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ABSTRACT

A method is presented by which response data can be processed

in the frequency domain to obtain natural frequencies and modal

damping ratios of multi-degree-of-freedom systems. 	 Primary atten-

tion is focused on purely mechanical systems which possess clas-

sical normal modes.	 Systems that do not possess such modes, but

whose damping matrix [C]	 is such that the matrix [cp]
T
 [C][cp],	 [cp]

being the modal matrix, is not diagonal but whose off-diagonal

elements are small, are also considered.	 When the power spectral
M

density of the excitation is unknown, the method requires it to

be reasonably flat.	 Numerical examples are given for systems

with one and two degrees of freedom.
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1.	 INTRODUCTION

The problem of processing reRoonse data of an aerospace

structure to controlled excitation or random excitation during

flight in order to determine the dynamic characteristics of the

structure has recently received considerable attention in the

United States [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 111 as well as

abroad [12, 13, 14]. From an applications point of view, dynamic

signature analysis is very important since it can be used to
i
detect flaws or to predict the onset of flutter during subcritical

wind-tunnel or flight tests.

In references 1, 2, 8, 10, 12 and 14 the autocorrelation

function of the random response is utilized to obtain natural

frequencies and modal damping ratios in the frequency domain.

This method of modal identification assumes that the frequency

spectrum of the random exciting forces is flat (white noise)

over the frequency range of the modes of interest. The method

becomes inaccurate if the excitation is not white noise and/or

if the structure has closely-spaced vibrational modes. Also,

errors are introduced due to statistical causes associated

with signatures of finite duration.

The random decrement method, introduced by Cole [1), has

some definite advantages over the autocorrelation function and

*Numbers in brackets designate references.
a^
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has been utilized by the inventor for the on-line failure detec-

tion and damping measurements of aerospace structures. Some of

the advantages of this method are: (1) changes of intensity of

the input do not affect the level of the signature, which is at

constant amplitude; (2) the signature distortion is considerably

less, than in the case of the autocorrelation method, if the

input spectral density is not flat.

The work by Cole is primarily concerned with systems having

one degree of freedom. Very recently, Chang [11] studied the

dynamic characteristic of aeroelastic systems using randomdec

signatures. Multi-degree-of-freedom were analyzed, but numerical

experiments were carried out only for systems with two degrees

of freedom (purely mechanical as well as aeroelastic).

The purpose of the current investigation is to develop a

method by which response data of an aerospace structure (obtained

during flight) can be processed in order to determine its natural

frequencies and modal damping ratios. The analysis is to be suf-

ficiently general to include systems other than just purely

mechanical with classical normal modes, in order that it may be
s=

applied to the Shuttle Pogo Instability program.
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2.	 ANALYSIS OF ONE- AND MULTI -DEGREE-OF-
FREEDOM SYSTEMS WITH CLASSICAL DAMPING

First, systems with one degree of freedom are analyzed in

detail. Then, multi-degree-of-freedom systems possessing clas-

sical normal modes are considered. Finally, in Section 3, purely

mechanical, linear systems with nonclassical (non-proportional)

damping are discussed.

2.1 Systems with One Degree of Freedom

Consider a one-degree-of freedom system whose motion is

governed by the differential equation

x + 2CSx + (r'x = C?f (t)
	

(1)

where f(t)	 is the random excitation, that is f ( t) is a function

representing an ergotic random process, 0 is the natural frequency,

and C the damping ratio. 	 The power spectral density of the (random)

response x(t) is given by the familiar relation

Sx (w)	 = H*(w)H(w)Sf(w), (2)

where Sx (w) is the power spectral density of the response,

S  W is the power spectral density of the excitation,

H0))	 = 1
(a

1 -	 + i2^\ S2^	 C2

H* Oij)	 is the complex conjugate of F (w) .

Equation (2) can be rewritten in the form

Sx (w)	 =	 JH ( w)J;^Sf(w)• (3)

t
i	 ^-
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where

JH(w) 12	 -12 (4)

+ 4C2

	

L	 i

Note that the power spectral density S 
x 

W is the Fourier trans-

form of the autocorrelation R 
x 
(T), that is

S 
x 

(Lu)	

J °°
 Rx(T)e IUJT dT,	 (5)
-CO

where
T

1.2
R 
x 

(T	
T

liM	
Tx(t)x(t + -Odt	 (6)

T-►m
2

The autocorrelation in terms of the spectral density is given by

M
R 
x 

(T)	 I S
x 

We IWT 
dw	 (7)

2rt

Equations (5) and (7) is Fourier transform pair. Analogous

relations exist between S 
f 

W and R 
f 
(T).

