
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

X- 530-7772

f	 L

OPTIMi7.ATIQN rl1IDE FOR PROGRAMS

	

COMPILED UPIDER IBM FORTRAN H (OPT = 2)	 '
i

e

D. M. Smith
A. H. Dobyns
H. M. Marsh

Prepared Under Contract NAS5-20747 by
Boole & Babbage, Inc.
Sunnyvale, Ca7ifarnia

for Computer h9anagement Branch
Mission Operations Computing Division
h9ission and Data Operations Directorate

Goddard Space Flight Center
Greenbelt, Maryland

National Aeronautics and Space Administration
Technical Monitor:	 Evmenios P. Daman

April 1977

aODDARD SPACE FLIGHT CENTER
Greenbelt, Maryland

^.

	

1, _ --	 --	 _	

^	 ^.^

,^	 ^
^^	 „

CONTENTS

Section Title Page

1 .0 I NTRODUCTI ON . 1
1.1 Optimization. l
l.2 Document Use. 1
l . 3 Test Program Design 2	

^

1.4 Statistics Used 3

'	 2.O GQOD PROGRAMMING PRACTICES. 5	 r
2.1 Problem Definition. 5	 ,
2.2 Selection of Algorithms 6
2.3 Selection of Programming^Language B
2.4 Specification of	 Program Structure and	 Loaic. 7
2. 5 Program Cadi ng. 8	 '
2.6 Testing and	 Debugging l0
2.7 Documentation ll	 ""
2.8 Maintenance 11	 +

3.0 COMPUTER ARCHITECTURE 13
3.1.0 Effect on Machine Speed 13	 '
3.1.1 Interleaving	 an the 95. 14
3.1.2 Interleaving	 on	 the 75s	 and	 65. 16
3.2 Branching	 360/95. 19	 1	 ?
3.3 Register Usage 360/95 21
3.4 Execution of	 Instructions 22

4.0 SUBSCRIPTING. 25
4.1 Summary 25
4.2 Array Storage 25	 ^
4.3.0 Cade Comparisons. 2fi
4.3.1 Arithmetic	 in	 5uhscripts. 26
4.3.2 Temporary Vari ables 26
4.3.3 Muiti-Subscript Arrays 	 and^Vectors. 25
4.3.4 Addition	 and 5ubtractian	 in Subscripts. 27
4.4.D Haw the Statements are Compiled 27
4.4.1 Element Location. 27
4.4.2 DIMENSION Statement 28	 a
4.4.3 Compiler Created	 Indices. 28

5.0 EXPONENTIATION. 31
5.1 Summary 31
5.2.0 Code Comparisons, 37
5.2.1 Integer Constants and	 Variables	 as^Exponents, 31

"	 5.2.2 Higher	 Power Exponentiation 3l
5.2.3 Single Exponent Versus Repeated Multiplication, 3l
5.2.4 Integer Versus Real	 Exponents 31	 ?
5.2.5 Square Root Function Versus 	 Exponentiation. 32
5.3 How the Statements are Compiled 32	 ^

1

4! .

}
{'

i

__	 ,
.. ^s

Page

35
35
35
35
36
36

39
39
39
34
39
41

43
43
43
43

47
47
47
47

49
49
49
49
49
50
51

53
53
53

54

54

54

55

55

56
56
57
57
58

i

i.i

^^
.,-

i
^,^.

CONTENTS (Cont'd)

Section	 Title

6,0	 MIXEp MODE ARITHMETIC	 .
6,1	 Summary	 .
6.2.0	 Code Comparisons.	 ,
6.2.7	 Fixed Point to Floating Point Conversion. 	 .
6.2.2	 Mixed Mode Expressions.
6.3	 Ho4v the Statements are Compiled	 ,	 .

7.0 UO LOOP5.
7.1 Summary	 .
7.2.0 Code Comparisons.	 .
7.2.1 loop	 E1 i^^i nazi on.	 .	 ,
7.2.2 Initia1;zation.	 ,
7.3 How the	 Statements^are^Compiled 	 ,

8.0 COMMON	 EXPRESSIOtJ	 ELIMINATION	 .
8.i Summary	 .
8.2 Code Comparisons.	 ,
8.3 How the Statements are^Compiied 	 ,

9.0 STATEMENT FUNCTIONS
9.1 Summary	 .
9.2 Code Comparison
9.3 How the Statements are^Compiled 	 ,	 ,

10.0 ARITHMETIC OPERATORS.	 ,
10.7 Summary	 .
10.2.0 Code Comparisons.
10.2.1 F't^ating	 Point	 Addition	 Versus^Multiplication	 .	 ,
10.2.2 Fixed	 Point Addition Versus 	 Multiplication,	 ,
10.2.3 Multiplication with	 Constants	 of	 Powers	 of Two.
10.3 Haw the Statements are Compiled 	 ,

11.0 SUBPROGRAMS	 .
] 1.1 Summary	 .
ii.2.0 Code Comparisons.
11.2.1 Subroutine	 CAII tidith^No	 Arguments

(Passed	 in	 COMMON).
11.2.2 Subroutine	 CALL 4lith Arguments

(Passed	 by Value)
11.2.3 Subroutine CALL With^Arquments

(Passed	 by	 Location).	 ,
11.2.4 Function	 Reference ti^lith	 No	 Arguments

(Passed	 in	 COMMON).	 ,
11.2,5 Function Reference With Arguments

(Passed	 by	 Value)	 ,
]1.2.6 Function Reference With Arguments

(Passed	 by	 Location),	 ,
11.2.7 Statement Function.
i 1.2.8 Internal	 Routine.
11.2.9 Optional	 Return
ii.3.0 How the Statements are^Compiled 	 ,

CONTENTS (Cont'd}

i^ ,

Section Title Page

11.3.1 Argument List 58
11.3.2 No Argument List. 59
11.3.3 Returned Values 59
11.3.4 Subroutine	 Initial^Action 59
11.3.5 Subroutine	 Exit Processing. 59	 ^	 `

a	 11.3.6 Argument Passing. 59
11.3.7 Statement Function	 Expansion. 60
11.3.8 Internal	 Routine Reference. 67

°	 12.0 BRANCHING 63
12. l . 0 Summary 63
12.1,1 Branching 5tatements^Compared 63
12.1.2 Statement and	 Expression Ordering 63	 '
12.1.3 Index Stanching 63	 ,^^
12.1.4 Complex Logical	 IFs 64
l 2.7 .5 index Testi ng	 i n a	 Loop 64	 '
12.2.0 Code Comparisons. 65
12.2.1 Swi'cch	 Setting	 and^Testing. 65	 ^
12.2.2 Sinrp7e	 Expression Testing 67
12.2,3.0 Cam p7 ex	 Expressian Testing. 68	 ^
12.2.3.1 'NOT'	 With	 'ANO'	 Operators. 69
12.2.3.2 'NOT'	 With	 'OR'	 Operators 69
12.2.3.3 Mixed	 'AND'	 and	 'OR'	 Operators. 69
12.2.3.4 Separate	 'AND'	 and	 'OR'	 Operators 70
12.2.3.5 Separate IF Statements for 	 `AND'. 71
12.2.4 Multiple	 IF	 Statements. 72
12.2.5 Index Branching 72
12.2.6 Expression	 Reduction of	 Complex Logical '^

IF Statements 77
12.3.0 Haw the Statements are^Campiled 78
12.3.1 P9achine Language	 Branching.	 . 78
]2.3.2 Simple GO TO Statement. 79
12.3.3 ASSIGN and Assigned GO TO Statements. 79
12.3.4 Computed GO TO Statement. 79
12.3.5 Arithmetic	 IF Statement 79	 ^,
12.3.6.0 Logical	 If	 Statement. 80
72.3.b.1 5ing1e Expression	 . 80	 ^
12.3.6.2 Multiple	 Expressions. 81	 3

a

73,0 INPUT/OUTPUT. 	 . .	 83
13.1 Summary 83
13.2.0 Code Comparisons. 83
13.2.1.0 Formatted	 I/O 83
13.2.1,1 Element Transfer. 83
13.2.1.2 Row Transfer by	 Implied Loop. 83	 ^
73.2.1.3 Row Transfer by Subroutine.	 . 84
13.2.1.4 Array Transfer by Name. 84	 ^
13.2.1.5 Array Transfer by implied 	 Loap. 84	 '
13.2.7.6 Effect of JCL .	 85	 ^
13.2.2.0 Unformatted	 I/O 85	 ^
13.2.2.1 Row Transfer by Subroutine. 85

^ ^._.,	 ^-
^"1

d
^!^

.y

COPJTEFJTS	 (Con t' d) ^	 i

Section Title ^	 ^^Page	 ^^

13.2.2.2 Array Transfer by Name. z5
13.2.3 5imp]ifying	 I/O	 Lists 86
13.2.4 Variable or	 Execution Time^Formats. ^'86
13.2.5 Direct Access	 I/O 87	 ^
T3.3 How the Statements are Compiled 88	 ^	 ^,

14.0 FLOATING POINT ARITHMETIC
Q

91	 r	
P

15.0 FUNCTIONS AND APPROXIMATIONS. 99	 !^

16.0 EVALUATION OF POLYNOMIALS 107	 '

17.0 OVERLAY PROGRAMS. 113
17.1 Considerations. 113	 ^^
17.2 Structure Ti3	 ^
17.3 Changes	 Required^for^Overlay^ing 115
17,4 Coding Considerations for Overlayed 	 Programs. 117
17.5 The Mechanisms	 of the Linkage	 Editor. 719
17.6.0 Overiay Tools i2d
17.6.1 OVLY	 ProrJram. 120	 ^
17.6.2 LOADMAP 120
17.7 Optimization	 of	 an^Existing	 Program 12O
17.8 Multi pie Region Overlays. 122
17.9 Bugs,	 Dumps,	 Wazards,	 and	 Pit	 Fa11s 123

18.0 The Different	 FORTRANS. 125
18.i Comparisons l25
18.2 FORTRAN H OPT^1	 Optimization, 125
18.3 FORTRAN H OPT = Z Optimization. 125
18.4 Compile and	 Execution Speed Timings 126	 %'j
18.5 OPT=2	 6^Carni ngs . .	 126

19.0 COMPILER	 INTRINSIC	 FUNCTIONS. 729
19.1 Boolean and	 Shift	 Pseudo-Functions. 129
19.2 Sit	 Pseudo-Functions. 130	 ^
19.3 Examples, 13O	 '
T9.4 STRUCTURE Statement i31	 `

^^..

SUhfP'^RY OF FIGURES

Fi ure Title P, _aye

1 ^^emory Organization on the 95	 . 15
2 Interleaving Improperly Used for^Array Storage. 16

3 Interleaving Properly Used for Array Storage. 76

4 Comparison of Floating Point Execution Speeds l8
5 DO Loop Generated Cade. 20

e	 6 Effect of Statement @lumbers	 . 22
7 Example Instruction Execution . 	 . 22
8 Double t,ord Fetch Instruction Stack 23
9 Two Dimensional Array Storage	 . 25
10 Three Dimensional Array Storage 25

11 Compiler Generated Indices. 29
12 Speed of Exponentiation Library Subprograms 	 . 32
13 Four Byte Data Equivaienced ^lith Eight Byte 4i

14 One Byte Data Equivalenced ldith Eight Byte Data 41
15 Expression Translation. 43
l6 Operation Evaluation Order. 44
i7 Comparison of Sunprogram Argument Passing 56

78 Passing a RoUr of an Array	 . 60
19 Arithmetic IF Statement Ordering. .	 $0
20 Direct Access I/O Comparison. 87
21 Summary of I/O Examples 89
22 Accumulated Error in Repeated Function Evaluation 101
23 A Simple Program. i13
24 A Simple Program Tree li4
25 A Simpl a Overl ay. 1] 4
26 A dear Minimum Overlay.	 . 114
27 An Invalid Excl usive Call l^li th LET Specified. l i 5
28 Some Overt ay Timing Estimates	 .	 . 116
29 A Simple Driver Program i16
30 Some Sample Overlay Segment Sizes li7
31 CDP7P^0^! Block Initialization 717
32 Exclusive Segments. 118
33 Overlay Segments. 119
34 Overlay Control Cards 119
35 A Candidate for Overlay Optimization. 121
36 A Bal anted. Overlay Tree 121
37 A Candidate for t9ultiple^Region Overlaying. 722
38 A Mul ti-Region Control Deck 122

F	 39 Multi-Region Overlay Tree .	 123
40 A Structually Caused Feature. 	 . 124
41 Segment Table ($SEGTAB) Format. 	 . 124

.	 42 Compiler Comparison Timings 125

43 Space Requirements for FORTXDAht Data^Sets .	 137
44 Standard IBP9 Col atti ng Sequence 	 .	 . 154

i
i

r^
r

FrY

s^

1.0	 Functions
2.0	 Arguments
3.0	 Calling	 Sequence and	 Function
3.1	 XDOPEN
3,2	 XDFORM
3.3	 XD1dRIT

3.4	 XDREAD
3.5	 XDTE5T
3.6	 XDCHEK
3.7	 XDCLOS
4.0	 JCL
5.0	 Examples

Append?x D -	 FTIO
1.0	 Entry Aoints and	 Functions
2.0	 How to Use
3. L1	 Examp7 es
3.1	 FREAD
3.2	 FREADB
3.3	 FSJRiTE

3.4	 REIrlINt?
3.5	 UNLOAD
3. 6	 AOSN
3.7	 LEAVE
3.8	 MOUNT
3.9	 MEMBER
4.0	 Arguments
5.0	 Return Cades
6.0	 Program Examples

Append i x E -	 I Ct4PAR

Appendix ^' - LOADMAP

Appendix G - OVLY

Appendix H - Timing Summary

r

^..•
.. >

_.
^^ ^.

^^.	 -

^;

l

APPENDICES

Appendix R - DAIO

Appendix B - FMOVE

Appendix C - FORTXDAM

ACKNOi^ILEDGEPdENTS

This guide is the accumulation of knowledge of many penp1e and

experiences from their time in the electronic data processing field. 	
i

Contributors of various sections are: ^1r. Al nobyns for Good Pro-	
f	 ^

gramming Practices; Mr. Howard Marsh far Computer Architecture; 	 ^

Mr. Mike Kascic for Floating Point Arithmetic, Functions and Approx-
.

imations, and Polynomial Evaluation; and Pir. Stu Bell for Overlay.	 '

Same of the Code Comparison examples w ,^re run by Mr. Jim Fisher.

Most of the double checking and assurar .^.: e that the generated code

iT1ustrated the proper intended examples were done by Per. ^^aTter 	 j

P9artin. The endless effort of proofreading was performed by	
,^

Messrs. Jack BaTakirsky, AT Dobyns, Howard Marsh, and Tom Parker.

The bulk of the typing and correction work was done by Mrs. Pat	
s

Apel.

^^

i
r

^^

.y^^

1

^ . ^ -,_

1.0	 INTRODUCTION

l.i	 OPTIh1IZATION

This document is designed to provide the programmer with various
techniques for optimizing programs when the FORTRAPI IV H compiler
is used with DPT=2. For optimization tips for programs compiled
with FORTRAN IV G, FORTRAN IV G1, and FORTRAN IV H (OPT=O or OPT=1),
see Goddard document X-543-71-99.

The programmer has a number of considerations to make as a program
`	 is developed. Is it better to tivrite obvious code or more efficient

and less obvious code? When is the deadline? How often will a
section of code be modified, or who else must work with the finished
program?

Many features of FORTRAN allow the programmer relative ease in
writing the programs, but at times, this ease may be costly in exe-
cution time.

In general the high usage areas should have the most time spent on
them to allow the best execution and coding possible. The programmer
may know many of these high usage areas of code as they are being
written. 6^Jhen this is not the case, Boole and Babbage's Problem
Program Evaluator (PPE) may be used to locate the high usage areas,
In general it is a good idea to double check the programmer's guesses
Vrith PPE on production programs and Tong running jobs where any small
change will net a considerable savings. The Boole and Babhage repre-
sentatives may be contacted at 982-2863 or through the Programmer
Assistance Center (PAC), 982-b768.

1.2 DOCUMENT USE

This document is divided into a number of sectionso Ali the infor-
mation may be required to design and write an optimal program. This
is a near impossibility and would require an inordinate amount of
time. With the exception of the Optimizing Suggestions sections
(4 - 13), the information presented here is background and assumes
familiarity with the internal operation of IBM large _ cafe scientific
computers.

Each of the Optimizing Suggestions sections is presented in three
parts. The first, Summary (.1), is a brief synapsis of t'^e resu1ts

'	 of the test programs and a quick summary of which techni^^ues are,
most generally, the hest to use. The second part, Code Comparisons
(.2), is a description of the programming techniques used and the
results from the test programs. Examples are presented to demon-
stra^ a the specific techniques used. The last part, How the State-
ments are Compi] ed (,3), is a discussion of the results, and briefly
what is occurring to make the results as they are. This shauld give
th^^ programmer a feel for applying the demonstrated techniques to
hi.. own programs.

1

i

^^
4,; ^

{

^^
	 .'",]

i^!TRnDUCTION

This paper does not pretend to be complete but should present most
of the commonly seen programming practices. Comments and suggestions
concerning this document are ti;relcome and should be directed to the
Boole and Babbage staff,

1.3 TEST PROGRAC9 QESIG^I

Whenever possible all of the various techniques were compared for
execution speed. 	 Since the optimizer is included in these tests,
it was necessary, at times, to defeat the code movement optimization
to avoid conflicts between sections of various tests using the same,
precaiculated results. The different FORTRAN's section presents a
discussion of the various techniques the compiler uses to improve
the internal machine language code generated.

The coding techniques shown here are pieces of programs and meant for
substitution to individual program specifications and designs. The
timings presented throughout the document are for the tests as run
on the 3b0/fi5 with the code as noted in each example. The Computer
Architecture section (3} Should also be rea p to understand the var-
iability in timings obtained in the resultant statistics and the
effect of moving a program from one CPU to another.

The first test program used for the earlier document was originally
designed as a single program. A great amount of difficulty was en-
countered in the main loop to avoid the compiler ' s optimizer recog-
nizing and moving or removing similar code from within the large
loop to outside the loop. The reliability of the measurements was
in doubt, with a few sections of code taking most of the execution
time. This 1ef t other sections with less execution time than the
accuracy of either the internal CPU timer or the confidence levels
for the PPE.

each group of tests was placed in a separate program and run to
obtain enough samples to insure statistical accuracy, as given .n
the Aoole and 8a^-bage PPE Ouide. The run times varied from about
4.5 minutes to over 20 minutes CPU time or between 1,000 and 4O
million executions of different test programs. A11 timings, the
percent, total time, and the number of passes are given in Appendix
H. The best code of each set of examples is marked writh an ! after
the example number.

The MOCF 360/G5 was selected for timing tests as the arc hitecturaT
features are the simplest and would cause the least variability in
measurement and cads interdependencies (see the Computer Architecture
section (3} and the description of the optimizer features in section
l8). The machine architecture plays are important role in how par-
ticular jobs perform on a specific ma;;hine, but the interest here

4 ^^

^^

I

2

i

^^

..

^.

INTRODUCTION

is in describing the best general programming techniques. In "real"
programs the effect of data structures and code location in memory
may make a technique execute better than one vrhich has been shoti^rn
here to be mare effective.	 ;^

1.4 STATISTICS USED

All timings in minutes or seconds are the result of taking the per-
cent of run time, as indicated on the PPE Specific Intervals Report,
and the total step measurement time, as reported an the step end
statistics, to arrive at the figure reported for the particular
sections of code. No comparisons ^rere made between different jobs.
The accuracy of these timings is not exactly kno^^ln but should be
accurate to the internal CPU timer and may vary by about 5 to 8
percent. Any comparisons closer than that may essentially be con- 	 ^^'
sidered the same, except that the relative timings were the same as
have been noted. The suggestions of which techniques are best will
still hold true as these were also examined for best internal lan-
guage code generated by the compiler ^vhich would execute the fastest
independent of machine architecture.

The statistics collected are the result of interrupting the program
to be measured every 76 milliseconds, as measured by the system clack,
and recording the Program Status 1Jord (PS4d). The PSW contains the
address of the nex^ instruction to be executed, Some interrupts were
ignored as a higher priority program may have interrupted the PPE
extractor or the pro b7 em being measured. This sampling error is
taken into consideration in the accuracy discussion in the PPE User's
Guide. The extractor fur PPE was set to a priority of 195 and the
problem program to 160 bout of a maximum priority of 255) to be
placed above mast of the general work in the system and hopefully
increase the reliability of the measurements. Since the PS1^ is
pointing to the next instruction to be executed, all intervals re-
ported need to be backed up by one instruction (two, four, or six
bytes) to reflect the time spent executing by the proper instruction.
On the 360/65 with IBM OS MVT Release 21.8), it is usual that sev-
eral instructions are fetched from memory (double-ward fetch). The
fetch time is included in the measurements and amounts to between
0.05 percent and 0.09 percent of the run time for each 16 bytes of
code. All tests are run long enough for this variability to be
removed. The result of boundary alignment of instructions on double-
word boundaries as apposed to instructions off double-word boundaries
was checked independently. The resulting increase in fetch times was
considered small enough to be discounted for the difference between
different sections of code where there might be one mare fetch than
in another section of code. This time is meant to be measured when
one technique is longer and is part of the overhead involved with
longer code.

i_r	 _..___.._ __._. 	 _.	 _	 . __.

^`^' ^

v^

2,0	 GOOD FROGRAPIPIIlVG PRACTICES

The use of goad programming practices is essential in achieving the
goal of a well vrritten, easy to use program within a reasonable
schedule. To rush through the first important steps of problem
definition, selection of algorithms, data structures, and languages
.in order to "get to work" on program logic and coding will most
likely be heavily paid far in the debugging p hase!	 Experienced
programmers are already aware of this; however, being human, not
all have disciplined themselves.

The following list is a reasonably acceptable breakdown of the pro-
cess of variting a program:

Problem Definition
Selection of Algorithms and Data Structures
Selection of Programming Languages
Specification of Program Logic an^i Structure
Program Lading
Testing and Debugging
Documentation
Maintenance

The content of the following 5eCt10n5 i5 presented in a general
sense. Specific references to the facilities available at G5FC will
be mentioned where applicable. it should be assumed that there will
be some parallel effort on same of the steps. In particular, docu-
mentation should be a part of every step (same projects require
documentation on the progress o^h'e documentation itself). Effort
should be spent documenting an a continuing basis to provide a mare
accurate picture of the work being done and to avoid a last minute
rush to meet a deadline or wasted effort by several people.

2 0 1 PROBLEM DEFINITION

Problem definition may sound too trivial to mention, but it is
essential that the customer understands what it is he wants the pro-
gram to da (and not do} and that h p imparts this knowledge to the
programmers assigned to the task. Program needs do change and it
is necessary for both sides to check on a regular basis with one
another. It would be rat "er embarrassing should the customer for-
get to let the programmers know of a netiv development and then
several meetings later discover that an important specification
was omitted. If the customer is someone with little or no pro-

_	 gramming background, extra effort needs to be made an the part of
the programmers in the problem definition phase. Also, if a sched-
ule is formulated, care must be taken to avoid overly optimistic
target dates. Some customers are probably not aware of computer
requirements or the time required to formulate, check out, and
debug a computer program. Allowances should be made, if possible,
when it is known in advance that special circumstances will occur
within the program's development schedule. A change of computing
hardware or a switch to a different operating system can cause
delays of weeks or possibly months.

5

^^^r^t^^G ^^^^ ^r.^rt^ ^^^ ^^^^^^ °	 ^

..	 __

a
^.	 .

FOOD PROGRAt^r4ING PRACTICES

2.2 SELECTIOP, OF ALrORITHP9s

Selection of algorithms and data structures is the next step after
problem definition. A data structure may be defined to be the
relationship between data elements, characteristics of the elements,
and the order in t^rhich the elements are arranged within the records.
Retards within data sets may be ordered if required by the program's
specifications. In some cases the methods to be used will be stated
in the specifications. There may be some latitude in that the mathe-
matical formulae may be given, but not the techniques to be used.
Several sources of literature on algorithms exist including the
leadin . computer journals (Collected Algorithms from the ACM	 text-
books the Art of Computer Programmina series by D. E. Knuth , and
indexes to program libraries (GSFC Computer Program Librar y Catalog,
IMSL, etc.). ouch effort can be saved if the program already exists,
even if it needs modification to satisfy the customer ' s specifications.
Data structures should fit the program ' s algorithms and should be
designed to reduce the complexity of the program. For efficiency`s
sake, unformatted data records are best for handlin g quantities of
data bet ►veen programs or between executions of the same program.
The use of formatted data should be restricted mainly for use in
generated reports. Input data formats should be easy to read and
use. The use of NAMELIST in FORTRAN programs allows the user to
input data by variable name while not being overly concerned about
column usage. However, NAMELIST requires more rrocessing than far-

.	 matted reads.

2.3 SELECTION OF PROGRAMMING LANGUAGE

The four predominate choices of programming languages available
^n the P1JaDO System/36O computers are, in order of use, FORTRAN IV,
OS/360 Assembler language, PL/I, and C4AOL. The choice of language
should depend on the needs of the customer but may be fixed by such
factors as the knowledge of the programmers, the need for portability
of the programs, and the ease in maint4ininy the program. FORTRAN
is a we1T known and stable language suitable for the predominantly
scientific programs needed at GSFC. A variety of FORTRAN compilers
are available to the GSFC computer users. The FORTRAPI IV H compiler
is available on all of the larger GSFC 360 computers and is cor ,amonly
used due to its optimization features. The FORTRAN IV C compiler
is available on all M&DO 3bOs as well. The IBM FORTRAN IV H Extended
Pius compiler is available on the SACC 360 / 91.	 Libraries available
include the regular I$P4 mathematical functions (SIN, ATAPJ, etc.),
the International Mathematical and Statistical Library (iMSL), and
a GSFC FORTRAN library containing commonly used subroutines not found
in the others. The IBM 360 Assembly language contains all the power
needed to handle any situation which FORTRAN cannot. There are
definitely areas where either language can be used, such as hit/
byte manipulation. The FORTRAN IV H compiler contains several useful
bit and byte manipulation statements (ar functions) which are des-

,	 cribed later in this document. The choice of language may depend

6

l

^.•a

^	 11

i!

1.^

^.

i

^^.
A^

L^

7

. ^.^

_........._1_._.

1^ !^

e

G^10D PROGRA"1MIPJG PRACTICES

on com p atibility problems. PL/I is a powerful language in the sense
that a wide range of data types, I/O methods, and statement type are
available.	 If PL/I is chosen, it may be difficult to maintain the
program as there are very few good PL/I pro grammers available for
assistance should you need any. Also, other insta7iations may not
support the language (no PL/I compiler or libraries available). 	 Its
use on the 360/91 or /95 will result in severely degraded system
performance if a program relies heavily on the use of decimal
instructions or uncontrolled {automatic} storage. The simulation
software for decimal instructions must run in a special system state
during which no other processing can take place. For this reason,
care must be taken to avoid declaring and using constants or vari-
ables ti^rith FIKED DECIh1AL attributes. The use of uncontrolled storage
results in extra overhead in the use of the GETh^AIN/FREEMAIN Super-
visor Ca17s {SVCs}. A mix of FORTRAN, COBOL, and ALC subroutines
presents little, if any, difficulty. Interfacing FORTRAN or COBOL
with PL/I can be done, but it usually requires same farm of inter-
face subroutines {as PL/I data structures are formulated quite
differently).

2.4 SPECIFICATION OF PROGRAM STRUCTURE AND LOGIC

Program logic and structure determine to a large extent the ease
of coding and debugging the final product.	 I11-defined logic will
leave loopholes which will plaque the programmer long after the
program is in use. Patches applied to the program will plug some
but, most 7 i kely, not a71 of these 1 oophol es. 	 Even if a"11 of the
loopholes were found and fixes applied, the patched program will
not be as efficient as one based on complete and we^;lwdefined logic.
Additional time will have to be spent on reorgai!^zing the source so
that a more efficient and easier program to read and maintain is
produced.

Modu1arization is a common method of designing a program. The gen-
eral goals of the program are broken dawn into a series of major
tasks. These tasks are subdivided until a unit level is reached.
A unit level can be considered as the smallest reasonable amount of
logic to be coded and, quite of ten, can be readily retained in the
programmer's mind. Pioduiarization is usually accompanied by program
structuring or flowcharting.	 Flowcharts are a vis^.al description of
a program module's logic.	 The major stumbling block in the writing
of flowcharts is in their oversimplification or ire the inclusion of
ta g much detail. For large programs, it may be advisable to have two
levels of flowcharts, One level is to give an overview of the major
parts of the whole program. The second level is more detailed and
may result in separate charts far the more complicated modules.
These flowcharts are intended for use by programmers new to the
system and those responsible for maintaining the program.

h	 ^^	 ^^
1

..^

rnnn PRnrRAP^t9INr PRACTICi:S

Program logic should also include debugging aids. At the module
level, debugging output should reflect the correctness of the input,
the computations and/or data manipulation, and the output. The
modules should not depend on the presence, absence, or execution of
the debugging aids.	 In addition, consideration should be given to
having the debugging output controlled by the main program or in
the case of interactive programs through requests made by the operator	 '^,
at a display terminal. A successful merger of debugging output and
normal output was achieved in one program by dividing the out,^ut
into as many as six 1eve]s. Each level gave mare detail on the 	 '
computations -involved. The deeper levels were used only if "trouble-
some" data was received which made it difficult for the program to
arrive at reasonable solutions.

IY^

2.5 PROGRAM CODING	 ^	 i

Coding is the processing of the previous steps into a form suitable
for input to a computer. Since the translation of a coded program
into machine executable form is done by the computer through com-
pilers or assemblers, the symbols chosen need not appear meaningful.
But programs are written and read by people and, therefore, must be
coded to convey as much meaningful information as passible. The use
of variable names such as MGUR, MCN, and SEC are very obvious in
there use whereas RH, RM, and RS are not. The fact that MIN will
be treated by the FORTRAN compilers as an integer variable should
not discourage the programmer from explicitly fiypinq MIN as a real
variable. Stwtement labels in FORTRAN must he numeric; therefore,	 s
a "meaningful" label is less obvious and may be chosen based on the
programmer's personal preference. Using an ascending sequence of
statement labels does have the advantage of making it easier to read
a module`s logic. It is strongly recommended that a description of
the routine's input, output, CGMMON area usage, and other useful
information be coded as comments at the beginning of each routine.
1ariable names should be chosen to avoid confusion such as having
similar spelling. It is easy to mistake the letter 4 and the numeral
G {also the letter I and the numeral l). 	 Language processors wiz]
recognize the difference and use the different storage areas assigned
to each one. The varying results from one run to the next can be 	 -
due to misspelled and, therefore, uninitialized variables. A similar 	 ^^
and perhaps more difficult problem to diagnose is the use of arrays 	 :1
as arguments in successive coils to subroutines.	 A DIMENSIGN state- 	 ,
ment is required in each subroutine to pass the correct address of
an array. This statement is also required if the only reference to
an argument-received array is in a CALL statement and no reference
to the array by subscript exists. Also important is the fact that 	 '^
argument types must agree between calling and called subroutines.
Quite different results can occur when the same source is compiled
with the FORTRAN G and N compilers. FORTRAN G generates code to
move the contents of arguments via the MVC (move characters
instruction. The FORTRAN H compiler generates load and store
instructions based on the type of each argument. The G-compiled
code will not abend during argument processing, but unwanted bytes 	 j
may be moved which could easily cause incorrect values to be gen»
erated. The M-compiled code tivili abend if the address boundary

r^

i
:`	 .aA

rnfiD p ROARA #1I^TING PRACTICES

of the calling arguments does not agree with those of the called
routine's arguments. If a specification { pG6) error occurs in an
H-compiled subroutine at a relative address past its last executable
FORTRAN statement, then a conflict in argument type is the mast
likely cause.

Flexibility should be coded in the program where anticipated changes
can occur so that changes can be rrEade easily. Specification of I/O
units can be done using variables which are set by the main program
taitner through default or through input values. This allows an easily
made change from FT06F001 to any other unit, for example. As pre-
viously stated, input formats should be designed far maximum user
convenience, Qther aspects of goad coding practices are discussed
at length elsewhere in this document. The cast item of concern here
is the use of " clever" coding. Clever coding tends to be very ob-
scure and requires more than an average amount of time to debug.
A common example of "clever"^ coding is the fallowing:

DO i0	 I = l,N
DO	 14	 J = 1,PJ

After some investigation, it should be apparent that the truncation
which occurs during integer division is the ke; :^.	 I/J = 0 when I
is Tess than .I.	 Also, J / I = 0 when J is less than I.	 Only when I
equals J is tree product non-zero; in fact, the product is 1, All
this code accomplishes is to initialize a matrix, X, to the Identity
matrix {all diagonal elements equal i:o 7 and all off -diagonal ele-
ments equal to zero}. Nat only is this example " clever", but it is
expensive to execute on the 360 / 91 and /95 since an integer multip]y
requires 9 machine cycles and a divide 35 cycles. This is quite a
contrast to the 2 to 3 cycles required for J_oad and Store instructions.
Two much more understandable forms of the code are shown below:

DO 10	 I = 1,N	 DQ	 TO	 I = 7,N
DO 2O ^] = 1,N	 DO 70 J = I,N

20 X(I,J} = O,O	 -or-	 X I,J = O.O

1O X(I,I) = 1.0	 20	 X J,I	 = O«0
10	 X(I,I	 = 1.O

The next example perfarmt^ a common function in a "clever" manner.
0

A ^ A + 8
B ^ A - J3

a
A = A - B

Suppose A = 5 and B = 3. After the first l i ne, tive have A ^ 8 and
B unchanged. The second line gives us B ^ 5 and A still equal to 8.,
Finally we have A = 3 and B = 5. All that was accompl^^shed was a
swap of the contents of A and B. The only benefit that can be found
is that no additional storage area is needed! That may not offset
the lack of readability as compared to the more straightfor^vard logic
shown below:

9

^^
	

' ^4^	

r

1

7
i

i,
f

TEA1P ^ A

A ^ B
B = TEMP

2.6 TESTING AND DEBUGGING

After all of the coding has been written, the next phase entered is
program testing and debugging. Testing can be considered to begin
with the verification of the flowcharts or logic diagrams with the
logic coded in the program's source,	 included in this task is proof-	 _
reading the entire program. (quite often it is helpful to have others
double check your work. It is very common to miss the same error 	 --
again and again due to the closeness of the programmer to his work.
Others can spot this type of error quickly, thereby reducing the	 ^^:.
time spent in debugging. After the above is completed satisfactorily,
a few selected cases should be tested by following the program source.
This method is more practical now with the availability of low-cost
pocket or desk calculators. It is likely to yield results, either
positive or negative, in less time than to submit the job and then
wait for the output. Usually the f^^`,est machine-time turnaround
is through the use of a remote term 'al system such as 75(3. After
the source is entered and saved, the programmer can then request a
compilation, Once desk checn;.:g is completed, actual runs should
be made using data for which the true answers are known. The most
likely error conditions should be checked; and if sufficient time
remains, all other paths should be tested,

At this stage program failures that have begun to occur can be attri-
buted to faults in logic present in the original design or in the
coding, Errors in design should be few if a diligent effort was
spent in the first phase of programming process. Errors in coding
can easily exist without the compiler recognizing them as such. The
previously mentioned example of misspelled variables is a common
problem. To minimize the passibility of their existence, the pro-
grammer can use the FORTRAN H compiler's cross-reference and the map
to locate variables (or labels) which have no references or those	 `
avhich are being used without having been initialized. Coding errors
which occur without being detected by the current compilers are: a
different number of arguments being passed than is expected, arguments
in incorrect order, and the use of a constant as an argument which 	 i
is being changed by the called routine. 	 If the last situation occurs,
the constant is "updated' with the new value and all statements 	 ,
referring to that .on.stant will be using the new value. Disasterous
results are likely to occur and the programmer may be mislead as to
the cause of the program failure. FORTRAN DO loops are executed at
least once; therefore, if the upper limit of a loop is less than
the initial value ^a reasonable case in several programs), a test
must be made so that the t30 loop can be skipped completely. The
ability to read a storage dump is a valuable asset worth the time
it takes to learn how to read them. Information of interpreting
dumps can be found in the IBM Programmer's Guide to Debugging and
in a video-taped series in the GSFC Video-Tape library.

