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NONLINEAR ANALYSIS OF BONDED JOINTS 

WITH THERMAL EFFECTS 

ABSTRACT 

A numerical analysis of the nonlinear' response of bonded joints is 
presented. Mechanical and thermal loadings are considered. Material 
stress-strain response is represented by Ramberg-Osgood approximations. 
Temperature dependent properties including modulus percent retentions 
and coefficients of expansion al";;: modeled with linearly segmented 
curves. Bonded joints with graphite-po1yimide, boron-epoxy, titanium, 
or aluminum adherends are analyzed using a quasi 3-dimensiona1 finite 
element analysis. In adhesive bonded joints, the adhesives considered 
are Met1bond 1113 and AF-126-2. 

Elastic results are presented for single and double lap joints, with 
and without adhesives. It is shown that mechanically induced stresses 
are greatly affected by longitudinal adherend stiffness. The effects 
of adherend transverse stiffness are shown to be significant in some 
cases. Residual cLlring stresses are shown to be significant in all 
joints except those with similar adherends and no adhesive. 

Nonlinear results are presented for adhesive bonded joints. It is 
shown that adhesive non1inearities are only significant in the predicted 
adhesive shear stresses. Adherend non1inearities and temperature de-
pendent properties are shown to have little effect upon the adhesive 
stress predictions under mechanical and thermal loadings. 
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Chapter 1 

INTRODUCTION 

With the development of advanced fiber reinforced composites as 

viable structural materials the adhesive bonded joint has become of 

primary importance. The bonded joint does not require that the stru­

ctural members being joined (adherends) be perforated to facilitate 

bolts. Without the bolt holes and the stress concentrations associated 

with them, a substantial weight savings can be realized which is a major 

reason for selecting composite materials for the structural component. 

In order to fully realize the strength of the composite adherends, 

the adhesive bonded joint must be efficiently designed and this requires 

an adequate prediction of the stress distributions in the adhesive layer 

of the joint. The study of stresses in the adhesive layer has been 

approached by researchers in the past using one of two types of analysis 

procedures. 

Many researchers have attempted to predict the stresses using a 

closed form analytical solution. However, when using this approach, the 

equations that need to be solved become exceedingly complicated and this 

leads to the need for simplifying assumptions. These assumptions have 

included linearity, material isotropy, restrictions on the geometry of 

the joint, and neglect of thermal effects. 

Other researchers have approached the problem through the use of 

numerical techniques such as finite element analysis. They have usually 

found it necessary to use some or all of the assumptions made for the 
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closed form type solution procedure. The motivation for the present 

study is to show the capability of a finite element computer analysis 

program developed by Renieri and Herakovich [1] to adequately predict 

these stress fields. The program has the capability for material ortho-

tropy, material nonlinearities, and temperature dependent properties. 

Modifications to the computer program for this study include increased 

element capacity, improved execution time, and capability for hygrother­
mal analysis. 
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Chapter 2 

LITERATURE SURVEY 

The first investigation into the behavior of bonded joints found in 

the literature was presented in 1944 by Goland and Reissner [2]. They 

obtained an analytical solution by assuming a state of plane strain, 

prescribing the distributions of the shear and peel stresses to be 

parabolic and linear, respectively, and applying restrictions on the 

ratios of adherend moduli and thickness to adhesive modulus and thick-

ness. The solution is based on the principle of minimum potential 

energy and is restricted to linear isotropic materials and identical 

adherends. Thermal e7fects were neglected for this analysis. 

Erdogan and Ratwani [3J approached the problem of an orthotropic 

plate bonded to an lsotropic plate with an isotropic adhesive. They 
. 

obtained closed fO~1 solutions for stepped lap and smoothly tapered 

joints. Their solution was based on a summation of forces in the ad­

hesive layer and adherends and assumed plane stress and linear material 

behavior. This solution predicted stress singularities at the edges of 

each step in the adhesive in the stepped lap joint, and at the ends of 

the overlap in the adhesive for the smoothly tapered joint. 

Barker and Hatt [4J used a linear elastic finite element computer 

analysis program to compare results with the work of Erdogan and Ratwani 

[3]. The adherends were modeled using four noded isoparametric elements 

and material orthotropy was considered. The adhesive layer was modeled 

using a special element developed for that purpose which was formulated 

3 

I 1 r· r 

, , 



4 

to have no thickness and used modified stiffnesses derived from the 

moduli, thickness, and length of the adhesive layer. Their results 

compared favorably with Erdogan and Ratwani. 

Sainsbury-Carter [5] solved the stepped and linearly tapered 

bonded joints by assuming linear isotropic materials and solving the 

equations of equilibrium. It was assumed that the moduli of the ad her­

ends are much larger than those of the adhesive. Also the analysis was 

one-dimensional and thermal effects were neglected. It was shown that 

the thickness of the adherends greatly affected the magnitude of the 

peak shear and peel stresses and an iterative technique was developed to 

modify these thicknesses within stress design criteria. 

Wah [6] investigated non-symmetric single lap joints with composite 

adheorends and isotropic adhesives. Laminated plate theory was used to 

develop stress and moment resultants and relate them to mid-plane 

strains and curvatures. The laminated adherends were required to be 

mid-plane symmetric in order to uncouple the bending-stretching terms in 

the previously mentioned relationships. A solution was presented for 

the joints under shear loadings as well as axial loads. The solutions 

were restricted to the elastic range and thermal effects were neglected. 

Hart-Smith [7] was the first researcher to consider the non-lin-

earity of the adhesive layer by assuming its stress-strain response to 

be elastic-perfectly plastic. This effort presents solutions and 

design aids, including thermal effects, for single, double and stepped 

lap joints and linear tapered joints. While a thermal mismatch is 

considered all material properties are considered temperature indepen-

l 1 
r L 

• 

-. 

j 

/J 

1 
J 
l 

( 

1 

1 
J 

j 



\ 

1 

I. 

5 

dent. This research notes the increased failure strength by allowing 

for plastic deformation in the adhesive. 

A comparison of theoretical and experimental shear stress in a 

single lap joint was presented by Sharpe and Muha [8J. The joint 

modeled had plexiglass adherends and an epoxy adhesive. Good correla­

tion was obtained with the work of Goland and Reissner [2J and with a 

linear computer analysis program, BOND4, of the University of Delaware. 

Renton and Vinson [9-10J performed parametric studies on single lap 

joints as well as fatigue testing and thick adherend lap shear testing. 

The specimens were comprised of mid-plane symmetric composite adherends 

and elastic behavior only was studied. Linear thermal effects were also 

included. The parameters studied were over-lap length, adhesive thick­

ness, and ply orientation in the composite adherends. Comparisons were 

made with the work of Goland and Reissner [2J with Renton and Vinson's 

work showing better satisfaction of stress free boundary condition at 

the edge of the adhesive layer. 

Grimes, Greimann et al [llJ approached the analysis of single, 

double, and stepped lap joints from both the finite element method and 

numerical integration of the governing differential equations. Their 

analysis included full material nonlinearity in the adherends and 

adhesive layer. The development for both solutions was based on the 

deformation theory of plasticity with the finite element analysis 

utilizing an iterative procedure until the solution converged. In both 

forms of analysis, solutions were presented for room temperature only 

and curing stresses were neglected. 
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DasGupta and Sharma [12] used an analysis similar to Goland and 

Reissner [2] to predict stresses in lap joints with prebent adherends. 

The work showed a decrease in peak stresses with the use of bent ad­

herends. 

Renton [13] provided an analysis of the thick adherend lap shear 

test using the work of Renton and Vinson [9-10]. This research verified 

the validity of the test. 

Other researchers have investi gated the effects of moi sture [14], 

and the reliability [15] of lap joints. 

I1hile this survey is by no means all-inclusive, it is representa-

tive of the research that has been performed and from this survey the 

need for fully-nonlinear material behavior and temperature dependent 

properties can be seen as these physical realities have been consis-

tently neglected. 
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Chapter 3 

BASIC CONSIDERATIONS 

The bonded joints selected for analysis in this study are single 

and double lap joints with and without adhesive layers. Typical geo­

metries for joints with adhesive layers are shown in Figure 1. Compo,ite 

and isotropic adherends are considered with nonlinear material properties 

and thermal stresses as well as temperature dependent properties. 

Hygroscopic analysis capabilities are presented but no results are 

included in this investigation due to a lack of complete consistent 

data. 

3.1 Geometric Restrictions 

For the present study it is assumed that the joint is in a state of 

plane strain (i.e. EX ~ 0, or EX ~ const). This is a valid assumption 

if the x dimension of the joint (Fig. 1) is large and the cross-section 

under consideration is some distance removed from contraints that are 

dependent upon the x coordinate. 

The analysis is also restricted to balanced, mid-plane symmetric 

composite adherends and laminate material properties are used for these 

components. 

3.2 quasi 3-Dimensional Analysis 

The analysis of reference [1] considers a long prismatic bar under 

the influence of a uniform applied strain or temperature change to have 

strains independent of the x coordinate. With this assumption, the 
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strain displacement relations can be written as 

E =~=fl(Y'Z), E =~=f2(Y'Z) x ax y ay 

E - aw - f (y z) y = ~ + aw = f4 (y, z) z - az - 3 ' 'yz az ay (3.1) 

- au + aw _ f () _ au + av - f ( ) Yxz - az ax-- 5 y,z, Yxy - ay ax-- 6 y,z 

where u, v, and ware x, y, and z displacements, re~oectively, and fl 

through f6 are unknown functions of y and z coordinates only. Viith the 

use of suitable mathematical manipulation, (3.1) can be integrated yield­

ing the following form for the displacement fields 

u(x,y,z) = x(Cly+C2z+C2) + U(y,z) 

i v(x,y,z) = x(C4z+C6) - Cl ~ + V(y,z) (3.2) 

i w(x,y,z) = x( -C4Y+CS) - C2 ~ + H(y,z) 

where Cl through C6 are unknown constants and U, V, and H are unknown 

functions of y and z only. Hith this assumption, and ne<11ecting body 

forces, the equilibrium equations can be written as 

aTX,t + 3Txz = 0 
ay az 

~ + aT yz = 0 
ay az 

(3.3) 

dT yz + ao z = 
ay az 0 
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3.3 Bonded Joints 

The analysis developed in [lJ can be used as two different formula­

tions for the solution of bonded joints. The first of these corresponds 

to a classical plane strain solution in which E = Y = Y = o. This x xz xy 
type of solution is entirely 2-dimensional and is the type of plane 

strain analysis used in a majority of joint analyses previously in the 

literature. 

The second formulation is a more general plane strain solution 

where EX r 0 but is equal to some constant ~x. For this procedure the 

components of strain Yxz and Yxy are assumed to be zero. The principal 

difference between the two formulations is that the second accounts for 

the transverse stiffness (Ex) of the adherends and adhesive while the 

first does not. This second formulation is used for this analysis and 

comparisons between results obtained from the two solutions are pre-

sented in Chapter 5. In the following sections and chapters the first 

formulation is referred to as a 2-dimensional formulation while the 

second is referred to as a quasi 3-dimensional analysis as it corresponds 

closely to the analysis of section 3.2. 

3.3.1 2-Dimensional Joint Formulation 

In the classic plane strain solution the displacements, strains, 

and therefore stresses, are independent of the x-coordinate (Fig. 1). 

Under these assumptions the displacement fields (Equ. 3.2) reduce to 

u = 0 

v = V(y,z) 

w = W(y,z) 

(3.4) 
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The nonzero strain components (Ey' E
Z 

and Yyz ) have the same definitions 

as in Equ's. (3.1). 

3.3.2 Quasi 3-Dimensional Joint Formulation 

If, in a bonded joint, it can be assumed that EX is a nonzero con­

stant and that Yxz and YXy are zero, then the displacement fields 

(Equ's. 3.2) reduce to 

u = ~xx 

v = V(y,z) (3.5) 

w = W(y,z) 

In these equations the only nonzero constant from Equ's. (3.2), C3' has 

been renamed ~x and corresponds to the uniform normal strain EX. The 

remaining strain components (Ey' EZ' and yyz) again have the same form 

as in Equ's. (3.1). 

The assumption that the strain component normal to the plane of the 

analysis is constant is strictly valid for the case of single lap 

joints with identical orthotropic adherends. It is also valid for 

double lap joints where the outer adherends are identical and exhibit 

orthotropy. The assumptions that Yxz = Yxy = 0 are valid if the 

adherends are orthotropic. 

The restriction that all adherends be orthotropic is satisfied 

by all joints analyzed in this study. It should be noted however 

that two of the joints analyzed do not satisfy the first condi­

tion as they are single lap joints with differing adherends. 

:1 

l 
j 

i 
I 

'1 
! 
j 
! 



12 

For these joints, the solution neglects the effects of bending out of 

the plane of the joint and is similar to a membrane solution in this 

respect. 

3.4 Material Properties 

In order to adequately model a layered adherend layer by layer an 

excessive number of finite elements would be needed. Because of this, 

it is necessary to use laminate materia.l properties and consider the 

composite adherends to be homogeneous orthotropic materials for the 

joint analysis. 

Obtaining laminate material properties from the literature proved 

to be impossible thus making it necessary to generate these properties 

analytically. For this generation of properties two different approaches 

were used. The stress-strain response of a laminate was predicted 

following the work of Renieri and Herakovich [1], while thermal proper­

ties were predicted using classical lamination theory. 

3.4.1 Prediction of Laminate Stres~-Strain Response 

The details of the analysis of ref. [1] will not be presented as to 

do so would be overly repetitious; however a brief outline will be pre­

sented for completeness. 

The analysis utilizes the displacement fields of Equ's. (3.2). 

Because the laminates in question are balanced and midplane symmetric 

the analysis can be reduced to the quarter section shown in Figure (2b) 

with certain symmetry and anti-symmetry conditions. The displacement 
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fields (Equ's. 3.2) reduce to 

u = ~xx + U{y,z) 

v = V{y,z) 

w = W{y,z) 

(3.6) 

and again the constant C3 has been renamed ~x and corresponds to a uni­

form applied strain. The displacement fields (3.6) along with the stress­

free boundary conditions along the free edges, top and bottom surfaces 

and certain restrictions imposed upon the displacements by the symmetry 

and anti-symmetry conditions mentioned previously represent the boundary 

value problem to be solved by the finite element analysis. With this 

analysis and the nonlinear finite element program, the moduli Exx and 

Eyy can be predicted as functions of strain level. 

3.4.2 Prediction of Laminate Thermal Properties 

Laminate thermal properties including coefficients of thermal ex­

pansion and moduli as functions of temperature are predicted using 

lamination theory and unidirectional material properties as functions 

of temperature. Lamination theory as presented here cannot directly 

predict temperature dependent laminate properties, however, if the uni­

directional properties used as input correspond to an elevated tempera­

ture, then the laminate properties generated will also correspond to 

this temperature. Therefore, laminate properties can be predicted at 

discrete temperatures corresponding to the input data. 

The constitutive relations for a s'lngle, orthotropic lamina in the 

principal material coordinates are 
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°1 Cll C12 C13 0 0 0 El 

°2 C12 C22 C23 0 0 0 E2 

°3 C13 C23 C33 0 0 0 E3 = (3.7) 
'23 0 0 0 C44 0 IJ Y23 

'13 0 0 0 0 CE5 0 Y13 

'12 0 0 0 0 C C66 Y12 

where the principal coordinates are shown in Fig. 2a as the 1-2-3 system. 

These equations can be written in an abbreviated form as 

(3.8) 

For a coordinate rotation about the 3 axis through an angle e (Fig. 2a) 

the stresses and strains are transformed according to the following 

relations, 

falx = [Tl]{o}l and {E}X = [T2]{E}1 (3.9) 

where 

Ox m2 n2 0 0 0 2mn 

0y n2 m2 0 0 0 -2mn 

°z 0 0 1 0 0 0 
{a} = , [T1J = x 

'yz 0 0 0 m -n 0 

'xz 0 0 0 n m 0 

'xy -mn mn 0 0 0 (m2_n2) 
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2 n2 (l 0 0 e:X m 

n2 2 0 0 0 e:y m 

e:z 0 0 1 0 0 
{e:} " , [T2J " x 0 0 0 m -n Yyz 

Yxz 0 0 0 n m 

Yxy -2mn 2mn 0 0 0 

and m = cose, n " sine 

Combining Equ's. (3.8) and (3.9) yields 

{a} " X [T1J[CJ[T2J-1{e:}x 

or 

where [CJ is defined as 

and has the form 

- -
Cll C'2 C13 0 0 

C12 C22 C23 0 0 

[CJ " 
C13 C23 C33 0 0 

0 0 0 C44 C45 
0 0 0 C45 C55 

C16 C26 C36 0 0 

C';' T' C'-""~:\:-"'"='T ,_.=-
., ,~:.... . l 

mn 

-mn 

0 

0 

0 

(m2_n2) 

-C16 
C26 
C36 

0 

0 

C66 

I 

(3.10) 

(3.11) 

(3.12) 
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Equ's. (3.10) are the constitutive relations for an orthotropic lamina 

rotated through an angle e. 

