - (20)
For‘ "D’ﬁ =0 one obtains the familiar expression for the work involved in‘a Boussinesg
’ ;iisinlecerhent of one mole of gas in a static atmosphere. If this work is positive, the at-
,;hes;nilere is sta.bll‘e. For 'V$= 0, one obtains the cotresponding expression that predicts
the onset of Raylei’gh—Taylor instabili%:y,7 ie. instability resulting from the acceleration of
a stratified fluid in the direction of increasing density. T‘he fact that Va_and ’ﬁﬁ enter

+into :the stability criterion in the same way is in keeping with the Equivalence Principle.

5

‘ ‘The Boussir{esq-type displacements may ‘be visualized as occurring so fast that the

' displaced bI:ob of gas‘ does not heve sufficient time to change its volume in response to' the
changmg extemal pressure that it feels. The opposite idealization is the- quas1—stat1c dis-
placement that occurs so sIowly that at every pomt of its displacement trajectory the in—
ternal pressure of the blob is equal to the external ambient pressure. This gives rise to the

Viisili-Brunt stability criterion® 2 which will be derived below. . First, however, a more

general expression will be derived that is appropriate to the case of a completely arbitrary

12



change in the volume of tflc blob during its displacement. This is done by taking into
account the change in enthalpy of the blob that corresponds to an arbitrary adiabatic vol-
ume change. Since (3H/dp); = G and (9% H/op? ) = J}‘/ﬁ where § is the adiabatic bulk

modulus defined by

3 d
g = -9(—2) . n(—ﬁ) , @n
V7 an /g
it follows that for a one-mole blob
v
Fa
(AT D = VEp) - ¥ 5 (30
22)
= 85V - T (592
V
where ixse has been made of
B
. (8p)g = - -(/T 5V {(23)

which follows from (21). An expression for 6{1’\ in terms of 8X follows from the identity
given in Equation (9a) of Paper I:
FaN N Fa% Fay

8V = (8VfaG,) » &G, = VG* + (3,8X) = V(V+ 8X). (24)
The first—order part of (22) is not of interest because it will generally average to zero over
an extensive layer of fluid at a given geopotential height. Adding the second-order part
of (22) to (18), one obtains the following expression for the net second-order energy §(27A
' that must be supplied in order to carry out the displacement 8X of one mole of fluid that

simultaneously undergoes an arbitrary adiabatic volume change 8V = Q(V + §Xj:
1 o . iy 2
52A = }-g(&x + V28X ¢+ VD) - BV » 5%, 25)
H
The Vﬁisﬁlﬁ—Bqunt sx;ecialization of this expression results from requiring that the
adiabatic internal pressure change (3p); in (23) be equal to the external pressure change
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6X » Vrﬁ'. dombim'ng this requirement with (24), one finds that

V - 86X = ~6X - VB/B GfSpyyr = SPpxr) (26)
is the condition that must be satisfied in order that the internal and external pressures
remain in equilibriilm. The'expression t:or the second-order Viisili-Brunt work of dis-"

placement §(2} results upon substitution of (26) into (25):°

Avp
1 [} 1 g o
6(2)AVB =—[(6X - V&n) --@X - Vp)] 6X * VD). 27
2 B .
For the case of a flat static atmosphere for which 6X *Vp = —-’ﬁ’Mgaz where g is the ac-

celeration of gravity, and 'BU= AWM C? js used to eliminate rﬁuin favor of the speed of sound

8, (27) becomes

. denn g
ﬁ(Z)AV g = VMg . + E) (8Z)* . (flat, static atmosphere) (28)
Z \

The expression {27) can be simplified somewhat by making use of the thermodynamic

identity
1 - ol v—-1y n : 't
d!Znn-——-dp=——dS=-(——)—TdS (29)
3 Cp oF / B .o
- where
C (a8/8T) C
Cy (_EitS/a'[‘)v .
is the ratio of specific. heats and ’
Fas
1 faVv d&nny . .
o = —) = - ) (31)
V \oT p \ 0T /p o -
is the coefficient of thermal expansion. Using (29) in (27), one obtains
o "
(2) DY mod oy
Ay = - = —-—) [(TVS) (Vp)] :(8X5X). (32)
28 \ T
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D. Dual Aspects of Pressure

The pressure p({/\, Sj defined by Equation (5), or p(n, S) defined by Equation (8), has
the dimensions of energy density, a fact that is immediately evident both from the defi-
nitions as well as from the relation p = h ~ & where h = nH is the enthalpy density. On
the other hand, the appearance of (-p) in Equation {6} as the thermodynamic conjugate
of {} indicates that pressure should be regarded as an intensive quantity. The importance
of this duality in the description of fluctuations away from thermodynamic equilibrium
will be explained in Section III. Suffice it to say at this point that, m the case of a turbu-
lent gas in which fluctuations about the equilibrium density T are occurring, p' as defined
by Equation (5) or Equation (8) is to be regarded as the instantaneous pressure within a
sample of gas that is so small that the changes induced by its fluctuating volume may be
regarded as quasi-static, so the use of the equilibrinm state function U(S, /\7) (or (S, n))
is justified. The intensive pressure {which will be designated by P), on the other hand, is
insensitive to the {luctuating density changes, and is to be regarded as describing the local
average pressure, the average being taken over a sufficiently large space~time interval so
that the effects of the fluctuating density vanish. Thus P represents the average pressure
existing outside of any given small fluctuating sample, and will be called the external

pressure, whereas p will be called the intemal pressuze.

In the more complete treatment6 atluded to following Equation (8), the intensive
pressure P = P{G, T) was represented as a function of temperature and of molar Gibbs
function G (or, in the case of several interacting chemical constituents or phases, of the
appropriate partial molar Gibbs function or chemical potential). In the fruncated, but
simpler, treatment that will be developed in this paper, the intensive or external pressure
P will be represented as a function of the molar enthalpy H and of the molar entropy S.

Because S = 8(A, 1) is specified at the outset, one of the two thermodynamic degrees of
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freedom is effectively suppressed in the truncated formalism. The functiox% P=PH, S) is
a canonical state function from which all other thermodynamic quantities can be derived
by differentiation. The mole density N(H, S) and the temperature T(H, S) are given by

dP = NdH - NTdS. (33)
The “external mole density” N must be distinguished from the “internal mole density” n,
except at equilibrium when the two are equal:

NH, S =N=7= 33. (34)
(In principle, different symbols should be used for T(H, S) defined by Eguation (33) and
T(S, 0) defined by Equation (6), but, because S = S(A, t) is specified, it turns out that
the need for this distinction does not arise.) Corresponding to the interpretation of P, N

can be interpreted as the average mole density in the fluid surrounding a small sample

- whose internal mole density n is rapidly fluctuating.

The dual pressure functions p and P can be used to generate dual internal energy
functions U and U-and the corresponding energy densities u and #. These quantities sat-
isfy important inequalities, which will now be derived. It is easily shown that the adiabatic
. second variation of #(S, n) is (8*u)g = W(BIT2) (6n)* > 0 where the equality comesponds
to én = 0. To O3(Sn) this second variation can also be represented as the difference be-
tween (1 - %) and (8(Vu)g where it follows from Equation‘(’i) that (6(Vu)g ="Hén =
ﬁ(n - T). Thus the following inequality is valid:

w-%-Hao-M=>0 (35)
where the equality holds only if n = 1. (It should be noted that this inequality is valid
only if both # and u correspond to g', i.e. only n may vary. In the more general ireat~
ment6 based (;n u( ¢, n) rather than u(S, n), an inequality can be derived in which both

é and n are free to vary.) Using the fact that ﬁ’ﬁ‘- == rf;, Eguation (35) can be

written in the following form:
uln,8) - #(m,H,8) = 0 (36)
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where

#(n, ﬁ,g) = nﬁ - P(ﬁ, '§)
~ A~ (37)
= n(H, V, S)
where
~ SN ~ Fay (v a”)
FH,V,S)=H - VP(H, 8). (38)
Because u(n, §)'= nU(V, §), Equation (36) can also be written
rassy A~ N ~d
Uv,S) - BH,V,S) = 0. (39)

- The equality holds only when the redundant set of three variables (ff, Q, rSv) is consistent
with the relation H= U - Q(BU{BQ)S. Because the equilibrium point involved in Equa-
tions (36) and (39) is arbitrary, the tilde can be omitted from Hand . The inequality
itself will then determine the equilibrium point, namely that set of values for which the

equality holds.

The physical significance of these inequalities and their relation to the Second Law of
Thermodynamics will be explained in Section III. The importance of a similar ineguality
{in the entropy representation rather than the energy repres'entation used here) in non-
equilibrdum thermodynamics has been emphasized by Tisze:.10 The generalization of the
above inequalities that refers to a stratified atmosphere in a gravitational field will be

given in Section V.

If the pressure that appears in Euler’s equation given in Equation (9) is represented
by P(H, 8) rather than by p(n, S), an extra equation of motion is necessary to guarantee
the consistency of these two representations. The obvious choice is just P= BJ, but it will
be shown in Section V that it is the equivalent requirement N=Tn given in Equation (34)

that falls out of the variational analysis.
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_In the variational analysis, the functional form of H(A, t) is not known in advance.
It must be specified by the variational principle. If ﬁ(A, t) is the functional dependence
that is. consistent with P = ; or N =17, then for a slightly different functional dependence
H(A, t) = ﬁ(A, t) + e(A, t) where € represents the varjation in H. In the convected frame
in which (A?, t) are the independent variabies, this is the only variation that has to be
taken into account. In an inertial-frame analysis, however, each of the functions ﬁ(A, t)
and e(A, t) has a Vaﬁatioﬁ of the form given by Equation (4) that results from the vari-
ation of the functional forms of A* (#, t). Thus, taking into account that e is already of
first-order magnitude, the tptal varation of H(A, t) in an inertial frame analysis is

51+ 2H = X - VH + %(EXSX:VVH)
~ " 40
+ e(A, 1) - 86X = Ve(A, 1).

An expression of this form is also valid for the variation about a non-extremal functional
dependence H[ Az, t); t]. In Sections V-and VI the functional variation e( f_&, t) will be

designated by 8, H to indicate that it is the first-order variation resulting from the vari-

ation in the functional dependence of H(A, t) on A®and t.

E. Entropy Fluctuations

The use of p(/\\f, S) or p(n, S) to describe the pressure implies that equilibrium thermo-
dynamics is valid for non-exfremal tr%al functions as well as for the extremal configuration.
That is, the fluctuations about the exi:remum are effectively quasi-static. This is consistent
with the interpretation of the prescribed function S(A, t) as the inétantaneous 'n‘lolar entropy
which, except for the prescribed time—depéndence, isa consll,ant of mc;tion even during the

fluctuations.

The use of P(H, S), however, involves a redundancy that imples that equilibrium

thermodynamics is valid only for the extremal set of trial functions (or, more exactly, for
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any set of trial functions for which Equation (34) holds). In this case, S(A,-1) can no
longer be interpreted ;;15 the instantaneous molar entropy. Rather, it must be regarded as
the prescribed time-average of the entropy about which the instantaneous entropy fluc-
tuates. Only for trial functions for which Equation (34) is satisfied is the instantaneous
molar entropy equal to S(A, t). In the convected frame, this average entropy S(A, t) does
" not fluctuate at all. It is, however, possible to define the instantanecus entl-“opy fluctua-
tion &S by means of the following familiar relation:

8Q = T8S = 6H - 6P/n. (41)
If 8Q is used rather than T8S, this relation is mesely a statement of the First Law in which
8Q is the heat energy absorbed by the sample of fluid from its surroundings. In general
&P depends on 86X as well as on 8H, so 6P and 6H are independent. Two special cases will

be of interest in what follows:

N
845Q = 6yH - 5;P/n = (1 ——-) 8y H (42a)
n N
‘and
8,Q = 5,H - (6X * VP)/n (42b)
where in Equation (42a)
64P = (@P/aH)g 6, H = No H (42¢)

is the external pressure change produced by 6y H. The §;Q of Equation (42a) represents
the increase in molar heat produced by the random “sloshing about™ of enthalpy in the
fluid. The 8§, Q in Equation (42b) is the change in heat that corresponds to departure from
isentropy during the displacement of a fiuid blob in a pressure gradient. For example, if
the upward quasi~static displacement of a blob in a stratified atmosphere is isentropic, then
6,Q=10. If 8,Q % 0, this could mean either that heat has been exchanged between the
blob and its surroundings, or that there has been a spontaneous conversion of internal

thermal energy into ordered form.

-
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In the entropy representation, a stable equilibrium of an isolated SYS'EG.II‘1| is:charagtgr—
ized:by a maximum value of the total entropy S,1! ie. 818 = 0, 8)S < 0 where the &
indicates a-virtual fluctuation from equilibrium. (The inequality is reversed for a real
spontaneous change.) If the system is immersed in a heat reservoir, then §(1)g = 0, but it
is still necessary that 5(2)$ < 0 since otherwise a virtual fluctuation that exphénged heat
with the reservoir could produce a second-order increase in the total enfropy of the sys—
tem plus reservoir which would contradict the posited stability of the system and jts

reserveir.

In the energy representation used here the comesponding statementé can be made
about the total change in interﬁal he;t 8Q. The second-order changé 6(2)0, which cannot
be accounted for by simple heat exchange with the reservoir, can be ihferpreted'as the
change in the unavailable energy of the system. The requirement 8(27Q < 0 for virtual
fluctuations in a stable system is equivalent to the statement that the unavailable energy
of a stable system and ils reserveir is a maximum. Thus virtual fluctuations correspond to
conversions of internal thermal energy into some ordered form of energy, i.e. virtual fluc-

tuations convert unavailable energy into available form.

An alternative interpretation of the condition $(22Q results from the following

argument:

s1+2)q = f 5Qd3(A) = f §Qnd3(x) = f (n + 8(Vn)8Qa° (x)
N

v V-
' ~ (43)
s )
=f n5Qd3 (x) +j §Wn 8Qd3¢x).
v v

£ -
" The first integral is the first-order change in total internal heat which vanishes if the sys-

tem is isolated or else cancels with the heat absorbed by the reservoir, if the system is not
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isolated. The second-order integral depends on the integrated correlation between 5(1)n
and §Q, and is completely independent of any heat change of the reservoir. Thus a nec-

essary condition for stability is
8230 = f K 8Qd3x) < 0. (44)
%

This condition has a very simple interpretation. It requires that, on the average, a positive
value of 5Q must be accompanied by a negative value of 811 and vice versa. This means
that, on the average, when heat flows into a sample of fluid from the surroundings, the

‘ se;mpIe must expand, and must contract when heat leaves. This eminently reasonable con-
dition is not éutomatically satisfied by the fluctuations in the trial functions of Sections V
and VII. Thus it represents a constraint that in principle must either be imposed on the
parameterization of the frial functions, or on the procedures involved in 2 direct numerical
solution. 1t is, however, a very weak constraint whose violation does not produce spurious
answers, but rather only introduces the possibility of numerical instabilities into the solu~

tion process. This point is further discussed in Section VII F.

