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1.0 INTRODUCTION

T.1 OPTIMIZATION

This document is designed to provide the programmer with various
techniques for optimizing programs when the FORTRAM IV H compiler

is used with OPT=2. For optimization tips for programs compiled
with FORTRAN IV G, FORTRAN IV G1, and FORTRAN IV H (OPT=0 or OPT=1),
see Goddard document X-543-71-99,

The programmer has a number of considerations to make as a program
is developed. 1Is it better to write obvious code or more efficient
and less obvious code? When is the deadline? How often will a
section of code be modified, or who else must work with the finished
program?

Many features of FORTRAN allow the programmer relative ease in
writing the programs, but at times, this ease may be costly in exe-
cution time,

In general the high usage areas should have the most time spent on
them to allow the best execution and coding possible. The programmer
may know many of these high usage areas of code as they are being
written., When this is not the case, Boole and Babbage's Problem
Program Evaluator (PPE) may be used to locate the high usage areas.
In general it is a good idea to double check the programmer's guesses
with PPE on production programs and Tong running jobs where any small
change will net a considerable savings., The Boole and Babbage repre-
sentatives may be contacted at 982-2863 or through the Programmer
Assistance Center (PAC), 982-6768.

1.2 DOCUMENT USE

This document is divided into a number of sections. Al11 the infor-
mation may be required to design and write an optimal program. This
is a near impossibility and would require an inordinate amount of
time. With the exception of the Optimizing Suggestions sections

{4 - 13), the information presented here is background and assumes
familjarity with the internal operation of IBM large ccale scientific
computers.

Each of the Optimizing Suggestions sections is presented in three
parts, The first, Summary (.1), is a brief synopsis of tie results
of the test programs and a quick summary of which technicues are,
most generally, the bhest to use. The second part, Code Comparisons
(.2), is a description of the programming techniques used and the
results from the test programs. Examples are presented to demon-
strate the specific techniques used. The tast part, How the State=-
ments are Compiled (.3), is a discussion of the results, and briefly
what is occurring to make the results as they are. This should give
the programmer a feel for applying the demonstrated techniques to
his own programs.
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This paper does not pretend to be complete but should present most

of the commonly seen programming practices. Comments and suggestions
concerning this document are welcome and should be directed to the
Boole and Babbage staff.

1.3 TEST PROGRAM DESIGM

Whenever possible all of the various techniques were compared for
execution speed. Since the optimizer is included in these tests,

it was necessary, at times, to defeat the code movement optimization
to avoid conflicts between sections of various tests using the same,
precalcuiated results. The different FORTRAN's section presents a
discussion of the various techniques the compiler uses to improve
the internal machine Tanguage code generated.

The coding techniques shown here are pieces of programs and meant for
substitution to individual program specifications and designs. The
timings presented throughout the document are for the tests as run

on the 360/65 with the code as noted in each example. The Computer
Architecture section {3) should also be reas to understand the var-
jability in timings obtained in the resuiltant statistics and the
effect of moving a program from one CPU to another.

The first test program used for the earlier document was originally
designed as a single program. A great amount of difficulty was en-
countered in the main loop to avoid the compiler's optimizer recog-
nizing and moving or removing similar code from within the larqge
loop to outside the loop. The reliability of the measurements was
in doubt, with a few sections of code taking most of the execution
time., This left other sections with less execution time than the
accuracy of either the internal CPU timer or the confidence levels
for the PPE.

Each group of tests was placed in a separate program and run to
obtain enough samples to insure statistical accuracy, as given in
the Boole and Babtbage PPE Guide. The run times varied from about
4.5 minutes to over 20 minutes CPU time or between 14,000 and 40
million executions of different test programs. A1l timings, the
percent, total time, and the number of passes are given in Appendix
BH. The best code of each set of examples is marked with an ! after
the example number,

The MOCF 360/65 was selected for timing tests as the architectural
features are the simplest and would cause the least variability in
measurement and code interdependencies (see the Computer Architecture
section (3) and the description of the nptimizer features in section
18). The machine architecture plays ar important role in how par-
ticular jobs perform on a specific machine, but the interest here
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is in describing the best general programming technigues., In "real"
programs the effect of data structures and code location in memory
may make a technique execute better than one which has been shown
here to be more effective.

1.4 STATISTICS USED

A1l timings in minutes or seconds are the result of taking the per-
cent of run time, as indicated on the PPE Specific Intervals Report,
and the total step measurement time, as reported on the step end
statistics, to arrive at the figure reported for the particular
sections of code. No comparisons were made between different jobs.
The accuracy of these timings is not exactly known but should be
accurate to the internal CPU timer and may vary by about 5 to 8
percent. Any comparisons closer than that may essentially be con-
sidered the same, except that the relative timings were the same as
have been noted. The suggestions of which techniques are best will
still hold true as these were also examined for best internal lan-
guage code generated by the compiler which would execute the fastest
independent of machine architecture.

