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ABSTRACT 

The first and second variations are calculated for the irreducible form of Hamilton's 

Principle that involves the minimum number of dependent variables necessary to describe 

the kinematics and thermodynamics of inviscid, compressible, baroclinic flow in a specified 

gravitational field. The form of the second variation shows that, in the neighborhood of 

a stationary point that corresponds to physically stable flow, the action integral is never­

theless a complex saddle-surface in parameter space. Thus it would be extremely difficult 

to solve a problem by minimizing this action integral. There exists, however, an alternative 

form of Hamilton's Principle for which such a direct solution of a flow problem is possible. 

This second form is related to the first by a Friedrichs transformation of the thermody­

namic variables. This introduces an extra dependent variable, but the first and second var­

iations are shown to have direct physical significance, namely they are equal to the free 

energy of fluctuations about the equilibrium flow that satisfies the equations of motion. 

If this equilibrium flow is physically stable, and if a very weak second-order integral con­

straint on the correlation between the fluctuations of otherwise independent variables is 

satisfied, then the second variation of the action integral for this free-energy form of 

Hamilton's Principle is positive-definite, so the action integral is a minimum, and can serve 

as the basis for a direct trial-and-error solution. The second-order integral constraint 

states that the unavailable energy must be maximum at equilibrium, i.e. the fluctuations 

il 



must be so correlated ai.to produce a; second-order.decrease in.the total unavailable 

energy. Ina numerical calculation this constraintis easyjto-irmpose, but its effect in most 

problemsisso, weak-that-it -can-beignored altogether. The free-energy form of Hamilton's 

Principle has the further advantage thatsit allows easy handling of the free-boundary 

problem. 
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VARIATIONAL ENERGY PRINCIPLE FOR



COMPRESSIBLE, BAROCLLNIC FLOW



II. FREE-ENERGYYFORM OF



HAMILTON'S PRINCIPLE



INTRODUCIION AND SUMMARY 

At the beginning of the preceding paper (which will be referred to-as Paper I) it was 

remarked that the goal of these papers is to develop a variational energy -principle that will 

be suitable for direct (i.e. trial-and-error) solutions of fluid flow problems. For this pur­

pose it is necessary that, at least in the case of physically stable flows,, the action integral 

whose minimization serves as the basis of the calculational procedure must indeed be a 

minimum, rather than a saddle pointfor the desired solution that satisfies the equations 

of motion. In order to test whether a given action integral has this property, it is.neces­

sary to calculate its second variation. The mathematics necessary to do this was developed 

in Paper I, in which boundary and terminal conditions were also discussed'in detail, as was 

the connection between physical stability and the curvature properties (i.e. the sign of the 

second variation) of an action integral that can be interpreted as the time-average total 

,free energy of the fluid system. 

In this paper it will be shown that such an action integral does in fact exist. This is 

demonstrated (in Section VII A) by carrying out an explicit calculation of the first and 

second variations, and showing that the necessary condition for the vanishing of the first 

variation is the fulfillment of the known equations of motion, and that the second vari­

ation is indeed equal to the second-order change in the free energy that is associated with 

fluctuations in the fluid. 



In order to be able to identify the various terms in the second variation with the 

various types of displacement and compression work in a stratified atmosphere and with 

the changes in unavailable energy that are associated with entropy fluctuations, a great 

deal of preliminary discussion, given mn Section II, is necessary. In Section II C a general­

'ization of the buoyancy displacement work is derived that does not assume either that the 

volume of the displaced sample of fluid remains constant (Boussinesq approximation), or 

that it adjusts itgelf'so that the.internal pressure is always equal to the local external pres­

sure (Vifisiil-Brunt approximation). Rather, the generalized expression allows for a com­

pletely ,arbitrary volume change, which physically corresponds to the case of fast sponta­

neous displacements in which inertial forces corresponding to internal turbulence within 

the sample. account for the difference between the internal and external pressures. Sections 

II B, D, F, and F treat various aspects of the use of dual state functions to describe the 

fluctuations about equilibrium that occur in a turbulent fluid. This involves interpreting 

the inequality that is satisfied by dual molar internal energy functions in terms of a fluc­

tuating entropy density. This inequality constitutes a statement of the Second Law of 

Thermodynamics. The generalization of this basic thermodynamic inequality from a homo­

geneous fluid at rest to a compressible fluid in an arbitrary state of motion is shown in 

Section VII E to be equivalent to the corresponding inequality that is satisfied by the free­

energy form of Hamilton's Principle. 

The important thermodynamic issues involved in the variational treatment of fluid 

motion come to light already in the static case of fluctuations about hydrostatic equilibrium 

in a stratified atmosphere. - It is shown in Sections IV and V that two different variational 

energy principles exist for a static atmosphere. The first is the well-known statement 1 

that at equilibrium the total potential energy E (i.e. the sum of the internal thermal energy 

and the gravitational energy) is minimum. The proof of this that is given in Section IV, 



unlike the one available in the literature,1 does not make use of non-holonomic differential 

expressions, but rather is based on a direct calculation of the first and second variations of 

an explicitly defined integral functional for the total energy of the atmosphere. 

The second variational energy principle, which is discussed in Section V' is the state­

ment that at equilibrium the total free energy A of a static atmosphere is mfnimum. The 

free energy in question is the available energy of the non-equilibrium fluctuations, and its ­

introduction is not simply a matter of replacing the thermodynamic internal energy with 

the Helmholtz or Gibbs functions, since both of these refer to equilibrium conditions. 

Rather, it is,necessary to demonstrate -by explicit calculation that the first' and, second vari­

ations of the integral functional that is alleged to represent the total free energy of the 

fluctuating atmosphere do in fact have the form of a change in free energy, namely the 

work performed minus the increase in unavailable energy. The equilibrium -value A of the 

total free potential energy can be adjusted to any desired value by means of an additive 

constant. The choice of constant made, in this paper is such that A = -E. With this choice, 

the principles based on E and A are related to each other through a Friedrichs transfor­

mation, 2 and can, be used in concert to give a minimax description of a static atmosphere 

that is the analog of the well-known minimax description of static elastic structures that 

is a consequence of the Friedrichs transformation.. 

The two variational minimum principles for a static atmosphere can be regarded as, 

dual adaptations of the Principle of Virtual Work to -a continuum. This approach is dis­

cussed in Section III where it is noted that these dual principles of virtual work are equiv­

alent to the two competing approaches to elastic structureS that are cimbodied ti the prin­

ciples of Dirichlet and Castigliano. 3 
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The two alternative variational minimum principles for a static atmosphere can both 

be adapted to an atmosphere in motion by including kinetic energy ihthe action integral. 

This leads to two different forms of Hamilton's Principle depending on whether the poten­

tial energy is represented by the total energy E or by the free energy A. Tie first case, 

which is discussed in Section VI, has the advantage of involving the minimum possible 

number of dependent variables, and so is called the irreducible form of Hamilton's Prin­

ciple. It has the great disadvantage, howeyer, that the integrand of the action integral, 

which is the difference of kinetic and potential energy, is not a physically meaningful 

energy.. This is reflected in the fact that the second variation of the irreducible form of 

Hamilton's Principle is indefinite in sign, which means that the action surface in parameter 

space (i.e. the plot of the action integral as a function of all the adjustable parameters in­

volved in the trial functions) is an intricate saddle-surface at the stationary point repre­

senting flow that obeys the equations of motion. This means that any attempt to "home­

in" on this point by successive iterations of the parameters chosen so as to decrease the 

value of the action integral would almost certainly be doomed to failure. 

The dual form of Hamilton's Principle that results whei the potential energy is rep­

resented by the free energy A is called the free-energy form of Hamilton's Prhiciple, and 

is discussed in Section-VII. In addition to the dependent variables'iniVolved hi tIV6 irreduc­

ible form of the principle, the free-energy form involves the molar enthalpy H. This extra 

degree, of freedom makes it possible to describe fluctuations in molar eptropy S about the 

specified average value. The great advantage of the free energy form of Hamilton's Prin­

ciple is, that-the.action integral is the time integral of the sum of the kinetic and free 

potential energy, and so (when dividbd by the total time interval) can be interpreted as the 

time-average of the total free energy of the fluid system. This is reflected in the fact that 

the second variation has the form of the total second-order change in kinetic and potential 
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energy minus the increase in unavailable energy that results from the fluctuation in entropy 

(which is represented indirectly through the flucutations in the enthalpy and pressure). 

Thus the fluctuations in the dependent variables faithfully generate the fluctuations in total 

free energy that occur in a turbulent fluid. One physical feature that the mathematics does 

not automatically duplicate is the subtle kind of correlation that results between the other­

wise independent fluctuations in enthalpy and particle displacement because of the Second 

Law. This is a very weak second-order constraint that requires that a certain space-time 

integral (Eq. (120b)) involving products of the otherwise independent fluctuations must be 

non-negative. When this constraint is satisfied, the second variation of the free-energy 

form of Hamilton's Principle is positive-definite if the flow is physically stable, and this 

fact means that its action integral can be used as the basis for a direct solution of flow 

problems. The Second-Law constraint must be imposed on the successive changes in the 

parameters only in the neighborhood of an extremum where the second variation is com­

parable in magnitude to the first variation. There are several ways in which this can easily 

be done, but for most problems it should be possible to ignore the constraint altogether. 

These matters are discussed in greater detail in Section VII F. 

The free-energy form of Hamilton's Principle has the further important advantage 

that it is very well suited to free-boundary problems. This feature, which is closely re­

lated to the well-known advantage of the Castigliano Principle over the Dirichlet Principle 

in fitting boundary conditions when loads rather than deflections are specified, is discussed 

in Section VII B. 

Aside from its utility for direct solutions, the free-energy form of Hamilton's Prin­

ciple provides an efficient way of deriving sufficient criteria for stability. This is illustrated 

in Section VII D by a derivation of the well-known criterion 4 ' 5 for buoyancy stability of 

a shearing wind. 
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The construction of the free-nergy form of Hamilton's Principle amounts -tothe ex­

tension of thermodynamic formalism and methodolbgy to a heterogeneous continuum in 

an arbitrary state of motion. It is pointed out in Sections VII E and VIII that this sug­

gests some possibly fruitful new approaches to the problems of fluid dynamics and dy­

namical meteorology. 

A brief survey of. the literature relevant to variational, principles for a fluid is given in 

the Appendix: 

Notation 

The notation of Paper I will be continued. In general, lower case letters will-be used 

for densities of extensive quantities (such as the mole density n), and 'ordinary 6apitals will 

designate either molar quantities (such as the molar entropy S), or intensive.qtiantities (such 

as the temperature T). Sans serif capitals will designate total extensive'quanitities (such as 

total volume V). To avoid confusion with the fluid speed'V -- (V," V) 1, inolar volume 
A 

will be designated by V. Because the letter W has already been ssi'gfned to, kinetic energy, 

work (Arbeit) will be designated by BA. Since free--energy is just the work funclioi, A' 

will also represent the molarfree-potential energy. A script capital will-fepre dnt either 

the bounding surface J', the molar deformation force 9 , or a total action - £ for the 

irreducible form of Hamilton's Principle, and M for the free-energy form. 
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U. PRELIMINARIES 

A. Equations of Motion 

The'necessary kinematical, relations have been giveh in Section II of Paper I. In a 

convected-frame treatment, the trial functions give the three components of the position 

vector X(A, t). (When used as an argument or subscript, AA will usually be indicated 

simply as A.) The molar volume V and the velocity V are given by
0= /xJ/ = (axt)detX- J 	 - DtX (la, b) 

where JX and Dt are used to designate the Jacobian and the material time derivative 

respectively. 

In an inertial-frame treatment, the trial functions give the space-time dependence of 

the three families of Lagrange surfaces AA (x, t). The mole density n = V- 1 , the material 

time derivative, and the velocity are given by 

n JA 	 = (VA ) . (VA2 X VA3); Dt 
= t + V V; (2a, b) 

3 

V = - E (BtAA) (VAB X VAC)fn ; (A, B, C cyclic) (2c) 
A I 

where at 	 is the partial with time at a fixed s-position. 

It was pointed out in Equation (20) of Paper I that in the Lagrange kinematics the 

conservation equation is identically satisfied, so this need not be included among the equa­

tions of motion. 

For reversible adiabatic flow, the local energy equation reduces to the statement that 

molar entropy is a constant of motion. In the Lagrange kinematics used here, this require­

ment is very easily satisfied by specifying the molar entropy S to be the appropriate 
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function of the Lagrange parameters AA. In a convected-frame treatment, the specified 

function S(AA) has no variation. The same is true if S = S(AA, t) is'a specified function 

of the time as well as of AA. Allowing S to be time-dependent provides a way .of intro­

ducing a specified diabatic heating into the formalism. Thus, in a convected-frame 

treatment 

S(A A , t ).S= = specified function; (3a) 

5(1 + 2)S = 0. (Convected Frame) (3b) 

In an inertial-frame treatment, the fact that 5AA # 0 means that S =A 0. The ex­

pression for this variation was given in Equation (43) of Paper I: 

S = S[A A (X, t); t] ; (Inertial Frame) (4a) 

5(1 + 2) S = 8AA(5AS) + 2AASAB(8AS) (4b) 

= -SX • VS + '(BXSX:VVS).. (4c) 

The simplest way of representing the pressure p is as a known function of V (or n) 

and S. (An alternative representation will be introduced in Subsection D below.) Thus 
A/ 

p p(V, S) -(au/av) s = (5) 

which follows from the-expression for the first differential of the canonical molar internal 

energy state function U(S, V): 
A 

dU = TdS - pdV (6) 

where T is the absolute temperature. Equations (5) and (6) are appropriate for a convected­

frame treatment. In an inertial-frame treatment, the appropriate canonical state function 

is the internal energy density u(S, n) for which 

,du = nTdS + Hdn (7) 

where H is the molar enthalpy. Tie pressure functibn p = p(i,S) is defined in terms 

u(S, n) as follows: 

p = nH- u n(3u/an)s - u. (8) 



Thus p is derived from u by a Legendre transformation, and so the two are dual state 

functions. 

It should be noted parenthetically that the thermodynamic treatment developed in 

this paper is a truncated version of a more complete and more symmetric treatment 6 that 

is based on u(4, n), where &iis the entropy density, rather than the molar entropy S. The 

present treatment has the advantage of the greater simplicity that results from specifying 

the functional form of S(A, t) in advance. The more complete theory is necessary, how­

ever, in fluid problems involving either different chemical constituents, or different phases 

of a single constituent. 

Since the mass conservation and the energy equations are identically satisfied, the 

only equation of motion that remains to be satisfied is the statement of local conservation 

of momentum. For inviscid flow this is Euler's equation: 

I 
MDtV = -- - MV (9) 

n 

where b = O(x, t) is the given gravitational potential. The tilde has been added to empha­

size that this equation is satisfied by equilibrium flow, i.e. flow for which the local force 

balance is everywhere maintained. In a variational context, this corresponds to the extremal 

flow for which the first variation of the action integral vanishes. 

Non-extremal flows can be represented by adding a "deformation" or "displacement" 

force 0 to the right-hand side of Equation (9). This then represents the effective force 

field that would have to be added in order to maintain the force balance (or conservation 

of momentum) of an arbitrarily specified flow. The work associated with the imposition 

of such a force field is discussed in the following subsection. 
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B. Virtual Work of Fluctuations 

For non--extremal flows the local force balance equation can-be written in the form 

=MDtV - (I O1a) 

where 
1



F --- Vp - MVO. (lOb) 
n 

For extremal flow, Equation (10) reduces to Equation (9) ahd' 9 = 0.' 2 cali be inter­

preted as the molar d'Alembert force, whose vanishing is one way to specify-an equilibrium 

flow. S can also be regarded as a molar displacement force that arises when-a virtual 

displacement carries a one-mole sample of fluid away from its normal trajactory in the 

equilibrium flow. If this flow is stable, then ! will tend to restore the displaced sample 

to its original trajectory, and positive work.will be required to produce the displacement. 

If 8A'is the amountof work required to displace one mole of fluid a distance 6X, and 

S (SX) is the displacement force at the end of the displacement, then ! AV = i S(fX) 

is the average value of 0 during the displacement, and 

6(2)A =-&X" OAV =-16X • 1(8X). (11) 

This work is-of second order in (8X) because it is 5X itself that gives rise to @. In the 

case of a displacement from a non-equilibrium flow (indicated by an overhead, bar) for 

which 0 0, then the work is of fint order in X: 

BMA = -fiX -4 = -6X * (MDtV - F) (12) 

where use has been made of Equation (10a). If&1 )a is the corresponding work density 

involved in displacing the n moles that occupy unit volume then, 

80)a = R80)A = 80)n -(F - MDtV) (13) 

where ( 1)n = fi 5X is the first-order mole displacement flux defined in Equation (44) of 

Paper I. The natural second-order generalization of Equation (13) is 

80 + 2)a= 8(1 + 2)n - (F - MDtV) = -5(1'+ 2) . (14)n 
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where, to 0 2 (6X), S(I + 
2)n can be written in any of the following forms: 

6(1 + 2)n = (fi+ 65(1)n) (8X + YzSX -VOX) (15a) 

= (h + 60)n) 5X + '/zV (6XBSX) _(15b) 

= I1(6X + 8X * V6X) - /V * (SxfiX) (15c) 

-where 

-V (-SiX) = -V S( 1)n. (1Sd) 

As noted in Equation (44) of Paper I, the first and second-order change in mole density 

is given by 

3( 1+ 2)n = -V 6(B 1+ 2)n. (16) 

The displacement force 0 (SX) and the corresponding second-order work is calculated 

in the following subsection for a virtual displacement of a mole of fluid in a density­

stratified atmosphere. These expressions will help clarify the physical implications implicit 

in the second variations presented in Sections IV and V,but the expressions for 8( 2 ),A de­

rived below enter in no way into the derivations of Sections IV and V. 