Let X 
n 

be the finite Fourier transform of x(t), defined by

T
M 2

X 
n	 T .ITT X (T) e

-1W 
n

T dT,	 (8)
2

where

n	 Tn(-^ ) ; n	 1, 2, 3,

and T is the time interval for which the (random) response has

been measured. The function

I
S 

(W tx X*	 (9)x n	 n n

7-
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is an estimate of Sx (w) at the frequency w = wn (see, for example

Reference 15).	 The spectral density SX (wn ) can be obtained from

a random response record x(t) from (9) by means of an FFT (fast

Fourier transform) or by means of a real time analyzer.

2.1.1	 Definition. and Minimization of Error Function

It is possible to define an error function in the means ware

sense such that minimization of this error will yield the parameters

of the system 0 and	 Let us define the error according to

HIM

'.M

e(^^^)	 = Jo [Sx (w)	 - SX(wn )) a dw (10)

Define a vector	 by

tCj)
{11}

For e(Q,S) to be a minimum

.^	 o S	 (w )
= 2j0 [SX (w)	 - Sx, (w))	 dill = 0;

a
i = 1,	 2 (12)

i 

Let

(13)

Expanding the vector {h} into Tavlor series,

*' n+1
1h(t

(n	 n
 = th

`
	^r +	 + o ^,

n
b	 j{3g	 N

N (14)

(A^n 
	 n+1 	 n}

,,, J1



t

t

,
^u

the increment di n must be obtained from

n	 math{^ 
n}^ -I. (( n}^

d^ = - L
	 ^9	 jhl  1	 (16)

This equation can be rewritten in the form

[a,n) = [ Dn
]
 

(
hn ),	 (17)

^} 1(DDn) - L ".1	 i, j = 1, 2	 (18)
7

The elements of the derivative matrix [D) can easily be

determined from Eq. (10) (see Appendix I). Thus, Eq s (12) can

be solved by iterating. Starting with an initial guess [911,

[Dl j and {hl) can be computed by numerical integration. Then,

{pg') can be determined from ( 17) and {92) from

The process is continued until {Q gn ) = {0), i.e. until

n+l _ Fns

1, 2

^i

t
I
t

where



2.1.6 White Noise Excitation

In the above, it has been assumed that the power spectral

density of the forcing function, S f W, is known. It is possible,

however, to determine the parameters 0 and C even if S  W is not

known, provided it is constant (white noise) or nearly constant.

If the excitation is ideal white noise, S  W = S,) = const.

z	 Notice that for lightly damped systems for which IH(w)l-- has a

very steep peak in the neighborhood of 0 (and is practic,.11y

zero away from 0) , the behavior of S  (u^ ) = J H (LO J - f (L) depends

almost entirely on IH(w)1 2 (and only slightly on S f (Lu)), provided

that S  W is flat, that is,it has no peaks in the neighborhood

of 0. See Figure 1.

Assuming that S f W is reasonably flat, it can be set equal

to a constant, So , without appreciable loss of accuracy in deter-

=	 mining 0 and C (for lightly-damped systems). This follows from

the discussion of the proceeding paragraph. Equation (9) for

^g
the error function can be rewritten in the form

	

rte)

f 	2

+= ^ •^) - JoLSc^ 
JH(w) 12 - S , (uj)] d(i)	 (19)

The actual value of S, is nct important in the minimization of e

and it can be set equal to unity. This is shown in Appendix 11.

2.2. Systems with N Degrees of Freedom

The differential equations governing small oscillations of

viscously-damped systems with N degrees of freedom are

	

+ C	 = (F (t))	 (24)



I^

where all symbols have their usual meaning. Let IV) be the

modal matrix assumed normalized with respect to the inertia

matrix, [ M]. Then

[CPl T [ M] [ CPl = t ll

and	 (21)

i gvl T tn, [ CPI = ('u 7

2.2.1. Systems with Classical Normal Modes

Assume that the system, governed by (20), possesses classical

normal modes, that is.assume that the damping matrix is such that

trolT[C] [CP] = [R] = C2{w.j	 (22)

The identification problem for the N-degree-of--freedom system,

_-

	

	 analogous to the problem for the simple oscillator discussed in

Section 2.2.1, is to determine w i, Ci (i = 1, 2, ...,N) from one

or more random responses, x i (t), due to the random forcing function

{F (t) .