The statistics collected are the result of interrupting the program
to be measured every 16 milliseconds, as measured by the system clock,
and recording the Program Status Word (PSW). The PSW contains the
address of the nexi{ instruction to be executed, Some interrupts were
ignored as a higher priority program may have intervupted the PPE
extractor or the problem being measured. This sampling error is
taken into consideration in the accuracy discussion in the PPE User's
Guide. The extractor for PPE was set to a priority of 195 and the
problem program to 160 {out of a maximum priority of 255) to be
placed above most of the general work in the system and hopefully
increase the reliability of the measurements. Since the PSW is
pointing to the next instruction to be executed, all intervais re-
ported need to be backed up by one instruction (two, four, or six
bytes) to reflect the time spent executing by the proper instruction,
On the 360/65 {with IBM 0S5 MVYT Release 21.8), it is usual that sev~
eral instructions are fetched from memory {double-word fetch), The
fetch time is included in the measurements and amounts to between
0.05 percent and 0.09 percent of the run time for each 16 bytes of
code, A1l tests are run long enough for this variability to be
removed., The result of boundary alignment of instructions on double-
word boundaries as opposed to instructions off double-word boundaries
was checked independently. The resulting increase in fetch times was
considered small enough to be discounted for the difference between
different sections of code where there might be one more fetch than
in another section of code, This time is meant to be measured when
one technique is Tonger and is part of the overhead involved with
longer code.
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2,0 GOOD PROGRAMMING PRACTICES

The use of good programming practices s essential in achieving the
goal of a well written, easy to use program within a reasonable
schedule. To rush through the first important steps of problem
definition, selection of algorithms, data structures, and languages

An order to "get to work" on program logic and coding will most

1ikely be heavily paid for in the debugging phase! Experienced
programmers are already aware of this; however, being human, not
all have disciplined themselves.

The following 1ist 1s a reasonably acceptable breakdown of the pro-
cess of writing a program:

Problem Definition

Selection of Algorithms and Data Structures
Selection of Programming Languages
Specification of Program Logic and Structure
Program Coding

Testing and Debugging

Bocumentation

Maintenance

The content of the following sections is presented in a general
sense. Specific references to the facilities available at GSFC will
be mentioned where applicable. It shoculd be assumed that there will
be some parallel effort on some of the steps. 1In particular, docu-
mentation should be a part of every step {some projects reqguire
documentation on the progress of the documentation itself). Effort
should be spent documenting on a continuing basis to provide a more
accurate picture of the work being done and to avoid a last minute
rush to meet a deadline or wasted effort by several people.

2.1 PROBLEM DEFINITION

Problem definition may sound too trivial to mention, but it 1is
essential that the customer understands what it is he wants the pro-
gram to do (and not do)} and that he imparts this knowledge to the
programmers assigned to the task, Program needs do change and it
is necessary for both sides to check on a regular basis with one
another. It would be ratker embarrassing should the customer for-
get to lTet the programmers know of a new development and then
several meetings later discover fthat an important specification

was omitted, 1If the customer is someone with 1little or no pro-
gramming background, extra effort needs to be made on the part of
the programmers in the problem definition phase. Also, if a sched-
ule is formulated, care must be taken to avoid overly optimistic
target dates. Some customers are probably not aware of computer
requirements or the time required to formulate, check out, and
debug & computer program. Allowances should be made, if possibie,
when it is known in advance that special circumstances will occur
within the program's development schedule, A change of computing
hardware or a switch to a different operating system can cause
delays of weeks or possibly months,

5 )
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2,2 SELECTION OF ALGORITHMS

Selection of algorithms and data structures is the next step after
problem definition. A data structure may be defined to be the
relationship between data elements, characteristics of the elements,
and the order in which the elements are arranged within the records.
Records within data sets may be ordered if required by the proqgram's
specifications. In some cases the methods to be used will be stated
in the specifications. There may be some l1atitude in that the mathe-
matical formulae may be given, but not the techniques to be used.
Several sources of literature on algorithms exist including the
Teading computer journals (Collected Algorithms from the ACM;, text-
books ?the Art of Computer Programmina series by D. E. Knuth), and
indexes to program libraries {GSFC Computer Program Library Catalog,
IMSL, etc.). Much effort can be saved if the program already exists,
even if it needs modification to satisfy the customer's specifications.
Data structures should fit the program's algorithms and should be
designed to reduce the complexity of the program. For efficiency's
sake, unformatted data records are best for handling quantities of
data between programs or between executions of the same program.
The use of formatted data should be restricted mainly for use in
generated reports. Input data formats should be easy to read and
use. The use of NAMELIST in FORTRAN programs allows the user to
input data by variable name while not being overly concerned about
column usage. However, NAMELIST requires more processing than for-
matted reads,