L

It should be noted that “virtual” fluctuations are virtual in the sense that they (locally)
violate the Second Law. This does not imply that they cannot happen in nature. The
Second Law refers only to a macroscopic sample of fluid, and not ’;Lo fluctuations at the
microscopic level. It is necessary, however, that whatever correlations exist between fluc—
tuations at different poinis be s:ich that at a macroscopic level no Second-Law viclations
occz.;r. This is the meaning of the condition in Equation (44). Because physical fluctua-
tions are never instantaneous, the integral involved in this condition should really extend

over time as well as space. Such a space-tirne integral is actually what results from a cal~

culation of the second variations of the variational principle discussed in Sections V and

VIL
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_E. Internal Free Energy

The 6A = —BX @ that was mtroduced in subsectlon B above 1s the molar defor—
mation work, that is, the work done aggm_st the molar C_lefgmanen fe;ce D | _df;fi_ned in Equa—
tion (10a). The integral of tnjs over the entire fluid, 8A = [ §AdN, represents the amount
of ‘energy that has been stored in the fluid by virtue of carrying out the deformation as-
sociated with the displacement field 6X. Inasmuch as this energy could in principle be ex-
fliacted agaln from the ﬂuld it represents a potential energy and if ':SA were in fact a total
dlfferentlal A could be called the “deformatlon potentlal ” However, 1t is not justified to
assume that 8A is a total dlfferentlal In fact, when entropy fluctuations are taken into
account the mte,'gral of -6X « @ no longer represents the amount of useful energy that
could in Qrmczple be extracted from the fluid by relaxing the neformatzon d1sp1acements.
The reason for this is that if the displacements 6X are accompanied by an entropy inerease
- 88, then a part 8Q = TéS of the mo}ar work of deformation is degraded anci ’becomes un-—-
. available .fOr conversion into useful form. The 8A discussed in subsections B and C above
should properly be designated (§A); to indicate that all of the displacements we‘re isen-
tropic. This followed automatically from the fact :chat the pressure was represented by
p(v, S). With the introduction of the extra degree of freedom involved in the P(I1, S)
representation, the 8Q defined by Equation (41)'must be included-in the formalism. ‘Thus
if BA represents the convertible or ““free” part of the deformation energy,

5A = (8A); - 8Q (452)
= (5X + D) - (6H - 5P/n). (45b)

3 K
It was pointed out in Equatmn (12) that §A is of ﬁrst order 1f @ + @ =0 hasa

. ﬁmte value that is independent of 6X. Correspondmgly, ﬁQ is of ﬁrst order 1f N #n and
Jhas the value given in (42a): Thus the generalization of Equanon (12) is
8DA = 8X - D - (1 - N/m)s,H. (46)
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_ If H is a primitive function in the variational analysis, i.e. if H(A, t) is one of the trial
functions, then 8y H = Sg)H has no second-order variation. If, however, H is expressed
as a function of other functions which are regarded as primitive, then &, H can have a
second-order dependence. For example, if H is represented as the Jacobian H = J?A =
det(dn™ /3AB) where the three functions 7 (A, t) are regarded as primitive, then 8H =
det(38n™ [3AB) is of third order in 87”. Allowing for the possibility of some such repre-

sentation of H, the generalization of Equation (14) becomes

501+ 2)3 = (1 * 2 « G - 7+ Q (47a)
=50+2y . F-MDV) + -l *PH - @)

where #(* * 2)3 is the free deformation energy density.

At equilibrium, ﬁ = ?{ and so 8, Q = 0 even if 5, H # 0. In this case,‘ however, it is
possible for correlations to exist between §,;H and 86X such that $(2)0 5= 0. In fact, the
correlations are just those between 8Q and §Dn=-v » (?{BIX) that were discussed follow-

ing Equation (44). For the displacement of a one-mole blob of fluid through a pressure
gradient the appropriate 8Q is the 8, Q given in Equation 42b). The appr-:;priate‘{’QS-A)S to
use in the neighborhood of equilibrium for which @ = ( is the second-order expression
given in Equation (11). If this is augmented by the work of adiabatic expansion given in
Equation (22), the expression for (8(2)A), given in Equation (25) resulis. Combining this

with Equation (42b), it follows that in the neighborhood of equilibrinm

§#2A = j B’{[—%sx - D (X)) + [agf)H]S} 3¢ - 8430 (48a)
vV

= f KX *+ 72 X)(6X + Vp) - B(V » X1 d3(x)
v
(48b)

-f (Wn) (5,H - 8X - Yp/md>(x).

v
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The expressions in Equations (47b) and (48b) will be encountered again in Section V where

(R

they wilt-result from a derivation that is entirely independent of any of the results derived
A

above.

The 8A discussed. above represents the free (i.e. convertlbie) part of the' energy associ-
ated with the mternal deformatlon of the system. For the sake of brevity, it will be called
the variation: of the internal free energy of the system. It will be shown in Section V ‘that
8A can indeed be represented as 2 total differential, i.e. as the variation of a spatial' integral
over a specified functlonal In this sense it is legitimate then to refer to A itself as the
total internal free energy of the system. It should be emphasued that the use of the term
“free energy” does not imply that A is to be identified with the familiar free internal en=
ergy (Helmholtz function) or the free enthalpy (Gibbs function). These funcl’gions refer to
equilibrium states whereas A represents the convertible energy of non—equilibﬁ}lm states.
The numerical value of A for equilibrium is of little interest, because this can be ;r.bitrarily
changed without changing the vananonal properties of A. This con'esponds to the fact that
in classical mechanics the absclute value of any energy never has physical 31gn1ﬁcance Only

differences or changes of energy are observable.

G. Themmodynamic State Funciions

It will be seen in Sections IV anq V that the construction of an explicit functional"
for the total energy in the convected 'frame involves a knowledge of the functional form
of U((!\, S), the canonicgl state function for molar internal energy. The corresponding con-
struction in an inertial frame involves knowing the functional form of u#(n, S). The con-
struction of the functional for the fre; energy in either the convected frame or an inertial

frame involves knowing the functional form of P(H, S). Very often these state functions

will either be known, or else can easily be constructed from empirically determined
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thermodynamic functions. For example, for a perfect gas the three necessary functions

have the following forms:

U@, 8) = U,0N )= D explly - 1)(8 - S/RI ; (49)
u(n, 8) = u o) expl(y - 1S - S,)/RY; (50)
P(H, 8) = p (I/H) Y7 = D expi(S - 8,)/R] ; (51

where R is the molar gas constant and U, Qo’ S, eic. are reference values which may be

either constants or else specified functions of (&, t) or of (A 1)

An slternative to using a known empirical state function is to construct a state func-
tion from the expressions fc:r the first and second differentials of U{";}, 8), u(n, 8), or
P{H, 8). The first differentiais of these functions are given in Equations {6), (7), and (33)
respectively, It is well known12 that the second differential of a canonical state function
for a simple fluid can be expressed in terms of an appropriately chosen set of three thermo-
dynamic coefficients. The three coefficients used in the expressions below are the ratio of
specific heats vy, the adiabatic bulk modulus 8, and the coefficient of thermal expansion
o. The definitions of these quantities have been given in Equations (30), (21), and (31)
respectively. For a perfect gas, v is a constant, § = yp, and @ = 1/T. For an arbitrary
fluid, B can always be replaced by the speed of sound C by means of the relation § =
nMC2, which for a perfect gas becomes § = nyRT. The intuitive significance of the dimen-
sionless product o7 can be seen from the relation dH‘= CPdT + {1 - o) /\}dp which shows
that the magnitude of (1 - «T) is & measure of the departure of the fluid from the perfect-
gas relation dH = CPdT. The necessary expressions for the second differentials of an arbi-

trary fluid are

- -1 -1
s@uW, ) = vy + % 5‘-@;5—}- (88)* - - sVss ; (52)
o

¢4
nZy(y ~ 1)

§2y(n, 8) = % L Gy + %
n? a?f

-1
(58)% + T(l + —)anas ;o (53)
ol
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2 2 ’
8(2)P(H, 8) = % l;— (GH)? + % %E [(1 - aT)? + v(2aT - 1)1.(88)*
84

T ¢ y-1
- — (1 + —— }8HS5S.
B oT

(54)

These are the expressions that are used in Sections IV and V to calculate the second variations
of the thermodynamic functions. This is done by substituting into the above expressions the

already given expressions for 6/\7, §n, 83,'and §H in terms of SAA or §X and sy H.

Using Equations (52-54) and the corresponding first-order relations given in Equations
' {6), (T), and (3'3), the following expressions for the necessary canonical state functions can
be constructed:

FaY ras -~
UV, 9 = U, - p,V - V) + T,(S - S,)

oA v-1 z
+ W(np), [:(V -~V - (-&B—) (s - soﬂ‘ (55)
A : .
-1 :
+ 1/2[’(72 )J CEERCE
a’f |1

u(n,S) = u, + H(n - ny) + ), (5 = 5;)

+/(B) ( )+(nzT e T el i 56
Y — - _ + -
e (D) ()] e
2 C -1 1
_%(HT)O 1_}_(_7___) ( _____) (S_SO)Z;
Bo ‘ aTO oT/

P(H, S) = p, + n,(H - H)) - (T), (S - S,)

+1/(-}f) [(H - H) T(1+7_1) S - 512 57
(5) @ -t {1+ o) -5y 57)

- » ‘
_i/zlfl_’),(zwz:l (3_50)2_
o3 o
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As in Equations {49-51), the coefficienis and reference quantities are indicated by sub-

script o, and may either be constants, or consistently specified functions of either (#,1)

or (A2, t).

The second-order parts of Equations (§5-57) have been written in a form that makes
the convexity properties explicit. In all three cases, if S - §, = 0, the second-order parts
are positive—definite, but if S - S, s {), this is true only in the case of U(,\?, S). The in-
definiteness of the convexity of u(n, 8) and P(H, 8) is a consequence of the simplification
that resulted from basing the thermodynamic formalism on these functions instead of using
the functions u{n, ¢ } and FG, TY that were referred to following Equations (8) and (35)
and at the beginning of Section II D. It will be seen in Sections IV and V, however, that
the lack of definiteness of the convexity of u(n, s) and P(H, §) does not manifest itself in
the convexity properties of the integral functionals in. whose inteprands they appear. That
this should be the case is already apparent from the fact fhat, since S Ilike S, must be a
specified function of (A#, t), if the coefficients and reference quantities in Equations (56)
and (57) are specified as functions of (A®, t), then S, can be specified so that 8 - S, =0,
in which case the second-order parts of u(n, S) and P(H, 8) are positive—definite functions
of {n- 110}2 and (H - HG)Z. This procedure simply puts the entropy dependence mio the
quantities v, H,, n, and B,, and the remaining dependence on én or 8H i8S positive—

definite in second order.

As a practical matter, however, there exist many meteorological problems in which it
would be preferable to specify the reference quantities in terms of (&, t) in spite of the
added complication that arises from the need to retain the terms involving § - 5. For
example, in the case of a direct variational solution of a closed convection cell embedded

in a piven static atmosphere, if the reference quantities were chosen to be the functions of
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" (=, t) appropriate to the stafic atmosphere, then the thermodynamic aspects of the vari-

ational problem would involve only small deviations from the given static atmosphere.
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IL. DUAL PRINCIPLES OF VIRTUAL WORK

The dual pressure functions, p('{!\, S) and P(H, 8), and the dual 'energy functions,
U({f\, S) and G (H, {!\, S), that were introduced in Section II D, correspond to the two dif-
f;:rent ways that the Principle of Virtual Work ¢an be adapted to a continuum. These are

illustrated in Figure 1 for the case of a homogeneous box of gas in the absence of a grav-

itational field.

Figure 1A illustrates the form of the principle in which the virtual work that is to be
associated with a small cell that contains one mole of fluid is performed by an external
energy source that acts against the internal pressure p of the cell, thereby increasing the
internal energy of the cell by the amount §,U= —pé@; Figure 1B illusirates the form of
the principle in which the gas within the cell in question spontaneously converts some of
its intemnal energy into work of expansion against the surrounding external pressure P. This
form of the principle involves an internal energy source (the gas itself} acting against the
external pressure P. The work performed by the cell on its surroundings is ;A = +P5Y.
Referring to Equation (38), it is evident that 8, U= U/, (8V=-PELS)sV. Thus it fol-
lows that 8, A = -8, . This just says that the work performed on the fluid surrounding
the cell in question (i.e. the energy increase in the swurrounding fluid) is bought at the ex—
pense of the thermal energy of the gas within the cell. Thus thermal energy within the
cell has been spontaneously converted into ordered compressive energy residing in the sur-
rounding fluid. Although such spontaneous conversion would be a violation of the Second
Law on a macroscopic scale, it does happen on a microscopic scale. Thus the form of the
Principle of Virtual Work that is illustrated in Figure 1B constitutes a rudimentary repre-
sentation of the energetics of spontaneous fluctuation about equilibrium in a stable fluid.
(Such fluctuation will be called *“virtual” in order to distinguish it from real irreversible

changes in a fluid that carry it from one equilibrium state to another.)
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DIRICHLET PRINCIPLE CASTIGLIANO PRINCIPLE

Figure 1. Virtual Work Performed on a Box of Gas in Deforming its Lagrange Surfaces. (A) Work Performed by an
External Energy Source that Produces a Quasi-Static Deformation Against the Inter Pressure p. (B) Work Performed by
Spontaneous Conversion of Thermal Energy Within a Small Sample of Gas intc Work of Expansion Against the
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Whereas the form of the Principle of Virtual Work that involves P and U corresponds
tg the ﬂuctuatim;s thé.t actually occur in a turbulent fluid, the form of the principle pic~
tured in Figure 1A that involves p and U describes a purely imaginary kind of fluctuation
that requires the intervention of an external agent that must not only provide energy, but
must also provide internal barriers of some kind against the pre;sure differences that de-
velop in the fluid as a result of the density changes produced by the fluctuations. The
reason for this is that the use of the equilibrium state function U((/\, S), and the corre-
sponding equilibrium pressure p = -aU/aO, implies that the fluctuations are quasi-static.
Thus inertial forces cannot be invoked in order to account for the difference bt_atween the
internal pressure of a sample and the pressure of its external surroundings. (Such inertial
forces can be invoked in the case of Figure 1B, because equilibrium thermodynamics does

not apply so the fluctuations are fast, rather than quasi-static.)

When the two different forms of the principle are used to determine stability prop-
erties, they can be characterized as First~Law and Second-Law criteria in the following
sense: In the case of Figure 1A, because the fluctuations are quasi~static, the total entropy
of the system remains constant, but the total energy does not. If all possible fluctuations
about a given state of the system increase the total energy, then the state must be stable,
because if the system is isolated there is no available source for the energy that would be

necessary to change it. This is a First-Law stability criterion.

In the case of the spontaneous fluctuations represented by Figure 1B, the total enerpy
is a constant. The total entropy, however, is not constant because the fluctuations involve
the spontancous conversion of thenmal energy into ordered form. The change in U for
the entire system is a measure of this conversion. If 8 < 0 for all possible fluctuations,

this means that every conceivable change in the system involves a conversion of the thermal
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energy U into ordered compressive energy. But this is a violation of the Second Law, so
it cannot occur {except for microscopic “virtual’’ fluctuations that cannot grow to macro-

scopically observable size). Thus the state is stable by virtue of the Second Law.

The existence of dual forms of the Principle of Virtual Work has Iong been recognized
in the context of the theory of static elastic structures, but both forms of the principle
were stated in a2 way that involved only ordered energy, so the connection with the Second
Law was never brought to light. The First~Law form of the principle that is based on the
equilibrium expression for e¢nergy (Fig. 1A) is known in the elasticity literature as Dirichlet’s
Principle.3> I3 The form of the principle that expresses the energy in terms of an intensive
quantity (P in the case of a gas, stress in case of an elastic structure) rather than an exten-
sive quantity (/\} in the case of the gas, strain in the elastic casé) is known as Castigliano’s
Pn’nciple3f 14 (although it had earlier been enunciated by Ménabréais}. In the classical
form of Castigliano’s principle the energy source that produced the deformations of the
system was pictured as an arrangement of ropes, pulleys, and weights, so it was j‘ust as

- -

imaginary as the energy source involved in Dirichlet’s Principle. Because the u{ti;nate en-
ergy source for the deformations in Castigliano’s Principle was gravitational (hanging weights)
a deformation potential function existed, and the principle consisted of the st.atement that
stable equilibrium is characterized by a minimum value of the deformation potential. In

the present development, the concept of “deformation potential” is replaced by thz-it of
“total internal free energy™ of the system. The existence of such a quantity in intéérated
form, rather than as a (possibly imperfect) differential, cannot be assumed in advance. In
Sections V and VII it is proved that s'uch an integrated free energy does in fact exist for
both static and moving ﬁuid_systems. The flnid generalization of Castigliano’s Principle

is the statement that the iotal infernal free energy of the system is 2 (local) minimum for

stable flow.
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_Because 8, U = -8, A, the change in ¥ is the mirror image of the change in internal

ffee-energf A, and the sarz;e is true of ‘the integrated quantiﬁe; LF and A. 'fhus if Ais
‘m:inimum for a stable static atmosphere, then U must be maximum. In fact, since in clas-
sical mechanics only changes or differences in energies are observable, an aﬁ:iéz;ry constant
‘ean be added to A, and this can be chosen so that A = -, When gravitational energy is
included, the const;lnt of A can be adjusted so that -A is equal to the sum.of U and the
total gravitational energy. This is done in what follows. In Section V it is shown that, for
a stable static atmosphere, A is minimum and so the sum of U and the gravitational energy
is maximum. In Section VII E it is shown that, in a relativistic context, the s‘;atement that
. U is maximum for stable flow holds even for arbitrary fluid motion. This statement is
equivalent to the statement that the total entropy $ is maximum for stable flow. This
obviously is a Second Law definition of stability. In.Section VI it is shown that the First
Law form of the Principle of Virtual Work cannot be adapted to include fluid motion.
Thus, whereas either the First-Law form or the Second~Law form of the Principle of Vir-
tual Work can be used in the static case, only the Second~Law form can be extended to

the dynamic case.