10 ^
i

I_

'

---	 ..

^^

^~ ^^
,,
;^ _

rllOD PROr,RAMMiNG PRACTICES

Documentation should be kept of each error and program change. Users
usually discover sooner or later that the adage: "If you can't re-
create it--you didn't need it," should not be treated lightly! Tape
backups should be kept for the executable load modules as c^rell as
the source used in creating them. Utility programs such as IEHMOVE
or VSCOPY may be used to unload a module or source library from
disk to tape (VSCOPY is recommended because of its ease of use, more
efficient i/0, and the capability to select members both to or from
the data se;^s). Source statements (also object, data, JCL} may be
retained in a PANVALET library. PANVALET provides both compression
{of blank fields) and protection features. Information concerning
the use of PANVALET can be obtained Pram the Programmer Assistance
Center (PAC). Other locally written source .compression packages are
available and are described in the GSEC Computer Program Library
Catalog. ^lser disks (permanently mounted) are dumped to tape ttivice
weekly an the r^^P^DO 36os. Mountable user disk packs must be main-
tained by the user.

2.7 DOCUMENTATION

Upon completion of testing and debugging, all of the current docu-
mentation, flowcharts, etc., should be brought up to date. Comments
in the source should be reviewed and corrected. If thQ program is
written in FORTRAN, the programmer may wish to use the TInY proc#ram
which is documented in the M&DO iBh1 360 User's Guide, to clean up
the source. Sy this time t ere s ou	 e a arge percentage of
material available for proper program documentation. All of the
potential material should be gathered and edited into one complete
manual.

The second part of documentation is at least equal in importance.
This is the writing of an operator ' s manual. The operator ' s manual
should contain a section describing the purpose of the program, its
JCL requirements, input da±a formats, output formats, and error mes-
sages. The programmer should remain available to assist in training
the users, and when nec 1̂ssary to make minor changes. The operator's
manual guide needs to be carefully proofread as the users t^^ill tend
to rely on it in a most literal sense.. Any errors such as missing
commas, too many blanks, etc., will not be automatically weeded out
as the original programmer is likely to do. A good test is to give
a copy of the operator ' s manual to someone not familiar with the
program and ask him to run a few sample problems. The results could
be very enlightening and can contribute significantly to the suc-
cess of the final program and document.

2.D MAIP'T£NANCE

Most operational (production} programs are not completely bug
free. A few bugs may be made apparent in the first few months of
use, and some may remain undiscovered far years. If a group of
progra^„mers is assigned the task ^f maintaining program , it is
essential that they be provided correct and complete documentation
in addition to the source.	 This t^;ill give them the best possibility

11

`i

Ir

	

r	 I

	

,^,.

^	 ^.
. y	 ^

......._......	 !___ it
k	 ^

I{

I^

J]^

i

s
i
1	 _	 ^

rpOD PR^I^;RA^9MING PRACTICES

of correcting a problem with a minimum of delay. The first step in
mainta§Wing a program is to be sure that a problem does exist and
that it is not due to user error. If additional diagnostic out
put can be obtained, it should be provided. Care should be taken to
logically tie the program error to a specific cause in the program
source. After this has been done, tests need to be run using a
separate copy of the program to avoid conflicts while the production
version is being used. Upon implementation of the changes, a17
documentation should also 5e changed. These changes should include
both "before" and "after" coding or logic diagrams. The source
should retain the original error in comment form as we11. It may
be advisable to retain the changes in a form suitable for use by
a source updating program.

,.	 ^.

m

^.

12

i

V

This section explains the differences between the 95, the 75 C1
and C2, and the 65 computers. The architectural and hardware dif-
ferences between these machines determine the relative speed. This
section explains haw to effectively use the machine hardware to
increase the speed of a program,

Since the 95 is unique in design and the most generally utilized
computer of the three, the major portion of this section is devoted
to it. The 95 is an IBM System / 36O Model 91 computer with 1024

'	 thousand bytes of thin film, high speed memory in addition to 4095
thousand bytes of CPll storage. The 9l has hardware for each instruc-
tion rather than microprogrammed software, as do all other 364s
Model 75 and below.

Six of the nonscientific instructions are not included in the hard-
ware, They are the decimal instructions, AP, CP, OP, MP, SP, and
ZAP, which are simulated an the 95 and used in some ALC, PL/l and
COBOL programs. 4thenever possible programs using decimal instruc-
tuns should be run on the 75 or on the 65.

For more information on the computers discussed in this section see
the ISM System/360 Model (91, 75, 65} Functional Characteristics
manuals 0A22-6907, GA22-6889, GA22-6884 respectively.

t^hy should the application programmer be concerned with the archi-
tecture of the computer far which a program is being written? There
exist many hardware features specific to a given computer that
govern how much time a specific program will require for execution.
Once known, many of these factors can be used to the advantage of
the program.

Although this section is aimed at the FORTRAN programmer, all pro-
grammers can benefit from its reading, for the ideas presented are
universal.

All C p U times given are approximate and for comparison purposes only.

3.1.0 EFFECT ON MACHINE SPEED

The amount of memory that a machine has does not affect the amount
of execution time that a program requires. For the machines that
are discussed, the memories have different speeds, ranging from
0.12 microseconds to 8.0 microseconds. The speed of a memory is
determined by the way it is designed.

The 95 has two types of memory, h1120J thin film and 2395-2 core.
The M12OJ memory is 1024 thousand bytes long and has an access time
of O.12 microseconds. The 2395-2 memory is 4096 thousand bytes
long with a cycle time of 0.78 microseconds. The 95 has a total
of 5120 thousand bytes of memory.

13

^^.

i

,^

^,^

^..

1

i
^.	 f

r

^..
•_	 3

COMPfJTER ARCHITECTURE

The 75 C1 and C2 have less memory than the 95 and part of it is
slower. The 75's memory consists of 2365-3 and 2361 storage units.
The 2365 - 3 storage unit contains 1024 thousand bytes and has an
access time of 0.75 microseconds. The 2361 storage unit has 1024
thousand bytes and an access time of 8.0 microseconds. Each 75 has
a total of 2048 thousand bytes. The difference in memory speeds
is one of the reasons why programs executed on the 75 require more
run time than on the 95,

The 65 has three memory units, a 2365 - 2, an ARM 2365, and a 2361-1.
The 2365-2 has 512 thousand bytes and an access time of 0.75 micro-
seconds. The ARM 2365 is Ampex memory compatible with IBM and is
like the 2365 - 2. The 2361-1 memory unit is 1024 bytes long and has
an access time of 8.0 microseconds. The total amount of memory
available an the 65 is 2048 thousand bytes.

One other design item that affects the speed of programs in a com-
puter is the interleaving of memory. The principal of interleaving
on the 95 is the same as on the other computers. Only the number
of leaves is different- - 16 on the 95, 4 on the 75 and 2 on the 65.

3.1.1	 Interleaving on the 95

The 95 has 16 functionally separate memory units, each capable of
operating independently Each unit is called a memory leaf. The
beginning address of each leaf is eight bytes greater than the
beginning address of the leaf preceding it. The first byte of the
first leaf has an address of zero. The storage on the 95 does double-
word store and fetch. This means that each time a request for a
store or fetch is executed, eight bytes are transferred. Fetch and
store operations are done from double-word boundaries only, those
addresses divisible by eight {addresses ending in a zero or eight),

Thus the 95 can fetch or store 16 sequential eight byte double-wards
simultaneously. Figure 1 should assist the reader in understanding
the structure of memory on the 95.

Double-l^lord Number

0	 1	 2	 N*	 Last Address Byte

0	 8 bytes S bytes 8 bytes	 8 bytes X 000 0 XXX

1	 8 bytes 8 bytes 8 bytes	 8 bytes X 000 1 XXX

2	 8 bytes 8 bytes 8 bytes	 8 hytes X 001 0 XXX

3	 8 bytes 8 bytes 8 bytes	 8 bytes X 001 1 XXX

4	 8 bytes 8 bytes 8 bytes	 8 bytes X 010 0 XXX

5	 8 bytes 8 bytes 8 bytes	 8 bytes X 010 1 XXX

6	 8 bytes 8 bytes 8 bytes	 8 bytes X 011 0 XXX

14

i

1

I
r

^,:

i	 '

COf9f'llTER ARCHITCCTURE

V

Double-4fard Number (Cont'd)

0 1 2 N* last Address Byte

7 8 bytes 8 bytes 8 bytes,..	 8 bytes X 011 i XXX

8 8 bytes 8 bytes 8 bytes	 8 bytes X i00 0 XXX

9 $bytes 8 bytes 8 bytes,	 8 bytes X 100 1 XXX

i0 8 bytes 8 bytes 8 bytes,.,	 8 bytes X 101 0 XXX

it 8 bytes 8 bytes 8 bytes	 8 bytes X TO1 1 XXX

l2 8 bytes 8 bytes 8 bytes	 8 bytes X 110 0 XXX

13 8 bytes $ bytes 8 bytes	 8 bytes X 110 1 XXX

74 8 bytes 8 bytes 8 bytes	 8 bytes X 111 0 XXX

15 8 bytes 8 bytes 8 bytes ...,,..	 8 bytes X 111 1 XXX

Storage Leaf Number

Byte Desired 4lithin Eight Byte Double Word

* N = 32,000-1 for the 2395-2 memory on the 95
N = 8,0001 for the M120J memory on the 95

Figure	 i - Memory Organization on the 95

r	 ^-

^^

The FORTRAN programmer should take the effort to align all arrays
on double-word boundaries and lay aut the storage area with care.
The benefit from this effort wi11 be fewer fetches from and the
stores to memory. This will reduce the amount of execution time
required by the program.

Two cases were designed to test the effects of interleaving on exe-
cution speed. They showed the differen^:e in speed between the program
that fully utilized interleaving and one which did not. Both programs
were run on the 95. The programs were written in assembler to insure
all execution factors were equal, i.e „ boundary alignment of loops
and alignment of variables. The FORTRAN equivalents of the programs
are given belo4•r.

15

A

i

111

^^

^._ .

^,

CQ^PUTER ARCHITECTURE

Case 1	 Case 2

REAL*8 ARRAY (16,1600)	 REAL.*8 ARRAY{17,1600)
DO lOQ K= 1,10000	 DO 100 K=1,10OQ0
DO 90 I-1,16	 DO 40 I=1,16
DO ^O J=1,1600	 DO 80 J-1,1600

80 ARRAY(I,J}=1.1D0 	 80 ARRAY (I,J)=1.1D0
90 CONTINUE	 90 CONTINUE
100 CONTINUE	 100 CONTINUE	 {

STOP	 STOP
END	 END

The layout of the arrays far the cases is given below.
'r ^

Case 1

(1,l)	 (1,2)	 (1,1600}

(76,1}	 (16,2)	 (16,1600)

Figure 2 - Interleaving Improperly Used for Array Storage

GaSe 2

{2,1^	 ^l7z^j	
2,1600)	 '
3,16QO

(16,1)	 (15,2)	 (1,1640)	 (17,1600}

Figure 3 - Interleaving Properly Used for Array Storage

From studying the code and Figures 2 and 3, far Cases 1 and 2, it
is clear that Case Z accesses the same memory leaf 16OO times in
succession. In Case 2, no sequential accesses to memory use the
same core leaf. For these reasons, Case 2 used 0.118 minutes to
execute, while Case 1 used 0.366 minutes. A savings of 68n CPU 	 ^
time.

3.1.2 Interleaving an the 75s and 65

J'iming studies were made on the 75 C2 and on the 65 to determine
the effects of interleaving an the speed of a program. The 75 high
speed memory has four leaves. The 65 high speed memory has two 	 •
leaves. The programs were similar to those run on the 95. The
FORTRAN equivalents of the programs are given below. A different
program was required for each computer because each has a unique
i nterl eavi ng factor.

16 i
1

E
a

)

i

^ y,^
^•

_..
^	 ^.

i
---^---

'_^.

C0h4PUTER ARCHITECTURE

Case 3	 75 G1	 Gase 4

REAL*8 TEST(4,i 600)	 REA!.*8 T£ST(5,1600)
DO 100 K=1,10000	 DO 100 K=1,10000
DO 9O I = 7,^	 DO 9O I=1,^
DO 80 J-1,1600	 DO 80 J=1,7600

80 TE5T(I,J)=1.1D0	 80 TEST(I,J)=1.1DO
90 CONTINUE	 90 CONTINUE
100 CONTINUE	 700 CONTINUE

STOP	 STOP
•	 END	 END

'	 Case 5	 65	 Case &

REAI.*8 TEST(2,1600)	 REAL.*8 T£ST(3,1600)
DO 100 K^1,10000	 DO 100 K^i,10000
GO 40 I^1,2	 DO 90 I=1,2
DO 80 ^=1,1600	 DO 80 J^1,1fi00

80 T£ST(I,J)^1.7D0	 80 TEST(I,J)=1.1D0
90 CONTINUE	 90 CONTINUE
100 CONTINUE	 100 CONTINUE

STOP	 STOP
END	 END

Cases 3 and 5 access the same leaf 1fi0O times before using the next
leaf. Cases 4 and 6 access a different leaf each time. On the 75
and 65 bath cases took approximately the same amount of time to run.
The reason for this occurrence is that neither the 75 nor the fi5
has the CPU waiting to access the memoryd The overhead on the 75
and 65 is large enough that differences in access time are not a
measurable factor of the execution time. The overhead time is large
because the CPU must calculate each address at the time that each
address is used.

The FORTRAPt programmer should set up arrays as outlined above. This
wiil enable the program to make better use of the computers hard-
ware facilities.

Other runs were made to determine if floating point arithmetic hard-
ware is faster than fixed point arithmetic hardware on the 95.
Below are given the two examples and the results.

Case 7	 Case 8

REAL*4 A,B,C,D	 IA^i
A^7.D0	 I6=1

_	 $=7.D0	 IC^1
C^7.D0	 ID^1

17

^i,

a^

_a

a
^^

i

^_.. ^^

_.

C0^'^pUTER ARCHITECTURE

Case 7 {Cont'd)	 Case a (Cont'd)

D^1.D0	 DO 100 I=T,2511f10A04
QO 100 I=1,25000000	 IA=IA+1
A A A+1.D0	 IB=I6+1
B-B*1.D0	 IC-IC*ID
C S C*D	 100 IC-IG/ID

100 CS C/D	 STOP
STOP	 END
£ND

The programs 4vere written in assembler to insure that both programs
would be similar except for the instructions used. Both programs
utilized loop mode. Case 7 used 0.109 minutes to run; Case 8 used
1.672 minutes to run. The results show that the floating point
hardtivare is orrice as fast as the fixed point r^ardware. The reason
for this difference is that the fixed point element has one execution
unit while the floating paint element has two execution units.

The floating paint element consists of one add unit and one multiply/
divide unit. the add unit is capable ^f performing two add operations
concurrently while the multiple/divide unit does one operation.
Thus the floating point execution element can handle three operations
at one time provided that they are logically independent. Another
reason far the floating point arithmetic hardware being faster is
that the fixed point arithmetic processor also handles requests far
direct store into one of the general registers by the instruction
processor. This will delay arithmetic instructions. The FORTRAN
programmer should be aware of the factors so they may be controlled;
the result being a faster program. Use floating point arithmetic
whenever feasible for programs that are to be run on the 95, thus
the program will better utilize the machine and its capabilities.

Of the three IBM SYSTEM/360 machines, {the 95, the 75, the 65),
discussed in this document, the 95 is the fastest while the 65 is
the slowest. Figure ^ gives the CPU times for the execution on all
three machines.

Floating Point Times	 Relative Ratios

65	 7.462	 11:1
75	 4.005	 5.6:1

95	 0.709	 1:1

Figure 4 ^ Comparison of Floating Paint Execution Speeds

The 65 has an arithmetic^lagic unit which does the following:
addressing, instruction fetching, and actual operation. None of
these functions can be done concurrently, thus the time to run a
program is long.

^^._

C^^^POTER ARCHITECT!!RE

The 75 is faster than the 65 because it has an instruction unit
and an execution unit, which are able to operate independently.
The instruction unit does instruction sequencing and address prepa-
ration. The execution unit performs the arithmetic functions. This
separation of functions into two independent units accounts for some
of the 75's increased speed ovc?r the 65. The 75 is a scientific
computer, and for that reason it has faster hardware using more

'	 efficient algorithms than the 65.

The 95 is a scientific computer designed to be a number-cruncher.
•	 Rather than using microprogramming to do operations, like the 65

and the 75, the 95 has hardware to do the operation. The hardware
`	 is much faster than microprogramming. The 95's speed is also in-

creased because its processing unit is composed of independent
components, an instruct i on processor, a floating point execution
unit, and a fixed point and variable-field-length execution unit.

The instruction processor does th? fetching and buffering of instruc-
tions and fetching of required operands. It also issues instructions
to the proper execution units, handles interrupts, does I/0, and con-
trols status s4vitching. The instruction processor sets up and exe-
cutes branches and loop mode. The floating point execution unit
perfoc^ms all floating point arithmetic functions. The fixed point
and variable-field-length execution unit executes all f ixed point
arithmetic, logical, and variable-field-length arithmetic operations.

Since all these units can operate independent of each other, and the
95 has hardware instead of microprogramming for all instructions,
except for decimal instructions, it is the fastest computer of the
three.

3.2 BRAt,CHING 360/95

The 95 is designed to handle two types of conditional branching.
The first type branches forward beyond prefetched instructions, or
branches back^vards where the branch address is greater than eight
double-wards from the branch. The second type of branch, a short
loop, is a branch whose target address is within eight double-words
previous, that is within the range of addresses from present address 	 ^
to present address minus 6^. The first tyke of branch is associ-
ated with the GO TO FORTRAN statement and a 00 FORTRAPd statement 	 `
where the end of the loop is far from the QO statement. The only
way to be certain, with a p 0 loop, that a program is not in a short
loop is to look at a listing of a program which has the LIST option
specified,

'	 Since the instruction processor does not knotiv in advance if the
branch will be taken, the processor attempts to be ready for both
cases but assumes that the branch tivill not be taken. 	 in order to
be prepared, should the branch be taken, the instruction processor
fetches the branch target double-ward and the double-word which
follows it.	 It is able to do this because it has available tulo

19

r
a	 _	 _..

r^

^^	 ^., ... y	 ^	
1

4

COr1PUTER ARCHITECTURE

alternate instruction registers. Thus the instruction processor
is pr y.pared to go in either direction on the branch. To FORTRAN
users this means that the program should generate code such that
the mast frequent case tivi11 fall through a logical IF statement
which has a GO TO as the appended statement.

The second type of conditional branch causes a short loop to be
executed. The short loop, or loop mode, is issued when the branch
target is before the branch instruction and within 64 bytes, eight
double- ►vords. 4lhen this occurs the complete loop is fetched into
the instruction stack, after which the fetching of instructions
ceases. Since all addresses are calculated and all instructions
decoded, an effective one instruction per machine cycle is achieved
when no data fetches ar stores are required. Otherwise instruction
double-ward fetches are made on alternate cycles. Should the instruc-
tion processor find that it cannot process the next instruction it
will search the instruction stack, "pipe line", for an instruction
that it can process. Thus instructions may be executed out of
sequence. During loop mode it is assumed that conditional branches
will be taken. Special registers hold the branch target address sa
when the branch occurs the address does not have to be recalcti^lated,
thus saving one machine cycle. Loop mode terminates when an ,y of
the following actors:

1) A branch out of the instruction stack is taken.
2} The branch, rather than occurring, fall through such that the

loop is ended,

To the FORTRAN user it is nearly impossible to determine from the
FORTRAN code whether or not loop mode tivi11 be used. It is best to
get an object listing of the program and check to see if small loops
will be utilizing loop mode. An example of a short loop is given
below, both the FORTRAN code and the compiler generated Cade,

	

FQRTRACJ	 Compiler Gener a ted Pseudo-Code

DO 1 I = 1,6	 Addresses	 Cade	 Comments
	1 JREV{i)= 0	 EAF4	 LA	 6,4{0,0)

EAFB	 LA	 5,0{O,0)
£AFC	 LA	 3,24(0,0)
EB00	 LA	 2,4 0,0)
£B04	 L	 8,8 0,12)

	

Actual	 £BO$	 ST	 5,3656{2,12) Store 0 in JREV(I)

	

Loop	 EBOC	 BXLE 6,592{2,12)
Register 12 has as contents ESBB.

Figure 5 - DO Loop Generated Code

In this example the BXLE {Branch on indeX Law or Equal} instruction
does the branching, It branches to address E808, {adds the contents
of register 12, E888 hexadecimal, and 592 {250 hexadecimal).

20
1

{
	

r

r

i

COMPUTER ARCHITECTURE

The BXLE initiates loop mode; when the contents of register six gets
larger than 2^, the BXLE will not branch and Toop mode will stop.
The FORTRAN compiler also generates BC (Branch on Condition) instruc-
tions for DO statements, but not every BC is a loop.

Often the FORTRAN code can be moved about so that the compiler will
generate code that uses loop mode. 4lhile in loop made, no conflicts
arise between instruction fetching and data fetching.

3.3 REGI5TER USAGE 360/95
"1+1i se Use of Statement Numbers"

Registers are much quicker to access than memory. The placement
of statement numbers in a FORTRAPJ program affects the compiler's
ability to optimize register usage.

The usage of registers can affect a program in two ways--size and
speed. Given two similar asser^bler instructions, for example:

1} L R7 ,DATA and
2} LR Rl,R9

wl3ere both R9 and DATA contain the same thine, the LR instruction
uses half the amount of care as the L instruction. tdhile bath
instructions, an the 95, require one machine cycle to complete,
the LR instruction tivi11 often complete before the L instruction 	 `
because the L instruction requires the use of the addressing hard-
ware, whereas the LR instruction does nat.

Far compariison's sake, since exact timings are not available an a
95, the following is given:

On a Model b5 a LR instruction takes 0.65 microseconds while a L
instruction takes i.20 microseconds. On a Model 75 a LR instruc-
tion takes 0.^0 microseconds while a L instruction takes (f.70 micro-
seconds. Thus it is advantageous to make as much use of registers
as possible.

In the FORTRAN compiler, when one specifies OPT^2, the compiler scans
the code searching for statement numbers. It uses statement numbers
to delimit blocks of code. ^lithin a bock of code, the compiler

..	 attempts to make maximum use of registers, i.e., it attempts to keep
variables in registers rather than continually loadinr} and storing
frequently used variables and intermediate values. By the end of
a block, the compiler must store variables that have been used in

°	 registers. Consider the following:

27

^ti

^	 ,.
r

^
,^

^
^^

r0^9PUTER ARCHITECTURE

a) Q = R+3
b) 1OS=T-^9/5

	

c)	 T = Q^-S

Figure 6 - Effect of Statement Numbers

Q is used shortly after its assignment and could be kept in a
register.	 It is also apparent that S, in b, could be kept in a
register, providing that enough ^^egisters are available, until c.
However, FORTRAN will stop its s,anning at b, statement number 10,
because it will be unable to save both R and S in registers, since
entry to the block of code is not necessarily from a. By statement
b the program will have stored [1 and S, and at statement c it will
load Q and 5.

Thus statement numbers can be costly and sho^:ld an'fy be used when
required.

3.4 E XECUTION OF INSTRUCTIONS

Figure 7 below shows what the computer does to execute instructions.

(addresses) EXAMPLE CSEf,T 	 (machine instruction code)
a

0
USING EXAMPLE,12

	

0	 L	 5, CON12	 5850C 128

	

4	 A	 4, CON1 3	 5A40C T 2C

	128	 CON12	 OC	 F'12'

	

12C	 CONT 3	 DC	 F' 13'

Figure 7 ^ Example Instruction Execution

As the program executes, the instruction processor fetches instruc-
tions from storage, two double-words at a time, and places them in
the instruction stack. The instruction processor normally has in
the instruction stack the current instruction double-word and the
next three double-words. When fetched from storage, the two instruc-
tions above will be stored in a single double-word in the instruction
stack as follows:

i

^^

I

ri

a
t

^,

22

i
y

y ""'.

^^. s .J

COFIPLTER ARCHITECTURE

Instruction Stack

e
585OC1285A4OC12C

a	 Figure 8 - Double bJord Fetch Instruction Stack

The instruction processor will then begin to decode the load instruc-
tian. As part of the decoding process, the absolute address of the
data in core {CDlV12) is calculated, and a request for a fetch sent
to the Main Storage Control Element {MSCE) to obtain the data. While
waiting for the data from MSCE and until the Fixed-Point Execution
Element is free, the instruction processor will begin to decode the
add instruction. The instruction will send a request for a fetch
from core for CONl3 to M5CE. When the MSCE receives a request for
a fetch {CON12), it searches queue lists, which contain addresses of
requested fetches and stores and requests just processed. If a match
is not found, the MSCE will add the request to the queue of fetch
request addresses. The MSCE processes the queued requests sequen-
tially. For each request a double-word is fetched. When the MSCE
receives the request for COJV13, it finds that either the request for
C4CJ^12 is queued or has just been processed, and the data from the
fetch is in a buffer. Since both C01V12 and CDN13 are contained in
the same double-ward, the MSCE will not do another fetch for CON13.
When the data has been fetched and the Fixed-Paint Execution Element
(EPEE) is free, the instruction processor will send a load instruc-
tfion to the EPEE. The EPEE will transfer the data from a buffer in
the M5CE to register 5. Upon comp1etian the instruction processor
will send an add instruction to the EPEE. The EPEE will get the
data {COI^13) from a buffer in the MSCE, fetch the contents of register
4, add the two together, and transfer the result from the EPEE to
register ^. Upon completion of the add instruction, the instruction
processor will fetch another double-word and continue decoding the
instruction stack.

i

23

i

^^

25

	

	 ,	 NOT ^'^M^'
^}^^C1^^^ PAGE BLAND

i

s	 ,^

^,	 ^

4.0	 SUBSCRIPTIP^G

4.l SUMMARY

Subscripts far variables should be kept as simple as passible. In-
voived expressions cannot be incremented by a given amount which the
compiler can ascertain. She optimizer is able to recognize variables
and expressions in subscripts and calculate them separately from the
same variables or expressions not used in subscripts. Expressions
should be fully written out as outlined in the Common Expression

^	 Elimination section (8). Subscripts should contain no su4traction
as this does not compile easily to machine language code.

4.2 ARRAY STORAGE
--

Arrays are useful data structures and necessary mathematical entities
for solving problems an computers. Subscripts are used to refer to
the individual elements of the array. To locate the element in the
array, its exact location in memory must be calculated.

For example:	 DIMENSION V(100,50)

where V is a four byte floating point array of variables, The array
is stored in memory with the first index varying most rapidly and
the last mast slovrly as shown below, assuming that the first element
is located at location 1000:

v(1 >1) 	v(2,l)	 v(3,l)	 ...	 v{98,1)	 v(99,1)	 v(1oo,1)
1000	 1004	 1008	 1388	 1392	 1396

V(1,2)	 V(2,2}	 V(3,2)	 ...	 V(98,2)	 V(99,2)	 V{100,2)
1400	 1404	 1408	 1788	 1792	 1796

...

V{1,49?	 V{2,49)	 V(3,49}	 ...	 V(98,49)	 V{99,49)	 V(100,49)
20200	 20204	 20208	 20588	 20592	 20596

V(1,50)	 V(2,50)	 V(3,50)	 ...	 V{98,50)	 V{99,50}	 V(T00,50)
20600	 20604	 20508	 20988	 20992	 20996

Figure 9 - Two Dimensional Array Storage

An array with three indices as: 	 pIMEN5I0N X(3,4,2)
would be stared with the subscripts as:

1,1,1	 2,1,1	 3,1,1	 1,2,1	 2,2,1	 3,2,1	 1,3,1	 2,3,1	 3,3,1
1,4,1	 2,4,1	 3,4,1	 1,.1,2	 2,1,2	 3,1,2	 1,2,2	 2,2,2	 3,2,2
1,3,2	 2,3,2	 3,3,2	 1,4,2	 2,4,2	 3,4,2

Figure 10 - Three Qimensional Array Storage

i

f

5U8SCRIATINC

4.3.0 CODE COMPARI50NS

403.1 Arithmetic in Subscripts

Example 1 requires approximately three times as long to execute as
Example 2. Ninety-six seconds as opposed to 27.6 seconds of the
70,0{]0 passes through the loop.

4.3.2 Temporary Variables

The use of temporary variables to hold subscript expressions requires
mare execution time as shcwn in the following examples,

3)	 J = I+2
U^V{J,J}

J3=J1-^J2
U-V(J3,J2)

6) U=V{(((I*I)/I)-^{I*{Z+l))/{Ifl},fI*(I*i))/{I+1}}

Example 3 takes longer than f^xampie 4, 89.4 seconds against 28.8
seconds. Example 5 took 367.2 seconds execution time whereas
Example 6 took 328,2 seconds far 7o,oaa executions.

4.3.3 Multi-Subscript Arrays and Vectors

The effect of trying to avoid same subscripting by calculating the
expression in single subscript form will consume more time. As the
expression becomes mare complex and the optimizer can no longer 'see'
the simple relationship, the time may even be doubled. However, if
the expression is already complex, it may be advantageous to rewrite
the subscript with one index and equivalence the single and double
subscript arrays together as in the following examples:

7) VV(2*I^-2-x(2*I+i}*l00)

ldhere Example 7 has VV Ef}UIVAI^ENCED to V and the single dimension
is the product of the doubly dimensioned array limits. Example 7
required 5.75 percent, or 79.2 seconds, of the run time ti^rhereas
Example 8 took only 2,00 percent, or 27.6 seconds of the 70,000
passes.

2G

a

^	 `^

i

r

^^	 . r^

,,^

^`- . .

_	 ,__-	 ^

SUBSERIPTING

4.3,4 Addition and Subtraction in Subscripts

The machine language instructions are organized to a11ow a forward
displacement from a given address very easil y , but not a displace-
ment backtivards from an address. Addition in subscri p t expressions
may be done quite well whereas subtraction is slo^v.

.	 9)	 DO 9 I=7,100

+	 10} !	 DO 10 I^1 ,94

Example 9 taolc 1.18 CPU minutes to execute, but Example 10 used only
0.93 minutes for 70,000 executions.

4.4.0 H04d THE STATEME!^TS ARE EON!PILED

4.4.1 Element Location

Tn obtain the location of an element in the two index case, the
dimension of the first index is multiplied by the second subscript
minus one, then add the first subscript value. This quantity is

,,	 then multiplied by the byte length of the data and added to the
start of the array, minus the byte length of a data element. The
start of the array must be backed up by the byte length of a data
element which allows the first element to be added to the stored
address and !lave the resulting address computation indicate the
proper location.

All other subscript values must have one subtracted from the value
to obtain the correct 1acation. 	 For example:	 V{7 ,l) as outlined
earlier would be located as follows:

((2nd subscriptyl)*dimension 1st index+lst subscript}*length+origin-lenrrth
{(1	 l *	 loo	 +	 1	 }*	 4 + laao -4^

(0+1) * 4+1000- Y = 1 004

or V{3,49)

({	 49	 -1)*	 100	 ^-	 3	 }*	 4 + 1DOD	 -4^
(4800 +3} *4 +1flO q -4 = 20208

The general location may be stated as follows:

L-0 - l+l(sl+s2 - 1*Dl+s3 - 1* D2'°D1^- s4 - 1*D3*D2*Dl}...+sn-1 *Dn - 1 *Dn_2*...*D1)

where L = memory location
0 ^ origin of array
l ^ iength of data element
s = subscript value
D ^ dimension of the index

27

^	 __	 _.._
r	 .

N.'^

L^

i

It^

	 ^N

1`

`^	 -

w

I

^^

^	 i
^	 -i

I

_1

t

,^

;^

SUBSCRIPTINr,

For three dimensianaT arrays the location is obtained as follows:

[(3rd subscript - 1}* product of the dimensions of the lst and 2nd
indices + {the 2nd subscript - i}* dimensi^^n ist index + 1st subscripts*
length of an element + the origin of the array - an element length.

The four index case adds to the previous statement:

length of data element *(4th subscript * product of 1st 3 indices
dimensions}.

It i5 obvious, therefore, that the more subscripts used in an array
the longer it wilt take to locate the particular element required.

4.4.2 DIMENSION Statemen^

The dimension of the last index is not used in calculating the lo-
cation in the array but is necessary in reserving the proper amount
of memory for the array. p ith IBM FORTRRN, vectors {arrays of one
dimension} and arrays used in subroutines use the space allocated
in the highest level program unit which defines the array (not true
of simple variables}. For this reason vectors used in called sub-
routines need only have their dimension set to one to make the vari-
able an array. The Tast DiMENSi01V of a multidimensional array only
need be one. The general equation, for a vector, reduces to the
origin, minus byte length of an element, plus the subscript, times
the byte length. Goad programming practice is to document the size
of the vector or array in the DIMENSION. When debugging remember
that the size dimensioned does not necessarily define the real limit.

