
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



1	 4

June 1977

NASA TECHNICAL	 NASA TM 73,253

MEMORANDUM

(NASA-TM-Y-73253) THE GENERAL SOLUTION TO 	 N77-26533
THE CLASSICAL PROBLEM OF FINITE EULER
BERNOULLI BEAM (NASA) 13 p HC A02/MF A01

CSCL 20K	 Unclas
G3/39 31796

F-

a

z

THE GENERAL SOLUTION TO THE CLASSICAL

PROBLEM OF FINITE EULER BERNOULLI BEAM

M. Y. Hussain and C. L. Amba-Rao

Ames Research Center
Moffett Field, California 94035

n



1

1. Report No. 2. Government Accession No. 3. Recipient's QWW9 No.

NASA TM 73,253
4. Title and Subtitle f;. Report Data

THE GENERAL SOLUTION TO THE CLASSICAL PROBLEM
6. PrAOrming OrganizationtbdaOF FINITE EULER BERNOULLI BEAM

7. Author(s) 9. Perfamirq organization Report No.

M. Y. Hussaini and C. L. Amba-Rao A-7076
10. work Unit No.

505-06-12-079. Performing organization None and Address
Ames Research Center	 Vikram Sarabhai Space
Moffett Field, Calif.	 and	 Center

11	 contract or Grant No

94035	 Trivandrum, India
13. Type of Report and Period Covered
Technical MemorandumI!. Sponsoring Agency Name and Address

National Aeronautics and Space Administration 14. Sponsoring Agency code

Washington, D.C. 20546

15. Supplennentery Nom

16. Ai,stract

An analytical solution is obtained for the problem of free and forced
vibrations of a finite Euler Bernoulli beam with arbitrary (partially
fixed) boundary conditions.	 The effects of linear viscous damping,
Winkler foundation, constant axial tension, a concentrated mass, and an
arbitrary forcing function are included in the analysis. 	 No restriction
is placed on the values of the parameters involved, and the solution
preEented here contains all cited previous solutions as special cases.

17. Key Words (Suggested by Author(s)) 18. Distribution statement

Euler Bernoulli beam
Free and forced vibrations

Unlimited

STAR Category - 39

19. Security Claaif, lof this report) 20. Security Claaif. iof this page) 21. No. of Pages 22. PNW'

Unclassified Unclassified 12 $3,25

'For sale by the National Technical Information Service, Springfield, Virginia 22161



THE GENERAL SOLUTION TO THE CLASSICAL PROBLEM OF FINITE

EULER BERNOULLI BEAM

M. Y. Hussaini and C. L. Amba-Rao*

NASA Ames Research Center, Moffett Field, California

SUMMARY

An analytical solution is obtained for the problem of free and

forced vibrations of a finite Euler Bernoulli beam with arbitrary

(partially fixed) boundary conditions. The effects of linear viscous

damping, Winkler foundation, constant axial tension, a concentrated mass,

and an arbitrary forcing function are included in the analysis. No

restriction is placed on the values of the parameters involved, and the

solution presented here contains all cited previous solutions as special

cases.

1. INTRODUCTION

Since the classical theory of beam was evolved by Euler and

Bernoulli, a large literature has accumulated on the subject, the

major part of which deals with either infinite beams or finite beams

with standard boundary conditions. The general solution for the dynamic

response of the infinite Euler-Bernoulli beam with arbitrary initial

conditions, subjected to an arbitrary load including the effects of

damping, an elastic foundation and constant axial load, was obtained

comparatively recently by Stadler and Shreeves (1). The analogous

* Vikram Sarabhai Space Center, Trivandrum, India
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problem for a finite beam does not seem to have been solved in all

generality. The first study allowing an elastically restrained edge

condition, which is of particular interest in the aerospace field, appears

to be that of Carmichael (2). Among subsequent investigations, those

of Haltbaek (3); Hess (4), Amba-Rao (5), Sharp and Cobble (6) and

Amba-Rao and Hussaini (7) are perhaps worth mentioning.