2.3 SELECTION OF PROGRAMMING LANGUAGE

The four predominate choices of programming languages available

an the M&DO System/360 computers are, in order of use, FORTRAN 1V,
0S/360 Assembler language, PL/I, and COBOL. The choice of language
should depend on the needs of the customer but may be fixed by such
factors as the knowledge of the programmers. the need for portability
of the programs, and the ease in maintainiry the program. FORTRAN

is a well known and stable Janguage suitable for the predominantly
scientific programs needed at GSFC, A variety of FORTRAN compilers
are available to the GSFC computer users. The FORTRAMN IV H compiler
is availabie on all of the larger GSFC 360 computers and is commonly
used due to its optimization features. The FORTRAN IV & compiler

is available on all M&DO 360s as well. The IBM FORTRAN IV H Extended
Plus compiler is available on the SACC 360/91. Libraries avaiiable
include the regular IBM mathematical functions (SIN, ATAM, etc.),

the International Mathematical and Statistical Library (IMSL), and

a GSFC FORTRAN l1ibrary containing commonly used subroutines not found
in the others, The IBM 360 Assembly language contains all the power
needed to handle any situation which FORTRAN cannot. There are
definitely areas where either language can be used, such as bit/

byte manipuiation, The FORTRAN IV H compiler contains several useful
bit and byte manipulation statements (or functions) which are des-
cribed later in this document. The choice of language may depend
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on compatibility problems. PL/I is a powerful lanquage in the sense
that a wide range of data types, 1/0 methods, and statement type are
available. If PL/I is chosen, it may be difficult to maintain the
program as there are very few good PL/I programmers available for
assistance shouid you need any. Also, other installations may not
support the language (no PL/I compiler or libraries available). Its
use on the 360/91 or /95 will result in severely degraded system
performance if a program relies heavily on the use of decimal
instructions or uncontrolled (automatic} storage. The simulation
software for decimal instructions must run in a special system state
during which no other processing can take place. For this reason,
care must be taken to avoid declaring and using constants or vari-
ables with FIXED DECIMAL attributes. The use of uncontrolled storage
resuits in extra overhead in the use of the GETMAIN/FREEMAIN Super-
visor Calls (SYCs). A mix of FORTRAN, COBOL, and ALC subroutines
presents 1ittle, if any, difficulty. Interfacing FORTRAN or COBROL
with PL/I can be done, but it usually requires some form of inter-
face subroutines (as PL/I data structures are formulated quite
differently).

2.4 SPECIFICATION OF PROGRAM STRUCTURE AND LOGIC

Program logic and structure determine to a large extent the ease

of coding and debugging the final product. I11-defined Togic will
leave loopholes which wiil plague the programmer long after the
program is in use. Patches applied to the program will plug some
but, most likely, not all of these loopholes. Fven if 211 of the
loopholes were found and fixes applied, the patched program will

not be as efficient as one based on complete and we;l-defined logic.
Additional time will have to be spent on reorganizing the source so
that a more efficient and easier program to read and maintain is
produced.

Modularization is a common method of designing a program. The gen-
eral goals of the program are broken down into a series of major
tasks. These tasks are subdivided until a unit level is reached.

A unit level can be considered as the smallest reasonable amount of
logic to be coded and, quite often, can be readily retained in the
programmer's mind. Modularization is usually accompanied by program
structuring or flowcharting., Flowcharts are a visual description of
a program module's logic. The major stumbling block in the writing
of flowcharts is in their oversimplification or in the inclusion of
too much detail., For large programs, it may be advisable to have two
levels of flowcharts, One level is to give an overview of the major
parts of the whoie program. The second level is more detailed and
may result in separate charts for the more complicated modules.
These flowcharts are intended for use by programmers new to the
system and those responsible for maintaining the program.
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Program Togic should also include debugging aids. At the module
level, debugging cutput should reflect the correctness of the input,
the computations and/or data manipulation, and the output. The
modules should not depend on the presence, absence, or execution of
the debugging aids. In addition, consideration should be given to
having the debugging output controlled by the main program or in

the case of interactive programs through requests made by the operator
at a display terminal. A successful merger of debugging output and
normal output was achieved in one program by dividing the output

into as many as six Tevels., Each level gave more detail on the
computations involved. The deeper levels were used only if "trouble-
some" data was received which made it difficult for the program to
arrive at reasonable solutions.

2,5 PROGRAM CODING

Coding 4is the processing of the previous steps into a form suitable
for input to a computer. Since the translation of a coded program
into machine executable form is done by the computer through com-
pilers or assemblers, the symbols chosen need not appear meaningful.
But programs are written and read by people and, therefore, must be
coded to convey as much meaningful information as possible. The use
of variable names such as HOUR, MIN, and SEC are very obvious in
there use whereas RH, RM, and RS are not., The fact that MIN will

be treated by the FCGRTRAN compilers as an integer variable should
not discourage the programmer from explicitiy typing MIN as a real
variable. Statement labels in FORTRAN must be numeric; therefaore,

a "meaningful" label s less obvious and may be chosen based on the
programmer's personal preference. Using an ascending sequence of
statement labels does have the advantage of making it easier to read
a module's logic. It is strongly recommended that a description of
the routine's input, output, COMMON area usage, and other useful
information be coded as comments at the beginning of each routine,
VYariable names should be chosen to avoid confusion such as having
similar spelling. It is easy to mistake the letter 0 and the numeral
0 (also the Tetter I and the numeral 1). Language processcrs will
recognize the difference and use the different storage areas assigned
to each one, The varying results from one run to the next can be
due to misspeilled and, therefore, uninitialized variables. A similar
and perhaps more difficult problem to diagnose is the use of arrays
as arqguments in successive calls to subroutines. A DIMENSION state-
ment is required in each subroutine to pass the correct address of
an array. This statement is also required if the only reference to
an argument-received array is in a CALL statement and no reference
to the array by subscript exists, Also important is the fact that
argument types must agree between calling and called subroutines,
Quite different results can occur when the same source is compiled
with the FORTRAN G and H compilers. FORTRAN G generates code to
move the contents of arguments via the MVC {move character)
instruction. The FORTRAN H compiler generates load and store
instructions based on the type of each argument. The G-compiled
code will not abend during argument processing, but unwanted bytes
may be moved which could easily cause incorrect values to be gen-
erated. The H-compiled code will abend if the address boundary