^.A^.3 Com fil er Cr e ated Indices

The compiler recognizes the origin of the array and subtracts the
length of a data element and stores that constant for reference to
the array element. If only a part of an array is referenced as in
A(I,50} where an;y the most rapidly var;^ing subscript changes, the
constant stored g ill be for the beginning of the referenced section.
If the subscript expression has constants added to it (less than
4O9G), the constants are translated as part of a single machine lan-
guage instruction and only the variable is incremented. The value
of that increment is known in the loop. The increment is simply
added from its location to obtain the address of the next element
referenced. When the expression is not so simple, the increment not
known, or the entire soap structure involved, the expression is recal-
culated each time the subscript is needed (unless the common expres-
sion eliminator has found a sub-expression). This is the difference
between Examples 1 and 2. In loops such as:

28

I

_.. _	_.__..._.......

^ ^
.+

1. JI

i

i

i

J,

*^,_

29

r

,^ }

SUBSCRIPTING

i
i

i

_..	 •

DIMENSION V(100,100)

DD 1^I^1 ,4
L=L^rI

1 U^V(I,I)

^'iqure 11 - Compiler Generated Indices

The variable I is used in three separate forms; 1) the simple var-
iable I starting at one and incrementing by one (1, 2, 3, 4) (added
to ^.), 2) the first index starting at four and incrementing by four
(4, 8, 12, and i6), and 3) the second index starting at 4O0 (400,
800, 1200, and 1600),* 4fhen possible the compiler will hoid separate
farms for all uses of the loop index and increments. 4Jhen this is
not possible, the index is stored in the form as coded (starting and
incremented exactly as coded) and the location formula is applied
to obtain the element location.

*See section 4.4.1 for explanation of subscript values,

A

^	 T
._

r
may.

Lam.

.

5.0	 EXPOtTENTIA1'ION

5.1	 SUP7^iARY

In writinr^ variables with exponents, it is best to use an integer
constant or an integer variable an+i tarorst to use a real constant or
va N iable. Exponents of integer constants require only the standard
instructions to be generated in order to multiply the base to cal-
culate the result. Any other exponent requires a function to be
called invo]ving extra memory and time to pass arguments to that
function.

5.2.0 COpE C^IPiPAR I SO^lS

5.2.1	 Int e q_er Constan ts and Variables as Exponents

i 1)	 X*K**J

12)! X*K**2

Example 11 calls a library function to raise an integer base to an
integer exponent ^THCFIXPI} and costs 40.67 CPU seconds for 3DD,DDD
executions. Example 12 will simply multipl y K by K and uses 7.53
CPU seconds for the 3DO,D00 executions. Any integer constant wiT1
cause repeated multiplication. A power of 7DD0 used 14 multiplies.

5.2.2 Higher _Power Expone ntiatio..^_

13} X**5

Example 13 wiz] generate 3 consecutive multiplies, one of them mul-
tiplying the previous result.

5.2.3 S. _i_ngl e Exponent Versus Repeated Multiplication

14} X**2 * X**3

i5} X* X*X*X*X

Example 14 causes separate calculations of squaring and cubing, using
one more multiply than Example i3. Example 15 doesn`t recognize that
the previous products may be multiplied to attain the final result.
Equivalent results were obtained by multiplying X any number of times.

5.2.4 in teger . Versus Real Exponents

Using integer variables is a better procedure than using real con-
stants or variables. The function used to calculate the results
(IHCFIXPI or IHCFRXPI, depending on the base, integer, or real} is
better than the one used for real exponents (IHC^RXPR), Real values
for exponents also require the ALOG and EXP lihrar .y functions, Con-
stants written as real numbers will be treated as real exponents
even if their value is integral.

i'
k

.-,

^^

ExPONENrrATInN

16) X * I**J

17}! X * X**I

78) X * I**X

19} X * X**X

2O) X * X**2.O

21} X * I**2.0

i

In the following cases each example was executed 300,000 times.
Example 16 will call the integer to integer pourer subroutine and uses
40.67 seconds. Example 17 will need the real to integer exponent sub-
routine and uses 10.07 seconds (floating point hardware being faster).
Example 18 will convert I to a real number and use the same real base
to real exponent vrhich Examp]es 19 and 20 will also use. The timings
were 80.74, 76.17, and 76.78 seconds. Case 21 is treated similarly
to Example 18 and took 80.19 seconds.

5.2.5 Square Root Function Versus Exponentiation

22}! SQRT(X}

23)	 X**0.5

To find the square riot of a number the base may_ei.ther he raised
to the one half power (specified^s--^^-l^uat^ing point number, not
7/2] or by calling the sq.̂ ^-^^-^ oat librar.Y function. In the 300,000
executians of each of the examples, Exam pie 22 took 25.06 seconds,
and Example 23 required 3 times as much as the specific library
function, or 73.70 seconds.

5.3 HOW THE STATEMENTS ARE COMPILED

The compiler will try to use the shortest code possible. Multiplying
the number by itself or a previous product is possible only for in-
teger constant exponents. Any other cases are handled by the library
functions. The requirements for each call are an initialization of
a location which points to an argument list (the base and exponent
addresses}, loading the function address and passing control to that
function. Upon return the result of the function is always stored,
even if it is to be used immediately. Extra memory is used for the
calling instructions, parameter list, and the flag for the ISN (if
the compiler ID option is specified, default is on}. The relative
speeds of the functions for 300,000 executians in seconds are:

24}	 IHCFIXPI	 (I**I}	 1.67
25 ! IHCFRXAI (X**I	 1.43 (floating point hardware faster)
26)	 IHCFRXPR (X**X) 6.92

Figure 12 - Speed of Exponentiation Library Subprograms

32

M

^a

i

}
F.. r

^^ ;^

x

EXPp^IENTIATION

The integer power functions loop on the poc^aer multiplying the base,
or a previous product, by itself or the other results the proper
number of times. To raise rea] numbers to a fractional poti^rer`requires
the logarithmic function which subsequently calls the ALUG and EXP
functions, whose timings have been included. Real constants are not
inspected to verify if the value is integral or not. Since the EXP
and ALOG functions are not exact and the total number of instructions
executed is larger, the results ^^ri11 not be as precise.

i

.^,

33

F►

+^
^}

- ^^A.

6,0	 MIXED MODE ARITHMETIC

&.1 SUMMARY

Numbers are stored and used in two forms within the computer. b7ho'e
numbers are called integers or fixed point variables (starting with
I - N, explicitly declared, and constants without a decimal point).

^-	 Numbers Vrith fractions or exponents are called real or floating
paint {starting with A - H or 0 - Z, explicitly declared, or con-
stants with exponents and/or decimal points). The representation
of the tyro types is different, and code is automatically generated
to convert the values from one form to another when the types are

°	 mixed in expressions. If done to excess, or in a loop, the conver-
sion may be very expensive.

Within a DO coop, it ,nay be advantageous to increment a separate
counter to use in real expressions rather than convert the index on
each pass through the loop. The optimizer will, in most cases, hold
the converted index in a temporary variable and convert it only once.

Expressions involving constants of different mode than the variables
associated with the operator are often generated as the proper type
by the compiler; the major exception being exponents,

On the larger scientific machines, the floating point hardware is
significantly faster for multiplication and division than is the
fixed point hardware.

Conversion from rea] single precision (four bytes) to double pre-
cision (eight bytes) and expressions involving both have only one
added machine language instruction. Conversion from double to single
merely uses different instructions and ignores the lower half of the
double precision variable (i.e., no rounding is performed).

Complex arithmetic uses two rea] variables or constants and calls
library functions to do multiplication and division operations. Con-
version from either real precision to complex of length eight or
]6 bytes uses zero for the imaginary part and treats the rest of
the conversion the same as it does for single to double precision if
required. This adds only four instructions. The complex to real
conversion drops the imaginary part of the complex number.

6.2.0 CODE GOMPARI50NS

b.2.1	 Fixed Point to Floating Paint Conversion

The conversion of integer to real, single, or double is a len thy
process for which a conversion constant tone per program unit and
b0 bytes of instructions are required for each conversion. Rea]
to integer conversion takes ^4 bytes.

27) A W I

28) J = X

35

4

^	 ^

Z^G PAGE BLANK NO
T ^'^^.

pB,^C3;C)

i.

w

^9IXF.D N^1DE ARIT'iF^ETIC

29)	 A = U

30)!	 J = I

in the test program each of the above statements was executed 1,44
million times. Example 27 took 19.2 seconds, and Example 28 took
16.8 seconds. The two non-converts were very short, each eight bytes,
with 4.2 seconds for Example 29 and 3.6 seconds for Example 30.

6.2.2	 hi i x_e d_ M o_d a _E_x_p r e s_s i o n s	 +

31)	 A=J+AJ+K+AK+L+AL+J*K+AJ*AK+J*L+AJ*AL+J*AL*K

32)! A=(J+K+L+J*K+J*L}+(AJ+AK+AL+AJ*A;C+AJ*ALA-J*K*AL) 	 _	 `,

In the same loop Examples 31 and 32 tank 15.46 perceni, and q .20 per-
cent, respectively, to compute the two expressions for the 1.44
million executions. Example 31 required five conversions whereas
Example 32 took only two.

Y^herever possible group like mode terms together. The result of the
expression determines the kind ai conversions necessary as each oper-
ation from left to right is evaluated accordin g to the FORTRAN lan-
guage rules.

6.3 HQIJ THE S TATEMENTS ARE COMP ILED

Expressions are evaluated by doing the higher order operations first.
If any conversion is necessary to complete the evaluation, it is
done immediately. As each pair of operands is evaluated, the con-
version is in favor of the longer and more complex form until the
last level of operations which take place, and the final conversion,
if necessary, is to the form of the ^°esul^ to be stored.

The optimizer, when possible, will recognize that a variable or
expression is needed elsewhere in the evaluation of a lamer expres-
sion and will try to eliminate excess conversions. 	 (Far further
explanation, see Common Expression Elimination, section 8.}

Example 31 is treated as:	 ^ ;

a) convert J and save

b} add AJ to FLOAT(J) to form start of running sum

c) convert K and save	 _

d) add AK to sum

e) add FLOAT(K) to sum

f} convert L

^^

36

1

..,
r'^

Y ^

^.^ ^	
..

_	 ^' /
.^.

^._	 _

-	 ^

MIXED MOQE ARITI^METIC

g) add FLOAT(L) to sum	 ,

h) add AL to sum	 '

i)	 mul ti py J and K

j) convert product from i

k) add FLOAT(J*K) to sum 	 ^

l;	 multiply AJ and AK

m) add 1 to sum

n) multiply J and L

o) convert product from n

p) add FLOAT(J*L) to sum 	 1I

q) multiply AJ and AL

r}	 add result from q to sum

s) multiply AL and FLOAT(J} (from a)

t) multiply s by FLOAT(K) (from c)

u) add t to sum

	

	 a
I

v}	 stare sum

Example 32 is evaluated as:

a) add K to J, start sum'

b) add L to sum'

c) multiply J and K, save
i

d) add c to sum'

e) multiply J and L	 j

f) add a to sum' and save

-	 g)	 add AK to AJ, start sum

h)	 add AL to sum	 j

s
l

r	 I
I`]

	

y,

P	 ^	 ..	
-	

_	
_

t.	 .. s	 '

t"IXED t^OAE ARITHh9ETIC

3}	 multiply AJ and AK

j }	 add i to sum

k}	 multiply AJ and AL

1)	 add k to sum

m) convert J*K from c

n) multiply F1.OAT(J*K) by A{.

n)	 add to sum

p) convert sum' (From f)

q) add FLOAT(sum') to sum

r) stare sum

5

4^

3B

^l J

^^

^._

L

6'. t r ^' r

7.0	 DO LOOPS

7.1	 SUMMARY

FORTRAN programs may alter their sequential flow in a number of ways.
One is by repeating a section of code a given number of times. The
dO statement provides this capability. 	 It also provides the compiler
with a great deal of information. The information used includes the
starting value, the ending value, and the increment added to the
index each time through the loop. Sometimes, as with subscripts, 	 rmore than one index may be c^^eated (see Subscripting, section 4},

'	 and each index has its own increment. This avoids repeated oper-
ations and simplifies the use of the index in the machine language
instructions. Ail of these values must be initialized and incre^
mented before and during ^Lhe execution of the loop. For that reason
short] p ops, ones which include little code or ones which run over
a short range, are to Ne avoided. The setting up of the loop can
cost more execution time than simply writing out the code that is
contained in the loop, Additionally, if the loop is kept simple
(relatively few variables), it is possible to use faster and shorter
machine language instructions than more complex loops.

7.2.0 CODE COMPARISONS

7.2.1	 Loop E1imi^iaticn

Loops used for initialization of variables with less than 32 elements
will execute faster if written out, at the expense of eight bytes
per variable set.

33}	 DO 1	 J=1,6

34}!	 KK{3}=4
KK{6)^5
KK^9}=6
KK^12}^7
KK(15)^8
KK(18}^9

Example 3^ took 75.0 seconds and 30 bytes whereas Example 34 took
25.8 seconds to execute and 48 bytes of memory far the two million
executions. Short running loops are best used when the code within

•	 the loop is complex.

7.2.2	 Initialization

The best way to initialize variables in an array is to use a DATA
statement, While this requires more compile time and increases the
size of the object and load modules (by the number and data length

39

d'
.^ /

^^

y^

+.

DO LOOPS

of the array), it requires no execution time and no more memory
than not initializing the array or using any other of the methods.
(Caution:	 If the LIS`f option of the compiler is turned on, the
Tisting of the generated machine instructions will print a line for
every element initialized.) COMP^ON areas initialized with DATA
statements and their declaration statements are in a separate section
of cade called BLOCK DATA. This creates a separate abject module
for each COP9MON area initialized.

The fo]iowing examples show several ways of re-initializing an
array or, excepting Example 35, to transfer the contents from one
array to another. These re-initialization techniques in Examples
36 through 39 are faster when the array has not been set to a
constant.	 ^

35}	 DIMENSION A(3000)

DO 3^I^i,1000

36}	 DIMENSION A(1000),R^lORK(1000)

Do a I^1,laaD
4 «oRK(I)^n{I}

37}	 DI r^9EN S I0N A^(1000),l•JORK4 (lnoo)
REAL*8 A8(500},IdORKB(500)
DATA A,^/1000*-l.O/
EQUIVALENCE (LJORK4(l),kdORKB(1)),(A4(1),A8(1})

DO 5^I=1,500
5 WORK8(I)=A8(I)

38)	 INTEGER *z L(50),a(5D)
REAL *s }tL(lz),xJ(12}
DATA ,]/50*39?/
EQUIVALENCE (xJ(l),J(1)},(XL(1),L(1}}

e

DO 6^I=l,iz
6 xL(I)^XJ(I)

L{49 =XJ{49)

^0

i	 -

E'.

a

^^

Do Loafs

39}!	 DTMENSIOSJ A(1000),U10RK{1000}
DATA A/1000*»1.0/

0

CALL^FMOVE(A,4000,4JORK)

Example 35 which is straightforward, uses 13$.33 seconds, or 19.90
percent of the execution time for 50,000 passes through tie 11.58Fi

- minutes test step, Example 36 is essentially equivalent to Example
35, but an extra load from memory is required to move the data from
one location to the other. This used another 10 percent for 29.98
percent, or 208.40 seconds of the same test programs time. Example
37 sets up a more complicated data structure but only requires half
the passes through the loop that Examples 35 and 36 used taking
about half the time, 103.23 seconds (14.85 percent). The b0 lonp
moves eight bytes at a time rather than the four in the other two
examples. No conversions are done since the type of variables on
both sides of the equal sign are the same. The data in memory could
be illustrated as shaven:

A4(1}	 A4(2) 	 A4(3)	 A4(4)		 A4{999}	 A(1o00
.....,.

A8	 A8 2	
^	

A8 500

Figure 13 - Four Byte Data Equivalenced 1Jith Eight Byte Data

This technique works as well with logical and integer values as it
does for these real variables. The savings are mare pronounced
since the floating point hardware is faster than the fixed point.
The amount of data moved must be a multiple of eight. The excess
above an even multiple may be transferred by specific assignments
as illustrated below and in Example 38:

I(1) I{2) I(3) I(4) I(5) I (6) I(7) I(8).. . I(45} I(46) I(47) I(4$) I(49) I(50;

X

Figure 14 - One Byte Data Equivalenced with Eight Byte data

Example 39 shotivs a call to the subroutine FMOVE, which is an assembly
module utilizing a machine language data moving instruction. The
documentation is in Appendix A. This is the fastest and mast ob-

- vious move and takes only 51.65 seconds, including the program
calling sequence and the time spent in the subroutine (7.43 percent).

7.3 HOEd THE STATEMENTS ARE COPhPILED

The DO loop testing is performed after the last statement in the
loop. The index is incremented and then compared Vrith the final
value. If the index is smaller than or equal to the final value,
the loop is re-executed with the updated index. tilhen the incremented

4l

i

i

^^

rL

^^
.'.^

Dn ^.00Ps

index is larger than the final value, processing proceeds with the
next sequential instruction. For this reason loops whose loop end
value is zero or negative when a variable is used will execute once.
The value of the index is left at the loop end value plus the incre-
ment. This is important if 'ne index is to be used after the exe-
cution of the loop. If the loop is very simple in structure,. it is
possible that the index will never be stored in memoryo The final
index will then be the initia] value. For this same reason it is
possible that the index will not be fcnown in code which does not
fall in the logical limits of the loop (between the DO statement
and the statement containing the statement number named on the DO
statement}. An easy solution to the problem is to set another vari-
abie equa] to the index at the beginning of the loop and use this
variable for code outside the loop ar after the loop's completion.

42

9

i

i

__	 _._.	 __ _. -. _.... _.	 _._.....	 _. _.-.... T_.^_... 	 _ .__.__._.. ^,.^. ... 	 _..,.-_.... ^.._

8.0	 COf^IMON EXPRESSION ELIMINATION

8.1 SUMMARY

The optimizer, as part o^-._its operation, tries to avoid as much
calculation as it can foresee. The programmer can do same things
to help the compiler recognize expressions that only need be caicu-
lated ante for a group of statements. Each expression should be
written exactly the same each time excepting spacing, blanks, and
breaks far continuation cards. If the expression fines not immedi-
ately follow the equal sign, it should be placed in parentheses.
In general, the use of temporary variables to hold sub-expressions
should be avowed as the compiler does a better jab of maintaining
values internally. Temporary variables should be used when the
compiler is unable to pick up common expressions; when the limits of
the optimizer are exceeded.

8.2 CODE COMPARISONS

40) HRH+A+B
^= G +A+Ba^c
F=F-^A-^B+C+D

41) H=A+B+H
G^A^-Ba-C+G
FAA+B+C+DfF

42) ! H^Fl^ AFB}

Example 40 will not recognize any common expressions ^n s:^y of the
three statements. FORTRAN interprets the statements left to right
and cannot 'see' that A-^B is common in the first two statements or
A+BBC is common to the second and third statements. Example 4T will
recognize A+B in the first: pair of statements and A+B+C in the last
pair. Example 42 shows the use of parenthesis to explicitly state
common expressions and is interpreted in the same way as Example 41.

6.3 HAW THE STATEMENTS ARE COMPILED

40}	 a)	 I^+A	 4l)	 a) A+B	 42}	 a) A+B
b) a+8	 b) save a	 b) save a
c	 store H	 c) a+H	 c} afH
d} G-^A	 d) stare H	 d) store N
e) d+B	 a	 a+C	 e} a-rC
f) e-^C	 f	 save a	 f) save e
g	 store G	 g	 e^G	 g) a+G
h	 F+A	 h	 store G	 h) store G
i	 h+B	 i)	 e^D	 i)	 ^•^D

k	 j^D	 k} store F	 k^ stare F
1	 store F

Figure 15 - Expression Translation

43

!i

f

s

.	 .._.

.^`
^_	 ,,

! ^—

i	 ^.

i

a. ^

cnr^r^ar^ ExPRESSZOr^ ELTP^INATI(1N

Expressions are remembered it high speed storage (registers} far up	
^4

to about two or three statements and for as many as one real or about
three integer unique expressions.	 ', ,^

In QO loops, often used subscripted variables are moved to internally
generated temporary variables. This may help to avoid calculating 	 j
subscripts many times. If the subscripted variable is re-used many
times, the variable may access the temporary variable. The last
time the variable is referenced in a loop will alti•^ays cause it to	 r̂	 -

-be saved in storage.

Unsubscript pd variables are always used from their real locations 	 `
unless they are held. in high speed storage {registers}. Then they
are stored at the end of the lnnp; ar when the variable is next	

y^

used, it is located in the register until it is stared.

The optimizer can only recognize expressions which have the symbols
and operators in exactly the sane order each time. The spacing and
syntax are not important as the symbol names are reduced to unique	 -^
internal symbols, which are not dependent on the programmer desig-
Hated names. A+B is Hat B+A, however, -(A+B) would be recognized
as the complement of the common expression A+B. The order of expres- 	 "
sions decoding is as given in the FORTRAN language references manual
(GC28-6515) and as summarized below:

1
1. expressions in parentheses
2. functions
3o	 exponentiation	 i
4. multiplication and division	 i,
5. addition and subtraction
6. relational operators {.GT.,.GE.,.LT.,.^E.,.EQ.,.NE.)
7. .NOT.
8. .ANO.	 '
9. .OR.

Figure l6 - Operation Evaluation Order

Expressions written in parentheses are, therefore, recognized first;
and when the terms are written in a consistent order in each occur-	 ^^ 1	 "
rence; the expression will be saved by the compiler from the first
use. Commrn expressions may be built up, as Example 42 shows. When
parentheses are Hat used, expressions are evaluated left to right
in order by the type of operator. Example 41 uses this to build its
common expressions and is why Example 40 has no common expressions.
Internal limitations set the limit at about 300 expressions that
will be recognized F ^hd some are seen for about 39 statements, fi72
bytes, and others are not seen in the following statement. Eommon 	 ^
expressions should be placed early in the statement. If the expres-
sions occur closely enough together or if the instructions generated 	 !
are simple enough, the common expressions {up to two or three) will
be held in registers, allowing for the fastest recall. Single vari-
able^s will also be saved in registers when used frequently enough

r

44

I

i

_	 r__. __ _ .	 _- -__...	 _	 ._ --_._

^	 .

^_.

cor^r^o^ EXPRF,SSIOh! ELIMiP^ATIOh

in a small section of code pup to three values each used six times
in l2 statements). Integers seem to be saved longer than rea p vari-
ab^es, perhaps because there are more fixed point registers. klhen	 ,^,
a subscripted variable or expression is not kept in a register, it	 ^
will 6e placed in a compiler generated temporary. Far subscriptpd
variables this is done if the use is frequent or if the variable	 s
is set often in a loop.

,'	 I

.^
^;

^^

45

^^

fir-..

r

^-
i

9.0	 STATEMENT FUNCTIONS

9.i	 SUP7FiARY

Statement functions can make the job of the programmer easier and
eliminate some possibilities of coding errors on expressions tivhich
are frequently used. The increased cast in run time and the ques-
tionable amount at compile time are more than offset by the ease of
use.	 (see also the section Common Expression Elimi^tation, section 8,
for• additional thoughts.)

9.2 CODE COMPARISONS

43}	 IFUN(J,K,L,M,N}=J*K f J*L ;• M*N ^ K*K

III=IFUN(IJ,IK,IL,IM,I!d}
II2=IFUN(IL,IM,IN,iJ^IK)

44)!	 II3=IJ*IK + IJ*IL f IM*IN ^ IK*IK
II4-IL*IM ^ IL*IN +^ IJ*IK ^- IM*IM

Example 43 took 38.00 percent of the 5.637 CPU minute run time, or
128.52 seconds, of the 2.5 million executions, Example 44 required
eight bytes less memory, due to the optimizer recognition of terms
used later in the expression, and 36.74 percent or 124.26 seconds
of execution time for the same 2.5 million passes. Some saving is
seen but only 4.26 seconds.

To test the effect on compile time, 51Q statement function references
were compiled as were the equivalent 510 statements. For ease in
creating the programs, the same five statements, or references, were
repeated 102 times. The compile time for the functions was .552
minutes on the 360/95 and .548 minutes CPU time for the equivalent
statements, also on the 360/95. The difference is within the accu-
racy of the timer and therefore considered the same.

9.3 !i0W T!{E STATEMENTS ARE COMPILED

Statement functions are defined as a name on the left side of an
equal sign with a list of variables in parentheses. The name is not
dimensioned, and the definition occurs before any executable state-
ments. This acts as a pattern to generate the real statements in
the references, 'the variables used in the definition are dummy and
used only to connect the position in the variable list of the defi-
nition with the position in the expression. The correct variables
are generated when the reference is used in the program according
to the pattern. The dummy variables will not be used or even gen-
erated. Idhen a reference is found to a statement function name, the
first variable in the list is substituted in the function expression
vrherever the first dummy variable is used. The two examples i11us-
trate the process. It is possible to get better optimization with-
out the statement function, but the bulk of the optimization is done
after the expression is expanded. This accounts for the rather
slight difference during execution.

47

PS^ECFDII^TG PAGE BLANIS N^ ^

,^.

fi

I
Ii

1

i

#'

^_.

,..± . .

s

u

1

a

	10.0	 ARITHh4ETIC OPERATORS

	

10.1	 SUNih9ARY

Some internal machine instructions are faster to execute than others.
This is particularly true of fixed point operations. tultiplication
and division are very sloti^r, whereas additio'i^ and subtraction are
quick. The difference in the floating point operations is most nota-
ble with the mutlipiy and divide, which are slow relative to addition
and subtraction, but better than their fixed point equivalents.

Floating point multiplication is ordinarily better than repeated
addition, but not trrhen the quar,^tity is to be doubled, then addition
should be used. Fixed point addition should be used until four
additions, rather than multiplying by the constant. multiplication
by constants is faster from five and up.

10.2.0 CODE COh4pRRISOIVS

10.2.1	 Floatin g Point Addition Versus multiplication

	

Percent of Run	 Seconds

46)! X+X	 1.72	 8.55
47) 2.0*X	 2.18	 10.84

48) X+X+X	 4.29	 21.32
49 !	 3.0*X	 2.74	 13.61

50	 X+X+X+X	 5.92	 29,41
81 !	 4.0*X	 2.82	 14.07

52)	 X+X+X+X+X	 7.39	 36.72
53)!	 5.0*X	 3.18-	 15.80

54)	 X+"+X^-X+X+X	 9.31	 46.26
55)! 6.0*X	 3.45	 17.14

'the first 10 examples were executed 100,000 times, and the percent-
ages are for a total run time of 8.281 minutes. The results show
clearly that to double a number, addition should be used. For any
other quantity, the product is much faster than a repeated sum.

70.2.2 Fixed Point Addition and P^ultiplic_ation

Percent Run Time	 Seconds

56)! I+I	 1.10	 7.03
57	 2*I	 2.50	 15.97

58}!	 I+I^-I	 1.34	 $.57
59)	 3*I	 2.01	 12.85

49	 Cs ^^^^ ^^^^ ^^ ^'^^P^ `, ^1^

	

_	 _ _ ..__

	

^	
^,..

F^

""1

r

^.

ARITEi^9ETIC OPERATORS

percent of Run Seconds

60 I+I+i+I 2.02 12.92
61	 ! 4*I 1 , 98 12.66

62) I+I+I+I+I 2.65 16.95
63	 ! 5*I 2.00 12.79

64 I+I+I+I+I+I 2.99 19.12
65	 ! 6*I 2.08 13.30

66 I+I+I+I+I+I+I 3.34 21.36
67	 ! 7*I 2.16 13.81

68) I+I•^•I+I+I+I+I+I 3.81 24.36
69}! 8*I 2.07 13.24

70) i+i+I+I^•I+I+I+I+i 4.23 27.05
71	 ! 9*I 1.94 12.41

72} I+I+I+I+I+i+I+I+ItI 4.72 30.18
73) ! i 0* I 2.1 0 13.43

Each of the fixed	 paint	 tests was	 run	 i.8 million	 times	 for a	 total
C p l1 step charge of 10.658 minutes.	 All the multiplies were executed
as	 multiplies and none as the faster	 internal instruction. blhen
the multiplier	 is	 four	 or less,	 repeated addition would	 be used far
best execution performance. l^u1tiplication is	 preferred when the
multiplier is	 five or more.

10.2.3 Mu_1_t^_pl i_cation	 1^li th	 Constants	 of Powers of Two

Percent of Run Seconds

74) I*16 0.94 5.52
75} i6*I 2.09 32.26

76} I*32 1.07 5.92
77) 32*I 2.16 12.67

7$) I*64 l.11 6.51
79) 64*I 2.14 12.56

80} I*i:8 1.10 6.45
81} i28y'I 2,43 14.26

82) I*256 1.80 10056
83) 256*i 2.59 75.20

a
f

^^

a

I

1

.	 ^

i
i

i

J.	

i

^_ -

50

I

i

L^,f

^ti
	 s

Y

ARITHh^ETIC OPERATORS

flultiplication tests by a constant whose value is a potiver of tti^ra
were run for 9.780 minutes and 1.8 million passes through the main
program loop. The first cases (74, 76, 78, 80, and 82) cause a
shift to be used, t^rhereas the second examples (75, 77, 79, 81, and
83) used the regular multiply. The results speak for themselves.
The constant as the second operator appears to always generate the
faster shift instruction.

1"^.3 HOLd THE STATEP^EENTS ARE C0^^9PILED
	

rr
Tn^ ;ompiler may not always generate the internal code exactly the

the FORTRAN program is written. Some subtraction of constants
and variables, as well, is performed by loading the additive inverse
of the value and adding, rather than subtracting, this reversed
quantity. Very little difference is seen in the inverse addition.
A notable difference is obtained if an integral quantity is multiplied
by a constant, which is tti^ra to a positive power, (Z, 4, 8, 16, 32,
etc.). The compiler recognizes that this may also be done by a dif-
ferent and much quicker instruction. l^lhen the code is not complex,
the order of the operands will make no difference. If the constant
multiplier is placed secand, the faster instruction will always be
used.

51

I

^.	
^.

.,	 ^	 L

u

11.0
	

SUBPROGRAMS

11.1 SUMMARY

Subprograms make the programmer's fob eas •^,r and the coding more
obvious to folioti^r. They also shorten the program by allowing the
same code to be executed from many places, rather than writing the
same statement sequence many times. There is some overhead involved
in transferring control from one subprogram to another. The trans-
ferring of variables back and forth between subprograms also requires
time and in some cases extra memory far the storage of local variables.

It is advisab]e to keep the number of calls as small as passible and
to keep the number of variables passed small, or even pass none at
all. Passing arguments by location should be avoided. Loops which
call subprograms should have non-loop dependent calls removed from
the loop and use a temporary variable to hold the result{s). Sub-
routines should, ashen possible, have the loop placed in the routine
and the call removed from the body of the loop. COMMON areas should
be used to pass variables between subprograms. Simple variables
should be first in a COMMON area followed by arrays. The simple
variables are best allocated with the longest type first and the
shortest last (COMPLEX*i6 to LOGICAL*1). Arrays should be ordered
with the one containing the smallest total size (the n+amber of ele-
ments times the length of an element) first and the longest ones last.

If the types of variables and arrays are mixed, the programmer will
have to ensure that each type starts on the proper boundary.
COMPLEX*1fi data addresses must be divisible by 76 and always end
with a zero, Double word variables (COMPLEX*8 and REAL *8) have a
starting address which is divisible by eight (address ends with a
0 or an 8), four byte data (REAL, INTEGER, or LOGICAL) must start
at an address divisible by four (last digit of address is a 0, 4,
8, or C).	 INTEGER*2 data addresses must 6e divisible 6y two (last
character a 0, 2, 4, 6, 8, A, C, or E). 	 LOGICAL*1 data may fall on
any address. When the longest type of variable is placed first, all
addressing is properly compiled.

For easiest debugging and program maintenance, the dummy arguments
in the SUBROUTINE and FUNCTIOPJ statements should, when passible,
be called the same name as those in the CALL statement or reference

^`^	 to the function. This also applies to COMMON areas. 	 Using a par-
ticular COMMON area is easiest to use when the same variable names
appear in all references to that COPIMON. EQUIVALENCE statements
will allow sloppy coders the chance to change the names, but at the
cost of increased complexity, confusion, and reduced optimization
(see section 18) .

]i.2.O CODE COMPARI50N

All of the foliowin^ Ex., 	 es (84 - 93) were executed nearly 10,000
times, requiring 21.835 m,nutes of CPU time. The subroutine and
function subprograms ^^sed are illustrated in Examples 84 and $7 and
are the same for Examples 85, 86, 88, and 89.

53
I'R^3CEU^NG PAGE SI,ANT^ NOT PIL1^^:;^•

?	 I

^,_"^^...

SUBPROr,RR±95

.	 j

1

11.2.1 Subroutine CALL 4lith Na Arguments (Aassed in Common)

Na argument list was used to pass the arguments to the subroutine
in this first example.

$4)!	 COMMON/ARGLST/A,B,C,D,E

CALL SUB

END
SUBROUTINE SUB	 }
COMMON/ARGLST/A,B,C,D,E
E^-1 00.0
DO .1000 I = l ,1 DO

100 E=(A*B»C)/Da^A^E
RETURN
END

The call and subroutine execution time was 1,34 percent or 17.55
seconds. This used only 12 bytes for the CALL statement, and the
subroutine took 264 bytes of memory.

11.2.2 Subroutine CALL With Argu_ments (Passed by Value}

When an argument Tist is passed, and the subroutine is the same,
time increased to 1.38 percent or 18.08 seconds as in Example 85.

85)	 CALL 5UB(A,B,C,D,E)

END
SUBROUTINE 5UB(A,B,C,D,E)

RETURN	 ^
END	 ;

This took l4 bytes fo,, the CALL and 328 bytes for fire subroutine.
The values of the simple variables were passed to the subroutine and
then restated to the locations used in the subroutine. This accounted
for the extra time.

]1.2.3 Subroutine CALL With Arguments (Passed by Location

The call by location is the worst, Example 86, and took 2.48 percent
(32.49 seconds}. The CALL still takes l4 bytes for the instructions,
but the subroutine now uses 340 bytes.

54

r	 ^^

r	 ^

r

^ 3̂

^. .

,_
4

_.

r

i

. "",)

._

,.. } ^

^.

suBPRDGRAMs

86)	 CALL SUB{A,B,C,D,F)

END
SUBROUTINE SUB{/A/,/B/,/C/,/D/,/E/}

RETURN
END

The same 3 examples were run with functions; passing arguments through
COC^9MON was the best as shown in Example 87. Example 88 was next best
by passing arguments in the norma] manner {by value}, The worst case
was the passing by location, Example 89. The functions were overall
slower than the same code used in a subroutine.

11.2.4 Function Reference t^lith No Arguments (Passed in Common)

87)!	 COMMON/ARG/P,B,C,D,E

ELF(-100,0}

END
FUNCTION F{X)
COMMON /ARG/ A,B,C,D,E
FAX
DO 4000 I^l ,1 00

4000 F^{A*B-C}/DMA+F
RETURN
END

11.2.5 Function Reference 4tith Argume_n_^s_ (Pa_s_sed by _Value)

The function is similar for Examples 88 and 89.