Uncoupling the differential equations of motion (by means of

the normal-coordinate transformation) and proceeding as in the

case of the single-degree-of-freedom system, it is easy to show

(see, for example, Reference 10 that

n ui
N N

x i (t)x^ (t+`t) _	 s,	 :',, 
w ^ wZ	 Hr (,' )IIu	 L)(",)Sf f ^ei!ut dio,	 (23)

r=1 8
=1 r s -	 r s
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where

Hx.x.(t) = x i (t)x j (t+T) is the cross-correlation of the
^ 7

response

Sfif ^ (w) = cross -spectral density of the forcing function

{ f} =

Hr (w )	
- 1
	 al1+ i 2 r u^

	
( 24 )

I. rw r

Hi* (uj)	 = the complex conjugate of Hr (w)and all other

symbols have been previously defined.

Since

Rxx. (T) = 2n J^Sxx, 
(w)e"" dw,	 (25)

i 7	 00 i J

where Sxix (w) is the cross-spectral density of the response,
j

it follows that

N N
r C

P1- i -L H* w H$x.. (w) = L}	 L	 -(t a	 r ( ) s (w)S f f (w)	 (26)x	 ,v 
i	 r=l s=l r s	 r s

or	 N N
%)ircp^sSfrf s 

(w 
iS	 (w ) = }	 7

x x	
-

7r-,	 4..	 ,^
1	 r=1 s^=1 Lwr^-wa-i (2b ru:j, r ) 	 s -+^ ^ +i (2! sw(J s ) J

Assume now that the cross-spectral density of the excitation is

zero, i.e.

S f f( +u )- 0,	 r?^ s
r s

and let

r r

41	 !	 s
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The.i ,
N	 S	 w

Sx.x, (w^ _	 z	
^lr^^r r( )

(27)
i 7	 (wra-wa )2+4Crawrawa r=1

Er The finite Fourier transform of x j (t) is

Fit

-	 T
1	 2	 --if2Tn

dT,Xjn	 T J	 T xi (T)e (28)
2

where

^n - nl T / '	 n =	 1,	 2,	 3,	 .. .

Notice that the function

Sx.x. (`^)	 - TXjnXjn (29)
7	 7

is an approximation of S 	 (w) at w = C2

L

x	 n.

j	 7

2.2.2	 Definition and Minimization of Error Function

Define an error function e 	 according to

ej{wl,w2,	
...,	

wN,sl,s2,	
...,	 S N )	 _ 

^o[Sx7xJ{u))
-SX7x7(w)]2dw (30)

Suppose that p natural frequencies lying in the frequency band

(C;L 	^,u ) and the associated modal damping ratios are to be iden-

tified by processing m records x i (t),	 i = 1, 2,	 ..., m. Following

a procedure similar to that for a system with one degree of freedom,

let

de.
{h} j	= a	 (j	 =	 1,	 2,	 ...,	 m;	 r	 = 1,	 2,	 ...,	 2p), (31)



^g

T.

I	 -	 1 -	 A	 ;_

where the vector {g} is defined by

{g} _ (w 1, uu 2, ..	 wpSO	 )Tl^ 2, ..., Sp

The increments { pg } j at each iteration are computed from

{Dg} j = [ D ] j{ h}j,

where

[D]j = — Lagrags^

The elements of the derivative matrix in (34)can easily be derived

by differentiation, as in the case of the simple oscillator (App. I).

Note that the m random records, xj (t), j = 1, 2, ..., m,

will gi°.- rise to m iterative matrix equations like Eq. (33).

Each system of equations yields (aster convergence) values for

W 1, w 2,	
wp,Sl,C2, .," (p• The results are then averaged.

It should be pointed out that for lightly-damped systems

the products IHr (w)JI Hs tw)I are small for r 4 s in comparison to

the same products for r = s. This implies that the double sum of

Eq. (26) reduces to a single sum for lightly-damped systems even

though the power cross-spectral densities of the excitation,

S£ f (w), may not be zero, provided that they are reasonably
r s

flat.