8
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of the calling arguments does not agree with those of the called
routine's arguments, If a specification (0C6) error occurs in an
H-compiled subroutine at a relative address past its last executable
FORTRAN statement, then a conflict in argument type is the most
Tikely cause,

Flexibility shouid be coded in the program where anticipated changes
can occur so that changes can be made easily. Specification of I/0
units can be done using varjables which are set by the main program
aitner through default or through input values. This allows an easily
made change from FT06F001 to any other unit, for example. As pre-
viously stated, input formats should be designed for maximum user
convenience, Other aspects of good coding practices are discussed
at length elsewhere in this document., The last item of concern here
is the use of "clever" coding. Clever coding tends to be very ob-
scure and requires more than an average amount of time to debug.

A commrn examplie of "clever" coding is the folliowing:

po 10 1 1,N
po 10 J = 1,N

10 X(I,3) = (1/9) * (J/1)
After some investigation, it should be apparent that the truncation
which occurs during integer division is the kev. 1/J = 0 when I
is less than 1., Also, J/I = 0 when J is Tess than I. Only when I
equals J is tre product non-zero; in fact, the product is 1., All
this code accomplishes is to initialize a matrix, X, to the Identity
matrix {all diagonal elements equal to 1 and all off-diagonal ele-
ments equal to zero}. Not only is this example "clever", but it is
expensive to execute on the 360/91 and /95 since an integer multiply
requires 9 machine cycles and a divide 35 cycles. This is gquite a
contrast to the 2 to 3 cycles required for Load and Store instructions,
Two much more understandable forms of the code are shown below:

i

D0 10 I = 1,N po 10 I = 1,N

DO 20 J = 1,N DO 20 J = I,N
20 X(1,J) = 0.0 -or- XEI,J = 0.0
10 X(1,I) = 1.0 20 X(J,1) = 0.0
10 X(I,I1) = 1.0

The next example performs a common function in a "“clever" manner.

A=A+8
B=A -8B
A=A -8B

Suppose A = 5 and B = 3. After the first 1ine, we have A = 8 and

B unchanged. The second line gives us B = 5 and A still equal to 8,
Finally we have A = 3 and B = 5. A1l that was accomplished was a
swap of the contents of A and B. The only benefit that can be found
is that no additional storage area is needed! That may not offset
the lack of readability as compared to the more straightforward logic
shown below:
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2,6 TESTING AND DEBUGGING

After all of the coding has been written, the next phase entered is
program testing and debugging. Testing can be considered to begin
with the verification of the flowcharts or logic diagrams with the
logic coded in the program's source. inciuded in this task is proof-
reading the entire program. Quite often it is helpful to have others
double check your work, It is very common to miss the same error
again and again due to the closeness of the programmer to his work.
Others can spot this type of error quickly, thereby reducing the

time spent in debugging. After the above is completed satisfactorily,
a few selected cases should be tested by following the program source.
This method is more practical now with the availability of low-cost
pocket or desk calculators. It is likely to yieid results, either
positive or negative, in less time than to submit the job and then
wait for the output. Usually the f»' test machine-time turnaround

is through the use of a remote term :al system such as TS0. After

the source is entered and saved, the programmer can then request a
compilation., Once desk checw..g is compieted, actual runs should

be made using data for which the true answers are known. The most
1ikely error conditions should be checked; and if sufficient time
remains, all other paths should be tested.

At this stage program failures that have begun to occur can be attri-
buted to faults in logic present in the original design or in the
coding. Errors in design should be few if a diligent effort was
spent in the first phase of programming process. Errors in coding
can easily exist without the compiler recognizing them as such. The
previously mentioned example of misspelled variables is a common
problem. To minimize the possibility of their existence, the pro-
grammer can use the FORTRAN H compiler's cross-reference and the map
to Tocate variables (or Tabels) which have no references or those
which are being used without having been initialized. Coding errors
which occur without being detected by the current compilérs are: a
different number of arquments being passed than is expected, arguments
in incorrect order, and the use of a constant as an argument which

is being changed by the called routine. If the last situation occurs,
the constant is "updated" with the new value and all statements
referring to that conscant will be using the new value. Disasterous
results are 1ikely to occur and the programmer may be misiead as to
the cause of the program failure. FORTRAN DO loops are executed at
least once; therefore, if the upper limit of a loop is less than

the initial value (a reasonable case in several programs), a test
must be made so that the D0 loop can be skipped completely. The
ability to read a storage dump is a valuable asset worth the time

it takes to learn how to read them. Information of interpreting
dumps can be found in the IBM Programmer's Guide to Debugging and

in a video~taped series in the GSFC VYideo-~Tape Library.