$8)	 E-F{A,B,C,D)

END
FUNCTT pN F(A,B,C,D)

RETURN
END

a

•;

55

r

SUBPRnC,RAMS
1

17.2.6 Function Reference 41ith Arguments (Passed	 by Location

89) E=F{A,B,C,A)

END
FUNCTIi`N	 F{/A/,/8 /,/C/,/D/)

.

RETURN

^

END

Summary of Exa___^m,^T es h1emory Used ^	 ^'

ExampT a ^'ype	 I of	 Run	 7'i me Seconds Cai T Subprogram Total

84 subroutine common 1.34 77.55 12 264 276
85 subroutine value 7.38 i8,08 14 328 342
86 subroutine	 location 2.48 32.49 l4 340 354	 '
87 function common 2.32 30.39 14 270 284	 ^
88 function value 2.G3 34.46 14 312 326
$9 function	 location 3.39 44.47 14 328 342	 ^^

Figure 17 - Comparison of Subprogram Argument Passing

There are two common alternatives to external subprograms, which,	 '
while not retaining all the coding advantages, are somewhat quicker.

11.2.7 Statement Function

90}	 sF(w,x,v,x}={w*x-v)Iz^-w

E=-1DO.o
DO 7000 I=1 ,100

7000 E=SF(A,B,C,D)+E

Example 90 uses a statement function to do the same simple calculation. 	 `	 a
x	 The names in the statement function definition are dummy and act the 	 ^	 9

same as dummy arguments for subprograms. This allows the flexibility
of using different arguments. Each statement function reference is 	 ^
expanded in line. That is, the statement in the statement function
definition is substituted for the statement function reference.	

.

41ith many statement functions, the program size will increase as
each one is compiled.	 In Example 90 the in line expansion tank 38

I	 bytes and the whole example 58 bytes. The time eras only 1.30 pet^- 	 ,
cent or 17.03 seconds.

5G	 ;

'^
'^	 ^

.^

^„^
^.

SUBPROGRA^9S

f

11.2.8	 Internal Routine	 j

The quickest, and least flexible substitution for an external sub- 	 j
program is by using a local section of code which is referenced with 	 ^
a simple GO TO and the return address ASSIGNed to a variable, The	 ^^
assigned GO TO is used to return from the shared code to the proper 	 ^ "
location.	 Example 9l required 36 bytes total, 	 ^',

i	 - ^i9i)	 ASSIGN 8000 TO K	 ^
GO TO 8001

8000	 ^^
r

•	 ^

8001 E^^100.0
DO 8002 I^l ,100

3002 E=(A*B-C)/p^-A+E
GO TO K,(8000,)	 1.

This took ^:;7y 1.15 percent of the run time for 15.06 seconds for 	 ^'
both the ASSIGN, the calculation, and the return.

17.2.9 Optional_ Return

6dhen returning from a subroutine, the next FORTRAN source statement
is usually executed. In some cases data dependent or extraordinary
returns are needed. Either an index may be set, Example 92, or use
of the conditional return, as in Example 93, may be used.

92)	 DO 9001 II = 1,100	 1
CALL SUB (A,B,II,J)

9001 E-E*E/E

END
St1BR0UTINE 5UB(A,B,II,J)

B=B+A+A

RETURN
E td D

57

I

^

....	 ..

f	

^

°'' l
.._ ^

1'
f

^,

SUBPROGRAt45

93)	 DO 7000D II^1,100	 .
CALL SUB(A,S,IT,&10001,&10002)
GO TO 10003	 --

10001 ESE*E/E
GO TO 10000	 ^'

10002 E=E*E/E
GO TO 10000

10003 E=E*E/E
10000 ESE*E/E

.	 s

END

	

s	 f

SUBROUTINE 5UB(A,B,IT,*,*)

B=B+A-^A

IF (J.EQ.I	 RETURN l
IF (JeEQ.2^ RETURN 2
RETURN	 '
END

The 'RETURN digit' form indicates which statement number^^position 	 '
of -the calling sequence is to be returned to. ^lhen the digit is not
specified, or is greater than the number of statement numbers indi-
cated in the CALL statement, the statement following the GALL is
executed upon return from the subroutine. Otherwise, the statement
number in the slot referenced by the digit is executed subsequent
to the return. The net effect is a combined CALL and computed GO	 '^
T0. llhile these two examples are very simple, a greater c'ifference
will be observed in practical use than is demonstrated here. Example

'`	 _ _.- -^---42-Gsed-43..01 percent of the CPU time, or 5b3.47 seconds. Instruc-
tions for the CALL and associated statements were 90 bytes, the sub-
rouiine used 314 bytes, for a total of 404 bytes. 	 ;

Example 93 used 527.05 seconds (40,23 percent) and used 104 bytes
for the main program statements, 33G for the subroutine, totaling
440 bytes. The extra length is accounted for by the longer FORTRAN
code in this illustration.

11.3.0 HOb! THE STATEMENTS ARE GOtnPTLED	 i
	r 	 ,

11.3.1	 Argument Lists
1

Subprograms which have an argument list will load an address for the 	 !
arguments to be passed. Each entry in the list, whether array or
simple variable, takes four bytes.

Another register is then loaded with the address of the subprogram
and the branch taken to the subprogram. 	 Tf the ID option of the	 1
compiler is on, which it is by default (NOTD may be specified in 	 i

i

58

^^

,^

7	 ^	 ^
.,,,

,^	 J	 _
^„

1

i3^

i	 ---

SUBPROGRAMS

the PARM field of the £l(EC JCL statement for the compile step to
turn it off), a dummy branch instruction is inserted which contains
the ISN {internal statement number) of the CALL statement or the
function reference. it is used for debugging information and is
printed in the traceback when a program error has occurred which
the FORTRAN run time subroutines (the error monitor) trap. The ISN
is also available in a dump.

11.3.2 No Argument List

Calling a subroutine with no argument list will load the register
which was used for the argument address list pointer with zero which

•	 requires only two bytes and executes much faster than the load of
the address which takes four bytes,

11.3.3 Returned Values

The single value returned from a function is returned in a register
and is always staredo This is not dependent on the argument list
but rather is the definition of a function.

Values returned from a subroutine are already in storage, and no
additional action is required of the calling program.

11.3.E Subroutine Initial Action

The initial internal action in the subroutine is different if an
argument list exists or is absent. A subroutine always moves the
values of all simple variables to a local area in the subroutine.
This provides multi-programming capabilities in that the calling
and called program units may each work with individual variables
within their awn workspaces and not interfere with the calculations
in the other. Each variable requires eight bytes of memory far the
instructions which move the values.

11,3.5 Subroutine Exit Arocessing

Returning from a subroutine moves the simple variables in the argu-
ment list whose values have changed, {appearin on the left side of
an equal sign, and marked on the map with an 5^, back to the calling
program's area. This requires eight bytes of memory for the instru-
tions for each simple variable, as well as the storage space for the
variables in the subroutine. There is a1 so a constant four byte
overhead, Returning from a subroutine with na arqument list takes
only the four bytes fixed overhead.

11.3,6 Argument Passing

Arrays passed between subroutines or functions and their calling
program unit require much less overhead far initialization and clean
up. The address. of the array (along with the subscript) is passed
and loaded by the subprogram to referQnce the specific location
desired. This a7 so requires eight bytes for each array passed.

59

i

SUBPAOGRA^lS

!then simple variables are passed by location (enclosing the dummy
^^rguments in slashes), memory far Tocai variables is saved, The
corresponding increase in program time and subroutine length may
not be worth that memory. Arrays are always passed by location.
The subroutine will toad the address of each of the simple arguments
passed and store that address in a separate location, taking four
bytes. when a value is needed, the address is loaded into a register
and then a Toad from that address is executed. This may at times
require extra toads, and the time increases with each reference and
complexity of the program. The optimizer will attempt to reduce
the number of times the address is Toaded but is subject to the same 	 "
guidelines given in the Common Ex pression Elimination section (8.0}.

r
An array name in an argument]ist is represented by the address of
the element given in the CALL ^ 3tement. If only the name is used
(no subscripts)}, the address 4^ the beginning of the array is
used. This may -some in handy tivhen dealing with a row of an array
as shown bet ow.

DIMENSION X(100,50}

CALL ROWMLT(X(1,10),C,100)

Sl18ROUTINE ROldMLT(X,C,N)
DIMENSION X(N)
DO 1 I=1,N

RETURN
END

Figure 1$ - Passing a Row of an Array

The effect of subroutine ROWMLT is to multiply by C all of the
named row in the second subscript of the CALL statement reference 	 ;^
for• X (the tenth row in this case). This technique is only appli-
cable for rows. The elements in a mufti-dimension array are in
order in storage as a vector array, by the first index.

iT.3.i Statement Function Expansion

Statement functions are another way to reduce fire overhead involved 	 ..
with external subprogram ca]ling. Each occurrence of the statement
function is expanded in-line and so requires more memory for its
instructions, but the optimizer also has a chance to work on the
internal machine language code generated in the proper program unit,
(See also section 9.0 on Statement Functions.)

60

^')•,
j	 ^^,

.

._	

^	 1.

SUBPROGRAMS

11.3.8 Internal Routine Reference

Assigned GO TO routines use the assigned variable to contain the
return location sa as to branch directly to the local code. The
argument list processing time is saved. (Refer to the Branching
section for a description of how the ASSIGN and assigned GO T4
statements work, section 12.3.3.)

61

I

1

1
^,

+^

12.0	 BRANCHING

12.7.0 SUMMARY

The normal sequential flow through a program can be altered condi-
tionally or unconditionally. The conditional branching may depend
on the value of a switch, a single variable, ar the value of an
expression. This is acco^aplished by the simple, computed or assigned
GO T0, and the arithmetic or logical IF statements. The efficiency
of each type of branching statement depends upon where the branch
is performed and the location it is branching to.

12.1.7	 Branching Statements Compared
t.

The simple GO TD is the only unconditional branch and translates to
one internal machine language instruction, Branching on a switch
is best accomplished by the assigned GO T0. The next best testing
is the arithmetic IF Followed in execution speed by the logical IF,
both having integer value compared to a constant. The arithmetic
and logical IFs execute in very nearly the same time and are depend-
ent on the statement order in the FORTRAN code. The branching
statement with the most overhead is the computed GO TO. When used
for its designed purpose, it is the quickest for the application.

12.1.2 Statement and Expression Ordering

Statement ordering is of importance and the following guidelines
should produce the best coding possible. ldith assigned GD TD state-
ments, the statements containing the referred statement numbers
should not follow the assigned GO T0. The statement ordering is
of no importance for the computed GO T0. Arithmetic IF statements
should have the most often executed branch as the first statement
number in the list of three. It should not directly follow the IF.
Testing for a value of TRUE with a logical IF containing a simple
expression (only one relational operator) is the best, and results
in the execution of the appended statement. ldhen a logical variable
is tested, the best branching is done when the value is false and
the appended statement is not executed. Complex expressions, using
ANDS, DRs, and NDTs, are discussed later.

12.1.3	 Index Brar,ehin

Checking an index or variable for a value may be accomplished by a
'	 series of arithmetic or logical IF statements or one computed GO

T0. 4Jhen the value of the index is to be six or less, a series of
arithmetic IFs proved the best. When the value of the index may
exceed seven, a computed GO TO statement is by far the best. A
series of logical IF statements proved to be the worst of the three
methods tested.

BRANCHINr

i 2.1 .4 Complex LoQi ca i I Fs

Complex logical IF statements with several NOTs, ANDS, or ORs should
be avoided when passible; several separate IFs are better. r^9ultiple
conditions should be tested as described below. A series of rela-
tional operations with only AND operators should test for the con-
dition which will fail first, causing fewer tests, and branch to
the most often executed statement as the one following the IF. The
appended statement should be the least often executed, i,e., the
exceptional case. ANDS should be used when most of the conditions
will be false.

.	 Vlhen only OR operators are used with relational operands, the
appended statement should be executed most often. The condition
most often false, causing the branch to fall through,shauid be the
last condition in the list. ORs are best used when the conditions
are usually true and an extra statement is to be done. The relation
tested (GT,GE,LT,LE,CQ,NE) causes na difference in execution speed.

The NOT operator used previously with relational operands or mixed
ANDS and ORs will require the ^.ntire expression to be evaluated
before any action is determined. No difference is apparent in either
doing or skipping the appended statement. 	 Using several simple IF
statements to separate the ANDS and ORs improves the execution speed.
NOTs are to be avoided.

Logical IF statements with logical variables (typed explicitly in
a LOGICAL statement), with ail ANDS or ail ORs in a single expres-
lion, are executed the way outlined above far relational operands.
NOT used with either operator (all ANDS or all ORs) in a statement
merely tests the reverse true ar false value, but the logic is the
same as mentioned before. R^lith a NOT and AND series the first
test should cause the fall through. NOT with OR should cause the
appended statement to be executed as soon as possible and the most
likely true variable placed first. The NOT operator will not farce
the entire statement to be executed with logical variables. Mixed
ANDS and ORs, with ar without NOTs, will force the entire expression
to be calculated before the final result can be analyzed to cause
the execution of ar skip the appended statement. There is little
difference in which condition is tested.

12,1.6 Index Testing in a Loop

When a conditional logical IF is to be placed in a loop, the logical
value part of the expression which does not change may be set out-
side the loop and tested in the loop. 	 In logical IFs, mast of the
time is spent in the evaluation of the expression. This causes an
improvement over the repeated calculations in the loop for each
test. The variable should be declared in a LOGICAL type statement.

64

i ^.

BRANCi^I1^G

12.2. 0 CODE	 COt+!PARI SOfVS

12.2.1 5vri tc!t	 5etti ng	 and Testing

94} ASSIGN 1001	 TO K Bect when most often branched
to statement does not follow
GO T0.

ASSIGtJ	 1002 TO K

f	 --

GO TO	 l:, (1001 , l OO2} ;

95) I=0 Best when most often branched
tv statement does not follow
IF.

I=1

iF	 (I)	 2001,2002,2001

96}! I = 0 Best when branch	 is	 executed.

I^1
•

r

,

IF	 (I.EQ.1)	 CO	 TO	 3001

97) I=0
1

I=1

IF	 (I.NE.1)	 GO	 TO	 3002

98} L-.FALSE. Best when branch	 not taken.

L^.TR[!E.
. '^

IF	 (L)	 GO TO 4001

65

_...	 _._
I

i

,^

1.

BRANCHING

99) I=0

I^l

GO TO (5001),I

100) I^l Best when most often executed
statement does not follow.

^I

^,

3

r	 -

-	 ,

it

1

I^2

GO TO (600i,6002),I

Example 94 shows setting and branching based on a switch. In the
test program, one set and one branch tivere executed tv^o million times
and required only 0.5 percent of the 5.079 minute execution time
far 1.52 seconds when t he statement branched to did not follow the
GO TO statement. Vlhen the branch was next to the target statement,
1.45 percent or 4.42 seconds were taken for the same 2,000,000 passes
through the program. In this example, if K were ASSIGNed]001, most
of the time it would be better to have statement number 1001 not
immediately follow the GO TO statement.

Example 95, using an arithmetic IF to test if a switch is zero or not
took 0.48 percent of the execution time far 1.96 seconds when the
most likely statement number did not follow the IF. When the most
likely statement followed the IF, 1,26 percent, or 3.84 seconds were
used for the two million passes.

Example 96 uses a logical IF statemett to test far a single value
of a flag. This took 0.48 percent of the run time, 1.46 seconds,
with the branch always executed. 4Jhen the opposite condition was
tested as in Example 97, 2.5 seconds (0.82 percent) were used when
the branch was not taken and the fallowing statement executed.

Example 98 shows setting a logical variable to TRUE (represented as
non , zero, .usually one) or false (zero). When the condition was
FALSE, 3,07 percent ar 9.36 seconds of the run time was used. If
the condition is true, 3.38 percent of the run time was used, or
10.30 seconds.

Example 99 uses a computed GO TO to branch to a single statement
number or fall through to the next sequential statement tivhen the
index is not one. The time required far this type of branch was
12.52 seconds or 4.11 percent of the same 50079 CPU minute execution
of the two million passes through the main loop.

66

^	 '

r

BRANCHING

Example 100 uses a computed GO T4. 1^lhen the most likely statement
does not follow the GO 1'0, 3.87 percent (11.79 seconds} was expended
branching. Then the statement which was most often executed branched
to foiiow the GO T4 statement, 4.43 percent (13.50 seconds) was
spent in execution.

12.2.2 Simpie Expression Testinc

101)!	 IF (I.LT.20) GO TO 7001
L=L+1

7001 L=L+1

102) IF (I.GE.20) GO TO 8402
L=L+i

8042 L=L+1

103) IF (L-20) 9001,9002,9443
9003 L^L+1

GO TO 9004

9002 L^L^-1

GO TO 9004

104}!	 IF (I-20) 10001,10002,10003
10001 LTL+1

Gfl TO 10004
10002 L=L+1

GO TO 14404
iD043 L=L+1

G4 T4 10004

105)	 GO TO (i,1,1,7,1,1,1,1,1,1,1,1,1,1,1,1,i,1,1),I
LPL+1

1	

146)	 ASSIGN 12007 TO K
IF (I.LT.20} ASSIGN 12003 TO K
GO TO K,(12441,12043)

12041 L=L+1

12003 L-L^-1

4 ^.

i

^^.

67

Y_	 _ .._.

^•
P

BRANCHIEJG

]07}!	 ASSIGN 13001 TO K
iF' (I.G£.20} ASSIGN 13003 TO K
r,0 TO K,(13001,13003}

13003 L=L+1

i300i LPL+1

A]1 the above examples (1 O1 - 107} were run 2,000,000 times for a
total time of 5.079 minutes CPU time. The variable I varied from
one to 2,000,000 sa it was greater than 20 most of the time. The
examples ail do the equivalent calculations, except for Example 104
which shows the additional testing possible with the arithmetic IF.

Examples 101 and 102 show the best way to conditionally branch on
the value of an expression. Example 101 is better when the con-
dition fai]s through, and used 5.09 seconds, or 1.67 percent of
the run time. 1^lhen the branch was taken, as in Example 102, the
time expended was 6.58 seconds or 2.16 percent.

The arithmetic IF statements were executed in very nearly the same
time, but checked on the 'equal to' condition as well, and did more
work in the same time as the logical IF. Example 103, where the most
often executed statement did follow the testing of the expression,
used a.41 seconds, 7_.76 percent of the step execution time. Example
104 with the most likely statement not following the test, expended
8.26 seconds or 2,71 percent of the run time.

Example 105 is included to show the unorthodox use of a computed GO
T0. If on]y the first of a number of conditions is to be tested,
this would be a possib]e way to code the test. The example took
3.74 percent of the time and was executed for 11.40 seconds. 	 (Also
see the following sub-section coverin4 Index Branching, 12.2.5.}

Examples i06 and 107 use a flag set to determine the object .^f the
branch. This sort of scheme would work best when the assigned GO
TO tivas in the range of an inner loop and the ASSIGN and the LOGICAL
IF were outside that loop. Example 107 would be the best choice. In
this test case, both the ^O TO and the ASSIGN with the logical IF
statement were executed.

12.2.3.D C__ompi^x Expression Testing

AlI of the examples (108 - 134) were executed 40,000,000 times, half
with the conditions failing on the first test and half requiring all
of the expression to be evaluated. 	 This required 12.041 minutes of
CPU time. Each type of testing was performed on relational and
logical operands with the appended statement being a simple GO TD
or adding one to an index. The results, in summary, indicated the
best relational tests are done with a series of simple logical IF
statements. Complex IFs with only AN p s or ORs are significantly
worse. P1ixed AP^DS and ORs are worse yet and NOTs are at the bottom
of the group tested. The relational operands were always slower
than the iogica] operands.

6B

r,.

	

^	 ^	 ^

	

.,:.	 ^	 ^

8+iANC!l I NG

•	 r

The values vied in the tests a^rere such t,.at B, C, D, E, and F urere
not changed from their value of ten. A was 11 or -11. L1 switched
between .TRUE. and ,FALSE. whi]e L2, L3, L4, L5, and L6 were al^^ys
,TRUE..

]2.2.3.1	 'NOT' !dith 'AND' 0 erators :,

]08}	 IF (.NOT.(A.GE.B).AND,.NOT.(A.GE.C),ANi}..NOT.
1{A.GE.D).AND..NOT.(A.GE.E).AND..NOT.(A.GE.F}} r0 TU 14100

109)	 IF (.NOT.(A.GE.B).AND..NOT.(A.GE.C).AND..NOT.	 ^
1(A.GE.D).AND..NOT.(A.GE.E}.AND..NOT.(A.GE.F)) I = I+1	 +

110)!	 IF (.NOT.LI.AND..NOT.L2.AND..NOT.L3.AND..NOT.L4.AND.
T.NOT.LS .AND..NOT.L6) GO TO 14300

111}!	 IF (.NOT.LT.AND..NOT.L2,AND..NOT.L3.ANO..NOT,L4,AN!l. 	 i
1.NOT.LS .AND..NOT.L6) ICI+1

The relational operators were slow, using 4.34 percent (31.35 seconds}
for Example 108 {GO TO as the appended statement) and 4.20 percent
(30.34 seconds for Example 109 (add as the appended statement)}
The logical operands were faster; Examples i10 and]Tl both used
2.4a percent, or 17.62 seconds of the 12.041 minutes CPU run time.

12.2.3.2	 '_f^OT' With 'OR' Operators

112) iF (.NOT.(A.LT.B),OR..NOT.(A.LT.CI.OR..NOT.(A.LT.D).OR.
T.NOT.(A.LT.E).OR..NOT.(A.LT.F)) GO TO 15100

113) IF (.NOT.(A.LT.13).OR..NOT.(A.LT.C).OR..NOT.(A.LT.uj.OR.
1.NOT.(A.LT.E).OR..NOT.(A.LT.F}} ICI+1

114) IF (.NOT.Ll.OR.,NOT.L2.OR..NOT.L3,OR,.NOT.L4.Ok.
7.NOT.L5.OR..NOT.L&} CO TO 15300

115)#	 IF (.NOT.LI.OR..NOT.L2.OR..NOT.L3.OR,.NOT.L4.OR.
7.NOT.L5.OR..NOT.Lb) ICI+1

In these examples the unconditional GO TO as the appended statement
of the relational operators was the quickest, with Example 112, 4.12
percent (29.76 seconds}. The arid, Example 113, 4.29 percent {30.99
Seconds} was gust slightly worse. The logical operators were faster,
and the GO TO was the slower case. Example 114 used 2.53 percent
(18.28 seconds}, and Example 115, with an appended add, used 2.45
percent for 17.70 seconds.

12.2.3.3 Mixed `AND' and 'OR' Operators

Mixed ANDS and ORs faired better than NOTs. No great amount of
execution time difference: was noted if the ANDS and ORs were grouped
together as in Examples llb - 119, or interspersed as in
Examples 120 - 123.

69

^^

i
BRANCHING

116} IF (A.GE.J3.AND.A.GE.C.AND.A.GF.D.OR.A.LT.E.OR,
lA.LT,F) GO TO 16100

117} iF (A.GE.B.AND.A.CE.C.AND.A.GE.D.OR.A.LT.E.OR.
IA.LT.F) I=I+7

118}!	 IF (L1.AND.L2.AND.L3.AND.L4.OR.L5.OR.Lfi) GO TO 16300

119}	 IF {L1.AND.L2.AND,L3.AND.L4.OR.LS.OR.L6) ICI+7

120)	 IF (A.GE.B.AND.A.GE.C.OR,A.GE.D.AND.A.GE.E.OR.
IA.LT.F) GO TO 17100

121}	 IF (A.GE.B,AND.A.r,E.C.OR.A,GE.D.AND.A,GE.E.OR,
IA.LT.I=) I=I^-1

122}!	 IF {L1.AND.L2,OR.L3.AND.L4.OR.L5.AND.L6) GO TO 17300

123}	 1F (L1.AND.L2.OR.L3.AND.L4.OR.LS.AND.L6} I=I+1

1rJith the ANDs and ORs separated by relational operators (Examples
31fi and il7), both took the same time, 3.79 percent for 27.38
seconds of the total step time. The logical operators with the

j	 simple GO TO as the appended statement, Example 118, received 2.09
I percent of the run time for 15.01 seconds. Example 119, logical

operator with an appended add, took 2.10 percent (15.17 seconds}
of the 12.041 minutes run time.

^	 l4ith the ANDs and ORs interspersed (Examples 120 - 123), the
',	 relational operators took 3.7Q^ percent and 3.83 percent (27.01

and 27.67 seconds) with the appended GO T0, 120, and the appended
add, 121, respectively. pith the logical operators, the appended

f	 GO TO was again tine slightly faster. Example 122 used 2.14 percent
(15.46 seconds).	 Example 123, with the add statement, used 2.22
percent for 16.04 seconds of the measurement time.

12.2.3.4 Separate 'AND' and 'OR' Operators

^	 The usage of ANDs or ORs exclusively in a statement was better yet
than mixed operators.

i

124}	 IF (A.GE.B.AND.A,GE.C.AND.A.GE.D.AND.A.GE.E,AND.

3
lA,GE.F} GO TO 18100

125)	 iF (A.GE.J3.AND.A.GE.C,AND.A.GE.D,AND.A.JzE.E,AND.

i
l2fi)	 IF (L1.AND.L2.AND.L3.AND.L4.AND.L5.ANd.L6) GO Ta 18300

127)	 IF {L1.AND.L2.AND.L3.AND.L4.AND.LS.AND.L6} ICI+1

70

i

^,:

BRANCHING

128) IF (A.LT.B.OR.A.LT.C.OR.A.LT.D.OR.A.LT.E.OR.
IA.LT.F) GO TO 19100

129) IF {A.LT.B.OR.A.LT.C.4R.A.LT.D.OR.A.LT.E.OR.
lA.LT.F) I=I+1

130) IF (L1.OR.L2.OR.L3.4R.L4.OR.L5.OR.L6} GO TO 19300

131) IF {L1.4R.L2.OR.L3.OR.L4.OR.L5.OR.L6) I=I^-1

Examples 124 and 125 used 2.22 percent (16.04 seconds} and 2.37
percent (17.12 seconds) far the two relational tests for the simple
ANO case. The OR examples took 2.21 percent (15.96 seconds) for
Example 128, and Exampie 129 took 2.52 percent {18.21 seconds).
The logical operators were as usual faster. Example 126 used 2.44
percent or 14.74 seconds, and Exampie 127 used 2.19 percent ar
15.82 seconds. The logical operands with the ORs took 2.02 per-
cent, or 14.59 seconds for Example 130 and 2.25 percent, ar 16.25
seconds for Example 131 .

12.2.3.5 Separate IF Statements for 'AND'

The best testing for relational operators was achieved by separating
each test into a series of separate IF statements.

132) IF A.GE.B GO TO 20000
IF A.G£.0 GQ TO 20000
IF A.GE.0) GO T4 20000
IF A.GE.E} CO TO 20040
IF (A.GE.F} GO TO 20000
I=I-rl

20000,

133)! IF {A.GE.B} GO TO 21000
IF {A.GE.C) GO TO 21000
IF A.GE,O} GO TO 21400
IF A.GE.E) GO TO 21000
IF {A.GE.F) GO TO 21000
GO 10 21001

21040 I=I^1
21001,

134)	 IF (A.GE.B) GO TO 22000
GO TO 22005

22000 IF {A.GE.C) GO TO 22001
GO TO 22005

22001 I F (A,GE.D) GO TO x2002
Go Ta 2za fl5

22002 IF (A.GE.E) Gfl TO 22003
GO TO 22005

22003 IE (A.GE,F) GO TO 22004
GO TO 22005

22004 I=I^l
22005 ,....

71

^	 f
^	

J^

1	 _...,___.	 _	 i__	 _

;x

..

'.

a
ì 	'

,^

_^

S
{

r'^

1

;^

BRAPICHING

These three examples show the separate tests for AND, OR, and a poor
case of AND respectively. Exam pie 132 is significantly the best
ANDing with 1.49 percent ar 10.76 seconds of the 12.D4i minute exe-
cution time. The separate ORing, as shown in Example 133, used
i.46 percent ar 10.55 seconds of the same total run time. Example
134 shows a bad case of using separate IFs to accomplish an AND,
This required 2.67 percent for 19.29 seconds.

12.2.4 h4u1 ti pi e I F Statements_

135)!	 IF (I.LT.20} GO TO 100
L=^.^-1
L=L-^2
LPL+3
L = L+4
^^=L+5

l00..,..

136)	 IF (I.GE.20} L=L+1
IF (I.GE.20) L=L+2

IF	 I.GE.20 L=L^-4
IF I.GE.2D} LPL+5

These two examples were also executed 2,000,000 times for a total
charge of 5.079 minutes for the measurement step. The variable I
ranged from one to 2,OOO,D00 so that the addition statements were
executed most of the time. Example 135 was better with 5.74 percent,
or 17.49 seconds.	 Example 136 used almost twice the time with 10.15
percent for 30.95 seconds. 11hi1e these two examples may laoEc ridic-
ulous, programs which are often and carelessly modified may contain
same symptoms of the above examples,

12.2.5	 index Branching

i37)	 IF (J.Eq.I) GO TO 25]01
IF {J.EQ.2) GO TO 25102
IF J.EQ.3) CO TO 25103
IF (J.EQ.4} GC TO 25104

e
25101

^51D2 ..:....

25103

25104

r

i

'.

72

Y

^^_ r

i

l

	
i	 --	 .

BRANCHiPdr

138)! IF (J-1) 25240,25201,25210
25210 IF J-2 25202,25202,25220
25220 IF (J-3) 25203,25203,25230
25230 IF (J»4) 25204,25204,25240
25240

•	 r'25201	 _

.	 25202 ,......

25203,,

25204

139} GO TO (25301,25302,25303,25304}, J

25307
•	 ^

25302

25303 ..:....

25304 .,.....	 {
-^

140} IF (J.EQ.7) GO TO 26101
iF (J.EQ.2) GO TO 26102

IF (J.EQ.3) GO TO 26103
IF (J.EQ.4 GO TO 26104
IF (J.EQ.S) GO TO 26105
IF (J.EQ.6) GO TO 26106	 ^ j

26101
i

,

	

'	 26102

.

	

_	 26103,

I

26104

i
26105	 ^

.

26106	 ,

y3

,`	 +

V
.
j.....	 _	

^"
^,^w,

^,.

BRAHCHINC

141}! IF (J-1)	 26260,26201,26210
26210 IF (J-2	 26202,26202,26220
26220 IF J-3	 252Q3,25203,26230
25230 IF J-4	 26204,26204,26240
25240 IF J-5)	 26205,26205,26250
26250 IF (^-6)	 26286,26206,26250
26260 .,.....

26201

26202 ...,...

26203

26204

26205

26205

142) GO T q	(26307,25302,26303,263b4,26305,26306},	 J

26301

25302

26303

26304

26305

26306.......
143) IF (J.EQ.7}	 GQ	 TO	 27101

IF (J.EQ.2)	 GO TO	 27102
IF J.EQ.3)	 GO TO 27103
IF J.EQ.4)	 GO TO 27104
IF ^J.EQ.5)	 GO	 TO	 27105
IF (J.EQ.6}	 GO T q	27106
iF (JoEQ.7}	 GO TO	 27107
IF (J.EQ.B)	 GO TO 27108

74

_ _	 ..	 -.

4 .Mi^

F

i

1

^,

J^

^._

^	 ^,

g^ANCHr^a

27107,..

27102

27103

27104 e......

27705

271os..:....

27107

27108 .,.....

144) IF (J-1) 27280,27201,27210
27270 IF (J-2) 27202,27202,27220
27220 IF J-3) 27203,27203,27230
27230 IF J-4) 272f4,27204,27240
27240 IF J-5) 272)5,27205,27250
27250 IF J-6) 27^Ob,27206,272.60
27260 IF (J-7) 27207,27207,27270
27270 IF J-8 27208,27208,27280
z728a ,......

6

27203

27202

27203
e
.

27204 ...,...

27205 ...,...

75

r

,^

1

1

i

i

^.

^ ^^

r

i

BRANCHING

2720fi

27207

27203

l45}!	 GO TO (27301,27302,27303,27304,27305,27306,27307,27308}, J

27301 .,.....

27302

27303

27304

27305

27306 .. , , .. .

27307

27308

Examples l37 to 139 were executed 1.8 million times fora total
time of 9.149 minutes. Example 137 took 10.91 percent of that time
for 59.89 seconds. The multiple arithmetic IF statements in Example
138 took only 8.40 percent and 46.11 seconds and are always better
than multiple logical TF statements.	 Example 13Q used 61.15 seconds
or 11.14 percent of the same run time.

Examples ^-#0 to 142 executed each type of branch, in groups of six,
40,000 times. This required 3.999 minutes for the measurement step.
The computed GO TO (Example 142) is still the worst with 31.67
seconds (.13.20 percent). 	 Example 140 was the next best and took
29.10 seconds (12.13 percent}. Example 141 used 27.16 seconds
(11.32 percent}.

76

i

,^
:i

s

^^

Examples 743 through 745 test for eight specific values, and the
computed GO TO statement is now the best (Example 1^l5, 11.18 per- 	 1
cent, 26.36 seconds}. Each of the examples 143 - 145 a^ras executed
300,400 times for a total test program execution time of 3.929
minutes. The arithmetic IFs (Example 744, 14.22 percent, 33.52
seconds) are still better than the logical IFs (Example 143, 15.77

'	 percent, 37,78 seconds}.
1

The savings are more dramatic as the break at seven tests is moved
away from. Examples 95, 96, 97, and 1D0 show the result of one or 	 j
two comparisons. A test was also run with ten index values. The 	 ^
240,4D0 executions took 16.370 minutes for the test program. The 	 4s	 1

logical I^' statements required 3.32 percent, or 32.G1 seconds. The
arithmetic IFs used 2.86 percent or 28.i0 seconds. Significantly
better was the computed G0 TD which required 1.93 percent of the
run time for 1x.96 seconds.

12.2.G Expression Reduction of Complex Logical IF .,tatements

There are several vrays to evaluate logical IFs which test conditions.
ThA simplest condition setting, using the rules outlined in the 	 ,^
opening paragraphs of this section, should be followed.

746)	 IF (.NOT.(L,GT.hh},ANO..PlOT.(I.GT.J}) K=.FALSE.

This example is the vrorst way to set K and took 5.52 percent, or 	 '^	 ^
32.39 seconds, of the 9.780 minute CPU time far 1.8 million exe-	 ^	 ^
cutions, The examples 746 through 152 vrere also executed the same
number of times, and the total run time was also 9.870 minutes.
The values of L and I in each example were negative to start with
and reversed each pass through the loop so there was no preferred 	 '
order to influence the tests. Example 146 evaluated the entire
expression and required twa NOTs.