The fact that, in the static case, both forms of the Principle of Virtual Work con~
stitute valid but different stability criteria provides the means for constructing a minimax
statement of the problem, which in the case of a box of gas is simply the statement that
U tends to a minimum whereas U tends to a maximum, and at equilibrium the two are
equal. That is, if S is suppressed by making it constant throughout the box of gas, then

it follows from Equation (37) that

U= f wn) P); U = f [nH - P} *@); (58a,D)
v v
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and, from the inequality of Equation (36), that

f um) d¥(x) > f [nH - P()) & (). (58¢c)

v v

This inequality could serve as the basis of a direct, iterative way of finding ' (x) and g{x}
in that a best answer for n(x) is found by minimizing the left side, and then substituting
this best answer into the right side a best answer for H(x) is found by maximizing the
right side. For this sii:nple problem, these two steps would suffice to give ' (x) and ITI'(%},
but in a more complicated minimax problem successive iterations might be necessary. It
is important to note that n(x).and H(x) are varied in turn, not simultaneously. If they
were varied simultaneously, then, because of the presence of the term nH Ain‘ the integrand,
it. would no longer be possible to assert that & = maximum since the sisn of 8 would
be indefinite. It would, however, be permissible to vary n and H Simultaneously. if the
condition [8n8H d”(x) < O were observed. This is just a special case of the Second-Law

condition stated in Eguation (44).

The transition from a minimum principle to an equivalent maximum principle as -
lustrated in Equation (58) is called a Friedrichs transformation. It was dev;aloi)ed by
Friedrichs? in order to demonstraie the equivalence of the Dirichlet and Castigliano Prin-
ciples. He also pointed out that, because the Castigliano Principle involves the intensive
quantities of the problem as primitive variables rather than as derived quantities, it is u;ua!ly
easier to fit boundary conditions on é free boundary where intensive quantities have speci-
fled values. On the other hand, the convergence of 2 numerical solution is often faster

using the Dirichlet Principle.

In order t6 generalize the aboveéconsiderations from a simple box of gas to a static

atmosphere in a gravitation field, it is only necessary to replace u and wwith (u + nMg¢)
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and (& + nMop) respectively, where ¢ = ¢(a, 1) is the specified gravitational potential. The

'correspoilding total energy E and total internal free enerpgy A are then

‘E= f fu(n, S) + nMg(a, 1)} d°(x) (599
. § '
= f UV, $) + MaEX, 1)) d>(A) (59b)
; ,
‘and
A=. f (# + nMg)d®(x) (60a)
v -
= f [P(H,8) - nM¢ - nH] d°() {600b)
v -
= f (UP@H, ) - Mg - H] d3(A). . {60c)
N

‘ In Sections IV and V it will be shown by direct calculation of the first and second variations

that E and A are both minima for a stable static atmosphere.

It is evident from (60c) that, if H is parameterized in such a way that the variation of
its integral is identically zero, then it could be omitted altogether and A could be identified
with f (QP - M¢) dN. If H is expressed as a Jacobian constructed on the three‘ families of
surfaces 7 (A, t), ie. if H= det{8n* /3A®R) and 8™ = 0 on those A~surfaces that coincide
with the boundary (either free or rigid) of the system, then & f HdN = 0 to 2ll orders and
H can be dropped from the integrand of Equation (60¢). (In the case of an action integral
over time as well as space, the same thing can be accomplished by representing H in the
form H= (at1?°)A where 9°(A, t) replaces H as the primitive variable. If 87° = 0 at t, and

ty, then 8[f H dt] A =0 to all orders.)

35



The intuitive significance of the energy Up - M¢ that survi_ves in the integrand of
Equation {60c¢) if H is dropped is illustrated in Figure 2. Figure 2;} ﬂiustmtes‘that‘if\P is
the energy required.to inflate 2 bubble of volumeg ’\? against a pressure P, This energy could
be recavered by arranging to utilize the energy that would be delivered by the surrounding
fluid during a quasi-static collapse of the bubble. Thus, although the energy resides in the
surrounding fluid, its conversion to some other form occuss in or near the volume ¥ and

50 is to be associated with this volume.

The corresponding interpretation in the case of grfwitationgl energy is illustrated in
Figure 2B. According to ti}is interpre;:ation,‘the' energy of interest is the potential energy
of é‘bai}b}e embedded in the atmosﬁhere. Since a bubble tends to rise rather than fall, the
relevant potential energy is -M¢ (if the bubble displaces one mole of fluid) rather than
+M¢ which would be the potential energy of one mole of isolated matter, rather than the
energy of an embedded bubble. An £a}ﬁ:esrmntive way to justify the same conclusion is to
n_cs‘ie that if the bubble is pushed do;vnwaré a distance 86X, a mole of matter in the sur-
rounding; fluid must be raised a corresponding distance, so the total potential energy of the
atmosphere has been increased, and this increase in !energy must be associated with a de-
-crease in height (of the bubble). Here again, the energy resides outside the bubble, but
because its conversion to some cther‘gfenn {usually kinetic energy) is a function of the
change in bubble height, it must be a;sociated with the bubble. Thus (/\}P ~ M¢) is to be
regarded as the potential energy of a'bubble of volume "\)‘ that displaces mass ;M‘.‘ It can be
shown that for a vertical column extending froni the bottom to the top of a static atmos-
phere f ,{{f\P - Mg@) dN =0 at equﬂibﬁum and increases for any fluctuation from equilibrium
if the atmosphere is stable. Thus this integral can be considered the total buoyancy poten-

tial of the atmosphere, and this is the quantity that is to be identified with the total in-

ternal free energy A of a static atmosphere.

36



LE

(A) (B

INITIAL FINAL
P BUBBLE _
BUBBLE e BUBBLE )ADISPLACED
. MASS = M)
p—
P MASS
vé éX MOVEMENT
IN FLUID

5,A = PsV = 5, [VP(H, 5)) 5y A = -MSX - ¥p = 5y [-Mo(®)]

Figure 2. Potential Energy of a Molar “Bubble”. (A} Compressive Energy of a Bubble With Molar Volume.
(B) Change in Gravitational Energy of a Bubble that Displaces Molar Mass.



In the sections that foliow, the -H in the integrand of Equation (60c¢) will be retained.
Its inclusion may be regarded simply as an arbitrary change in the reference level of the

Fas
energy (VP - Mg).

The fact th;;t the molar free energy is effectively the energy of the corresponding
bubble whereas the energy E is the total énergy of the matter within the bubble is related
to the fact that in a static atmosphere 8E is equal to the work done against the body force
F that acts on the matter, whereas 8A is equal to the work done against the deformation
force @) that acts on the bubble containing the matter:

SE = -F » 3X; (8A)g = - @D 85X (61a,b)
where, by Equation (10a), % = -F i:or a static atmosphere. These relations will be con-

firmed by the first-order variations calculated in Sections IV and V.
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IV, TOTAL ENERGY OF A STATIC ATMOSPHERE
‘ Dirichlet’s Principle applied to a static atmosphere says that the atmosphere. is stable
if the.total thermal and gravitational energy is a minimum with respect to all possible fluc-
tuations about the state of hydrostatic equilibrium. That is, for the equilibrum configura-
tion the first variation of the total energy E of the atmosphere.should vanish, and its sec~
ond variation should- be positive~definite. Thus
8DE =0 and .6®E > 0 (62a, b)

are sufficient conditions for stability of a static atmosphere if the atmosphere is thermally
isolated and the virtual fluctuations are isentropic. From the thermodynamic point of view,
the above conditions are simnply the standard way of characterizing a stable isolateq system
in the energy representation. (In the entropy representation the corresponding character-

ization is the statement that the total entropy of astable isolated system is;_-maximum.1 1)

-

The most direct wayl

to obtain expressions for §(1)E and 8(2)E in.terms of the par-
ticle- displacement 8X is to write E = f(U + M¢) nd?(x), and then use the relations &n =
-nV * 86X, 8¢ = §X * V¢, (8U)q = ~(p/n) v 8X, and similar thermodynamic relations to
reduce all differentials to expressions involving 6X. This approach shows that the condition
S§(IE = 0 js satisfied if the equation for hydrostatic equilibrium is satisfied, and that the
condition. 82)E > 0 is consistent with the Viisili-Brunt stability ._qﬂteﬂon.s’g This form
of proof. couid be termed “non-holonomic” in the sense that the particle positions them-—

" selves are never explicitly represented, but rather only their differential displacements 5X.
By contrast, the_proof given below is “holonomic” in that the. particle positions are repre-
sented in terms of the Lagrange surfaces A (a, t), and the X that appears in the expres-

sions below is not a primitive diffegential variable, but rather is short-hand for the second-

order expression in §A® that was given in Equation (36) of Paper I,
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Although the mathematics involved in a holonomic calculation of §(1)E and §(2)E is
far more intricate than in a non-holonomic calculation, the holonomic approach has the
great advantage that it establishes the -basis for a direct (ize. trial-and-error) solution of
complicated fluid-dynamical problems. Only after the action integral of a variational mini-
mum principle has been expressed as an explicit functional is it possible to insert param-
eterized trial functions and adjust the parameters so as to minimize the integral. It isa
treacherous fallacy to think that, once a variational minimum principle has been justified
by a non~holonomic argument, it is a simple and straight-forward matter to write down
the appropriate holonomic form of the action integral. This view is fallacious because it is
possible to write down many different action integrals that are all identical for their com-
mon extremal flow, but which differ for non-extremal flows and, hence have radically dif-

ferent topologies in parameter space.

In the convected frame the independent variables are A*, and if these are normalized
in the manner described in Section II A of Paper I, then ds(A) = dN is the infinitesimal

mole number and the explicit functional for E is
E = f UV, S) + Mp(X, )] d3(A) (63a)
N

where the trial functions are the three components of X(A?, t) and the functional depend-
ence of ¢(X, t) is given. (X will be used to designate the dependent vector function X(A, t)
whereas & will be used to designate the corresponding position vector used as an independ-
ent coordinate.) The time dependence of ¢ and X (and of S, if such is specified) is to be
regarded merely as a parametric dependence since in Sections IV and V time is not in-
cluded among the independent variables. Its inclusion makes no difference -in the calculated

expressions given below for the variations. The molar volume ,\7 and the molar entropy S
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are given by

~ -x axl s
vV E'JA = det E;\.A ; § = S(A , ) ; (G?b,_C)

- where S(A, t) is a specified function. The molar equilibrium internal energy U(—/\}, S)is
also known, either as an explicit function as illustrated in Equation (49) for a perfect gas,

or as an expansion of the type illustrated in Equation (55) for the case of an arbiirary

fluid.

In a Cartesian inertial frame, E has the form

E = f [u(n, S) + nM¢(x, 1)} d3(x) (642)
v
where now the trial functions are A4(®, 1), (A= 1, 2,.3) and
A [aAh -
n s Jx = def| — ]: S = S[A% (&, 1);t] . (64b, ¢)
ax?

S(A, t) is the same specified function as given in Equation {63c), but now it is a function of
«andt becau;e of the (2, t)-dependence of A% (&, t). ¢(x, t)is the same specified function
that appears in Equation (63a), and the equilibrium internal energy density #(n, S) =nU is
gither a known function of n and S of the type illustrated in Equation (50) for a perfect gas,

or else of the expansion type illustrated in Equation (56) for an arbitr_axjy #fluid.

For the reasons discussed in Section 111 A of Paper I, the calculation of §( + 2)E was
carried out in the inertia frame rather than in the convected frame. The necessary expression
for 81 * 2)n is given in Equations (15) and {16) above, or in Equation {(44) of Paper I. The
expression for 8(! * 20§ is given in Equation (4) above, or Equation (43) of Paper I. Using

_ these expressions, together with Equations (7) and (53), the expression for 81 * 2)E can,
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after much partial integration and algebraic manipulation, be cast into the following form:

w

51+ g =[5 * DE] + }: (st + V]IV (652)
N=1

where

[5(1 + Z)Ejs

- f[(ﬁ+Ma)-1/25x « V(H + M) - %8X + F,1 8¢ 7 2)n - a5
&

(65b)
(50 * gD = —[ F, - 80 * D d3(x); (65¢)

Vv

- 1 -

[6EIY = f MBI - 3%+ = (X "Vp)I? &) (65d)

v

1

[6®EIP) = f BI(6X + V1) (6X -v5)~?(5x -vp)?] & (x); (65¢)

A4

3

where §(1 * 2)q is given in Equation (15) and

_ 1l _ - -
F, = - —Vp - MVs; H = (3u/dn)g ; (651, g)
n
o _A{%u
p=EnH-u; B=n’|—] . (65h, D
anzs

The subscript p has been added to fp to emphasize that in this case the force involves Vp
ratiler than VP, which will be encountered in Sections V and VII. The overhead bar indi-
cates the (&, t)-dependence that corresponds to the particular set of trial functions
KA(x, t) ‘about which the variation takes place. These are not assumed to be the ex—
tremal trial functions, which will be designated A4 («, t). The extremal trial functions
are the ones for which [5(1)E] v = 0. This in turn requires that —Fp = ?l{ V’];\; + MV3’= 0,
which is the hydrostatic force equation. Thus the integral given in Equation (65¢) vanishes

in the extremal case. A comparison with Equation (61a) shows that in the general
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non-extremal case the integral ‘pf Equation (65¢) répresents the. work that is being done

against the non-vanishing force -F—p by the displacement flux 8(1 * 2)q.

The integral given in Equation (65¢) is the spatial integral of the Viisdli-Brunt ex-
pression for fhe buoyancy displacement work that was given in Equation (27). Tﬁe in-
te;grand of Equation (65e) is a slight gener:alization of the expression in Equati;)n (27) in
that Equation (63€) is not limited to displacements from.hydrostaﬁic equilibrdum, but
vather. represents the second-order change in energy resulting from a displacement from an
arbitrary non-equilibrium state of the atmosphere. (The first-order energy change is in-

cluded in the integral of Equation (65¢).)

‘ The integral given in Equation {(65d) represents the energy increase that results from
. any deviation from equality between intemnal and external pressures. This can be seen by -

w;vn'ting the integrand of Equation (65d) in the form
: ) 1 i B
BBV « 6X) + = (6X + ¥P)I2 = ¥l 18,V - (ap’\bs 12 (66a)

Fal ™~
where 6,V = VV » §X and (t’ipl\})S is the adiabatic change in molar volume that corre—
sponds to a change in internal pressure that is equal to the change 6X ¢ Vp in external

pressure, i.e.

oV

Fat —

(5pv)s = (‘_) 60X +Vp = -
S

85X + Vp (66b) .
op

wf t <>t

where use has been made of the definition of § given in Equation (21). Because (8%2)U) =
T T $h2 = 120a217/20 2 he . .