C. Buoyancy Force and Work 

If W(z) is the equilibrium density at the fixed observation point 0 ,then if the matter 

is subjected to a displacement field SX, the matter at the point x after-the displacement 

is that which had occupied the point x - 6X before the displacement. If, moreover, the 

displacement is of the Boussinesq type, i.e. density-preserving, then the density n'(a) ob­

'
served at the point zx after the displacement is n = - 6X -VW = W(1 - SX - V £n W). 

If the velocity and acceleration fields are unchanged by the virtual displacement, and F' 

is the new force at a after the displacement, then 0 is defined by F'- F + so that 

it follows from Equation (10) that 
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1 1 
_q(ax) - F' -F - -- vW"+-V' 

! nnn 
(17) 

- '-I '~ 

-- (6X V 

Using this in 	 (11),'if follows that 

1
6(2)A B = + 	 - [(V 9n'n) (7V)] :(5XaX) + 0 3 (5X) ([8)

2'n 

is, the second-order work that must be performed in order to carry out a Boussinesq dis­

placement SX of one mole of fluid. Using 
.p -- (MW + F) = -'M(V3' + DtV) (19) 

to eliminate Vp in (18) yields 

- M(2[AB + (20)(Vn W) (W DtV)] :(,XX). 

For DtV = 0 	 one obtains the familiar expression for the work involved in, a Bofissinesq 

displacement of one mole 'of gas in a static atmosphere. If this work is positive, the at­

mosphere is stable. For VO = 0, one obtains the corresponding expression that predicts" 

the onset of Rayleigh-Taylor instability,7 i.e. instability resulting from the acceleration of 

a stratified fluid in the direction of increasing density. The fact that V and DtV enter 

,into -te stability criterion in the same way is in keeping with the Equivalence Principle. 

t --

The Boussinesq-type displacements may be visualized as occurring so fast that the 

displaced blob of gas does not have sufficient time to change its volume in response td the 

changing external pressure that it feels. The opposite idealization is the. quasi-static dis­

placement that occurs so slowly that at every 'point of its displacement trajectory the in­

ternal pressure of the blob is equal to the external ambient pressure. This'gives rise to the 

Vdisiild-Brunt stability criterion 8 , 9 which wvill be derived below.. First, however, a more 

general expression will be derived that is appropriate to the case of a completely arbitrary 
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change in the volume of the blob during its displacement. This is done by taking into 

account the change in enthalpy of the blob that corresponds to an arbitrary adiabatic vol­

ume change. Since (8H/8p)s 
= V and (82H/bp 2 )s = -V/n where f is the adiabatic bulk 

modulus defined by 

^(3ap\ (8 P)s 

V = n s3(2 

it follows that for a one-mole blob 
V 

(8(+ 2)H)s = V(Sp)s - V (Sp 
(22) 

= -3SV - 2W (5v)
V 

where use has been made of 

(8P)s -- V 5V (23) 

which follows from (21). An expression for V in terms of 5X follows from the identity 

given in Equation (9a) of Paper I: 

5V = (aV/aGA) 5 GA = G -ASX) = V(V SX). (24) 

The first-order part of (22) is not of interest because it will generally average to zero over 

an extensive layer of fluid at a given geopotential height. Adding the second-order part 

of (22) to (18), one obtains the following expression for the net second-order energy 6(2)A 

that must be supplied in order to carry out the displacement BX of one mole of fluid that 

simultaneously undergoes an arbitrary adiabatic volume change 6V = V(7 aSX): 
1 

M A= - [(6X - V 2n ")(BX - Vp) - V * )] (25) 

The VaisHi-Brunt specialization of this expression results from requiring that the 

adiabatic internal pressure change (6p)s in (23) be equal to the external pressure change 
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8X vV. 
 Combining this requirement with (24), one finds that 

V • 5X = -6X •VriW (if 8 P1NT = 8PEXT) (26) 

is the condition that must be satisfied in order that the internal and external pressures 

remain in equilibrium. The expression for the second-order V~isfid-Brunt work of dis­

placement 6( 2 )AVB results upon substitution of (26) into (25): 

1 1 
8(2 )AVB =-[(5X VS9nn) -z(X "V')] (8X "V'). (27) 

For the case of a flat static atmosphere for which, 6X "V4 = -i'MgiSZ where g is the ac­

celeration of gravity, and W M 2 is used, to eliminate f3in favor of the. speed of sound 

C, (27) becomes 

6(2 )AVB d- nMg+ - (SZ) 2 . (fiat, static atmosphere) (28) 
dz C2) 

The expression (27) can be simplified somewhat by making use of the thermodynamic 

identity 
1 " UcT ---1 n ' 

dnn -- dp --- dS=- TdS (29)6 Cp k-uT / 

- where 

LP (aS/aT)p 0)



Cv {S/aT)v 

is the ratio of specific-heats and 

)--\aT 4 

is the coefficient of thermal expansion. Using (29) in (27), one obtains 

1 /y-1 , 
AV B _-2 [(TVS-)Mp) :(SX5X). Q2) 
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D. Dual Aspects of Pressure 

The pressure p(V, S) defined by Equation (5), or p(n, S) defined by Equation (8), has 

the dimensions of energy density, a fact that is imnmediately evident both from the defi­

nitions as well as from the relation p = h - u where h = nH is the enthalpy density. On 

the other hand, the appearance of (-p) in Equation (6) as the thermodynamic conjugate 

of V indicates that pressure should be regarded as an intensive quantity. The importance 

of this duality in the description of fluctuations away from thermodynamic equilibrium 

will be explained in Section III. Suffice it to say at this point that, in the case of a turbu­

lent gas in which fluctuations about the equilibrium density Ware occurring, p as defined 

by Equation (5) or Equation (8) is to be regarded as the instantaneous pressure within a 

sample of gas that is so small that the changes induced by its fluctuating volume may be 

regarded as quasi-static, so the use of the equilibrium state function U(S, V) (or u(S, n)) 

is justified. The intensive pressure (which will be designated by P), on the other hand, is 

insensitive to the fluctuating density changes, and is to be regarded as describing the local 

average pressure, the average being taken over a sufficiently large space-time interval so 

that the effects of the fluctuating density vanish. Thus P represents the average pressure 

existing outside of any given small fluctuating sample, and will be called the external 

pressure, whereas p will be called the internal pressure. 

In the more complete treatment 6 alluded to following Equation (8), the intensive 

pressure P = P(G, T) was represented as a function of temperature and of molar Gibbs 

function G (or, in the case of several interacting chemical constituents or phases, of the 

appropriate partial molar Gibbs function or chemical potential). In the truncated, but 

simpler, treatment that will be developed in this paper, the intensive or external pressure 

P will be represented as a function of the molar enthalpy H and of the molar entropy S. 

Because S = S(A, t) is specified at the outset, one of the two thermodynamic degrees of 
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freedom is effectively suppressed in the truncated formalism. The function P = P(H, S)is 

a canonical state function from which all other thermodynamic quantities can be derived 

by differentiation. The mole density N(H, S) and the temperature T(H, S)are given by 

dP = NdH - NTdS. (33)



The "external mole density" N must be distinguished from the "internal mole density" n, 

except at equilibrium when the two are equal: 

N(HS) =- N = n = jA (34) 

(In principle, different symbols should be used for T(H, S)defined by Equation (33) and 
A 

T(S, V) defined by Equation (6), but, because S = S(A, t) is specified, it turns out that 

the need for this distinction does not arise.) Corresponding to the interpretation of P, N 

can be interpreted as the average mole density in the fluid surrounding a small sample 

whose internal mole density n is rapidly fluctuating. 

The dual pressure functions p and P can be used to generate dual internal energy 

functions U and T+and the corresponding energy densities u and ut.These quantities sat­

isfy important inequalities, which will now be derived. It is easily shown that the adiabatic 
second variation of u(S, n) is (5(2)u)s = /2( / 2 ) (6n) 2 > 0 where the equality corresponds 

to 6n = 0. To o3 (6n) this second variation can also be represented as the difference be­

where it follows from Equation (7) that ('5(1)u) 

H(n - '). Thus the following inequality is valid: 

tween (u-U') and (5(1lu), 3 siHn = 

(u - H(n -"_')> 0 (35) 

where the equality holds only if n = n. (It should be noted that this inequality is valid 

only if both u and Wcorrespond to S, i.e. only n may vary. In the more general treat­

ment 6 based on u( a,n) rather than u(S, n), an inequality can be derived in which both 

4 and n are free to vary.) Using the fact that H - W=- = P, Equation (35) can be 

written in the following form: 
u(n, S) - be(n, H, S) > 0 (36) 



where 

t(n, H, S) nH -P(H, S),- ^ , (37) 
= nlU(H, V, S) 

where 

U-(H, V, S) - H - VP(H, S). (38) 

=Because u(n, S) nU(V, S), Equation (36) can also be written 

U(V, S) - U(HV, S) > 0. (39) 

The equality holds only when the redundant set of three variables (H, V, S) is consistent 

with the relation H = U - V(aU/8V) s . Because the equilibrium point involved in Equa­

tions (36) and (39) is arbitrary, the tilde can be omitted from H and S. The inequality 

itself will then determine the equilibrium point, namely that set of values for which the 

equality holds. 

The physical significance of these inequalities and their relation to the Second Law of 

Thermodynamics will be explained in Section III. The importance of a similar inequality 

(in the entropy representation rather than the energy representation used here) in non­

equilibrium thermodynamics has been emphasized by Tisza. 10 The generalization of the 

above inequalities that refers to a stratified atmosphere in a gravitational field will be 

given in Section V. 

If the pressure that appears in Euler's equation given in Equation (9) is represented 

by P(H, S) rather than by p(n, S), an extra equation of motion is necessary to guarantee 

the consistency of these two representations. The obvious choice is just P = p, but it will 

be shown in Section V that it is the equivalent requirement N = n given in Equation (34) 

that falls out of the variational analysis. 
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In the variational analysis, the functional form of H(A, t) is not known in advance. 

It must be specified by the variational principle. If H(A, t) is the functional dependence 

that is. consistent with P= p or N = n, then for a slightly different functional dependence 

H(A, t) = H(A, t) + e(A, t) where e represents the variation in H. In the convected frame 

in which (AA, t) are the independent variables, this is the only variation that has to be 

taken into account. In an inertial-frame analysis, however, each of the functions H(A, t) 

and e(A, t) has a variation of the form given by Equation (4) that results from the vari­

ation of the functional forms of AA (x, t). Thus, taking into account that is already of 

first-order magnitude, the total variation of H(A, t) in an inertial frame analysis is 

VI + /(6XSX;VVH)5(1 + 2)H =-X 
(40) 

+ 6(A,t) - X - Ve(A,t). 

An expression of this form is also valid for the variation about a non-extremal functional 

dependence H[ A(z, t); t]. In Sections V-and VI the functional variation E(k, t) will be 

designated by SH H to indicate that it is the first-order variation resulting from the vari­

ation in the functional dependence of H(A, t) on AAand t. 

E. Entropy Fluctuations 

The use of p(V, S)or p(n, S) to describe the pressure implies that equilibium thermo­

dynamics is valid for non--extremal trial functions as well as for the extremal configuration. 

That is, the fluctuations about the extremum are effectively quasi-static. This is consistent 

with the interpretation of the prescribed function S(A, t) as the instantaneous molar entropy 

which, except for the prescribed time-dependence, is a constant of motion even during the 

fluctuations. 

The use of P(H, S), however, involves a redundancy that implies that equilibrium 

thermodynamics is valid only for the extremal set of trial functions (or, more exactly, for 
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any set of trial functions for which Equation (34) holds). In this case, S(A,-t) can no 

longer be interpreted as the instantaneous molar entropy. Rather, it must be regarded as 

the prescribed time-average of the entropy about which the instantaneous entropy fluc­

tuates. Only for trial functions for which Equation (34) is satisfied is the instantaneous 

molar entropy equal to S(A, t). In the convected frame, this average entropy S(A, t) does 

not fluctuate at all. It is, however, possible to def'ne the instantaneous entropy fluctua­

tion 6S by means of the following familiar relation: 

8Q - TSS = H - SP/n. (41) 

If SQ is used rather than TBS, this relation is merely a statement of the First Law in ivhich 

8Q is the heat energy absorbed by the sample of fluid from its surroundings. In general 

6P depends on 5X as well as on 6H, so 6P and 6H are independent. Two special cases will 

be of interest in what follows: 

Q 5HH - 6HP/ n = (I - (42a) 

and 

BxQ = SHH - (SX VP)/n (42b) 

where in Equation (42a) 

OH P = (8P/BH)s H H = N H H (42c) 

is the external pressure change produced by 6H H. The CH Q of Equation (42a) represents 

the increase in molar heat produced by the random "sloshing about" of enthalpy in the 

fluid. The 6SxQ in Equation (42b) is the change in heat that corresponds to departure from 

isentropy during the displacement of a fluid blob in a pressure gradient. For example, if 

the upward quasi-static displacement of a blob in a stratified atmosphere is isentropic, then 

6x Q = 0. If 6xQ =0, this could mean either that heat has been exchanged between the 

blob and its surroundings, or that there has been a spontaneous conversion of internal 

thermal energy into ordered form. 
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In the entropy representation, a stable equilibrium of an isolated system is character­

ized:by a maximum value of the total entropy S, 1 1 i.e. 5(1)S = 0,6(2)S < 0. where the 5 

indicates a-virtua fluctuation from equilibrium. (The inequality is revered for a real 

spontaneous change.) If the system is immersed in a heat reservoir, then 3(1)SS # 0, but it 

is still necessary that 6(2)S < 0 since otherwise a virtual fluctuation that exchanged heat 

with the reservoir could produce a second-order increase in the total entropy of the sys­

tem plus reservoir which would contradict the posited stability of.the system and its 

reservoir. 

In the energy representation used here the corresponding statements can be made 

about the total change in internal heat 80. The second-order change 6(2)0, which cannot 

be accounted for by simple heat exchange with the reservoir, can be interpreted as the 

change in the unavailable energy of the system. The requirement 8(2)Q < 0 for virtual 

fluctuations in a stable system is equivalent to the statement that the unavailable energy 

of a stable system' and its reservoir is a maximum. Thus virtual fluctuations correspond to 

conversions of internal thermal energy into some ordered form of energy, i.e. virtual fluc­

tuations convert unavailable energy into available form. 

An alternative interpretation of the condition 8(2)0 results from the following 

argument: 

8(1 + 2)Q f 5Qd3 (A) = f 8Qnd 3 (x) =f (n+ 8(1'n)8Qd3 (x) 
N V V_ 

(43) 

- n8Qd3 (x) 4 (1)n 8Qd3(x). 
V -V 

The first integral is the first-order change in total internal heat which vanishes if the sys­

tem is isolated or else cancels with the heat absorbed by the reservoir, if the system is not 
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isolated.. The second-order integral depends on the integrated correlation between 6(0)n 

and 8Q, and is completely independent of any heat change of the reservoir. Thus a nec­

essary condition for stability is 

3 (44)5( 2)) = f ()n 8Qd(x) 0 

This condition has a very simple interpretation. It requires that, on the average, a positive 

value of 6Q must be accompanied by a negative value of 5(1)n and vice versa. This means 

that, on the average, when heat flows into a sample of fluid from the surroundings, the 

sample must expand, and must contract when heat leaves. This eminently reasonable con­

dition is not automatically satisfied by the fluctuations in the trial functions of Sections V 

and VII. Thus it represents a constraint that in principle must either be imposed on the 

parameterization of the trial functions, or on the procedures involved in a direct numerical 

solution. It is, however, a very weak constraint whose violation does not produce spurious 

answers, but rather only introduces the possibility of numerical instabilities into the solu­

tion process. This point is further discussed in Section VII F. 

I 

It should be noted that "virtual" fluctuations are virtual in the sense that they (locally) 

violate the Second Law. This does not imply that they cannot happen in nature. The 

Second Law refers only to a macroscopic sample of fluid, and not to fluctuations at the 

microscopic level. It is necessary, however, that whatever correlations exist between fluc­

tuations at different points be such that at a macroscopic level no Second-Law violations 

occur. This is the meaning of the condition in Equation (44). Because physical fluctua­

tions are never instantaneous, the integral involved in this condition should really extend 

over time as well as space. Such a space-time integral is actually what results from a cal­

culation of the second variations of the variational principle discussed in Sections V and 

VII. 
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F. Internal Free Enfergy 

The& A -SX that was introduced in subsection B above is the molar, defor­

mation work,_ that is, the work done against the molar deformation force defined in Equa­

tion (1Oa). The integral of this over the entire fluid, 6A f AdN, represents the amount 

of energy that has been stdred in the fluid by virtue of carrying out the deformation as­

sociated with the displacement field SX. Inasmuch as this energy could in principle be ex­

tracted again from the fluid, it represents a potential energy and, if A were in fact a total 

differential, A-could be called the "deformation potential." However, it is not justified to 

assume that 8A is a total differential. In fact, when entropy fluctuations are taken into 

account, the integral of -SX • no longer represents the amount of useful energy that 

could in principle be extracted from ihe fluid by relaxing the deformation displacements. 