11

(32)

(33)

(34)
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3.	 SYSTEMS WITH NONCLASSICAL NORMAL MODES

This section deals with nonclassically damped linear systems.

Using a matrix perturbation technique, general expressions are

derived for the correlation and spectral density matrices. Spe-

cial forms of these matrices considering only a first-order per-

turbation are also given. Returning to Eq. (22), let us assume

that [R] is not diagonal, but the damping matric [C] is such that

[R] = r D^ + e [61 ,	 (35)

where a is a small quantity. It is shown in Appendix III that

the cross correlation matrix [R x (T)] is given by

[Rx(T)] _ 	 [ CP] f [ `y* (w )] [ Sf (w)) 
[

ly
(w)I Te iwT

dw[CP] T ,	 (36)2rr

where

I Sf(w)I = [P] T
 
[ SF (w)I [CP)
	

(37)

The power spectral density matrix ISx (w)] is given by

ISx (u')I = [ rP] IT * (w)] [ Sf (w)I Py(w)IT[CP]T
	

(38)

In Eqs. (36) and (37), the matrix [Y'(w)] is defined by

-1
[w (w)] = rH(w)j^ [I] + iew[J0] rH(«)I

	
(39)

where

N (w )1 = ^ -wa [ I] + iw rDj + rw2a 
-1	

(40)
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3.1 Results for a First-Order Perturbation

The matrix [Y(w)] for a first-order perturbation is

[T (w )l i = CH(w)J — iewrH(w).] [.&l PH(w)j	 (41)

Substituting this expression in (36) ans (38), yields

[ Rx (T)J 1 =	 [Cp] P"* rH*(uj)j [Sf (w)l tH(w)je*WTdw[CP]T

(42)
r°D

+	 [CA J J wH* [,OHS f - SfH.0] He
iwT 

dw [ tpJ T
Go

and

[ S 	 (w ) ] ,	 =	 [ cp ] CH* (w )J [ S	 (w) ] CH (w )J [ p)f

(43)
+ iew [cp] [HUHS	 - S	 J& H] [Cp] 

T
fH *f

^• Notice that the leading 	 erms of	 42	 and	 43	 are ident ica l tg	 (	 )	 (	 )	 cal	 o

the cross-correlat-,,.on and power spectral density matrices, respec-

tively, of classically damped systems (for convenience, the brack-

ets have been ommitted in the second terms of (42) and (43)).

An error function similar to that defined by Eq. 	 (30) can be

_'	 k set up using Eq.	 (38) or	 (43) .	 Minimization of this function

would yield the natural frequencies of the system, the elements
'-	 f3

of [D]	 and the elements of [b]. 	 For systems with nonclassical

linear damping, however, 	 it may be more efficient to determine

the complex eigenvalues of the reduced system of 2N equations

rather than usllzg the approach discussed herein.

s
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4.	 AN ALTERNATE METHOD OF MATCHING
POWER SPECTRAL DENbiTIES

4.1 Systems with One Degree of Freedom

is
A trial-and-error method can be employed to minimize the

error function defined by either Eq. (10) or (30). The procedure,

which is straight-forward, is described below.

As in the iterative scheme discussed in Section 2, an initial

estimate of Q and C is required. The difference between the two

methods (Newton-Raphson and trial-and-error) is that the latter

requires initial specification only of the ranges in which Q and

C lie. Given these ranges, the damping ratio S is held fixed and

the natural frequency 0 is allowed to vary within the assumed range

until a value of 0 is found which minimizes the error. The fre-

quency is then fixed (at this value) and the damping ratio is

varied through its range until the error is minimized further.

The procedure is repeated until the error becomes smaller than a

desired value.

4.2 Multi-Degree-of-Freedom Systems

For a system with N degrees of freedom, initial estimates of

r.0 is C  (i = 1, 2,
lie are required.

fixed and wk is v

given by Eq. (30)

N) or ranges within which these parameters

All w i 's and C i ' s except one, say wk , are hold

aried within its assumed range until the error

is minimum. The procedure is repeated for all

r
wk 

and 
Ck. 