Maltbaek (3) solved the problem of a uniform beam with a rigid

mass attached at its center and with elastic supports. Hess (4) gave

a more complete solution. Amba-Rao (5) considered the free vibrations

of an elastically restrained beam carrying an arbitrary number of discrete

masses. He used the transform method, treating the added masses as impulses

(represented by Dirac delta functions) in the mass density function.

Sharp and Cobble (6) solved the problem of the arbitrarily loaded damped

beam elastically restrained against rotation. Amba-Rao and Hussaini (7)

presented a closed form solution to the problem of free vibrations of a

partially fixed, linearly damped; beam on a Winkler foundation, carrying

arbitrary masses. The present note extends the latter solution to include

the case of forced vibrations under arbitrary initial conditions, and

unifies all earlier investigations into a general theory.

2. STATEMENT OF THE PROBLEM

In addition to the usual assumptions of the Euler-Bernoulli theory,

the beam is assumed to have constant axial tensile load, with viscous

damping proportional to velocity, and to be resting on a Winkler foundation

whose resistance is proportional to the transverse displacement. The

relevant differential equation in operator form is



.s
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.Cy(x.t) - q(x,t)
	

(2.1)

where

	

4 	 2
-EJ a4 -P-L2- +f+da +p

aty

	

ax	 ax

Here y(x,t) is the lateral deflection, EJ the flexural rigidity

of the beam, p the mass density of the beam and concentrated was",

x the space coordinate measured along the length of the beam,

P the tensile axial force on the beam, f the Winkler foundation

constant, d the damping constant, t the time, and q the forcing

function. The initial and boundary conditions are, respectively:

y - u(x) , 
at - 

v(x)	 at t - 0
	

(2.2)

1 - Y	T^ ax3	
at x - 0 for all t	 (2.3)

- -R1 a

1 a3y_

T2 ax3 Y
at x = L for all t	 (2.4)

= R

	

axe 	 2 ax	 +r

where L is the length of the beam an^ T i ' T2 , Ri . and R2 are spring

constants (partial fixity factors. ` Thlese boundary conditions are

unmixed. The method of solution 41 en here, is applicable even if the

conditions are mixed.	 I'

3. SOLUTION	 t

The general theory of linear idp"Ators suggests two fundaaental
IN

methods of solving equatiun (2.1). Une method is to find the inverse

Aw
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of the operator 1, that is, in effect to obtain the Green's.function.

The operator -C is not self-adjoint with respect to either x or t.

However, if the Green's function G is evaluated satisfying the homogeneous

initial and boundary conditions, then the problem can be solved in

principle by an extended definition of l as given in equation (3.1)

below:

.Cy - q + [pu(x)6'(t) + pv(x)d(t) + d6(01

+ terms due to inhomogeneous boundary conditions

Q (say)	 (3.1)

where 6(t) is the delta function. The solution takes the form

f

Lfm
Y(x.t) - J G(x,t: E,T)Q(&,T)dg dT

0 0
(3.2)

In the.present paper, the solution is obtained by the second method

using spectral representation of -C in terms of x-eigenfunctions.

First, the solution is sought as a sum of two functions, one of which is

the solution of a homogeneous problem with inhomogeneous boundary conditions,

while the other is the solution of an inhomogeneous equation with homo-

geneous boundary conditions. Thus, let

Y(x . t ) - y l (x , t ) + y2(x,0
	

(3.3)

where

tyi - 0
	

(3.4)



(3.5)

(3.6)

(3.7)
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with the boundary conditions

yi"(O,t) - -Tlyi(O,t)

y'l "(A,t) - T2yi(X't)

yl(O,t) - -Riyi(O,t)

y'i (7,t) - R2 i (n.t)

and

Xy2 - q

with the boundary conditions

y2 (O,t) - y2 (*., t) 	 0

y2(0 , t ) - y2(A,t) - 0

and the initial conditions

y2 (x,0) - u(x) - y i (x,0) - U(x)

ay e	ayi

at 
(x, 0) = v 	 - at (x,0) - V(x)

where, by a proper choice of the origin and unit of length, the end

points of the beam are at x - 0 and x - A, and primes denote

differentiation with respect to x.