For lamination theory it is assumed that a lamina is in a state of 

plane stress. It should be noted that this lamination theory development 

is the only case in which plane stress will apply while plane strain is 

assumed in all other developments. 

The mathematical statement of the plane stress assumption is 

a = T = = 0 z xz Tyz (3.13) 

which can be used to reduce the constitutive relations (Equ's. 3.7) to 

= 

Q
11 

Q12 0 

Q12 Q22 0 

o 0 Q66 

(3.14) 

This simplified form of the stiffness matrix [CJ is known as the reduced 

stiffness matrix [QJ. 

If the transformation matrices (Equ's. 3.9) are reduced similarly. a 

rotated plane stress constitutive relation [QJ can be formed in the 

same manner as Equ's. (3.10). Thus 

falx = [QJ{dx (3.15) 

where 
- -

ax EX Q
11 

Q12 Q16 - - - -
{a} = cry • {dx = Ey • and [QJ = Q12 Q22 Q26 x 

Txy Yxy Q16 Q26 Q66 
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Now, taking the standard plate theory assumption that normals to 

the mid-plane of the plate remain normal after loading, the strains of 

Equ's. (3.15) may be written as 

where 

{d = 

{E} = total strains x 

= mid-plane strains 

= plate curvatures 

and z = distance from the mid-plane 

Defining stress resultants 

Nx 
= [HH 

crx 
{N} = Ny cry dz 

NXY , 'rxy 

and combining Equ's. (3.15), (3.16), and (3.17) yields 

j H - LH -{N} = [Q]{EO}dz + [Q]z{K}dz 
-H -H 

(3.16) 

(3.17) 

(3.18) 
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or 

{N} ~ [A]{EO} + [B]{K} (3.19) 

• where 

N 
[Q](k)(h

k
-h

k
_
1
) [A] = E (3.20) 

k~l 

and 

1 N [Q](k)(h~-h~_l) [B] = - E 
2 k=l 

where the k denotes the number of the ply and the his are as in Fig. 

2b. 

For symmetric 1amiantes [B] = 0 and 

{N} = [A]{EO} (3.21 ) 

Inverting this relationship yields 

(3.22) 

Noting that 

- 1 
{cr}x ~ 2Ff {N} (3.23) 

and combining Equ's. (3.22) and (3.23), leads to 

" 

(3.24) 
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where 

[a*J = 2H[AT 1 

These relations can be used to define the laminate properties 

-
E =~=_1_ 
x EX ail 

(3.25) 

For an orthotropic material the coefficients of thermal expansion 
are 

al 
a2 

{all = a3 (3.26) 
0 

0 

0 

These coefficients transform, under the rotation defined earlier, in 

the same manner as the strains (Equ. 3.9). 

(3.27) 
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For the 2-d;mens;onal analysis Equ. (3.27) reduces to 

ctx _ (m:ctl + n:ct2 ( 

cty -I" ", + ""'j (3.28) 

ctxy 2mn(ct l-ct2) 

Now define laminate coefficients of thermal expansion such that 

(3.29) 

where 8T is a uniform temperature change and 

Combining Equ's. (3.18), (3.22), and (3.29), and considering symmetric 

laminates only yields 

(3.30) 

or 

{ -} - [,A]-l ct - (3.31 ) 

When the moduli and thermal coefficients used to calculate the [C] 

matrix (Equ's. 3.7) are those corresponding to an elevated temperature, 

then the moduli of Equ's. (3.25) and coefficients of expansion of Equ's. 

(3.31) will be laminate properties also corresponding to that tempera-
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ture. These reduced moduli will be used as input in the finite element 
program. 

These methods of generating material properties were resorted to 
because of the lack of consistent experimental data found in the 
literature. 

3.5 Finite Element Formulation 

As in section 3.2.1 the presentation of the complete formulation 
would be a duplication of the work of Renieri and Herakovich [1], 
therefore only the highlights will be given here. 

The finite element solution process involves the subdivision of a 
structure into a finite number of smaller elements (Fig. 3). This 
process is known as discretization. For each of these finite elements 
a set of interpolation functions are chosen to represent the displace­
ments at any puint in the element as functions of the displacements at 
the corners or nodes of the element. Using the strain-displacement 
relations (Equ. 3.1) the strains can also be calculated as functions of 
nodal displacements. Now with the use of a variational principle, such 
as the principle of minimum potential energy, a set of equations re­
lating nodal forces to nodal displacements can be obtained for each 
element, 

{F}(l'.} = [KJ(l'.}{u}(l'.} (3.32) 

where {F}= nodal forces 

{u} = nodal displacements 

[K] = element stiffness matrix 
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and the superscript (~) refers to the individual element. These elemental 

relations (Equ's. 3.32) are then combined or assembled into a larger 

system of equations relating forces to displacements for the entire 

structure. The solution of these equations yields the displacements and 

therefore the strains and stresses over the entire body. 

The finite element scheme developed by Renieri and Herakovich [1] 

utilizes the constant-stress, constant-strain triangular element with 

three nodes. The interpolation functions used are 

(3.33) 

As can be seen from the form of Equ's. (3.33) these are linear relations 

and will yield constant strains when substituted into Equ's. (3.1). The 

constants al through ag are functions of the spatial coordinates and 

nodal displacements of the individual elements and Sx is the applied 

uniform strain. 

Manipulation of Equ's. (3.33) and substitution into Equ. (3.1) 

yields the following strain-displacement relations for an element. 

I 
I' I 

I 

• 



I 

" 

'. 

. ·,"·1 . I. 

25 

F.xA 

aVl + CV2 + eV3 
bWl + dW2 + gW3 

t·.··· . 

bVl + dV2 + gV3 + aWl + CW2 + eW3 
bUl + dU2 + gU

3 

aU l + CU2 + eU3 

(3.34) 

where A = area of the element 

ul ' u2' u3 = x-displacements at nodes 1, 2, and 3 respectively 

vl ' v2' v3 = y-displacements at nodes 1, 2, and 3 respectively 

\'11, w2' w3 = z-displacements at nodes 1, 2, and 3 respectively 

and a, b, c, d, e, g are known constants involving spatial coordinates 

only. 

For the case of a uniform thermal load the strains are 

(3.35) 

where = total strain 

= mechanical strain 

and = thermal strain 

which consists of {all (Equ. 3.26) multiplied by the temperature change 

AT. Transforming Equ's. (3.35) to an arbitrary coordinate system yields 

an individual element. 

(3.36) 
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Noting Equ's. (3.34), these strains can be written as 

2 2 
£x Sx - (m al + n a2)~T 

(avl + cV2 + ev3)/A - 2 2 
Ey (n al + m a2)~T 

EZ (bwl + dW2 + gw3)/A - a3~T 
(3.37} = 

Yyz (bv l + dV2 + gV3 + aWl + CW2 + ew3)/A 

Yxz (bU l + dU2 + gu3)/A 

Yxy (au l + CU2 + eu3)/A + 2mn~T(al-a2) 

The preceding formulation for thermal strains is completely analogous 

for that of hygroscopic strains. For an orthotropic material the coef­

ficients of hygrosopic expansion are 

131 
132 

{ 13} 1 = 
133 (3.38) 
0 

0 

0 

Following exactly the development of Equ's. (3.35) through (3.37) and 

substituting {13}1 for {all and ~M for ~T where ~M is a uniform percent 

weight change due to moisture absorption or desorbtion, yields 
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~x ~ -x (m2~1 + n2~2)llM 

~y (avl + CV2 + ev3)/A - (n2~. + m2~ )llM 
1 1 

~z 
;: 

(bWl + dW2 + gw3)/A - ~311M (3.39) 

Yyz (bvl + dV2 + 9V3 + aWl + CW2 + ew3)(A 

Yxz (bul + dU2 + gu3)(A 

Yxy (aul + CU2 + eu3)/A + 2mnllM(~1-~2) 

The hygroscopic expressions are presented here because the capability 

for this type of analysis has been included in the computer program. 

Results will not be presented because of the lack of data as stated 

earlier. It should also be noted that the derivation is for a uniform 

temperature or moisture change and that analysis should be limited to 

cases where uniformity is a valid assumption. 

The principle of minimum potential energy states that a body is in 

equil ibrium when the total potential energy 1jJ is minimum where 

(3.40) 

Ue = internal strain energy 

and 

We = potential energy of the applied loads 

The internal strain energy for an element is 

(3.41) 

which for an element with constant strains and unit thickness reduces 

to 
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(3.42) 

In both Equ's. (3.41) and (3.42) the strains involved depend upon whether 

the loading is mechanical (Equ's. 3.34), thermal (Equ's. 3.37) or 

hygroscopic (Equ's. 3.39). The potential energy of the applied loads is 

given by the negative of the applied forces multiplied by their respective 

displacements. 

Minimization of Equ's. (3.40) with respect to displacements yield 

the elemental stiffness matrix plus strain, thermal and hygrosopic re­

lated vectors. The forms for these can be found in Appendix A. 

3.6 Boundary Conditions for Joints 

The boundary conditions applied to single and double lap joints for 

the present study are shown in Fig. 3. A number of different boundary 

conditions and loadings were investigated and comparisons were made. 

These are summarized in Table 1. Noting Table 1 i.t is seen that 

all conditions except the fourth yield comparable results. The lower 

peak stresses for this condition can be attributed to an overly flexible 

model. It was reasoned that this dces not correspond to physical reality 

as a real jOint would not be free to deflect up and down where the load­

ing is applied. The first set of conditions was eliminated from consider­

ation as they can only be applied to symmetric single lap joints. The 

second set was eliminated because during the solution process a negative 

diagonal in the global stiffness matrix was encountered. The third set 

of conditions was disregarded because the stress distribution in the 
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TABLE 1 

Comparison of Various Boundary Conditions for Symmetric Single Lap Joints 

~ype of Constraint Numerically Symmetric Stress Applied Max Max Max 
and Loading Stable Distribution Load 'yz cry crz 

1 ~ ~ Yes Yes 300 2.39 .84 1.13 
H' $;F (1 bs) (KSI) (KSI) (KSI) 

F~ 

j, ~ 
2 H' 

~ ~ ~ r 
No Yes 300 2.39 .84 1. 13 

F (1 bs) (KSI) 
~ ~ 

3 :1 2.52 .97 1.32 F{==9 Yes No 300 2.25 .72 .93 
(lbs) (KSI) (KSI) (KSI) 

4 

I I it Yes Yes .165 x 10-2 1. 91 .66 .88 
H (in) 

5 

~ I I f Yes Yes .165 x 10-2 2.32 .83 1.11 
~ (in) (KSI) (KSI) (KSI) 

r 

, 

Max End 
Displacement 

.91 x 10-3 

.82 x 10-3 
(in) 

.91 x 10-3 

.82 x 10-3 

.179 x 10-2 

.165xlO-2 
(in) 

.165 x 10-2 

.165 x 10-2 

.165 x 1O-~ 

.165 x 10-

-

I 

i 
I 

'" <D 

_:4 .!«!.-: .~ __ , ....... ~ __ ,_...::.-,~<.:.-~"-,-<_~~:"'~.:.. .... -,:,:,,;,;:';,,:,,,,,~_._~_.~"' ___ "..Li.......""':-._ _. ___ ~~ _'~M ___ ~' ____ • __ ,._~ • __ ~_':',_~,." _ •• _",,_ •• " •• .:...<>_. .~_";;':""_,~.,."";;" __ , __ o_",c_~"_"""_""'_H';_,':'.=",~--",".<;" .... ~a",,---";;'''; '12;;%1-- '~"":".~.~,:.....,~_.,-,;...,......" _":::;_~..;.; 



'-.. L 

\ 

30 

adhesive layer was not symmetric for a symmetric joint while it is in­

tuitively obvious that it should be. The fifth set of constraints and 

loading was chosen because it provided symmetric results, numerical 

stability and is applicable to nonsymmetric joints. 

3.7 Qualifying Notes 

Due to the lack of data present in the literature a number of 

assumptions concerning material properties have been made. For lamina 

data input, it is assumed that E22 is identical to E33 . It is also 

assumed that the three shear moduli G12 , G13 and G23 are identical. 

Poisson ratios are considered constant and percent modulus retentions 

are assumed identical in tension and compression 

When inputting laminate material properties, much of the data is 

generated according to the analyses presented earlier. It is assumed 

that the 0z-£z laminate response is identical to the 02-£2 response of 

a unidirectional lamina. It is also assumed that the 'yz-Yyz and 

TXZ-YXZ curves are the same as the T1 2-Y12 response of a lamina and 

that the laminate poisson ratios vxz and Vyz are the same as the lamina 

poissons ratios v13 and v23 ' respectively. Othet restrictions are the 

same as for lamina data. 

It should be mentioned here that the material properties used in 

this analysis (Appendix C) are not consistent. The data has been taken 

from a number of sources and is not all real ted to identical material 

systems. Even with these limitations it is felt that the investigation 

still fulfills its goal of showing the capability to analyze joints if 

consistent properties were available. 
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Chapter 4 

NONLINEAR ANALYSIS 

A significant portion of the research effort involved in this study 

was devoted to the modification of the finite element analysis program 

NONCOM [1]. The improved version, NONCOM1 will be briefly described 

here. 

4.1 Modifications of NONCOMl 

For the analysis of bonded joints, a number of modifications to the 

existing finite element program were implemented. These included: 

(1) Increased finite element capacity 

(2) Inclusion of a more efficient equation solver 

(3) Capability for input of fully 3-dimensiona1 orthotropic 

material properties 

Other modifications included: 

(4) Capability for hygroscopic analysis 

(5) Capability for elevated temperature and moisture 

content runalysis 

4.1.1 Increased Finite Element Capacity 

In order to model an adhesive bonded joint a large number of finite 

elements are needed because of the large stress gradients and inherent 

large aspect ratio of the adhesive layer. For this reason the maximum 

number of elements was increased from 100 to 400 elements. This was 

done with an increase of high speed storage of approximately 50 percent. 
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This inCI"eaSe was held this low through the use of storage addressing 

schemes where many arrays are stored in the same common storage loca­

tions and by the block storage schemes of the equation solver chosen. 

4.1.2 Solution of Simultaneous Equations 

The equation solver in NONCOM is .lot suitable for large systems of 

equations as its solution time becomes excessively large for such 

systems. For this reason a new equation solver, SESOL [16] was selected 

for NONCOM1. This equation solver offers a fast solution time and high 

speed storage reduction schemes. In brief the solution algorithm 

considers the system of linear equations 

[K]{X} = {R} ( 4.1) 

where [K] is the assembled stiffness matrix, {X} is the nodal displace­

ment vector and {R} is the applied nodal load vector. The stiffness 

matrix is factored into an upper and lower triangular matrix 

[K] = [L]T[G] (4.2) 

where [G] is upper triangular and [L]T is lower triangular and normalized 

such that Lii = 1 (i not summed). Since [K] is symmetric 

Gij = GiiLij (i not summed) (4.3) 

and equation (4.2) can be written as 

[K] = [L]T[D][L] (4.4) 
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where 

[0] = G.. (i not summed) 
11 

(4.5) 

Defining 

{v} = [D][L]{x} (4.6) 

and combining equations (4.1) and (4.6) yields 

[L]T{v} = {R} (4.7) 

The vector {v} in equation (4.7) is first found by Gauss reduction of 

the load vector and then the nodal displacements are found through back 

substitution into equation (4.6). The stiffness matrix and load vector 

are assembled and stored on low speed storage in block form as in Fig. 

4. During the solution process. reductions are performed on non-zero 

terms only and only tltO blocks need be in hi gh speed storgage at any 

time. 