After each sweep, a new set of ranges in w i and Ci

t



t 15

(around the values determined by the previous set of iterations)

is used and the procedure is repeated. The ranges used each time

are made progressively smaller.

It is clear that the trial-and-error procedure can be used

initially and, once sufficiently good estimates of w i and Si are

established, the Newton-Raphson iterative technique can be employed

efficiently to yield accurate results in a few iterations.

^	 s

A	 i

1

1

s

t

z	 1

3	 €

L
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5.	 PRELIMINARY NUMERICAL RESULTS

Some preliminary numerical results are given in Tables 1, 2

and 3. Table 1 shows that convergence is reached after six itera-

tions for a one-degree-of-freedom system with parameters Q = 1.0,

C = 0.04. The Newton-Raphson scheme discussed in Sectic<^ 2 was

ri	
used. Two sets of iterations are shown, one with initial guesses

0 = 0.8,	 = 0.06 and the other with 0 = 1.3, S = 0.06. White-

-_	 noise excitation with power spectral density 1 was assumed.

In Tables 2 and 3, numerical results are shown for systems

with two degrees of freedom. The parameters of the systems are:

wl = 1.0, Ci = 0.04,	 1.51 S2 = 0.04 (Table 2) ; w l = 1.0,

Si = 0.04, w2 = 1.1, C,,2 = 0.04 (Table 3).  The power spectral

densities S	 (w) for these systems, assuming white-noise excita-xl xi

tion with power spectral density 1, are shown in Figs. 2 and 3.

The trial-and-error method discussed in Section 4.2 was employed

to generate these tables. It is seen that six complete sweeps are

sufficient for convergence. Within each sweep, each of the para-

meters was incremented in ten equal steps (within its range) until

the error was minimum.

I
t
r
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APPENDIX I

Elements of Derivative Matrix of Equation 17

17

3

Consider the function IH(m)1 2 in the form

f H (w) 12 -
f24

(f2a - W 2 ) 2 + 4C s C?W

and let

A = ( C? _ w 2 )2 + 4C 2 f?W Q ,
B	 a = 4 (S23 - ^-0 2 ) + 8OW 2 C 2 ,

C = a _ 4 M? - W 2 ) + 8W 2 C 2 .

D = aS = 8^22^^2,

E = aD = 16aV 2 S .

The derivatives of IH(w)1 2 are

a jH(Lv) (2 _ 
a (L̂ )

__ 4C 	 B2
^4an	 ^aQ A 	 A	 A

b H 
(w) 2 = A C - 8B 0.3 - (C - B2 f

A2

aS 
^ H(u)) 1 2 = _ 

A2 
^.

a^	 11A3	 A J

2

dd ( {u) ^2 = — AD s + C2AB
	 A

a	
x	 2^^4

Thus, the elements of the derivative matrix of Eq. (17) can

be determined (by inversion) from the following derivatives of

the error function:

i
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^, 1

m

a^iag 	 2SO J B LSO H(U)	 ^^ ^H(	 )

^So	 H('u) Sx(w)^	
a^aa	

^H(LU	 jdu,

a° a 1 4f1
i 

2 - 2 Sorl	 J O
 t So `T

B	 2

+ { So	 -
A

S 	 (cu) 1 .
x	 /

f 	 8B^	 C2
 A	 LA dw

 2B2^/
A2

A

° 3r

a2 a	 'm	 2

a	 - 
2Sp Jo IS ^$

3 z r
+ \ Ads

( 2D2 Dl
Sx () ^^l 3	 -	 a)'^dwA	 A

at e 	 __	 "C?
ap 

a7 2 	
2% J^ ^ So A

B	 4

r
+ \ A S, (w)

x - 4 C +	 2DB _ E2
A	 L	 A

c
f )} 

'

 du)1^A

Note white noise excitation of power spectral density So has been

- assumed, and that ; 1 =	 ^^, 2 = b ,
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APPENDIX II

Proof that for Ideal White Noise the Constant Value

of the Power Spectral Density Need not be Known

Consider a linear system with one degree of freedom excited

by two different forcing functions f l (t) and f2 (t), representing

ergodic random processes. Let x 1 (t) and xa ( t) be the responses

to fl and fa, respectively. If the excitations are related by

f2 = CL fl ,

where a is a constant, since the system is linear, the responses

will be related by

X2 = OC Xl

From the definition of power spectral density,

Sx^ (w) = a2 Sx (w)
1

and

	