(3.8)

a) EVALUATION OF yl

The solution y l of equation (3.4) is given in reference 7. A

slightly different approach is presented here which yields results

identical to those of reference 7. The approach is expected to be

useful particularly if the series representing the inverse of the finite

Fourier transform is not summable in closed form•.
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Write

yl = *(x)exp(-at)cos(wt) 	 (3.9)

Substituting this in equation (3.4), we find that *(x) satisfies the

ordinary differential equation

EJ dam-P d l + fey - P0 2 + w2 )* = 0	 (3.10)
dx4 	8x2

where Zap d, and with concentrated masses being represented by delta

function p m + Mj d(x - xj ). Thus, the concentrated mass is supposed to be

situated at the point x = n j ; and d is assumed proportional to p.

The boundary conditions are

	

* (3)
(0) _ -T ,*(0)	 (3)(W) = T2^(X)	

(3.11)

( 2 )	 _ _	 ( 1 )	 (2)	 _	 (1)^	 (0)	 Rl^y	 (0)	 and	 ^	 (^)	 R2^	 (1()

where * (i) denotes ith derivative of * with reopcct to X.

Define
i
* coo nx dx

o 8x

Integrating by parts, we establish the recurrence relation

2 r(_1)n,(i+l)M - (1+1) (0)]
11

-	
-1)n,(i+3)(,) _ (1+3) (0)] + n gi+4^	

(3.12)

Z(n)	 eo	 2 
[ ( -1)n^y(1)(]i) - (3) (0)]

n

_ n 
^(_1)n^(3)(^) - x

(3) (0)] + n g4Z 	 (3.13)

The expression for $4^ is obtained from the finite cosine transform of

equation (3.4):
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84 [1 + EJ n 2] • ;(n) LEJ ( a2 + W2 ) - fEJ

+ EJJ n r_1) n^(3)M - x, (3) (0)] + Sj	 (3.14)

where

sj - 02 +
EJ W2 Mj *(xj )coo nxj

Finally,

^V(n)	 1	 r(n2 + 2L 2 ) {(- 1 ) n, (1) (E ) - V► (1) (0)}
(n2 + £ 2 ) 2 - 0

	

1(_1)n,(3)M _x (3) (0)} + sj ]	 (3.15)

where

P	 ( P \`	 f	 02 + WZ

RZ • EJ ' -k4 • - \ 2EJ / + EJ - m	 EJ

Then
m

^ (x) • ^ (0) +	 ^ (n)cos nx
m• 1

or

*(x) .1
	 1	

Ca2EJ W2 
m *(xj ) - {^4 (3) M -x(3)(0)}

A j 4 _ k4

+ 2k2{x,(1)(A) _ x(1)(0)!] + a2AEJW2 Mj *(xj )[I 3 (x + xj)

+ I 3 (Ix - xj I)
]
 - 1( [x(1)(0){I1(x) + (R2 

+ k2)I3(x)}

+ (1) W {I 2 (x) + (Z 2 + k 2 )I 4 (x)} + to (3) (0) I 3 (x) - V(3)(X)I4(4]

(3.16)

r

	

^_	 Ijp_



-	 a

8

where

I (x)	 -	
1	 +	 n	 cos h (n - x) A2 + k2

i	 2(R2 + k2) 2	 sinhll Aft+P

I (x)	
1	 _ l(	 cosh n - x)

3	 2(R" - k")	 4k2 [ k + k Z sink X

cocth (X - x)/1 2 - k2 1
k2 s inh A i- J

I 2 (x) - I 1 (A - x) and I " (x) - I 3 (X - x)

b) SOLUTION OF ty 2 = q(n,t)

The operator L 2 is a sum of two commutative operators Lx and Lt

defined as

a2
L • EJ 

a"
-- P --- + f	 ( 3 .17)

x	 ax"	 3x2

Lt - p 2-2  +d o•	 (3.18)
at

2

The inverse of -C2 may be obtained by considering L x as a constant.