In the computer program NONCOMl the number of equations per block 

is determined as a function of the maximum half bandwidth plus the 

diagonal of the assembled stiffness matrix. This is done to minimize 

the number of blocks necessary and maximize the number of equations per 

block within high-speed storage limitations. By making the number of 

blocks a minimum, 1-0 operations performed by the computer with the 

elemental stiffness matrices are also minimized. To further this re-

duction of operations the blocks are assembled two at a time. 
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Figure 4 

Block Storage of Stiffness Matrix and Load Vector 
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It should be noted the size of the maximum half bandwidth plus 

diagonal is not only a function of node numbering, as is usually the 

case with the finite element analysis, but is also a function of the 

type of loading appl~ed. When the applied loading is thermal. hygro­

scopic or an average force applied in the x direction an equation re­

lating a uniform strain to an average force in the x direction is 

required in addition to the equations relating nodal forces and dis­

placements. This equation is related to all of the elements and may 

involve all the nodal displacements of the finite element model. To 

minimize the effect of this equation on the maximum half bandwidth plus 

diagonal it is assembled in the center of the stiffness matrix. The 

average force equation and its effect on the bandwidth can be seen in 

Fig. 4 where the T's represent the average force terms. The half band­

width plus diagonal without the average force equation is shown by the 

dotted line. These two bandwidths are for identical finite element 

models under different loadings. 

4.1.3 Three Dimensional Properties 

The program NONCOMl was given the capability for fully three 

dimensional orthotropic material properties because of the restriction 

that composite adherends must be modeled as homogeneous orthotropic 

laminates (Chapter 3). This means that a plane of transverse isotropy 

cannot in general be assumed as done in NONCOM [lJ. 

4.1.4 Hygroscopic Analysis 

A capability for hygroscopic loadings has been inciuded in NONCOM1. 
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It is modeled in the computer program in exactly the same fashion as the 

thermal analysis and is therefore subject to the same limitations. The 

most notable of these is the restriction that the moisture distribution 

be uniform throughout the finite element model. Other restrictions will 

be mentioned in the section dealing with the nonlinear analysis. 

4.1.5 Elevated Temperature and Moisture Content Analysis 

This modification allows for mechanical loading at elevated tempera­

ture and moisture content or thermal loading at elevated moisture 

content or hygroscopic loading at elevated temperature. Insight into 

the interactions between thermal and hygroscopic material response could 

not be obtained from the literature. For this reason two assumptions 

are made about these interactions. First, it is assumed that hygro­

scopic properties are independent of temperature and that thermal proper­

ties are independent of moisture content. It is also assumed that 

changes in mechanical properties due to temperature and moisture content 

are cumulative. By cumulative it is meant that when a modulus is to be 

modified to correspond to both temperature and moisture content it is 

first modified for the temperature and then this new modulus is then 

modified to correspond to the moisture content. The process of changing 

material properties will be more fully described in the following section. 

4.2 Nonlinear Analysis 

In order to simulate nonlinear material behavior in a computer 

program with the linear elastic finite element analysis described in 

Chapter 3 two separate'problems must be dealt with. First a method of 
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accounting for material nonl inearities within th'~ analysis procedure and 

second a method of representing the nonlinear material properties. 

4.2.1 Incremental Loading Procedure 

The finite element computer program NONCOMl deals with varying 

material properties through the use of a incremental solution procedure. 

With this type of procedure, the load whether mechanical, thermal, or 

hygroscopic is applied as a series of increments. This yields a series 

of linear solutions with total stresses, strains, and displacements 

formed by summation of the linear increments of these quantities. When 

applying the load incrementally the material properties are updated to 

correspond to the current levels of strain, temperature, and mositure 

content. With the finite element method an individual element can have 

material properties varying independently of other elements in the 

model. 

4.2.2 Nonlinear Data Input 

Material stress-strain response for an othrotropic material in the 

principal material coordinates are represented in the form of modified 

Ramberg-Osgood [17] approximations which have the form 

(J K n· 
E: = E + i(J 1 i = 1 or 2 (4.8) 

In equation (4.8) E is the elasti~ modulus and Ki and ni are Ramberg­

Osgood coeffIcients. A method for calculating the four coefficients Ki 

and ni is described in Ref. [1]. A tangent modulus can be defined as 
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E= _dd~ = __ -=E_-.--_ 
c n .-1 KiEnicr 1 +1 

i :; 1 or 2 (4.9) 

where t is the tangent modulus corresponding to the principal stress cr. 
Noting Fig. (5) the value of the stress crP corresponding to the strain 
at the end of load increment P is 

P rl = E 1I,)ti 
k=l 

(4.10) 

where lI£j is the increment of strain during the jth load increment. 
Combining equations (4.9) and (4.10) yields for the P + lth increment 

tP+l = __ ---,,--.-:::E ___ _ 
P 

K.En.[ E lI£jt j ]n-l+l 
1 1 j=l 

i :; 1 or 2 (4.11) 

With equation (4.11) and principal material strains, the tangent moduli 
are calculated at the end of each increment to be used for the next 
increment. Moduli determined are t ll , t 22 , t33 , G23 , G13 , and G12 . 
It can be seen in Fig. 5 that the strain £~-o for which the tangent 
modulus is calculated differs from the strain £P where the modulus 
should be calculated. This difference is a function of the size of the 
load increment and can be made negligible by choosing an appropriately 
small increment. For the computer analysis it is assumed that the shear 
response is independent of sign while extensional behavior can be 
different in tension and compression. 

Temperature and moisture dependent properties are represented as 
linearly segmented curves. These properties consist of percent modulus 
retention curves which represent the change in stiffness of a material 
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due to variations in temperature or moisture levels and coefficients of 

thermal and hygroscopic expansion as functions of temperature and 

mO'j sture content respectively. During thermal or hygroscopi c loading, 

the moduli and coefficients of expansion are calculated at the mid-point 

of the increment using linear interpolation. For input to the computer 

program it is assumed that percent modulus retentions are identical for 

tension and compression. 
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Chapter 5 

RESULTS AND DISCUSSIONS 

The analysis procedures presented in Chapters 3 and 4 were used to 
generate laminate properties and analyze various bonded joints. The 
joints investigated included single and double lap joints with, and 
without adhesive layers. Both elastic and non-linear results are pre­
sented. The material systems considered were graphite-polyimide, boron­
epoxy, titanium, and aluminum for the adherends, and Metlbond 1113 and 
AF-126-2 for the adhesives. 

5.1 Materials Properties 

The mechanical and thermal properties for the materials used in 
this study were taken from the literature whenever possible. However, 
as was stated in previous chapters, complete properties were not always 
available for a given material system. Therefore, laminate properties, 
with the exclusion of uni-directional laminates, were predicted in 
accordan~e with the analysis procedures presented earlier and the 
results c~n be found in Appendix C which contains all of the material 
properties of this study. 

5.2 Averaging of Finite Element Results 

The finite element analysis presented in Chapter 3 is based upon a 
displacement formulation. This approach yields results in the form of 
displacements at the node points and stresses and strains which are 
constant over each element. Because the stresses are constant for an 
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individual element. a distribution of stresses over a series of elements 
may appear to be discontinuous. In many cases, however, it is known 
that the stresses must be continuous. For this reason, stress averaging 
was used to produce the desired smooth distributions. 

Noting Fig. fia, stresses are presented along the line A-A which 
corresponds to the mid-plane of the adhesive layer. The stresses pre­
sented at point E would correspond to an average of the stresses in 
elements 3 and 4. This method of averaging was used for all joints with 
adhesive layers. 

When considering bonded joints without adhesive layers, the stresses 
in question are along the interface between the two adherends. This 
interface is shown as line C-C in Fig. fib. For the stresses Tyz and 
az which must be continuous across the interface, the results presented 
correspond to an average of elemental stresses above and below the inter­
face. Thus, these stresses at point G would consist of an average of 
elements 13, 14, 21, and 22. The normal stress components ax and ayare 
not necessarily continuous across this interface so these stress 
components are averaged along both line 8-8, and line 0-0. At point F, 
an average of element 11 and 12 is presented and at point H, the stresses 
are averaged between element 19 and 20. 

The stress components Txy and TXZ have not been mentioned as they 
do not occur either at the mid-plane of the adhesive layer in adhesive 
bonded joints, nor at the interface between the adherends in non-
adhesive bonded joints since the adherends in this study, when composite 
laminates, are considered to be homogeneous, orthotropic materials. If 
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Figure 6. Averaging of Finite Element Results 
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these components were present it could easily be shown that TXZ must be 
continuous across an adherend-adherend interface whil e Txy woul d need not 
be. 

5.3 Finite Element Representations 

For the analysis of bonded joints, two finite element models were 
used. Fig's. 7 and 8 show partial plots of the finite element models of 
joints with, and without adhesive layers, respectively. Both of these 
models were generated using a mesh generator described by Bergner, Davis, 
and Herakovich [18]. In both figures the scaling of the model for the 
figure is not uniform. In Fig. 7, the aspect ratio of an element in the 
adhesive layer ranges from 2.5 at the free edge to 15 at the center of 
the adhesive layer. The aspect ratio's of the elements in the adherends 
range from 1.1 to 9.0. For the joints without adhesives (Fig. 8) all 
aspect ratios are 1.0. 

5.4 Stress Free Temperature 

Bonded joints are, in general, cured with a combination of elevated 
temperature and pressure. The maximum temperature involved in this 
process is known as the cure temperature. The temperature at which 
curing stresses begin to form is the stress free temperature and, in 
general, the cure and stress free temperatures are not the same. The 
stress free temperature of the adhesives used in this study was chosen 
to be 270°F. This value was selected because both adhesives are epoxy 
based and 270°F was the value used in [1] for epoxy matrix material 
systems. 
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For bonded joints without adhesives, the stress free temperature 

was chosen to be 350°F. This is the value reported in [19] as the 

stress free temperature of graphite-polyimide laminates. This is ap­

propriate as polyimides were the only composite lamiantes used in joints 

without adhesives. 

5.5 Linear Elastic Results 

This section contains the linear thermoelastic results for various 

joints. The dimensions for adhesive bonded joints are shown in Fig. 1. 

For joints without adhesives the dimensions are identical to those of 

joints with adhesives except the adhesive layer is removed. Most of the 

curves in this section were drawn by the VPI & SU computer plotter. 

In the figures that follow tIle superscripts M and T are used to 

different'iate stresses. Mechan'ically induced stresses are indicated by 

the superscript M while thermal, or curing, stresses are denoted by the 

superscript T. These are also used in combination indicating a super­

position of mechanical and curing stresses. In some instances a curing 

stress is referred to, while the corresponding figure presents only the 

mechanical, and combined mechanical and curing stl'esses. The magnitude 

of the curing component can, of course, be determined by taking the 

difference of the combined, and mechanical stresses. 

5.5.1 Single Lap Joints with Adhesives 

5.5.1.1 [0] Graphite-Polyimide Adherends 

The adhesive stresses of a single lap joint with [OJ graphite­

polyimide adherends and Metlbond 1113 adhesive are shown in Fig. 9. The 
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loading consists of a thermal increment of -200°F and an applied dis­

placement. The resulting stresses are shown to ~/L = 0.5 as the stresses 

are symmetric about this line. 

Upon examination of Fig. 9 it is seen that the stress free boundary 

conditions 

a I = 0 and T I = 0 
Y ~/L = 0 yz ~/L = 0 

(5.1) 

~re not satisfied by the finite element solution. This is due to the 

nature of the constant stress finite elements used and the limitations 

on the maximum number of element available. In order to check the 

finite element analysis' ability to meet such stress free boundary 

conditions, an analysis was performed on a small portion of the adhesive 

layer from ~/L = 0.0 to ~/L = 0.05. The displacements predicted along 

the upper and lower interfaces of the adhesive in the joint solution 

were used as loading for the partial adhesive analysis. The stress 

distributions produced by this analysis exhibited the proper trends 

with crz reaching a peak value near ~/L = 0 and cry and Tyz tending 

towards zero. These distributions are not presented, however, as they 

appeared very erratic. It is believed that this was caused by round­

off error in the applied displacements. This error may have become 

significant after subtracting rigid body motion from the joint analys'is 

displacements. 

In order to check the validity of the finite element solution 

presented in Fig. 9, a number of static equilibrium calculations were 

I 

-

l 

I 
II 
i 

! 

I , 
I 
I 
f 

I 
" , 
i 
! 
• \ 

t .j 
{ 
1 , , , 
l 

I 
j 
I 
I 
i 

:J 
", 
i 

.j 

, , 
" J 

j 
-J 
1 
l 

i 
I 

I 



L y r 
r--- J 1).. dy= Vz 

0' 

~--B 

( b) 

Figure 10. Free Body Diagrams of Single Lap Joints 
Under Two Sets of Boundary Conditions 

.... Ii 

• 

I 

'-1 
I 
! 

, 
,I 
I 
J 



• 

• 

• 

l 
51 

made. The equilibrium equations for one half of a single lap joint 

corresponding to the free body diagram of Fig. lOa are 

EF = 0 = Nl - R , z a 

and (5.2) 

The finite element program NONCOMl does not back substitute the nodal 

displacements to solve for the nodal forces. Therefore it is not 

possible to determine the reactions Ra or Mb. However, the reaction Rb 

can be determined as the average of the cry stresses of the elements 

adjacent to the edge where Rb acts multiplied by the adherend thickness 

and assuming a unit depth. A comparison of Vl and Rb determined from 

the finite element solution indicates a four percent error as shown in 

Table 2. 

Since the unknown reactions severely limit the equilibrium calcula­

tions for the previous joint, similar calculations were also performed 

on a more simply constrained joint. This joint corresponds to the joint 

shown in Table 1, condition 4, and a free body diagram of one half of 

the joint is shown in Fig. lOb. For this free body diagram the equili­

brium equations are 

(5.3) 
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TABLE 2 

Results of Equilibrium Checks of Single Lap 
Joint with [0] Gr/Pi Adherends and Metlbond 1113 Adhesive 

Under Two Sets of Boundary Conditions 

Joint F.B.D. EFy EFz (Fig. 10) 

vl = 92.6 lb 

a Rb = 89.0 lb 

ERROR = 4.0% 

v2 = 71.8 lb N~E = -0.25 lb 

b Rd = 78.3 lb N~XACT = 0.0 lb 

ERROR = 8.3% 
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and 

As in the previous joint, the reaction moment Md cannot be determined 

from the finite element solution. However, by removing the constraint in 

the Z direction, the integral of the C1
Z 

stresses, N2, must now equal zero. 

The results of these equilibrium calculations are also shown in Table 2. 

Return·jng to Fig. 9, it can be seen that under mechanical loading 

only, the shearing stresses dominate the stress fields. This is a 

function of the overlap lenth, L. If the overlap were longer, for a 

given loading, the shearing stresses would be reduced while the peak 

C1~ stresses would increase. This will be shown later in the section 

containing nonlinear results and can be verified by considering the 

force and moment equilibrium equations (5.2). It is interesting to note 
M M M that the normal stresses C1
X

' C1y ' and C1
Z 

are very close in magnitude for 

this joint. 

Since the stresses presented are produced by the displacements of 

the joint, its deflected shape would provide significant insight into 

the physics of the problem. Fig. 11 shows the deflection of the upper 

edge of the lower adherend under mechanical loading only. The dashed 

line signifies the beginning of the overlap (~ = 0). In this figure 

it is difficult to distinguish any curvature of the adherend in the 

region of the overlap because of the relatively small distance involved. 

A plot of the overlap only showed a nearly straight line distribution 

also indicating very little bending in this region. It is interesting 
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that the maximum bending occurs just before the overlap region. However, 

due to the layout of the finite element model, which was designed for 

adhesive studies, the stresses in this high bending region cannot be 

accurately obtained. 

Again returning to Fig. g it is seen that the only nonzero components 

of curing stresses are cr~ and cr~. Actually, the finite element solution 

did predict other components of curing stresses but their magnitudes 

were insignificant. It is difficult to make a valid comparison of the 

relative magnitudes of the mechanical and curing stress components as 

the mechanical loads were produced by a small load increment while the 

curing stresses are due to the full temperature change from the stress 

free temperature to room temperature. The cr~ curing stresses represent 

approximately 15 percent of the ultimate strength of the adhesive and 

while this magnitude is not exceedingly large, its contribution should 

be included in a failure theroy. 