10

'hl



RNND PROGRAMMING PRACTICES

Documentation should be kept of each error and program change., Users
usually discover sooner or later that the adage: "If you can't re-
create it--you didn't need it," should not be treated lightly! Tape
backups should he kept for the executable lToad modules as well as
the source used in creating them. Utility programs such as IEHMOVE
or YSCOPY may be used to unload a module or source library from

disk to tape (VSCOPY is recommended because of its ease of use, more
efficient 1/0, and the capability to select members both to or from
the data sefs). Source statements (alsc object, data, JCL) may be
retained in a PANVALET 1ibrary. PANVALET provides both compression
(of blank Tields) and protection features. Information concerning
the use of PANVALET can be obtained from the Programmer Assistance
Center (PAC). Other locally written source compression packages are
available and are described in the GSFC Computer Program Library
Catalog. User disks (permanently mounted) are dumped to tape twice
weekly on the M&D0 360s. Mountable user disk packs must be main-
tained by the user,

2.7 DOCUMENTATION

Upon completion of testing and debugging, all of the current docu~
mentation, flowcharts, etc,, should be brought up to date., Comments
in the source should be reviewed and corrected. If the program is
written in FORTRAN, the programmer may wish to use the TIDY program
which is documented in the M&DO IBM 360 User's Guide, to ciean up
the source. By this time there should be a Targe percentage of
material available for proper program documentation, A1l of the
potential material should be gathered and edited into one complete
manual.

The second part of documentation is at least equal in importance.
This is the writing of an operator's manual. The operator's manual
should contain a section describing the purpose of the program, its
JCL requirements, input data formats, output formats, and error mes-
sages, The programmer should remain available to assist in training
the users, and when necessary to make minor changes. The operator’'s
manual guide needs to be carefully proofread as the users ¢ill tend
to rely on it in a most literal sense. Any errors such as missing
commas, too many blanks, etc., will not be automatically weeded out
as the original programmer is 1ikely to do., A good test is to give
a copy of the operator's manual to someone not familiar with the
program and ask him to run a few sample problems. The results could
be very enlightering and can contribute significantly to the suc-
cess of the final program and document,

2.8 MALNTENANCE

Most operational (production) programs are not completely bug

free, A few bugs may be made apparent in the first few months of
use, and some may remain undiscovered for years. If a group_of
programmers is assigned the task of maintairing programe, it is,
essential that they be provided correct and complete documentation
in addition to the source. This will give them the best possibility

1
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of correcting a problem with a minimum of delay. The first step in
maintaining a program is to be sure that a problem does exist and
that it is not due to user error, If additional diagnostic out-

put can be obtained, it should be provided. Care should be taken to
logically tie the program error to a specific cause in the program
source., After this has been done, tests need to be run using a
separate copy of the program to avoid conflicts while the production
version is being used. Upon implementation of the changes, all
documentation should aiso be changed. These changes should include
both "before" and "after” coding or logic diagrams. The source
should retain the original error in comment form as well. It may

be advisable to retain the changes in a form suitable for use by

a source updating program.

12



3.0 COMPUTER ARCHITECTURE

This section explains the differences between the 95, the 75 C}

and C2, and the 65 computers. The architectural and hardware dif-
ferences between these machines determine the relative speed. This
section explains how to effectively use the machine hardware to
increase the speed of a program.

Since the 95 is unique in Hesign and the most generally utiiized
computer of the three, the major portion of this section is devoted
to it. The 95 is an IBM System/360 Model 91 computer with 1024
thousand bytes of thin fiim, high speed memory in addition to 40985
thousand bytes of CPU storage. The 91 has hardware for each instruc-
tion rather than microprogrammed software, as do all other 360s

Model 75 and below.

Six of the nonscientific instructions are not included in the hard-
ware, They are the decimal instructions, AP, CP, DP, MP, SP, and
ZAP, which are simulated on the 95 and used in some ALC, PL/1 and
COBOL programs. Whenever possible programs using decimal instruc-
tions should be run on the 75 or on the 65.

For more information on the computers discussed in this section see
the 18M System/360 Model (91, 75, 65) Functional Characteristics
manuals GA22-6907, GA22-6889, GA22-6884 respectively.

Why should the application programmer be concerned with the archi-
tecture of the computer for which a program is being written? There
exist many hardware features specific to a given computer that
govern how much time a specific program will require for execution.
Once known, many of these factors can be used to the advantage of
the program.

Although this section is aimed at the FORTRAN proqgrammer, all pro-
grammers can benefit from its reading, for the ideas presented are
universal.

A1l CPU times given are approximate and for comparison purposes only,.

3.1.0 EFFECT ON MACHINE SPEED

The amount of memory that a machine has does not affect the amount
of execution time that a program requires. For the machines that
are discussed, the memories have different speeds, ranging from
0.12 microseconds to 8.0 microseconds. The speed of a memory is
determined by the way it is designed.

The 95 has two types of memory, Mi20d thin film and 2395-2 core.
The M120J memory is 1024 thousand bytes Tong and has an access time
of 0.12 microseconds, The 2395-2 memory is 4096 thousand bytes
long with a cycle time of 0.78 microseconds. The 95 has a total

of 5120 thousand bytes of memory.