The results will be a function of the operator L x and should be interpreted

by using the spectral representation of Lx. Consider Lx : Its domain

D  is the set of all functions in S (which is a linear vector'space of

real-valued square integrable functions over (0,A)) and they have piecewise

continuous fourth derivatives for 0 <_ x < x  and for x  < x _< 71, whic'i

satisfy the conditions

*(0) s ^ M - *11(0) - V
,M - 0	

(3.19)

and are such that Lx* belongs to S.

If * i , ^ i are in Dx , it can he easily shown following standard

pri-secdurr

y
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(^J I LX*,) - 
\yj.*i)	

(3.20)

where the inner product is defined as

14j-
 fo

dn	 (3.21)

In other words, Lx is self-adjoint and its eigenfunctions are *i.

These 
i 

can be obtained from the analysis of section (a) by letting

T 1 , T2 -► - and R l , R2 - 0. The mi defined by the relation

® i -	 ^,2 2 i T7T	 (3.22)
C

form the orthonormal basis for S. Hence q, U, V can be represented

as

q/P - !.r gi(t)4i(x)
-

U - 	 Uimi(x)

V -	 Vimi(x)
1

where

gi - jo Q(E.t) mi(E)dE
P

('A
Ui - J U(E)mi(&)dE

0

x
Vi - f

o 
V( E) 0iM dIC

(3.23)

(3.24)

The equation (3.6) is written as

2	 ay

\P 
ate 

+ d at + Lx y2 - q(x,t) , y2 (x.o) - "(x) ,	 at (x,0) - V(x)

(3.25)

y
h-_ - 1	 1
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Treating Lx as a constant, we find the solution of (3.25) (by the

method of Laplace transforms or by variation of parameters) as

	

Y	
fo

t exp(-o(t - T)j sinh B(t - T)
	 T x dT

	

2	 s	 P

+ exp(-at) s=n
h Ot +

0

 cosh at 
U(x)

+ exp( , at) Binh St VW
	

(3.26)

^f

where 8 - 42 - Lx/p and 2 ap - d., It is to be noted that

the function of the operator is written before the function on which

it acts and it is interpreted accordingly. For instance,

f(Lx)U(x)	 f(An)Ummn(x)

where An are the eigenvalues of Lx end n 	 the associated normlised

eigenfunctions. Thus,

Y2 
- j [Fn(t)*qn(t) + Fn (t)(aUn + Vn)

n-1

exp(-at)cosh 8 n t Uj mn (x)	 (3.27)

t

where Fn (t)*qn (t) - f Fn (t - T)gn(T)dT

0

Binh 8 t
	--AFn (t) - exp(-at)	

S 

n	 , and 
Sn - 

a3 	 n
n
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DISCUSSION

Substitution of (3.16) in (3.11) yields four equations for five

unknowns	 (1)(0), *0) (7),  * (3) (o), * (3) (70 and *(x j ). Evaluation of

at x - xj from (3.16) provides the necessary fifth equation. The determinant

of this system set equal to zero is the equation for natural frequencies.

In the above Procedure, if equation (3.19) is used instead of (3.11), we

finally obtain the equation for the eigenvalues a n of the operator Lx.

From equation ( 3.10) it is obvious that a n have the form

X  - p02 + wn2)

and then

Bn	 ^'n

where w  are the natural frequencies of the beam simply supported at

both ends. The corresponding eigenfunctions are obtained from

equation ( 3.16). In summary, a general solution has been presented

for the free and forced vibrations of a finite Euler -Bernoulli beam.
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