147}	 IF r.NOT.(L.GT.PI,DR.I.GT.J}} K^.FALSE.

This tools 5.15 percent of the run Time (30.22 SeCOnd S), The saving
was achieved by only one PJ4T operator being used. 	 1

148)	 IF (L,GT.M) G4 TO 21001	 `.
IF (I,GT.J) GO TO 21001

-	 G0 TO 21002
'	 23 441 K^ .TRUE.

21002 ,.......

Here the two conditions are split apart, and the time is reduced to
13.14 seconds, 2.24 percent of the 9.870 minute run time.

149}	 IF (L.LE.M) GO TO 22D01
GO TO 22402

220'07 IF (I,LE.J) K^.FALSE.
22002 .,......

77	 ^

{	 ^^

!	 _	 _.	 _.	 ^'^_`	
^,^

r	
^	 ^

^^

1

BRANCHIraG

Example 149 requires somewhat less branching and shows a minimal
improvement over Example 148. This test took 2.19 percent for
12.85 seconds.

150)	 IF (L.GT.M.OR.I.GT.d) K^.TRUE.

Example 150 combines the two statements and does not use Ara p s or
NOTs. This took 2.18 percent of the run time for 12.79 seconds.

151}±	 IF (L.LE.M.AN p .I,LE,J} K^.FALSE.

This, the best {2.07 percent, 12,14 seconds), is the pref erred method.

'	 l^hen the values are not changed in the 1aop, some terms of a logical
expression may be calculated outside the loop at a significant saving.

152)	 L(fGICAL K1

K1 = L.EQ.ri.AND.I.LE.d

D0^23D01 N^1,NN

IF^{K1} K=.FALSE.

Example 152 required 9.56 seconds (1.63 percent} of the l.8 million
executions for the I^ statement alone. The combination of bath
statements was also measured at 29.10 seconds, or 4.96 percent.

12.3.0 NOti^a THE STATEMENTS ARE COMPILED

12.3.1 Machine Language Branching

All conditional ranching statements result in the setting of two
bits in the program status work (PSI^i), called the condition code,
and testing their value. There are 16 test combinations of the four
passible condition code values which may be tested for (zero to 15).
A conditional branch checks which bits are on and takes action from
there. If no bits are to be checked, the branch is never taken, and
the next sequential instruction is always executed. An unconditional
branch to the specified address is taken when the check asks all
combinations to be checked. All other combinations of bits specified
in the conditional branch must match the condition code value in
the PStid field before the branch is taken, If the condition coda does
not match the combination of bits, instruction processing 'fall$
through' to the next instruction in sequence.

78

{

,,.^'
f

BRANCHihr

12.3.2 5imp ie GO TO Statement

The unconditional GO TO statement is a single unconditional branch
instruction to the correct location. This requires four bytes.

12.3.3 ASSIGN and Assigned C:0 TO Statements

Cach of these statements use eight bytes. The A55iGPa statement Toads
the address of the statement tivhich is specified by its statement
number to a register and then stores it in the variable location
named. The assigned GO TO statement loads the address for the branch
frnm the variable location to a register and then uses an uncondi-
tional branch to the address in the register.

12.3.4 Computed CO TO Statement

The processing of a computed GO TO statement first checks the value
of the index to see if its value exceeds the number of executable
statement numbers in the FORTRAN statement. The constant of the
number of statement numbers in the list is loaded into a register
as is the index. These are compared, and the condition code set.
The index is then always shifted left two places, causing a multip]y
by four, for use when the index is acceptable. The conditional
branch is set to branch to the statement following the computed GO
70 statement (fall through when the index is greater than the num-
ber of statement numbers in the list. Assuming the index is in the
prap^r range, the modified index is used to soace down the proper
number of entries into a table which contains the addresses of the
statements named in the list by their statement numbers. Bach address
entry is four bytes long--the reason for the shift. ^Jhen the index
is one, the address four bytes from the beginning of the list is
used; when the value is two, the address eight bytes down is used,
etc. 4dhen the index is taro, the address at the start of the list
is used. This first address points to the statement which follo^^^s
the computed GO TD in the FORTRAN source. No checking is done for
a negative index, and it probably will cause an addressing error.
The processing required for this statement is somewhat involved and
accounts far its sl oavness ti^rhen the range of the i ndex i s smal T . 	 It
has a fixed number of instructions (2^ bytes} which are executed no
matter how long the list of statement numbers is. This is advan-
tageous when many values of the index are passible. The length of
the address list is four bytes plus four times the number of entries
in the computed GO TO list. This list is created far every computed
GO TO even if the list is the same in more than one statement.

12.3.5 Arithmetic IF Statement

After the expression which is enclosed in parentheses is evaluated,
the condition code is tested according to the pattern of :he state-
ment numbers,.

79

1
v

^. ^

$RANCxIN^

The order in which the condition code is tested depends on the
statements which falloa^^ the arithmetic IF. 4lhen all the statement
numbers are different and one follows the IF statement, that con-
dition is not checked, Otherwise the checking procedure follows
from left to right. The fallowing illustrat i on should make the
point clear:

IF	 (I^1}	 1,2,3 IF (I-l) 1,2,3 IF	 (I-1} 1,2,3
l 2 3
2 l 2
3 3 1

"	 test and	 branch on test and branch on test and branch on
equal	 to or greater less and greater than; less	 than and equal
than;	 fall	 through ''all through on equal to;	 fall through	 ti^^hen
for less	 than to greater than

Figure	 l9	 - Arithmetic IF Statement Ordering

4Jhen one of the named statement numbers follows, a conditional branch
is used to check all three possible condition code settings. ^Jhen
two of the statements numbers are the same, the checking is again
order dependent, but the position vrith the repeated statement num-
hers encountered first, from right to left, has the condition code
test altered to reflect the dual code. If the statement which fol-
lot^s the IF is numbered as one of the targets from the IF, that
condition codes} is not checked and becomes the fall through con-
ditian.

For these .reasons it is best to avoid placing the most often branched
to statement after the IF statement. The condition should also be
set up so that the most often branched to statement number is the
one which occurs first in the statement number list that does not
follow the IF statement.

The setting of the condition code may be done through the arithmetic
statements. In the three illustrations shown above, the subtraction
will set the condition code. This is true for any expression. 	 If
a single variable is to be checked, a special instruction whose main
purpose is to set the condition code is used. This instruction uses
a register and does not access memory (although the initial load
of the rcyister may obtain the value from storage}. The condition
code checking branches are then executed, no matter how the condition
code 4^ras set.

12.3.6.0 Logical IF Statement

12.3.6.1	 Single Expression

The logic is the same for relational operators or logical variables
when only ANDS or only ORs are used in a single expression. ANDS,
for relational operators, test on the reverse condition from that
coded. The branch from each test is to the statement which followed
the IF in the FORTRAN source code. Only when all the conditions
are met is the appended statement executed. This logic also holds
true for logical variables preceded with NOT.

80

'ii

i

^^

x^1.

ii

;^

^^

,- .^

BRANCHING

As each relational operator is evaluated, the condition code is
set and tested. If the condition code testing is true, the rest
of the testing is skipped and the following statement executed.
111hen the appended statement is a simple GO T0, the final test in the
series is as coded and the appended Gil Tfl executed. The following
statement is then 'fallen through' from the unsuccessful last test.

logical operands use the same instruction which is used for con-
trolling short running or simple DO loops. First a register is
cleared (to zero}, and the value to be tested is placed in another
register. Tice test is done (not using the condition code); and 4^1hen
the index is zero (non-zero fnr NOT}, the next statement is hranched
to. fJhen the index is non-zero (zero for NOT), the next condition
is tested. blhen the appended statement is a simple rO T0, the final
test is reversed and causes the appended GO Tfl to be tafcen.

12.3.6.2 P^ultiple Expressions

Multiple ORs in an IF statement try to branch to the appended state-
ment after each test of the relational operators. irlhen the appended
statement is an unconditional GO T0, the Branch is to the specified
statement rather than a separate GO TO statement. l^Jhen the appended
statement is not a GO T0, the last test is reversed and tfje statement
following the IF in the FORTRAN source is branched to if the condition
code is matched, skipping the appended statement. Ordinarily the
condition code is tested as written in the FORTRAN program. Logical
operators with a string of ORs use the same logic as described for
relational operators, f3ut the instructions are those as described for
AND operators. A fdOT prefix only changes the instruction used for
testing the index and not the logic flow.

Using NOT with the relational aper• atars forces the entire expression
to fie evaluated before the appended statement is executed or skipped.
The relational operator is evaluated and a zero or one loaded into a
register to retard the true or false result, respectively, of each
relational test. The NOT operator causes the resulting value of the
relational test to have one subtracted from the value and then the
number reversed (ls complemented) in the register. The results of
these two operations are ANDed or ORed together and the final result
tested. This last test, to execute the appended statement or skip
its execution, uses the same instructions as the 1oclical variable
does. 4dhen the appended statement is a simple GO T0, the test will
branch to the named statement number when the final truth value is
true. The branch is to skip the appended statement with a false
condition in any other case.

Compound and mixed ANDS and ORs with logical variable operands use
the machine language instructions. The final result for logical
variables is evaluated as outlined previously. 	 r^nT is evaluated with
the same t4^10 instructions used far relational operators, without
using the condition code testing,

81

r
Y

,,,^ .

u

13 .0
	

INPU T /auTPUr

13.1	 S:JMMRRY

Passing information between external storage and the processing
unit is the sio4^lest operation of a computer program. Significant
reductions in time (CPU, I/0, as well as wall clock) can be realized
if a little care and forethought is exercised. Data which is inter-

'	 mediate, used only by programs and not viewed by human readers,	 ^
should be kept in internal form, i.e., not formatted, using either
FORTRAN or FTIO, described in Appendix D. Data to be presented far

'	 human consumption should be kept as simple as possible, the list of	 l
variables short, and formatting instructions explic i t. Unformatted
direct access, or random access I/O should be used only when required.	 ^•

.	 The advantages of DAIO and FORTXDAM (Appendix C) should be explored.

13.2.0 CODS COP9PARI50N5

The follo^ving tests, unless otherwise noted, were made by placing
a READ statement in a loop which was executed z5 times. The READ
consistently transferred the equivalent of an array 20 by 1000 of
the same floating point numbers. Test results with llRITE statements
show essentia]Iy the same results, with some changes in the time
spent formatting the data.

13.2.1.0 Formatted I/O

13.2,1.1	 Element Transfer

153) DIMENSION A{20,1000}

,

DO 10 N^1,25
DO i0 I-1,20
DO 10 J=1,1000

10 READ (10,2A) A{I,J}
zo FoRMAT (F4.1}

In this example each element of the array is read individually, 	 i
and the I/O routines are called far each eier^ent. This required
7.190 minutes CPU time and 9.453 minutes I/O time.

`	 13.2.1.2 Raw Transfer by Implied hoop

154) DIMENSION A(20,1000}

f

DO 10 N=1,25
DO 10 I=1,1000

10 REAb (10,20) (A(J,I),J^1,20}
20 FORMAT (20F4.i}

a3	 Y1^^C1^D1~NG PAGla BLANg N(3T ^^

,,,•^ ^ ^r ^.

INPUT/OUTPUT

t

w

The use of an implied loop reduced the calls to the library routines
and took half the CPU time, 3,189 minutes and saved over 15 times
the I/O charges, D. 538 minutes.

13.2,1.3 Row Transfer by Subroutine

155)?	 DIMENSION A(24},AA(2D,1D00)

DO 10 N^1,25
DO i0 I-1,1000

10 READ (10,20) A
CALL FMOVE(AA(1,I),80,A}

20 FORMAT {24F4.1)

The amount of overhead involved with the implied DO loop is again
reduced, and the intent of the READ clearer to the library functions.
The call to FMOVE makes the examples exactly alike and required 0.16
seconds CPU time. Toe same number of calls to the I/O support rou-
tines were made, but this method used only 2.700, excluding FMOVE,
CPU minutes and 0.535 I/O time. A savings of 6 percent in CPU time
and no change (<i percent) in the I/O time over the implied loop.

13.2.1.4 Array Transfer by Name

l56)	 DIMENSION A{20,1040)

DO 10 N^1,25
10 READ {1D,20} A
20 FORMAT {20F4.1)

This simplest setup uses 2.765 minutes of CPIJ time and D.538 I/D
minutes. These are essentially the same as before but with less
coding, and all the data has been placed in the proper location in
the array. The slight increase in CPU tame is probably attributed
to the generation of the second subscrip^; being less efficient when
implied.	 It should be specified.

The double implied loop is slower as shown in Example 5.

13.2.1.5 Array Transfer by Implied Loop

157}	 DIMENSION A{20,1000)

DO 10 N=1,25
10 READ (10,20} ((A(I,^]),I=1,2D),^1=1,1000)
20 FORMAT (20F4,1)

r

:4
l

84

f.^

..^

'^
v-

^1,

w ̂ ;.

INPUT/OUTPUT

This used 3.161 minutes CPU time and 0.543 I/O minutes.

13.2.1.6 Effect of JCL

The DCB parameters coded on the DD statement for the file affect
the I/O times as shown in the following example. Examples 153
through 157 were run using:

DCS=(REGFM=FB,LRECL=80,BLKSIZE^3200)

Example 158 uses the same code as Example 156 but has:

l58}	 DC6=(RECFM=F,BLKSIZE=80)

The CPU time used was 2.852 minutes, a 3 percent increase, but the
I/O time was increased by 13.208 minutes, a 2400 percent rise. A11
I/O should be blocked if possible. In this case the additional
memory required to contain the buffer was 6240 bytes, not a consid-
erable amount.

13.2.2.0 Unformatted I,'0

Examples 165 and 156 mere also run without formatting and showed
dramatic savings as illustrated below in Examples l59 and 160.
Example 159 has the call to FMOVE to make the results of both exam-
ples exactly the same. The ca11 accounted far 1.4 CPU seconds.

13.2.7..1	 Row Transfer by Subroutine

159)	 DIMENSION A(20},AA(20,1000)

DO 10 N^1,25
DO 10 I=1,1000
READ (l 0} A

i0 CALL FMOVE (AA(l,I),80,A)

13.2.2.2 Array Transfer by Name

l60}!	 DIMENSION A(20,1000)

DO 10 N^1,25
10 READ (10) A

Example l59 required 0.265 total CPU rninuies and 0.537 minutes 1/0
time, saving ll times the CPU as Example 155 and ll percent of the
I/O time. Example 160 displayed more spectacular savings. CPt^ time
was reduced to 0.097 minutes, a saving of 96 percent (ar 30 times
faster), and the I/O time of 0.498 minutes is a reduction of 14
percent.

85

i

6

Vie"
i	 .^

INPUT/t?UTPUT

13.2.3 Simplifying I/O Lists

The same savings realized by reading in an array with a single item
in the I/O list can also be used to read in various finds of data.
The data is read into an array and E{^UIVALENCEd to the proper vari-
ables as sho^,^: in Examples 161 and 162.

	

761)	 Long I/O ! ist

DO 10 N-1,25
DO l0 I^1 ,1000

	

10	 READ {10,20}A1,Bl,C1,D7,El,Fi ,A2,B2,C2,02,E2,F2,
lA3,B3,C3,D3,E3,F3,A4,B4,C4,D4,E4,F4

	

20	 FORMAT (F4.1,A4,A3,Z3,1X,I3,A2,r4.1,A4,A3,Z3,
1] X, I3,A2,F4,7 ,A4 , A:3,Z3,1 X, I3,A2 , F4.i ,A4,A3,
2Z3,1X,I3,A2}

162}! Array for Long I/O List

DIMENSION A(24)
EQUIVALENCE (A(1},A7),(A(2},B1},(A(3),C7),(A(4),D1},{A(5),E1},

1(A 6),Fi),{A(7),A2),{A 8),82),(A(9),C2 ,{A(i0},D2},(A{11},E2),
2{A 12),F2),{A(i3},A3},^A 74),B3},(Aj15^,C3},{A(76},D3},{A{l7},E3},
3(A 18 ,F3},(A(T9),A4),(A^20),I34},(A;21},C4),{A(22),04),
4{A^23^,E4},(A(24),F4)

DO 10 N^1,25
DO 10 I=1,1000

	

10	 READ (70,20} A

	

20	 FORMAT (F4.1,A4,A3,Z3,1X,I3,A2,F4.1,A4,A3,Z3,TX,i3,A2,
1F4.1,A4,A3,Z3,1X,I3,A2,F4.1,A4,A3,Z3,1X,I3,A2)

Example 161 took 2,199 CPU minutes whereas Example T62 used 1.756
minutes, saving 0.443 minutes or 20 aercent. The I/O time was
identical.

13.2.4 Variable or Execution Time FormGts

Variable formats are useful but can be expensive. The following
is the same as Example 161 but uses a dynamic format.

	

163)	 DIMENSION A(20,1000)
REAL^8 FMT 12}
DATA FMT/' F4.1,A4',',A3,Z3,1','X,I3,A2,','F4.1,A4,',
1'A3,7.3,1X',',I3,A.2,F,'4.1,ba,A','3,73,1X,','I3,?^2,F4',
2'.1,Aa,A3',',7.3,7X,I','3,A2)`/

DO 10 N^1 ,25
10 READ {10,FMT)Ai,67,Cl,Dl,Ei,Fi,A2,82,C2,D2,E2,F2

1A3,B3,C3,D3,E3,F3,A4,B4,C4,D4,E4,F4

86

•	 1
i

-, ,

}

- ^^,^ .

__

[
^^

i l

_	
i	 4.

_	 ..	 .

,.,

INPUT/OUTPUT

Example 163 took 3.550 CPU minutes and 0,558 I/O minutes compared to
2,199 and 0.540 far Example 161. This is an increase of 38 percent.

164)	 DIMENSION A(20,TDOD)
DO 10 N^7,25
DO 10 I^1,1D00	 ^^

l0 CALL FREAD (A(1,I),10,80,& 99,&98)

This required D.143 minutes CPU time and 0.531 minutes I/D time, a	 ^ /^
.	 savings of 33 percent CPU over Example 159. FTIO, which performs

unformatted I/0, is described in Appendix D. 	 ^

13.2.5 Direct Access I/O	 --

Direct access I/O was tested •:n a program which wrote 1000 records, 	 .
each 7200 bytes, to each of four different data sets. The records 	 '
were checked far accuracy by comparing the first element read with
the calculated value, 	 .-^

Three I/ O packages were tested: FORTRAN, DAIO (a locally written
replacement package), and FORTXDAM (an IBM written asynchronous
I/O package, see Appendix E). DAIO provides the same direct access
I/O functions as FORTRAN, see Appendix D. FORTXDAP4 enables the user
to start an I/O operation and then resume his program processing.
The calling program must pause when the data being read is to be
used, ar the data being written is to be changed, until the I/O
operation is complete. The test program was altered to go round-
robin between the four files and to keep count of the number of times
calculations could have been done while waiting fnr I/O operations
to co^np^ete. Each file maintained its own buffer as a program array
for reading and writing. The results of the tests are shown below.

CPU
MTN

l65) FORTRAN	 2.341
l66	 DAIO	 0.707
167	 FORTXDAM	 6.257

I /o
	

MEMORY USED
MIN
	

°/ DATA SET WAIT	 BYTES

	10.799	 82.40
	

1 46K

	

7.236	 93.25
	

78K

	

10.389	 27.30
	

i$K

Figure 20 - Direct Access I/O Comparison

The data set wait figure indicates the percent of time the program
was waiting on a busy device.

For general purpose use, DAIO shows significantly better I/O time
and remarkably better CPU time than FORTRAN. FORTXDAM was marginally
better at I/D than FORTRAN, 3 percent, but was able to do over 2.62
CPU minutes of other work. The PPE reports show 57 percent of the
CPU time spent in FORTXDAM and 42 percent in the maid program. The
wait counters in the program totalled 10,123,841 for u^th read and
write for all four files indicating the number of times additional
CPU work could have been done.

87

}
r

.. ^	 - _ _ -	 -	 _.- -	 _

t	 .^,^

INPUT/ouTPiJT

13.3 HOW THE STATEME^V'^5 A_RE_ COM PFLED

Any I/O request causes a tail to IBCOM#, an entry in IHCECOi^IH, which
is the extended communications handler. Each item in the I/O list
generates a call, hence, reducing the number of variables in the I/O
list causes less CPU time to be used. IHCECOMH processes infor-
motion between the user's program and the I/O device by utilizing
other I/O package prngrams to call the system and data management
services. Encoded with each call to IHCECOMH is information about
the options in use, END= or ERR=, the buffer location, and memory
location, descriptions and formatting, if required. iHCEFI05 (ex-

	

.=	 tended FORTRAN input/output system) is the interface module to the
system supplied data management routines for sequential reading,
writing, and file positioning.	 iHCEDIOS (extended direct access
input/output system) does the same job as iHCEFIOS for direct access
rata transfer. If formatting is r^yuired, IHCFCVTH translates the
data and moves it, otherwise IHCECOMH moves the data. Other modules
used are IHCERRM, the error monitor, which is called when an error
qccurs to print the messages. It also determines what Options for
recovery have been set by looking in IHCUOPT (user option table}.
IHCEFNTH is used to patch up arithmetic errors such as overflow,

: underflow, and divide checks. If trace back information is to be
printed, IHCETRCH prints this information. The table of default
unit information for READ, PRINT, and PUNCH statements as well as
file descriptor information and buffer addresses are held in
IHCUATBf.	 (unit assignment table).

Formatting time can be considerable. Print space which is not used
should be skipped by using the X format specification, not wide format
fields.	 in order, by the quickest formatting conversion routine,
first are alphameric, hexadecimal, logical, integer and floating
point (F, E, D, G, and C all nearly the same). Variable formats
require more time for processing during execution for data to be
transferred. Each time an i/0 statement is executed the format
is verified and translated to internal code.

The breakdown of time spent in each module for the different exam-

	

:	 pies is given on the next page.

w

88

^,'^
1

^	 ^=

..,	 ...	 ^	 -_ ,... _ F

Secands Seconds Seconds	 Seconds Seconds P1inutes Minutes f
Example ^1RIN IHCECOf^1H	 IHCFCVTH	 IHCEFIOS IHCFIOS2 CPU I/0* ^

153 4 131 134 11 1 31 7.7 90 9.453

l54 4 50 729 6 2 3.198 0.538

155 0 23 128 5 2 2.722 0.535

156 0 21 135 4 2 2.765 0.538

157 7 46 130 4 2 3.161 0.543
'^

158 0 15 104 5 l 2.852 13.498

159 0 4 0 6 2 0.265 0.537

1.60 0 8 0 2 2 0.097 0.498

161 1 7i 52 6 2 2.199 0.540

162 0 44 53 5 2 1.765 0.540 f'^

7 b:1 1 7 52 52 1 2 3.550 0.55$

154 0	 FREAO = 6 0 0 0 0.143 0.531

Seconds	 Seconds Seconds Clinutes t1inutes ! Data
VAIN I/O Handler System Routines CPU 110 Set	 ldait ^;	 ,

i65	 FORTRAN 37 60 36 2.341 10.799 82.40

166	 DAIO 28 13 0 0.707 7,236 93.25 t.,

l67	 FORTXDAM 160 214 1 6.237 10.389 27.80

* Adjusted to show only I/O charges to input tape.	 The time to write the measurement

a
^

tape has been subtracted fram the reported time. c	 i
--^

^.

Figure 2l - S^1mmary of I/O Examples -°

^..
^s ^ ^ ^ U

^^

INPUT/OUTPUT

The direct access routines read a specified record from direct access
storage. The record may be read or written in any order and do
not require spacing over the previous records as would have to be
done with sequential operations. At the front of each record is
identifying information. This is used to verify that the proper
record is being read or written and insure that the entire record
is transferred. FORTRAN and FORTXDAM require that the entire data
set is preformatted. FORTRAN does this automatically, and FORTXDAM
requires a special call to be made by the user. DAIO gains some
of its saving: by only formatting those records actually used.

FORTXDANi should have the data sets it accesses on separate channels
so it is physically possible to access the data sets simultaneously
without interfering with other accesses. This is done by coding
SEP=ddname in the UNIT field of the DD statement. After the new
data sets have been formatted, 1/0 operations are started. If plan-
ning has been done carefully, then the calling program should be
able to do other processing while waiting for the I/O operation to
be completed, For read operations the data is not available until
the completion of the request, and far writing, the data should not
be altered. Sdhen all other work is done, the state of the I/O
request may be tested or the calling program placed in a wait state
until the completion of the I/O request. The main program will be
restarted automatically in the latter cased faith some thought and
programming utilizing double buffering, it is possible to overlap
quite a bit and realize savings in elapsed time.

The DCB parameters specified far any kind of data set may affect the
amount of time charged to the execution of the program. The buffers
are used as an intermediate storage location between the system I/O
functions and the user's program. The user must allow space far
the buffers in his region. FORTRAN does no overlapped I/O and there-
fore uses only one buffer, of the two default, at a time. BUFNO-1
coded in the DCB suhparameters will save the number of bytes used
by the second buffer. All data sets should be blocked if possible
by including the letter B in the RECFNi field and adding the LRECL
subparameter. LRECL specifies the length of the logical record for
fixed length records {F in the RECF^i field) ar the longest passible
logical record for variable length records {V in the RECFM field).
The BLKSIZE specifies the amount of space to 6e allocated for buf-
fers and the size of the physical records. It is the number of
physical retards transferred which determines the I/O charges. The
larger the blocking factor, BLKSIZE:LRECL, the less I/O time charged,
the more region used, The largest block size for 231 disks is 729
and 327fi7 for tape. The BLKSIZE choosen should be a compromise be-
tween the frequer^y of i/O requests to the data set and the amount
of^region requir^:d. l^hen an I/O request is made, the data manage-
ment routines check to determine if the logical record is available
in the buffer.	 If it is not, a physical I/O operation for a physical
block is made. All subsequent logical I/O requests can be filled
from memory until that buffer is exhausted, The lar g er buffer
requires less physical I/O time.

90

.,,,
3

y^.

^l

14.4	 rLOATING POINT ARITHMETIC

The relationship between the structure of floating point arithmetic and the way a
programmer codes an algorithm is at best oioude^3. There are two main reasons
why this is so:

1. Even with the "most sensible" of definitions for floating point arithmetic
operations, the usual laws of real arithmetic fail to hold in many cases.

2. Most floating point architectures found in real computers da not conform
completely tv the "most sensible" definitions.

We shall concentrate our discussion on point one since the situation is bad enough
in this case. We shall content ourselves with one example of how point two causes
problems,

Let us begin with some terminology. We shall assume that our computer words
are composed of 32 bits; these bits are ,lumbered zero through 31. The usual
representation of a floating point number is as follows:

j

^..

'^i

^^	 •--- e —^	 •— f --•-

Q	 1.....7	 8....31

i.e, the zero bit contains the sign; bits one through seven contain anon-negative
binary represented integer a called the exponent such that Oc e ^ 127; bits eight
through 31 contain anon-negativo binary represented integer f called the fraction
such that 0 ^ f c 2 zs ^-]..

Such a computer word represents the real number whose magnitude is

16e^fi4	 ^

166

Note that as the definition stands, the representation of a given real number is
not unique, e.g.

9i

^, f

_,;-	 ^.

'	 FlORTING POINT ARITHM^TIG	 r

(i) 0 = 16 ^-64 ^	 ^

I66 	^'^,

for any permissible value of e
i

(ii} 16e-64 	f	 = I6(c-^) -64 I6f	
^

i66 	166	 I

^	 ,_,

far any e, a-^, f, ^.Of in their respective permissible ranges. 	
1

;^

This problem is eliminated by the stipulation that the representation be nor-
'	 malized, i. e, ,

i

(i) 0 is represented by e = f = 0 (the sign convention varies on different
machines}

"1

i

(ii) I6 16 c f C 1.6 6 or l c f G I	 :^
z6	 I66

I

This means that the hexadecimal digit formed by bits eight through ^.^. is non- 	 s
zero far anon-zeta number.

i

Note that while hexadecimal and binary axithmeiac seem to be equivalent, once
normalization enters the picture this is definitely not so; binary normalization
demands that bit eight = ^, i, e, ,

1	 f
— c — C I.
2	 I66

The ramificaiaons of this difference in normalization will not be pursued since
it is not applicable to our discussion.

92

	

t	 f	 ^^

	

wy7	

I4
.^

i	 _	 _	

..	 _	 _	 __	 __

FLOATING FU[NT AR[Ti^M^TIC

Floating point numbers shall either be represented as six significant hexadecimal
digits or as an exponent-fraction pair (e,f}. The floating point sum of x and y
will be denoted by x plus y to distinguish it from x + y, the real arithmetic sum.
Similarly for x - y we write x minus y, for x * y write x mul y, and finally for
x / y write x div y.

In order to introduce our "most sensible" definitions of arithmetic operators,
s	 we need one more definition:

Given any non-negative real number x (a portion of any floating point nur^ber}
we define rd(x) as follows

If 16 ^"1 C x < 1 fe,

xd(x) w 16'6 ^ greatest integer less than or equal to (16 6-^ x + 1/2)

rd(0) = 0

If x C 0, rd(+x) _ - rd{-x)

What this amounts to is that rd(x) is "x rounded to six hexadecimal digits".

With these definitions we can new define:

For floating point numbers x, y:

x plus y = rd(x+y)
(1}	 x minus y = rd(x-y)

x mul y = rd (x^y)
x div y = rd(x/Y)

whenever the appropriate real arithmetic ope: ation leads to a number "roundable"
to a floating point number.

There are two ways this condition can be violated. Let z be the result of real
arithmetic operation. Overflow occurs if Ez I ^ 16 63 (^.-16' 6) and underflaw occurs
when ^ z ^ ^ 0 but ^ z ^ C 18-65 . The actual result of such operations on a given

	

w	 machine will depend on the hardware and the setting of specified "masking bits"
in a certain location. I'or our puxposes, such results are undefined. Henceforth
we assume that no aperations lead to overflow or underflow unless specifically
mentioned.

Besides the algebraic "closure" property which we have just seen does not held,
real arithmetic assumes five basic laws:

r

^^

^3

^	 ..

r

Ae'

i

^.
I

1

^.

FLOATING POIiVT A311THMETIC

associativity	 x + (y + z) _ (x + y) + z
x * (y *z)= (x * y) ^ z

commutativity	 x ^- y = y + x
x^ y=y^ x

distributivity	 x * (y + z) = x ^ y + x ^ z

e:d.stence of	 for each x, there is a unique -x such that
additive inverse	 x ^- (-x) = 0

I
existence of	 for each x ^ 0 there is a unique — such that
multiplicative inverse x ^ 1 = 1	 x

x
The law of existence of additive inverse implies the only solution to x + y =xis
y = 0. The law of existence of multiplicative inverse implies the only solution
tox^y=x{x#0)isy=1.

Let us examine each of these laws for floating paint arithmetic.

We can dispense with commutativity quickly since it is the only one of the five
laws to hold, viz,

x plus y = rd (x + y) = rd;y + x) = y plus x

x mul y = rd(x * y) = rd(y * x) = y mul x

Unfortunately the discussion of fhe other four laws will be centered on showing
that they do not hold for floating point arithmetic.

Let us begin with associativity:

(i) (111113. plus -111111.) plus 7.51111=2. plus 7.51111, = 9.51111
but 111113. plus (-111111. plus 7.51111) = 111113. plus
rd(-111109.AEEEF) = 11113.3. plus (-11110A} _ ^.

(ii) (4.00001 mul 1.70001) mul 9.00OOA = rd(5. 000570001} mul 9.00OOA
= 5.00005 mul 9. DOOOA = rd{33.0006680032) = 33.0006 but 4.00007. mul
{1.70001 mul 9.O000A) = 4.00001 mul xd(C. I'00176000A} = 4.00001 mul
C. F0017 = rd(33. C0068i^'0017} ^ 33.0007

It is possible to concoct examples where overflow or underfiow results from ore
sequence of operations but not from the other.

i

^,

94

	

„	 __	 _

	

,^ ^	 ^	 ^

Let y" » {x plus y) minus x'

^.•
,^

95

FLOA '^[NG POIN 'C AFif'fHME'f!G

It s'nould also be noted that in a sense associativity of addition "fails more
egregiously" than associativity of multiplication, i.e., it happens more often
and the relative discrepancy between answers is larger.

Distributivity perhaps fails worst of ail and the next example shows that relying
on the distributivity law can lead to disasterous consequences:

(iii) 200000. mul (F.00001 plus -F.} = 200000. mul .00001 = 2.
but (200000. mul F .00001) plus {200000. mul --F.) = rd(1E00002.) plus
-1E00000. = 0.

This example also shows that floating point arithmetic is not an integral domain,
i.e. it is possible for u muI v = u mul w but u ^ 0, v ^ w.

Next Iet us consider counterexamples to the additive and multiplicative inverse
Iaws:

{iv) If (e l ,f l } and (e 2 ,f 2) .are such that e ! ^ e2 + S then (e l ,f)Plus {e 2 ,f 2) _
{e i ,f ^). {On some machines e ^ ^ e 2 -^ 7 is enough to mace this happen.)

Similarly,

(v) .100001 mul .FFFFFF = rd{.100000EFFFFF) W .10000

The lack of regularity exhibited in the previous five examples can surt'ace in
many subtle ways in particular programs. We present two examples where
verification is left to the reader.

(vi) In real arithmetic {x -^ y) a ^ 2 {x 2 + y ^). {This formula is the basis for
the fact that variances a_e always non-negative.) in floating point
arithmetic this need not be true.

(vii) In real arithmetic, for each x ^y,x^ x ^ y c y {i.e., geometrically the
midpoint of an interval lies between the end points.) Again, in floating
point arithmetic this need not be true.

Lest the reader think that there are no positive results concerning floating point
operates, we present a theorem which provides limited information about floating
point addition.

Let x, y be floating point numbers.

Let x' _ {s plus y) minus y

FI.^ATING PANT AR^THMETlC

{Note that xt ,y" are both able to be calculated effectively. }then:

(x + y) - (x plus y) _ (x Xninus x') plus (y minus y"}.

Of course if associativity held, then x' would be x and y" would be y and the
theorem would say that x ^- y = x plus y.

While the previous theorem gives a scheme for discerning the difference between
real and floating addition, it is too cumbersome to apply in Large scal p programs.
The interested reader is referred to [^] or [2l for further reading on the sub-
ject. [Y] is written from the point of view that floating arithmetic is merely
"inexact" real arithmetic. [2] represents the point of view that floating arith-
metic is an exact branch of mathematics, albeit, with fewer helpful properties
than real arithmetic. [2] also contains an extensive bibliography.

It has been mentioned that troublesome as the definitions given in (1} are, mast
machines do not even completely conform to them. We limit ourselves to an
example involving addition:

Suppose the hardware of the floating point adder on a given machine operates as
follows. (Again we neglect overflow and underflow.}

1. The fraction adder iceeps seven hexadecimal digits.

2. The fraction of the number with lesser exponent is right shifted until
exponents match.

3. tractions are algebraically added.