The reason 'for this is that if the displacements 8X are accompanied by an entropy increase 

BS, then a part BQ = TBS of the molar work of deformation is degraded and becomes un­

available .for conversion into useful form. The 8A discussed in subsections B and C above 

should properly be designated (BA), to indicate that all of the displacements were isen­

tropic. This followed automatically 'from the fact that the pressure was represented by 
A. 

p(V, S). With the introduction of the extra, degree of freedom' involved in the P(H, S) 

-representation, the 6Q defined by Equation (41)-must be included-in the formalism. Thus 

if 8A represents the convertible or "free" part of the. deformation energy,; 

CA = (5A) s -fQ (45a) 

= (-BX • ) - (5H - SPIn). (45b) 

It was pointed out in Equation (12) that CA is of first order if = 0 has a 

finite value that is independent of 5X. Correspondingly, CQ is of first order if N 0 n and 

,has the value given in (42a): Thus the generalization of Equation (12) is 

8(1)A = -8X - (1 - N/n)SH H. (46) 
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If H is a primitive function in the variational analysis, i.e. if H(A, t) is one of the trial 

functions, then 5H H = 5'1)H has no second-order variation. If, however, H is expressed 

as a function of other functions which are regarded as primitive, then 5H H can have a 

second-order dependence. For example, if H is represented as the Jacobian H = J71A 

det(anA/aAB) where the three functions 71A (A, t) are regarded as primitive, then SH = 

det(bSA/qAB) is of third order in 811A. Allowing for the possibility of some such repre­

sentation of H, the generalization of Equation (14) becomes 

80 + 2)a = -5(1 + 2)n n 6(i +2)Q (47a) 

( + 2 )n  
 SO (F - MDtV) + (N - n)( 1 + 2)H (47b) 

where 8( + 2)ais the free deformation energy density. 

At equilibrium, N = n and so 6 HQ = 0 even if 1H # 0. In this case, however, it is 

possible for correlations to exist between SH H and aX such that 8(2)Q zi 0. In fact, the 

correlations are just those between BQ and S(1)n = -V . (nSX) that were discussed follow­

ing Equation (44). For the displacement of a one-mole blob of fluid through a pressure 

gradient the appropriate 8Q is the 5,xQ given in Equation (42b). The appropriate (MA), to 

use in the neighborhood of equilibrium for which 0 is the second-order expression 

given in Equation (11). If this is augmented by the work of adiabatic expansion given in 

Equation (22), the expression for (8(2)A)s given in Equation (25) results. Combining this 

with Equation (42b), it follows that in the neighborhood of equilibrium 

.8(2)A=f 2'{_ X . (SX)]s + [5(2)H]S) d3 (x) - 8(2)Q (48a) 
V 

SX)2 1 d3(x) 
(X •V n W)(SX Vp) - P(V . 

; 
 
(48b) 

- fV (8)n)(5HH - SX - Vp/n) dI(x). 
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The expressions in Equations (47b) and (48b) will be encountered again in Section V where 

they will-result from a derivation that is entirely independent of any of the results derived 

above. 

The 6A discussed, above represents the free (i.e. c6nvertible) part df the'energy associ­

ated with the internal deformation of the system. For the sake of brevity, it will be called 

the variation of the internal free energy of the system. It will be shown in Section V that 

8A can indeed be represented as a total differential, i.e. as the variation of a spatial integral 

over a specified functional. In this sense it is legitimate then to refer to A itself as the 

total internal free energy of the system. It should be emphasized that the use of the term 

"free'energy" does not imply that A is to be identified with the familiar free internl en­

ergy (Helmholtz function) or the free enthalpy (Gibbs function). These functions refer to 

equilibrium states whereas A represents the convertible energy of non-equilibrium states. 

The numerical value of A for equilibrium is of little interest, because this can be arbitrarily 

changed without changing the variational properties of A. This corresponds to the fact that 

in classical mechanics the absolute value of any energy never has physical significance. Only 

differences or changes of energy are observable. 

G. Thermodynamic State Functions 

It will be seen in Sections IV and V that the construction of an explicit functional, 

for the total energy in the convected frame involves a knowledge of the functional form 

of U(V, S), the canonical state function for molar internal energy. The corresponding con­

struction in an inertial frame involves knowing the functional form of u(n, S). The con­

struction of the functional for the free energy in either the convected frame or an inertial 

frame involves knowing the functional form of P(H, S). Very often these state functions 

will either be known, or else can easily be constructed from empirically determined 
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thermodynamic functions. For example, for a perfect gas the three necessary functions 

have the following forms: 

7U(V, S) 	 = U(V/V ) - 1) exp[(y - 1) (S - So)/RI ; (49) 

= ' u(n, S) uo(n/no)7 exp(,y - 1)(S - So)/R] ; 	 (50) 

P(H, S) = po(H/Ho ) /("' exp[-(S - So)/R] ; (51) 

where R is the molar gas constant and U., Vo , So etc. are reference values which may be 

either constants or else specified functions of (z, t) or of (AA, t). 

An alternative to using a known empirical state function is to construct a state fune­

lion from the expressions for the first and second differentials of U(V, S), u(n, S), or 

P(H, S). The first differentials of these functions are given in Equations (6), (7), and (33) 

respectively. It is well known 1 2 that the second differential of a canonical state function 

for a simple fluid can be expressed in terms of an appropriately chosen set of three thermo­

dynamic coefficients. The three coefficients used in the expressions below are the ratio of 

specific heats y, the adiabatic bulk modulus 3,and the coefficient of thermal expansion 

a. The 	 definitions of these quantities have been given in Equations (30), (21), and (31) 

respectively. For a perfect gas, - is a constant, P = yp, and a = l/T. For an arbitrary 

fluid, j3 can always be replaced by the speed of sound C by means of the relation P= 

nMC2 , which for a perfect gas becomes A= nyRT. The intuitive significance of the dimen­

sionless 	 product aT can be seen from the relation dH= CpdT + (I - veT) Vdp which shows 

that the 	 magnitude of (1 - aT) is a measure of the departure of the fluid from the perfect­

gas relation dH = Cp dT. The necessary expressions for the second differentials of an arbi­

trary fluid are 

A Â n('yy- 1) n(- -l)
6( 2 SU(V,5) - 1/2ng(V) 2 	 - - (+/)2 	 (52)SVS 

S(2 )u(n, 	 S) Y2'- 2 +58 a(fl 	 + T( 
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22 nn=8(2)p(H, S) - (6H)2 + /2 - [(I - aT)2 + y(2a-T -. 1)].,(8S)2 

(54)
n/2 1 +- 1) H . 

n 2 OT 

These are the expressions that are used in Sections IV and V to calculate the second variations 

of the thermodynamic functions. This is done by substituting into the above expressions the 

already given expressions for SV, 6n, 8S,'and 8H in terms of BAA or AR ahd HH' 

Using Equations (52-54) and the corresponding first-order relations given in Equations 

(6), (7), and (33), the following expressions for the necessary canonical state functiois can 

be constructed" 

U(V, S) = U -o Po(V Vo ) + To(S SO) 

+ '/ (n) - - ) s - . 
,I N - 0) 

2
+ 1/2t-rn- .I (S - So0), 

u(n, S) =u o + H0(n - no ) + (nT)o (S - SO) 

+ 11(.--gl nn.o + (]r2T' )o ( I + - - So 2[ -nno) f - "o(S"- (56) 

2 0 

(nT') (2 - 1 
0 aT o \ /x 

P(H, S) = po + no(H - Ho) - (nT)o (S - SO) 

) - To + (S - S)]2 (57)
+ 'A( :) [(H? Ho

Lt,<;-110 
- n (S So). 
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As in Equations (49-51), the coefficients and reference quantities are indicated by sub­

script o, and may either be constants, or consistently specified functions of either (Sx,t) 

or (AA, t). 

The second-order parts of Equations (55-57),have been written in a form that makes 

the convexity properties explicit. In all three cases, if S - So = 0, the second-order parts 

are positive-definite, but if S - So 0 0, this is true only in the case of U(V, S). The in­

definiteness of the convexity of u(n, S) and P(H, S) is a consequence of the simplification 

that resulted from basing the thermodynamic formalism on these functions instead of using 

the functions u(n, 6 ) and P(G, T) that were referred to following Equations (8) and (35) 

and at the beginning of Section II D. It will be seen in Sections IV and V, however, that 

the lack of definiteness of the convexity of u(n, s) and P(H, S) does not manifest itself in 

the convexity properties of the integral functionals in.whose integrands they appear. That 

this should be the case is already apparent from the fact that, since S like S. must be a 

specified function of (AA, t), if the coefficients and reference quantities in Equations (56) 

and (57) are specified as functions of (AA , t), then S. can be specified so that S - So = 0, 

in which case the second-order parts of u(n, S) and P(H, S) are positive-definite functions 

of (n - no)2 and (H - H0 )2 . This procedure simply puts the entropy dependence into the 

quantities u0 , He, no and go, and the remaining dependence on 5n or 6H i§ positive­

definite in second order. 

As a practical matter, however, there exist many meteorological problems in which it 

would be preferable to specify the reference quantities in terms of (a, t) in spite of the 

added complication that arises from the need to retain the terms involving S - So l For 

example, in the case of a direct variational solution of a closed convection cell embedded 

in a given static atmosphere, if the reference quantities were chosen to be the functions of 
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(-x, t) appropriate to the st.atic atmosphere, then the thermodynamic aspects of the vari­

ational problem would involve only small deviations from the given static atmosphere. 
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III. DUAL PRINCIPLES OF VIRTUAL WORK 

The dual pressure functions, p(V, S) and P(H, S), and the dual energy functions, 

U(V, S) and U.(H, V, S), that were introduced in Section II D, correspond to the two dif­

ferent ways that the Principle of Virtual Work can be adapted to a continuum. These are 

illustrated in Figure 1 for the case of a homogeneous box of gas in the absence of a grav­

itational field. 

Figure IA illustrates the form of the principle in which the -virtual work that is to be 

associated with a small cell that contains one mole of fluid is performed by an external 

energy source that acts against the internal pressure p of the cell, thereby increasing the 

internal energy of the cell by the amount 3vU = -pSQ5 Figure lB illustrates the form of 

the principle in which the gas within the cell in question spontaneously converts some of 

its internal energy into work of expansion against the surrounding external pressure P. This 

form of the principle involves an internal energy source (the gas itself) acting against the 

external pressure P. The work performed by the cell on its surroundings is $vA = +P8V. 

Referring to Equation (38), it is evident that 5v U- (aU3V)HsSV=-P(H,S)6V. Thus it fol­

lows that 8V A = -5vU. This just says that the work performed on the fluid surrounding 

the cell in question (i.e. the energy increase in the surrounding fluid) is bought at the ex­

pense of the thermal energy of the gas within the cell. Thus thermal energy within the 

cell has been spontaneously converted into ordered compressive energy residing in the sur­

rounding fluid, Although such spontaneous conversion would be a violation of the Second 

Law on a macroscopic scale, it does happen on a microscopic scale. Thus the form of the 

Principle of Virtual Work that is illustrated in Figure IB constitutes a rudimentary repre­

sentation of the energetics of spontaneous fluctuation about equilibrium in a stable fluid. 

(Such fluctuation will be called "virtual" in order to distinguish it from real irreversible 

changes in a fluid that carry it from one equilibrium state to another.) 
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Figure 1. Virtual Work Performed on a Box of Gas in Deforming its Lagrange Surfaces. (A) Work Performed by an 
External Energy Source that Produces a Quasi-Static Deformation Against the Inter Pressure p. (B) Work Performed by 
Spontaneous Conversion of Thermal Energy Within a Small Sample of Gas into Work of Expansion Against the 
Surrounding Pressure P. 



Whereas the form of the Principle of Virtual Work that involves P and -U corresponds 

to the fluctuations that actually occur in a turbulent fluid, the form of the principle pic­

tured in Figure IA that involves p and U describes a purely imaginary kind of fluctuation 

that requires the intervention of an external agent that must not only provide energy, but 

must also provide internal barriers of some kind against the pressure differences that de­

velop in the fluid as a result of the density changes produced by the fluctuations. The 
A 

reason for this is that the use of the equilibrium state function U(V, S), and the corre­

sponding equilibrium pressure p - U/aQ, implies that the fluctuations are quasi-static. 

Thus inertial forces cannot be invoked in order to account for the difference between the 

internal pressure of a sample and the pressure of its external surroundings. (Such inertial 

forces can be invoked in the case of Figure IB, because equilibrium thermodynamics does 

not apply so the fluctuations are fast, rather thai quasi-static.) 

When the two different forms of the principle ,are used to determine stability prop­

erties, they can be characterized as First-Law and Second-Law criteria in the following 

sense: In the case of Figure IA, because the fluctuations are quasi-static, the total entropy 

of the system remains constant, but the total energy does not. If all possible fluctuations 

about a given state of the system increase the total energy, then the state must'be stable, 

because if the system is isolated there is no available source for the energy that would be 

necessary to change it. This is a First-Law stability criterion. 

In the case of the spontaneous fluctuations represented by Figure IB, the total enetgy 

is a constant. The total entropy, however, is not constant because the fluctuations involve 

the spontaneous conversion of thennal energy into ordered form. The change in L+for 

the entire system is a measure of this conversion. If 5L+ < 0 for all possible fluctuations, 

this means that every conceivable change in the system involves a conversion of the thermal 
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energy U-into ordered compressive energy. But this is a violation of the Second Law, so 

it cannot occur (except for microscopic "virtual" fluctuations that cannot grow to macro­

scopically observable size). Thus the state -is stable by virtue of the Second law. 

The existence of dual forms of the Principle of Virtual Work has long been recognized 

in the context of the theory of static elastic structures, but both forms of the principle 

were stated in a way that involved only ordered energy, so the connection with the Second 

Law was never brought to light. The First-Law form of the principle that is based on the 

equilibrium expression for energy (Fig. 1A) is known in the elasticity literature as Dirichlet's 

Principle. 3 , 13 The form of the principle that expresses the energy in terms of an intensive 

quantity (P in the case of a gas, stress in case of an elastic structure) rather than an exten­

sive quantity (V in the case of the gas, strain in the elastic case) is knowi as Castigliano's 

Principle 3 , 14 (although it had earlier been enunciated by Menabrea 5). In the classical 

form of Castigliano's principle the energy source that produced the deformations of the 

system was pictured as an arrangement of ropes, pulleys, and weights, so it was just as 

imaginary as the energy source involved in Dirichlet's Principle. Because the ultimate en­

ergy source for the deformations in Castigliano's Principle was gravitational (hanging weights' 

a deformation potential function existed, and the principle consisted of the statement that 

stable equilibrium is characterized by a minimum value of the deformation potential. In 

the present development, the concept of "deformation potential" is replaced by that of 

"total internal free energy" of the system. The existence of such a quantity in integrated 

form, rather than as a (possibly imperfect) differential, cannot be assumed in advance. In 

Sections V and VII it is proved that such an integrated free energy does in fact exist for 

both static and moving fluid systems. The fluid generalization of Castigtiano's Principle 

is the statement that the total internal free energy of the system is a (local) minimum for 

stable flow. 
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Because 8v U = -84A, the change in UJ is the mirror image of the change in internal 

ffee-energy A, and the same is true of'the integrated quantifies U and A. Thus if A is 

'minimum for a stable static atmosphere, then U must be maximum. In fact, since in clas­

sical mechanics only changes or differences in energies are observable, an arbitrary constant 

can be added to A, and this can be chosen so that A = -U. When gravitational energy is 

included, the constant of A can be adjusted so that -A is equal to the sum.of L+and the 

total gravitational energy. This is done in what follows. In Section V it is shown that, for 

a stable static atmosphere, A is minimum and so the sum of Lt and the gravitational energy 

is maximum. In Section VII E it is shown that, in a relativistic context, the statement that 

U- is maximum for stable flow holds even for arbitrary fluid motion. This statement is 

equivalent to the statement that the total entropy S is maximum for stable flow. This 

obviously is a Second Law definition of stability. In.Section VI it is shown that the First 

Law form of the Principle of Virtual Work cannot be adapted to include fluid motion. 

Thus, whereas either the First-Law form or the Second-Law form of the Principle of Vir­

tual Work can be used in the static case, only the Second-Law form can be extended to 

the dynamic case. 

The fact that, in the static case, both forms of the Principle of Virtual Work con­

stitute valid but different stability criteria provides the means for constructing a minimax 

statement of the problem, which in the case of a box of gas is simply the statement that 

U tends to a minimum whereas U tends to a maximum, and at equilibrium the two are 

equal. That is, if S is suppressed by making it constant throughout the box of gas, then 

it follows from Equation (37) that 

U tf u(n) d(x); L =f/[nH - P(H)] d3 (x); (58a, b) 
V 3 
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and, from the inequality of Equation (36), that 

f/u(n)d3(x)>Jf [nn - P(H)]d 3 (G). (58c) 

This inequality could serve as the basis of a direct, iterative way of finding 'W(x) and H(x) 

in that a best answer for n(x) is found by minimizing the left side, and then substituting 

this best answer into the ight side a best answer for H(x) is found by maximizing the 

right side. For this simple problem, these two steps would suffice to give W(x) and H(x), 

but in a more complicated minimax problem successive iterations might be necessary. It 

is important to note that n(x).and H(x) are varied in turn, not simultaneously. If they 

were varied simultaneously, then, because of the presence of the term nH in the integrand, 

it. would no longer be possible to assert that L = maximum since the sign of 6(2) U would 

be indefinite. It would, however, be permissible to vary n and H simultaneously if the 

condition fbnBH d3 (x) '< 0 were observed. This is just a special case of the Second-Law 

condition stated in Equation (44). 

The transition from a minimum principle to an equivalent maximum principle as'il­

lustrated in Equation (58) is called a Friedrichs transformation. It was develojed by 

Friedrichs 2 in order to demonstrate the equivalence of the Dirichlet and Castigliano Prin­

ciples. He also pointed out that, because the Castigliano Principle involves the intensive 

quantities of the problem as primitive variables rather than as derived quantities, it is usually 

easier to fit boundary conditions on a free boundary where intensive quantities have speci­

fied values. On the other hand, the convergence of a numerical solution is often faster 

using the Dirichlet Principle. 

In order to generalize the above considerations from a simple box of gas to a static 

atmosphere in a gravitation field, it is only necessary to replace u and itwith (u + nMO) 
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and (t nM@) respectively, where 0 = (x, t) is the specified gravitational potential. The 

corresponding total energy E and total internal free energy A are then 

E [u(n, S) + nMo(x,-t)] d3 (x) (59a) 

- [U(V, S) + MO(-X, t)] d 3 (A) (59b) 

and 

A = - ( + nM)d 3 (x) (60a) 

= f [P(H, S) - nM¢ - nH] d3(x) (6b) 

= [VP(H, S) - M - H] d 3 (A). (60c) 

In Sections IV and V it will be shown by direct calculation of the first and second variations 

that E and A are both minima for a stable static atmosphere. 