5.5.1.2 [0/±45/90]s Graphite-Polyim;de Adherends 

Fig. 12 represents the mechanical and curing stresses for a single 

lap joint with [0/±45/90]s graphite-polyimide adherends and Metlbond 

1113 adhesive. The loadings are identical with those of the previous 

joint. Comparing Fig's. 9 and 12 it can be seen that under mechanical 

loading only, the magnitude of the peak adhesive stresses decrease with 

decreasing adherend stiffness Ey. Thus, for the same loading, the joint 

with [0] adherends has higher stresses than the joint with [0/±45/90]s 

adherends. However, when considering curing stresses, this is no longer 

the case. It can be seen that the magnitudes of the stresses cr~ and 
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a; are larger for the [0/±45/90]s joint than for the [0] joint. This 

is due to the effects of the transverse stiffness and coefficient of the 

thermal expansion. For the [0/±45/90]s adherends the longitudinal (yl 

and transverse (xl directions have identical modulus and coefficient of 

expansion, This quasi-isotropy leads to curing stresses, a~ and 

a;, that are identical for the joint with [0/±45/90]s adherends. This 

is not the case for the joint with [0] adherends as the transverse 

direction has a much lower modulus and higher coefficient of expansion 

than the longitudinal direction. 

Because the adherends of this joint have identical transverse and 

longitudinal stiffness it is appropriate to determine what effects the 

transverse stiffness have upon the mechanically induced stresses. For 

this purpose the joint of Fiq. 12 was also loaded under a classical 

plane strain assumption. The resulting stresses are shown in Fig. 13. 

The loading and materials were identical for both joints except that for 

the joint of Fig. 13 the average normal stress acting perpendicular to 

the plane was not specified and the strain normal to the plane, EX' was 

zero. Also, ax stresses are not presented for the classic plane strain 

solution. Comparing the two figures (12 and 13) it can be seen that the 

mechanically induced stresses are reduced slightly for the quasi three­

dimensional analysis, This indicates that a 2-D solution would under­

estimate the strength of this joint. Comparisons of the stress com­

ponents for the two joints can be found in Table 3. The curing stresses 

are identical for the two joints because both analyses were performed 

under the 3-D analysis, 
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Figure 13. Elastic Mechanical and Curing Adhesive Stresses 
of a Single Lap Joint with [O/±45/90] Gr/Pi 
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TABLE 3 

Comparison of Peak Adhesive Stresses of [0/±45/90]s 
Jolnt Under Mechanical Loading for 

2-Dimensional and Quasi 3-Dimens10nal Analysis 

Type of M Peak Tyz M Peak "z Peak ,,~ 
Analysis (ksi) (ksi) (ksi) 

2-D 1.44 .826 .654 

3-D 1.33 .762 .60 

Percent 8% 8% 8% 
Difference 
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5.5.1.3 [90] Graphite-polyimide Adherends 

The mechanical and curing stresses of a single lap joint with [90] 

graphite-polyimide adherends and Metlbond 1113 adhesive are shown in 

Fig. 14. Comparing Figs. 9, 12, and 14 the trends pointed to earlier 

concerning adhesive stresses and adherend stiffness are again confirmed. 

It is seen that the [90] adherends produce the lowest mechanical stress­

es of the three joints. Comparing Fig's. 9 and 14 only it is revealed 

that the a~ curing stresses for the [0] joint are identical to the a~ 
stresses for the [90] joint. This is as would be expected and the same 

correspondence is also seen between the a~ of the [90] joint and the a~ 

of the [0] joint. 

5.5.1.4 [0] and [90] Graphite-Polyimide Adherends 

The adhesive stresses for a single lap joint with [0] and [90] 

graphite-polyimide adherends and Metlbond 1113 adhesive due to mechani­

cal loading only are presented in Fig. 15. The most striking aspect of 

these stresses is the lack of symmetry present in their distributions. 

This is due, of course, to the unsymmetric nature of this joint. It is 

also interesting to note that the peak values of stress occur near the 

line ~/L = 1.0 This correspondence of the peak stresses with the more 

flexible adherend seems inconsistent as the trends of the previous 

joints pointed to higher stresses with stiffer adherends. This can be 

explained upon examination of Fig. 16 which presents displacements of 

the upper adherend-adhesive interface relative to the displacements of 

the lower adherend-adhesive interface. The displacements are normalized 

with respect to the thickness of the adhesive layer. It can be seen 
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Figure 14. Elastic Mechanical and Curing Adhesive Stresses 
of a Single Lap Joint with [90] GrIP; Adherends 
and Met1bond 1113 Adhesive 
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that the relative displacements vr (y-component) reach a much higher 

val ue at 'l./L = 1 than at ~/L = 0, whi 1 e the wr di spl acements (z-com­

ponent) are nearly symmetric about the center of the joi~t (~/L = 0.5). 

The normalized component vr can be considered as a shear strain thus in­

dicating why the shearing stresses are much larger near ~/L = 1 in Fig. 

15. It is interesting that the wr component is nearly symmetric. This 

indicates that bending is not a major factor. This corresponds to the 

results seen in Fig. 11 where the curvature of adherend was nearly zero 

in the overlap region. From Fig. 16 it is seen that the increased 

stresses are due, almost entirely, to the increased flexibility (Ey) of 

the [90] adherend. 

Returning to Fig. 15 a discontinuity in the cr~ stress distribution 

can be observed at ~/L = 0.2. This can be explained as a change in 

adherend stiffness corresponding to a change in the finite element 

representation of the adherend. Referring back to Fig. 7, this change 

in representation is seen as the point at which the adherend in the 

lflodel is changed from two, to one layer of elements. This situation was 

unavoidable due to the large number of elements required to model the 

adhesive layer and a limitation on the maximum number of elements 

available. This change in stiffness is recognizable in many of the 

stress distributions presented for adhesive bonded joints. 

Curing stresses for the single lap joint with [0] and [90] ad­

herends are presented in Fig. 17. These stresses are, not surprisingly, 

different than those for the joints presented earlier. For this case, 

all of the components of stress induced by mechanical loading are 
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present due to cure. From observing the T~Z and a~ distributions it can 
be seen that the integrals of these stresses appear to be zero, as would 
be required by equilibrium considerations. It is interesting to ,',ote 
the magnitude of the T~Z stress peaks near ~/L = 0 and ~/L = 1. The 
values of shearing cure stresses are nearly 75 percent of the ultimate 
shear strength of the ad~esive. Because the mechanical and curing 
stresses have opposite signs near ~/L = 1 it can be seen that curing 
counteracts the large mechanical stresses in this region. It should be 
mentioned, however, that the percent modulus retentions, used for de­
termining moduli as functions of temperature, are only strictly valid 
through a limited portion of the stress-strain curve of a material. 
Because of this, the peak shear cure stresses may not be quite as ac­
curate as the other components of cure stress which correspond to points 
lower on their respective stress-strain curves. 

5.5.2 Double Lap Joints with Adhesives 

5.5.2.1 [0] Graphite-Polyimide Adherends 

The adhcsive stresses due to curing and mechanical loading for a 
double lap joint with [0] graphite-polyimide adherends and Metlbond 1113 
adhesive are presented in Fig. 18. Here, as with the single lap joints, 
the mechanically induced shearing stresses dominate the mechanical 
stresses. It is interesting to note the lack of symmetry present in 
these stress distributions due to the restrictions upon the w displace­
ments along the midsurface of the inner adherend. These restrictions 
are induced by the symmetry of joint about the midsurface of the inner 
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adherend. Comparing Fig's. 9 and 18 it can be seen that the mechanically 

induced stresses are smaller for the double lap joint than for the 

single lap joint. The distributions are more uniform for the double lap 

joint indicating reduced bending in the adherends. This is also due to 

the restrictions on the w displacements. 

The curing stresses for this double lap joint follow the trends 

exhibited by the single lap joints where the adherends were identical, 

with cr~ and cr~ being the only significant curing stresses. As expected, 

the magnitudes of the curing stress components are identical to those of 

the single lap joint with [0] adherends. 

5.5.2.2 [90] Graphite-Polyimide Adherends 

Fig. 19 repl'esents the curing and mechanical loading induced stress­

es of a double lap joint with [90] adherends. Comparing Fig's. 18 and 

19 it is seen that the peak stress values decrease with increased flexi­

bility of the adherends, as was the case with single lap joints. Noting 

the curing stresses of both of these joints it can be seen that the 

cr~ cure stresses are higher for the [90] adherend joint while the cr~ 
cure stresses are higher for the [0] adherend joint. This is exactly 

the same as with the single lap joints and the reason for it is also the 

same. 

5.5.2.3 [0] and [90) Graphite-Polyimide Adherends 

Mechanically induced adhesive stresses of a double 'lap joint with 

[0] and [90] graphite-polyimide adherends and Metlbond 1113 adhesive are 

represented in Fig. 20. As was the case with the two previous double 

lap joints, comparisons made with a single lap of the same adherends 
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Figure 19. Elastic Mechanical and Curing Adhesive Stresses 
of a Double Lap Joint with [90] GrlPi Adherends 
and Metlbond 1113 Adhesive 
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(Fig. 15) shows lower peak stress values and a more uniform distribution 

of stresses for the double lap joint. A striking similarity between 

these two joints is the location of the peak stress values corresponding 

to a line near IlL = 1.0. In the double lap joint, as in the single 

lap, this is due to the increased relative displacement vr at the line 

IlL = 1.0. It is interesting to note that the restrictions on the 

displacements in the z direction in the double lap do not greatly de­

crease the relative difference in peak stresses near IlL = 0 and IlL = 
1.0 in comparison to the single lap joint, indicating that the effects 

of bending are also small for the double lap joint. 

The curing stresses for this double lap joint are presented in Fig. 

21. This figure shows that the a! curing stresses are very small while 

the T~Z stresses are approximately 90 percent of the ultimate shear 

strength. Comparing these stresses to those for a single lap joint of 

the same adherends (Fig. 17) indicates that for curing stresses, the 

restrictions upon displacements at the midsurface of the inner adherend 

in the double lap joint are not necessarily helpful. The double lap 

joint produces higher shearing stresses, but lower peel stresses than 

those of the single lap joint. The only difference between the two 

joints is the increased bending stiffness of the inner adherend in the 

double lap. This indicates that bending stiffness is an important 

factor in these curing stresses. This must also be the cause for 

differences in the a~ and a~ curing stresses of the two joints. 

5.5.3 Single Lap Joints without Adhesives 
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Before presenting the first set of results in this section it should 

be pointed out once more exactly how the following stresses were 

averaged (see section 5.2). For the case of stresses which must be 

continuous across the interface between the adherends, the stresses pre­

sented are an average of the elemental stresses above and below this 

interface. For stresses which need not be continuous, the results 

presented consist of elemental stresses averaged either above or below 

the interface, thus two Ox and 0y curves are presented for each joint. 

This will also be the case for the stress results in the next section. 

5.5.3.1 [OJ Graphite-Polyimide Adherends 

Fig. 22 presents the interfacial stresses of a single la? joint 

with [OJ graphite-polyimide adherends and no adhesive. These stress 

distribut.ions are interesting in that the shear stress Tyz is not the 

dominant stress as it was in the joints with adhesives. For this joint 

it is seen that the a~ upper and lower stresses are of greater magni­

tude and that o~ attains higher peak values than the shearing stresses. 

For this joint T~Z appears to be nearly uniform along the interface at 

a relatively low value. Due to the strength of the [OJ laminates in 

the fiber direction it would appear that failure would initiate as a 

result of the peel stresses o~. 

Curing stresses are not presented for this joint as they do not 

exist. The finite element solution was also checked on this point w'th 

the results being zero as required. 

5.5.3.2 [90J Graphite-Polyimide Adherends 

Mechanically induced interfacial stresses of a single lap jOint 
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with [90] graphite-polyimide adherends are presented in Fig. 23. These 

distributions show the same trends as the previous joint with the a~ 
upper and lower stresses being the largest, a~ reaching a relatively 

high peak, and 'r~z ~'lowing a nearly smooth distribution. Comparing 

Fig's. 22 and 23 it is seen that the larger stress values occur with the 

stiffer adherends as was the case for all of the adhesive bonded joints 

in previous sections. 

5.5.3.3 [0] and [90] Graphite-Polyimide Adherends 

Fig. 24 is a plot of interfacial stresses for a joint with [0] and 

[90] graphite-polyimide adherends under mechanical loading. As with the 

previous two joints, the internal stresses a~ upper and lower are the 

largest in magnitude. It is interesting to note that for this joint the 

peak stresses do not necessarily occur with the more flexible adherend, 

as was true for adhesive bonded ,ioints. For this .ioint a~ and o~ 
lower have peak values near tiL = 0 while 'r~z and o~ upper have peaks 

near ~/L = 1.0. Further examination of Fig. 24 indicates that the 

internal stresses are highest in the direction of the fiber in these 

unidirectional laminates. Thus o~ is larger for the [0] adherend than 

in the [90] adherend while a~ is larger for the [90] adherend. 

Curing stresses for this joint are presented in Fig. 25. The 

magnitudes of the a~ stresses in the [0] adherend are nearly 60 percent 

of the ultimate strength of laminate which represents a significant 

curing stress. The a~ curing stresses in the [90] adherend are also 

large at 40 percent of ultimate. The other internal components of 
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stress crT upper and crT lower are of comparable numerical value, but are x y 

in the fiber direction of their respective adherends and therefore do 

not represent such significant percentages of the ultimate strengths. 

This figure shows that equilibrium appears to be satisfied by the cri 

and T~Z curing stresses. 

5.5.4 Double Lap Joints without Adhesives 

Fig's. 26 and 27 represent mechanically induced interfacial stress­

es for double lap joints with [0] and [90] graphite-polyimide adherends 

respectively. These joints show higher stresses with the stiffer adher­

ends as with all other joints presented. It can be seen that with these 

joints the cr~ stresses are the largest as has been shown for all joints 

without adhesives. 

Comparing Fig's 22 and 26 it can be seen that the double lap joint 

has higher stresses for the,same displacement loading. This can only be 

caused by the increased bending stiffness of the inner adherend in the 

double lap joint. This trend is also present in comparison of Fig's. 23 

and 27 representing joints with [90] adherends. For joints with ad­

hesive layers the effect of the increased bending stiffness of the inner 

adherend was to smooth and reduce slightly the stress distributions for 

double lap joints in comparison to single lap joints. 

Fig's. 28 and 29 represent the mechanical and curing stresses 

respectively for a double lap joint with [OJ and [90] graphite-polyimide 

adherends. As with the single lap with [OJ and [90] adherends and no 

adhesive, the peak stresses for mechanical loading do not occur with the 
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more flexible adherend. This is again contrary to the results presented 

for lap joints with adhesive layers. The curing stress components a~ 
for the [0] adherend and a~ for the [90] adherend represent approxi­

mately 60 percent of ultimate strength for the laminates. 

5.5.5 Elastic Loading Comparisons 

After reviewing the stress distributions of the four previous sub­

sections, interesting comparisons can be made by considering the force 

loading corresponding to the displacement applied for each of the joints. 

The results can be seen in Table 4. In this table the force load for 

double lap joints corresponds to the total load carried by the joint. 

The forces for all of the joints are calculated by averaging stresses in 

the elements at the ends of the adherends, multiplying by the thickness 

of the adherend, and assuming a unit depth. 

Making comparisons of single and double lap joints with the same 

adherends it can be seen that the double lap joints carry more than 

twice as much force as the single lap joints. In the cases where the 

joints have adhesives, this can be seen as a beneficial effect of the 

increased bending stiffness of the inner adherend, as the peak stresses 

for double lap joints of this category are lower than for the single lap 

joints. The increased load carrying capacity is due to the more uniform 

shear stress distributiq,n of the double lap joints, which creates a 

1 arger resultant force opposing the load. 

Comparisons of single and double lap joints without adhesives also 

show a more than doubled load carrying capacity for the double lap 
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TABLE 4 

Force-Displacement Result Comparisons for 
Elastic Joint Solutions 

Adherends Adhesive Applied 
Bonded Displacement 

[0], [0] Yes 0.0005 in. 

[90], [90] Yes D.0005 in. 

[0/±45/90]s' Yes 0.0005 in. 
[0/±45/90]s 

[0], [90] Yes 0.0005 in. 

[0], [0], [0] Yes 0.0005 in. 

[90], [90], [90] Yes 0.0005 in. 

[0], [90], [0] Yes 0.0005 in. 