4. Resulting fraction is left shifted if necessary to normalize it.

5. Fraction is rounded to six hexadecimal digits.

#, et us see an example where such an adder will not get x plus y for the sum of
x and y.

Let x = (54., - .80ooQ1)

Then xplus y = (SA., ,rF;FFFF), but .if ono follows the adder rules just espoused,
the eighth digit of x wi^1 be shifted out before the fraction normalization takes
place. Hence the adder will get {SB., ,^) as the su:n. Although the relative
error is small, the absolute error is X614.

98

t
^.

r

Ii

I	 - -_.^	 ^
,.

FLOATING POINT ARITHMETIC

Thus in summary, the programmer must be aware that under the best circum-
stances he must be wary of interchanging floating point algorithms that are
algebrically equivalent, While the subject of floating point arithmetic is finally
being treated in a positive rather than negative fashion, there is still little of a
quantitative nature to guide him. Far the time being, analysis of floating point
arithmetic is more of an art than a science.

REFERENCES	 ` ^"

1. R. Hamming, Nur....^iLal Methods for Scientists and Engineers --- Chapter 2. 	 ^
McGraw Hii1 Book Company Inc., 1962.

2. D. Knuth, The Art of Computer Programming —Vol. TI, Chapter ^, Section
4.1 - 4.3 Addison Wesly Publishing Company, 3.969.

F
,^

97

^	 ^	 _^

^ ^

9^	 ^^^^
g

0

0

^^-_ .
f	 ^^'

.^.

15.0	 FUNCTIONS AND APPROXIMATIONS

The use of the FORTRAN library of transcendental fiinctions is very convenient
but is alsr, very costly. The simple statement

Y = EXP(X)

invokes a function subpxagram with over 3d statements. While this is immaterial
in situations where the total execution time i.s small, in large scale programs it
can become an unnecessarily large expense. Let us examine three ways to cir- 	 i. .

cumvent the use and hence the cost of the FORTRI N library functions.

1. Common subexpression elimination either by the campilex or by the pro--
grammer is of paramount importance when transcendental functions are involved,
(See Comm. ^n Expression Elimination.) For example the pair of statements:

Z1 = EXP(X) ^ COS(Y)

Z2 = EXP{X) * S1N{Y)

should be written as:

TEMP = EXP(X)

Z1 = TEMP ^ COS{Y)

Z2 =TEMP * S]N(Y)

whethex it is done implicitly by the compiler or explicitly by the prugrammer.

2. The use of algebraic identities that exist among certain classes of func-
tions can lead to considerable savings of execution time. Indeed, in some
cases, it can also lead to increased accuracy, since formal manipulation
before evaluation is roundaff error free. Let us lools at an easy example.

a^upp^^s^^ cas zx -- sinZx is t4 be calculated. As it stands, this expression involves
t< •^ ` •-sganometric evaluations, two multiplications and one subtraction. Of
;c^aurae, using the well known identity:

Fl1NCT10JVS AND AAl'R(iXlMATIOP]S

sing x + cos2 x ^ I,

the expression can be reduced to the form;

I - 2 sinZx.

which can be evaluated with one trigonometric evaluation one addition and one sub-
traction. This is dot only faster but more accurate.

Certainly the preceeding example is a straw man that we set up so that we could
knOCYf dawn• However, the number of transcendental function identities is Iarge,
and vigorous effort should be made to use these identities to optimize code when-
ever possible. Nate that the word "optimize" was used, nat "speed up". Often
one is faced with a tradeoff of accuracy far speed. Sometimes it is not clear
exactly what kind of tradeoff is involved. A general rule of thumb is that if a
substitution of an identity leads to more floating point algebra, a loss of accu-
racy can be expected. fide complete our discussion of identities with an example
that illustrates why it is impossible to make hard and fast rules.

Suppose one wishes to calculate cos(.00In) and sin(.003^n) for n = 1,4000. A
straight forward way 1'a code this is

(i)	 T = 0.0
Teo 9000 ^ = 1,4000
T=T+ ,001
X{T) = COS(T)

9400 Y(T) = STN(T}

Tf one recalls that:

cos ({n + 1}x) = cos(nx) *cos (x) - sin(nx} * sin(x) and
sin ((n + r}x) = cos(nx} ^ sin (x) + sin(nx} ^ cos(x)

it is not hard to see that the following code is equivalent algebxaically to the
previous code:

,^

is

S

;I
4

YA(1) =STN (.001)
DG 9000 T = 1,3999

XA(T + l.) = XA{T) ^ XA(1) -^ YA(T} * YA(1)
9000 YA{T + 1} = XA(T) ^ YA{1} + YA(I) * XA(1)

See also note 1 at the end of this section. Before looking at the results, one
would ordinarily comment that coda (ii) should be mast faster, but less accurate
than code (i). Now let us gook at some. of the actual results of these codes in the

iD^

--_-_ __-

y^	
^	 ^-^_ __.

FEINOTIONS AND APP^tOXIMATIONS

following table. The column "Actual Value" was derived from "Eight Place
Tables of Trigonometric Functions" by Pitey, published by Edwards Bros. Inc. ,
1939. Columns E l and E2 represent the absolute error *7.04 for codes (i) and
(ii) respectively.

All values are rounded to seven decimal digits.

r

Actual
Value____. Code (i} Code (ii}T >a;i L,,._.^_

cos(.Ol) .9999500 .Q999500 .9999500 0 0
cos(0.1) .9950041 .9950043 .9950039 .002 .002
cos(0.3} .9553364 .9553375 .955335I .011 .013

cos{0«5) ,8775826 .8775853 .8775766 .027 .060
cos{0.7) .7648418 .7648476 .7648360 .058 ,058
cos(1.0) .5403023 .5403126 .5402973 .103 .050
cos(2«O) -.4161468 -.4156359 -.4164949 5,109 .5i9

cos(3.0) -.9899925 -,9898351 --.9898616 1.574 1.309
cos(4.0) -.6536437 -.6548992 -.6535568 12.555 .869

sin(.O1) .0099960 .OD99998 .0099998 .038 .038
sin(0.1) .0998324 .0998327 .0998313 .003 .011
sin{0.3) .2955204 .2955171 .2955070 .D33 .134
sin(0.5) .4794255 .4794204 .4794015 .051 ,240
sin(0«7) .6442382 .6442113 .6441829 .099 .353
sin{1.0) .8414710 .8414643 .8414217 .OG7 .493
sin(2 .4) .9092975 .9095311 .9092358 2.336 .617
sin{3.D) ..1411201 .1422198 .1411141 10.997 .057
sin(4.0) _.7568024 -.7o571s2 -.7566550 10.862 1.474

^.•
)

,.

Figure 22 -Accumulated Errar in Repeated Function Evaluation

As per our original comment, code (ii) executes approximately 25 times faster
than code (i), on the 3B0/95. If one examines the accuracy of the two methods
for arguments c 0.7, it is true that code (i) is more accurate than code (ii).
For arguments in this range, one would have to decide whether the loss of
accuracy is fatal. However, for larger arguments a strange phenomenon occurs,
namely code (ii) has an absolute error that grows much mare slowly than code (i).
Thus far arguments between one and four code (ii) is 'L5 times faster and more
accurate.

The reason for this seemingly anomolous .behavior is as follows : The number
.001 can certainly be expressed exactly with a one decimal. digit fxactic .. How-
ever, in the hexadecimal number system this number cannot be expressed
exactly, no matter what finite number of hexadecimal digits ane has. For
.001 1D = .00418937^BC6A7 ... 1fi . Thus if a floating point variable T is "set

^O1

I
1

Y

^UNCTI ©^1S At1i0 APPROXIMAT!©iVS

equal to" . 001 1 a, it will actually equal . 0041593'7 6 ^ .00099999 10 . This seem-
ingly insignificant difference is the reason code (i) gets much worse for larger
values o£ the argument. Indeed adding together X000 .001'x, the exact I^'ORTRAN
answer is 3.99833965. The discrepancy is now larger than the step size! A pos-
sible solution to this problem would be to recall the sin and cos £unction after 500
evaluations to maintain accuracy.

Thus each individual problem must be treatEd with great care. The trigonometric
identities provide the programmer with options. The ability to chose among the
options is an art, an art the programmer must cultivate.

We present a list of the most common elementary identities for sin, cos, exp and
in £unctions in appendix :^ . Those interested in an expanded coverage of such
information are invited to see [1]. Those who have occasion to use identities
that exist among the so called ' tspecial function" of mathematical physics such
as Bessel, I^eg'endre, hypergeometric etc. should consult [2], [^] and j 6]. In

[^k l a bibliography of other sources can be found. [2] enntains a concise deriva-
tion of many of these advanced identities.

3. The final method for lowering the cost of. calculating transcendental fune-
bons is the method of approximations. Here we touch upon one of the most
far reaching branches of mathematics. T'rom Linear Interpolation to Func-
ticnal Analysis, Approximation theory encompasses a huge field. Thus
w:' will limit ourselves to a few useful formulas and general remarks about
other approximation methods.

The most common method of approximation for transcendental functions is the
method of Taylor polynomials. The rationale for this is based on Taylorts theorem
which in its entirety can be found in any good elementary dif£eren^,ial calculus
text. 1^Ve limit ourselves to the Taylor polynomials far sin x, cos x, eX , Qn(1 ^- x)
fix, about xo s 0, on an interval of radius A C 1, i.e. on the interval (-A,A).

X3 	 x5	 ^2nt1

(i) sin x = x - — + --- .- .. . + -1 "	 +(^	 El3!	 S!	 (2n^I)!

where:

A2n+2

^
El

^ S (2n-F2)!

r

^oz

.^.^ l_

i

l .

—_ ^ _—
__ .	 _.	 -

l+ l1N^TI0N5 AN €l APF^tDX ;MATIONS

(ii) cas x = 1 - x2 + x^ -	 + (-1)„
x2n +

EZ
2!	 ^!	 (Zn)!

where:

A2n+1
CE^	

(2n+1}!

x2	 x3	 xn
(iii) ex = 1 + x + — + -- + ... + — + E

2!	 3!	 n!	 3

whe^•e

BA An+ 1
!E31 c	 ,

(n^I)!

2	 3	 n
(iv) Qn(1 +x) = x - 2 + 3 - ... + {-1)n+l n + E^

where:

An+^

^E`^I
C	

n+I

(V} 1+x = 1 + 2 - ^ + 383 - ... + (- 1 }n+1 3^5^7..n^(2n-3)x°

2 ^n!

+ E s

i

r..

^	 E	
'_

^[1NC^ '10i.►!a AND APPRDXIMATIDNS

where:

3^5^7^...^{Zn-1) An+l '^

lE51 c

Several remarks are in order concerning these formulas.

First althou h formula, x	 ^	 `g	 ('}, (ii} and (iii) hold for any A ^ Q, they are not much
use for A > 1 since the error term does not converge to 0 as n gets large. 	 ^	 r {

Second, if one has an a priori error bound that must be satisfied, the size of n
`	 can be determined to mare E smaller than the error bound, e.g. 	

t̂

To approximate cos x on (-^.,I) to within 10 -; one chooses n such that
^^

1

(2n+1)r G 10 4 i.e, n ^ 3	 ^

To approximate cos x on (-^, ^) to within, 10 4 , one chooses n such that 	 ^

3
('h)2i}1 C 10 4 i.e. n ^ ^
(2n ^F 1)i

Th6 same techniques may be used with the other formulas.
^'i

Third, if one is interested in an interval about some other point besides x a ^ 0,
one can x•ederive the Taylor polynomials about the new x a . (See a good calculus
text). If values are needed on an interval of radius greater than one, it is often
possible to use identities to reduce oneself to the case of unit radius, e.g., to
approxixnaLe e" on the interval (-2,2y, note:

R

^I

...	 _.__	 .._-	 - - -	 ..	 y

^un^c^iaNS a^un a^^R^xiMA^r^l^s

approximates ex . As usual when one uses identities, one must be careful about
accuracy. {See discussion of identities in the first part of this section}.

Finally, when coding polynomial approximations, one should optimize the algo-
rithm for calculating the polynomial. (See the section on polynomial evaluation).

'I`here are other polynomial approximation schemes besides Taylor polynomials.
In particular, the use of Chebyschev polynomials is recommended in certain
instances. For such considerations, the reader is referred to [3] .

Non-polynomial approximations, such as rational functions, continued fractions,
Fourier series, etc., are beyond the scope of this document. The interested
reader is referred to [5] which is a handy introduction to this subject and a
useful bibliography. 	 '

One final word of caution is in order; approximations are just that, approxima-
tions. Indeed, the FORTRAN library itself consists of approximations, albeit,
of a vexy sophisticated form. The user should be wary of properties of appro^i.ma-
tions he may not desire. For example, in general polynomials of degree n hays
(n-1) relative maxima and minima, i.e., they oscillate. An erxor estimation
may miss the fact a certain program is sensitive to such oscillations. In this
case, high degree Taylor polynomials are worse than useless.

NOTE ^: Also if calculating sinxx + S) and cos(x ^- S; many times where S is
relatively small,

sin{x Q + S) =sinxo cosS +cosx o sins and

cos{xc + &) = cos xc cos S -sinxo sin S

hence sinxo + coax need be called but once, Use Taylor series, tv approxi-
mate to required degree far accuracy, for sin S and cos S. The same may be
done for

exp(xfl + S) W exp xo exp S	 ^^

.	 as well.

REFERENCES

1. L. Ayers -- Trigonometry, Schaum's Outline Series.

2. R. Co^xrant -- Courant and Hilbert, Mathematical Physics, Vol. I, Interscience,
1953.

105

^^

r
_	 ^!^

..	 _ ^	 ^^
y

1^

^	 _ `-,.

i

^^
FUNCTIONS AND APPRnXIMATIUNS

3. R. Hamming —Numerical Methods far Scientists and Engineers, Part II,
McGraw Hiil, 1962.

4. Magnus, Oberhettinger — Formulas and Theorems fox the Functions of
Mathematical Physics, Chelsea, 1949.

5. J. Rice —Approximations of Functions, Chapter 6, Addison Wesley, 1964.

6. M. Spiegal --- Advanced Mathematics for Engineers and Scientists, Schaum's
Outline Series.

•	 ^,

r	 --
1

1

Ia6

Y
_	 _	 ._

,,
^^

^^

fi

r

1

R^a. i.

16.0	 EVALUATION OF POLYNOMIAL

At first glance many programmers may be surprised to find a section devoted to
palynomiats. After alt, what could be simpler? Indeed, FORTRAN was designed
to make polynomial evaluation an easy tads to program, viz:

P(x} = a^ x4 + a1 x3 + aZx2 + a3 x + as

becomes:

P - A;1-i:X:^:s:4+A1 .mX^u...3+A2=xX^:r.2+A3'r-X+A^

However if execution time optimization (and accuracy) are crucial questions,
then a more sophisticated approach is demanded. The study of efficient means
of polynomial evaluation goes hack to 200 B.C. hence predating the electronic
computer. But with the advent of large scale problems on high speed computers
this study has blossomed into a branch of mathematics in its own right.

We shalt start with the problem of evaluating the general. polynomial

P(x) = aox" + a k x"^^ + ... + a^_Y x + an

fora "random" input value of x. We shall assume that the coefficients of P are
coded as follows:

C = as , A(1) = a i , i = l,n.

We shall assume that F{I) is the floating point variable whose value is I, I = l,n.

Let us start with tLe most naive and perhaps r^vorst method of evaluating P.
Consider:

NM1=N-1
P=C *X *^F(N)
IX) 9000 I = 1., NM1

9000 P = 'P + A(N - T) * X ** F(I)
p ^- ^^^ + A(1`^

107

i	 ..

J	 I	 i^

^VAL1fATlQN DF PDLYNDMIALS

which evaluates P correctly, but is highly wasteful of execution time. Mast
programmers will quickly see that the following code is a substantial improvement:

NM1=N-1
p=COX**N
DO 9000 I = 1, NM1.

9000P=P+A{N^I}*X*^I
P W P + A(N}

The fact that a fixed point variable, rather than a floating point variable is used	 ;
as an exponent, allows the use of a faster exponentiation routine.

.	 However, the proceeding code is far from optimum. Indeed it is many times
slower than necessary. Consider:	 '

P=C
DO 9000 I =].,N

9000 P = P * X + A{I}

The reader may show that the results of this code are {algebraically) the same
as the previous code. first, there is no explicit exponentiation. Second, there
are only as many multiplications and additions as in the previous node. rinally, 	 y
the indices of A are simpler. This simpler arthmetic is manifested in {usually)
enormous execution time savings.

This method of evaluating P{x) as:

P(x) =((...{(aox+al)x +a2)...)x+an

is called Horner^s method (although it was known to Newton}. Alt ►^ough Horner's
method represents a tremendous improvement over naive evaluations, when
special circumstances hold, it can be improved still further. We present three
examples of special techniques.

Y. On a machine whose arehiteetuxe allows pipelining or parallelizatian of
arithmetic operations, it is possible to devise higher order Horner methods
to male full use of this capability, Let us suppose that P(x} is of even degree
n = 2m. (The reader may supply details for n = 2m + 7..) Tf we Iet y = x ^, we
cay^ write P(x} as:

108

__ ^^__

,.	 -----.

i"VALUA'iiflN OF POLYNflM1ALS

P {x) _ (ao y"' + a2 y'" - 1 + , . + an_2 y + an)

+ (a i ym "' ; + a 3 y'^
-2
 +... + ar-1^X

_ ({... ((aoy+aZ)Y +a4)... +...) Y +an)

+ ((... ({aiy+a3)y+a^}...)y+an-1)x

This translates to I'ORTRAN as:

P1 = A(1)
P2=C
Y=X*X
N1VI3=N-3
DO 90001 ^ 1, NM3, 2
PI = P1 ^ Y + A`I } 2}

5000 P2 = P2 * Y + A(I + 1)

The separation oi' calculations of the even {P2) and odd (P^) terms allows a
machine, such as i:he 90 series 360's and 370 T s, to make better use of the
reservation stations In the hardware.

Actual test cases of calculating a polynomial of degree 10 by the naive code
(with integer exponents), by Hoxner's method and by the just mentioned Homer's
method of second order revealed that the naive code is approximately 25 times
slower than either Homer's method, and that Homer's method of second order
is at least several percent faster than the original Homer's method, rn the
36 0/95.

2. 'There are several occasions where one wishes to calculate several poly-
nomials which are related in such a way that intermediate infoxmation can be
"shared" by more than one polynomial. For instance suppose one wishes to
ca.lculatf, P(x) and its derivative.

P' [X) = na^xn-i -!- ... -^- Zan-2 + an-t

The following code calculates P and DP (=P') without the expliciE calculation
of #kan-^#.

^ a^
i
i

^^

^
r

.	 , _	 _.._

^•^

f	 ^^

^. ,

EVALUATION 0:^ POLYNOMIALS

P= C
DP ^ 0.
DO 9000 Y ^ 1, N
DP=DP ^=X+P

9000 P = P ^ X + A(L)

3. Tn many problems of numerical approximations one wishes to calculate
P(x) on a sub-set of an arithmetic progression, i. e. on equally spaced data

	

^xo, xa + h, x4+ 2h.	 . . .^	 zf this is to be done for a large number of
values compared to the degree of the polynomial, it is worthwhile to set up
difference fables, for one is then able to calculate values of P using only n
additions and no multiplications per value after a transient phase.

This technique is based on the fallowing fundamental theorem.

Let P be a polynomial of degree n, (4P} {x) = P (x + h} - P(x), (^ k ^ ^ P) {x) = D
(Q k p) (x) k ^ 1, n - 1. Then {Ar P)(x) W as (n!}hn for all values of x = x o , xo + h,
xo + 2h, ... ,

We now define the difference table o£ P, (This construction is applicable to all
functions, not just polynomials. But fnr anon-polynomial function, no column is
ever constant.}

x	 P	 ^ P	 aZP	 etc

x o	 yo	 yl - yo	 (yZ - y Z) - (y i - yo }	 etc

	

x o + h Y I	 Y2 _ yl	 (y3 - y 2} " (Y2 -- yl }	 etc

	

xo + 2h Y^	 Y3 - Y^	 (Y4 - y 3 } -- (y 3 - y l }	 etc

.

The basic feature of this table for our purposes is that the sum of any two
consecutive horizontal values yields the value under the leftmost of the original
two values. Thus if one can calculate the top row and the rightmost column,
one can generate the whale table by successive additions. In particular, the
leftmost column yields the function values derived. (ln many applications, the
high order differences also play an important role. From our paint of vic:vr,
they are an unexpected bonus.)

11G

t

(`

i

1

^+s

r

•	 ^

^1

T'^
^i

111

EVALUATIfli^ flF PflLY^^OM!AL5

One example is worth a thousand words in getting the "hang" of using the table.

Let P(x) = x^ + 1, x o = 0, h = .1, (The simplicity of the polynomial in no wxy
affects the validity or complexity of the table construction).

P(0) = 1.000, P(.1) - 1.001, P(.2) = 1.008, P(3) = 1.027

Let us start the table:

x P	 ^ P OzP	 p3P

0.0 1.000	 .001 .006	 .006
o.l 1.001	 .007 .012
0.2 1.008	 .019

0.3 1.02 7

Note that .006 = 1 * 3 ! ^ (.1) 3 and that the theorem previously quoted guarantees
that tlse entries in the ^3P column, axe .006.

Let us fill out the table

x P	 D P O2 P	 D3 P

0.0 1.000	 .001 .006	 ,006

0.1 1.001	 .007 .012	 .006

0.2 1.00$.019 A	 .006

0.3 1.027	 B C	 .006

0.4 D	 E F	 .006
0.5 G	 H I	 .006

as follows

r

A^.012+ .006=.018
B=.019+ A=.037
C ^ A + .006 = .024
F=C+ .006=.030
E=B+ C=.06I

P(.4) = D = 1.027 + B = 1.064
I = F + .006 = 1.094
H=F+ F=.091

i

^^..ie+•^

'+	 ^

EVALUATION OF POLYNOMIALS

The table may now be continued downward as far as ane pleases. Each row
depends only on three additions. The lack of multiplication manes fox a marked
speed improvement over Horner's method.

Let us point out that we have barely scratched the surface of the subject of
polynomial evaluation. In particular we have not mentioned the technique of
coefficient "adaptation:' Further references on this subject and the difference
calculus in general can be found in [^ I , C 2] and [3] ,

Finally, note that there has been no discussion of accuracy. This is a thorny
problem entwined with the general problem of floating point arithmetic. We
make a few general comments.

(i) Horner^s methods are at least as accurate as naive evaluation.

(ii) In evaluating P(x) and P'(x) simultaneously, implicitly ka n _k is evalU-
ated as

I	 i

r

^.n_k -h an^^ + ... + an_k.

k terms

These two floating point operations need not give the same answer.

(i.ii} In constructive. difference tables, the calculation of A^ = ao (n!) h n
should be done with extreme accuracy, since errors in this quantity propagate
in meaningful form back to the polynomial values (see [1] p 27),

REFERENCES

1, R. Hamming ---^ Numerical Methods for Scientists and Engineers, McGraw
xi1i, 1962.

0	 2. D. Knuth — The Art of Computer Programming, Chapters 4 - 6, Addison
Wesley, 1969,

F	 3. L. Milne --- Thomson Calculus of T'inite Differences, McMillan, 1.933.

i

}

kf

i
^7z

F

^^ t^	

^

...	 _. __

17.0	 U^ERLAY PROGRAMS

1.7.1 CONSIDERATION'

This section will cover minimizatiau of the region size needed to execute a given
algorithm on a 360 computer. Covered topics will include overlay construction,
specific lii^ltage editor techniques, overlay aids such as OVLY, LOADMAP an,d
reusability and reentrancy considerations which the I`ORTR:^I3 programmer	 ^^
must consider when coding his routine to make overlaying practical. Since 	 ''j
reading a dump from an overlayed load module is 3ust a bit more difficult some	 ^

"	 hints on dump xeading are included. 	 ,

1.7.2 STRUCTURE

OS supports a reusable multiple tree overlay system where each tree consists of
one node (called the root seg^aaent) and the xemaining nodes {segments partitioned
into sets of nodes each of which appears as a tree. This support can be visualized
with a simple example common to most progran:xs. Consider a typical program
with three main service areas:

1.. Input parameter and data verification.

2. 1VIain processing.

3. Output formatting and printing.
s

^•

These would typically be organized in memory as a simplo Islock (a one node
tree} such as:

	

memory for each module	 total cumulative memory

	

60K	 main	 60KMAIN

	

70K	 input	 130KINPUT

	

1.54K	 procesn 280KPROC

	

S OK	 output	 3 C OK
OUTPUT

Figure 23 w A Simple Program

-This program can be logically viewed as a driver (root segment) and threo
additional processing segments {input, processing, and output} only one of
which needs to be in memory at any given time.

1^3

i
__. _	 _	 _

r̀ ;^...

.^

__	 ._
3

^ L3

OVERE.AY PROGRAMS

MAIN

INPUT	 PROC	 OUTPUT

I^'igure 2^ - A Simple Prograxn Tree

Now, if core requirements are considered for this simple tree:
f

MAIN (6 OK}	 !

{60I^}

'UT {70K)	 PROC (150K)	 OUTPUT {86K)	 _ '

(130K}	 (140K)

(2I.OK)

Figure 25 - A Simile Overlay

Two things should be apparent from figure 25. The program now occupies only
210K, a saving of I.50K {or about six hours turnaround on a busy 380/95 day) and,
mere subtly, code added to INPUT or OUTPUT is °'free" in that the program
will get no longer until INPUT or OUTPUT exceeds PROC in its memory demands.
It is possible to reduce the needed region further still by viewing the PROC
routine as the xoot segment of another tree and logically partition the PROC
algorithm into its component parts, BOUND {20I^ and INVERT {30K}.

MAIN (6 OK)

(60I^)

INPUT {70K}	 PROC (100K}	 OUTPUT (80K)

{I.30K)	 (16 0K)	 (1^OK)	 i1
BO ID (20K}	 INVER ^ (30K}

(Y80K}	 (190K)

Figure 26 - A Near Minimum Size Overlay

The total core required for this structure is now x90K and BOUND can be added
to the list of routines which can be "freely" expanded without increasing the size
of the module.

114

i	 ;,	 _ _. _	 _.	 _	 ^--._ ^_ __.___f_.__	 _._^._ _	 __ _ . _ _ __ __. __ _ _. ---- ___._	 _.. _.	 .- ._	 _.	 __^_..	 _ .

©VERl.AY PROGRAMS

17.3 CHANGES REQUIRED FOR OVERLAYING

Under ideal conditions where each branch of a program flow is executed once 	 ^
such as in Figure 25 an overlay program will take no more I/O time and only
minimal more CPU time than the non-overlayed version of the same routine.
The system will load each segment once as it is neededti When the FORTRAN
statement CALL INPUT in MAIN is executed it automatically calls the segment
containing the INPUT subroutine into memory. When INPUT completes its

. processing and returns to MAIN, its code remains unaltered in memory and
can be recalled from MAIN without a further I/O charge. Tn the processing
portion of the program PROC calls both BOUND and INVERT to perform the
necessary calculations. Since BOUND and INVERT share the same memory
they are never in memory simultaneously and cannot call each cthox • af; any
time. Any attempt to form a call between routines located exclusively, such
as BOUND and INVERT will result in a Linkage edztor diagnostic IEW07.82.
If this diagnostic messages is circumvented by coding the LET option the first
call from BOUND to INVERT will operate properly but if INVERT attempts to
return (in a FORTRAN sense, by the RETURN statement) to BOUND an OCx
abend will occur in the part of INVERT where BOUND used to be located.

MAIN^^
IN ^ UT	 PIIOC	 OUTPUT

BO ND	 ,_^^a INVERT	 I

^, INVERT ^ attempts exclusive return
-_

BOUND calls INVERT

Figure 27 - An Invalid Exclusive Call with LET Specified

If, however, INVERT is an ALC routine which does not return to BOUND but 	 ^
branches instead to somewhere in PROC ar MAIN it is legal to form the over- 	 ,
lay structure as shown in Figure 27 and the message IEW0172 is issued. After
verifying the program branching, the KCAL option in the PARM field to the
linl{age editor can be coded which, will cause it to check the validity of the ex-
clusive call and issue an IEW0161 warning message.

PROC can, however, call BOUND and INVERT (but not INPUT or OUTPUT since
they axe mutually exclusive) as often as required. Alternate calls between two
(or more) exclusive routines will cause the called routine to be brcught into
memory replacing the existing routine. Each time one of the segments is

115

^^

y

r
)

^^
.^

.	 _	 _	 . _ _,,

C

^^
r^

i

^`._ .

OVERLAY PROGRAMS

loaded into memory there is an I/O charge of 32 milliseconds for each approxi-
mately OK of loaded code. In our example:

MAIN (60K)

(60K)

INPUT (70K)	 PROC ^(100K)	 OUTP IT (80K)

(130K)	 (164K}	 (140K}

BOUND (20I^	 INVER i (30K)

(x80I^	 (190K)
4 blocks = 128 ms. 5 blocks = 160 n.>s.

Figure 28 -- Some Overlay Timings Estimates

A return from BOUND and a call from PROC to INVERT would bring five
"blocks" into memory costing 16 D milliseconds of I/O time and a RETURN
from INVERT followed by a call from PROC to BOUND would bring in about
four blocIcs costing 132 milliseconds of I/O time. A limited amount of oalling
back and forth clearly justifies the memory savings but is impractical far an
iterative routine where convergence requires repeated execution of exclusive
routines not laaded in memory simultaneously. That is

DO 100 I ^ 1, 50
CALL BOUND

1.00 CALL INVERT

Figure 29 - A Simple Driver Program

The example in Figure 29 would require almost 30 seconds of T/O time for
loading the necessary segments into ;nemory. This can only be justified on the
longest path of a long running program.

The above examples illustrate the essential steps in deciding haw to construct
an overlayed Load module. first, and clearly the most important step, is to
draw the logical flow of the module in tree form as shown in the above figures.
Include in this drawing the sizes of the modules, takenfromaprior Zink edit
map, and determine the size of each segment by totaling the module sizes within
that segment, Next to each name note the length of the module. Below the name
show the length of the path fxom the root .segment.

116

OVERLAY PROGRAMS

segment 1 (1C8}

(IBM routines) (12840)

(12A08)

segme^ - segment 3	 segment 4

^. (5264j D (21B4} H (11390)

(17CBC) (14BBC} (23D98)
B (7^CC) E (82A8)

(1 F1381 (1CI±64)

• F (430) I (1287flj

(211A4) (38608)

I	 -.I+

;1

^ (1aF4)

(2?29B)

Figure 30 -Some Sample Overlay Segment Sizes

T'rom figure 30 it is clear that segment lour is the longest since routines H and
I are much longer than their exclusive cousins D, E, r and G. Resist the urgr,.

to overlay D, E, F and G any further, even though they, as small routines, area
probably simpler than H and I. The goal should be to balance the tree as much
as possible. In this example the module is about 230K as overlayed in Figure 30.
If routines H and I can be overlayed into separate segments by converting seg-
went faun in segments four and five, the total module will drop to about 1.50K.

].7.4 CODIl^TG CONSIDI•aR^tTIONS FOR OVI•iRLAYED PROGRAMS

Most folly debugged programs can be overlayed with no source code or logic
alternations. Counters and inftializatian flags may have to be moved to a
common block under some circumstances. For example:

5UBROUTINE DEMO	 y
LOGICAL, FIRST
DATA FIRST/. TRUE, /

.	 IF (FIRST) GO TO 100
C
C	 COMPUTATION CODs;
C

Go To zoo
10o coNTINU^

c
C	 INITIALIZATION CO?JT
C

FIRS'i' ^ ,FALSE'.
,200 CONTINUE

Figure. 31 -Gammon Slack Initialization

117

'i

^i

_ -	 ^	 ^

^	 ..>
4_ ^

QVERLAY AROGRAMS

The first time the routine in Figuxe 3I is executed that DATA statement will
make FfRST true and the initialization code will be executed. Each future pass
thxough subroutine DEMO will find FIRST false and only the computation code
will be executed. If, however, the subroutine is in an overlay structure such
that it is repeatedly loaded, the DATA statement will cause FIRST to always be
TRUE with each new load of the routine.

DRNE

^, 	 DEMO	 I

i
EXCL

Figure 32 -Exclusive Segments

When the DRIVE routine calls DEMO it will automatically be loaded with FIRST
.TRUE. and the initialization code will execute properly. If DRIVE then calls
EXCL, a routine exclusive to DEMO, and recalls DEMO at a later time the
overlay supervisor will automatically load EXCL and reload DRIVER as needed.
The reloaded DEMO will again have FIRST set to TRUE from the DATA
statement and the initialization code will be re-executed, probably exroneously.

'•	 To preserve the reusability of DElVIO, the DATA statement must be either re-
moved and FIRST passed as an argument from DRIVER which has a DATA
statement to initialize FIRST, or a common block and BLOCKDATA routine
must be used to initialize FIRST. The common block must be sufficiently ciose
to the root so as not to be overlayed during the "life" of FIRST. Another
difficulty can be created with the use of counters in routines which may be
overlayed and recalled. If a counter is initialized to zero in a DATA statement
and incremented each time the routine is entered it must be in the argument
list or a common block if it is to survive the overlay process when the routine
is sharing address space with another exclusive segment and being xeloaded.
The FORTRAN compilex automatically provides reusability for such things as
DO loop ranging variables and they cause no difficulty in overlaying routines.

The ALC programmer can, in general, overlay routines with the same considers-
.	 Lions as above. He must be careful not to issue an OPEN without the correspond-

ing CLOSE in a segment which is to be overlayed. If he does,, a^:y future If0 to
the DCB in the overlayed segments will result in an abend with a very difficult
dump to debug. Similarly, a GETMAIN shauld have a corresponding FREEMAIN
issued or special cage shauld be taken to preserve the addresses necessary to
tfreet the storage later. With these considerations reentrant routines should
present no usage flifficuity.

r

l l-8

,

j

	w- __.___..	 _	 _	 ._

{
r

;^• f

I^
^,

^^

1
	 _.. _ .__.. _	 _..	 _	 .

r

F,.•

Z19
'^
`^

i

i

t

kw..