13
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The 75 C1 and €2 have less memory than the 95 and part of it is
stower. The 75's memory consists of 2365-3 and 2361 storage units.
The 2365-3 storage unit contains 1024 thousand bytes and has an
access time of 0.75 microseconds. The 2361 storage unit has 1024
thousand bytes and an access time of 8.0 microseconds. Each 75 has
a total of 2048 thousand bytes. The difference in memory speeds

is one of the reasons why programs executed on the 75 require more
run time than on the 95,

The 65 has three memory units, a 2365-2, an ARM 2365, and a 2361-1.
The 2365-2 has 512 thousand bytes and an access time of 0.75 micro-
seconds, The ARM 2365 is Ampex memory compatible with IBM and is
1ike the 2365-2. The 2361-1 memory unit is 1024 bytes Tong and has
an access time of 8.0 microseconds, The total amounit of memory
available on the 65 is 2048 thousand bytes.

One other design item that affects the speed of programs in a com-
puter is the interleaving of memory. The principal of interieaving
on the 95 is the same as on the other computers. Only the number
of leaves is different--16 on the 95, 4 on the 75 and 2 on the 65.

3.,1.1 Interleaving on the 95

The 95 has 16 functionally separate memory units, each capable of
operating independently. Each unit is called a memory leaf. The
beginning address of each leaf is eight bytes greater than the
beginning address of the leaf preceding it. The first byte of the
first leaf has an address of zero, The storage on the 95 does double-
word store and fetch. This means that each time a request for a

store or fetch is executed, eight bytes are transferred. Fetch and
store operations are done from double-word boundaries only, those
addresses divisible by eight {addresses ending in a zero or eight).

Thus the 95 can fetch or store 16 sequential eight byte double-words
simultaneously. Figure 1 should assist the reader in understanding
the structure uf memory on the 85,

Double-Word Number

0 1 2 N¥ Last Address Byte
0 8 bytes 8 bytes 8 bytes ....... 8 bytes X 000 0 XAX
1 8 bytes 8 bytes 8 bytes ....... 8 bytes X 000 1 XXX
2 B8 bytes 8 bytes 8 bytes ....... 8 bytes X 001 0 XXX
3 8 bytes 8 bytes 8 bytes ....... 8 bytes X 001 1 AXX
4 8 bytes 8 bytes 8 bytes ....... 8 bytes X 010 0 XXX
5 8 bytes 8 bytes 8 bytes ....... 8 bytes X D10 1 XXX
6 8 bytes 8 bytes 8 bytes ....... 8 bytes X 011 0 XXX



COMPUTER ARCHITECTURE

Double~Word Number (Cont'd)

0 1 2 N* Last Address Byte
7 8 bytes B8 bytes 8 bhytés ....... 8 bytes X 011 1 XXX
8 8 bytes 8 bytes 8 bytes .,,..... 8 bytes bt 100 0 XXX
9 8 bytes 8 bytes B bytes ....... 8 bytes 4 100 1 XXX
10 8 bytes 8 bytes 8 bytes ....... 8 bytes X 10 0 XEX
i1 8 bytes B8 bytes 8 bytes ....... 8 bytes X 101 1 XXX
12 8 bytes 8 bytes 8 bytes ....... B bytes X 110 0 XXX
13 8 bytes 8 bytes 8 bytes ....... 8 bytes X 110 1 X%X
14 8 bytes 8 bytes 8 bytes ,...... 8 bytes X 111 0 XXX
15 8 bytes 8 bytes 8 bytes ....... 8 bytes X 111 1 XXX
Storage Leaf Number
Byte Desired Within Eight Byte Double Word
*# N = 32,000-~1 for the 2395-2 memory on the 95
M= 8,000-1 for the Mi20J memory on the 95

Figure 1 - Memory Organization on the 95

The FORTRAN programmer should take the effort to align all arrays
on double-word boundaries and lay out the storage area with care.
The benefit from this effort will be fewer fetches from and the
stores to memory., This will reduce the amount of execution time
required by the program.

Two cases were designed to test the effects of interleaving on exe-
cution speed, They showed the difference in speed between the program
that fully utilized interleaving and one which did not. Both programs
were run on the 95, The programs were written in assembler to insure
all execution factors were equal, i.e., boundary alignment of Toops
and alignment of varjables. The FORTRAN equivalents of the programs
are given below.

15
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Case 1 Case 2

REAL*8 ARRAY(16,1600) REAL*8 ARRAY{17,1600)
DO 100 K=1,10000 DO 100 K=1,10000
Do 90 I=1,16 Do 90 i=1,16
0o 80 J=1,1600 DC 80 J=1,1600

80 ARRAY(I1,Jd)=1.1D0 80 ARRAY(1,9)=1.1D0

90 CONTINUE 90 CONTINUE

100 CONTINUE 100 CONTINUE
STOP STOP
END END

The layout of the arrays for the cases is given below,

Case 1
(1,1 (1,2) (1,1600)
(2,1) (2,2) (2,1600)
(16,1) (16,2) (16,1600)

Figure 2 -« Interleaving Improperly Used for Array Storage

Case 2

(1,1 §17,1) 22,1500
(2,1 1,2) 3,1600

(16,1) (15,2) (1,1600) (17,1600)

Figure 3 - Interleaving Properiy Used for Array Storage

From studying the code and Figures 2 and 3, for Cases 1 and 2, it
is c¢lear that Case 1 accesses the same memory leaf 1600 times in
succession. In Case 2, no sequential accesses to memory use the
same core leaf. For these reasons, Case 2 used 0.118 minutes to
execute, while Case 1 used 0.366 minutes, A savings of 68% CPU
time.