S f2 	fl(W) = (tas	 (W)

Noting that	 T
2

Xn2	 T.i T x`P (T) e
- Iw T dT

2

= a Xn ,
i

the estimates of the power spectral densities SX (w) and SX (u^)
1

of the responses are related by

	

)q±	 Xi
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The error functions a and e
f,	 f2

cc

e	 S NO	 S' (o)) j dw,

0
L X,	 X,

e 
f2	 LSDLSD (w 	 S)*fe	

dw,

0

are obviously related by e
f2	

CE 4 ef, . Therefore, from

e f,,	 lef,
4	 0, ^^^} _ ICf

it is clear that the value of a does not enter in the determina-

tion of 0 and C (through the minimization of an error function

defined according to equation 10), since it cancels out.
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APPENDIX III

Response of Linear Nonclassically Damped

Systems to Random Excitation

The differential equations governing small oscillations of a

viscously-damped, linear system with N degrees of freedom, in

matrix form, are

[M] (x) + [C] {x} + [K] [x} = (F (t) ),	 tl)

where [M], [C] and [K] are the inertia, damping and stiffness

matrices, respectively, [x} is the response vector, and [F(t))

is a vector of applied random forces. Let ( qp] be the modal matrix

of the undamped system. If [cp] is normalized with respect to (M],

[to] 
TA 

[CPl = [ I l

[ cDl T [ M l [
ep

l 	 [w'j	
(2)

Let

[cp)T[C) [ Cp l = [R1	 (3)

The system is said to possess classical normal modes if [R]

is diagonal. Conditions for the existence of such modes have

been given by Caughey [161. It is assumed herein that [R] is not

diagonal but that its off-diagonal elements are small. That is,

we assume that (C] is such that [R] can be written as

[ R] = [ DJ + e [b) ,	 (4)

where a is small. Introducing the normal coordinate transformation

[x} = [cA] [p?
	

(5)
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in (1) and pre-multiplying by [9) T, yields

[1) (j)  + [R) {p} + rw'j [p} . [C+) T [ F (t) }	 (6)

Equation (6) is now solved using a matrix perturbation tech-

nique. Assume the following expansion for the vector of normal

coordinates:	 n

[P} a ^ ek{pk}
	

(7)

k=0

substitution of (4) and (7) in (6) leads to
n	 n
I,y£ k { Ok) + `rDJ + e [+0) ^Ek[k)

k=0	 k=0	 (g)n
+ [wad l^£kiPk) _ [ 

f (t) },

k=0

where (f(t))  = [cP) T ( F (t) ) . Equation (8) can be rewritten in

the form
n

' { { pk } + rDI { pk } + rw, l [ Pk}Ek

k=0	
(9)

n

k=0
1=

or

(I)iPb} + rDj{ ,} + r^^^^fPb

n

+ , Ek1{pk} + rDJ {Pk } + t{U'J {Pk} + [+^)Pk-l^ _ { x}

k=1



t

i

E

^a

Since { f} does not depend on €,

{Pb} + r DJ{Pb} + WJ (Pb ) _ {f}

and	 n

Ck({Pk) + rDJ {Pk ) + rw' J { pk} + ['g] 
{ Pk-11} = {0}

k-1

Hence,

{Pk) + rDJ {Pk) + rW2 J {Pk) = - [ '0) {Pk-1)

Taking the Fourier transform of (10)

L-ws [ 1) + iW rDJ + rW 2 J if po ( W )) _ { f ((V) }

or

{Pb tw )) - rH(w)J (f (w)),

where

rH (LO ) J - L-w' [ I] + iW rDJ + rw 2j ]^ 1

Since

iwrHJ {f

from (11) with K=1, we find

{Pj	 rHJ [$l {j^3 (,j-))

-^ -. iW rHI [+&l rHj (f )
Similarly,
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txo)

0-

(11)

(12)

t	 .a

s
I
t



(P (w)} = (--i^' ) k MkI6l rHljk
 
If {w)}	 (13)k

Now,	 n

(P(w)} _	 ^ k(P (w)}
l^	 k

k=0

n	
k

( — iw^) k rx] [Jol rya	 (f tw) }L	 L
k=1

or

(p{')} = fiH]

	