%0y, (6V)° =400 U/ov )g (8V)“ is the second-order change in molar internal energy
that is produced by an adiabatic volume change, it is evident that Equation (66a) repre-
sents the density of energy change that is to be associated with the adiabatic deviation of

6;\? from the pressure-equalizing volume change (6p0)s.

43



The surface integral in Equation (65b) represents the loss in energy by transport of
matter across the fixed bounding surface. The energy lost per mole of ma;cte; .thgt Ie:aves
Vis B+ ME The term 46X * V(ﬁ + ME) is the correction that resulis be-cause‘ at the
end of the displacement 58X the matter at the observation point « on the surface.%. was
originally at « — 8X, and the factor %5 gives the average between beginning and end of the
displacement. The term ~%8X * F represents the amount that the energy of the lost matter
had been increased because of work against the force ?P' If the standard boundary con—
ditions given in Equation (54} of Paper I are imposed, it follows that §1 * 2)n - d %= 0,
and the surface integral vanishes.

Imposing these bouﬁdary condit%ons, and replacing the integrand of Equation (65¢)
with the equivalent expression given in Equation (32), it is evident that at the extremum

the variation of E is a purely second-order expression:

- N - 1 ~ -

5(1 + 2)F = §)F = %f BV + 6X) + ,E,(ax - VpI2 &)
Vv

(67)

?"' 1 s P
-%,f (-,;;) [((VSVD):6X6X] nd3(x).
v

af

1 hon-holonomic derivation. (His ex-

This is the expression that resulted from Eliassen’s
pression replaces V'ﬁ' with -ﬁﬁ'MVq’{T, but this is valid only in the stitic case, whereas Equa-
tion (67) continues to be valid in the dynamic case considered in Section VI for which

D,V # 0.)
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V. | TOTAL INTERNAL FREE ENERGY OF A STATIC ATMOSPHERE
The heuristic arguments of Section III indicated that the Second-Law or .Castigliano

: form of the Principle of Virtual Work corresponds to variations of a total internal free en-
‘ergy A of the form given in Equation (60). In this Section, an integral functional of this
form will be taken as the starting point, and the general expression for the first and second
'_variations about an arbitraty set of trial functions (indicated by an overhead bar) will be
" calciilated. It will be shown that 51 * 2)A has just the form to be expected for the vari-
ation of a free energy, namely a differential work minus the accompanying differential in-

crease in heat or unavailable energy.

When expressed in the convected frame, the total free energy will be defined to be

A= f [/\)P(H, S) - Mop(z, t) - H(A, )] d3(A) (68a)
N .

where ¢{z, t) and S(A, t) are prescribed functions, U= Ji,‘and P(H, S) is a known state
function. Compared with Equation (63), an additional degree of freedom is present in the
undetermined functional dependence of H(A, t) whose variation is represented by

H(A, t) = H(A, ©) + SH. (68b)

In a Cartesian inertial frame A has the form
A= f [P(H, 8) - nMg(x,t) = nH(A, )] d*(x) . ' (692)
v
,Like S = SiAA (a, 1); t], H varies by virtue of the variations of its argument functions
i AA{®, t ) However, it has an additional variation because its functional -dependence on
these argument functions is not specified. As indicated in Equation (40), its total variation

about an arbitrarily chosen set of trial functions AA (&, ) is
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§1+ DY = H[AA(a;, t); t]. - H{AA (&, t); 1]
= -8X - VH + %(6X8X:VVH) (69b)
+ 6, H —‘ﬁ-X * V(o H).
The expressions for 8(! * 20§ and §(! * 2)1 are given in Equations (4), (15) and (16). The
first and second partials of P(H, S) are given in Equations (33) and (54). Using these, the
expression for the first and second variations of A in the inertial frame can, after consid-

erable reduction, be cast into the following form:

5
B+ DA = [0 DAL + o (8T DAIYD (702)
N=1

where

o - - N
(603 + 2a) = f[(H+M¢)-—'/25X-V(H+M¢)-’/zSX-FP-—-_: 5,H)] 8¢ * D df; (70b)
y n

(51 + a1 =[ F, » 60+ Dnd®@); - (70c)
v ,
[sA1P = f (N - )64 Ha3(x); (704)
v
1
[62A13) = -: (N5, H + BV - 8X) d*(x); (70e)
v
[8(D ALY =f BI(GX + V&n)(8X - VP) - B(V + 8X)°] &*(x); (70f)
v
A5 = -f (Vn) (5, H - 6X + VP/nl d3(x); (70g)
v

where §(1 * 2n is given in Equation (15) and

- i

F, =-—VP - MVp; (70h)
n
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— - (aP/aH)g N2

N=Q@EPBH); f=|——2 |=——. (701, j)
@PjaHd) | By

The sum [§(1 * 2)A],(Vl) + [8L * 2)A]ﬁ)’ is just equal to the spatial integral of

81 * 233 given in Equation {(47b) (for D,V =0). Thus these two integrals reprosent the

change in free deformation energy to be associated with F; 5= 0 and N -1 # 0. The sum

. {8(2)!\13‘) + {6(2)Al£\?5 ) s equal to the integral given in Equation {48b) (except that it is

not limited to displacements from equilibrium). Thus this sum is the change in free energy

to be associated with the buoyancy restoring force.

The integral [§(2)A] %3 } can be interpreted as the second-order change in the intecnal
energy density that results because of the discrepancy between (8;; N)g, the chiange in (in—
tensive} mole density produced by an isentropic change in enthalpy, and 8¢ N = NV * §X,
which is the amount by which the intensive mole density would change if its change were
consistent with ¥V ¢ §X. This interpretation follows from the fact that {GH N)5 =
(BNKBH)S 6HH = PyydyH= %ﬁ &y H where in the last step use has been made of Equa-
tion (70). If u(N, 8) is the internal energy density that cotresponds to the infensive mole
density N, then Equation (53) shows that Uyy = B/N? where the 8 is the same intensive

bulk modulus that is defined in Equation (70j). Using these relations, the integrand of

Equation (70¢) can be written in the following form:

I

E N2 . 2
%\ %+ RV X

_
— (N&, H + BV + §X)2
26( H B N2

1)

Vit I8y W)y = B4N)12 = 82 ur,
If the enthalpy change in a sample of the fluid is purely in accord with equilibrium adi-
abatic expansion or compression, then (84 N)g = (64 N) and the change in energy density

-given by Equation (71) vanishes. This energy is therefore the non-negative energy increase
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‘_ that results: from the non-adiabatic fluctuating transport of thermal energy through the
fluid, i.e. the-random “sloshing about™ of heat flux. In an inviscid tirbulent fluid this
heat flux could also be pictured as including the “quasi-heat flux” of randomized isotropic

turbulence energy.

The energy density represented in Equation (71) should be regarded as.supplementing
the buoyancy energy density H(S(Z)A)S which appears in ‘the integrand of Equation (70£).
[(8(2)A)s is the expression given in Equation (25), with bars replacing the tildes.] The
derivation of Equation (25) showed that this expression is the work of an adiabatic dis-
Qlaccme-nt 6X, whereas 62:1}’ xy% is the energy change resulting from heat flux that ac-
co-in.p'anies the displacement. Thus the integrals of Equations (70e) and ('TOQ taken to-
gether represent the total energS/ in.crease to be associated with the displacenient field 6X.°

Equations 642b) and (44_) show that the integral of Equation (70g) is just the negative. é)f -
| the increase in unavailable energy that accompanies the displacement §X. Thus the sum
of the three integrals given in Equations (70e-70g) is just the total (second-order) 'change‘

in free energy that is produced by'the' displaceﬁlent field 6X and the simultancous ci’iange

in molar enthalpy &, H.

In a similar way, the sum of t}le integrals given in Equations (70c¢) and‘(—‘dej fepre-
sents the change ‘in free eﬁergy that, unlike Fhe change discussed above, is of first orcier in
8X and 8, H (with a second~order contribution F,, * B(Z)n).‘ This is seen by no’gi’ng that
it follows from Equation (14)' that for a st'atic atmosphere (D,V=0),F, - 501+ 2 =
S50t Dy = (81 * 2a)g is just the isentropic deformation work that is performed
. by the &isplacen;ent flux 6§ * 2)y against the deform;ition force D . Equation (42a)

" shows that the integral given in Equation (70d) is just the negative -of tile_unéyailable en—

ergy increase that results from the ent?alpy change &;; H.
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Thus, if the standard boundary conditions are imposed, the surface integral given in

Equation (70b) vanishes, and the total variation of A can be written in the following form:

s(L+p = f (8 * D), - n6,; Q) BB (x)
v
(72a)

+ f [66% wy# + nEDA) - (39n) 8,Q] d3(x)
v
where

_ 1 A -
Bl* g, =-D 88 = -(—:VP + Mqu) + 5§+ 20y (72b)

n
N
§,Q = ( . :) 5,H; (720)
. R n
8%yt = Yoy (B N)g - (84 N)12
B[N _ 2 (72d)
=% ——\— o;H + NV : 8Xj ;
N2\ 3
1 _ _
(5Pa), = = [(6X * V1) (X + VP) - B(V - 8X)%] ;. (72¢)
n _
6,Q = 8,H - 6X + VB/m; B (72)
_ . f\ _ R
8 =-vi mdX); N=|—); f==—. (72g,h, 1)
o BH/ Pun \

Both integrals on the right side of {72a) have the form of changes in free energy. The

first integral vanishes in the extremal case which is characterized by

P =—vp+MVp=0; N=no. (73a, b)

=] =

‘(Usc has been made of the fact that N =; implies F=(5.) The second-order variation of
A around the extremal solution, §(2) A, is given by the second integral on the right side of

Equation (72a) with the bars replaced by tildes and P and N replaced by P and n.
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Adi-abatic displacements about the extremal solufion are characte_rized by the condition
A 5,Q = 8,H - 8X * Vp/n = 0. 4)
~ When &6, H=35X - V'ﬁ/?{ is substituted into Equation (70e) this becomes identical to Equa-—
tion (65d), i.e. -
(AP = [BMEIP for8,T = 0. (75)
The following condition on 8X must be fulfilled if the adiabatic change in internal pressure
that is produced by a volume change, (6V'§)S, is to be equal to the change in external pres-
sure 8X + Vp: (8,D)s =BV « 6X = 8X + Vp. If V+ 8X = (86X * Vp)/f is substituted into
Equation (70f), it becomes equal to Equation (65¢), i.e. '
(8RN = [s(f)'é’]g”for'fs‘v « 5X = 8X * Vp. (76)

If the fluctuations in A observe the conditions of Equations (74) and (76) simultaneously,

then
SR = §E (772)
if
5,H = 6X + Vp/n and §V + 56X = 6X * Vp. . (77b,0)

In other words, because A involves an extra degree (;f freedom represented by the inclusion
of H as an independent variable, a wider class of fluctuations is possible compared with the
fluctuations of E. However, the subclass of A-fluctuations that is adiabatic and pressure-
- equalizing is identical to the class of E-fluctuations, and for this subclass the variations in

A and E about their common extremum are identical.

This statement is valid only if the standard boundary conditions given in Equation
(54) of Paper 1 are satisfied. If, however, these conditions are not imposed and matter is

allowed to cross the boundary, then

31+ DAl = -[60* DE] if5,H = Oon.P. (78)
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This is the surface countei-pax_*t of the non-extremal volume relation

[BA], = -[6ME], ifT = Nin V. (79)
"The reason for thjs differe_nce in sign is evident from a comparison of Equations (59a) and
(60a).. .Except for the sub‘tle (but important} difference between u and #, A is defined to

be just the negative of E, and at the extremum this is exactly the case:

s

A=-FE. (80)
The physical explanation of this sign difference is that A is a potential function for the
work done on the environment of every sample of matter under consideration, whereas £

is a potential function for the work done on the matier itself.

51



VL EREDECIBLE FORM OF HAMILTON’S PRINCIPLE

With ihe explicit expression for 81 * 2)9¥¢ given in Section IV of Pap%r 1, e;nd the
“expressions for 8 * 2)E and &1 * 2)A that were derived in Sections TV and V of this
' i)aper, it is possible to demonstrate the validity of two different forms of Hamilton’s Prin~
ciple for compressible barocﬁﬁic flow of an inviscid fluid in the presence of a given gravi-
tational field. These two principles differ in the number of dependent variables involved,
i.e. in the size of the set of trial functions involved. In the form of Hamﬂt(;n’s Principle
presented in this section (whose first variation in the convected frame has long since been
discussed in the literaturel6’19), three dependent variables are involved. In ’;]"lw convected—
frame analysis these are the three components of the position vector X(A2, t) of the par-
ticle that is identified by the three Lagrange parameters AA. In an inertial ffz;me analysis
the dependent‘ variables ate the three families of Lagrange surfaces A (&, t). Either of
‘these two sets of three functions constitutes the absolute minimum number of variables
necessary to describe arbitrary three-dimensional flow, and for this reason the form of
" Hamilton’s Principle that involves no more than these variables will be called the “irre-

ducible form.”

The irreducible action integral £ and the total instantaneous Lagrangian L are defined
in terms of the total kinetic energy W and the total static energy E by the following

relations:

In the convected and inertial frames L is defined in terms of the molar Lagrangian L and

- “the Lagrangian density £ respectively by the following relations:

L= j Ld3(A) = [ 2d3(x) (81b)
N Y
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where

L=W-UWS) - M§(X,1); W=4%M@,X), + @X):  (8lc,d)
£ =W - u(n,S) - nMé(X, t); W=72aMV + V _ (8le, f)
where
3 ) .
V=- E (9,A%), (VAB X VA®)/n. (A,B,Coyclic) =~ (8lg)
~ . - o

In the convected frame /\:\"E Jﬁ, and in a Cartesian inertial frame n.= J;} .

The expression for §(1 + 2) P¢ that was given in Equation (48) of Paper 1 can be put
- mto a more compact form by makmg use of the Ldentlty

G+ 06y ex - & - ‘/:'an(ﬁXﬁX VA) =A -8+ 2),,'

-

(82)
. s 2)n(‘/28X A)]

which is valid for any vector A. When A is zdentlﬁed w1th the acceleration DtV =
d; V+ VUV for any set of trial functions, the sum of the 1ntegrals gwen -in Equat1ons
(48d and e) of Paper I can be replaced by the following expressmn:
(691, + (6P = -[ M(D,V) + 81 * 2 d¥(x) dt -
(v, At)
(83)

+ j (4MD, V) + 8X(31 * )n) - dFdt.
(._?At) - R - .' ~u

When the surface term of this equation is absorbed into the surface term given in E"qué—
. tion (48c) of Paper I, the following expression for 8! * 2) ¢ results:
s+ DGy =[50+ 2gp]. + [81* Dyl + (60 F gy, (84a)

where

[5(1* 2gg], = f MV « (8X + 5X ° vaxnzf d*(A) (84b)
Y ' .
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where d°(A) = nd3(x);

80+ D94 = -,f [W - 1%8X - YW+ D,(MV - 8X) - %M(D,V) - 5X] 601 * Dn - aFdt; (84c)
(&, )

[5(1+ Dyl = _f M(D,V) - 81 * Dnad(x) dt
(v, At)

(84d)
+f (BOW + 6)W] nd®(x) dt
(v, At)
where
8W = BMD,5X) - (B,6X); (84e)
89W = BMSXSX:[V(D,V) - (WVV) - VI. (841)

It can be shown that, if the terminal conditions 6X = 0 at t, and f, are imposed, the term
5,‘ MV ¢ 8X) that appears in the integrand of Equation (84c) makes no net contribution

to [8¢1 * 2)gy 1, and so can be dropped.