3.1.2 1Interleaving on the 75s and 65

Timing studies were made on the 75 C2 and on the 65 to determine
the effects of interleaving on the speed of a program. The 75 high
speed memory has four leaves. The 65 high speed memory has two
leaves, The programs were similar to those run on the 95, The
FORTRAN equivalents of the programs are given below. A different
program was required for each computer because each has a unique
interleaving factor.

16



Case 3

REAL*8 TEST(4,1600)
DO 100 K=1,10000
D0 90 I=1,4
DO 80 J=1,1600
80 TEST(I,d)=1.1D0
90 CONTINUE
100 CONTINUE
STOP
END

i

Case 5

REAL*8 TEST(2,1600)
DO 100 X=1,10000
o 90 1=1,2
DO 80 J=1,1600

80 TEST(1,d)=1.1D0

90 CONTINUE

100 CONTINUE
sToP
END

75 C1

80
90
100

65

80
90
100

COMPUTER ARCHITECTURE

Case 4
REAL*8 TEST(
1
4
=1,1
TEST(I,d)
CONTINUE
CONTINUE

STOP
END

REAL*8 T
DO 100 K
DO 90 I
D0 80 J
TEST(1,d
CONTINUE
CONTINUE
STOP

END

Cases 3 and 5 access the same leaf 1600 times before using the next

Teaf.

Cases 4 and 6 access a different leaf each time.

On the 75

and 65 both cases took approximately the same amount of time to run,
The reason for this oaccurrence is that neither the 75 nor the 65

has the CPU waiting to access the memory.

The overhead on the 75

and 65 is large enough that differences in access time are not a

measurable factor of the execution time.

The overhead time is Targe

because the CPU must calculate each address ut the time that each

address is used,.

The FORTRAN

programmer should set up arrays as outlined above,.

will enable the program to make better use of the computer‘s hard-

ware facilities,

Cther runs were made to determine if floating point arithmetic harde
ware is faster than fixed point arithmetic hardware on the 95.
Below are given the two examples and the results.

Case 7

REAL*4 A,B,C,D
A=1.D0
8=1.D0
€=1.D0

17

Case 8

IA=1
IB=1
IC=1
D=1

This
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Case 7 (Cont'd) Case 8 (Cont'd)
D=1.D0 DO 100 I=1,25000000
Do 100 1=1,25000000 1A=1A+1
A=A+1.D0 IB=1B+1
B=B+1.,D0 IC=IC*ID
C=C*D 100 IC=IC/ID
100 C=C/D STOP
STOP END
END

The programs were written in assembler to insure that both programs
would be similar except for the instructions used. Both programs
utilized Toop mode, Case 7 used 0,709 minutes to run; Case 8 used
1.672 minutes to run. The results show that the floating point
hardware is twice as fast as the fixed point hardware., The reason
for this difference is that the fixed point element has one execution
unit while the floating point element has two execution units.

The floating point element consists of one add unit and one multiply/
divide unit. The add unit is capable of performing two add operations
concurrently while the multiple/divide unit does one operation.

Thus the floating point execution element can handle three operations
at one time provided that they are logically independent. Another
reason for the fleating point arithmetic hardware being faster is
that the fixed point arithmetic processor also handles requests for
direct store into one of the general registers by the instruction
processor, This will delay arithmetic instructions., The FORTRAN
programmer should be aware of the factors so they may be controlled;
the result being a faster program, Use floating point arithmetic
whenever feasible for programs that are to be run on the 95, thus

the program will better utilize the machine and its capabilities.

0f the three IBM SYSTEM/360 machines, {the 95, the 75, the 65},
discussed in this document, the 95 is the fastest while the 65 is
the slowest. Figure 4 gives the CPU times for the execution on all
three machines,

Floating Point Times Relative Ratigs
65 7.962 11:1
75 4.005 5.6:1
a5 0.709 1:1

Figure 4 -~ Comparison of Floating Point Execution Speeds

The 65 has an arithmetic-logic unit which does the following:
addressing, instruction fetching, and actual operation. None of
these functions can be done concurrently, thus the time to run a
program is Tong.
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The 75 is faster than the 65 because it has an instruction unit

and an execution unit, which are able to operate independently.

The instruction unit does instruction sequencing and address prepa-
ration. The execution unit performs the arithmetic functions. This
separation of functions into two independent units accounts for some
of the 75's increased speed over the 65. The 75 is a scientific
computer, and for that reason it has faster hardware using more
efficient algorithms than the €%.

The 95 is a scientific computer designed to be a number-cruncher,
Rather than using microprogramming to do operations, 1ike the 65
and the 75, the 95 has hardware to do the operation. The hardware
is much faster than microprogramming. The 95's speed is also in-
creased because its processing unit is composed of independent
components, an instruction processor, a floating point execution
unit, and a fixed point and variable-field-length execution unit.