[0], [OJ No 0.0005 in. 

[90], [90] No 0.0005 in. 

[0], [90J No 0.0005 in. 

[0], [0], [OJ No 0.0005 in. 

[90], [90], [90J No 0.0005 in. 

[0], [90], [0] No 0.005 in. 

t 

Corresponding 
Force 

88.8 lb. 

11.6 lb. 

38.9 lb. 

20.9 lb. 

202.0 lb. 

24.4 lb. 

44.1 lb. 

86.3 lb. 

10.9 lb. 

20.2 lb. 

244.2 lb. 

34.7 lb. 

159.0 lb. 
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joints. However, in this case, the peak stresses are higher for the 
double lap joints making it unclear as to which joints are the more 
efficient. 

5.6 Nonlinear Resuits 

Bonded joint stress distributions presented in this section were 
predicted using the analysis of Chapter 3 and the nonlinear formulation 
of Chapter 4. Mechanical and thermal loading was applied as a series of 
increments. Where curing stresses are presented, they~orrespond to 
the total curing load. Mechanically induced stresses are presented at 
three load levels for each individual joint. The load levels for an 
individual joint do not necessarily correspond to those of other joints. 
The dimensions of the joints of this section are identical to those of 
the elastic results (Fig. 1) except where otherwise stated. 

5.6.1 Single Lap Joints 

5.6.1.1 Lap Shear Test 

The adhesive shear stress and strain distributions for a lap shear 
test jOint with aluminum adherends and Met1bond 1113 adhesive are shown 
in Fig's. 30 and 31 respectively. This joint corresponds to that used 
in Ref. [20] for determining the adhesive shear properties as used in 
this study. The dimensions of this joint are presented in Table 5. 

These two figures (30 and 31) point to the effects of the nonlinear 
shear behavior of the adhesive. Examination of Fig. 30 reveals that as 
the displacement loading increases, the shear stress distribution 
becomes more uniform. Fig. 31, however, shows that the shear strain 
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TABLE 5 

Dimensions for Lap Shear Joint and 
Single Lap Joint with [0/90/0/90/0] B/E Adherends 
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Joint Overall Overlap Adherend Adhesive 
Length Length Thickness Thickness 
(In) (In) (In) (In) 

Thick Adherend 
Lap Shear Test 5.1 0.308 0.125 0.003 
Joint 
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distl"ibution does not become more Ilr:fiorm as loading increases. This 

can be explained by considering the shear stress-strain response of the 

adhesive (Appendix C, Fig. C.6). The slope of this curve becomes much 

smaller as the strain is increased. Therefore, in the bonded jO'int, the 

increment of stress corresponding to an increment of strain, at high 

strain lev 's, is smaller than at low strain levels. Thus, the shear 

stress distribution in the center of the joint is increasing more 

rapidly as loading increases than at the edges (£/L = 0 and £/L = 1), 

because the strains are higher at the edges. It is interesting to note 

that the largest shear stress presented (Fig. 30) is nearly a constant 

value. This value corresponds to the ultimate shear strength of the 

adhesive. 

As was stated earlier, this joint corresponds to a joint used in 

the lap shear tests [20J. Therefore, comparisons between numerical and 

experimental work were made and the results can be found in Table 6 and 

Fig. 32. 

The experimental stresses and strains presented in Table 6 are 

values corresponding the maximum stress of the adhesive shear curve. 

These stress and strain values are chosen for the comparison because of 

the nature of both the Ramberg-Osgood [17J approximations, and the 

finite element analysis. The Ramberg-Osgood parameters cannot model the 

stress-strain curve beyond the point at which the slope becomes zero and 

the finite element formulation does not produce a positive definite 

stiffness matrix when a negative modulus is used. 

In Table 6, the numerical strain chosen for the comparison was near 
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TABLE 6 

Comparison of Numerical and Experimental Results 
for Single Lap Shear Joint 

Max Adhesive Max Adhesive Failure Load 
Shear Strain Shear Stress (kips) 

(%) ( ksi) 

Numeri ca 1 27 4.4 1.35 

Experimental 29* 4.4* 1.36 
[20J 

Percent 7% 0% 0.7% 
Difference 

* Corresponds to maximum stress value 
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the line ~/L = O. This is also the region where the strain was de­

termined in Ref. [20]. This table shows good correlation between ex­

perimental results and the numerical prediction. In Fig. 32 two finite 

element stress-strain responses are presented. In both of these finite 

element curves, the stress corresponds to an average of elemental 

stresses throughout the adhesive layer. 

The upper numerical curve (AVE.F.E.) presents strains that are also 

averaged over the entire adhesive layer. The lower numerical curve 

(F.E. STRAIN NEAR ~/L = 0, AVERAGED STRESS) shows strains corresponding 

to the finite elements adjacent to the line ~/L = 0 in the adhesive. 

The upper curve shows a better stress correlation while the lower curve 

shows a better ultimate strain correspondence with experimental data. 

Fig's. 33, 34, and 35 present the o~, o~, and o~ adhesive stresses 

of the same lap shear test joint under identical loadings. These 

figures do not show the effects of adhesive nonlinearity in such a 

pronounced fashion as Fig. 30. The reason for this is two fold. First, 

the extensional stress-strain response of the adhesive is not as non­

linear as the shear response. Secondly, the extensional stress values 

produced are not as large in magnitude relative to the ultimate strength. 

The maximum 0z and 0y stresses correspond to approximately 15 percent of 

the ultimate while the maximum Ox component is approximately 10 percent 

of ultimate. Upon examination, Fig's. 34 and 35 reveal the discon­

tinuity at ~/l = 0.2 that was discussed in the elastic results (section 

5.5.1.4). Thermal stresses are not presented for this joint as they 

would have no bearing on the comparisons made. This is because the 
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shear properties produced from the experimental work on this joint [20] 

included any effects of curing. 

An interesting comparison can be made concerning results obtained 

from the two different solution formulations presented in Chapter 3. In 

order to produce similar stress and strain distributions, it was neces-

sary to apply a larger displacement load to the joint analyzed under the 

quasi 3-dimensional formulation. The additional load corresponded to 

1/15 of the total displacement applied for the 2-dimensional solution. 

The resulting ultimate force loads were identical for the two analyses 

indicating that under the quasi 3-dimensional formulation the joint was 

more flexible and therefore capable of withstanding a larger displace­

ment load. 

5.6.1.2 [0/90/0/90/0] Boron-Epoxy Adherends and 

AF-126-2 Adhesive 

This adhesive bonded joint was selected for analysis in order to 

compare the results of this study to those of Ref. [11]. For this 

comparison it was necessary to use a force loading instead of the dis-

placement loading used for all other joints in this study. The force 

loading was required in order to exactly match the loading in [11]. In 

[11], two solution procedures are used. In the first, an iterative 

finite element analysis is used to account for material nonlinearities . 

The second procedure utilizes direct numerical integration of the 

governing differential equations for the joint. Results obtained by the 

second procedure are labeled as theoretical in the following figures. 

The dimensions of this juint are given in Table 5. 
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Fig's. 36 and 37 present the adhesive stress components T~Z and 
cr~ respectively. In Fig. 36 it can be seen that the distl"ibutions of 
the shear stresses predicted by the present study compare favorably with 
the two distributions predicted in [11]. The principal difference is 
seen to be the magnitude of the peak stresses near the lines £/L = 0 and 

. £/L = 1. It is interesting that none of the shear stress distri­
butions presented in Fig. 36 satisfy the stress free boundary condition 
TyZ = 0 at £/L = 1. It appears that the areas under each of the three 
curves are approximately the same as required by equilibrium considera­
tions. 

In Fig. 37 it can be seen that the cr~ distributions predicted by 
the present study and theoretical results of [11] have significant 
differences. The present analysis predicts a symmetric distribution of 
peel stresses while the theoretical results [11] show peak stresses at 
£/L = 0 and £/L = 1 differing by more than 100 percent. The nonsym­
metric nature of these results appears physically inconsistent as the 
adherends are identical. The finite element results presented in [11] 
do show the symmetry of stresses as predicted by this study. Another 
interesting aspect of the theoretical results is the reversal in sign of 
the peel stresses near £/L = 1.0. This is not seen in the finite 
element results of this study or [11]. 

Comparisons of the numerical values of the peel stresses cannot 
realistically be made as the extensional properties of the AF-126-2 
adhesive were not known. The extensional Ramberg-Osgood coefficients 
used for this adhesive correspond to the extensional properties of 

I l 

• 

• 

b 

, , 

, 
j' 

~.1 
I 

.,~ 
.' .~ 

J 
I 
j 
1 

1 
j 

I 
I 
1 ., 
i 
i 
j 
i 

.1 

I 
i 
I 

1 

1 

1 
1 

I 
1 
I 
I 
l , , 
I a 



• 

, 

~ 

Ci5 
)0::: 
~ 

N 

f!' 

• 

• 
" , 

i. 

. L L . 

99 

12.0 r----------------, 

10.0 

8.0 

6.0 

4.0 

2.0 

z 
A [0/9010/9010J 

L.!:.[..::0~/9:::.:0~/..::0~/9:::.:°r/..::0:.:!J-+_A __ y 

P=2000 il;s 

PRESENT ANALYSIS 

FINITE ELEMENT 

THEORETICAL [II] 

THEORETICAL [Ill 

AND F.E. [IIJ 

[ "J 

75.0 

60.0 

45.0 

30.0 

15.0 

L __ .L..-_-==r::::::"'_..L..._--Io.o 0.0 

0.0 

Figure 36. 

0.25 0.5 

~/L 
0.75 1.0 

Nonlinear l-1echanical Adhesive Tyz Stresses of a 
Single Lap Joint with [0/90/0/90/0] B/E 
Adherends and AF-126~2 Adhesive 

/ 

( 

~ 

0 
0-
~ 
~ 

j 

1 
I 

I 
l 
I 
I 

I 
; 

I 

I , 



I 

. '." 

1 I j 

100 

" I ' 

0.0 
I \ 

~ 

I 
I I 
t t -7.0 

-5.0 
0.0 0.25 0.5 

j/L 

j 

" ./ I \ '- I 
-7.0 

\ 

+ 
, 

0.75 1.0 

I 

0.0 

• 

i 
I 
i 

i 
! Figure 37. Nonlinear Mechanical Adhesive Uz Stresses of a 

Single Lap Joint with [0/90/0/90/0] B/E 
Adherends and AF-126-2 Adhesive 

~ 

,I ~ ,"==:1=====:£=' L~_""'''~';;'''_lIIIIIIIiIj i' 



. 
• 

I l " 

101 

Metlbond 1113. 

Comparing Fig's. 36 and 37, it can be seen that for all solutions 

except the finite element solution of [11], the peel stresses are 

larger than the shear stresses. This verifies the statement made about 

the effects of the overlap length, L, upon the magnitudes of the shear­

ing and peel stresses in an earlier section (5.5.1.1). For this joint, 

with a large adherend overlap, the peel stresses are dominant with 

respect to maximum value. If the magnitudes were compared with respect 

to ultimate strengths however, it is believed that the shearing stresses 

would again dominate. It is not known what these ultimate strenths are 

however, and therefore this comparis!l'n cannot be made. 

The curing stresses for this joint are presented in Fig. 38. As 

was shown for the elastic results, the only significant curing stresses 

are a~ and a~. This is again due to the identical adherends and the 

material properties of the adherends and adhesive. It is interesting 

that even though the values of the curing stress components a~ and a~z 

are insignificant, they reach peak values nearly an order of magnitude 

larger than in any other joint with identical adherends. Since these 

curing components (a~ and T~Z) are negligible, the stresses presented in 

the previous two figures (36 and 37) can be considered either mechanical 

or combined mechanical and curing stresses. 

The magnitudes of the curing components a~ and a~ with respect to 

the ultimate extensional strength of the adhesive is not known because 

as was stated earlier, this ultimate strength is not known. The analy­

ses of [11] ignore the effects of curing, and while this does not affect 
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Figure 38. Nonlinear Curing Adhesive Stresses of a Single 
Lap Joint with [0/90/0/90] 8/E Adherends and 
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the az and Tyz stress components, it can be seen that curing is signi­

ficant in the two components of stress not presented in [11] (ax and 

ay) . 

Fig's. 39 and 40 present the combined mechanical and curing stress-
M+T M+T • es, ay and ax of thlS joint. These distributions reveal that the 

curing stresses (Fig. 38) are of the same sign as the mechanically in­

duced stresses and therefore would be detrimental to the performance of 

the joint under tensile loading. 

5.6.1.3 [0] Graphite-polyimide Adherends and Metlbond 

1113 Adhes ive 

Nonlinear curing stresses for this jOint are not plotted as the 

significant components (a~ and a~) are uniform throughout the adhesive. 

The numerical values for these stresses can be found in Table 7. This 

table presents a comparison between elastic and nonlinear results for 

this joint. For these curing stresses, the elastic solution under­

est'jmates the a~ and a~ components by 10 percent and 5 percent respec­

tively. 

The mechanical loading of this joint was analyzed utilizing the 2-

dimensional formulation (Chapter 3). This was done because for this 

joint, the two formulations produce negligible differences in the stress 
M M M components ay' az ' and TyZ . The similarity in results is due to the 

relatively small difference in magnitudes of the adherend transverse 

stiffness (Ex) and the adhesive extensional stiffness. Combined mech­

anically and curing induced adhesive stresses are presented in Fig's • 

41, 42, and 43. As in the lap shear joint (Fig. 30) only the adhesive 
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Figure 39. Nonlinear Mechanical and Curing Adhesive 0y 
Stresses of a Single Lap Joint with [0/90/0/90/0] 
B/E Adherends and AF-126-2 Adhesive 
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TABLE 7 

Comparison of Elastic and Nonlinear Adhesive Stresses for 
a Single Lap Joint with [0] GrlPi Adherends and Metlbond 1113 Adhesive 

Type of CurinQ Stresses Peak Mechanical Stresses 
SFT = 270°F (ksi) (ksi) 

Analysis crx cry cry crz T yz 

Elastic 0.6B 1.3 2.8 3.8 8.0 

Non-linear 0.76 1.4 2.8 3.8 4.4 

Difference 10% 5% 0% 0% 82% 
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Figure 41. Nonlinear Mechanical and Curing Adhesive Gyz 
Stresses of a Single Lap Joint with [0] GrlPi 
Adherends and Met1bond 1113 Adhesive 
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Stresses of a Single Lap Joint with [0] GrlPi 
Adherends and Hetlbond 1113 Adhesive 
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shearing stresses for this joint (Fig. 41) exhibit nonlinear effects. 

Comparisons between elastic and nonlinear mechanically induced stresses 

are presented in Table 7. These comparisons show that the a~ and 

a~ stress components behave linearly throughout the range of mechanical 

loading applied. The shearing stress is decidedly nonlinear though, 

with the elastic solution predicting stresses 82 percent higher than the 

nonlinear results indicate. 

5.6.1.4 [±45]s Graphite-Polyimide Adherends and 

Metlbond 1113 Adhesive 

The nonlinear curing stresses for this joint are not plotted for 

the same reasons as the previous joint. The numerical values of the two 

significant curing stresses are presented in Table 8 which presents a 

comparison of elastic and nonlinear results for this joint. This 

comparison shows a six percent increase in the curing stresses for the 

nonlinear analysis. 

Combined mechanical and curing adhesive stresses for this joint are 

shown in Fig's 44, 45, 46 and 47. Again, it is seen that nonlinear 

behavior is present in only the shear stresses. It is unfortunate that 

the maximum loading for this jOint did not produce a peak shear stress 

corresponding to the ultimate strength. This would have produced much 

more pronounced nonlinear effects. Comparisons between elastic and 

nonlinear mechanical adhesive stresses are also presented in Table 8. 