It is evident from (60c) that, if H is parameterized in such a way that the variation of 

its integral is identically zero, then it could be omitted altogether and A could be identified 

with f (VP - MO) dN. If H is expressed as a Jacobian constructed on the three families of 

surfaces nA(A, t), i.e. if H - det(aVA/AB) and SilA = 0 on those A-surfaces that coincide 

with the boundary (either free or rigid) of the system, then 6 f H dN = 0 to all orders and 

H can be dropped from the integrand of Equation (60c). (In the case of an action integral 

over time as well as space, the same thing can be accomplished by representing H in the 

form H - (atn°)A where i?°(A, t) replaces H as the primitive variable. If 670 = 0 at t and 

tF , then B[fHdt]A = 0 to all orders.) 
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The intuitive significance of the energy VP - MO that survives in the integrand of 

Equation (60c) if.H is dropped is illustrated in Figure 2. Figure 2A illustrates that VP is 

.the energy required-to inflate -a,blble of volume V against a pressure P. This energy could 

be recovered by arranging to utilize the energy that would' be delivered by the surrounding 

fluid during a quasi-static collapse of the bubble. Thus, although the energy resides in the 

surrounding fluid, its conversion to some other form occurs in or near the volume V and 

so is to be associated with this volume. 

The corresponding interpretation in the case of gravitational energy is illustrated in 

Figure 2B. According to this interpretation, the energy of interest is the potential energy 

of abubble embedded in the atmosphere. Since a bubble tends to rise rather than fall, the 

relevant potential energy is -MO (if the bubble displaces one mole of fluid) rather than 

+MO which would be the potential energy of one mvle of isolated matter, rather than the 

energy of an embedded bubble. An alternative way to justify the same conclusion is to 

note that if the bubble is pushed downward a distance 6X, a mole of matter in the sur­

rounding fluid must be raised a corresponding distance, so the total potential energy of the 

atmosphere has been increased, and this increase in energy must be associated with a de­

-crease in height (of the bubble). Here again, the energy resides outside the bubble, but 

because its conversion to some other form (usually kinetic energy) is a function of the 

change in bubble height, it must be associated with the bubble. Thus (VP - MO), is to beAA 

regarded -as the potential energy of a'bubble of volume V that displaces mass M.. It can be 

shown that for a vertical column extending fron the bottom to the top of,a statiatmos­

phere f(VP - MO) dN = 0 at equilibrium and increases for.any fluctuation from equilibrium 

if the atmosphere is stable. Thus this integral can be considered the total buoyancy poten­

tial of the atmosphere, and this is the quantity that is to be identifie.d with the total in­

ternal free energy A of a static atmosphere. 
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(A) (B) 

INITIAL FINAL BUBBLE 
BUBBLE -BUBBLE BBDISPLACEDOMASS = M) 

p j MASS 

70 5X [MOVEMENT 
wIIN FLUID 

0 
8v A = P6V = Ov[UP(H, S)] OxA = -MX - VO= 8x[-MO()] 

Figure 2. Potential Energy of a Molar "Bubble". (A) Compressive Energy of a Bubble With Molar Volume. 
(B) Change in Gravitational Energy of a Bubble that Displaces Molar Mass. 



In the sections that follow, the -H in the integrand of Equation (60c) will be retained. 

Its inclusion may be regarded simply as an arbitrary change in the reference level of the 

energy (V-P - MO). 

The fact that the molar free energy is effectively the energy of the corresponding 

bubble whereas the energy E is the total energy of the matter within the bubble is related 

to the fact that in a static atmosphere BE is equal to the work done against the body force 

F that acts on the matter, whereas 6A is equal to the work done against the deformation 

force -Q that acts on the bubble containing the matter: 

BE = -F . SX; (SA) s = - * BX; (61a, b) 

where, by Equation (10a), ! = -F for a static atmosphere. These relations will be con­

firmed by the first-order variations calculated in Sections IV and V. 
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IV. TOTAL ENERGY OF A STATIC ATMOSPHERE


Dirichlet's Principle applied to a static atmosphere says that the atmosphere,is -stable 

if the.total thermal and gravitational energy is a minimum with respect to all possible fluc­

tuations about the state of hydrostatic equilibrium. That is, for the equilibrium configura­

tion the first variation of the total energy E of the atmosphere. should vanish, and its sec­

ond variation should, be positive-definite. Thus 

6")E = 0 and 6(2)E > 0 (62a, b) 

are sufficient conditions for stability of a static atmosphere if the atmosphere is thermally 

isolated and the virtual fluctuations are isentropic. From the thermodynamic point of view, 

the above conditions are simply the standard way of characterizing a stable isolated system 

in the energy representation. (In the entropy representation the corresponding character­

ization is the statement that the total entropy of astable isolated system is;'maximum. 1 1) 

The most direct way1 to obtain expressions for 6(l) E and 5(.2 )E in .terms of the par­

ticle, displacement .6X is.to write E = f(U + MO) nd 3 (x), and then usethe relations 6n = 

-nV - 5X, 50 = 5X - VO, (SU)s = -(p/n) 7 • 6X, and similar -thermodynamic relations to 

reduce all differentials to expressions involving SX. This approach shows that the condition 

6(1)E = 0 is satisfied if the equation for hydrostatic equilibrium is satisfied, and that the 

condition, 6(2)E > 0 is consistent with the Vaisdld-Brunt stability criterion. 8 , 9 This form 

of, proof could be temed "non-holonomic" in the sense that the particle positions them­

selves, are never explicitly represented, but rather only their differential displacements 5X. 

By contrast, the proof given below is "holonomic" in that the-particle positions are repre­

sented in terms of the Lagrange surfaces AA (zc, t), and the 6X that appears in the expres­

sions below is not a primitive differential variable, but rather is short-hand for the second­

order expression in 8A4 that was given in Equation (36) of Paper I: 
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Although themathematics involved in a holonomik calculation of (1)E and (2) E is 

far more intricate than in a non-holonomic calculation, the holonomic approach has the 

great advantage that it establishes the -basis for a direct (:e. trial-and-error) solution of 

complicated fluid-dynamical problems. Only after the action integral of a variational mini­

mum principle has been expressed as an explicit functional is it possible to insert param­

eterized trial functions and adjust the parameters so as to minimize the integral. It is a 

treacherous fallacy to think that, once a variational minimum principle has been justified 

by a non-holonomic argument, it is a simple and straight-forward matter to write down 

the appropriate holonomic form of the action integral. This view is fallacious because it is 

possible to write down many different action integrals that are all identical for their com­

mon extremal flow, but which differ for non-extremal flows and, hence have radically dif­

ferent topologies in parameter space. 

In the convected frame the independent variables are AA , and if these are normalized 

in the manner described in Section II A of Paper I, then d3 (A) = dN is the infinitesimal 

mole number and the explicit functional for E is 

E [U(, S) + M(X, t)] d3 (A) (63a) 
N 

where the trial functions are the three components of X(AA, t) and the functional depend­

ence of '(X, t) is given. (X will be used to designate the dependent vector function X(A, t) 

whereas x will be used to designate the corresponding position vector used as an independ­

ent coordinate.) The time dependence of 4 and X (and of S, if such is specified) is to be 

regarded merely as a parametric dependence since in Sections IV and V time is not in­

cluded among the independent variables. Its inclusion makes no difference 'in the calculated 

expressions given below for the variations. The molar volume V and the molar entropy S 
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are given by 

9 J' det( §) S S(A (63b, c) 
A XA)I 

where S(A, t) is a specified function. The molar equilibrium internal energy U(V, S) is 

also known, either as an explicit function as illustrated in Equation (49) for a perfect gas, 

or as an expansion of the type illustrated in Equation (55) for the case of an arbitrary 

fluid. 

In a Cartesian inertial frame, E has the form 

E = fV [u(n, S) + nMO(x., t)] d3 (X) (64a) 

-=where now the trial functions are AA (z ' t), (A 1, 2, 3) and 

n - JA = de, ,' S = SIAA(Z, t);t] (64b, c) 

S(A, t) is the same specified function as given in Equation (63c), but now it is a function of 

x and t because of the (x , t)-dependence of AA(x, t). (x, t) is the same specified function 

that appears in Equation (63a), and the equilibrium internal energy density u(n, S) = nU is 

either a known function of n and S of the type illustrated in Equation (50) for a perfect gas, 

or else of the expansion type illustrated in Equation (56) for an arbitrary ifuid. 

For the reasons discussed in Section III A of Paper I, the calculation of 51 + 2) E was 

carried out in the inertia frame rather than in the convected frame. The necessary expression 

for 8( 1 + 2 )n is given in Equations (15) and (16) above, orin Equation (44) of Paper I. The 

expression for 8O + 2)S is given in Equation (4) above, or Equation (43) of Paper I. Using 

these expressions, together with Equations (7) and (53), the expression for 8(1 + )E can, 
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after much partial integration and algebraic manipulation, be cast into the following form: 
3 

5(1 + 2)E = [5(l + 2)El s + [5(' + 2)EI (N) (65a) 
N=1 

where 

[5( + 2 )Eh s = -J (TH+ o)- Xv(w +MO)-1/2XFp15(1 + 2) n - d ;+o (65b) 

P[80a + 2)E](P! ---f . 6 (1 + 2) n d3(x; (65c) 

v 1V 
-=[6(2 )E]v V 

'/4[(V8• x)+r-(BX .V)fd(x); (65d) 
fJ 

= /[(6X V2Piz n) (6X -Vp) -- (6X -VPh21 d3 (x); (65e) 
V ' .11 

where '6(1 + 2. is given in Equation (15) and 

Fp - - Vp - MVq5; H = (au/an) s ; (65f, g) 
n 

p = nl- n 2) s (65h, i)u; 2 23

The subscript p has been added to Fp to emphasize that in this case the force involves Vp 

rather than VP, which will be encountered in Sections V and VII. The overhead bar indi­

cates the (x, t)-dependence that corresponds to the particular set of trial functions 

KA (X, t) about which the variation takes place. These are not assumed to be the ex­

tremal trial functions, which will be designated AA (r, t). The extremal trial functions 

]v = 0. 1VP+ MVO= 0,are the ones for which 5 1 I This in turn requires that -Fp = 
n 

which is the hydrostatic force equation. Thus the integral given in Equation (65c) vanishes 

in the extremal case. A comparison with Equation (61a) shows that in the general 
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non-extremal case the integral of Equation (65c) represents the, work that is being done 

against the non-vanishing force Fp by the displacement flux S(1 + 2 

The integral given in .Equation (65e) is the spatial integral of the Viisal-Brunt ex­

pression for the buoyancy displacement work that was given in Equation (27). The in­

tegrand of Equation (65e) is a slight generalization of the expression in Equation (27) in 

that Equation (65e) is not limited to displacements from hydrostatic equilibrium, but 

rather. represents the second-order change in energy resulting from a displacement from an 

arbitrary non-equilibrium state of the atmosphere. (The first-order energy change is in­

cluded in the integral of Equation (65c).) 

The integral given in Equation (65d) represents the energy increase that results from 

any deviation from equality between internal and external pressures. This can be seen by 

writing the integrand of Equation (65d) in the form 
1 ^-AI 

-X) + (6X •V)]2 = /nUvvIxV - (a V)s]2 (66a) 

A A A 
where 8xV = VV • 8X and&(5pV) s is the adiabatic change in molar volume that corre­

sponds to a change in internal pressure that is equal to the change 6X - Vp in external 

pressure, i.e. 

(5pV) s -
av) 5X • V - -

V
aX • Vp (66b) 

where use has been made of the definition of 3given in Equation (21). Because (ov U) = 

/Uv v (5V)2 = (a 2 U/aV 2)S (OV) 2 is the second-order change in molar internal energy 

that is produced by an adiabatic volume change, it is evident that Equation (66a) repre­

sents the density of energy change that is to be associated with the adiabatic deviation of 

6xV from the pressure-equalizing volume change (6pV) s . 
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The surface integral in Equation (65b) represents the loss in energy by transport of 

matter across the fixed bounding surface. The energy lost per mole of matter that leaves 

V is H, + M. The term - 6X . V(H + MT) is the correction that results because at the 

end of the displacement 6X the matter at the observation point c on the surfaceS'. was 

originally at z - 6X, and the factor '/z gives the average between beginning and end of the 

displacement. The term -/ 28X - F represents the amount that the energy of the lost matter 

had been increased because of work against the force Fp. If the standard boundary con­

ditions given in Equation (54) of Paper I are imposed, it follows that 5(1 4-2)n • d , 0, 

and the surface integral vanishes. 

Imposing these boundary conditions, and replacing the integrand of Equation (65e) 

with the equivalent expression given in Equation (32), it is evident that at the extremum 

the variation of E is a purely second-order expression: 

1 
6(1 + 2)E - 8( 2 )EE[(V_- * 5X) + =z (5X * Vp)] 2 d3(x) 

(67) 

- f [(VSVp):X6X] nd3(X). 

This is the expression that resulted from Eliassen's 1 non-holonomic derivation. (His ex­

pression replaces Vp with -n'MVO, but this is valid only in the static case, whereas Equa­

tion (67) continues to be valid in the dynamic case considered in Section VI for which 

DtV # 0.) 
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V. 	 TOTAL INTERNAL FREE ENERGY OF A STATIC ATMOSPHERE 

The heuristic arguments of Section III indicated that the Second-Law or Castigliano 

-form of the Principle of Virtual Work corresponds to variations of a total internal free en­

ergy A df'the form given in Equation (60). In this Section, an integral functional of this 

form will-be taken as the starting point, and the general expression for the first and second 

variations about an arbitrary set of trial functions (indicated by an overhead bar) will be 

calculated. It will be shown that 5(1 + 2)A has just the form to be expected for the vari­

ation of a free energy, namely a differential work minus the accompanying differential in­

crease in heat or unavailable energy. 

When expressed in the convected frame, the total free energy will be defimed to be 

A = [QP(H, S) - M(a, t) - H(A, t)] d3(A) 	 (68a) 
N 

-where @(x, t) and S(A, t) are prescribed functions, V JA,-and P(H, S) is a known state 

function. Compared with Equation (63), an additional degree of freedom is present in the 

undetermined functional dependence of H(A, t) whose variation is represented by 

H(A, 	 t) = H(A,t) + 51 H. 	 (68b) 

In a Cartesian inertial frame A has the form 

A = 	 f [P(H, S) - nM4(x, t) - nH(A, t)] d3 (x) 	 (69a) 

V 

Like 	 S = S[AA (x,t); t], H varies by virtue of the variations of its argument functions 

AA(Z, t .) However, it has an additional variation because its functional dependence on 

these argument functions is not specified. As indicated in Equation (40), its total variation 

about an arbitrarily chosen set of trial functions KA (Z, t) is 
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8(1 + 2)H 	 H[AA(z, t); t]. - flIXA(Z, t); t] 

-SX •V + z(6XSX:VVH) (69b) 

± 8HH - X• V(8HH-). 

The expressions for 60' + 2)S and 6(1+ 2)nare given in Equations (4), (15) and (16). The 

first and second partials of P(H, S) are given in Equations (33) and (54). Using these, the 

expression for the first and second variations of A in the inertial frame can, after consid­

erable reduction, be cast into the following for: 

5(1 + 2)A = [(1 + 2)A]s + [5(1 + 2)A](N) (70a) 
N= I 

where 

[6(1 + 2)AIs = [(Fl+M )-Y2X V(H-+ N f) -'/26X 	 "Fp - 25aH lS(' + 2)n "-d9; (70b) 
n



[6(1 + 2)A)v) = FPP " + 2)nd3(X); (70c) 

v V 

[')A = (N - n) SHd3(x); 	 (70d) 
fV



/[8(2)A] (3) = T5(NHH + TV - SX)2 d 3 (x); 	 (70e) 

= 	 . * VP) 	 T(V OX) 2 ] d3(x); (700[5(2)Al(4) 1/2[(5X Vnn)(BX - 6 	 
V



[3( 2 )AI(5) = (6(')n) (5,H - 5X VF/nI d3 (x) ; 	 (70g) 

where 6(1 + 	 2)n is given in Equation (15) and 

Fp -- VP - MV@; 	 (70h) 
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(P/8H) s ; -- ~(P/H)I_= _ 2 (70i, j) 

The sum [5(1 + 2)A](1,) + [5(1 + 2)W(2)is just equal to the spatial integral of 

8(l + 2 )a given in Equation (47b) (for DttV = 0). Thus these two integrals represent the 

change in free deformation energy to be associated with F. #10 and N - n *0. The sum 

[8(2)A] (4) + [6(2)A](5) is equal to the integral given in Equation (48b) (except that it is 

not limited to displacements from equilibrium). Thus this sum is the change in free energy 

to be associated with the buoyancy restoring force. 

The integral [8(2)A] (3 ) can be interpreted as the second-order change in the internal 

energy density that results because of the discrepancy between (5, N)s, the change in (in­

tensive) mole density produced by an isentropic change in enthalpy, and OxN - -NV - SX, 

which is the amount by which the intensive mole density would change if its change were 

consistent with V - SX. This interpretation follows from the fact that (5H N)s ­

(8N/ta) s 6HH = PH H H H= 6RH where in the last step use has been made of Equa­

tion (70i). If u(N, S) is the internal energy density that corresponds to the intensive mole 

density N, then Equation (53) shows that uN N = P3!N 2 where the j is the same intensive 

bulk modulus that is defined in Equation (70j). Using these relations, the integrand of 

Equation (70e) can be written in the following form: 

(N- H +- SX) 2 = 1/24 $ 8 H +NV - ) 

(71) 
. (1

= AU;NN [(811N4)S - (SXN)1 2 -82 

If the enthalpy change in a sample of the fluid is purely in accord with equilibrium adi­

abatic expansion or compression, then (5,N), = (bxN) and the change in energy density 

given by Equation (71) vanishes. This energy is therefore the non-negative energy increase 
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that resulfs from the non-adiabatic fhictuating transport of thermal energy through the 

fluid, i.e. the-randoin "sloshing about" of heat flux. In an inviscid t~irbulent fluid this 

heat flux could also be pictured as including, the "uasi-heat flux" of randomized isotropic 

turbulence energy. 