OVERLAY ^RRGRAMS

17.5 THE MECHANISMS OF THE LINI^.4GE EDITOR

The linkage editor numbers the segments of code consisting of one or more
routines (subprograms, common areas, or CSECTS) from top to bottom and
left to right as shown in figure 33 below.

segment 1 MAIN (with iBM support)

segment 2	 segment 3	 segment 6	 -

`	 INPUT	 ANALYZE	 OUTPT

COND	 DRIFT	 FORMT

CORCR	 ^	 ;

segme to 4	 segment 5	 `'
MTH1	 MTH2	 -	 '

rigure 33 -Overlay Segments	 -'

The primary toai far describing the overlay stxuctttre is the INSERT card. It
says to the linkage editor: "take the routine named from segment ane (the root)
and place it in the segment where I currently am". An OVERLAY card is used
to indicate the beginning of a new segment and identical names an OVERLAY
cards start at the same Ievel in the tree as the first time the name appears.
For figure 33 the required cards are:

OVERLAY' TOP
INSERT INPUT
INSERT COND
OVERLAY TOP
INSERT ANALYZ, DRIFT, CORCR
OVERLAY MID
INSERT MTH1
OVERLAY MID
INSERT MTH2
OVERLAY 'tOP
INSERT OUTPT
INSERT FORMT

Figure 3^ -Overlay Control Cards

_--	 -^.
i
1r

1.

OVERLl^Y PROGRRMS

The INSERT and OVERLAY cards must not begin in column one; more than one
name can be placed on an INSERT card. The three OVFRLA^' TOP cards define
the first major branch and the two OVERLAY MID cards define the next level of
overlaying. There is no effective limit on the number of levels it is possible to
have but storage is reserved for the Inngest leg found by the lint{age editor and
no advantage is gained by overlaying other legs which are not the longest.

17.6 OVERLAY TOOLS

	

. ^	 17.6.1 ONLY program - to draw a tree	 '

A program is available which will take an existing overlayed load module and 	 '
produce a tree, such as the ones drawn in this section, and optionally print or
punch the necessary control cards to reconstruct the tree. The program pro-

	

.	 vides useful information when trying to optimize an existing overlay structure 	 ,^
or debugging an overlay program where the suspected bug is in the overlay 	 .
structure itself. As with all standard programs a procedure is available
which operates an a catalogued Iibx^rv', or data set, to produce the desired

	

a;	picture and control cards. The documentation is contained in appendix G.

17.6. ^ LOADMAP - to map a load module and list cross references 	
r

LOADMAP produces a listing of all the routines in a specified load module.
A linitage Editor map and two cross references listings which show all the
routines a specific routine calls and all the routines that call a specific routine.

	

^	 Comrnon area references are likewise cross referenced. This is useful to a

	

k̂	program which is to be overlayed so that a tree may be drawn. The documentr^-

	

E	 tion for this program is in appendix I'.

17.7 OP 'I' ^4^.IZATION Or AN EXISTING OVERLAY	 i
l

The techniques described above will produce a substantial core savinng in most
programs which are not now overlayed. Through the use of the OVLY and
LOADMAP programs some additional memory saving can usually be realised
with -only a slight increase in execution time. It is also possible to decrease
the complexity of most large overlay structures with no increase in memory
necessary for program execution. The two principal rules to remember are:

3
1

X20

`,

`^	 ^	 ,^

1. Combine shor+ legs info one larger leg, being careful that it does not
become the longest leg, and.

2. Garefully search the longest leg for any routines which can be re-
located to a shorter leg.

Far example:

MAIN (with IBM modules)

INIT	 PRO CES

B	 ALG1

ALG2

PRNT

FRMT

Figure 35 - A Candidate for Overlay Optimization

The routines A and B can be combined into the INIT segment and the segment
containing PROLES will still be the longest in the program, On careful examina-
tion of the segment containing PROLES we see that the routines ALG]. and ALG2
are not used in the same run thus the overlay tree can be redrawn as:

^•
is

-^ : (IBM! FORTRAPr•modules)

INIT	 PROLES

A	 PRNT	 path ^. -^____..
•

iB	 FRMT	 path 2 ••••••"••

ALGA	 ALG2;

Figure 36 - A Balanced Overlay Tree

where the total length of path one is approximately equal to path t:>>o. Na
further overlay optimization is IiItely to occur unless a more advanced technique,
outlined below, is employed.

121

----_	 __

I,
,,. _

i

Y

L' ^
	

'^1

__	 --^-^------_.__._^_.--- -_-,_n_^^_^, ._.....__-,._-^_^._^--- ____	 _____...	 s	 ^

i
i
1

OVEfif_AY PSOGSAMS	 ^ i,l

17.8 MULTD'LE REGION OVERLAYS	 ^

Occasionally there is an opportunity for a further reduction in the required
region that can be abtained fxom the processes outiined above. If two or more 	 ^
support routines are used by two or more major legs of the program, where one of

r	 these legs is the congest leg and the two routines do not call each other, they
can be relocated from the root segment and placed parallel. to each other in a 	 ^ - ^
second base area of the overlay structure called, confusingly, a region.

'	 I MAIN (200K}	 '

{200K)

SUPS. (LOOK)

(300K)

SUP2 (^.oaK}

{400K)	 '^,

A(20K}	 B {60K)

(420K}

{^fiOK)

Figure 37 - A Candidate for Multiple Region Overlaying 	 ^^

The entire module in Figure 37 may talcs ^60K as shown, a saving of 20K from
the straight line linking with no overlay. Since SUP]. and SUP2 do not call each
other but are called by A and B they normally reside in the root segment but
can be relocated in a second region with the following control cards:

OVERLAY ONE
INSERT	 A
OVERLAY ONE
INSERT	 B	 '
OVERLAY SUPT (REGION}
INSERT	 SUPT
OVERLAY SUPT
INSERT	 SUP2

Figure 38 - A Multi region Control Card Deck

7 z^

_ ._ _ .,.	 _.
^^}	 /

-_ _	 -- --	 ..	 - -	 - --- ^ .. _—._ .	 __	 _ T	 — .^ _ .	 _.	 _. ^..	 -	 1

1

OVORLAY PF3QGRAMS

The control cards as shown in Figure 38 would generate a tree which would
loop like:

i

4

MAIN (200K)

{200I^)

A (^OI^)	 B (60K)

(2^OK)	 (20 OK)

....-^.__-..,^__—_..__-..._._	 `--_. xegion 2 (at 260K)

SUP1 (100K1	 SUP2 (100I^)

(3s ax)	 {360Ii)

Figure 39 ^ Multi-region Overlay Tree

The above multi-region overlay gives a saving of 100K.

A total of four regions can be designated and each of the regions must be com-
plete before the next region is begun with an OVERLAY Warne (REGION) control
acrd, The IBM xoutine IHCERRM can be moved easily from the coat segxnent
to a second region provided confidence exists that there is na arithmetic error,
such as an underflow, sines it is possible for IHCERRM to be invoked far all
I'ORTRAN routine errors,

17.9 BUGS, DUMPS, HAZARDS AND PIT FALLS

Do not overlay a routine having a FORTRAN DEFINE 1"ILE statement until alI
processing far the associated unit is complete. l7o not overlay a routine con-
taining a.n ALC OPEN until the corresponding CLOSE is issued,

Be especially careful about DATA statements used to initialize counters, they
wilt be reset each time the routine is called after being overlayerl. Use BLOCK
DATA and common areas to be sur, e. Insure the common a^.•eas are in the root
segment, or high enough in the tree sa they are not overlayed at the wrong time.

There is only one serious dump "cauaQd" by an overlay structure.

i23

T

^i	
t
	

^`►^ _

V

a'
w.^

^	 ^i

V

^., . J

MAXN

SUB1i
C^^	 C2

Figure 40 - A Structurally Caused Failure

In Figure 40 MAIN calls Cl., C1 calls SUB]. which calls C2. The linitage editor
will not detect the exclusive call and C^ will be overlayed by the code for C2.
The resulting OCx traceback will show C2 being called by SUB1 having been
called by a possible invalid reference while the forward trace will show MAIN
calling Cl.. You can determine the segment in storage from the following table
which is always at the begsnning of your load module:

E

^`

^- 8 - Last segment currently in region].

+9 - Highest segment of region 1

+A - Last segment currently in region 2

^,	 ^- B - Highest segment of region 2

-^ C - Last segment currently in region 3

r	 ^- D - Highest segment of region 3

.	 -^ E -- Last segment currently in region 4

^- F -- Highest segment of region 4

Figure ^#]. -Segment Table {$SEGTAB) Format

Normally you only need to examine byte nine of your load module and look up
the segment number found (shown in hexadecimal) in the linkage editor map or
LOADMAP link map. If the routine in the trace table is not in the segment
shown or in its path to the coat segment, you have made an illegal exclusive
reference and must reexamine your overlay structure.

Further information and format information can be found in the IBM manuals
LTNI^AGE EDITOR AND LOADER GC28-G538, and SYSTEM CONTROL• BLOCI{S
GC28-6628.

1Z4

iBvO	 The Different iBP^ FORTRAN Compilers

The follovting discussion relies heavily on Appendix H, "FORTRAN IV
(H) Optimization Facilities" from the I6^7 manual "FORTRAN IV (G and
H} Programmers ' s Guide", GC28-68I7.

18.1	 COP•4PARISONS

FORTRAN IV G, G1, and H with OPT^0 generate code with approximately
the same level of sophistication. It is very straightforvrard and

.	 each type of FORTRAN statement creatQs a specific set of assembly
instructions. The compilation ties are the lntifest and execution
times the longest of the]evel of optimization available vrith FORTRAN
H. These should not be used for other than syntax scanning, excep-
tionally quick or one shat programs. The G and G1 compilers are
almost the same. G1 is usable from T50 and supports list directed
I/O and the TEST option. G and H do trot support these new features.
FORTRAN H allows the follovririg: (a) arithmetic operations with one
byte variables and ^ptians for generating optimized code, (b} pro-
ducing a structured source listing, (c) a cross reference list of
variables and statement numbers, d) controlling the amount of
storage used when the compiler is attached, and (e) allowing the
compiled source code to execute even if there were source errors.
The H compiler does not support the DEBUG facility which is available
with G and G1.

18.2 FORTRAN H OPT^1 OPT IMIZATION
ldhen OPT^1 is specified, tiè compiler execution time increases
slightly, but a large savings i^ evidenced in the executior. of the
compiled code. The improvements in the generated code are:

1. Placing often used variables in registers and retaining the
value far later use.

2. The same is done far FORTRAN generated values (base registers
for data areas, COMMON, or table addresses).

3. Use of branching instructions vrhich utilize registers.

The code generated is still very simi ? ar to un^ptimized code but
makes better use of the registers and uses several faster instruc-
tions.

18.3 FORTRAN H OPT^2 OPTIMIZATION

r

OPT^2 requires mare c
OPTS 1.	 The fol 1 ati^ri ng

^. All values are
constants, and

5. Recognition of
hold values of

ompile time but generates even better code than
are done in addition:

attempted to be held in registers (variables,
FORTRAN generated values).

redundant calculations and use of registers to
intermediate results,

125

^.

^

r

_
r

-	 __	 .	 _._	 _ _

^ii
^

^

1^'^

^_.	 ^
_	

^,..__.

..	 ^

r

DIFFERENT FORTRANS

6o Moving code ahead of loop_ which is not changed arithin the
body of the loop.

7. Remo^^ing calculations which are not used.

8. Generate the fastest possible branch and logical testing
instructions,

OPT^2 generated code is more sophisticated than any other FORTRAN	 i
generated code and requires the programmer to be alert to possible 	 ^
errors which may be generated. These are discussed below. 	 '

18.4 COMPILE AND EXECUTION SPEED TIMINGS
;;

A general purpose test program was compiled and executed utilizing
the various compilers and optimization levels. FORTRAN (I timed out
after 14.25 CPU minutes and was excluded from the tests.

CPU MINUTES	 COMPILER TIME IN MINUTES
OF EXECUTION	 CPU	 I/O

FORTRAN G1	 13.863.	 0.057	 0.123
FORTRAN H OPT-O	 14.123	 0.013.*	 0.074
FORTRAN H OPT^1	 8.502	 0.011*	 0.078
FORTRAN H OPT= 2	 2.303	 0.085	 0.180

* Includes a BLOCKDATA routine

Figure 42 - Compiler Comparison Timings

18.5 OPT^2 k+lAR1JINGS

OPT^2 causes ana1ysi^ of the program structure. Blocks of code are
analyzed as a unit for the most active values. A black starts with
a labeled statement, or the first statement in the program enit, and 	 -
ends with another labeled statement, a branch statement including
READ with END or ERR specified), or a CALL. tdithin the bfldy of a
block, registers can be fully utilized and intermediate results,
partial calculation of expressions, and base addresses are generated
once and reused from their high speed positions. Excessive numbers
of branches or referenced statement labels will reduce the effec-
tiveness of the optimization by reducing the scope of a blocko 	 '
Optimization is also reduced when a block starts with an IF state-
ment, conditional GO TO, a READ statement with END or ERR, and a
CONTINUE to end a loop where other than a DO loop follows and no
values are initialized. These statements or combination of state- 	 '
meets provide a second path which the compiler views as equally
likely and must save or set up values a,ain before leaving or en-
tering the block at the implied path. For example, a computed GO
TO may fall through, READ with END p r ERR may not fall through, or
'she start of a loop may be obscured when there are no values init-
ialized after a CONTINUE,)

126

	

^^	 ^

`

^

	

' 	 ^	 -	 -	 -	 ^^

^^	

	

' ^	

-	

' 	
_ -

^,

,^f,.

i41'

^^

S

^ ^

f

r

f'

DIFFERENT FORTRAPJS

Errors or code Yrhich executes differently than intended may be gen-
erated t^ri th OPT^2. The f of l otri ng are things to watch for:

1, Code is moved from inside a loop to the initialization of the
loop when all values in an expression or subexpression are not changed
in the loop. This occasionally will not give the expected results.

For example:

DO 11 I-3.,10

DO I2 J=1,14
IF (a(I).LT.n) GD T o 11

12 C(J)=SQRT(R(I}}
11 C4NTINU£

The IF statement contains no expression relying on J, the index, or
a value calculated in both loops and therefore is rearranged as
though the following 4ras written:

DO I1 I^1,I0
T01=5QRT(B(I)}
D4 12 J=1,1D

IF (B(I).LT.D) G4 TO i1
12 C(J)=TQ1
11 CDNTINU£

It is now apparent that the computation of the square root of 8(I)
is always perfumed before B(I} is tested for a valid value. The
compiler recognized t at the computation of SQRT{S(I)) :toes not
depend on the inner loop index, J. To preserve the intent, the code
should be rearranged as shown below:

Df} 11 I=1,I0
IF (s(I}.LT.0) co TO 11
D4 12 J=1,I0

12 C(J}=SQRT(B(I})
11 CONTINUE

Other checks made to ensure the successful execution of statements
follo^ring the one with the test may be moved. to a useless place.
Adding and subtracting a value in the loop will cause retention of
the statement in its proper place (IF (S{I}+J-J.LT.O}. This should
only be done when a problem really exists.

2. Assigned GO TO statements with an incomplete statement number
list may not compile properly. Be sure to have an accurate list of
all possible branches.

:a:

^. .

^.•
,r

I

i

I'^

I
r

,Y

l27

t

f

^`.	 -
r

_^

r'

DIFFERENT FORTRANS

3. tiahen a user subprogram has the same name as a FORTRAtd supplied
subprogram, errors may occur if: 1) variables are rementbered from
one call of the subp^„yram to the next, 2) IID is performed,
3) the subprogram saves into COMt10N or its arguments. Avoid the
problem by explicitly declaring the name of the subprogram in an
EXTERNAL statement. The FORTRAN supplied subprogram may not be
referenced in that program unit.

4. Since values are held in registers certain relationships may
not be known outside the body of the physical loop and rarely after
the completion loop, These are implied equivalences, indices from
00 loops and implied loops, and FORTRAN generated temporary variables.
An implied equivalence is illustraL• ed by:

COf^N{DN/COMMON/A{1D),S,C
DIMENSION E{12)
EQUIVALENCE (A,E)

no ^1D I-1SN

F^BkG

1D C aNTIN U E

The data in memory would be as follows:

A 1) A 2) A 3) ... A(9) A(10) 	 B	 C
E 1 E 2 E 3 ... E 9 F 1D E 11 E 12

E(11) and a occupy the same location as do C and E(12}. 	 In the
example it is possible that B will not contain the just calculated
value of E(11). The optimization is done by name, not by location.
In general, variables in EQUIVALENCE statements are marked so they
are not moved ar partial results calculated using them. This may
cause serious downgrading of optimization.

5. Call by value arguments, enclosed in slashes, may not be passed
properly unless placed in COt^^IDN.

128

i9.0	 C0^IPILER INTRINSIC FUNCTIONS

The FORTRAN IV H compiler provides a number of built-in pseudo-functions
which are useful for logical operations and bit manipulation. The
logical operations pseudo-functions are coded as regular functions
but generate Instructions in-line, which utilize assembler code to
da the precise. operation requested. These functions are extremely

-

	

	 fast. To make the implementation of these functions as in-line code
requires that the XL option be on (by specification on the PARM
field or by default).

.
i9.1 BOOLEAN AND SWIFT PSEUDO-FUNCTIONS

The pseudo-function and its use is described below, The operation
treats the data as a bit string and pays no attention to any partic-
ular numeric format. The correct use is the responsibility of the
programmer.

Number of
Operation	 Arguments	 Argument Type	 Function

LAND	 2	 1, 2, or 4 byte	 iagica] and
LOR	 2	 1, 2, or 4 byte	 logical or
LXOR	 2	 1, 2, or 4 bate	 logical exclusive or
LCOMPL	 1	 1, 2, ar 4 byte	 logical complement (1`s)
SHFTL	 2	 4 byte *	 logical shift 1 eft
5HFTR	 2	 4 byte *	 logical shift right	 '

* The second argument is an integer which indicates the number of
bits to shift.

The following truth tables give the results of the first four pseudo-
functions.

	

LAND O1	 LOR O1	 LXOR O1	 LCOMPL

	

1 O1	 1 11	 1 10	 1 O

Individual bits may be tested by using the TBIT pseudo-function. It
uses two arguments. The first is the variable to be tested and is
four bytes or less. The second indicates the bit position to test,
the left-most bit being zero. No checking i s performed to i nsure
the bit position requested falls within the length of the variable.
The result is a four byte logical value of .TRI!£. or .PALS£.

Another special purpose function is the MOD24 function. Its form
•	 is A=P^i0D24(A), arhere A must be a four-byte integer variable. This

function returns the value of its argument except that the high-
order byte is set to zero. The resulting value will be declared
INT^G£R*4.

129

i
f	

,]{i

4^	 ..^
	

^_ _ ..

1^

CtIMPILFR INTRINSIC FUNCTi0N5 	 I	 -

19.2 BIT PSEUDO-FUNCTIONS

The hit setting facilities are not pseudo-functions but are used as	 ^
statements. 1'he pseudo-function must be set to a variable and use
that same variable as the first argument. It may be subscripted but
both references should be identical. The second argument specifies

^`	 the bit to set and must be an integer wit1^ a value of zero to 63
inclusive. The bit facilities are:

r`

V-BITON(V,K)	 to turn an hit K
V^BITOFF(V,K^ to turn off bit K

`	 V^BITFLP(V,K	 to reverse the value of bit K

19.3 ExAMPLE5	 ^

Find the value of I and J, ORed, ANDed, and exclusive ORed
together.

1.68)	 DATA I,J/3,151	 .^

K^LAf^D{I,J)
L^LOR(I,J)
M^LXOR(I,J)

;^,
the results from I = 3 (0611 2 } and J^15 (1111 2 } are K^3 {0011 2), L^15
(llll2), M = 12 (11002).

Find the logical complement of I.	 ^, "

169}	 DATA 1101	 ^

J = LCOMPL(I)	 ^

The result in J is all bits on ar -l. 1

Shift 16 bits to the right and 15 bits to the left.

170)	 DATA I/6^/,N/15/
K=SHFTR(I,6)
L=SHFTL{I,N)

The results are K= 1 {OOOl 2) and L = 2097152 {221}.
i

Test each bit in a four byte variable, F, and call a subprogram it
the bit is off.	 '

i
17l)	 DO l4 I=1,32

IF (.NOT.TBIT{F,I-1)) cALL N OB IT
10	 ...

Test the first bit in each byte of a double precision variable, D;
and if off, flip the first 2 bits, turn off the next 2 bits, and

'	 turn off the last 4 bits.

a
I
i

130
,^

^	 .. -	 .__..	 - -. W _	 ... ___ _	 _._...- --- - 	 _	 -
^^

.^	
i

^ :ice

_ ;.	 .:	 _	 _
..

Cf1MPILER INTRINSIC FUNCTIONS

172}	 DO 10 I=1,64,8
IF (TBIT{D,I-1)) GO 70 10
D=BITFLP(D,I-1
D = BITFLP D,Ij
D=BITOFF^D,I+1)

D=SITON(D,I+3
D^BITON D,T+4
D^BITON D,T+S
D = 6TTON ©, I^^6)

10 CONTTNUE

19.4 STRUCTURE STATEMENT

STRUCTURE//V 11' V 12° V 13' • " //V 2l° V 22' V 23°" ' //V nl°' V n2° V n3 " " V n n

4J 1i ERE:	 V 11 ,V 12 ,V 13 ,...V Zl ,V 22 ,V 23 ,...V n n

Represent names of variables that will be equated to displacement
values. If these variables are declared in a Type statement, this
statement must precede the STRUCTURE statement.

(dote: The // immediately following the word STRUCTURE may be omitted.

The variables may be implicitly or explicitly declared as any type
or length. They must not be dimensioned and must not appear in
COMMON or E;Ql1IVALENCE statements. A variable may appear more than
once in STRUCTURE statements within a single program or subprogram
provided it is given the same displacement by each program.

If D is the name of a structured variable, it must always appear
in an executable statement with a single subscript, e.g., DPI),
An expression such as D(I) refers to a variable of the type speci-
fied far D which 15 located in main storage at the base address
specified by the value of the subscript expression, I, plus a dis-
placement equal to the total number of bytes in the length specifi-
cation of all the variables preceding D in the STRUCTURE statement
in which it appears. For the object program to execute successfully,
it is essential that the value of the subscript plus the displace-

- ment always be an integral multiple of the length of the referenced
field. Displacements may not exceed 255. The suhscript expression
must be declared as integer or logical.

173)	 LOGIC:^L*1	 ADJ, Nil
_	 INTEF^ER	 CH, PTRf,	

STRUCTURE	 CH, PTR//ADJ//C}{, PVT

„	 >'{ere the STRUCTURE statement shown in Example 173 is used to define
a 2-word structure where the high-order byte of each ward is over-
lapped by a 1-byte field.

131

r

.,-^,

k

i

^-,-

1h

i
1

^	 -^

;^

GONVAII.FR INTRINSIC FUNCTIONS

r—^-----r-----------------------..__ 	 ^---------___---------------y----....., i
I

t---_-....1.--------..__----------------^'------- i--------------..____---------^-.—.r-^.^	 ^^,.."
ADJ	 MT

CH	 QTR

If J contains a pointer to such a structure, its fields may be refer-
enced as ADJ(J), CH(J}, NET(J}, and PTR(J),

If a structured variable is used incorrectly, the compiler may issue
a diagnostic message.

s

i

Appendix A

DAIC1

DAIO, direct access input/output, is a locally supported replacement

package far FOR7RAlV`s direct acc ►_ss I/Q. A complete description can

^^	 be found in the current version of the M&dfl 36^ User's fuide.

a

133
ii

^ i

^_

Y

.	 __	 ..

i

a

Appendix B

r

i

FMOVE

Fh10VE is an assembly subroutine used to move data from one field
to another. These fields may overlap. The subroutine makes use
of the MVC instruction which moves up to 256 bytes, the equivalent
of 64 four-byte variables tivi th one i nstructi on . 4lhen more than 256
bytes are to be moved, the subroutine loops movin g the specified
amount of data. FMOVE uses 772 bytes.

The calling sequence is:

CALL FtROVE(to,length,from)

"tn" is the storage area which is to receive the data. It may be
specified as a simple variable, an array name, or a suhscripted
variable.

"length" is the number of bytes of data to move. The four-byte
integer may be specified as a constant, a variable, or an expression.

"from" is the storage area where the data i^ copied from. It may
be specified as a simple variable, an array name, or a subscripted
variable.

The effect of a call is to move "length" bytes of data from "from"
to "to", To obtain the proper lencith in bytes, determine the number
of variables to be moved and multiply by the length of each of the
variables (l, 2, 4, 8, or 76 bytes).

FMOVE is located in SYS2.GSFCLIB and is autnmatica7iy linked into
the user's load module when the LIhIK, LIIVKGO, or LOAk7E1t procedure
is executed.

To zero an array, or set it to any other specific value:

174)	 DIMEPiSiOIV A(204q)

cALL FMOVE(A(2),7996,A(i))

The move is done one byte at a time, and the variables are filled
A(2)^A(1) then A(3)=A(2) until a1i the remaining portion of the array
is filled.

^;.^^p^iG PA^^ IiLAN^ NO'
S ^'^

	

135	 ^^''`
i

1

^i

I

^	 ^i

r
t

^-,. .

t

FMnv E 	 a' ^'

Move mixed data into the middle of a work array from a COh1^90N area:

i75)	 COMMON/COMMON/A(50),R(50),I(10),C(20),H(80)
INTEGER*2 H
LOCICRL*1 C

DIMENSION	 TEh4P(300)

•	 ^r

CALL FMOVE(TEMP(150),50*4+50*^^10*4+20+80*2,A)

The length has been expressed as the sum of each variable length
times the number of elements, Since the "from" field is in COMMON, 	 ^.
all the arrays are contiguous in storage.

y

^,

i

Y

13G

^	 ^_..

Appendix G

FORTXDA^^

1 FUNCTIONS

FORTRAN extended direct access method, FORTXDAM, is a subprogram
with seven entry points. It moves unformatted fixed length blocks
of data between disk storage and memory with no buffering and returns
dontroi to the user once the read or write operation is started.
The amount of data which may be moved can be from one byte to one 	 '
cylinder, 145884 bytes. Each record starts at the beginning of a
track. To use space mare efficiently, the record length shau'i^l be 	 ^^
as close to a multiple of the track length as is possible, 1264a
No blocks or records are split across cylinders. The following table
shows the relationship of record lengths to tracks and cylinders fur
2314 disk storage. There is some work space required in each track. 	 -^

R ,ecard length	 Tracks/Bloc k_ 	Blocks/C.yllnder	 ^...__	

1-7264	 1	 20	 ^
	7265-14528	 2	 10

	

14529-21792	 3	 6	 i

	

21793-29056	 4	 5	 ;^

	

29057-36320	 5	 4

	

?321-43584	 6	 3

	

43585-72640	 7-14	 2

	

72640-145280	 11-20	 1	
{^

Figure 43 - Space Requirements for F0RTXDAh1 Data Sets	 j

2 ARGUNiFNTS

The subroutine is contained in SYS2.c;SFCLIB and will be included in
the load module automatically when the LINK, lINKGO, or LOADER pro-
cedure is used, it uses 1408 bytes of memory. FORTXDAM is re-entrant
except when entry points XDOPEN, XDFOR^^, and XDClOS are active.

The seven entry points, the calling sequence, and functions are
documented below. The fallowing names are used as symbolic argu-
ments:

'field' - The area where the data is transferred. It must be large
enough to contain ail the data requested and may be specified as an
array name or a simple or subscripted variable,

'length = - The record size in bytes to read or write. It must be
a faun byte integer value and may be specified as a constant, a sim-
ple or subscripted variable, ar an expression.

137

►: ^	 _'

_-.__.

^ti, --

_.

s
^^

:^

I^^

^.

Fn€^TxDA^a

'ddname' - The eight character left justified name of the JCL DD
statement which defines the data set FORTXDAP^E is to read or write.
Aii eight characters must be specified using blanks to pad the name
on the right. It may be specified as a literal constant, a simple
or subscripted variabie name, or an array name.

'flag' - A four byte integer variable ^^ahich contains the compTetian
cads of the previous operation. It may be a simple or subscripted
variabie..

'block' - A four byte integer value specifying the number of the
block (or record) to transfer. It may be specified as a constant,
an expression, or a simple or subscripted variable.

'unit' - A four byte integer variable which contains the internal
file identification information,

3,0 CALLING S EQUENC£ APJD FUNCTION

3.l XDOPEN

CALL XDOP£N(unit,length,ddname) is tailed first and prepares the data
set control blocks for input/output operations. 	 'length' bytes are
always transferred on subsequent access to the file 'unit'. It also
acts as a flag with the following meanings:

a positive value - the data set vras opened successfully

-] - the data set was not opened successfully, probably a DD state-
ment error

-2 - insufficient memory to open the data set, increase the region
size

-4 - the data set record length is wrong, greater than]45280 bytes,
or the SPAC£ field of the DD statement did not specify CYL

The value of 'unit' should not be changed once XDOP£N has executed
successfully. If the length of the retards in the data set is to
be changed, it must be closed and reopened.

s.2 xDFORM

CALL XDFORPi(unit,flag,field) formats a nevr data set for subsequent
operations by FORTXDAM. XDOPEN must have been successfully executed.
The entire data set is written with the data stored in 'field'. In
this way the unused records may be flagged, set to a particular value,
or certain fields initialized. If used in a multi-tasking environment,
it should be noted that the eight bytes before 'field' are altered;
upon completion of XDFORM they are restored. The values of 'flag'
are:

1

i

a

i38

1
--- _ __.._	 1	 _.... _

F4R7XDAF9

a positive value - the data set was successfully formatted and
may contain a maximum of 'flag' blocks (records)

a negative value - a avrite error occurred as explained:

-2 - a wrong length record condition was found, check ' length'
tin the call to XDOPE[V

-4 - an uncorrectable error occurred

-8 - an unidentified error occurred

Ail data sets that are written for the first time must be formatted.
if the length is being changed, then it must be reformatted.

3.3 XDWRIT

CALL XD4lRIT{unit,block,field) starts the transfer of 'length' bytes
from 'field' to record 'black' in file 'unit' {assigned by XDOPEN}
on disk. A tail to XDCHEK must precede any other I/fl operation to
'unit's The memory area ' field' should not be changed until the
completion of XDUJRI7 as the values may be changed before the trans-
fer takes place.

3.4 XDREAD

CALL XDREAD(unit,b7ock,field} starts to transfer `length' bytes from
disk record 'block' of fife 'unit' (assigned by XDO p EN) to 'field`.
XDCHEK must be called before any other I/O operation to 'unit'. The
memory locations 'field' should not be used until the completion of
the I/O operation since the data may not yet be present.

3.5 XDTEST

CALL XDTEST(unit,flag) tests the progress of the I/O operation last
requested on 'unit'. The calling program continues after the test
is made. The meanings of 'flag' are:

1 - no I/O operations are active, XDCHEK has been called, and
'unit' is ready to read or write

0 - the previous operation is complete and XDCHEK needs to be
called

»1 » an I/ q operation is currently active

3.6 XDCHEK

CALL XDCHEK(unit,flag) completes an I/O operation to "unit'. If the
I/O operation is still proceeding, the calling program waits far it
to complete. 'flag' indicates the status of the completed aperatis,n:

^,

139

;..

r
^.•

^^
	 ,^
	

f
	 ^._.	 _

i
^i

1
aY

^{1

_^	 ,^

FORTXDAt9

.^

l - all operations are complete

0 - record 'block' eras successfully transferred

-1 - '61ock' is too large, the file does not contain that many
records

-2 - a vrrong length record condition was found, and the number
of bytes of data transferred is uncertain, check 'length'
in XDOPEN

-4 - an uncorrectable I/O error occurred

-8 - an unidentifiable error occurred

3.7 XDCLOS

CALL XDCLOS{unit) is not required, unless changing the record length
of a file. The system wi11 automatically c]ose all data sets used
at the end of the program's execution.

4 JCL

The DD JCL statement far a FORTXDAM data set accessed via FORTXDAM
should only specify the UNIT, SPACE, and optionally the DSN and DISP
keyvrords. The SPACE parameter must be in the form:

/; ... SPACE = ^CYL,n„ CONTIG)

vrhere 'n' is the number of cylinders needed to hold the records of
the data set, see Figure 44. If full advantage is being made of the
asynchronous input/outp,rt capabilities, the SE p subparameter of the
UNIT field should be coded for new or v:ork data sets. This vrill try
to pi ace the data sets on channels which are logically independent
from one another and allows full physical overlapping of I/O oper-
ations.

5 EXAMPLES

Create a new file and reference it in the same program.

1767

C	 ALLOCATE ARRAY SPACE AT NEAR l FULL TRACK{4 *l$00-7200)
DIMENSION RECORD{i800),LOC(400)

C	 INITIALIZE FILE TO ZEROS
DATA RECORD/1800*0.0/

C	 OPEN FILE AND ASSIGN FORTXDAM UNIT REFERENCE NUMBER
CALL XDOPEN{IUNIT,720(l,'FT01F001')

f	 _1

,^

1

,^3

l40

FoRrxDAM

C PREFORMAT DATA SET FOR USE AND INITIALIZE UNUSED RECORDS
CALL XDFORP^9(IUNIT,NFLAG,RECORD}

C CHECK TO BE SURE FILE PROPERLY FORMATTED
IF	 (FLAG.GE .0)	 GO TO 10
^lRITE	 (6,20);dFLAG

20 FORMAT	 ('	 *** FORMATTING ERROR CODE =	 ',I3/
7	 '	 PROGRAP^	 ENDED	 ***')
STOP 4

C 4lRITE ENTIRE FILE 	 IN^THIS	 LOOP,	 'NUMREC'	 IS	 LESS THAN 401
7 0 DO	 100	 I = 1 ,NUPIREC

C 5TART TO R^lRITE RECORD -	 'LOC'	 HRRAY	 CONTAINS	 BLOCK NUMBERS
CALL	 XDlJRIT(IUPiIT,LOC(I},RECORD}

C DO OTHER CALCULATION 1^lt{ICH DO NOT U5E RECORD

C

.

CHECK STATE OF IJRITE^AND tdRIT FOR COMPLETION
C UlAIT PLACED HERE SINCE RECORD ABOUT TO BE USEp

CALL xDCHEK(IUNIT,PiFLAG)
IF	 (NFLAG.LT.0)	 GO TO 'LOO

50 RECORD(}	 -	 ...

GO TO lOD
200 WRITE	 (6,210}NFLAG,LOC(I}
270 FORMAT	 ('	 *** klRITE	 ERROR CO p E	 ,`I3>'	 FOR BLOCK',I3}

GO TO 50

loa
C START INPUT OPERATION^FOR BLOCY. II

CALL XDREAD(IUNIT,II,RECORp}

C NO9^! NEED TO USE RECORD - 	 HALT PRQGRAM UNTIL	 I/O DONE
CALL XpCHEK(IUNIT,NFLAG}
IF	 (NFLAG.GE .0)	 GO TO	 30O
4lRITE	 (6,220) NFLAG, II

22O FORPhAT	 ('	 ***	 ERROR	 CODE =	 ',I3,'	 READING	 BLOCK',I3}
GO TO 100

300

The	 ^3CL required for the data set would be:

//FTO1F007	 DD UNIT 2314,SPACE^(CYL,20 „ CONTIG}

^	 ^^

^, ,

.^^

14i

^_ ^	 ..
	 ^,,	 _	 ^

I

.	 3
,^•^.