It is seen that at the maximum load level attained, the nonlinear 

results predict a peak shear stress 28 percent below the elastic re­

sults. The elastic mechanical results are determined as the first 
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TABLE 8 

Comparison of Elastic and Nonlinear Adhesive Stresses for a Single Lap Joint with [±45Js GrlPi Adherends and Metlbond 1113 Adhesive 

Type of Curing Stresses Peak Mechanical Stresses SFT = 270°F (ksi) (ksi) Analysis 
crx cry crx cry crz Tyz 

Elastic 1.5 1.5 1.3 2.6 2.9 5.1 

Non1 inear i.6 1.6 1.3 2.6 2.9 4.0 

flifferencE' 6~ 6" r O'i\ O~ 0% 28% 
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Figure 44. Nonlinear Mechanical and Curinq Adhesive Tyz 
Stresses of a Single Lap Joint with [±45]s Gr/Pi 
Adherends and Metlbond 1113 Adhesive 
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Figure 45. Nonlinear Mechanical and Curing Adhesive U
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Stresses of a Single Lap Joint with [±45]s GrlPi 
Adherends and Metlbond 1113 Adhesive 

I
I • q 

'I 
d 
I. ' 1,' t 
I ' ~ - ~ 
( ! 
;~ 1 
! i 
lj 
! i 
11 

i I 
1 
j , 

I 
i 
! 
j 

1 

I 
I 



l L. 1 i 

114 

6.0 

Z SFT=270o F 

A 
[:l:45la 

A 
[:4!5J. y 42.0 5.0 8 

~ 

4.0 
8=0.013 in. 

35.0 

8=0.009in. 

Q 

Ul :.:: 3.0 8=0.005In. 28.0 -
b'" 

~ 

C 
11. 
:!: -

2.0 14.0 

1.0 7.0 

~----~~------~------L-----~QO 0.0 
0.0 0.125 0.375 0.5 

Figure 46. Nonlinear Mechanical and Curing Adhesive 0y 
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Stresses of a Single Lap Joint with [±45]s GrlPi 
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increment of the nonlinear results scaled to the maximum displacement 
load. It is somewhat surprising that the nonlinear analysis does not 
predict lower stress components cr~, cr~, and cr~ for this ~nd the previous 
joint. It can be explained however by considering the final magnitudes 
of these stress components. All are relatively low on the extensional 
stress-strain response of the adhesive. At these stress levels the 
curve is very linear resulting in very linear stress predictions. 

5.6.2 Double Lap Joints 

5.6.2.1 Titanium Adherends Metlbond 1113 Adhesive 
Comparisons of elastic and nonlinear curing stresses for this joint 

are shown in Table 9. Once more, the two nonzero components of curing 
stress (cr~ and cr~) were uniform and they are not plotted. Here again, 
an increase in the nonlinear results over the elastic case is seen. 

Combined stresses for this joint are presented in Fig's. 48, 49, 50 
and 51. In these figures only the shear curves show pronounced non­
linearities, as before, but Table 9 indicates that the other stresses 
(crx' cry' and crz) are slightly reduced for the nonlinear analysis. The 
reason this joint should exhibit nonlinear behavior where the previous 
joints did not is not immediately discernable. The most obvious dif­
ference between this joint and the previous ones is the restriction 
placed upon the w displacements at the midplane of the inner adherend by 
the symmetry of the double lap. 

5.6.2.2 [0] and [90] Graphite-Polyimide Adherends and 

Metlbond 1113 Adhesive 

Curing stresses for this joint are presented in Fig. 52. These 
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TABLE 9 

Comparison of Elastic and Nonlinear Adhesive Stresses for a Double 
Lap Joint with Ti Adherends and Metlbonri 1113 Adhesive 

Type of Curing Stresses Peak Mechanical Stresses l Analysis 
SFT = 270°F (ksi) (ksi) 

Ox 0y Ox 0y °z TyZ 

Elastic 1.20 1.20 1.63 1.97 2.92 6.18 

Nonlinear 1.25 1.25 1.58 1.91 2.8 4.4 

Difference 4% 4% 3% 3% 4% 40% 

I 

I 

i 
I 
I ...... ~ 

I 

I 
I 

I 
l 
\ 
1 

I 
I 

J 
i 

I 
, 

I 

I 
i 



, l 

6.0 

5.0 
8 

4.0 

3.0 
c 
CI) 
:..: 
~ 

N 

f-!' 

2.0 

1.0 

0.0 

0.0 

Figure 48. 

.. I 

118 

tTiJ SFT=270" F 

--nl] --

ITiJ 
A 35.0 y 

8 =0.0065 In. 28.0 

8=0.004 In. 

21.0 
..... 
'" ll. 
::E 
~ 

14.0 
8=0.002 In. 

7.0 

0.0 

0.25 0.5 0.75 1.0 

ill 

Nonlinear Mechanical and Curing Adhesive Tyz 
Stresses of a Double Lap Joint with Titanium 
Adherends and Met1bond 1113 Adhesive 

l j. j 

• 

-. 

, 

.~ 
I 

" , 
I 
j 
! , 
1 , 
! 
! 

1 
I 
i , 
j 

1 
I 

I 
1 
j , 
1 
j 
" j 

j 
I 

I 
1 

I 
! 

i 
j 
I 

J 



• 4.0 

• 

3.0 

2.0 

~ 

en 1.0 ~ 
~ 

bN 

0.0 

f: 

,CCC=T"==<o\Ci, -~r 
~ ~ ~, 

, • -,> 

I. , ,', " 

119 

(T11 SFT=270OF 
Z 

- I- -[TIJ -- I-

~ 
A 

nlJ A 
y 

21.0 

8 r.L-P 
I-

14.0 
8 =0.0065 In. 

S =0.004 In. 

8 =0.002 In. 7.0 
~ 

0 
0.. 
::E 
~ 

0.0 
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Stresses of a Double Lap Joint with Titanium 
Adherends and Metlbond 1113 Adhesive 
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distributions appear very similar to the elastic curing stresses for the 

same joint (Fig. 21). Comparisons between these two analyses are shown 

in Table 10. It can be seen that the nonlinear curing stresses differ 

from the elastic results between 2 percent and 6 percent. The 23 

percent difference shown for 0z near ~/L = 0 is probably exagerated by 

the low magnitudes of these stresses. It can be seen in Table 10 that 

the nonlinear effects cause an increase in the o~ and o~ curing stresses 
T T as shown in previous results. However, the 0z and 'yz stresses are 

decreased by the nonlinear behavior. These two stresses are related 

through equilibrium (section 5.5.1.1) and it is therefore appropriate 

that both change in the same fashion. This decrease is due to 

the high values of shear stress produced by curing and the low adhesive 

modulus at these values. 

Fig's. 53, 54, 55, and 56 present combined mechanical and curing 

adhesive stresses for this joint. Comparing Fig's. 52 and 53 it can be 

seen that the curing stresses are very beneficial to the performance of 

this joint. In Fig. 53, as the displacement load level increases, the 

shear stresses near ~/L = ·1 are seen to increase more rapidly than at 

~/L = O. Thus, the shear stresses near ~/L = 1 would be much larger 

than the shear stress near £/L = 0 for mechanic.al loading only. HOI'­

ever, the curing shear stresses near ~/L = 1 have the opposite sign of 

the mechanical shear stresses in this region and are of relatively large 

magnitude. Therefore, a large portion of the mechanically induced shear 

stresses are negated by the curing shear stress and thus the joint is 

capable of carrying an increased load. 
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TABLE 10 

Comparison of Elastic and Nonlinear Adhesive Curing Stresses for a 
Double Lap Joint with [0] and [90] GrlPi Adherends 

and Metlbond 1113 Adhesive 

Curing Stresses SFT = 270 0 (ksi) 
Type of crx cry crz 

T yz 
Analysis l'./L=O l'./L=l l'.jL=O l'./L=l l'./L=O l'./L=l l'./L=O l'./L=l 

Elastic 1.47 1.03 1. 26 0.67 0.092 -0.53 3.6 -4.0 

Nonlinear 1.53 1.08 1.32 0.71 0.12 -0.51 3.53 -3.8 

Difference 4% 5% 5% 6% 23% 4% 2" " 5% 
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Figure 54. Nonlinear Mechanical and Curing Adhesive 0z 
Stresses of a Double Laop Joint with [0] and [90] 
Gr/Pi Adherends and Metlbond 1113 Adhesive 
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Figure 55. Nonlinear Mechanical and Curing Adhesive 0y 
Stresses of a Double Laop Joint with [0] and [90] 
GrlPi Adherends and Metlbond 1113 Adhesive 
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Chapter 6 

SUMMARY AND CONCLUSIONS 

The present analysis has been concerned with the nonlinear analysis 

of bonded joints. Upon reviewing the results presented, the following 

conclusions can be made with respect to the joint materials and geometries 

studied. 

1. The effects of adhesive nonlinearities greatly influence 

the shear stress predictions in the adhesive layer of 

bonded joints. 

2. The effects of adhesive nonlinearities have little in-

fluence upon the normal stress components in the 

adhesive layer of bonded joints. 

3. Adherend nonlinear behavior has little effect upon 

the adhesive stresses in bonded joints. 

4. Residual curing stresses are significant in adhesive 

bonded joint~. These curing stresses are detrimental 

in joints with similar adherends, but may be beneficial 

in joints with differing adherends. 

5. Residual curing stresses are significant in bonded 

joints with differinp adherends and no adhesive. 

6. Residual curing stresses are not significantly in-

7. 

fluenced by material nonlinearities or temperature 

dependent properties . 

Adherend stiffness has profound effects upon mechani­

cally induced stresses in bonded joints. Stresses 
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produced in the adhesive layer of adhesive bonded 

joints and along the adherend-adherend i"terface in 

bonded joints without adhesives are higher for 

stiffer adherends. In adhesive bonded joints with 

differing adherends, maximum adhesive stresses 

correspond to the more flexible adherend. 

8. Adhesive and interfacial stresses are non-uniform 

with maximum values produced near the edges of the 

overlap region. 

9. Adhesive bonded double lap joints are more ef­

ficient single lap joints due to a more uniform 

stress distribution in double lap joints. 

10. A quasi 3-dimensional analysis predicts a more 

flexible joint response than a 2-dimensional formu­

lation. A larger displacement load is required in 

a quasi 3-dimensiona1 analysis to predict adhesive 

stresses comparable to those of a 2-dimensional 

analysis. 

11. A quasi 3-dimensiona1 analysis demonstrates the 

effects of adherend transverse stiffness and thermal 

coefficient of expansion upon the residual curing 

stresses. 

12. Adhesive stresses are not significantly influenced 

by different symmetric loadings. Force loadings 

produce results similar to displacement loadings. 
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13. The method of solution presented satisfies static 

equilibrium very closely. 

This analysis has shown that future areas of study might include 
the fo 11 owi ng: 

1. Analysis capability for out of plane bending and 
warpage. 

2. Better representation of stress-strain response 

as a function of temperature, and moisture. 
3. Nonlinear analysis of the effects of moisture in 

bonded jOints. 

4. Inclusion of a capability to allow Poisson Ratios 

to vary as a function of strain, temperature, and 
moisture. 

5. Allowing failure strengths to vary as functions of 
temperature and moisture. 

6. Consistent modeling of the interactions of tempera-
ture and moisture. 

I j 

! 
I 
I 
1 
I , 

i 

I 
\ 
I 
i 
I 
i 



~".~ 

BIBLIOGRAPHY 

1. Renieri, G. D., Herakovich, C. T., "Nonl inear Analysis of Laminated 
Fibrous Composites," VPI&SU Report VPI-E-76-l0, June, 1976. 

2. Goland, M., Reissner, E., "The Stresses in Cemented Joints," J. 
Applied Mechanics, Vol. 1, No.1, pp. 17-27, March, 1944. 

3. Erodogan, F., Ratwani, M., "Stress Distribution in Bonded Joints," 
J. Composite Materials, Vol. 5, pp. 378-393, July, 1971. 

4. Barker, R. M., Hatt, F., "Analysis of Bonded Joints in Vehicular 
Structures," VPI-E-73-l6, 1973. 

5. Sainsburg-Carter, J. B., "Automated Design of Bonded Joints," ASME 
paper' no. 72-HA/DE-13, July, 1972. 

6. Hah, T., "Stress Distribution in a Bonded Anisotropic Lap Joint," 
J. Engineering Materials and Technology, Vol. 95, pp. 174-181, 
July, 1973. 

7. Hart-Smith, L. J., "Analysis and Design of Advanced Composite Bonded 
Joints," NASA CR 2218, January, 1973. 

8. Sharpe, H. N., Jr., Muha, T. J., "The Comparison of Experimental and 
Theoretical Shear Stress in the Adhesive Layer of a Lap Joint ~odel," 
Proceedings of the Army Symposium on Solid Mechanics, 1974: The 
Role of Mechanics in Design of Structural Joints," AMMRC MS 74-8, 
September, 1974. 

9. Renton, J. H., Vinson, J. R., "On the Behavior of Bonded Joints in 
Composite Material Structures," Engineeri ng Fracture Mechani cs, 
Vol. 7, pp. 41-60, 1975. 

10. Renton, W. J., Vinson, J. R., "The Efficient Design of Adhesive 
Bonded Joints," AIM, ASME, SAE, 16th Structures, Structural 
Dynamics, and Materials Conference, AIAA paper no. 75-798, May, 
1975. 

11. Grimes, G. C., Greimann, L. F., Wah, T., Commerford, G. E., 
Blackstone, W. R., Wolfe, G. K., "The Development of Nonlinear 
Analysi s Methods for Bonded Joints in Advanced Fil amen'~ary Com­
posite Structures," AFFDL-TR-72-97, September, 1972. 

12. DasGutpa, S., Sharma, S. P., "Stresses in an Adhesive Lap Joint," 
ASME paper no. 75-WA/DE-18, July, 1975. 

13. Renton, W. J., "The Symmetric Lap Shear Test What Good is it?", 
Esperimental Mechanics, pp. 409-415, November, 1975. 

132 

,- .- f I L 'r~~~ \'c f l , '\, I r 

, 

-. 

, 
k 

I 
~ 
" j 
i! 

, ~ 
1i 
; 

, ~ 
I 
i 

\ 
1 

I 
~ 
\ 
I 

1 

! 
i 
J 
~~ 
',1; 
; 

i , 
I , , 
I 
1 

1 
.. j 

! , 
I 
I 
I 
J 



• 

• 

\ 
-.J. 

133 

14. Wetherhold, R., Vinson, J. R., "An Analytical Model for Bonded Joint 
Analysis in Composite Structures Including Hygrothermal Effects," 
Fourth National Conference on Composite Materials: Testing and 
Design, May, 1976. 

15. Birchfield, E. B., Cole, R. T., Impellizzeri, L. F., "Reliability 
of Step-Lap Bonded Joints," AFFDL-TR-72-26, April, 1975. 

16. Wilson, E. L., Bathe, K., Doherty, ~J. P., "Direct Solution of Large 
Systems of Linear Equations," Computers and Structures," Vol. 4, 
pp. 363-372, 1974. 

17. Ramberg, H., Osgood, W. B., "Description of Stress-Strain Curves by 
Three Parameters," NASA TN 902, 1943. 

18. Bergner, H. W., Davis, J. G., Herakovich, C. T., "Analysis of Shear 
Test Methods for Composite Laminates," VPI-E-77-14, April, 1977. 

19. Daniel, I. M., Liber, T., "Lamination Residual Stresses in Fiber 
Compos i tes ," NASA CR-134826, May, 1975. 

20. Sancaktar, E., "Shear Behavior of a Viscoelastic Structural 
Adhesive," present work on Ph.D. dissertation. 

21. Renieri, M. P., Herakovich, C. T., Brinson, H. F., "Rate and Time 
Dependent Behavior of Structural Adhesives," VPI-E-76-7, April, 1976. 

22. Sessler, J. G., Weiss, V., "Aerospace Structural Metals Handbook," 
AFML-TR-68-115, January, ., 968. 

23. Gibbs, H. H., "Status Report: NR-150 Polyimide Binders and Ad­
hes i ves," Proceedi ngs SAMPE Conference, Spri ng 1976. 

24. Petit, P. H. Waddoups, M. E., "A Method for Predicting the Nonlinear 
Behavior of Laminated Composites," J. Composite Materials, Vol. 3, 
1969, 2-19. 

25. Kaminski, B. E., Lemon, G. H., Mci<ague, E. L., "Development of 
Engineering Data for Advanced Composite Materials," AFML-TR-70-108, 
1972. 

26. Visvlanithan, C. N., Davis, J. G., Herakovich, C. T.. "Tensile and 
Compressive Behavior of Borsic/Aluminum Composite Laminates," 
VPI-E-75-12, June, 1975. 