The energy density represented in Equation (71) should be regarded as.supplementing 

the buoyancy energy density n(8 2 )A), which appears inithe integrand of Equation (700.' 

[(8(2)A) s is the expression given in Equation (25), with bars replacing the tildes.] The 

derivation of Equation (25) showed that this expression is the work of an adiabatic dis­

placement 6X, whereas 6(2) u is the energy change resulting from heat flux that ac­(H, X) 

companies the displacement. Thus thte integrals of Equations (70e) and (70f) taken to­

gether represent the total energy increase to be associated with the displacement field 6X.' 

Equations (42b) and (44) show that the integral of Equation (70g) is just the negative of 

the increase in.unavailable energy that accompanies the displacement 8X. Thus the sum 

of thle three integrals given in Equations (70e-70g) is just the total (second-ordei) change 

in free energy that is produced by the displacement field 5X and the simultaneous change 

in molar enthalpy B. H. 

In a similar way, the sum of the integrals given in Equations (70c) and (-70dj repre­

sents the change in free energy that, unlike the change discussed above, is of'first order in 

SX and 8 HH (with a second-order contribution 68(2 )n). This is seen by noting that 

Y •1 +it follows from Equatibn (14) that for a static atmosphere (DtV = 0), Fp . 2)n -

- S(1 + 2 )n = (6(-l + 2 )a), is just the isentropic deformation work that,is performed


by the displacement flux 5(1 + 2 )n against the deformation force 0. Equation (42a)

- shows that the integral given in Equation (70d) is just the negative -of the unavailable en­

ergy increase that results from the enthalpy change 61 H. 

48 



Thus, if the standard .boundary conditions are imposed, the surface integial given in 

Equation (70b) vanishes, and the total variation of A can be written in the following form: 

S(1 + 2)A = f [(8(1 + 2)a) -7nHQ1 d3 (x)s 
 

V 

(72a) 

+ £ [ (2) H)U + n(6C2)A)s - (5(1)n) 8CQ] d(x) 

where 

(1 + 2)n ;(6(l + 2) a) 5 - . + 2)n = _(-Vp + MV) (72b) 

(72d) 
8.T---( F-2 2H (72d) 

SH HY2 - - + NV. 8- ; 

1 
(8(2)A)s -2n [(OX Vnn)(SX * VP) - O(V S8X)2] ; (72e) 

6XQ 
 SHP- X •VP/n; (720 

lap F42 
= -V - (nOX) ; N 

-

- 72g, h,i) 

Both integrals on the right side of (72a) have the form of changes in free energy. The 

first integral vanishes in the extremal case which is characterized by 
1 . 

-Vp+ MV O=0; N =n. (73a, b) 
n 

(Use has been made of the fact that N = n implies P = p.) The second-order variation of 

A around the extremal solution, 6(2) A, is given by the second integral on the right side of 

Equation (72a) with the bars replaced by tildes and P and N replaced by and'P n. 
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Adiabatic displacements about the extremal solution are characterized by the condition 

=6x Q=64H - 5X • Vp/n 0. (74) 

When S. H = 5X - v7/W"is substituted into .Equation (70e) this becomes identical to Equa­

tion (65d), i.e. 

[-(2)A1() = [8(Z)' (2) for xQ = 0. 	 (75) 

The following condition on BX must be fulfilled if the adiabatic change in internal pressure 

that is produced by a volume change, (Sv'O)s, is to be equal to the change in external pres­

sure SX • Vp: (BvP)s --lV -6X = 5X Vp. If V X = (6X Vp)/p is substituted into 

Equation (700, it becomes equal to Equation (65e), i.e. 
[8 ( 2 )  ) = [- )for' (76) 

Vj V BX- X Vp. (6 

If the fluctuations in A observe the conditions of Equations (74) and (76) simultaneously, 

then 
5(2)- = 5(2)'.(7a

A E (77a) 

if 

61111 5X * Vp/n and V X = 5X *'V . (77b, c) 

In other words, because A involves an extra degree of freedom represented by the inclusion 

of H as an independent variable, a wider class of fluctuations is possible compared with the 

fluctuations of E. However, the subclass of A-fluctuations that is adiabatic and pressure­

equalizing is identical to the class of E-fluctuations, and for this subclass the variations in 

A and E about their common extremum are identical. 

This statement is-valid only if the standard boundary conditions given in Equation 

(54) of Paper I are satisfied. If, however, these conditions are not imposed and matter is 

allowed 	 to cross the boundary, then 
[6(1 + 2) ] S = -[5(1 + 2)'] if&HH 0on,. (78) 
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This is the surface counterpart of the non-extremal volume relation 

OMAIv = -[()E]v ifn = NinV. (79) 

The reason for this difference in sign is evident from a comparison of Equations (59a) and 

(60a). Except for the subtle (but important) difference between u and zt, A is defined to 

be just the negative of E, and at the extremum this is exactly the case: 

A- -E. (80) 

The pbysical explanation of this sign difference is that A is a potential function for the 

work done on the environment of every sample of matter under consideration, whereas E 

is a potential function for the work done on the matter itself. 
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VL IRREDUCIBLE FORM OF HAMILTON'S PRINCIPLE 

With the explicit expression for 6(1 + 2) given in Section IV of Paper I, and the 

expressions for 60' + 2)E and 6 + 2)A that were derived in Sections IV and V of this 

paper, it is possible to demonstrate the validity of two different forms of Hamilton's Prin­

ciple for compressible baroclinic flow of an inviscid fluid in the presence of a given gravi­

tational field. These two principles differ in the number of dependent variables involved, 

i.e. in the size of the set of trial functions involved. In the form of Hamilton's Principle 

presented in this section (whose first variation in the -convected frame has long since been 

discussed in the literaturel6- 19 ), three dependent variables are involved. In the convected­

frame analysis these are the three components of the position vector X(AA, t) of the par­

ticle that is identified by the three Lagrange parameters AA. In an inertial frame analysis 

the dependent variables are the three families of Lagrange surfaces AA (z, t). Either of 

'these 	 two sets of three functions constitutes the absolute minimum number of variables 

necessary to describe arbitrary three-dimensional flow, and for this reason the form of 

Hamilton's Principle that involves no more than these variables will be called the "irre­

ducible form." 

The irreducible action integral £ and the total instantaneous Lagrangian L are defined 

in terms of the total kinetic energy W and the total static energy E by the following 

relations: 

Ini the convected and inertial frames L is defined in terms of the molar Lagrangian L and 

the Lagrangian density £ respectively by the following relations: 

L =f Ld 3 (A) = f d3(x) 	 (81b) 
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where 

L 	 W -.. U(.V- S) - MO(X, t); W -/2M( 8tX)A, (atX)A (81c, d) 

R = nW - u(n, S) - nM(X,t); W = 3 MV V Sie,f) 

where 

V = 	 - E (atAA) x (VA B X VAC)/n. '(A, B, C cyclic) (81g) 
A= 

In the cbnvected frame V- JA, and in a Cartesian inertial frame n, JA 

The expression for 5( 1 + 2) W9that was given in Equation (48) of Paper I can be put 

into a more compact form by making use of the identity 

(n + 8 1)n) SX A - YAn(6XSX:VA) A 5(1 + 2)n • (82) 
- V 	 * [8(1 + 2)n(Y2OX A)] 

which is valid for any vector A. When A is identified with the acceleration DtV 

atV + V • VV for any set of trial functions, the sum of the integrals given in Equations 

(48d and e) of Paper I can be replaced by the following expression: 

[6(1)#]V + [3( 2)w]V) = _f M(DtV) . (' + 2)nd 3 (x) dt,



(, At)


(83) 

+ A ('AMDtV) . 6X(6( 1 + 2 )n) d.9dt.trAt) 	 '":" ". . 

When the surface term of this equation is absorbed into the surface term given if E4ua­

tion (48c) of Paper I, the following expression for 5(1 + 2 ) o results: 

1 + + 2 9]s + + 2)9]2)o) = [M' + 2)qT + [85' [3(1 V (84a) 

where 

[8(' 	 + 2 T = [MV . (6X + BX . VSX)]ti d3A) (84b) 
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where d(A) = n-d3x); 

+ 2 At) W=- 2AX VW+ Dt(MV . 8X)- M(DtV) • 6X] 6(1 + 2 )nddt; (84c) 

[5(1 + 2)W] 4 M(DtV) .(1 + 2 )nd 3 (x) dtV 
(vAt) 

(84d) 

[8 2 ) T 6( 2 ) W ] n+ t + d3 (x) dt 

where 

2)W = M(t 5tX) ;(84e) 

= Y(2)W - (VVV) VI. (84f)I2M5XSX:[V(DtV) 

It can be shown that, if the terminal conditions BX = 0 at t, and t F are imposed, the term 

Dt(MV, SX) that appears in the integrand of Equation (84c) makes no net contribution 

to [5(1 + 2)W]s, and so can be dropped. 

The expression for 5(1 + 2)X follows from Equations (65) and (84):


t 8t
 4-2 )E dt 
(1 + 2 ) X (1 + 2) ¢W f t_ ti ( I+ 2 E d 

8 a 
! (S5a) 

3 32)(N) 

2)] + E [6(1 + 2 ) (N+ [6(1+ S[5(0 +2) 
N=1



)WIT is given by Equation (84b) and where [5(1 + ' 

[61 +2) =/3_ j(L_1/)--X-V(E-n+ 1 (Mv .5X)-h 9p .x 6SO + 2)n -dffdt; (85b)s •~yAt) -

5(l1 [50 + 2 )£I(1) = -f * 
2)nd 3 (x)dt; (85c) 

(v, At) 
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[(s(z)? = 'AM jvt) t(Dt5x) .(Dtox)-E 2 (V-SX+5X -vii/ 2l1d3(x)dt; (85d) 

f 3
=2X3 (2)W - 8 2 )Av);d (x)d~t (S5e) 
, t At) 

where 

I 
4p -( P - M VDtVt)MtV +-Vp + MVO. (85f)

n 

is the speed of sound introduced via the relation T= ;MC 2 ; (2 W is defined in Equa­

tion (848); and C( 2);AV is the Viaisil-Brunt work given in Equation (25). The subscript 

p on the force FP and on the d'Alembert (or deformation) force Op emphasizes that 

p - -(aU/a)s rather than P(H, S) is involved in the definition given in Equation (85f). 

If the L in the definition £ = fL d3 (A) dt is replaced by 

V [W - WR(A,t)] - [U -UR(A,t)- MO = L - + UR - (86) 

where WR (A, t) and UR (A, t) are specified reference energies, then it can be shown that 

( + ), = 1 + 2 f V d3 (A) dt is identical to Equation (85) except that L in the sur­

face contribution given in Equation (85b) is replaced by L. 

The terminal and boundary conditions to be imposed on the trial functions used in 

the action integral £ are the same ones given in Equations (52) and (54) of Paper I for the 

kinetic action )t. 

The expression for 5"'+ 2)£ that is given in Equation (85) is valid for fluctuations 

about an arbitrarily chosen set of trial functions. If the standard terminal and boundary 

conditions are imposed on the trial functions, then only the integral given in Equation 

(85c)contains a first-order sensitivity to the fluctuations, so the necessary condition for 
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(. )2 = o isZ, 0 is
 


Op = MDtV +-Vp + MV =0 (87) 
n 

which ,is the equation of motion given in Equation (9). 

The fact that the Euler-Lagrange equation for £ agrees with the equation of motion 

for inviscid compressible flow proves that Cis the action integral of a satisfactory vari­

ational principle, but an examination of 6(2)C given in Equation (85) shows that this 

.variational principle is not simultaneously an energy principle. That is, the signs of the various 

contributions to 62). are such that 6(2)X cannot be identified with any physically meaningful 

work or energy change. This is a-consequence of the fact that the integrand ON -E) of Equa­

tion (8 lay has no physical significance. The sum (W + E) is, of course, just the total in­

stantaneous energy of the fluid, and if the Euler-Lagrange equation arising from 

5") f (W + E)At = 0 were identical to the equation of motion given in Equation (9), 

f (W + E)dt would be the action integral, of a satisfactory variational energy principle. 

However, this is -not the case. The Euler-Lagrange equation that corresponds to 

8(1) f (N -+ E)dt =-0 has a force term with the wrong sign. Thus f (W -,E) dt has the 

desired first variation but a physically meaningless second variation, whereas the reverse is 

true of f (W + E)d. 

It will be shown in the next section that both the first and second variations of the 

action integral Ji' f (W + A) dt have the desired behavior, so dis the basis of a vari­

ational energy principle. In fact, J (t. - t,) can be interpreted as the time-average of 

-the total free energy of-the system, and as such can be regarded as the appropriate thermo­

dynamic potential 'function (or, more exactly, functional) of the total fluid system, inthe 

sense that the total time-average free energy strives toward a minimum, and its departure 
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from this minimum is a measure of the departure of the system from equilibrium flow, 

i.e. flow that.obeys the equations of motion. 

Before demonstrating this, however, a few observations will be made regarding how 

the indefiniteness of the sign of 6(2)C impairs the utility of £ as the basis for a direct (i.e. 

trial-and-error) solution of a flow problem. The integrand of Equation (85d) is the dif­

ference of two positive-definite quantities. Starting with the extremal set of trial functions 

Aor R , whether achange in the functional form of the trial functions will cause £ to 

.increase or decrease depends on which of the terms in Equation (85d) is more affected by 

-the'change. -Thus the extremum is a saddle-point in parameter space, and the-properties 

of this saddle, surface are artifacts of the way the trial. functions are parameterized rather­

than 'of-the physical properties of the extremal flow. In particular, even if the, extremal 

flow is physically stable, the extremum is still a saddle-point. This means that any attempt 

to solve a problem by making iterative adjustments in the parameters of.the-trial functions 

always in the direction of decreasing numerical value of £ is almost,.certainly doomed to 

failure. These difficulties are compounded by the integral given in Equation (85e). 'For 

example, if a flow is physically stable-both with respect to the second-derivative-of wind 

shear and with respect to buoyancy, then- the integrand of Equation (85e),'like that of 

,Equation (85d), is the difference of two positive-definite quantities.:-. -

These considerations do not imply that the irreducible form of Hamilton's Principle 

is-entirely useless for finding numerical solutions. Any solution scheme that is based solely 

on the vanishing of the first variation at the extremum will be insensitive to the unpre?. 

dictability of the sign of the second variation. Such a scheme is in fact in common use: 

It consists of using Hamilton's Principle effectively to convert the equations-of motion from 

partial differential equations into a system of algebraic equations. Thisis doneby-expressing 
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the trial functions as series expansions, the coefficients of which are the parameters of 

the variational problem. The condition that the first variation vanish becomes the con­

dition that the first derivative of the action integral with respect to each parameter van­

ish, and this leads to the desired system of algebraic equations. 
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VII. 	 FREE-ENERGY FORM OF HAMILTON'S PRINCIPLE 

A. 	 First and Second Variations of the Total Free Action 

It was indicated at the end of the previous section that the action iitegral 

rtF 
(W + 	 A) dt 	 (88a) 

leads to a satisfactory variational energy principle. This will now be verified -by a direct 

calculation of S( 1 + 2)-W. For the reasons discussed in Section III A of Paper I, this was 

carried out in a, Cartesian inertial frame. When j is applied to a direct numerical solu­

tion of a flow problem, however, this can be carried out either in the convected frame or 

in an inertial frame. 

In the convected frame d has the form 

= /NAt) [W + VP(H, S) - MO(X, t) - H(A, t)] d3 (A) dt (88b) 

where the trial functions are X(A, t) and H(A, t); W is the molar kinetic energy given by 

WVt M(atX)A * (atX)A; V9 =J is the molar volume; P(H, S) is the known pressure func­= 

tion; and S(A, t) and O(X, t) are given functions. S(A, t) has no variation, but [X(A, t); t] 

does have a variation because its argument function X(A, t) varies. 

In a Cartesian inertial frame, ,Y#' has the form 

(88c)- nH(A, t)] d' (x)dt 
+ - nMo(x, t)

=~lv At) 	 [nW P(H, S) 

where now the trial functions are AA (X, t), (A = 1, 2, 3), and H(A, t) = H[AA (X, t); t]. 

The mole density is n = JA , and 'W is nowxa given by Equations (81f, g). Since O(s, t) is a 

given function, it has no variation. Although S(A, t) is a given function, it does have a 
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,,variation because of its argument functions AA (Z, t), -which is given in Equation (4). ;The 

molar entropy'H varies both because of the variation of AA (a, t), and also because of the 

- variation- of the -functional-dependence of H(A, t). The -total-variation of i is given in 

Equation (69b). The pressure function P(H, S)is known, either as an empirical thermo­

dynamic state function as illustrated in Equation (51) for the case of a perfect gas, or as 

an expansion of the type illustrated in Equation (57). 

The expression for 

25(1+ 2) Q/= 5(1+2) (W + A)dt = 5(1 + 2) + ftF 0 Adt (99a) 
f ­ 1-t



follows from Equations (70) and (84), and can be put into the following form: 

4 
6(t + 2 )kQe= [6(1 + 2)WIT + [6+(1IS ]+ E [5 1
 + 2)tQ,](N) (89b) 

N=1



where [N(1 + 2 )-]T is given by Equation (84b) and



[8(1' +.. H - - 2.X"- R - MO) +'Dr(MV " X)6 -¢' MT) V(W ­s



(890) 

8(1 +'/2 ".X+-5 H] 2)n, - dYdt" 
n



[6(0 + 2!](1) [ ? : 5-(1+ 2)n + (i- N)6HHI d3(x)dt; (89d) 
(, At) . 