The expression for 81 * 2) £ follows from Equations (65) and (84):

t
F
L+ 2)p = 51+ ”@{f—f 5(1+ 2)g at
t
I

(85a)
3
[5(1+ 2)%;,]T R ICRY T Z [5(1 + 2}£]£IN)
N=1

il

where [6(1 * 2)@¢1. is given by Equation (84b) and

[0+ g} = - f (T - P/ - %dX « WE - p/n) + B,MV + 5X) - %6 &, - 6X] 8¢ * Vn-aFar;  (85D)
(% A1)

[5¢1 + 2)£]%1) = _j- @p . S+ 2)nd3(x)dt; (85¢)
(v, At)
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(5222142 = uy (D,5%) » (D,8X)- CUV- 58X + X - Vp/E¥ 1 nd¥(x)dt; | (834d)
v v, A1) t i .
v, At

[P = f EPW - 8K, Hnddkx)at (85e)
(v, At)

whers
— - = xr ™ %5 i y -
@, = -, - MD;V) = MB,V +=Vp + MVp. (851)
n

€ is the speed of sound introduced via the relation E=§M53; W is defined in Equa-
tion (840); and 82 A, is the Viisili-Brunt work given in Equation (25). The subscript
p on the force §p and on the d’Alembert {or deformation) force @‘p emphasizes that

p=E -(BU/BO)S rather than P(H, 8) is involved in the definition given in Equation (85f).

If the L. in the definition £= L d>(A) dt is replaced by
U= [W-We(A, D] - [U-Ug(ADl-Mp =L -W, +Up - (86)
where W (A, 1) and Ug (A, 1) are spe:iﬁed reference energies, then it can be shown that
1+ g =+ 2) p 1) @3(A) dt is identical to Equation (85) except’tﬁat"i': in‘the Sur=

face contribution given in Equation (85b) is replaced by L.

The terminal and boundary conditions to be imposed on the trial functions used in
the action integral £ are the same ones given in Equations (52) and (54) of Paper 1 for the

kinetic action 9¢ .

The expression for 5 * 2 p that is given in Equation (85) is valid for fluctuations
about an arbitrarily chosen set of trial functions. If the standard terminal and boundary

conditions are imposed on the trial functions, then only the integral given in Equation

{85c¢) contains a first-order sensitivity to the fluctuations, so the necessary condition for
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DT =04

P FowF N i i Fa¥]

@? = MD,Y + —Vp + MVp = 0 (87)
n

- which is the equation of motion given in Equation (9).

The fact that the Euler-Lagrange equation for £ agrees with the equation of motion
for inviscid compressible flow proves that £ is the action integral of a satisfactory vari-
ationai principle, but an examination of §(2?£ given in Equation (85) shows that this
jv_ariational principle is not simultaneously an energy principle. That is, the signs of the various
contributions to §* are such that @£ cannot be identified with any physically meaningful
work or energy change: This is a-consequence of the fact that the integrand (W »E-':) of Equa—
tion (81a) has no physical significance. The sum (W + E) is, of course, just the total in-
stantaneous energy of the fluid, and if the Euler-Lagrange equation arising from
8 1w+ E)nd‘t = () were identical to the equation of motion given in Equation (9),
F (W + E)-dt would be the action integral of a satisfactory variafional energy principle.
However, this is not the case. The Euler-Lagrange equation that corresponds to
- 8D f W+ E) dt = 0 has a force term with the wrong sign. Thus J (W - .E) dt has the
-&esired first vaviation but a physically meaningless second variation, whereas the reverse is

true of f (W + E) dt.

It will ‘be shown in the next section that both the first and second variations of the
action integral 7= | (W + A) dt have the desired behavior, so .97 is the basis of a vari-
ational energy prinéip}e. in fact, ,,Qé?(tp - t;) can be interpreted as the time-average of
_éhe fotal free energy of the system, and as such can be regarded as the appropriate thermo-
dynamic potential function {or, more exactly, functional) of the total fluid system, in the

sense that the total time-average free energy strives toward a minimum, and its departure
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from this minimum is a measure of the departure of the system from equilibrium flow,

ie. flow that obeys the equations of motion.

Before demonstrating this, however, a few observations will be made regarding how

* the indefiniteness of the sign of 5()£ impairs the utility of £ as the basis f(;r a direct (i.e.
triaI«-andwén'or) solution of a flow problem. The integrand of Equation (854d) is the dif-
ference of two positive-definite quantities. Starting with the extremial set of tna} functions
X or KA, whether a change in the functional form of the trial fupcﬁons will cause £ to
increase or decrease depends on which of the terms in Equation (85d) is more .affected - by
thechange. -Thus the extremum is a saddle-~point in parameter space, and the-properties
of this saddle surface are artifacts of gzhe way the trial functions are parameterized rather.
than of the physical properties of the extremal flow. JIn particular, even.if the extremal
flow is physic&ily stable, the extremum is still a saddle-point. This means that any attempt
to solve a problem by making iferative adjustments in the parameters of the -trial functions
always in'the direction of decreasing numerical value of £ is almost.cerfainly dooméd to
failure. These difficulties are compounded by the integral given in Equation (85¢). For
example, if a flow is physically stable both with respect to the second- derivative-of wind
shear and with respect to buoyancy, then the integrand of Bquation (85¢), like that of

Equation (85d), is the difference of two positive-definite quantities. :
*

L]

" These considerations do not imply that the irreducible form of Hamiltoﬁ’g, Principle
is entirely useless for finding numerical solutions. Any solution scheme that is based solely
on the vanishing of the first variation at the extremum will be insensitive to the unpre—
dictability of 'the sign of the second variation. Such a scheme is in fact in common use:

: It consists of using Hamilton’s Principle effectively to convert the equations of motion from

partial differential equations into a system of algebraic equations. This.is done by-expressing
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the trial functions as series expansions, the coefficients of which are the parameters of
the variational problem. The condition that the first variation vanish becomes the con-
dition that the first derivative of the action integral with respect to each paraméter van-

ish, and this leads to the desired system of algebraic equations.
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‘_ VIL. FREE-ENERGY FORM OF HAMILTON’S PRINCIPLE

A. First and Second Variations of the Total Free Action

It was indicated at tlie end of the pre'vious section that the action integral
ty
S Ef (W + A)dt (88a)
i

leads to a satisfactory. variational energy principle. This will now be verified -by a direct
calculation of §(} * 2).07 For the reasons discussed in Section III A of Paper I, this was
carried out in a. Cartesian inertial frame. When .7 is applied to a direct numerical solu-
tion of a flow problem, however, this can be carried out either in the convected frame or

in an inertial frame.

In the convected frame ¢ has the form
S = (W + /V\P(H, S) -~ qu(X,"c} - H(A, 1)} d3(A) dt (88b)
(N, At)
where the trial functions are X(A, t) and H(A, t); W' is the molar kinetic energy given by
W= 1M(8,X) 5 ¢ (8,X)p5 /\7 = Ji is the molar volume; P(H, S) is the known pressure func-
tion; z;\nd 8(A, t) and ¢(X, t) are given functions. S(A, t) has no variation, but ¢[X(A, t); t]

does have a variation because its argument function X(A, t) varies.
In a Cartesian inertial frame, 37 has the form

= F [nW + P(H, $) - nMa(2, t) - nH(A, £)] d*(x) dt {(88¢)
(v, &t}

where now the trial functions are A® (&, t), (A = 1, 2, 3), and H(A, t) = H[A? (=, t); t].
The mole density is n = J)/:, and 'W is now given by Equations (81f, g). Since ¢(=, t) is a

given function, it has no variation. Although S(A, t) is a given function, it does have a
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‘variation because of its argument functions A% (x, t.)’ which is given in Equation 4). ;The
molar entropy H varies both because of the variation of A (&, t), and also .because of the
- variation- of the functional depencience of H(A, t). The -tc:-ts;l variation of H ;s gis?e;n in
Equation (691;)'. The ﬁressure funcﬁm P(H, S) is known, either‘as an empiricai thermo-
dynamic state function as illustrated in Equation (Si} for the case of a perfect gas, or as

an expansion of the type illustrated in Equation (57).

The expression for
. tF ’ tF -
gl D 7= gli+ ﬂf W+ Aydt = s+ 2)9¢ +[ §+ DA dt (89a)
- R fI . ti . ¢
follows from Equations (70) and (84), and can be put into the following form :

4
80+ Nz = [0+ VYL, + [60* Nzl + Y [0 N1PV (89b)
N=1

where [81 * 2)9¢1.. is given by Equation (84b) and

[602* 2z = —f IZ(W"‘H-MW"%EX-V(W*H—Ma)'*"ﬂt(MV'5X)
(& A1)
, _ - (89¢)
_ N .
~% Gy * EX+ — aHI{] §(1+ D 4. Fdt ;
n

[ + 271 (P = -[ [Py » 63 Dn + (7 - Nys, HI d*x) dt ; (89d)
(v, At) - o

P2y st ) = PP = Vo e 20 43
(6P 1P = aMD,8X) * (D8X) + — (N5, H + BV+ 6X)?| a®(r)dt;
(v, At) 26 (89)

(821 = f [89W + (8 A) ] nd3(x)dt; (89f)
(v, At) ‘
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. ’ tp -tF

iy ti

. where

Dy

MD,V - F, = MD,V +

il

1 _ -
—V?P + MV3; (89h)
n

"N and B are defined in Equations (70i and j); 8$2)W is defined in Equation (84f); (820 A)g
_is the generalization of the Viisila~-Brunt work that is given in Equations (25 and (72e);

[5(2)A]§,5 ) ig given in Equation (70g); and 6§{2)Q is the second-order increase in heat or

“unaveilable energy that results from substitution of Equation (42b) into Equation (44).

When the standard ‘terminal and boundary conditions given in Equations (52) and (54)
of Paper I are imposed, [6¢1'* PP = [60 * D1 = 0. Since [5¢ * 2271 given
in Equation (89d) is'the only surviving contribution to the variation that has a first-order

sensitivity, the necessary conditions for 8(1),07 = 0 are

i~ A 1

@, = MD,V +—Vp + MV§ =, (902)
n
n=NorlJ ={-—1F. (90b)
¥ \BH/q

The second condition. implies that P= S, and this fact has been used in writing Equation
(90a). These are the equations of motion that were stated in Equations (9) and (34). ‘This
-agreement.of the Euler-Lagrange equations of .7 with the known equations of motion of
the flaid demonstrat.es that .27 is the action integral of a valid variational principle. The
fact that .Q7 is also the basis of a valid energy principle follows from the derrionstration
given in Section ‘V that A 1s the total free energy of a static atmosphere. Thus W + A is
obviously the total free eﬁergy of a moving atmosphere, and ¥ is essentially just the time-

average of this fotal free enerf,;y.
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It was pointed out in Section VI A of Paper I that, for any functional .27 that can

be interpreted as the total time-average free-energy of the system, the condition

50,07 > 0 ©1)
is sufficient (but not necessary) for stability if the comparison class is limited to trial func-
tions that sai:isfy a single set of imposed terminal and boundary conditions. Referring to
the expressions given in Equation (89), it is evident in view of ‘the Second-Law condition
stated in Equation (44) that the only second-order term that has any chance of becoming
negative is [8(2?,(%}%3). When use is mdde of Equations (25) and (84f), the resultant suf-
ficient criterion for stability is

1AMEXBX: v,V - (VVV) ¥
- (92)

+ %O[EX « Y n) (X - Vp) - B(V - 5x>21 > 0.

It must be emphasized that this. criterion is valid only for a restricted ensemble of
trial functions that satisfies a single specification of the standard terminal and boundary
conditions, A special case of an extended ensemble will be discussed in subsection D below.
Moreover, it must be recalled that this criterion refers to the onset of internal instability
rather than laminar instability. (See Sections IV D and VI A of Paper | for a discussion of the
distinction between these two types of instability.) In the commonly gpplied Boussinesq
approximation, V + §X = 0 and the lasit term in Equation (92) drops out. If, in addifién,
the fluid has ho density stratification, then Y1 = 0 and only the terms involving.V remain.

This is the form of the criterion that was applied in Section VI B of Paper 1.

-Finally, it should be noted that if W and H are referred to the reference energies
Wi (A, t) and Hg (A, t) (both specified functions of A* and t) by replacing W and H in
Equation (88) with W' = W - Wg and H'=H- Hg, then the only change tha£ occurs 1n

Equation (89) is that in the surface term [8(! * 2)o/] given in Equation (89c) W and

64


http:involving.YV

H are replaced by W' and H'. If the standard boundary conditions are imposed, this sur~
face intepral vanishes in any case. This means that the inclusion of the specified reference
levels Wy, (A, t) and Hg (A, ) causes no change in either the Euler-Lagrange equations
given in Equation (90), or in the stability criferion given in Equation (92). It was pointed
out in Section VII of Paper 1 that the use of reference energies often provides a convenient

way of avoiding a divergent action integral.

B. Open Systems and Free Boundaries

The surface integral [8(' * 2,07 given in Equation (89¢) represents the decrease
in ¢ that results from transport of matter across the bounding surface .. Thus, if the
standard boundary conditions are not imposed and &n * d &+ 0 on &, Equation (89c)
gives the change in .37 that results from mass loss in an open system that is characterized
by a fixed total volume V but a fluctuating total mole number N. If reference energies
Wy (A, tyand Eg (A, t) for the kinetic energy W and the total static energy E =T+ Mo

are inciuded, the surface term has the following form to first~order accuracy:

-

[5(1;%?13 = - f [W - Wey - (H + Mg - E)] 5Vn - daFdt. (93)
(7 a0

This shows that if there is equipa;rtititm between the relative kinetic energy and relative
static energy on the bounding surface, then the first—order surface contribution {o the vari-
ation vanishes, ie.

[N = 0 if W - Wey=(FH+Ms-E)ons . (94)
This kind of equipartition is charactesistic of wave motion. In the case of such a problem,
rather than impose the standard boundary condition X » ¢ = 0, it would often be more
convenient or more realistic to leave X (or A*) unconstrained on % and impose instead

the equipartition requirement given: in Equation (94). Because this makes [8¢)07 "1, = 0,
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. the fulfillment of the Euler-Lagrange equations would still be a necessary condition for

. s = 0. The imposition of the equipartition constraint on % is not sufficient to
make the second-order surface contribution fo the variation vanish: This non—v‘anishing
second-order contribution can be given a meaningful physical interpretation, but it will in

any case usually be overwhelmed by the second-order volume contribution to the variation.

A fre&-bouiadary problem is characterized by a fluctuating total volume V but a fixed
total mole number N. In this case it is necessary to add a correction to Equation (93) in
order to take 6V into account. If. ¥’ is written in the form

L= nt d¥(x) dt where £'= (W - W) - (W + Mg - E;),- (952)
(v, At)
it is evident that the correction that must be added to Equation (93) is
871y = f dt [fn—t av] = f dt [fﬁ 5X - d.s'P] . (95b)
: At P : At A% - .
A&ding this correction to. Equation (93) gives the first-order surface contribution to S’

at a free surface:

(Mg = f P8X + dSFdt = f dt [f?av:l. (96)
(& at) At 7

This shows that [6"),7 ] is just the time integral of the work that the system performs

on its surroundings by virtue of changing its volume. This is the obvious generalization of:
A ) -

the expression &y, A = P8V that was introduced at the beginning of Section III in connec-

tion with the virtual \;vork performed by a one-mole sample of fluid.

T

Equation (96) does not take into account the work performed by the constant-

pressure volume reservoir with which the system is in contact at the surface . If the
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ﬁres_su;e of this reservoir is p;}, the expression for the total work performed by the system

and the reservoir is

[ "] o = f ® - p,)dX - dFat. ©7
- (& Aty

"But this-is just the first~order surface contribution fo the variation of an action integral

" of the form

A = f [ni -py (2, )] d*(x) dt (98a)
(v, at)

=" j' {nIW - W, (A, )] + [P(H, 8) - p, (#, )] - [H+M¢ - B (A, )]} @*(x) dt
(v,At) (98b)

.where Polz, t)isa speciﬁed function of the inertial coordinates (and time). Obviously,

in the inertial frame 8p, = 0 and its contribution to the total variation enters only in con-
paction with the change in volume of the system at the free boundary. Thus p, (@, t} is
just a form of reference pressure, but unlike the other reference energies W, (A, t) and

Eg (A, t) which must be specified as functions of the Lagrange parameters A&, p, must be

a specified function of the inertial coordinates.