27. Marceau, A., Scardino, W., "Durability of Adhesive Bonded Joints," 
AFML-TR-75-3, February, 1975 . 

28. Sturgeon, J. B., "Tensile Tests on Lap Joints in Carbon Fibre 
Reinforced Plastics," RAE-TR-7D159, August, 1970. 

------ -""---

t 
/ 

i 
I ....... • 
I 
! 
1 
I 
1 • , , 
I 
• 
! , , 
1 
J , 
1 
I 
j 
1 
I , 
! 

• 
1 , 
I 
I , 
1 , 
I 
1 , 
I , 
i , 
i · , , 

j , , 
I 
I , 

i 
i , 
I 
! 
I 
I 
j 

}j 
A 
I ,I 

d 



29. 

30. 

31. 

32. 

1 L \ 

134 

Pipes, R. B., Vinson, J. R., Chou, T., "On the Hygrothermal Response 
of Laminated Composite Systems," J. Composite Materials, Vol. 10, 
pp. 129-148, April, 1976. 

Verette, R. M., "Temperature/Humidity Effects on the Strength of 
Graphite/Epoxy Laminates," AIAA PC1per No. 75-1011, August, 1975. 

Whitney, J. B., Ashton, J. E., "Effect of Environment on the Elastic 
Response of Layered Composite Plates," AlAA Journal, Vol. 9, No. g, 
September, 1971. 

Grimes, G. C., Greimann, L. F., "Analysis of Discontinuities, Edge 
Effects, C1nd Joints," Composite Materials, Vol. 8, Part II, pp. 
135-230, 1975. 

I l . I .. ~ 

.1 

j 
/ 

• 

J 

I 

I 
I 

! 
1 

i 
1 

j 
.1 
1 
: 

1 

I, 

i 

I 
1 

I 
1 

J 



• 

r 

• 

I L 

APPENDIX A 

ELEMENTAL STIFFNESS MATRIX 

Equations (A.l) represent the equilibrium equations for applied 

strain loading. Equ's (A.2) represent the equilibrium equ~tions in 

average force loadings. In these equations, [K] is the symmetric 

elemental stiffness matrix, ~x{S} and {T} are force vectors correspond­

ing to the applied strain and temperature change respectively, {F} is 

the vector of applied forces, and {x} is the vector of unknown nodal 

displacements. 

(9x9) (9xl) (9xl) (9xl) 

[K](~){X}(~) - {T}(~) = {F}(~) 

(lOxlO) (lOxl) (lOxl) (lOxl) 

Defining the following terms 

a = (Z2-Z3)/2 

b = (Y3-Y2)/2 

c = (Z3-Z1 )/2 

d = (Yl -Y3)/2 

e = (Zl-Z2)/2 

9 = (Y2-Yl )/2 
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~ A = the area of element (2) 

* F = average normal force 

where Yl through Y3 and Zl through Z3 are the coordinates of the nodal 

points of element 2 in the Y-Z plane, the element of the matricies of 

Equ. (A.l) can be defined as follows. 

- 2 - 2 2 Kll = (C55b + C66a )/A - 2 - 2 J!. 
K22 = (C55d + C66C )/A 

- - J!. K12 = (C55bd + C66ac)/A K23 = (C55dg + c66ce)/A2 

_ - - 2 
K13 - (C55bg + C66ae)/A - - J/, K24 = (c26ac + C45db)/A 

_ - 2 - 2 2 
K14 - (C26a + C45b )/A 

_ - - 2 K15 - (C26ca + C45 bd)/A 

_ - - 2 K16 - (C26ea + C45bg)/A 

_ - - J!. 
K17 - (C36ba + C45ba)/A 

_ - - 2 
K18 - (C36da + C45bc)/A 

- - 2 K19 = (C36ga + C45be)/A 

_ - - 2 
K34 - (C26ae + C45gb)/A K45 = 

- -. J/, (C22ac + C44bd)/A 

_ - - 2 
K35 - (C26ce + C45bd)/A K46 = 

- - 2 (C22ae + C44bg)/A 

- 2 - 2 2 K36 = (C26e + C45g )/A K47 = 
- - 2 (C44ba + C23ab)/A 

- - !I. K37 = (C36be + c45ga)/A K48 = (C44bc + c23ad)/AJ/, 
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F = fl F = f2 _ 3 
1 x 2 x F3 - fx 

F = fl 4 y F = i 5 Y 
F = f3 
3 Y 

F = fl F = r2 3 
7 z a z Fa = fz 

where f's are nodal forces. 

For Equ's. (A.2) the previously defined terms apply plus the fol­

lowing additional terms 

T 

-K410 = C12a 

K710 = Cl3b 

- ~ 
K10lO = CllA 

---.--~---

K2l0 = C16c 

K5l0 = C12c 

KalO = C13d 

l 

-
K6l0 = C16e 

KglO = C13g 
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where 

cT = 2 2 (m ctl + n ct
2

)lIT x 

cT = 2 2 
y (n ctl + m 0!2)lIT 

T _ 
Cz - ct311T 

For moisture analysis the vector {T} is identical except O!l' ct

2 
and ct

3 
are replaced by 81, B2 and 8
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APPENDIX B 

ADDENDA TO RFERENCE [lJ 

During the process of modifying the program developed by Renieri 

and Herakovich [lJ it was discovered that a coding error had been made 

in +he equations for the transformation matrices. (Chap. 3, Equ's. 

3.9.) This was corrected and the nonlinear stress-strain response pre­

dictions of Ref. [lJ were regenerated using the same data and finite 

element model. In the majority of cases the differences proved to be 

negligible. For the cases where the differences were significant, 

comparisons between results obtained from the corrected program and 

experiment are presented. It should be noted that the coding errors 

applied only to the nonlinear results presented in Ref. [lJ and not the 

elastic results. It should also be noted that no attempt to define 

failure was made by this investigator and that the last point plotted 

does not necessarily correspond to failure. 
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APPENDIX C 

MATERIAL PROPERTIES 

This appendix contains all of the material properties used for this 
study. The data presented represents typical data from the literature. 
References are provided where appropriate. Fig's. C.l through C.? repre­
sent the stress-strain response of the materials used. Table C.l con­
tains the Ramb~rg-Osgood coefficients for these materials and Table C.2 
contains the temperature dependent properties. 

In Table C.l the symbol a* refers to the stress at which the Ram­
berg-Osgood coefficients n2 and k2 become applicable. 
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TABLE C.l Cont. 
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** Ref. [23]. 

% % % 
Exx Eyy Ezz 

100.0 100.0 100.0 

115.0 50.0 50.0 

100.0 

100.0 100.0 

94.0 94.0 

78.rJ 78.0 

50.0 

TABLE C.2 Thermal Properties 

% % % "1 
Gyz Gxz Gxy (in/in/oF) 

0.0* 

100.0** 100.0** 100.0** 

93.0** 93.0** 93.0** 

75.0** 75.0** 75.0** 

0.0* 

100.0 100.0 

100.0 1.7x10-6 

93.0 93.0 107.0 1.04x10-6 

75.0 75.0 111.0 .864x10- 6 

"2 
( in/infDF) 

14.1x10-6* 

14.1x10-6* 

1.7x10-6 

1. 04x1 0-6 

.864x10-6 

t 

"3 
( in/in/oF) 

14.1x10-6* 

14.1x10-6* 

14.1x10-6 

14.1x10-6 

" 

~ 

(J) 

N 

-

-
"~--~---- -~---~- ... - ----~-~--~-----.... -.:, .. ~,--... "'---.--.. ~.-.--.-.....:.::....!-.-~~.:......----:.-...~-.. " .. ~~~>--..,..:-.>-'> i ...,' .. ,~.,.~ ... ,..,...';"'",; ... - .:of>rt="1tSffl"m: err "w:= .... ........,.:..Wm~_~ 



r 
W_"'": 

" • 

. Temp. % % % % ~ 

+' of Exx Eyy Ezz Gyz It! 
::;: 

0.'1 100.0 
..... 
a. 

60.0 100.0 ...... 
"'" t.!J 

til 70.0 100.0 100.0 ... 
a 
0'> 

400.0 105.0 105.0 93.0 ...... 
LO 
"'<I" ... , 

500.0 106.0 106.0 75.0 ...... 
a 
1....J 

550.0 50.0 

0.0 103.0 103.0 103.0 103.0 

'1:l 
100.0 98.0 98.0 98.0 98.0 

c 
0'" 200.0 90.0 90.0 90.0 90.0 .o~ 
~~ 

+'~ 
Ql 300.0 68.0 68.0 68.0 68.0 ;:;;: 

350.0 50.0 50.0 50.0 50.0 

TABLE C.2 Cant. 

% % "1 
Gxz Gxy (in/in/"F) 

100.0 

100.0 1.7x10-6 

93.0 105.0 1.04x10-6 

75.0 106.0 .864x10-6 

103.0 103.0 15.5x10-6 

98.0 98.0 16.5x10-6 

90.0 90.0 18.0x10-6 

68.0 68.0 20.25x10-6 

50.0 50.0 22.0x10-6 

~ 

"2 
( in/in/"F) 

1.7x10-6 

1 . 04x1 0-6 

.864x10-6 

15.5x10-6 

16.5x10-6 

18.0x10-6 

20.25x10-6 

22.0x10- 6 

l 

• 

"3 
(in/in/oF) 

14.1x10-6 

14.1x10-6 

15.5x10-6 

16. 5x1 0-6 

1fl.Ox10-6 

20.25x10-6 

22.0x10-6 

~ 

en 
w 

"', 

I--

~ 

--
-,. . __ ._-". __ . '-, .. ;; ic. __ .L __ . __ ,~_.~_. __ ~,_." _'_'. ___ ; •. "~ __ ~ _____ ..• :: __ ...;; ____ ~~O. __ ..--____.,; __ "--.:_:.;."__...: __ .._:d.:..,,;..... _____ ~ ........... , •.•• ;t~,:~,~.,;~~ . .# :::.:'" '=..... 7~tr =w..... ..... u';Wi1j' 



'I"~ 

'\ 

1 
I 
1 

I 

-'-. 

~ Temp. % % % % +' 

'" 
0,," Exx Eyy Ezz Gyz ::E: • 

;: 
100.0 120.0 120.0 104.0 LLJ 0.0 .... 

'" 
~ 100.0 100.0 92.0 92.0 97.0 
'" <: 
0 

200.0 100.0 .~ 83.0 +' 
u 
OJ 

250.0 100.0 60.0 s.. 
.~ 

'tJ 
.~ 

100.0 45.0 <: 300.0 45.0 45.0 
:::l 

LLJ 0.0 102.0 103.0 120.0 104.0 .... 
'" ....., 100.0 100.0 100.0 92.0 97.0 0 ..... 
0 

200.0 98.0 96.0 83.0 '" ...... 
0 .... 

250.0 60.0 0 

'" .... 
0 

300.0 97.0 93.0 45.0 4S.0 <-J 

* Ref. [1]. 

TABLE C.2 Cant. 

% % "1 
Gxz Gxy (in/in;oF) 

104.0 104.0 2.2x10-6 

97.0 97.0 2.32x10-6 

83.0 83.0 2.4x10-6 

60.0 60.0 

45.0 45.0 2.7x10-6 

104.0 104.0 2.91x10-6 

97.0 97.0 2.99x10-6 

83.0 83.0 3.04x10-6 

60.0 60.0 

4S.0 45.0 3.26xlO-6 

"2 
( in/in;oF) 

"3 
( in/in;oF) 

9.6x10-6 9.6x10-6 

1.11x10-5 1.11x10-5 

1. 34x1 0-5 1. 34x1 0-5 

1.68x10-5 1. 68x10-5 

3.45x10-6 9.6x10-6 

3.51x10-6 1.llx10-5 

3.55x10- 6 1.34x10-S 

3.71x10-6 1. 68x10-5 

~ 

'" .." 

L--

~ 

~ 

-
, , P: ,"_1.,_ _ ~ .. ',_,_'" ~ , 

_;, _ .. ____ ______ __~~ _____ ~, ",_>~_~~"_~_,_,~, __ , __ , __ ~, __ "" __ , __ ,,,,----,,_,,,~ : . ...;,_~~.-~_'...-.._ .~_. __ j:~,._,_ ... ~_~. __ ... ~~-= ___ .;",:;,",,,,,,,_~,, _ ;;;,~ __ .~_ ·:.·,w;.,,~, ~~~~' , ¥eattS ~ "z1Xizw':::o 'm dtt:' emmx'; ttti"Z 



(: 

, 

. 
Temp. % % % % ~ .... of Exx Eyy Ezz Gyz '" ::E: 

0.0 101.3 101.3 101 .3 101. 3 
-l< 
E 70.0 100.0 100.0 100.0 100.0 ~> 
'~..r 
<::, 
"'~ 400.0 95.0 95.0 95.0 95.0 ""«e 
.~ <D 
I-

8(10.0 

0.0 104.0 104.0 104.0 104.0 

70.0 100.0 100.0 100.0 100.0 

oJ< 200.0 99.0 99.0 99.0 99.0 
E..r 
~I-
<::, 250.0 .~ ..r 
EN 
~o 
~N «e 300.0 94.3 94.3 94.3 94.3 

400.0 88.7 88.7 88.7 88.7 

500.0 80.2 80.2 80.2 80.2 

* Ref. [23]. 

TABLE C.2 Cant. 

% % "'1 
Gxz Gxy (in/in;oF) 

101.3 101. 3 4.7x10-6 

100.0 100.0 

95.0 95.0 5.2x10-6 

5.6x10-6 

104.0 104.0 12.1x10-6 

100.0 100.0 

99.0 99.0 12.9x10-6 

13.0x10-6 

94.3 94.3 13.1x10-6 

88.7 88.7 13.2xlO-6 

80.2 80.2 13.5x10-6 

, < 

"'2 
(in/in;oF) 

"'3 
(in/in;oF) 

4.7x10-6 4.7x10-6 

5.2x10-6 5.2x10-6 

5.6x10-6 5.6xlO-6 

12.1x10-6 12.1x10-6 

12.9x10-6 12.9x10-6 

13.0x10-6 13.0x10-6 

13.1x10-6 13.1x10-6 

13.2x10-6 13.2x10-6 

13.5x10-6 13.5x10-6 

~ 

~ 

0'1 
0"1 

.""'. 

I---

.,...--

~ 

--
._.~.:~:~. _._~_. __ ~ __ ~~ __ .. _~._"~'.:._ .......... ',~.". __ .""':"-"""";:;', .... ".">o.._~--'''''''''''''~~,","~.~ __ ...... ,. __ ....,.....;,.....,. .... ,,.., .... ~ ...... ~,,~ __ .~,..-,,,,,,,,",,"-~~,,,,-,~~ r;~,,,~~''';';'. ':"·;-·-~~r;''':'·?t';; ~~.;,.. .err...;..;,....;;.: 1· ...... ".?· c""'" ...... mM' 
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APPENDIX D 

Computer Program NONCOM1 

166 
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f 
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.l 

Cards 1-5 (20A4) 

Column 

1-80 

Card 6 (6I6) 

Column 

1-6 NE 

7-12 NDS 

13-18 NDIFM 

19-24 NANG 

25-30 IELET 

31-36 IELEM 

Card 7 (6I6) 

Column 

1-6 NLOADS 

7-12 NPSS(ll 

13-18 NPSS(2) 

167 

NONCOM1 FORTRAN USERS GUIDE 

Contents 

Title Cards 

Contents 

= Number of elements 

= Number of nodes 

= Number of different materials 

= Number of different angles 

= Operating temperature indicator 

o for 70° 

> 0 for any other temperature 

= Operating moisture content indicator 

o for 0% moisture 

> 0 for elevated moisture content 

Contents 

= Number of load cases 

= Load type number 1 

= Load type number 2 

etc. Repeated NLOADS times 

NPSS(J) = 1 for axial strain 

= 2 for thermal 

\ l 

/ 

-

I 

i 
I 
l' 

J 
I 
! 
1 
I 

J 
I 

! 
I 
! 
j 

j 
i 
\ 

I 
i 
I 
I 
i 

i 
I 

. J 

I 
i , 
j 
! 

fl 
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Card 8 (5I6) 

Column 

1-6 

7-12 

Nl NCRT( 1) 

N1NCRT(2) 

168 

; 3 for axial force 

; 4 for hygroscopic 

Contents 

; Number of load increments for load case I 

; Number of load increments for load case 2 

etc. Repeated NLOADS times 

Card 9 (5I6) 

Column 

1-6 KEY(]) 

7-12 KEY(2) 

13-18 KEY(3) 

19-24 KEY(4) 

25-30 KEY(5) 

Card 10 (10I6) 

Column 

1-6 Ll NCPR( 1 , I) 

7-12 LlNCPR(2,I) 

Contents 

; Print indicator for grid 

; Print indicator for strains 

; Prlnt indicator for stresses 

; Print indicator for equivalent stresses 

; Print indicator for displacements 

KEY(I) ; 0 for printing 

I=l, NLOADS 

Contents 

= First increment of load case I to print 

stresses, strains, and displacements 

= Last increment of load case I to print 

etc. Repeated NLOADS times 

Card 11 (2F12.6) 

Column Contents 

1-12 SMY = Scale factor for V-coordinates 

. ~[~:~"':U(~=, , .~ I 

I 

1 b 

/ 

I ..... ~ 

11 

~ 
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o! 
1 
'1 
! 
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13-24 SMZ = Scale factor for Z-coordinates 

The following card is repeated NlOADS times N=l,NlOADS 

Card 12 (2F12.6) 

Column Contents 

1-12 AlOADS(l,N) = load increment for first load case 

13-24 AlOADS(2,N) = Initial load state before applying increment 

Card 13 is omitted if IElET = 0 

Card 13 (F12.6) 

Column Contents 

1-12 DElTOT = Constant temperature for non-thermal loading 

Card 14 is omitted if IElEM = 0 

Card 14 (F12.6) 

Column 

1-12 DElMOT 

Contents 

= Constant moisture content for non-hygro 

scopic loading 

The following cards are repeated NDIFM times 

K=l,NDIFM 

Card 15 (5E12.6) 

(Cards 15-28) 

Column 

, 12 EKll(K,1) = Ell 

13-24 EKll(K,2) = Ell 

25-36 EK22(K,1) = E22 

37-48 EK22(K,2) = E22 

49-60 EK33(K,I) = E33 

61-72 EK33(K,2) = E33 

= 

Contents 

tension modulus 

compression modulus 

tension modulus 

compression modulus 

tension modulus 

compression modulus 

«< I 

i 
I 

-j 
! 