"[8(Thc),7 = [A; MDtox) * (D X + (~ '. O-X) d3 (x) dt ; 

, At)(89e) 

[6(2)% [}x)"J(3') =f~v + (6(2)A)8] nd 3 (x)dt; ~[89f) 

(,Att) 
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= J] [6(2)A1(5 ) dt = Q dt ; (89g)
tI I 

.-,where 

0, --MDtV - f, = MDtV +-VP + MV; (89h) 
n 

N and j are defined in Equations (70i and j); 8(2)W is defined in Equation (84f);.(8(2 )A)s 

is the generalization of the Viisla-Brunt work that is given in Equations (25 and (72e); 

[6(2)A](5) isgiven in Equation (70g); and 6( 2)Q is the second-order increase in heat or 

unavailable energy that results from substitution of Equation (42b) into Equation (44). 

When the standard terminal and boundary conditions given in Equations (52),and (54) 

of Paper I are imposed, [5(r+ 2)W]T = [5(1 + 2)2g] S = 0. Since [6(1 + 2IW] (1)given 

in Equation (89d) is the only surviving contribution to the variation that has a first-order 

sensitivity, the -necessary conditions for S 1)j=0 ,are 

p MDtV +-Vp + MVO= 0; (90a) 
n 

n = N orJ =11* (90b)k3H/s



The second condition irplies that P = 'p,and this fact has been used in writing Equation 

(90a). These are the equations of motion that were stated in Equations (9) arid (34). This 

agreement-of the Euler-Lagrange equations of W with the known equations of motion of 

the fluid demonstrates that .JWisthe action integral of a valid variational principle. The 

fact that M is also the, basis of a valid energy principle follows from the demonstration 

given in Section V that A is the total free energy of a static atmosphere. Thus W + A is 

obviously the total free energy of a moving atmosphere, and L is essentially just the time­

average of this total free energy. 
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It was pointed out in Section VI A of Paper I that, for any functional .JV that can



be interpreted as the total time-average free-energy of the system, the condition



5(2)" > 0 (91) 

is sufficient (but not necessary) for stability if the comparison class is limited to trial func­

tions that satisfy a single set of imposed terminal and boundary conditions. Referring to 

the expressions given in Equation (89), it is evident in view of'the Second-Law condition 

stated in Equation (44) that the only second-order term that has any chance of becoming 

negative is [8(2 WV ] (3). When use is mdde of Equations (25) and (84f, the resultant suf­

ficient criterion for stability is 

VzMSXBX:[V(DtV) - (VVV) V] 
I (92) 

+ n[(6X • Vn n)(6X .Vp) -(V *X) 2 1 > 0. 

It must be emphasized that this,criterion is valid only for a restricted ensemble of 

trial functions that satisfies a single specification of the standard terminal and boundary 

conditions. A special case of an extended ensemble will be discussed in subsection D below. 

Moreover, it must be recalled that this criterion refers to the onset of internal instability 

rather than laminar instability. (See Sections IV D and VIA of Paper I for a discussion of the 

distinction between these two types of instability.) In the commonly applied Boussine~q 

approximation; V • 5X = 0 and the last term in Equation (92) drops out. if, in addifi6n, 

the fluid has ho density stratification, then Vn = 0 and only the terms involving.YV remain. 

This is the form of the criterion that was applied in Section VI B of Paper 1.. -

-Finally, it should be noted that if W and H are referred to the reference energies 

WR (A, t) and HR (A, t) (both specified functions of AA and t) by replacing W and H in 

Equation (88) with W'= W - WR and H' '= H - HR, then the only change that occurs in 

Equation (89) is that in the surface term 50 + 2 tW'is given in Equation (89c) Wand 
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H are replaced by W' and H'. If the standard boundary conditions are imposed, this sur­

face integral vanishes in any case. This means that the inclusion of the specified reference 

levels WR (A, t) and HR (A, t) causes no change in either the Euler-Lagrange equations 

given in Equation (90), or in the stability criterion given in Equation (92). It was pointed 

out in Section VII of Paper I that the use of reference energies often provides a convenient 

way of avoiding a divergent action integral. 

B. Open Systems and Free Boundaries 

The surface integral [50 + 2 ),Vg] s given in Equation (89c) represents the decrease 

in W that results from transport of matter across the bounding surface 8'. Thus, if the 

standard boundary conditions are not imposed and 6n - d .9#O 0 on 8', Equation (89c) 

gives the change in W.¢ that results from mass loss in an open system that is characterized 

by a fixed total volume V but a fluctuating total mole number N. If reference energies 

WR (A, t) and ER(A, t) for the kinetic energy W and the total static energy E = U + M@ 

are included, the surface term has the following form to first-order accuracy, 

- /It [(W - WR) - (FI + M - ER)] 8 1)n * dSdt. (93) 

iltis shows that if there is equipartition between the relative kinetic energy and relative 

static energy on the bounding surface, then the first-order surface contribution to the vari­

ation vanishes, i.e. 

815( lf'] s = 0 if W R) ( + M; - RR) on Y (94) 

This kind of equipartition is characteristic of wave motion. In the case of such a problem, 

=rather than impose the standard boundary condition 5X - dtr 0, it would often be more 

convenient or more realistic to leave X (or AA) unconstrained on "J and impose instead 

=the equipartition requirement given in Equation (94). Because this makes [b(6 Ye', s 0, 
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the fulfillment of the Euler-Lagrange equations would still be a necessary cohdition for 

S(1)_i' - 0. The imposition of the equipartition constraint on ST is not sufficient to 

make the second-6rder surface contribution to the variation vanish. This non-vanishing 

second-order contribution can be given a meaningful physical interpretation, but it will in 

any case usually be overwhelmed by the second-order volume contribution to the variatibi. 

A free-boundary problem is characterized by a fluctuating total volume V but a fixed 

total mole number N. In this case it is necessary to add a correction to Equation (93) in 

order to take 6V into account. If,.' is written in the form 

fV I n!' d3 (x)dt where '= (W - WR) - (1 + MO - ER),. (95a)
(v,At 

it is evident that the correction that must be added to Equation (93) is 

r, ,[6, 1 ' = dt [f-n-'aV] =f dt f n-'6X d.] (95b) 
At U At L 

Adding this correction to Equation (9"3) gives the first-order surface contribution to 5,4' 

at a free surface: 

[(=)" J ftf PX ddt = f dt [PBV . (96) 
(Y' At) fAt LK9' j 

This showi that [6(r),. r]FS is just the time integral of the work that the system performs 

on its surroundings by virtue'of changing its i'olume. This is the obvious generalization of,. 

the expression 6 vA = PSV that was introduced at the beginning of Section III ifi connec­

tion with the virtual work performed by a one-mole sample of fluid. 

Equation (96) does not take into account the work performed by the constant­

pressure volume reservoir with which the system is in contact at the surface .Y. If the 
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pressure of this reservoir is po, the expression for the total work performed by the system 

aid the reservoir is 

[50)'d"F = f (P - pO)5X " dadt. (97) 

'But this -is just the first-order surface contribution to the variation of an action integral 

.4 " of the form 

01" = A [nt' - po(x, t)] d3 (x) dt (98a)
-(is, At) 

{n[W - WR(A,'t)] + [P(H, S) - po (z, t)] .- [H + M - ER(A, t)]} d3 (x) dt 

(v, At) (98b) 

.where po(z, t) is a specified function of the inertial coordinates (and time). Obviously, 

in the inertial frame 8po = 0 and its contribution to the total variation enters only in con­

nection with the change in volume of the system at the free boundary. Thus po(x, t) is 

just a form of reference pressure, but unlike the other reference energies WR (A, t) and 

ER (A, t) which must be specified as functions of the Lagrange parameters AA, po must be 

a specified function of the inertial coordinates. 

When p0 is subtracted from the molar TLagrangian L' = W' - (T + MO - ER), it be­

comes V" = W' - [(U + poV) + Mq5 - ER ]. That is, putting the system in contact with a 

volume reservoir with pressure po requires the replacement of U by U + p0 V. This is just 

the generalization of the familiar transition from internal energy to enthalpy as the appro­

priate thermodynamic potential when contact with a constant-pressure reservoir is admitted. 

The important generalization is that the reservoir pressure p0 may be an arbitrary (but 

specified) space-time function. For example, in the case of the evolution of a convection 

cell embedded in a surrounding atmosphere whose pressure field po(s, t) is a known 
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space-time function, the surrounding atmosphere serves as a volume reservoir, for the con­

'vection cell. 

All of these considerations hold for the irreducible form of Hamilton's Principle that 

was discussed in Section 'VI, the only difference being that U - H - VP is replaced by 

U(V, S). As a practica matter, however, this difference is very important. The reason is 

that, because in the free-energy form of Hamilton's Principle P(H, S) is an easily manipu­

lated function, the condition P = po on Y' is much easier to impose than the condition 

P -(3u/3V)s = po on Y. In the case of problems in static elasticity, Castigliano's Prin­

ciple has the analogous advantage over Dirichlet's Principle. 

A free-boundary problem is easiest to treat in the convected frame in which a" ha 

the form 

= {EM(t)xA (3tX)A - WRI + W0iS) - po(X,-t)] - [H + MO(X, t) - ER]) d3(A) dt. 
(N,At) (98c) 

The free boundary can be made to coincide with one of the AA -surfaces. If AA repre­

sents the numerical value of this coordinate, then the free boundary condition is 

P[H(A4a); S(Av)] = P0 [X(A.)] (99) 

where for simplicity the time-dependence has not been indicated. Usually, it should be a 

simple matter to parameterize the trial functions H(A) and X(A) so that thii condition will 

be satisfied. If this is not so easy, an alternative procedure can be applied! '.d " can be 

minimized without imposing the constraint of Equation (99). In this case, the extremum 

trial functions represent the best possible (within the limitations of the parareterization 

emplpyed) simultaneous solution of both Equation (99) and the equations of motion given 

in Equation (90). This procedure corresponds to the fact that, even when the free­

boundary condition P = p. on ,Y is not satisfied, 5,W" is nevertheless equal t6 the change 
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in (time-average) rce-energy- of the' total system consisting of the system under study and 

the volume reservoir with which it interacts. 

C.. Incompressible Limit 

It was remarked f6llowing Equation (57) that one way to eliminate the explicit in­

volvement of S in the formalism is to let the reference quantifies in Equations (55-57) 

(designated by subscript o), be specified functions of (AA, t). If this is done in such a way 

that S - So = 0, the entropy dependence has effectively been absorbed into the remaining 

reference quantities and Equation (57), for example, becomes 

P =Po + no(H - HO) + 1i _- H Ho)2(10 

Ogo
H(100) 

Incompressibility corresponds to the limit P. = noMC2 - o. Pfassing to this limit, Equa­

tion (100) becomes 

P = noll - u o where u0 = no o - po (101) 

= 
no, H, and p0 may all be functions of AA , but if it is further required that Vu0 0, then 

UO is a numerical constant or at most a function only of t. This requirement provides a 

way of decoupling internal thermal energy from kinetic or gravitational energy. no 

no(A) is a constant of motion as in the Boussinesq approximation. Because of this, the 

total volume V =f Vd 3 (A) occupied by the fluid must be constant, and, since u o is at most 

a function only of t, &f uoQd (A) = 0. Substituting Equation (101) into Equation (88b) 

and dropping (-%V) from the integrand, the action integral becomes -

J A [ M(atX)A - (atX)A - MO(X, t) + (Vn o - 1) H(A, t)] d3 (A) dt(102> 

whose Euler-Lagrange equations are 

( X)A= DIV = -V'; n n(A); (103a, b) 
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which are the equations for incompressible flow in a gravitational field. For non-extremal 

flows n - I/V * no(A), so the class of virtual flows admits compressibility.' Thus the ac­

tion integral of Equation (1.02). is best pictured as-describing a compressible fluid that is 

flowing, at such low Mach numbers that its macroscopic behavior is that of an in/compres­

sible fluid, but on a microscopic level turbulent density fluctuations are possible. The 

equation n no is the condition that must be satisfied if .d is to be insensitive to"fluctu­

ations in H. From this perspective, H(A,t) is a Lagrange multiplier that arises from the 

imposed constraint Vno = . The variational principle based oA Equation (102) with 

H(A, t) interpreted as a Lagrange multiplier is very well known 20 and was formulated by 

Lagrange. 2 1 It is, in fact, the very first variational principle for a continuum. 

A more extreme incompressible limit results from transforming Equation (102).to an 

inertial frame and parameterizing the AA(z, t) in such a way that n = 0 identically. 

This 'corresponds to a really incompressible fluid, not merely a compressible fluid with van­

ishing Mach number. It can be shown, that in this case only the kinetic -energy term has. 

a non-vanishing variation, so this variational principle is just the one considered in .Section 

V of Paper L 

D. Buoyancy Stability of d Shearing Wind 

It was noted following the stability criterion that was stated in Equation (92) that this 

criterion is valid only for the restricted ensemble of trial functions that satisfy a single 

specification of the standard boundary and terminal conditions. When these conditions 

are relaxed aft extended ensemble results for which the terminal and surface contributions 

in Equation (89) may no longer vanish. Such a case was discussed in Section VI C of 

Paper I. The extended ensemble consisted of all dynamically acceptable horizontal winds 

for which the total mass flux or momentum equalled a specified value. It was shown that 
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if two blobs of fluid separated by 'a vertical distance Sz exchange positions and in so doing 

exchange momentum with their new surroundings, a reduction ,inthe total kinetic action 

will result. The calculation was carried out foi-a linear wind profile, i.e. a constant. shear 

(dV/dz), and was normalized so that each blob contained one-half mole of fluid. The re­

'suiting change in the time-average kinetic action which was given in Equation' (79) of 

Paper I is 

6(2)W/At = -(lI8)M(dV/dz)2 (Sz) 2 . (104) 

This change in time-average action must be added to the time-average change of [6(2)d ](3)aV 

given in Equation (89f)(which gave rise to the criterion given in Equation (92)). For a 

constant wind shear d2 V/]dz 2 = 0 and DtV = 0, so for a Boussinesq exchange of two 1/2­

mole blobs separated by a vertical distance 5z in an atmosphere in hydrostatic equilibrium 

so that Vp = -Mg n ez, 

II)J~td Rn n 
[6(2).4]~v3flAt = -Mg (5z)2 . (105)dz



The total change in, the time-average action (or free energy) is the sum of Equations (104) 

and (-105), and the sufficient condition for stability is that this sum be positive: 

VM [ d zz (1/4) (dY/dz) (az)2 > 0 (106a) 

dz / 

or 

(-g d ni/dz) 
i (d/dz)2 > 1/4 (106b) 

where 6i is the Richardson number defined on the Boussinesq static stability measure 

(-g d 9n W/dz). if, instead of the Boussinesq condition V - 6X = 0, the quasi-static con­

dition V •6X = -5X •Vp/ Phad been used in Equation (890, the numerator in the 

Richardson number would have been the ViisNili-Brunt stability measure g[-(d Rn n/dz) -

g/Z 2]. The sufficient condition stated in Equation (106b) is just the well-known condition 
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of -Miles4 and Howard 5 that was derived -byentirely different means within the context of 

a normal-mode analysis., 

E. 	 The Thermodynamic Inequality 

By subtracting Equation (85) from Equation (89) it is found that in the neighborhood 

of an extremum 

( 1 + 2)d _ 8(1 + 2).C > 0 (107) 

if the flow is stable so that 862)AvB > 0 and 8(2)A> 0,and if 8HH = 0 on Yf, and the 

fluctuations satisfy the Second-Law requirement f 5(2) dt < 0. This is true even if the 

standard terminal and boundary conditions are not imposed. Because d = £, it follows 

that in the neighborhood of an extreinum 

(W + A t > (W - E), (168) 

where ( )tdesignates the time average. This inequality can be useful in numerical 

applications of the free-energy form of Hamilton's Principle to estimate the error that still 

remains in an approximate solution that was obtained by minimizing (W + A),for a certain 

choice of parameterization. This best answer can be inserted into the irreducible form of 

Hamilton's Principle in order to calculate the right side of Equation (108). The difference 

between the two sides of this inequality is then a measure of the error of the approximate 

solution. Obviously this error measure is not sensitive to errors in the kinetic energy 

Subtracting (W\ from both sides of Equation (108) yields 

(At > -<E)t (109) 

which-is subject to the same conditions that were stated following Equation (107), The 

two sides of Equation (109) are related by a Friedrichs tansformation2 (elimination of 

the extensive variable n in favor of the intensive variable H by means of a.Legendre trans­

formation), and the inequality of Equation (109) is the basis of the minimax .formulation 

that is the characteristic result ofa Friedrichs transformation. The thermodynamic meaning 
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-of this inequality :foll6 vs from the observation that because A = -f (&+ Me) dN and 

E = f(U + MO) dN, the common gravitational energy can be subtracted from both sides 

of Equation (109) yielding 

(U-)t < (U)t = (>+t (110) 

which is the generalization to an extended time-dependent fluid system of the simple 

thermodynamic inequality l-(H, V, S) < U(V, S) that was given in Equation (39). 

The inequality of Equation (I 10) excludes both kinetic and gravitational energy. It 

will now be shown that when total time-average internal energy is defined in the only way 

that is permissible in the context of Special Relativity the relativistic version of Equation 

(110) is identical to, 

(W + A)t > (W + A~t (111) 

which follows from Equation (89) if the flow is physically stable and the Second-Law



constraint given in Equation (44) is satisfied. That is, in a relativistic context, the state­


ment that the total time-average internal free energy of a fluid system tends to a minimum 

is equivalent to the statement that the properly defined total time-average internal thermal 

energy (LUREL)t tends to a maximum. This may be regarded as the relativistic statement 

of the Second Law in the energy representation. 