When p, is subtracted from the molar Lagrangian E =W -(F+Mp~Ep), it be-
comes £’ =W - [(F + pol\}) +M¢ - E; ]. That is, putting the system in contact with a
volume reservoir with pressure p, requires the replacement of U by U + pﬁ. This is just
the generalization of the familiar transition from intemnal energy to enthalpy as the appro-
priate thermodynamic potential when contact with a constant-pressure reservoir is admitfed.
The important generalization is that the reservoir pressure p, may be an arbitrary (but
specified) space~-time function. For example, in the case of the evolution of a convection

. ¢ell embedded in a surrounding ‘atmosphere whose pressure field po(s, t) is a known
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space-time function, the surrounding atmosphere serves as a volume meservoir, for the con—

“yection cell.

All of these considerations hold for the fireducible form of Hamilfons Principle that
was discussed in Section VI, the only difference being that U=H - QP is replaced by
U(Q, S). As a practical matter, however, this difference is very important. The reason is
that, because in the free—energy form of Hamilton’s Principle P(H, S) is an easily' manipu-
lated function, the condition P = p, on & is much easier to impose than the condition
pE -(EUJQJV\}S =p, on&. In the case of problems in static elasticity, Castigliano’s Prin-

ciple has the analogous advantage over Dirichlet’s Principle.

A free-boundary problem is easiest to treat in the convected frame in which "’ had

the form .

AT = f {BMG X0, » 3,8 - Wl + [PE, 8) - p, (X, D] - [H+ M§(X, 1) ~Egl} *(A) dt.
(N, Aty ' (98¢)

The free boundary can be made to coincide with one of the A4 -surfaces‘. If‘.A& repre—
' sents the numerical value of this coordinate, then the free boundary cont{it:ioxi is ) .
P[H(AG); SR = p, [X(Ag)] o
where for s_impliqity the time-dependence has not been indicated. Usually, it shoﬁld be a
simple matter to parameterize the trial functions H(A) and X(A) so that this condition will
be satisfied. If this is not so easy, an alternative procedure can be applied! " "' can be
minimized without imposing the constraint of Equation (99). In this case, the extremum
_-frial functions represent the best possible (within the limitations of the parameterization
employed) shnultanéous solution of both Equation (99) and the eguations of motion given
in Equation (90). This procedure corresponds to the fact that, even when the free-

boundary condition P = p, on ¥ is not satisfied, d.+f"" is nevertheless equal t6 the change
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in {time-average) free _‘enéggy,ef the: total sysiem censis'ﬁng of the system under study and

the volume reservoir with which it interacts.

. C.., Incompressible Limit

It was remarked following Equation (57) that one way to eliminate: the explicit in=
volvemnent of § in the formalism is to let the reference quantifies in Equations (55-57)
{designated by subsczipf o) be specified functions of (A®, t). If this is done in such a way
that S - 8, = 0, the entropy dependence has effectively been absorbed into the remaining

reference quantities and Equation {87), for example, becomes
n2 .
P=p, + n,(H-H)+ %(—») (H - H)?. (100)
£/q
Incompressibility corresponds to the limit §, = neMCi -» oo, Passing to this limit, Equa-
tion (100) becomes
‘ P o= nOH - U, whe_re i, = noHo - Py - {101)
n,s Hy, and p, may all be f‘uﬁcﬁons of A%, but if i-t is further required that Vu = 0, then
i, is a numerical constant or at most a function only of t. This requirement provides a
way of decoupling intemal thermal energy from kinetic or gravitational energy. n, =
n,{A) is a constant of motion as in the Boussinesq approximation. Because of this, the
total volume V = § Qd"‘(A) occupied by the fiuid must be constant, and.since u, is at most
a function only of t, 8. f u Vd3(A) = 0. Substituting Equation (101) into Equation (88b)

ant dropping {—uﬁ":f\) from the integrand, the action integral becomes -

o= M), * 3,X), - Mo(X, )+ (Vm, - D HA, 0] ¢ () dt
(N, At) (102)

whose Euler-Lagrange equations are

@} %) =BV = v W = (A (1032, b)
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which ase the equations for incompressible flow in a gravitational field. For non-extremal
flowsn =} jg # n,(A), so the class of virtual flows admits compressibility. Thus jthe ac-
tion integral of Equation (102).is best pictured as-describing a compressible fluid that is
flowing_ at such low Mach numbers that its macroscop{c behavior is that of an incompres—
sible fluid, but on a microscopic fevel turbulent density fluctuations are possible. "i‘hé
equation B = n, is the condition that must be satisfied if ¢ is to be insensitive to fluctu-
ations in H. From this perspective, H(A, t) is a Lagrange multiplier that arises from the °
imposed constraint J\}no = 1. The variational principle based ori Equation (102) with

20

H{A, 1) interpreted as a Lagrange multiplier is very well known2C and was formulated by

Iagrange.ﬁ It is, in fact, the very first variational principle for a continuum.

A more extreme incompressible limit results from transforming Equation (102).to an
inertial frame and parameterizing the A% (=, t) in such a way that én = 85;} = 0 identically.
This corresponds to a really incompressible fluid, not mercly a compressible fluid with van-
ishing Mach number. It can be shown, that in this case only the kinetic-energy term has.

a nonwvanishing variation,!sa this variational principle is just the one considered in ,Secti‘_on

V of Paper L

D Buoyan:;y Stability of a Shearing Wind

o It was noted following the stability criferion that was stated in Equatios‘} {925 that this
criterion js valid only for the restricted ensemble of trial functions that saﬁsi’y a Single
specification of the standard boundary and ferminal conditions. When these ‘cox.iditions

are relaxed ‘aﬁ extended ensemble results for which the terminal and surface coniributions
in Equation (89) may no longer vanish. Such a case was discussed in Section VI C of
Paper I. The extended ensemble consisted of all dynamically acceptable hoﬁzonta'i winds

for which the total mass flux or momentum equalled a specified value. It was shown that
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“if two blobs of fluid separated by .a vertical dist_ance 6z exchange positions and in so doing
'exc-;h'apge momentum with -their new surroundings, a reduction in the total i{ineﬁc action
will result. The calculation was carried out for a linear wind profile, i.e. a constant:shear
~(‘d’\\f"/dz), and was normalized so that each blob contained one-half mole of fluid. The re-
‘sulting change in t-he time-average kinetic action which was given in Equatién‘ (79) of
Paper 1 is

§OPp at = -(1/8) M{dV/dz)? (52)% . | (104)
This change in time~average action must be added to the time-average change of [§(2%f ](3)
given in Equation (89f) (which gave rise to the criterion given in Equation (92)). Fora
constant wind shear d? V/_dz2 =0 and ﬁﬁ = (), so for a Boussinesq exchange of two Y-
n;Lole blobs separated by a vertical distance 8z in an atmosphere in hydrostatic equilibrium
so that V'E = —Mg?fez, -

denn

(6@ 18/t = 24Mg y
Z

(82)% . (105)

The total change in.the time-average action (or free energy) is the sum of Equations (104)

and (105), and the sufficient condition for stability is that this sum be positive:

“d ~
1M [(-—g . )- (1/4) (dV,'/dz){\ (6z)2 > 0 (106a)
z -
Or
d ¢ 7jd -
i= (—_5-—,;——112 1/4 (106b)
(dV/dz)?

where &i is the Richardson number defined on the Boussinesq static stability measure
(g d 8 n/dz). If, instead of the Boussinesq condition V = 6X = 0, the quasi-static con-
dition V+» §X = -6X Vrﬁ’/ﬁ had been used in Equation (89f), the numerator in the
Richardson number would have been the Viisild-Brunt stability measure g[-(d anﬁ'/d z) -

I4) 82 }. The sufficient condition stated in Equation (106b) is just the well-known condition
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of Miles* and Howard? that was derived by entirely different means within the context of

a normal-mode analysis.

E. The Thermedynamic Inequality
‘ By subtracting Equation (85) from Equation (89) it is found that in the neighborhood
of an extremum ‘
51+ - 1+ 2L > ¢ (107)
'if the flow is stable so that 5(5)KVB >0 and 8A >0, and if 5,H=0on &, and the
ﬁuc‘;uations satisfy the Second-Law requirément 78290 at < 0. This is true even if \the
standard ter;ninal and i)oundary conditions are not imposed. Because .,JJ = :E, it foﬂo‘\i's
that in the neighborhood of an extre;num
W+ A), > W - B, 08
where { >t designates the time average. This inequality can be useful in numerical
applications of the free-energy form of Hamilton's Principle to estimate the error that still
remains in an approximate solution that was obtained by minimizing (W + A) for a certmn
choice of paramatenzatlon This best answer can be inserted into the m'educ;lble form of
Hamilion’s Pnnmple in order to calculate the right side of Equation (108). The dlfference
between the two sides of this inéquality is then a measure of the error of the approximate
solution. Obviously this error measure‘ is not sensitive to errors in the kinetic energy.
Subtracting (W), from both sides of Equation (108) yields
A, =B, (109)
- which-is subject to the same conditions that were stated following Equation (107} The
two sides of Equation {(109) are related by a Friedrichs fransformation {elimination €:>f
the extensive variable n in favor of the intensive variable H by means of a Legendre trans-

formation), and the inequality of Equation (109) is the basis of the minimax formulation

. that js the characteristic result of a Friedrichs transformation. The thermodynamic meaning
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. *gf th_is fnéq‘uality ifollgiivs_ﬁ:om the observation that because A =-f(UF+ M¢g) dN and
E=f(U-+ qu) dN, the common gravitational energy can be subtracted from both sides
- of Equation (109) yielding
(U-}t <0y = (b 110)
‘which is the generalization to an extended time-dependent fluid system of the simple

thermodynamic inequality U (H, /\>, S) < U(/\'/\, S) that was given in Equation (39).

The inequality of Equation (110) excludes both kinetic and gravitational energy. It
will now be shown that when total time-average internal energy is defined in the only way
that is permissible in the context of Special Relativity; the relativistic version of Equation
(110) is identical to ’

W+ Ay = W+ A, (111
which follows from Equation- (89) if the flow is physically stable and the Second-Law
" constraint given in Equation (44) is satisfied. That is, in a relativistic context, the state-
ment that the total time-average internal free energy of a fluid system tends fo a minimum
is equivalent to the st;ttement that the properly defined total time-average internal thermal
energy (l:!'RE‘L)t tends to a maximum. This may be regarded as the relativistic statement

of the Second Law in the energy representation.

The demonstration results from writing
1 -
W+ A), = — [AMV? - 1 - M¢] dN dt (112)

A, At

in relativistic form or by following the converse procedure and showing that

’1 .

N JUfUgg, dr] dN is equivalent to Equation (112), where d7 = dt(l - V2 /cz)/ is the

proper time interval and

Vppy = Mo + M6 ~ ¢,) + U (113)
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is the relativistic molar internal energy. (The same definition also applies to UpeL anfi u)
- M{}a2 is the molar rest-mass at the point where the gravitational potential faguals. the ref-
erence value ¢, and M (¢ - ¢,)/c? is the mass increase attributable to the increase in grav-
itational potential. (This is the scalar or Nordstrdm theory of gravitation which is conm
sistent with Special Reléﬁvity, but is not adequate to explain some of the subtler gravita-
tional effects for which General Relativity is necessary.) Because the internal thermal en—
ergy is the average inferpal kinetic energy of molecular motion, the rest~-mass and the grav—-
itational contﬁl;ution to the mass are inseparable from the internal thermal energy in a
reiativistic context. Moreover, becéﬁse the average infernal kinetic energy must be defined
in the local rest-:fxame of the gas, the, only acceptable relativistic generalization of Udt is
Uppy 07 = [Myc? + M, (6 - 95) + U] (1~ V2/c2): gt
= [M,c? + My (@ - 0,) + U= M. V2 = 15M, V2 (9 )/
M, VA (UM, c2) + O (V/e)] db (e
~ [Moc? + My (8 - 6,) + G- M V2] dt.
Except for the termHMD ¢2(1 - q /cz)-dt' whose inclusion in the integral of 'Equa;tion (112)
makes no difference as far as variations are concerned, the right side of Bquation (114) is
equal to the negative of the integrand in Equation (112). Because Equation (114) also ap-

plies for the equilibrium configuration, it is evident that Equation (111) is equivalent to
~ : 1 tr
WUpph < (Ugge X where (Upp ) = Ef dN f Upypp d7].
N 4 (115a,b)
Moreover,
(W + A} = NM (1 - ¢,/c?) = {Upgy)t» (115¢)

+ which is the generalization of the relation A = -7 that was used in Section IfL
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In the case of a cold gas moving in the absence of a gravitational field, Uy g Teduces
to Mocz, and Equation (115a) reduces to the relativistic way of saying that all the particles

prefer to move in straight lines.

Equation {115a) is the relativistic thermodynamic inequality. It says that the total
disordered heat energy, i.e. the kinetic energy of random internal motion as viewed in the
local macroscopic rest~frame and summed over all the matter, sirives toward 2 maximum.

This obviously is one way to state the Second Law.

If the fiuid system under consideration is “viewed from afar,” the fluctuating trial
functions A2 (&, t) and H(A, t) conld be identified with what thermodynamicists refer to
as “internal degrees of freedom™ (usually pictured as imaginary internal partitions). When
.these have assumed their preferred (i.e. equilibrium) values, the equilibrium thermodynamic
energy can be described exclusively in terms of such things as total volume 2nd total en-
tropy that are insensitive to fluctuations in the internal degrees of freedom. The corre-
sponding quantities in the case of theivariational principle are the total mole number N
{or total volume V in the case of an open system), the specified molar entropy S(A, 1),
'and the average particle velocity (V), E (Xp — X )/At that is specified by the terminal con-
ditions, <ﬁ + 3% is a function of these specified quantities, which are non—denumerably
infinite in number. If it were known as an analytical function for all possible values of
these specified quantities, the resulting function would be the equilibrivm thermodynamic
potential function for the system. Even withoui having an explicit expression for this
potential function, the expressions for the variation of the action integral that have been
derived above can be used to determine how the equilibrium thermodynamic potential
function of the system changes under differential changes in the specified quantities {(such

as {V),) on which it depends. Such differential expressions can be used in fum in
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connection with thermodynamic theorems such as the LeChatelier-BraunZ2

principle to
determine how changes in cerfain specified quantities will affect various secondary quan-

tities-that can be derived from the equilibrium potential function.

The relation between the non—equi]ibr%um action integral (whﬁch has been called the
“total time-average internal free energy”’) and the equilibrium action integral (whj;h has
been called the “equilibrum thermodynamic potential of the total system™) can be very
simply illustrated in the case of a homogensous fluid by the inequalify

vE, M < v@ O = T (116)
_ which, e}‘ccegt for the fact that the S-dependence has been suppressed for the sake of-
simplicity, is the thermodynamic inequality that was given in Equation (39). H is to be
regarded as representative of the fluctuating “internal degrees of freedom” and ¥ as rep-
resentative of the specified constants of motion or average quantities that characterize the
equilibrium state. The fact that U(H, {l\} has its maximum at equilibrium implies that

sy - 3 ~ P .
O=]— o= j— (H-VP) = 1 -~ VN(H) ain.
a H=5 oH . =% e

where N = (3P/dH);. This relation can be solved to give H as a function of {!\ which can
then be substituted into U“(ﬁ, V) to give ﬁ({\}). “This can be done for différent values of
0, with the result that Fﬁ(’\)) can be pictured as the ridge-line that connects.all of the
maxima for different values of {\} This is illustrated in Figure 3A. The projection of, the
U, /\?} surface onto the - /\? plane is pictured in Figure 3B (the section curves, shown -
in Figure 3A becoming straight vertical lines in Figure 3B). The fact that all of the virthal
fluctuations fall below ﬁ(@) in Figure 3B is reminiscent of Caratheodory’s,characteriz&tionn
- of the equilibrium state function as the boundary between .alfowed and forbidden regions

of thermodynamic phase space (although he was referring to real spontaneous processes

rather tha;n i‘o virtual fluctuations).
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Figure 3. (A) Non-Equilibrium Internal Energy Surface W(H,V) and its Ridge~Line, the Equilibrium Internal Energy .
~r ~ I
,U(Q). (B) Projection of Figure A onto (¥ - v)—Plane Showing U(V) as Boundary of Region of Virtual Fluctuations.