	 (- iwe} L[^9l rH]
k
(f(w)}	 (14)

k=1

Considering n infinite-orderperturbation K=^ E^

	

	 o	 g a	 {	 ), q, (14) can

be rewritten in the form

( p) = rHj' I] + Lew [.61 rHj J
-1 

^f}	 (15)

Substituting in (5)

(X(w)} _ [GPl rH(w)a [B(w)] 1 (f(w)}	 (16)

where

[B(w)] = [I] + iew[aD] [H^"^)a	 (17)

Let

[If (w)] = rH(w ) j [ B (w ) ]
_i	

(18)

Equation (15) can be rewritten as

(p(W)} _ [Y!(w)](f(w))	 (19)

Now consider the matrix

( p ( t )}(P( t + T) }T
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Using the convolution theorem the inverse transform of [p(t)) is

(p(t))	 j (T(X)){F(t - X)}dk	 (20)

Similarly,

)jT	 g))T[T(g)) Tdt

	

{p (t + T	 j {F (t + T	 (21)

The cross-correlation matrix of the response [R (T)] is defined by
T	 p

.2
	[R

p (T)l	
t T

liM L {P(t 
)}(p(t + T))T dt

or, using ( 20) and (21),
T
2	 oD	 Go

[R (T)]	
ij TLJ

lim 11	 [ -Y (k) ] F (t-),) dX	 {F(t+T-9 )}T[Y(g)]T d9] dt (22)
p	 T•+_ 

_ 	
CO

2

From ( 22), it can be shown that

1[R (T	 tj	 Sf (w) vi W 
T 
e

iWT 
dw 	 (23)

p	 -cc

where
[cp]T[S

^'	

(S	 (P 1

	

f
(W	

F (W) I [

Since

(x)
T 	

{P }
T[cP]T'

Ek

[R 
x 
(T)]	 [CP]	 [f KU))][S

f	M(W
) Y(W )l

T 
e
iWTdwfcp]T

2rT 
—OD
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TABLE 1 Initial Guesses and Results at Each Iteration for a
System with One Degree of Freedom. 0 = 1.0, C = 0.04

Initial
Guess 0.8 0.06 1.3 0.6

Iteration
No. 0 0 C

1 .8778 .05400 .9880 .0456

2 .7855 .05911 .9880 .0437

3 .9932 .04452 1.005 .0406

4 1.003 .03692 .9980 .0403

5 1.000 .03995 1.001 .0399

6 1.000 .0400 .9996 .0400



TABLE 2 Initial Guesses and Results at Each Iteration.
wi = 1. 0, wa = 1. 5, Si = Sa = 0.04

Initial
Guess 0.8 2.0 0.06 0.06

Iteration
No. W1 wa C1 Ca

1 0.99200 1.5200 0.04560 0.04560

2 0.99200 1.5200 0.04128 0.04416

3 0.99968 1.5008 0.04013 0.04186

4 0.99968 1.5008 0.04013 0.04093

5 0.99968 1.5008 0.04004 0.04057

6 1.0002 1.4996 0.03999 0.04042

Assumed Ranges: 0.56 s w I s 1.04

1.12 s wa s 2.60

0.42 s si , Sa s 0.78
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TABLE 3 Initial Guesses and Results at Each Iteration.
W1 = 1.0, wa = 1.1 1 Cl = C2 = 0.04

Initial
Guess 0.8 1.5 0.06 O.OG

Iteration
No.

wl ^1 C2

1 1.0400 1.1400 .04560 .04920

2 1.0016 1.1040 .03980 .04344

3 1.0016 1.1040 .03926 .04113

4 1.0016 1.0982 .04186 .04045

5 1.0004 1.1005 .03991 .04008

6 .99988 1.0996 .04005 .04000

Assumed Ranges: 0.056 s wl s 1.04

1.05 s w2 s 1.95

0.042 s C1 , C2 s 0.078
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Fig. 1. Sketch of transfer function (squared) for a
lightly-damped system with one degree of
freedom.
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Fig. 2. Power spectral density for a two-degree-
of-freedom system (ua l = 1.0, cue = 1.5,

;1 _ ^a = 0.04) .
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Fig. 3. Power spectral density for a two-degree-
of-freedom system (LL, = 1.0, j;2

C, = C,, = 0.04).
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