The demonstration results from writing 

(W + A)t = [ MV2 - U - M0] dN dt (112)
At(N t) 

in relativistic form or by following the converse procedure and showing that 

= dt(l - V2/c2) / is the
[ £REL di] dN is equivalent to Equation (112), where &r 

Atf 
 

proper time interval and 

!UREL Mec 2 + Mo(@ - 00) + + (113) 
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is the relativistic molar internal energy. (The same definition also applies to URE L and U.) 

Moc 2 is the molar rest-mass at the point where the gravitational potential equals. the ref­

erence value 00 and MofO - 00)/c 2 is the mass increase attributable to the increase in grav­

itational potential. (This is the scalar or Nordstrdm theory of gravitation which is con­

sistent with Special Relativity, but is not adequate to explain some of the subtler gravita­

tional effects for which General Relativity is necessary.) Because the internal thermal en­

ergy is the average internal kinetic energy of molecular motion, the rest-mass and the grav­

itational contribution to the mass are inseparable from the internal thermal energy in a 

relativistic context. Moreover, because the average internal kinetic energy must be defined 

in the local rest-frame of the gas, the only acceptable relativistic generalization of Udt is 

1UPEL d" 	 = [M 0 
2 +Mo(O- 0 )+U ] (1-V21 ) dt 

= [Moc2 + Mo(O - 0o) + U1/Mo'V 2 _ 2MoV2(0-0o)/C2 

(114)
-/ 0oV 2 (U/M o c2 ) + 0 4 (V/c)] dt 

" [Mo2 +Mo(- 0 )+ U-MV 2 ] dt. 

Except for the term MoC2 (1 - ¢o/C 2 ) dt whose inclusion in the integral of Equation (112) 

makes no difference as far as variations are concerned, the right side of Equatioh (-1 14) is 

equal to the negative of the integrand in Equation (112). Because Equation (114) also ap­

plies for the equilibrium configuration, it is evident that Equation (111) is equivalent to 

(L'REL)t 	 2--(REL) t 	 where RJE L -- dN UREL dIT]t 


N 	 0115a, b) 

Moreover, 

(W + A)t = NMoc 2 (1 - otlc2 ) - (<REL~t, (15c) 

which is the generalization of the relation A = -U that was used in Section III. 
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In the case of a cold gas moving in the absence of a gravitational field, RE L reduces 

to MoC2 , and Equation (115a) reduces to the relativistic way of saying that all the particles 

prefer to move in straight lines. 

Equation (I I5a) is the relativistic thermodynamic inequality. It says that the total 

disordered heat energy, i.e. the kinetic energy of random internal motion as viewed in the 

local macroscopic rest-frame and summed over all the matter, strives toward a maximum. 

This obviously is one way to state the Second Law. 

If the fluid system under consideration is "viewed from afar," the fluctuating trial 

functions AA(X, t) and H(A, t) could be identified with what thermodynamicists refer to 

as "internal degrees of freedom" (usually pictured as imaginary internal partitions). When 

these have assumed their preferred (i.e. equilibrium) values, the equilibrium thermodynamic 

energy can be described exclusively in terms of such things as total volume and total en­

tropy that are insensitive to fluctuations in the internal degrees of freedom. The corre­

sponding quantities in the case of theivariational principle are the total mole number N 

(or total volume V in the case of an open system), the specified molar entropy S(A, t), 

and the average particle velocity (V)t (X X)/st that is specified by the terminal con­

ditions. (W + A)t is a function of these specified quantities, which are non-denumerably 

infinite in number, If it were known as an analytical function for all possible values of 

these specified quantities, the resulting function would be the equilibrium thermodynamic 

potential function for the system. Even without having an explicit expression for this 

potential function, the expressions for the variation of the action integral that have been 

derived above can be used to determine how the equilibrium thermodynamic potential 

function of the system changes under differential changes in the specified quantities (such 

as (Vt) on which it depends. Such differential expressions can be used in turn in 
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connection with thermodynamic theorems such as the LeChatelier-Braun 2 2 principle to 

determine how changes in certain specified quantities will affect various- secondary quan­

-tities,that can be.derived from the equilibrium potential function. 

The relation between the non-equilibrium action integral (which has been called the 

"total time-average internal free energy") and the equilibrium action integral (which has 

been called the "equilibrium thermodynamic potential of the total system") can be very 

simply illustrated in the case of a homogeneous fluid by the inequality 

U (H, V) < U(H, V) =_U(V) .(116) 

which, except for the fact that the S-dependence has been suppressed for the sake of 

simplicity, is the thermodynamic inequality that was given in Equation (39). H is to be 

regarded as representative of the fluctuating "ifhternal degrees of freedom" and V as rep­

resentative of the specified constants of motion or average quantities that characterize the 

equilibrium state. The fact that U+(H, V) has its maximum at equilibrium implies that­

0 =,1 (H - QP I - VN(H) (117) 
H=H H H . 

where N (8P/8H)s . This relation can, be solved to give H as a function of V which can 

then be substituted into U(H, V) to give U(V). -This can be done for different values of 

V, with the -result that U(V) can be pictured as the ridge-line that connects,all of the 

maxima for different values of V. This is illustrated in Figure 3A. The projection of. the 

UI(H, V) surfice onto the U - V plane is pictured in Figure 3B (the section curves, shown 

in Figure 3A becoming straight vertical lines in Figure 3B). The fact that all of the virtual 

fluctuations fall below "V) in Figure 3B is reminiscent of Caratheodory'scharacterization 2 3 

*of the equilibrium state function as tle boundary between allowed and forbidden regions 

of thermodynamic phase space (although he was referring to, real spontaneous processes 

rather than to virtual fluctuations). 
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Figure 3. (A) Non-Equilibrium Internal Energy Surface (H,V) and its Ridge-Line, the Equilibrium Internal Energy 

U(V). (B) Projection of Figure A onto (L+- V)-Plane Showing U(V) as Boundary of Region of Virtual Fluctuations. 



It might seem remarkable that, knowing only the empirical equilibrium state function 

P(H, S), it has been possible to construct the higher-dimensionality non-equilibrium surface 

U(H,.V, S). In .fact, however,, the construction U =HH - VP.(H, S) is not unique. The 

function 

& = H - VP(H, S) - /K2[VN(H, S) - 112, (18a) 

where K is any constant would do just as well. In fact, if used in the variational principle, 

it would increase the convexity with respect to the SX or SAA fluctuations, and thereby 

improve the convergende. The physical significance of the extra term becomes apparent 

from the fact that PEXT' the pressure of the surrounding fluid in the immediate neighbor­

hood of an expanding sample of fluid is given by 

TEXT V-- P(H,S) ± K2N(VN - 1) (118b) 

Since PEXT >P(H, S) if V > IIN, the excess over P(H, S) can be interpreted as the in­

crease-in eiternal pressure that results from the"'snowplow effect" produced in the fluid 

that is immediately outside a samlfle cell that has expandd beyond its equilibrium size. 

The magnitude of K2 is some function, of the ratio of the typical speed of this non­

equilibrium expansion and the speed of sound in the fluid. Such an "internal Mach num­

ber" would characterize the violence of the fluictuations.- The case K2 = 0 that has been 

discussed in this paper corresponds to the limiting case of very slow (i.e. quasi-static) vol­

ume fluctuations. This is just the case for which the equilibrium expression P(H, S) gives 

a valid description, of the external pressure PEXT" 

The free energy that corresponds to-the simple example of Figure 3A is A -U so 

the corresponding figure for A would be given by reflecting the surface in the H - V plane. 

-The equilibrium ridge line now becomes an equilibrium trough-line, and.the height of any 

point on the surface above the point of the trough line for the same V represents the 
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internal noh-equilibrium free, energy. The generalization of this to a fluid in motion is 

the difference between the two sides of Equation (111) which gives the time-average total 

free energy of the fluctuations or turbulence within the fluid. 

The difference f- ,d refers to the free energy of turbulence about equilibrium, 

which is of second-order in. the fluctuations 6X and 6 H. The difference _V' -LW, where 

."'refers to an arbitrary set of trial functions, has a first-order dependence on &X and 

8,H which by Equation (89d) is given by 

4 ,=t [(-6X " !p) - 6 HQ -nd3(x)dt (119) 

J(v, At) 

where &HQ is given in Equation (42a). (It has been assumed that the standard terminal 

and boundary conditions have been imposed.) As explained in connection with Equation 

(43), the first-order integral of the heat term either vanishes or else can be interpreted as 

the heat transferred to a reservoir. The integral of (-SX • !P) represents the total work 

done by the system under study on another system (real or imaginary) that is coupled to 

it in such a way that it introduces the molar force Y. into the equation of motion. (Cf. 

Eq. (10a).) Thus Equation (119) represents the change in free energy of this new inter­

acting system that is coupled to the fluid system under study through the imposed force 

9P."To the extent that !p can be given real physical meaning, P/Wcan be interpreted 

as an equilibrium free energy for a flow whose equation of motion includes Op. If­

8(2).g> 0, this equilibrium is stable. 

When we start with some arbitrary set of trial functions and vary these by successive 

iterations always so as to decrease W, we can give this process the interpretation -that the 

system represented by . is doing work on another system coupled to it by the force Op. 

The work delivered, and hence the change in V~', is path-dependent, that is; it is different 
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for the different paths in parameter space that correspond to different iteration procedures. 

This fact is very important for the application of the free-energy form of Hamilton's Prin­

ciple to numerical solutions. 

F. Direct Solution of a Flow Problem by Minimizing the Total Free Action 

The basic idea is that if a suitable energy sink is available, the free energy of a system 

will tend to drop to a minimum. In the case of a box of gas, one could start with an 

arbitrary initial state and relax imaginary internal membranes that are coupled to a suitable 

energy sink so as to bring the appropriate total thermodynamic potential of the gas to a 

minimum, which yields the desired equilibrium state. The analogous process in the case of 

a compressible inviscid fluid is to starf with some initial state (i.e. choice of trial functions) 

and move the membranes (Lagrange surfaces) described by them and simultaneously re­

distribute the enthalpy so as to bring the appropriate thermodynamic potential, which is 

.4, from its initial value to its minimum value, which then describes the desired equilib­

rium state. In the course of relaxing the internal membranes, energy is delivered from the 

system to an imaginary sink that is coupled to it through the force Op, which vanishes at 

equilibrium. 

It must be emphasized at the outset that whether or not one indeed arrives -at a mini­

mum value of .JYby this process, or, if so,. whether the minimum is the desired one (i.e. 

whether the equilibrium flow has the desired topological properties), depends critically on 

the starting point in parameter space (i.e. the initial choice of trial functions) and on the 

details of the iteration process which determine the particular downward (i.e. in the direc­

tion of decreasing Fd) path in parameter space. For example, if the topology of the di­

surface in parameter space is such that there is a ridge between the valley containing the 

desired minimum and the starting point, then a downward path from the starting point will 
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not lead to the desired minimum. Either it will lead to a different minimum or, will plunge 

into the-void (,d-* --c). Even if no ridge separates the goal from the starting point, the 

same thing can happen. For example, if the desired minimum is at the bottom of a crater 

that is surrounded by a ridge having a low lip or mountain pass at one point, then starting 

at a point on top of the ridge it is possible that one downward path (iteration procedure) 

will lead to the bottom of the crater -as desired, whereas a different iteration procedure 

will produce a downward path that will pass through the lip and on into the void beyond. 

It is obvious from these examples that unless one is able to start from a point well 

within the bowl containing the desired minimum, one must be prepared to make false 

starts. To avoid pursuing a hopeless course for too long, it is necessary to monitor some 

quantity that will indicate when the iteration procedure is heading in a nonsensical direc­

tion. For example, one could monitor a thermodynamic quantity that must be positive to 

have physical meaning. If this goes negative, the iteration can be stopped and a new start­

ing point chosen. In low Mach-number flows, the density varies very little from its static 

value. A large and increasing difference from the static value would indicate a false start. 

An alternative procedure is to start with a problem that differs by very little from one 

whose solution is known. In such a problem the starting point can be chosen very close 

to the desired solution. For example, if the problem is to find the flow past an object in 

a wind with strong shear when the flow for no shear is known, the shear can at first be 

made very small. When this problem is solved, it can be used as the starting point to solve 

the same problem-with slightly stronger shear, and so on, 

If it can be assumed that (by .one means or another) the starting point has been placed 

within the bowl containing the desired equilibrium point at its bottom, then a straight­

forward steepest-descent iteration can be employed until the gradient of WA'(in parameter 
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space). becomes small. At this point the second-variation given in Equation (89) becomes 

comparable in *magnitudewith the first variation, and it is necessary to impose the Second-

Law condition 

f (2)Q dt (8 1 n) (5HH - xP/n)dVdt < 0 (120a) 
t, At) 

or 

(120b)
- 5X VP/n)d 3 (x)dt > 0 

, V *(nX)(5HH 

which is obtained from Equations (44), (70g) and (15d). The reason that this condition 

must be imposed is that, although thle functional S has been constructed to provide a 

reasonably faithful mathematical description of the fluctuations that occur in a turbulent 

fluid, it cannot by itself imitate the kind of correlation between independent fluctuations 

that is required by the Second Law. It was pointed out following Equation (44) that this 

correlation simply says that, on the average, when heat flows into a sample of fluid, the 

fluid must expand, and when heat leaves, the fluid must contract. The same interpretation 

applies to the correlation between 6 1)n and 5HH (for 6X VP = 0). For 6.H = 0, the 

correlatidn 'between 5 )n = -V (n6X) and 5X VP/Vn says that, on the average, 'v.hen 

a sample is carried into a region of greater pressure, it ,must diminish in size. 

In a direct solution, the condition stated in Equation (120) could be imposed by 

making a calculation of the integral in Equation (120b) for a proposed iterative step that 

has been shown to cause a decrease in dI. If the integral of Equation (120b) is not nega­

tive, the iterative step is accepted and a new step is then made and tested in the same 

wdy. If the integral of Equation (120b) is found to be negative,-the iterative step is altered 

so as to satisfy the condition (and simultaneously decreased ). 
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When the condition of Equation (120) is satisfied at every iterative step, then reference 

to Equation (89) shows that, if the flow is physically stable, then ,5(2) a> 
-1 

0, which means 

that for the-admitted class of iterations the equilibrium point is a minimum and h6t a 

saddle-point, and -this fact guarantees that the procedure of successive decreases in vl will 

indeed lead to the equilibrium point. 

This fact illustrates the great advantage of the free-energy form of Hamilton's Prin­

ciple over the irreducible form. Reference to Equation (85) shows that, even for physi­

cally stable flow, 6( 2). is indefinite in sign, and them is no simple way of restricting the 

class of iterations so that it will be positive-definite. Thus the equilibrium point is a very 

intricate saddle-point, and it becomes extremely difficult to devise an iterative procedure 

that will "home in on it." 

It should be noted that the condition imposed in Equation (120) is so weak that in 

problems it could be ignored altogether without causing trouble. The reason for this 

is that it involves an integral over the products of independent fluctuations that in most 

problems will have different signs in different regions so that the resultant integral will 

usually be very small. This is to be contrasted with the other terms in 6(2) d given in 

Equation (89). In these integrals there is no cancellation, so they are usually very much 

larger than the integral of Equation (120). Thus, for most problems, even if the Second-

Law condition is violated, 6(2) twill still be positive and so the iterative procedure will 

"home in on" the equilibrium point without any problem. The fact that the condition of 

Equation (120) is an inequality rather than an equality means that, even in an analytical 

non-numerical application of the direct solution method, the condition can often be ac­

commodated. Because it is not necessary that the integral have any particular value, but 

-many 

rather only a particular sign, after the trial functions have been parameterized, an analytical-
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,calculation of the,,integral in Equation (120) can be made. If certain of the parameters 

are then found to violate'the condition, they can either be suppressed (dropped from the 

parameterization scheme) or else limited in their ranges so that their variations will not 

,violate the condition. 
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Vin. CONCLUDING REMARKS 

The total free action functional.W[AA (x, t);,H(AA, t); S(AA, t)] that was con­

structed in Section VII A is the generalization of the non-equilibrium potential function 

[-Lf(V, H, .S)] :for a static homogeneous fluid. The functional W, like the function T+, 

must satisfy the basic thermodynamic inequality that describes the fluctuations of a sys­

about equilibrium. In the case of TU, it is an easy matter to construct a function-tern 

F' 

'U(V, H, S) (cf. Eqs. (38) and (118a)) that will automatically satisfy this inequality. In 

the case of the functional , it does not suffice to give JW(AA, H, S) a suitable func­

tional dependence because subtle correlations between the space-time dependence of the 

otherwise independent fluctuations of AA and H are involved in the thermodynamic in­

equality, and for this reason it is necessary to impose the very weak integral constraint 

stated in Equations (44) and (120). As far as numerical applications involving MWare con­

cerned, this constraint represents at worst an annoyance, and can in fact be ignored in a 

great many numerical applications. 

It is interesting to note that in the expression for 2 P(/s given in Equation (89), 

the term on which this constraint must be imposed (cf. Eqs. (70g) and (89g)) is not sym­

metric in the particle displacement SX, whereas all the other second-order terms in 6(2).. 

are symmetric in 5X, and so correspond to a self-adjoint energy operator .that represents 

the energy of small displacements from equilibrium. The non-symmetric term -f8(2)Q dl 

variishes if the displacements are density-preserving or adiabatic. 