It might seem remarkable that, knowing only. the empirical equﬂ;‘b;ium state function

P(i, S), it has been possible t(; construct the higher-dimensionality non-equilibrium surface
) H(H,_.f\},, S). Inact, hoﬁgve;',, the construction & = H - /\}PLH,, S) is not unique. The
function
U =H - VP(H, S) - ¥K2[UNH, ) - 112, (118a)

where K is any cons'..tant; would do just as well. In fact, if used in the variational principle,
it would increase the convexity with respect to the §X or SAA fluctuations, and thereby
improve the convergence. The physical significance of the extra term becomes apparent

from the fact that P the pressure of the surrounding fluid in the immediate neighbor-

EXT?

hood of an expanding sample of fluid is given by

g e S
Poyr = - 3 = P(H,S) + K2N(VN - 1) - (118b}

Since PE ::»(T >P(H, S) if 0 > TN, thz‘, excess over P(H, S) can be interpreted as the in-
crease in external pressure that results from the “‘snowplow effect’” produced in the fluid
that is immediately outside a samfjle cell that has expandéd beyond its equilibrium size.
The magnitude -of K2 is sbme function, of the ratio of the typical speed of tI;is non-
equilibrium expansion and the speed of sound :in the fluid. Such an “internal Mach num-
ber” would characterize the violence of the fluctuations.. The case K? = 0 that has been
discussed in ﬂus p;zper corresponds to the limiting case of very slow (i.e. quasi~static) vol-
ume ﬂuctuatici;ls. -'-I'his is just the case for which the equih'briﬁm expression P(H, S) gives

a valid description. of the external pressure Py, ;.

The free energy that corresponds to-the simple example of Figl:lré 3Ais A=-UF so
. “ ) -
the corresponding figure for A would be given by reflecting the surface in the H - V plane.
- The equilibrium ridge line now becomes an equilibrium trough: line, and-the height of any

! A
point on the surface above the point of the trough line for the same V represents the
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internal non-equilibrium free.energy. The generalization of this to a fluid in motion is
‘the difference between the two sides of Equation (111) which gives the time-average total

free energy of the fluctuations or turbulence within the fluid.

The difference &7 — .,e? refers to the free energy of turbulence about equilibrium,
which is of second-order in, the fluctuations X and 6, H. The difference L - o7, where
£ refers to an arbitraﬁ set of trial fﬁnctions, has a first~order dependence on §X and
8,;H which by Equation (89d) is given by

517 = [-6X + @1;) - 5, Q] nd®(x) dt (119
(v, At)

where §,Q is given in Equation (42a). (It has been assumed that the standarél terminal
"and boundary conditions have.been imposed.) As explained in connection with Equation
(43), the first-order integral of the heat term either vanishes or else can be interpreted as
the heat transferred to a reservoir. The integral of (-6X @P) represents the total work
done by the system under study on another system (real or imaginary) that is coupled to
it in such a way that it introduces the molar force @P into the equation of motion. (Cf.

Eq. (10a).) Thus Equation (119) represents the change in free energy of this new inter-

acting system that is coupled to the fluid system under study through the imposed force

@P' To the extent that .O:EP can be given real physical ;neam'ng, 7 can be interpreted

as an equilibrium free energy for a flow whose equation of motion includes %@,. If-

§(2).07 > 0, this equilibrium is stable.

When we start with some arbitrary set of trial functions and vary these by successive
.iterations always so as to decrease .Q7, we can give this process the interpretation -that the
system represented by 97 is doing work on another system coupled to it by the force &p.

The work delivered, and hence the change in 7, is path-dependent, that is, it is different
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for the different paths in parameter space that correspond to different iteration procedures.
This fact is very important for the application of the free-energy form of Hamilton’s Prin-

ciple to numerical solutions.

F. Direct Solution of a Flow Problem by Minimizing the Total Free Action

The basic idea is that if a suitable energy sink is available, the free energy of a system
will tend to drop to a minimum. In the case of a box of gas, one could start with an
arbitrary initial state and-relax imaginary internal membranes that are coupled ’Lo a suitable
energy sink so as to bring the appropriate total thermodynamic potential of the gas to a
minimum, which yields the desired equilibrium state. The analogous process in the case of
a compressible inviscid fluid is to start with some initial stgte (i.e. choice of trial functions)
and move the rnembranes (Lagrange surfaces) described by them and smultaneously re-
d1stnbute the enthalpy so as to bring the appropriate thermodynam:c potent1al wh1ch is
Z, from its m1t1a1 value to its minimum value, which then describes the desued equ111b-
rium state, In the course of relaxing the internal membranes, energy is delivered from the
system to an imaginasy smk that is coupled to it through the force @P, which vamshes at

equlhbnum.

It must be emphasized at the outset that whether or not one indeed arrives-at a mini-
-mum value of 7 by this process, or, if so, whether the minimum is the desired one' (ie.
whether the equilibrium flow has the desired topological properties), depends critically on
the starting point in parameter space (i.e. the initial choice of tfial functions) and on the
details of the iteration process which determine the particular downward (i.e;. in the direc-
tion of decreasing .«7 ) path in parameter space. For example, if the topology of the ol -
gurface in parameter space is such tha‘t there is a ridge between the valley containing the

‘desired minimum and the starting point, then a downward path from the starting point will

80



. ot lead to the desired minimum. Eijther it will lead to a different mmmlum or, will plunge
into the'v&d (#’t’ — —o0), tﬁx-ren if no ridge separates the goal froim the gtarting point, the
ségmé thing can happen. For example, if the desired minimum is at the bottom of a crater
that is surrounded by a xidg:s having a low lip cr. mountain pass at one point, then starting
ait z; péint on top of the ridge it is possible that one downward path (iteration procedure)
1;vi11 lead to the bottom of the crater as desired, whereas a different iteration procedure

will produce a downward path that will pass through the lip and on into the void beyond.

1t is obvious from these examples that Lmies_s one is able to start from a poifzt weil

X within the bowl containing the desired minimum, one must be prepared to make false

_ starts. To avoid pursuing a hopeless ~cmarse for too long, it is necessary to monitor some
quantity that will indicate when the iteration procedure is heading in a nonsensical direc—
tion. For e}‘{amp-le, one could monitor a thermodynamic quantity that must be positive to
have physical meaning. ¥f this goes negative, the iferation can be stopped and a new starl-
ing point chosen. In low Mach-number flows, the density varies very little from ifs static

value. A large and increasing difference from the static value would indicate a false start.

An alternative procedure is to start with a problem that differs by very little from one
whose solution is known. In such a problem the starting point can be chosen very close
to the desired solution. For example, if the problem is to find the flow past an object in
a wind with stfcmg shear when the flow for no shear is known, the shear can at first be
made very smali. When this problem is solved, it can be used as the starfing point {o solve

the same problem with slightly stronger shear, and so on.

If it can be assumed that (by .one means or another) the starting point has been placed
within the bowl containing the desired equilibrium point af its bottom, then a straight-

forward steepest-descent iteration can be employed until the gradient of .o/ (in parameter
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space). becomes small. At this point the second-variation given in Equation (89) becomes
comparable in magnitude with the first variation, and it is necessary to impose the Second- 1

Law condition

f 5q dt ='f (6'n) O H - 6,P/n)dvdt <0 (120a)
At . (v, At)
or
f V ¢ (n8X) (8, H - X » VP/n)d*(x)dt = 0 . (120b)
(v, Ab)

which is obtained from Equations (44), (70g) and (15d). The reason that this condition
must be imposed is that, although the functional .,d has been constructed to provide a
reasonably faithful mathematical description of the fluctuations that occur in a turbulent
fluid, it cannot by itself imitate the kind of correlation between independent fluctuations
that is required by the Second Law. It was pointed out followmg Equatlon 44) that this
correlation simply says that, on the average, when heat flows mto a sample of fluld the
fluid must expand, and When heat leaves, the fluid must contract. The same 1nterpretahon
applies to the correlation between 5(1'n and 8 H (for §X + VP = 0). For 8,H =0, the
correlation between 5(1)n = -V » (16X) and 85X *» VP/n says that, on the average, 'when

+ o,

. a sample is carried into a region of greater pressure, it must diminish in size.

In a direct solution, thq condition stated in Equat@on (120) could be imposed eby
making a calculation of the integral in Equation (120b) for a proposed iterative ste‘ap that
has:been shown to cause a decrease in &, If the integral of Equation (120b) is not nega-
tive, the iterative step is accepted and a new step is then made and tested in the same
weiy. If the integral of Equation (120b) is found to be negative,-the iterative step is altered

so as to satisfy the condition (and simultaneously decrease . ).
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\,’fh:enu the condition of Equation (120} is saﬁsﬁqd at every iterative step, then reference
" to Equation (89) shows th‘at; it; the flow is physically stable, then 82 > 0, which means
. that for the-admitted class of iterations the equilibrium point is a mnmmmia ain:d nota . .
éaddle—poi:nf:, and -this fact guarantees that the procedure of successive decreases in o will

indeed lead to -the equilibrium point.

This fact illustrates the great advantage of théi free~energy form of Hémilton’s Prin-
ciple over the irreducible form. Reference to Equation (85) sho.ws that, even for physi-
cally stable flow, 8(2)£ is indefinite in sign, and there is no simple way of restricting the
class of iterations so that it will be positive-definite. Thus the eqailibriaﬁ; point is a very
infricate saddle~point, and it becomes exiremely difﬁcult to devise an iterative procedure

that will “home in on it.”

It should be noted that the condition imposed in Equation (120) is so weak that in

-many problems it could be ignored altogether without causing trouble. The reason for this
is that it involves an integral over the products of independent fluctuations that in most
problems will have different signs in different regions so that the resultant integral will
usually be very small. This is to be contrasted with the other terms in 82 s given in
Equation (89). In these integrals there is no cancellation, so they are usually very much
larger than the integr;I of Equation (120). Thus, for most i}roblems, even if the Second-
Law condition is violated, 52?4 will still be positive and so the iterative procedure will
“home in on” the equilibrium point without any problem. The fact that the condition of
Equation (120) is an inequality rather than an equality means that, even in an analytical
non-numerical application of the; direct solution method, the condition can often be ac-
commodated. Because it is not necessary that the integral have any particular value, but

. rather only a particular sign, after the trial functions have been parameterized, an analytical
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«calculation of the.integral in Equation (120) can be made. If certain of thq parameters
afe then found to violate the condition, they can either be suppressed (dropped frrom the
parameterization scheme) or else limited in their ranges so that their variations will not

.violate the condition.
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VIIL CONCLUDING REMARKS

The total free acti;n fl.{ncﬁonal.ﬂ [AL (&, 1) B(AA, 1); S(AA, )] that was con-
structed in Section VII A is the generalization of the non-equilibrium potential function
ELU‘(G, H,.S)] for a static homogeneous fluid. The functional LQ?, like the f{mction U,
i'nust’satisfy the basic therquynamic inequality th;it describes the fluctuations of a sys—
_lt.em-ébout equilibrium. In the case of U, it is an easy matter to construct a function
' ‘G(O, H, 8) (cf. Eqs. (38) and (118a)) that will automatically satisfy this inequality. In
the case of the functional .27, it does not suffice to give L7 (A%, H, S) 2 suitable func-
tional dependence because subfcle correlations between the space-time dependenc;e of the
otherwise independent fluctuations of A?® and H are involved in the thermodynamic in-
equality, and for this reason it is necessary to impdse ‘the very weak integral constraint
stated in Equations (44} z;nd (120). ;\s far as numerical applications involving Q7 are con-

cerned, this constraint represents at worst an annoyance, and can in fact be ignored in a

great many nuinerical applications.

It ;s interesting to note that in the expression for §(2).7 given in Equation (89),
the term on which this constraint must be imposed (cf. Egs. (70g) énd (89g)) is not sym-
metric in the particle displacement 8X, whereas all the other second-order terms in 5¢2).
are symmetric in 86X, and so correspond to a self-adjoint energy operator that represezi’qs
the energy of smalil displacements from. equilibrium. The non-symmetric term - f 6;2)0 di

" vanishes if the displacements are density—preserving or adiabatic.

As to the practical utility of the total free action .7, besides its use in a direct so-
lution of flow problems, there are the other possibilities that were suggested at the end of
Section VII E. Because the methodology of equilibrium thermodynamics has effectively

“been extended to fluid systems in arbitrary states of motion with the recognition that .7
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is the appropriate equilibrium potential function for such a system, and that the surface
and terminal integrals of Equation (89) are the generalizations of the Pfaffian forms on
which the classical thennodynan_lic formalism is based, the possibility is opened of extend-
ing thermodynamic principles and methodology to the problems of fluid dynamics. The
second-order expressions for 8(2) .o should be especially useful in this regard. It was
shown in Section VII D how a well-known stability criterion can be derived very directly
from the expression for 5(2) 7 . In practical applications in dynamic meteorology, for
example, the functions A® (a, t) would be parameterized in terms of parameters of direct
significance representing such things as the diameter or height of a convection cell, the .
total strength of its updraft, etc. It would then be a simple matter to derive an expression
for 8(2) g7 in terms of a bilinear form in the variations of these parameters. Such an ex-
pression not only provides a stability criterion in terms of non-local parameters that would
be very difficult to derive by other means, but the second order terms in the expression
supply the raw material necessary to apply the LeChatelier~Braun Pn'nciple22 with which

to explore the effects of perturbations from equilibrium.

Aside from the practical utility of constructing the effective thermodynamic potential
function that governs compressible inviscid flow, there is also the conceptual satisfaction
of basing Hamilton’s Principle on more fundamental ﬁﬂnciples. Far from being a mere
mathematical artifice, the free—energy:form of it is a thermodynamic potential. The ir-
reducible form of it, however, remains in the artifice category. The identification of the
free—energy form of Hamilton’s Principle with a thermodynamic potential has opened the
treétment of its. second variation to an entirely new perspective, one that would be unat-
tainable by.mathematics alone because it involves an admixture of physics in the form of
the Second Law. Moreover, this identification provides a physical significance to the fact

- ‘that Hamilton’s Principle involves terminal, rather than initial, conditions. (See Section IV D
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of Paper I.) The awareness that such terminal conditions can have a physical significance
quite distinct from initial conditions leads to the distinction between two very different
classes of instability--the laminar and infernal types of instabilify that were discussed in

- Section VI A of Paper L

The treatment presented here is not unique. Allusions have been made to a more
general treatment based on u(n, ¢ ) and P(G, T) instead of u(n, 8) and P(H, 8). Both of
these treaiments faprssent extensions of the energy represeniation of thermodynamics, It
" is reasonable to expect that a corresponding treatment would be possible in the context
of the entropy representation. The action integral corresponding to 87 would then be the
time integral of either the total entropy or else of one of the Massieu functions?4 derived
from it. The formalism based on such an action integral should have a strong resemblance
to the formalism of statistical mechanics, and in fact the treatment of extended ensembles
{cf. Sections VI A and C of Pai:er I} in the context of such an action infegral might be the

basis of a statistical mechanics of continuum ensembles.
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_APPENDIX: BRIEF LITERATURE SURVEY

_A.l Various Appr_oaches Employed

o It is possible to identify five different main lines of approach 1n the history. of at-
%empts to construct variational principles for fluid flow. The first is in the spmt of
Lagranpe’s principle21 that was mentioned in Section VIIC above. One starts with a known
variational principle for particle motion (the Least Action Principle of Maupertuis and

'.Euler in Lagrange’s case) and then adapts it to the fluid case by using the method of

Lagrange multipliers to add appropriate constraints.