142

i

FORTXDA^I

s

The number of cylinders was calculated as 400 records; one track
one record. 400 tracks divided by 20 tracks per cylinder is 20
cylinders.

Copy one old file to another old file.

177)

C	 ALLOCATE RECORD SPACE FOR T^lO 14400 BYTE BUFFERS
DIMENSIOCJ R1{3600},R2(3600)

C	 OPEN FILES TO USE
CALL XDO p EN IUNITA,LEN,'FIRST	 ')
CALL XDOPEN IUNITB,LEN,'SECOND	 `)

C	 READ IN FIRST RECORD FROt4 UNIT A INTO R1

CALL XDREAD(IUNITA,I,RI)

C	 SET UP LOOP - READ & b1RITE DONE IN PAIRS OF
C	 IJRITE CURRENT RECORD AND READ NEXT RECORD
C	 LOOP THEREFORE GOES BY TtdOS AFTER INITIAL
C	 RECORD READ

NMI^NUMREC-i
DO 240 I^1,NNE1,2

,.

C	 WATT FOR PREVIOUS READ TO FINISH TO WRITE RECORD FROM BUFFER R1
CALL XDCHEK(IUNITA,IFLAG}
IF (IFLAG) 100, 200, 200

100 WRITE (6,105}IFLAG,I
105 FORMAT (' ERROR CODE',I3,' AT FIRST GHECK IN LOOP, RECORD = ',I3}

C	 DUMP CURRENT RECORD
200 CALL XDWRIT{IUNITB,I,Ri)

C	 START TO READ NEXT RECORD INTO R2 BUFFER
CALL XDREAD(IUNITA,T-^l,ft2}

C	 NOU! WAIT FOR UNIT B TO COMPLETE WRITING 4JHILE UNIT A IS READING
CALL XDCWEK(IUNITB,IFLAG)
IF {IFLRG.GE .0) GO TC 220
WRITE {6, 2i0}IFLAG,I

210 FORMAT {' ERROR WRITING RECORD, CODE IS',I3,' RECORD ^ ',I9)
C	 WAIT FOR READ TO FINISH BEFORE STARTING WRITE OF BUFFER R2
220 CALL XDCHEK(IUNITA,IFLAG}

IF {IFLAG.GE.0) GO TO 230
WRITE (6,225)IFLAG,I

r	 ^-

1

«	 1 1

r.

^	 r	

}^
__^

FORTXDAf+I	 '

225 FORMAT ('	 ERROR AT STATEMENT 220,	 CODE =	 ',I3,'	 FOR
1RECORD=,I3,=+1')

C NOW START TO WRITE BUFFER R2 AND READ BUFFER R1
23D CALL.	 XDWRIT (IUNITB, I-rl ,R2)

CALL	 XDREAD(IUNITA,I+2,R1)
C CHECK FOR THIS READ AT TOP OF 240 LOOP

240 CONTINUE ^
t	 -,

The JGL	 for	 the two DD	 cards	 wo^.^'^d	 be:

//FIRST DD	 DISP = SHR SPACE-	 CYL 10	 CONTIG	 DSN=ORIGINAL
//SECOND DD UNIT= 2314,SFACE C (CYL,30„ CONTIG),DSN=COPY,
J/ DISP=(NE4J,CATLG)

Save the results of calculations during	 an	 iteration when
=,

there	 is
I/O time available.	 The	 previous results will	 be accessible later	 '
for restarting.	 An old FORTXDAM data set	 is to be used, At mast
save 10 results. ^

178)

C ALLOCATE A WORK SPACE AND AN I/O SPACE ^'
DIMENSION	 COEFF{100,100,2),RHS{700,2)

C OPEN FILE TO BE USED
CALL	 XOOPEN(IUNIT,40400,`SAVEDATA`)

C PREPARE LOOP TO DO 1000 ITERATIONS AND 	 INDICATOR FOR WHICH
C AREA TO USE ^

TDUMP=O ^
J^2

K=1
DO	 10	 I=1,1000
CALL	 ITER(COEFF(l,i,J),RHS(1,J))

C CHECK IF FILE AVAILABLE FOR WRITE ^i
CALL XDTEST(IUNIT,N)

C CONTINUE LOOP	 IF BUSY
iF	 (N.LT.0)	 GO TO	 l0

C FILE	 IS FREE WRITE RECORD, 	 FINISH	 I/O OPERATION
CALL	 XDCHEK(IUI^fIT,N}
IF	 (N.GE.O	 GO TO	 5
41RITE	 (6,6^N,IDUh1P

6	 FORMAT {'	 ERROR ON	 INTERf41EDIATE	 OUTPUT,	 ERROR	 I5',
1I3,'	 RECORD	 IS',I3)

GO TO 10
C SET BLOCK NUh16ER

5	 IDUMP=IDUMP+?
C CHECK IF MORE THAN 10,	 IF SO RESET

IF	 (IDUMPoGT.iO)	 IDUMP^l

i43

i

I

^^
^.
	 i

j

^I

f

^-

i

h'{iRTXDAt9

C	 SET VALUE Tfl ADJUST BUFFER LOCATION SUBSCRIPT
KKK*-1
CALL XDWRIT(IUNIT,IDUMP,COEFF(i,1,J}}

1I3, = RECORD IS',I3)
C	 MOVE DATA FROM BUFFER TO NEXT CALCULATION AREA

CALL FMOVE COEFF (1,1 ,J},COEFF(1,i,J^ K},4flaaa}
CALL FMOVE RH5(l,J},RSN(i,J+K},400)

C	 RESET BUFFER ADDRESS
J=J^K

lO	 CaNTINUE
C	 WRITF LAST SAVED RECORD NUMBER

UJRITE (6,20} IpUMP
20	 FORMAT ('0 R£C57RD pF LAST SAVE I5',I3}

The JCL would be:

//SAVEDATA DD DSN^FORTXDAM.DATA,DISP = SHR,SPACE = (CYL,4 „ CONTIG}

The number of cylinders o^F space required is calculated by using
Figure 43. A retard length of 404x0 bytes takes 6 tracks; 3 records
stored in each cylinder. Four cylinders will hold the required l0
recordsa

r

Appendix D

FTIO

FTIO, a FORTRAN callable suhprogram, supports unformatted sequential
I/Q. Backspacing is not permitted, and the data to transfer must
be continuous in storage. There are nine entry points which function
as follows.	 ^

1 ENTRY POINTS AND FUNCTIONS

FREAD - read a re^.ord

FREADB - read a file backwards, last record first, etc.

FWRITE - write a record

RE4dIND - close the file and position at the start of the same file 	 ^`

UNLOAD - dismount the tape and free space used for controlling the
file and buffers

POSN - position to the start of a specified tape file

LEAVE - close a file, free some file control space and buffers, and
position at the end of the current file 	 ^'

MOUNT - mount a tape and optionally advance to a particular tape
file

MEMSER - locate a member in a partitioned data set on direct access 	 ^

2	 FEOf^I TO USE

The subprogram is located in SY52.GSFCLIB and is automatically
included when the LINK, LINKGD, or LOADER procedure is used. It
requires 2589 decimal bytes. 	 '^

In the discussion which follows, a record is one continuous group of
individual data items. A data set is a related collection of recordsq
A file is the manner in which a program refers to a data set. A
file may COn515t of one ar more data sets by concatenation. The
FORTRAPa unit number is the file name and is coded as the ddname on
the DD statement. A tape file is a given data set an tape. There
may be more than one stored per tape. tdhen referenced through aCL,
the physical sequential position on the tape is specified in the
first field of the LABEL parameter of the DD statement.

A particular file may not be referenced bath by FORTRAN and FTIO
at the .same time since certain system information within control

`	 blocks is different. Control blocks are created when a data set is

i

145	 1
;^	 l

,i,,

•	 ,

_ .	 __
,;

^^	 ^	 ^ ^:

4	 __ _..__	

FTi0

opened. ti^lhen a data set is closed, certain painters are reset and
the buffers are freed. FTIO and FORTRAN may use the same files
but only if the file has been closed by the first I/O package used
to perform the operations before the other package opens the file.

_	 Data sets are implicitly opened by accessing the file. In FORTRAN
the READ and WRIT£ statements cause an open, in FTiO calls to FREAD,
FWRITE and FRFADB open a data set. Closes are done by ENDFILE and
RE4QIND statements in FORTRAN and by calls to REMIND, UNLOAD, P05N,
LEAV£, MOUNT, and MEMBER.

FREAD, FYlRITE, and REWIND are used just like the FORTRAN statements
READ, WRITE, and REWIND. Several of the other calls allow the pro-

-	 gram to handle certain functions usually assigned to the JCL. Spe-
cific tapes may be dismounted (UNLOAD) and mounted (MOUNT), I/O
operations may be directed at a specific physical tape file without
a separate DD Bard for each tape file and dynamically changed (POSH
and MOUNT). A tape file may be closed and logically positioned at
the end of the physical tape file (LEAVE). For disk data sets which
are contained in a partitioned data set, a specific member may be
transferred and dynamically altered (MEMBER). Files may also be read
backwards (FRFADB), that is, read the records in reverse order. The
contents of the record are unchanged.

3.0 £XAMPL£S

The specific argument lists for each of the calls are shown below.
Some entry points may have mare than one farm. Only the calls as
shown are legal.

3.l FREAD

CALL FREAD(record,unit,length,&end,&err}
CALL FREAD(recard,ddname,length,^,&end,&err)

This will cause the number of bytes returned as 'length' to be read
from 'unit' (FTunitF^pl} ar 'ddname' into memory at the location
starting with 'record'. 	 If an 1/0 error occurs, statement 'err' is
passed control upon exiting FREAD. When the end of a file is read,
statement 'rr' will have control. The data set will be opened if
necessary.

3.2 FRFADB

CALL FR^ADB(record,unit,length,&end,&err)
CALL FRFADB record,ddname,length,^,&end,&err)

The function is the same as FREAD except the records are read back••
wards. That is, the last record is read first until the first record.
The data in each record is in its p^ • oper order. The record format
of the file must be fixed blocked or unblocked (F or FB specified
^n the R£CFM subparameter of the DCB operand). The data set will
be opened if necessary.

146

_.
may.

.}	
i

I

^.

i

I

i

^,

^^.

147

f

^;
:.	 i

1

FTIO

3.3 FWRIT£

CALL FWRITE record,unit,length)
CALL FIdRIT£^record,ddname,length)

FWRITE will take 'length' bytes starting at location 'record' and
write them to the file specified by 'unit' (FTunitFp^l) or 'ddname'.
The data set will be opened if necessary.

3.4 REWIND

CALL R£LdIND unit)
CALL REWIND ddname)

REWIND positions the file to the first record in the file referenced
by 'unit' (FTunitF^^l} or 'ddname'. The data set is closed if
necessary.

3,5 UNLOAD

CALL UNLOAD unit)
CALL UPJLOAD((ddname}

For tape files only. The tape referenced by file 'unit' (FTunitF^^1)
or 'ddname' is dismounted and physically removed from the tape drive.
All control block space is freed far reuse. The data set is closed
if necessary.

3.6 POSH

CALL POSN(optian,unit,tfile)
CALL POSN(option,ddname,tfile)

For tapes an1y. The tape mounted on file 'unit' (FTunitF^^l) or
'ddname' is positioned at the start of p hysical tape file 'tfile'.
'option' specifies the type of I/O operation to be performed next.
The data set is closed if necessary.

3.7 LEAVE

CALL LEAVE unit)
CALL L£AV£ ddname}

The file referred to by 'unit' (FTunitFQl p̂ l) ar 'ddname' is posi-
tioned at the end of the current physical sequential file- being pro
cessed. The data set is closed if necessary.

3.8 h1OUNT

CALL MOUNT(aption,unit,volume)
CALL MOUNT nption,unit,volume,tfile)
CALL MOUNT option,ddname,volume}
CALL MOUNT option,ddname,volume,tfile)

"

_'__ -_--_

l	 ~
!
^
!/	 !	 .

/FTIO	 ,^	 ^
/	 !

^	 `	 "	 ^
.	 MOUNT V^ll pla^e tha tap^ labell^d an volume ^n the tape dr^x$

a^GYgDed to f^l^ / Unit' / FTunftF^@l) or 'ddnam^ / .	 Dpt^onal1v tho	 ^
`	 ^apa ma^ be p p s^tfoned ^0 tha p sical ^equenn^ tape ffl^ ; tf^le / ,	 ^	 ^

^^ 	 O$f^ult 1s to th^ fi^at tape f1le wh g n not apeoff^od.	 'optYon/
sp^oif1m y the type of I/O op^ratinn to perf^ y^ next. The f1le Will	 ^

^	 b$ closed Yf U^^essary. 	 `
^

/	 ^,	 /	 -
3.9	 ^----___	 ^

`	 CALL ME^BE^ ^ptinn,unit*m^Nb^^r1 	 ^	 '	 /!
°	 CALL MEM8ER/optiun,ddna^o,memb'r\ 	 ^.	 |

'
The n^xt J	 ^parat^on will t^ke pla^e at tho start of th g member	

^
.	 /	 .^	

spm^ified by "M^mber'. Thm oqeret^un ^^ll he as do$^^ b^d by / ^p Ynn .
'	 The partfti^ned data sat is refe p eOomd by f1la 'Vn^t / ^FTVOi^F00l \	^
'`	 or / ddnuma`,	 Th^ data oet w1ll b$ olosmd 1f n^oe^^ary`

	 '	
'	 1'	 ^/	 .^.	 ^	 ^^^^^^^^^^'	 ^

^	 In tha des^r1ptioU of the calls to ma^h ^f thm entry po^nts, the 	 '
^	 fol7o^i^g sy0bols arc used tn repre^$nt tha ergumen^s. 	 '

'
^	 r^c^rd - ^ uont^nunum area ^f mtora^o in wh^ch the I/O ^ra^sfor takes 	 ^
/	 plana. lt may be a^ array name or a s^mple or subs^r^pted 	 ^
!	 var^abl^ and have 'langth' byt^^ ^f storage follnwing° 	 ' °
^	 i.
^	 ^un^t	 The un^t number of thm file to be referen^ed	 The four byte^	 -	 ^	 |'	 ^nteger value must be betwee8 l and 5O inulusive. The name
!	 of the f^le ^^ g^neratod a^cnrd1ng to th^ ^ules ^f F^RTKA0 "	d
!	 It ma^ bm spenff^od as a y imple or subscr^pt^d Ya p ^able nr	 !	 ^^

a constan^ ^r e^press^on.	 i
|	 |
.	 ddna^^ - Js an a^ght byte T^te^al wh1ch p^^f^ms the DD name for 	 .
'	 th^ f^lo tn be r$^d. Trail^Ug blanka mu^t b^ lncluded.	 ^
^	 It may be oodod as a l^teral monstant * a m1mpl^ or sub-	 .
.	 scriptmd variable, nr an array name~	 |
^	 i^	 leng^h ~ Tho numb^^ of byte^ ^f data tn be ^^^nsfmrrad. The four	 ^	 ^'	

b«tn integer value ^ay be nnded as a oonstant expreso1on,`	 -'	 »	 /	 ^	 '
^`	 ur a si^ple or ^ubsorfpted var1able ^ The 'length is cal-	 !
^	 c^lmtad by multip1vfng the len0th ^n bytes ^f the d^^u ^tem 	 |
^	 ^^ D 4 ^ nr lG) bv th^ nu^bmr nf it gms nf eoch longth	 '	 '
^	 `	 ^	 "	 ,	 "	 -~	 .

'	 opt1on - Is a four b^^e ^n^eg^r valu^ *hinh mpecifie^ thm type 0f
^	 I/D transfo^ whf^h wYll be dnne. lt ma^ ba g^ven by a oon-	

`
i	 '
[stant, eu^re^sinn, ^fmplo or aubs^r^pt^d variuble. Thm 	

' '

^	 values und the^r m g ^OYngs ape:	 '
|/l fnr ^npu^, read

2 for output * ^r1ta	 ^
^	 3 fo^ fnput b^^k^^^ds, read backward g	!'	 ^

^^	 /
^	 '	 i|
.
\.]^^
i

^ ^^
i
^ ' -- - --	 '	 - ---^ '^	 `'	 .

_~	 ^^	 ^~	 -'.	 '	 \-

FTIO

tfile - Is a four byte integer value which specifies the physi^:a7
tape fife to which to position. It may be given in a con-
stant, simple or subscripted variabie, ar an expression.

volume - Gives the tape volume serial number. The alphanumeric
field is left justified and should contain trailing
blanks to fill the six byte field. It may be written as
a literal constant, a simple or subscripted variabie, or
an array name,

member - Is an eight byte name tivhich is left justified and contains
trailing blanks.	 It may be specified in any manner 'volume'
i5.

end - 5pecifies a statement number. This statement is given control
when a read is issued and there are no more records in the
file. It must be given as a one to five digit number which
appears as the label of an executable or CO^JTINUE statement.
It is coded with a leading ampersand, as shown in the descrip-
tion of the calls and in the examples.

err - Specifies a statement number. This statement is given control
+when an I/O error has occurred.	 It is specified as 'end' is.

5 RETI^RN CODES

If an invalid request is made of FTIO, the user condition code is
set for the job step, and the step is terminated. The codes and
their meanings are.

20i - `unit' is out of range, larger than 50 or less than 1

202 - the file referenced is being used for direct access, rather
than sequential input/output

270 - 'option' is invalid, greater than 3 ar less than 1

220 - 'length' is invalid, check vrith the value coded in the LRECL
subparameter of the DCB operand for FTunitF001 or 'ddname'

q

230 - the DD card for FTunitF041 or 'ddname' is missing

6 PROGRAM EXAMPLES

Greate a file and use it later. The data will be Vrritten to FT10F001.
Each record contains 1000 real variables. 	 .

174)	 DIMENSION A{1000)

C tdRITE 011T A RECORD
CALL Fti^RITE {A,10,4000)

i

^^

_	 __	 i
^^

FTIO

•

C RESET FILE TO READ FROM START OF FILE
CALL R£ti^JIND (T 0)	 ^^

;;̂!

^	 -^ ^^^
C READ IN A RECORD

CALL FREAD (A,l0,L,&99,&98)	
rj.

1;

C END DF DATA SET FOUND	 ^	 '^
99 CONTINUE

^^
C AN T/0 ERROR FOUND	 ^

98 CONTINUE

Read data into an array. Llhen file DATAIN is all read, process	 1
the data.

l80)	 DIMENSION RECORD{80,100)

C READ IN^UP TO 100 RECORDS
DO 10 I^1,100
CALL, FREAD(RECDRD{i),'DATAIN 	 ',LO,O,^100,&50)

10 CONTINUE
C	 MDRE THAN 70D RECORDS PRESENT ^ SKIP REST

50 td RITE {6,60)I
60 FORMAT (' R£AD ERROR ON RECORD',I3,

1' OF DATAIN - RECORD SKIPPED')	 ^
GO TO 10

C	 PROCESS DATA
1DD CONTINUE

4

Read a retard into a COMNfON area. Process the individual variables
and stop the program when all the data is read. The unit number
and tape volume serial nur^ber are read on file five.

150

__ ^ y .

^ ,,_ -

O

rt 3

3

i

i

i^

I	 -	 X

^^.

151

181)

f	 s.

..__

FTIb

REAL*8 VOL

COMMON /DATA/ A(3),B,I,L(6},X(9)

READ^(5,5} IUNIT,IFILE,VOL
5 FORMAT (2I4,A6)

CALL MOUNT(1,IUNIT,VOL,IFILE)

lb CALL FREAD(A,IUNIT,L,&99,&3b}

C	 PROCESS DATA

GD Tb 10
3a IJRITE {6,40) IUNIT
40 FORMAT ('ERRQR READING UNIT',I3}

G0 Tb i 0
99 STOP

AND

N

f	 -

i

--	 -

^.

Appendix E

ICt^9PAR

ICC^9PAR is an assembly language function used to compare up to 256
bytes of data. The function uses 96 bytes and makes use of a CLC
instruction. ICMPAR is in SYS2.GSPCLIB and is automatically in-
chided when the LINK, LINKGO, or LUABRR procedures are used. Phis
instruction stops its left to right byte-by-byte comparison as soon
as an inequality is found. The fields to compare may overlap. The
value returned by the function depends on the relationship of the
comparands. It is a full ^vord integer which may also be treated

+	 as a four byte logical value.
^;

The calling sequence is:

ICMPAR^fieldl,field2,length,offsetl,offset2)

or,

ICNiPAR(fieldl,field2,length)

"fieldl" is the first data string to compare. 	 It may be specified
as a simple variable, an array name, or a subscripted variable.

"fieldl" is the second data string to compare. It may be specified
in any of the ways that "fieldl" is specified.

"length" is an integer value in four bytes vrhich specifies the num-
ber of bytes of data to compare in "fieldl" and "fieldl", It may
be a constant, simple, or subscripted variable or an expres$ion.
If the value is not in the range l to 256, the value used is taken
as modulo 256.

The next two arguments are optional anJ may either both be left out
or both be included in the argument list, If not use , both values
defau'^ to zero.

i

tr
1

.^°
^^

,^

"offsetl" is the number of bytes to skip in the first data field
before starting the comparison. The four byte integer quantity
may be specified in any manner as outlined for "length". A value
of zero skips no data and starts with the first byte of the data
area given in "fieldl"o

"offsetl" has the same function as "offsetl" but for "fieldl".

The result of the function is:

-1 or .PALS^a = "fieldl" is less than "fieldl"
0 or .TRUB. = "fieldl" is equal to "fieldl"
1 or .^'ALSC. ^ " fieldl" is greater than t ° fieldl"

153	 ^.^:^ f, ^^ PAGE ^^^ N^ ^L^1.^,
^'.

i

,_

.^•
^^ '

i54

^	 ^	 —

i
v	 '^

i'

i
ICP^PAR

The sorting sequence for alphameric data is given an the lines
bel oti^^:

^¢.<(+^8,1$ *};~-/,I >?:t^@'="A$COEFGHIJKLtiNOP[^RSTUVtidXYZ0T23456789

Figure 44 ^ Standard I$r! Coilating Sequence

Compar^a -^e first five characters of A with the First five characters
of B.

i82) '"^:;. FB AJ'A$COEFGH'/,B/'^^1XYDEFI2'/

J=ICMPAR(A,B,S)

J ti^^il7 have a value of W 7 or .FALSE..

If the three character string starting with'the fourth character
was done with A and $ as in Example 175; the following would be
used to set ^:

i83) J^ICMPAR(A,B,3,3,3)

and J would bC zero or .TRUE..

Ta compare the first eight values in C with the last eight, the
code might be:

184) REAL*8 C{100)

IF{ICMPAR{r_',C,64,0,92*8))1,2,3

Note: The second offset is the element number minus one, since the
first offset is zero, times the length of an element of the array.

Compare the fifth through tenth elements with the sixth through
eleventh Clements in array L.

185) LOGICAL*i L{20)

IF(ICC^IPAR(L(5),L(6),b))100,200,300

r

.^;^

is

4^

1	 r.

Appendix F

LOAbh1AP

LOADMAP produces the following: 1) a lin;cagt editor map, 2) an
alphabetic listing of a1i CSECT and entry point names, 3) a list

`	 of all unreferenced names, 4} cross - reference listings of called
entry paints and CSECT ' s as well as entry paints and CSECT ' s which
are called, and 5) a list of CSECT and entry point names with inter-	 '
nal identification, A CSECT, or control section, is a main program,
subprogram { s ubroutine or function), COMMON area, STATIC EXTERNAL

'	 area, or a pseudo - register vector.

The listings are controlled by keywords in the FARM field of the
•	 EXEC JCL statement. Any option not desired should be prefixed by

the two letters N0. The folloti^ring describes the function of the
keywords with the default underlined. If only the defaults are to
be used, no PARM field need be coded.

ID/NOID - list CSECT name, address, type, length, segment number,
andin^ernal identification number

MAP/NOMAD - produce a linkage editor map

LIST/NOLIST - produce an alphabetized listing of all CSECT and entry
point names with the same information as ID provides 	 =

UNREF / NOUNREF - lict all unreferenced, nc.t called or used, CSECT
and entry point names with the same information as IO provides

XREF / NOXREF - produce cross - reference listings to show all external
references a CSECT makes (calls ar references to COMMON, STATIC EX-
TERNAL areas, ar pseudo - register vectors? by the calling CSECT and
a list of where a CSECT, or entry point, is referenced by the called
CSECT or entry point. Both listings are alphabetized by name.

LINECNT^82 - specify the total number of lines per page to be used
for the reports. The two - digit quantity must be between 13 and $2
or the default vrill be used.	 Space for headings and footings is
included.

The heading on each page includes: the report title, LOAOMAP ver-
lion number, time, date, page number, the contents of the PARM field,
entry point address of the load module { in decimal), user region re-
quired for the program (exclusive of buffers and dynamically loaded
modules) in decimal K, first volume serial number, DD name and load
module attributes. The re p orts are multicolumn and read down the
columns.

Tlie program requires ^dk	 :^ additional tabl a space ti^rhi ch i s depen-
dent upon the number of GSt;rT and entry point names and the number
of external references. P1ost programs can be mapped in the default
region or at most 100K and require l/2 minute for both CPU and I/O

LaADr^AP

time on the 36x/95. The amount of memory required to complete pro-
_	 cessing is reported on the bottom line of the next to last page of

the report far each load module mapped. If not enough memory is
assigned, the amaur,t required to finish processing that phase of
execution is given.

•-	 More than one]oad module may be map p ed per execution, but the pro-
gram options remain unchanged. A named DD card, which may be chosen
to comment on the load module, is included for each load module and
must include both the data set and member names. The rE:ports are
produced on SYSPRINT.

LOADMAP is in SYSl.LINKLI6 and may be executed by either PGM = or
the LOADMAP procedure. LIB is the symbolic name for the data set
and MEM ^'or the member name. Any other load modules to he mapped
should have their own DD cards behind the EXEC card and not use
the DD name SYSLIB.

18fi)	 //MRP EXEC PGM^LOADMAP
//OPdE DD aSN=USRID.XYZ.LOAD(MEMBER),DISP=SHR
//BACKUPV2 DD DSN=BACKUP.LOAD{VERSIxN2),DISP=STIR
//SYSPRINT DD SYSOUT=A

//MAP EXEC LOADMAP,LIB='USRID.XYZ.LxAD',MEM=MEMBER
//$ACKUPV2 DD DSN=$ACKUP.LxAD(VERSION2),DISP=SHR

155

r

,^+ F	^.

_	 _ _	 -	 -...	 .
__. __	 _....__ __	 ___	 f

Appendix G

OVLY

OVLY produces a tree diagram of an overlayed program from a Toad
module. Each segment is shown with all of the CSECT's it contains
and the length, in hexadecimal, of the segment. A CSECT, control
section, is a main program, subprogram (either subroutine or func-
tion), COMP40N area, STATIC EXTERNAL area, ar a ps::udo-register
vector. Optionally a list or deck of linkage editor control cards
is produced.

Two keywords may be specified in the PARM field of the EXEC JCL
A	 statement. NAME= is required and supplies the member name of

the load module to be illustrated from the partitioned data set.
DECK, if specified, supplies the overlay control cards which can
regenerate the overlay structure.

The DQ statements required are: SYSPRINT for tP,e tree diagram,
SYSPUNCH to contain the averlay control cards when DECK is speci-
fied, SYSLIB to point to the load module data se't, and SYSUTI which
defines a scratch partitioned data set used as a work area.

The program is stared in SYSI.LINKLI6 and also has a procedure to
call it. The procedure assumes a listing of the overlay control
cards is desired. LIB is the symbolic name used for the data set
name, f4EM far the load module member name, and PUNCH = B will punch
the overlay control cards. OVLY uses 46K and illustrates mast
programs in 1/2 minute for both CPU and I/O time. The load module
may either be a regular or multi-regi n overlay.

The following examples punch an overlay control card deck.

187) /!TREE	 EXEC PGM-OVLY,PARPi-'NAME=NiEMB£R,DECK'
//SYSPRINT OQ	 SYSOUT=A
//SYSPUNCH QD	 5YSOUT=6
//SYSUT1	 DD	 UNIT=23l4,SPACE=(TRK,(2,1,1))
//SYSLIB	 QD	 DSN-USRID.LOADMOD.LOAQ,QTSP=SHR

Using the procedure the example would be:

188) //TREE EXEC OVLY,LI6='USRID,LOADMOQ.LOAD',
//	 MEM=MEMBER,PUNCH=6

l6!

i ^

'^

t

^'

i

^,	 ^

.	 ^
_....__	 ..__ ...	 ____	

C
^^ ^.

Appendix H

TIMING SUMMARY

The table below lists all of the examples presented in this guide.

The examples are 4rouped accordin g to the tests performed with a

hlank line separating each test. The last column indicates which

examples may be compared since they were in the same .iob step or
h^

fi
are intended to show equivalent code.

r'	 -^

,:^

^:^^

,,

{

8^^^
.^^ ^Ll^^^^,

159	 ^I'aD^^`
PA^^

^^	 i

^4.

Appendix H

CAl1 Tine Percent of Total Run Time Examples R^lhich
Exam 1e (Sec} Total	 [tun {I+Iin} ^ Exec. ^av be Compared

3 96.0 6.96 23.000 70 000 1-10

2 27.6 2.00

3 89.4 6.48
4 28.8 2.09
5 367.2 26.67
& 328.2 23.78

7 79,2 5.74
8 27,6 2.00

9 70,8 5.13
10 55.8 4.04

- 71 ----- ^--40.57 -- ----- 7.80-«-------- 8.593---- -- 300,000----	 31-26
12 7.53 i.44
13 - -
14 - -
15 - -

76 40.67 7.80
17 i0.07 1.93
38 80.74 15.48
19 76,77 14,60
20 76.78 14.72
21 80.19 15.37

22 25.06 4.80
23 73.70 T4.13

24 7.67 0,32
25 3.43 0.27
26 6.92 1.33

-
27

----- -_19.2----w--_-Y----------------.._.....,-7
,440,000---------

27-30-..--_

28 16.8 -
29 4.2 -
30 3,5 -

31 35.46 31-32
32 - 9.20

33 75.D 2 ODO 000 33-34
34 25.8

35	 `- - 138.3?------ 19.90-----~---- 11.585~--- --- 50,000---------35-39----
36 208.40 29.98.
37 103.23]4.85
38 - -
39 51.65 7.43

150

i

r

1 {

P

._	 f

_.	 .n	 _	 _.. _

1

CPU Time Percent of Totai Run Time Examples Which
Example Sec Total Run (fin} ^ Exec. May be Compared

40 -
4l -
42 -

43 128.52 98.00 5.637 2,500,000 43-44
44 124.26 36.74 ¢

_r45^X-- ---__-
46 8.55 1.72 8.281 700,000 46-55

47 10.84 2.18

48 21.32 4.29
49 13.61 2.74

50 29.41 5.92
51 14.01 2.82

52 36.72 7.39
53 15.80 3.7$

54 46.26 9, 37
55 77.14 3.45

-r 56	 ------7.03-------1.10-------^~-10.658	 ~~ 1,800,000-- --- 56-73 - -
57 15.97 2.50

58 8.57 1.34
59 12.85 2.01

60 12.92 2.02
61 12.66 1.98

62 76.95 2.65
fi3 12.79 2.00

64 19.12 2.99
65 73.30 2.08

66 21.36 3.34
57 13.81 2.16

68 24.36 3.81
69 73,24 2.07

70 27.05 4.23
71 12.41 1.94

72 30.18 4.72
73 13.43. 2.10 'Y

i
^	 -

X

161

I

J

w• I

i 	 _^

1

^_	 3'

"Page missing from available version"

^.^	 ^	 i
-	 _ __.	

_ .
	

-

CPU Time Percent of Tnta7 Ran Time Examples rJhirh

Example (Sec) Total Run (^^in) # Exec. Pddy be ComAared

103 8.47 2.76
104 8.26 2.71

105 11.40 3.74

106 - ^	 _^
107 - i

l08	 - -	 37,35 ------4.34-W -------12.041------40,000,000- ----108-134----	 1I
109 30.34 4.20
ii0 17.62 2.44

"	 1]1 77.62 2.44

112 29.76 4.12
113 30.99 4.29
1l4 78.28 2.53
ll5 17.70 2.45 `^

116 27,38 3.79
117 27.38 3.79
1i8 15.01 2.f.^9

1l9 15.17 2.70

120 27.01 3.74 r	 j
121 27.67 3.83
122 15.46 2.14
123 16.04 2.22

124 76.04 2.22
125 17.72 2.37
126 14.74 2.04
127 15.82 2.19

128 15.96 2.21
i29 18.27 2.52
i30 14.59 2.02
13l 1fi,25 2.25

132 10.76 1.49
133 1'C. 55 1.46

i34 79.29 2.67

135 17.49 5.74 5.079 2,000,000 i35-735

•	 136-- 30_95
1015_...._......----- ^---------------^-----

«107
---94a---

i37

59.89
---_

70.97 9.149 1,800,000

-_^_

i37-139

138 45,71 8,40
139 67.15]1.14

^ ^

163

1 _	 ._.

Y
^l ^ ^^

^^

f

1

\^

164

CPU Time percent of Total Run Time ^xamp7es lJhich
Example (Sec) Total	 Run (r^lin^ ^ Exec. ^9ay L-e Compared

140 29.10 12.13 3.999 40,000 140-142
741 27.16 11.32
742 31.67 13.20

143 37.18 15.77 3.929 300 OOD 143-745
744 33.52 14.22
145 26.36 71.18

146 32.39 5.52 9.78(' l 840 000

147--------30.22------- 5.15 --- ------ 9 n70 _ . ^ - 1,800,ODD 147-152

148 13.14 2.24
149 12.85 2.19
l50 12.79 2.18
151 72.14 2.07
152 9.56 1.63

I

',

^,.

i

N'

Execution Time (P9inutes) Examples ti^lhich

Exa	 le _CPl1 I/O # of Passes May be Compared_	 _

153 7.190 9.543 1000 153-157
154 3.1$9 0.538 1000 153-157
155 2.700 0.535 1000 i53-157,159,160

156 2.765 0.538 1000 153-157,159,160

157 3.16i 0.543 1000 153-158

158 2.852 13.208 1000 157

154 0.265 0.537 1000 155,159,160,164
160 0.097 0.448 1000 156,159,160

161 2.i99 1000 161,162,163

162 7.756 1000 161

163 3.550 0.558 1000 161

164 0.143 0.531 1000 159

165 2.341 10.799 4000 166,167
i66 0.707 7.236 4000 165,167
167 6.257 70.389 X10,000,000 165,166

^-

J

165

I
s

^ ^^I