As to the practical utility of the total free action aJ', besides its use in a direct so­

lution of flow problems, there are the other possibilities that were suggested at the end of 

Section VII E. Because the methodology of equilibrium thermodynamics has effectively 

'been extended to fluid systems in arbitrary states of motion with the recognition that Vt 

85





is the appropriate equilibrium potential function for such a system, and that the surface 

and terminal integrals of Equation (89) are the generalizations of the Pfaffian forms on 

which the classical thermodynamic formalism is based, the possibility is opened of extend­

ing thermodynamic principles and methodology to the problems of fluid dynamics. The 

second-order expressions for 5(2) Md should be especially useful in this regard. It was 

shown in Section VII D how a well-known stability criterion can be derived very directly 

from the expression for 8(2)td. In practical applications in dynamic meteorology, for 

example, the functions AA (x, t) would be parameterized in terms of parameters of direct 

significance representing such things as the diameter or height of a convection cell, the 

total strength of its updraft, etc. It would then be a simple matter to derive an expression 

for 6( 2 )" in terms of a bilinear form in the variations of these parameters. Such an ex­

pression not only provides a stability criterion in terms of non-local parameters that would 

be very difficult to derive by other means, but the second order terms in the expression 

supply the raw material necessary to apply the LeChatelier-Braun Principle 2 2 with which 

to explore the effects of perturbations from equilibrium. 

Aside from the practical utility of constructing the effective thermodynamic potential 

function that governs compressible inviscid flow, there is also the conceptual satisfaction 

of basing Hamilton's Principle on more fundamental principles. Far from being a mere 

mathematical artifice, the free-energy form of it is a thermodynamic potential. The ir­

reducible form of it, however, remains in the artifice category. The identification of the 

free-energy form of Hamilton's Principle with a thermodynamic potential has opened the 

treatment of its second variation to an entirely new perspective, one that would be unat­

tainable by mathematics alone because it involves an admixture of physics in the form of 

the Second Law. Moreover, this identification provides a physical significance to the fact 

'that Hamilton's Principle involves terminal, rather than initial, conditions. (See Section IV D 
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of Paper I.) The awareness that such terminal conditions can have a physical significance 

quite distinct from initial conditions leads to the distinction between two very different 

classes of instability-the laminar and internal types of instability that were discussed in 

- Section VI A of Paper I. 

The treatment presented here is not unique. Allusions have been made to a more 

general treatment based on u(n, 4) and P(G, T) instead of u(n, S) and P(H, S). Both of 

these treatments represent extensions of the energy representation of thermodynamics. It 

is reasonable to expect that a corresponding treatment would be possible in the context 

of the entropy representation. The action integral corresponding to J'would then be the 

time integral of either the total entropy or else of one of the Massieu functions2 4 derived 

from it. The formalism based on such an action integral should have a strong resemblance 

to the formalism of statistical mechanics, and in fact the treatment of extended ensembles 

(cf. Sections VI A and C of Paper i)in the context of such an action integral might be the 

basis of a statistical mechanics of continuum ensembles. 
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APPENDIX: BRIEF LITERATURE SURVEY 

A.1 Various Approaches Employed 

It is possible to identify five different main lines of approach in the history, of at­

tempts to construct variational principles for fluid flow. The first is in the spirit of 

Lagrange's principle 2 1 that was mentioned in Section VII C above. One starts with a known 

variational principle for particle motion (the Least Action Principle of Maupertuis and 

Euler in Lagrange's case) and then adapts it to the fluid case by using the method of 

Lagrange multipliers to add appropriate constraints. 

The second approach is to apply Hamilton's Principle directly to a fluid without the 

addition of any constraints. The avoidance of constraints requires that Lagrange kine­

matics be employed, either in its complete form, or in the case of steady flow problems, 

in the truncated form based on streamfunctions. (See Section I D of Paper I.) The 

principles developed according to this approach are surveyed in subsection A.3 below. 

The third approach was inspired by Hargreaves' 2 5 indication that, in the case of 

steady compressible flow, the pressure could'be made to serve as a Lagrangian density. 

This idea inspired Bateman 2 6 to construct a very useful principle for compressible poten­

tial flow that will be discussed in subsection A.2 below. There exist two different gen­

eralizations6 , 27 of Bateman's principle to rotational baroclinic flow, for both of which 

the action integral is the space-time integral of the pressure functional. 

The fourth approach was introduced by Clebsch. 2 8 He first effectively integrated 

Euler's equation by expressing the velocity and pressure (or molar enthalpy in the com­

pressible case) in terms of three new functions (g, a, and 3) in such a way that, if two of 

these (a and 3) are constants of motion, Euler's equation is identically satisfied. The 
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problem then becomes one of finding a variational principle whose Euler-Lagrange .equa­

tions are -the siatements that mass (or mole number) is conserved, and that a and f3 are con­

stants of motion. Clebsch constructed such a variational -principle for time-dependent in­

compressible flow. The generalization of this approach to compressible baroclinic flow is 

embodied in the Seiger-Whitham 2 7 principle. These two principles are discussed in sub­

section A.4 below. 

The fifth approach 6 , 29 to the construction of a variational principle for fluid flow is 

to attempt a conscious generalization of the classical equilibrium thermodynamical theory 

of homogeneous systems at rest, i.e. thermostatics, to a true thermodynamics, i.e. a thermo­

dynamical formalism valid for a heterogeneous continuum in an arbitrary state of motion. 

Such a theory generalizes the thermostatic concept of "equilibrium" to the dynami-b con­

cept of fluid flow that obeys the equations of motion. The basic inequality that embodies 

the Secofid Law is exploited to construct a representation of non-equilibriuni states of 

motion. This, of course, is the approach of the present paper. Two previous attempts,' 2 9 

that were not so closely linked to Hamilton's Principle and did not involve an explicit 

calculation of the second variation, were carried out in the context of Special Relativity 

because of the -gui4ance it affords in generalizing a static formalism to one applicable to a 

system in motion. 

It is possible to survey the literature that deals with the second variatiot of a'prifn­

ciple applicable to fluids very quickly, because it is almost ioni-existent. From the earliest 

days of the one-dimensional Hamilton's Principle for time-dependent particle motion, it 

has been recognized that, if the time interval over which the action integral is integrated is 

..short enough, the kinetic energy will dominate the potential energy to such a degree that 

the second variation will be positive-defimite, but for a longer time interval the second 
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variation becomes indefinite in sign, even though the ,physical stability of the .motion has 

not been changed in the slightest. The two ends (t, and t.) of the critical time interval at 

which the change-over occurs are known as "conjugate points," and the attempt to predict 

the onset of this change-over has given rise to the so-called "accessory problem." 3 0 In 

the multi-dimensional Hamilton's Principle that is relevant to fluid dynamics, the conju­

gate points become complicated surfaces, and the criterion for locating them in space-time 

involves solving a complicated set of partial differential equations. In any case, all of this 

is irrelevant to practical fluid dynamics because it can be taken as axiomatic that, in the 

case of any problem that is complicated enough to be of interest, the necessary range of 

integration will be large enough to make the second variation indefinite in sign. Thus the 

-practical need is not for intricate criteria to be applied to the irreducible form of Hamilton's 

Principle in order to predict the onset of trouble (whose presence can safely be assumed), 

but rather the need is for different variational principles that avoid the trouble in the first 

place. A recent investigation 3 1 of the second variation of the Lin-Rubinov form of 

Hamilton's Principle for compressible steady flow (discussed in subsection A.3) forces no 

alteration of any of the above conclusions. 

The remainder of this survey will be organized according to the kinematical descrip­

tion used in the variational principle. 

A.2 	 Principles Using the Euler Description 

In the Euler description n and V are treated as independent primitive variables (ex­

cept for the case of potential flow in which V Vp), and so a constraint must be imposed 

in order to guarantee that n and V for the extremal flow satisfy the conservation equation. 

Lagrange2 1 did this for incompressible flow. Bateman3 2 did it for compressible flow by 

adapting Clebsch's 2 8 principle to the Euler description. In this adaptation, Clebsch's three 
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functions p, a, and ( are Lagrange multipliers. Variation of V leads to the conservation 

equation, and variation of a and %3respectively leads to the statements that $ and p!are 

constants of motion. These two -constants of motion characterize what might be termed 

the "fossil vorticity," i.e. that part of the vorticity that is a retained memory of the initial 

conditions (as distinct from the part that is generated in regions of baroclinic flow). 

Bateman's adaptation of Clebsch's principle was limited to barotropic flow. Taub, 9 had 

already removed this limitation in the context of the Lagrange description, and Zilsel, 3 3 

Ito,3 4 and Herive13 5 did the same thing in the Euler description. These three authors did 

not, however, include the term that Bateman had already included that is necessary to de­

scribe the fossil vorticity. However, a generalization of this term was re-inserted into the 

principle as a consequence of C. C. Lin's observation (unpublished, but reported in the re­

view article by Serrin 3 6 ) that, because classical particles maintain their identity, the nec­

essary three identity labels must be constants of motion, and the corresponding constraints 

together with their Lagrange multipliers should be included in the action integral. This, of 

course, is all taken care of automatically in the Lagrange description, and is confirmation 

of the remarks made toward the end of Section I of Paper I regarding the necessity of 

using the Lagrange description in constructing a variational energy principle. 

Two principles for potential flow deserve special mention because despite this limita­

tion they are useful for direct numerical solutions of flow problems. They are the Dirichlet-

Kelvin principle for incompressible potential flow and Bateman's 2 6 generalization of it to 

compressible potential flow. The Dirichlet-Kelvin principle is just the adaptation of the 

Least Action Principle to the class of trial flows all of which are constrained to be poten­

tial flow: 

f noMV Vd 3 (x) minimum; V -Vp (121a, b) 
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-where n is'the constanIt density and V is the yelocity potential Bateman's principle says 

that for subsonic flow 

f P(H)d3(x) = maximum; H H* - M(Vo) - (7 p) (122a, b) 

where P(H) is the given'.pressure function P(H, S) with S suppressed (everywhere the same), 

and H* is the constant molar stagnation enthalpy. For steady homentropic potential flow 

with a stagnation enthalpy (Bernoulli constant) that is everywhere the same, Euler's equa­

tion.is identically satisfied, so the only remaining equation of motion is that of mole con­

servation, and this is just the Euler-Lagrange equation for the principle given in Equation 

(122). Bateman showed that the second variation of his action integral is negative-definite 

if the flow is everywhere subsonic, and indefinite if it is supersonic at any point. This 

principle has been applied with success3 7 ' 3 8 , 3 9"4 0 to the direct calculation of compres-. 

sible flow problems. 

A,3 Principles Using the Lagrange Description 

As noted at the beginning of Section VI, the first variation of the irreducible form of 

Hamilton's Principle for time-dependent compressible flow was-calculated in the convected 

frame early on. I6-1 9 The corresponding calculation in an inertial frame was later carried 

out by Bretherton41 witiout, however, giving an explicit representation (such as Eq. (2c) 

above) of the velocity as a function of the Lagrange surfaces. In the restricted sense of 

steady incompressible flow, however, Clebsch4 2 long-ago developed a principle in which 

the steady three-dimensional velocity was expressed in terms of two streamfunctions. 

Clebsch's action integral is 

f['A/2noMV ° V + p*(4A, ¢2)] 'd3(x) (123a) 
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where 

V = (" pl X V0 2 )/no (123b) 

andnn is the constant density and p*(41, i42) is the given stagnation pressure which, be­

cause it is a function only of the two streamfunctions 4,1 and Ip2, is a constant of motion. 

The two functions 4,1 (x) and Ia2(z) are the undetermined functions of the problem, and 

Clebsch showed that the Euler-Lagrange equations corresponding to their variation are 

equivalent to Euler's equation for steady incompressible flow which can be put into the form 

n0 M V X (VX V) = 7p*. (Because its projection onto V vanishes, it has only two de­

gFees of freedom corresponding to the two variables 0 1 and 02.) This 1857 principle of 

Clebsch has surprisingly been almost completely ignored. (The 1859 principle, 2 8 which is 

entirely different, has received much more attention.) The principle given in Equition 

(123) is valid for three-dimensional rotational flow, and for this reason should prove very 

useful for direct numerical solutions of incompressible steady flow problems with non-zero 

vorticity. 

Bateman 4 3 gave a principle that is essentially Hamilton's Principle for'steady compres­

sible barotiopic with the density flux n described in terms of a single streamfunction 

4'(x, y) and the mole density n = n(x, y) treated as an independent primitive variable. His 

action integral is 

ffW2Mn n/n - u(n)] dxdy; n = V4 X ez 0(24a, b) 

where u(n) is the given internal energy density. The extremal flow for this principle turns 

out to be compressible potential flow, and as Lush and Cherry 0 pointed out, this prin­

ciple is a companion piece to the one given in Equation (122) in the sense that, taken to­

gether, they constitute a minimax description of subsonic compressible potential flow, 
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Because entropy has been suppressed in the u(n) that appears in Equation (124a), the 

flow is barotropic. The Euler-Lagrange equation corresponding to variation of n is H* 

W + H = 0. By first suppressing the entropy, and then making the stagnation enthalpy H* 

spatially uniform, potential flow must result. This restriction was lifted by Lin and 

Rubinov44 who re-inserted the entropy S = S(4) as a specified function of the stream­

function (and hence a constant of motion). Their action integral is 

ff{M(n - n/n) + nH*(f) - u[n, S(iP)] dxdy (125) 

where n is given by Equation (124b) and H*(*) and S(4j) are given functions. (They ac­

tually restricted themselves to the case H* = constant.) Besides treating the case of plane 

flow, they also used the Stokes streamfunction to treat axisymmetrie flow. However, the 

principle is equally valid if n =-V 1 X Vjp2 , H* = H*(*lI, ,2), and S = S(O', 02). Com­

paring Eqluation (125) with Equations (123a) and (124a), it is evident that the Lin-Rubnov 

principle is a combination of Clebsch's 1857 principle and the Bateman principle of Equa­

tion (124) in which p* of Clebsch's principle has gone over into nH*, and the transition to 

compressibility requires that -u(n, S)be included in the integrand. 

A4 Principles Using the Clebsch Description 

In an effort to generalize his 1857 principle from steady to unsteady flow Clebsch2 8 

expressed V in the Pfaffian form 

V = V + aCV3 (126a) 

and showed that if S is everywhere the same (homentropic flow) and H is defined by 

AMV - V + H = H* (126b) 

where 

H* =_-[(tv)x + a(0tp.)] , (126c) 
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then if a and ig are constants of motion, Euler's equation will be identically satisfied. 

(Clebsch actuallyworked with the stagnation and local pressures p* and p rather than with 

:H*,. H, and-S.. These .quantities have, been- introducedin .order to facilitate-the transition­

to the Seliger-Whitham principle discussed below.) Using this theorem, Clebsch constructed 

a ,variational principle based on the action integral 

J n,[ MV - V - H*] d3 (x)dt (127) 

(,At) 

where V and H* are the functions of tp(s, t), a(x, t), andfl(x, t) that are defined in Equa­

tions (126a) and (1-26c). Variations of these functions lead to Euler-Lagrange equations 

that are just the conservation equation and the statements that P3and cc are constants of 

motion. 

Bateman 4 5 generalized this principle by letting n(z, t) be variable and by subtracting 

the given internal energy density u(n) from the integrand of Equation (127): Thus t~s ac­

tion integral is 

[nMV - V + nH* - u(n)] 5d (x) dt (128)(v,At) 

where V and H* are still given by Equations (126a) and (I 26c); (The .integrands of-Equa­

tions (125) ahd (128) haVe a superficial similarity, but the definitions of H* and of kinetic 

energy are entirely different.) Because the entropy is suppressed in u(n), the-principle of 

-Equation (128) is limited to 'barotropic flow. Note that lifting this restriction is not just a 

matter of replacing u(n) by u[n, S(4'1, ti2 )] because the streamfunctions are not included 

among the variables of Equation (128). 

The appropriate generalization to compressible baroelinic flow was given by geliger 

and Whitham.2 7 They replaced Equations (126a-c) with 

V = 7 + CVP - SV (129a) 

96


http:Whitham.27


H -- H* - 1AMV V (129b) 

where 

H* -[(00)x + c4 - S(t 0)xj' (129c) 

and pointed out that if a and P are constants of motion and DtO = T, then Euler's equa­

tion will be identically satisfied. (Incidentally, this fact is very transparent in a relativistic 

context.4 6 ) Their action integral was defined to be 

f4 P(H, S) d3(x) dt (129d) 
(, At) 

where P(H, S) is the known pressure function, H is given by Equation (129b), and the un­

determined functions are q(x, t), c(az, t), I(a, t), S(x, t), and O(x, t). (They actually 

used the variable ?= -0.) Mole density n and temperature T are defined by 

p (P/3H)s; T - (129e, f) 
(aP/aH)s 

They showed that the Euler-Lagrange equations consist of the conservation equation, the 

statements that aj3, and S are all constants of motion, and that DtO = T. 

When P(H, S) goes over into the incompressible limit in the manner illustrated in 

Section VII C above, the Seliger-Whitham principle goes over into the 1859 Clebsch prin­

ciple of Equation (127), and thus constitutes its natural generalization from incompressible 

to baroclinic compressible flow. When u = S = 0 and atV = constant, the Seliger-Whitham 

principle goes over into tife Bateman principle of Equation (122), and so constitutes a 

generalization of this also. 
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FIGURE CAPTIONS



Figure 1. Virtual Work Performed, on a Box of Gas'in Deforming its Lagrange Surfaces. 

(A) Work Performed by an External Energy Source that Produces a Quasi-

Static Deformation Against the Internal Pressure p. (B) Work Performed by 

Spontaneous Conversion of Thermal Energy Within a Small Sample of Gas 

into Work of Expansion Against the Surrounding Pressure P. 

Figure 2. Potential Energy of a Molar "Bubble". (A) Compressive Energy of a Bubble 

With Molar Volume. (B) Change in Gravitational Energy of a Bubble that 

Displaces Molar Mass. 

Figure 3. (A) Non-Equilibrium Internal Energy Surface I(H, 9) and its Ridge-Line, 

the Equilibrium Internal Energy U(V). (B) Projection of Figure A onto 

(U - V)-Plane Showing U(V) as Boundary of Region of Virtual Fluctuations. 

103