I 
.~ 

~ 
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. 'i 
I 
1 
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1 
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I 
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I 
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Card 16 3El2.6 

Column 

1-12 GK23 (K) 

13-24 GK13(K) 

25-36 GK12(K) 

Card 17 (6E12.6) 

Column 

1-12 SP1(K.l) 

13-24 Nl(l.K,l) 

25-36 Kl(l,K,l) 

37-48 SPIl(K,l) 

49-60 Nl(2,K;') 

61-72 Kl(2,K,l) 

Card 18 (6E12.6) 

Column 

1-12 SPl (K.2) 

13-24 Nl(1.K.2) 

25-36 Kl (1.K.2) 

37-4B SPl (K.2) 

49-60 Nl (2.K.2) 

61-72 Kl(2.K.2) 

170 

= G23 modulus 

= G13 modulus 

= G12 modulus 

Contents 

Contents 

= Ela;tic limit stress for a1 - £1 tension 

= Ramberg-Osgood coefficient nl for a
1 

- £1 

tension 

= Ramberg-Osgood coefficient Kl for a
1 

- £, 

tension 

" Bilinear intersect stress for a
1 

- £1 

tension 

= Ramberg-Osgood coefficient n2 for a1 

tension 

= Ramberg-Osgood coefficient K2 for al - £1 

tension 

Contents 

= 
= 
= Same as Card 17 but for al - £1 

= compression 

= 
= 

. J '., - II! 

" 

t 
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.j 
'I 
1 

I 
1 

I 
:1 
j 

l 
i [,1 

'I 

: ~ 
1 

j 
I , 

i 
J 

I 
I 

.. '~ 'j 



I 

171 

i_' 

Card 19 (6El2.6) 

Column Contents 

1-12 SP2(K,1 ) = 
• 

13-24 N2(1 ,K, 1) = 
25-36 K2(1,K,1) = Same as Card 17 but for u2 - E2 -. I 37-48 SPI2(K,1} = tension 

j 

49-60 N2(2,K,1) = ; , 
61-72 K2(2,K,1} = 1 , 

~ 

I Card 20 (6E12.6) 

Column Contents 

1-12 SP2(K,2) = 1 

I 
13-24 N2(1,K,2) = I ., 

" 25-36 K2(1,K,2) = Same as Card 17 but for u2 - E2 j 

! 37-48 SPI2(K,2) = compression i 
i 

49-60 N2(2,K,2) = 1 
61-72 K2(2,K,2) = I 

1 Card 21 (6E12.6) 
1 Column Contents I 

.. j 
1-12 SP33(K,1) = I 

I 

13-24 N33(1 ,K, 1) = ! 
-j , 

25-36 K33(1 ,K, 1) = Same as Card 17 but for u3 - E3 ;! 

37-48 SPI33(K,1) = tension 
"j 
~! 

49-60 N33(2,k,1) = I , ~ 

61-72 K33(2,1<,1) = ! 
! 

-j 
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:' ~ 

Card 22 (6E12.6) 

Column Contents 

1-12 SP33(K,2) = 

13-24 N33(1,K,2) " = 

25-36 K33(1,K,2) = Same as Card 17 but for 03 - E3 

37-48 SPI33(K,2) compression .... j = 

1 49-60 N33(2,K,2) = · 

61-72 K33(2,K,2) ~ = I 
Card 23 (6E12.6) j 

: ~ 
• Column Contents 
, 1 1-12 SP23(K) = 
1 

13-24 N23(1,K) = I ., 

25-36 K23(1,K) = Same as Card 17 but for T23 - Y23 I 
1 37-48 SPI23(K) = shear 

49-60 N23(2,K) = 

61-72 K23(2,K) = I 
I Card 24 (6E12.6) I 
1 

Column Contents I 
1-12 SP13(K) i = I 

. , 
13-24 N13(1,K) = I 

d 
i 

25-36 K13(1,K) = Same as Card 17 but for T13 - Y13 ,I 
1 

37-48 SPIl3(K) = shear .j 

49-60 N13(2,K) = . , 

61-72 K13(2,K) = 
1 
1 

'.1 

• , 
_ i , 

I 
i 
i 
I 

I , 
I 
I 

"---- r'-~':'" [ I l I ,.1 I J, b J . .'\. I' r 
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Card 25 (6E12.6) 

Column Content', 

1-12 SP3(K) = 
.. 13-24 N3(1,K) = 

I 25-36 K3(1,K) = Same as Card 17 but for T12 - Y12 - I 
SPI3(K) shear \: 37-48 = 

~ I 49-60 N3(2,K) = 1 

J 61-72 K3(2,K) = 
Card 26 (5E12.6) 

Column Contents , 
1-12 SLl(l,K) = Ultimate stress for °1 - El tension 1 

SL1(2,K) compression I 13-24 = Ultimate stress for °1 - E1 
j 25-36 S12(1,K) = Ultimate stress for °2 - E2 tension 
I 37-48 SL2(2,K) = Ultimate stress for °2 - '2 compression 

I 49-60 SL33(1,K) = Ultimate stress for °3 - '3 tension 
I 61-72 SL33(2,K) = Ultimate stress for °3 - '3 compression J 

Card 27 (3E12.6) 1 
I • 

Column Contents ! 
1-12 SL23(K) = Ultimate stress for T23 - Y23 I 

j 13-24 SLl3(K) = Ultifilate stress for T13 - Y13 j 
25-36 SL3(1,K) = Ultimate stress for T12 - Y12 

1 ., 
Card 28 (6E12.6) i 

" 
Column Contents j 
1-12 UK12(K,1) = Poisson's ratio v12 in tension 

1 
.,j 13-24 UK12(K,2) = Poisson's ratio v12 in compression i 
1 
I 
I , 

. ......,'. = JdiIij(~--"",,--....,?,- :s-...... "' __ 

i 
; 

".;....,;Ii 
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25-36 UK23(K,1} = Poisson's ratio "23 in tension 

37-48 UK23(K,2} = Poisson's ratio "23 in compression 

49-60 UK13(K,1) = Poisson's ratio "13 in tension 

61-72 UK13(K,2} = Poisson's rati 0 "13 in compression 

If no thermal analysis is required skip to card 40 

The following cards are repeated NDIFM times 

K=l,NDIFM (Cards 29-39) 

Card 29 (6Il2) 

Column 

1-12 NTl (K) 

13-24 NT2 (K) 

25-36 NT33(K} 

37-48 NT23( K} 

49-60 NTl3(K} 

61-72 NT3(K} 

Card 30 (3Il2) 

Column 

1-12 NT4(K} 

Contents 

= Number of linear segmented points for 

Ell modulus percent retention curve 

= Number of linear segmented points for 

E22 modulus percent retention curve 

= Number of linear segmented points for 

E33 modulus oercent retention curve 

= Number of linear segmented points for 

G23 modulus percent retention curve 

= Number of linear segmented pO'jnts for 

G13 modulus percent retention curve 

= Number of linear segmented points for 

G12 modulus percent retention curve 

Contents 

= Number of linear segmented points for 

Ctl thermal coefficient cur'Je 

j . . r, L 

I 

/ 

..... I 
j 

'. ~ 
1 
! ., 
I 
I 
I 
1 
I 
I 
I 

·1 

1 
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I 
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Card 36 (6F12.0) I=1,NT3(K) 
Column 

1-12 PERMR3 (I, K) 

TEMP3(I,K) 

Card 37 3(E12.5,F12.0) 

Column 

1-12 

13-24 

ALPl (I, K) 

TEMP4(I,K) 

= 

= 

Contents 

Same as card 31 but for G
12 

modulus 

I=1,NT4(K) 

= 

= 

Contents 

Ul thermal coefficient at point I 

Temperature at point I 
etc. Repeated NT4(K) times 

Card 38 3(E12.5, F12.0) I=1,NT5(K) 
Column 

1-12 

13-24 

ALP2(I,K) 

TEMP5(I,K) 

Card 39 3(E12.5.F12.0) 

Column 

1-12 

13-24 

ALP3(I,K) 

TALP3(I,K) 

Contents 
= Same as card 37 but for u

2 
= coeffi cient 

I=1,NTALP3(K) 

Contents 
= Same as card 37 but for u

3 
= coefficient 

If no moisture analysis is required skip to card 51 

The following cards are repeated NDIFM times 
K=l,NDIFM 

Card 40 (6I12) 

Column 

1-12 NM1(K) 

13-24 NM2(K) 

(Cards 40-50) 

Contents 

= Number of linear segmented points for 

Ell modulus percent retention curve 

= Number of linear segmented points fcr 

l I r 

I I 

-. 

.. 
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25-36 

37-48 

49-60 

61-72 

Card 41 

Column 

1-12 

13-24 

25-26 

Card 42 

Column 

1-12 

13-24 

I ~ 
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E22 modulus percent retention curve 
NM33(K) ~ Number of linear segmented points for E33 

modulus percent retention curve 
NM23(K) ~ Number of linear segmented points for 

G23 modu1us percent retention curve 
NH13(K) ~ Number of linear segmented points for 

G13 modulus percent retention curve 
NM3(K) ~ Number of linear segmented points for 

G12 modulus percent retention curve 
(3Il2) 

Contents 
NM4(K) ~ Number of linear segmented points for 

/31 coeffi ci ent 

NM5(K) ~ Number of linear segmented points for 

/32 coeffi ci ent 

NBETA3(K) ~ Number of linear segmented points for 

/33 coeffi ci ent 

(6F12.0) r~l ,NMl (K) 

PERMR4(r,K) 

TEMM1(r,K) 

Contents 

~ Percent retention of Ell modulus 

at point r 

~ Moisture content at point r 

etc. Repeated NM1(K) times 

I 

I 

..... 
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! , , 
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~ 

Card 43 

Column 

1-12 

13-24 

Card 44 

Column 

1-12 

13-24 

Card 45 

Column 

1-12 

13-24 

Card 46 

Column 

1-12 

13-24 

Card 47 

1-12 

13-24 

I 

178 

(6F12.0) I=1,NM2(K) 

Contents 

PERMR5(I,K) = Same as card 42 but for E22 

TEt~M2 (I, K) = modulus 

(6F12.0) 1=1,NM33(K) 

Contents 

PMMR33(I ,K) = Same as card 42 but for E33 

TMMR33(I ,K) = modulus 

(6F12.0) 1=1,NM23(K) 

Contents 

PMMR23(I,K} = Same as card 42 but for 623 
TMMR23 (I , K) = modulus 

(6F12.0) 1=1 ,N~1l3(K) 

Contents 

Pt1MR13 (I, K) = Same as card 42 but for 613 
TMMR13 (I, K) = modulus 

(6F12.0) I=1,NM3(K) 

PERMR6(I,K) 

TEMM3(I,K) 

= Same as card 42 but for 612 
= modulus 

Card 48 3(E12.5, F12.0) I=1,NM4(K) 

Column 

1-12 

13-24 

etc. 

BETAl( I, K) 

TEMM4(I,K) 

Contents 

= Sl hygroscopic coefficient at 

point I 

= Moisture content at point I 

Repeated NM4(K) times 

t 

/ 

-. 

i 

.l 
! 
.j 

• 1 
I 
• 

1 



• 
Card 49 3(E12.5, F12.0) 

Column 

1-12 

13-24 

BETA2(I,K) 

TEMM5(I,K) 

Card 50 3(E12,5,F12.0) 

Column 

1-12 BETA3(I,K) 

13-24 TBETA3(I,K) 

Card 51 (6F12.6) 

Column 

1-12 THE(l) 

13-24 THE(2) 

1 
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I=1,NM5(K) 

Contents 

= Same as card 48 but for a2 
= coeffi ci ent 

I=1,NBETA3(K) 

Contents 

= Same as card 48 but for a3 
= coeffi ci ent 

Contents 

= Angle number 1 in degrees 

= Angle number 2 in degrees 
etc. Repeated NANG times 

The following card is repeated NDS times 

I=l,NDS 

Card 52 (413,2F12.0) 

Column 

1-3 

4-6 

7-9 

10-12 

INODED(I) 

INODE(I,l ) 

INODE(I,2) 

INODE( I ,3) 

l 

Contents 

= I 

= U - displacement code 

= V - displacement code 

= W - displacement code 

= 1 for force or non-zero displacement 

boundary condition 

= 2 for prescribed zero-displacement 
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13-24 YY(I) = Y coordinate of node I before being scaled 

by SMY 
25-36 ZZ(I) = Z coordinate of node I before being scaled 

by SMZ 

The following card is repeated NE times 

I=l,NE 

Card 53 (6X,516) 

Column Contents 
1-6 = Blank 
7-12 ND(I,l ) = Node number 1 of element I 

13-18 ND(I,2) = Node number 2 of element I 
19-24 ND(I,3) = Node number 3 of element I 
25-30 IMAT(I) = Material number of element I 
31-36 ITHETA(I) = Angle number of element I 
Card 54 (2Il2) 

Column Contents 
1-12 NDCST = Number of non-zero displacement constraints 

13-24 NFCST = Number of non-zero force constraints 
If NDCST = 0 skip to card 56 

The following card is repeated NDCST times 

I=l,NDCST 

Card 55 (2I12,F12.0) 

Column 

1-12 

13-24 

~lDDED( I) 

MODE 

Contents 

= Node number of constrained node 

= Code for constraint 
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= 2 for V constraint 

= 3 for H constraint 

25-36 DCST(I ) = Displacement constraint increment 

If NFCST = 0 no more input is required 

The following card is repeated NFCST times 

I=l,NFCST 

Card 56 (2I12,F12.0) 

Column 

1-12 

13-24 

25-36 

Notes: 

NODEF (I) 

MODE 

FCST(I) 

Contents 

= 
Same as card 55 but for force 

= 
constraints 

= 

GENERAL: Input units need only be consistent except for thermal 

properties which must be degrees F. 

Card 6 NE~400, NDS~400, NDIFM~lO, NANG<lO 

Card 7 NLOADS< 5 

Card 1D The first and last load increments are always printed 

Card 11 The scale factors are multiplied by the Y and Z coordinates 

to obtain the final Y and Z coordinates 

Card 12 ALOADS(2,N) is applicable to thermal and hygroscopic 

loading only. ALDADS(l,N) must be input as 0.0 for inplane 

loadings. 

Card 32 Node numbers must be given in counter-clockwise order 

A listing of the computer program is available upon request. 
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