The second approach is to apph“,r Hamilton’s Principle directly to a fluid without the
" addition of any constraints. The avoidance of constraints requires that Lagrange kin;a—
matics be employed, either in its complete form, or in the case of steady flow problems,
~ in the truncated form based on streamfunctions. (See Section II D of Paper 1.) The

principles developed according to this approach are surveyed in subsection A.3 below.

The third approach was inspired by Hargremres’25

indication that, in the case of
steady compressible flow, the pressure could be made to serve as a Lagrangign’density.
This idea inspired Bateman20 to construct a very useful principle for compressible poten-
tial flow that will be discussed in subsection A.2 below. There exist two different gen-

eraiizationsﬁ’ 27 of Bateman’s principle to rotational baroclinic flow, for both of which

the action integral is the space-time integral of the pressure functional.

H

i
i

" The fourth approach was introduced by Clebsch.28 He first effectively integrated
Euler’s equation by expressing the velocity and pressure (or molar enthalpy in the com-
_pressible case) in terms of three new functions (¢, @, and f) in such a way that, if two of

these (& and ) are constants of mo’gion, Euler’s equation is identicaily satisfied. The
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problem then becomes one of finding a variational principle whose Euler-Lagrange equa~
tions are the statements that mass (or mole number) is conserved, and that « and § are con-
stants of motion. Clebsch constructed such a variationdl principle for ti}(rie—depepdent in-
compresslitile flow. The gené'ralizatic')n of this approach to compressible baroclinic flow is
embodied in the Seliger—Whitham27 principle. These two principles are discussed in sub-

section A.4 below.

The fifth appmachG’ 29 1o the construction of a variational principle for fluid flow is
to attempt a conscious gelieralization of the classical equilibrium thermodynamical theory
of homogeneous systems at rest, i.e. thermostatics, to a true thermodynamics, 1.e. a thermo-
-dyﬁar:nigal formalism valid for a hetefogeneous continuum in an arbitrary state of motion.
Such a theory generalizes the thermoétatic concept of “'equi}ibn'um” to the dynamic con-
cept of fluid flow that obeys the equations of motion. The basic inequality that embodies
the Second Law is qxploited to construct a representaﬁon of non-equilibriuni states of
{notion. ’ﬁiis, of course, is the approach of the present 'paper. Two previous attempt' ,6’ 29
that were not so closely linked to Hamilton’s Principle and did not involve an ex'pliCit
calculation pf the ‘second variation, were carried out in the context of Special }{elqﬁvity

because of the guidance it affords in generalizing a sfatic formalism to one applicable to a

system in motion.

It is possible to survey the literature that deals with the second variation of a prm—
ciple applicable to fluids very quick]y; because it is almost rion—existent. From thé earliest
days of the one-dimensional Hamilton’s Principle for time-dependent particle motion, it
has been recognized that, if the time interval over which the action integral is integrated is

__short‘eno.ugh, the kinetic energy will dominate the potential energy to‘ such a degree that

the second variation will be positive-definite, but for a longer time interval the second
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yan'ation becomes indefinite in sign, even though the physical stability of thqinotion has
'not ‘l;tlaen chanéed in the slightest. The two ends (t; and t;) of the critical time interval at
)?Vhi(;h the change-over ocgu;'s are known as “‘conjugate points,” and the attempt to predict
- the onset of this change—ov:er has given rise to the so-called “accessory probl'em.”'30 In
the multi-dimensional Hamilton’s Principle that is relevant to fluid dynamics, the conju-
gate points become complicated sﬁrfaces, and the criterion for locating them in space-time
involves solving a complicated set of partial differential equations. In any case, all of this
is irrelevant to practical fluid dynamics because it can be taken as axiomatic ;ihat, in the
.‘ case of any probiem that is complicated enough to be of interest, the necessary range of
ii’ltegration will be large enough to make the second variation indefinite in sign. Thus the
practical need is not for intricate criteria to be applied to the irreducible form of Hamilton’s
I’rinc‘iple in order to predict the onset of trouble (whose presence can safely be assumed),
but rather the need is for different variational principles that avoid the trouble in the first
place.- A recent irwestigation?’1 of the second variation of the Lin-Rubinov form of
Hamilton’s Principle for compressible steady flow (discuésed in subsection A.3) forces no

’ altergtion of any of the above conclusions.

The remainder of this survey will be organized according to the kinematical descrip-

tion used in the variational principle.

A2 Pﬁnciples Using the Eunler Description

In the Euler description n and V are treated as independent primitive variables (ex-
‘cept for the case of potential ﬂox;v in which V évw), and so a constraint must be imposed
in order fo guarantece that n and V for the extremal flow satisfy the conservéxtion equation.
; Lagrange21 did this for incompressible flow. BatemanS 2 did it for compressible flow by

adapting Clebsch’s28 principle to the Euler description. In this adaptation, Clebsch’s three
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functions ¢, «, and § are Lagrange rnultip]jérs. Variation of ¢ leads to the conservation
equation, and variation of & and f respectively leads to the statements that § and o are
constants of motion. These two constants of motion characterize what might be termed
the “fossil vorticity,” i.e. that part of the vorticity that is a retained memory of the initial
conditions (as distinct from the part that is generated in regions of baroclinic ﬂo.x:v).
Bateman’s adaptation of Clebsch’s principle was limited to barotropic flow. Taub!? had
already removed this limitation in the context of the Lagrange description, and Zﬂsel,3 3
]Eto,34 and Herivel>> did the same thing in the Euler description. These three authors did
not, however, include the term that Bateman had already included that is necessary to de-
scribe the fossil vorticity. However, a generalization of this term was re-inserted into tI_le
principle as a consequence of C. C. Lin’s observation (unpublished, but reported in the re-
view article by Sem’n3 6) that, because classical particles maintain their identity, the nec-
essary three identity labels must be constants of motion, and the corresponding constraints
together with their Lagrange multipliers should be included in the action integral. This, of
course, is all taken care of automatic%]ly in the Lagrange description, and is confirmation
of the remarks made toward the end of Section I of Paper I regarding the necessity of
usi;lg the Lagrange description in constructing a variational energy principle.

Two prin-ciples for potential flow deserve special mention because despite__ this limita-
tion they are useful for direct numeri::al solutions of flow problems. They are the Dirichlet-
Kelvin principle for incompressible potential flow and Bateman’s20 genéra]ization of it to
compfessib]e potential flow. The Dirichlet-Kelvin principle is just the adaptation of the

Least Action Principle to the class of trial flows all of which are constrained t;) be poten-

tial flow:

=

f Yn MV + V@ (x) = minimum; V =Vy (121a, b)
Y :
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-'wheig B, is'the constant density and g is the velocity potential. Bateman’s principle says

that for subsonic flow
f P(H) d3(x) = maximum; H = H* - ¥M(Vy) * (Vo) (1223, b)
v Lo )

where P(H) is the given pressure function P(H, S) with S suppressed (every{vhere the same),
and H* is the constant molar stagnation enthalpy. For steady homentropié potential flow
with a stagnai‘:ion enthalpy (Bernoulli constant) that is everywhere the same, Euler’s equa-
t?c:n.is ii\ienﬁcaliy satisfied, so the only remaining equation of motion is that of mole con-
se;'vation, and this isn just ;the Euler-Lagrange equation for the principle given in Equation
(122). Bateman showec; that the second variation of his action integral is negative-definite
if the flow is everywhere subsonic, and indefinite if it is supersonic at any point. This
principle has been applied with successS 15839540 45 the direct caleulation of compres—

sible flow problems.

. A3 'Principles Using the Lagrange Description

As noted at the beginning of Section VI, the first variation of the irreducible form of
I_*Iamﬂton’s Principle for time—-dependent compressible flow was calculated in the convected
frame early on. 16-19 The corresponding calculation in an inertial frame was later can‘i'ed
out by B_retherton41 without, however, giving an explicit representation (such as Eq. (2¢)
_ abox;e) of the velocity as a function of the Lagrange surface’s. In the restricted sense of
steady incompressible flow, however, Clebsch?? long ago: developed a principle in which
the stead:r,r three~dimensional velocity was expressed in ferms of two sn'eamfunétions.

Clebsch’s action integral is

ﬁ””‘“oMV =V ¥, v ) © (i23a)
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where

= (VY1 X V¢?)/n, (123b)
and Iio is the constant density and p*(¥}, ¥?) is the given stagnation pressure w}ﬁcl;, be-
cause it is a function only of the two streamfunctions ¢ and 2, is a constant of motion.
The two functions ! (x) Em‘d 2 {x) are the undetermined functions of the problem, and
Ciebsch showed that the Euler-Lagrange equations corresponding to their vériatio‘n are
gquivalent to Fuler’s equation for steady incompressible flow which ¢an be put int-o the form
n,M VX(VXV) = Vp* (Because its projection onto V vanishes, if has t;nly two de-
grees of frtedom corresponding to the two variables ¢! and ¢2.) This 1857 pnnc:;})ie of
Clebsch has surprisingly been almost_completely ignored. (The 1859 principle, 28 whlch is
entirely different, has received much more attention.) The principle given in Equation
{ 123)‘ is valid for three—dimensional rotational flow, and for this reason should pré)ve very
useful for direct numerical solutions of incompressible steady flow problems wﬂh noN~-Zero

vorticity.

Bateman?3 gave a pnnc1ple that is essentmlly Hamilton’s Prmmple for steady compres—
sxble barotroplc with the density flux n descnbad in terms of a single streamfunctzon
#(x, ¥) and the mole density n = n(x, y) treated as an mdegem}eﬁt pmﬁﬁfﬁ varzabie. His

action infegral is
’ f/-[’/:»Mn *nfn - u(n) dedy: n =V Xe, - - -(124a,b)

where u{n} is the given intemal energy density. The exiremal flow for this principle fums

out to be compressible potential flow, and as Lush and Cherry49

painted out, this prin-
ciple is a companion piece {o the one given in Equation (122) in the sense that, taken to-

gether, they constitute a minimax desgcription of subsonic compressible potential flow,

94



Becaus:a entropy has been suppressed in the u(n) that appears in Equation (124a), the
ﬂow is barotropic. The Euler-Lagrange equation corresponding to variation of n is H*=
W+H= 0. By first suppressing the entropy, and then making the stagnation enthalpy H*

| spatially uniform, potentiai flow must result. This restriction was lifted by Lin and
Rubinov?? who re~inserted the entropy 8§ = S(J) as a specified function of the s‘tream;

function (and hence a constant of motion). Their aclion integral is

fj{%M(n * n/n) + nH*(y) ~ uln, S} dxdy (125)

where n is given by Equation {124b) and H¥(J} and S(y) are given functions. (They ac-
tually restric;ced th@mseive;s to the case H* = constani.) Besides treating the case of plane
flow, they also used the Stokes streamfunction to treat axisymmetric flow. However, the
principle is equally valid if n = VY X Vy2, H* = H*(¢?, ¥?), and $ = S(¢}, ¢?). Com-
paring Equation (125) with Equations (123a) and {124a), it is evident that the Lin-Rubinov
?ﬁnciple is a combination of Clebsch’s 1857 principle and the Bateman principle of Equa-
tion (124) in which p* of Clebsch’s principle has gone over into nH*, and the transition fo

compressibility requires that -u(n, 8} be included in the integrand.

A.4 Principles Using the Clebsch Description
‘ In an effort to generalize his 1857 principle from steady io unsteady flow Clebsch?®
expressed V in the Pfaffian form
V =9y + aVf (126a)
and showed that if S is everywhere the same (homentropic flow) and H is defined by
VMV « ¥V + H = B* (126b)
where

H* = [0, + a@B),], (126¢)
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then if & and § are cons@a{{ts of motion, Euler’s equation will be identically satisfied.
(Clebsch acmaily.:wnékeé( with the stagnation and local pressures p* and p rather than with
H*, H, and- 8. These quantities have been introduced.in .order to facilitate the transition.
to the Seliger-Whitham principle discussed below.) Using this theorem, Clebsch constructed

a-variational principle based on the action integral

f n, [AMV - V - H*] &) dt (a2
(v, At) -

where V and B* are the functions of p(a, t), (=, t), and B(a, t) that are defined in Equa-
tions (126a) and (126¢c). Variations of these functions lead to Euler-Lagrange equations
that are just the conservation equation and the statements that § and & are constants of

motion.

Bateran®

generalized this princ;iple by letting n{a, t) be variable and by sul;tracting
the given :’n;ce:mal enexgy density u(n) from the integrand of Equation {127}, Thus his ac-

tion integral is
f. [4nMV - V + nH* - u@m)] d3(x) dt (128)
{v,At)

where V and H* are still given by Equations (126a) and (126¢): {The j:;tegmﬁtis of Equa-
tions {125') ahd (128) havVe a superficial similarity, but the definitions of BH* and of ‘i{ineﬁc
energy are entirely different.) Because the entropy is suppressed in #(n), the principle of

Equation (128) is limited to barotropic flow. Note that lifting this restriction is not just a
matter of replacing u(n) by z[n, S(¢3, ¥?)] because the streamfunctions are not included

:ar'ncng the variables of Equation (128).

The appropriate generalization to compressible baroclinic flow was given by Sveﬁger
and Whitham.?7 They replaced Equations (126a~c) with

V =V + oV = SV8 (1292)
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http:Whitham.27

H=H*-1©BMV + ¥V (129b)

where
| HY = -[Qi), + a3f), - SOOI, (1290)
and pointed out that if « and 8 are constants of motion and D,0 = T, then Eulf:’«r’su equa-
. tion will be identically satisfied. (Incidentally, this fact is very transparent in a relativistic

contéxt.46) Their action integral was defined to be

Jf P(H, §) 3 (%) dt T (1294)
(v, At)

" where P{H, 8) is the known pressure function, H is ziven by Equation (129b), and the un-
determined functions are p(a, t), o, t), B, t), S(a, t), and 8(x, t). (They actually
used the variable = -8.) Mole density n and temperature T are defined by

(OP/3S),

= (PfoH),; T = - .
I (oP/ )S (aP/aH)S

i

(129, f)

They shqwed' that the Euler-Lagrange equations consist of the conservation equation, the

h statements th;:t a: fﬁ, and S are all constants of motion, and that rI\)J{ENJJ =T,

‘ When P'(H, 5) goes over into the incompressibie limit in the manner iflustrated in
Section VII C above, the Seliger-Whitham principle goes over into the 1859 Clebsch prin-
ciple of Equation {127), and thus constitutes its natural generalization from incompressible
to baroclinic compressible flow. When o= S = 0 and dyp = constant, the Seliger-Whitham
principle goes over into the Bateman principle of Equation {122}, and so constituies a

generalization of this also.
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- Figure 1.

F;igura 2.

Figure 3.

FIGURE CAPTIGNS

Virtual Work Performed on a Box of Gas'in f)efozming its Lagrange Surfaces.
(A) Work Perforined by an External Energy Sourece that Produces a Quasi~
Static Deformation Against the Internal Pressure p. (B) Work Performed by
Spontaneous Conversion of Thermal Energy Within a Small Sample of Gas

into Work of Expansion Against the Surrounding Pressure P.

Potential Energy of a Molar “Bubble”. (A) Compressive Energy of a Bubble
With Molar Volume. (B) Change in Gravitational Energy of a Bubble that

Displaces Molar Mass.

{A) Non-Equilibrium Internal Energy Surface U(H, (?) and its Ridge-Line,
the Equilibrium Iniernal Energy ff(@). {B) Projection of Figure A onto

(- Q)—Plane Showing ﬁ(’\?) as Boundary of Region of Virtual Fluctuations.
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