The instruction processor does the fetching and buffering of instruc-
tions and fetching of required operands. It also issues instructions
to the proper execution units, handles interrupts, does I/0, and con-
trols status switching. The instruction processor sets up and exe-
cutes branches and Toop mode. The floating point execution unit
performs all floating point arithmetic functions. The fixed point
and variable-field-Tength execution unit executes all fixed point
arithmetic, logical, and variable-field-length arithmetic operations.

Since all these units can operate independent of each other, and the
95 has hardware instead of microprogramming for all instructions,
except for decimal instructions, it is the fastest computer of the
three.

3.2 BRANCHING 360/95

The 95 is designed to handle two types of conditional branching.
The first type branches forward beyond prefetched instructions, or
branches backwards where the branch address is greater than eight
double-words from the branch. The second type of branch, a short
loop, is a branch whose target address is within eight double-words
previous, that is within the range of addresses from present address
to present address minus 64. The first tyre of branch is associ-
ated with the G0 TO FORTRAN statement and a DO FORTRAN statement
where the end of the Toop is far from the DO statement. The only
way to be certain, with a DO loop, that a program is not in a short
lToop is to look at a T1isting of a program which has the LIST option
specified.

Since the instruction processor does not know in advance if the
branch will be taken, the processor attempts to be ready for both
cases but assumes that the branch will not be taken. 1In order to
be prepared, should the branch be taken, the instruction processor
fetches the branch target double-word and the double-word which
foliows it. It is able to do this because it has available two
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aiternate instruction registers. Thus the instruction processor
is propared to go in either direction on the branch. To FORTRAN
users this means that the program should generate code such that
the most frequent case will fall through a logical IF statement
which has a GO TO as the appended statement.

The second type of conditional branch causes a short loop to be

executed. The short loop, or loop mode, is issued when the branch

target is before the branch instruction and within 64 bytes, eight
double-words. When this occurs the complete loop is fetched into

the instruction stack, after which the fetching of instructions p
ceases. Since all addresses are calculated and all instructions

decoded, an effective one instruction per machine cycle is achieved

when no data fetches or stores are required. Otherwise instruction
double-word fetches are made on alternate cycles. Should the instruc- '
tion processor find that it cannot process the next instruction it

will search the instruction stack, "pipe 1ine", for an instruction

that it can process. Thus instructions may be executed out of

sequence. During loop mode it is assumed that conditional branches

will be taken. Special reqisters hold the branch target address so

when the branch cccurs the address does not have to be recalculated,

thus saving one machine cycle. Loop mode terminates when any of

the following occurs:

1) A branch out of the instruction stack is taken.
2} The branch, rather than occurring, fall through such that the
Toop is ended,

To the FORTRAN user it is nearly impossiblie to determine from the
FORTRAN code whether or not loop mode will be used. It is best to
get an object 1isting of the program and check to see if small Toops
will be utilizing loop mode. An example of a short loop is given
below, both the FORTRAN code and the compiler generated code,

FORTRAN Compiler Generated Pseudo-Code
PO 1 1=1,6 Addresses Code Comments
1T JREV(1)=0 EAF4 LA 6,4(0,0)

EAF8 LA 5,0(0,0)
EAFC LA 3,24(0,0)
EBON LA 2,420,0)
EBO4 L 8,8(0,12)

Actual EBO8 ST 5,3656(2,12) Store 0 in JREV(I) .

Loop EBOC BXLE 6,592(2,12)
Register 12 has as contents E£8B8.

Figure 5 - DO Loop fienerated Code .

In this example the BXLE (Branch on indeX Low or Equal} instruction
does the branching. It branches to address EBO8, (adds the contents
of register 12, EBBS hexadecimal, and 592 (250 hexadecimal}.
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The BXLE initijates Toop mode; when the contents of register six gets
larger than 24, the BXLE will not branch and Toop mode will stop.

The FORTRAN compiier also generates BC (Branch on Condition) instruc-
tions for DO statements, but not every BC is a loop.

Often the FORTRAN code can be moved about so that the compiler will
generate code that uses loop mode. While in loop mode, no conflicts
arise between instruction fetching and data fetching.

3.3 REGISTER USAGE 360/95
"Wise Use of Statement Numbers"

Registers are much quicker to access than memory. The placement
of statement numbers in a FORTRAN program affects the compiler's
ability to optimize register usage.

The usage of registers can affect a program in two ways--size and
speed. Given two similar assembler instructions, for example:

1} L R1,DATA and
2) LR R1,R9

where both R% and DATA contain the same thing, the LR instruction
uses half the amount of core as the L instruction. While both
instructions, on the 95, regquire one machine cycle to complete,
the LR instruction will often complete before the L instruction
hecause the L instruction requires the use of the addressing hard-
ware, whereas the LR instruction does not.

For comparison's sake, since exact timings are not available on a
95, the following is given:

On a Madel 65 a LR instruction takes 0,65 microseconds while a L
instruction takes 1.20 microseconds. On a Model 75 a LR instruc-
tion takes 0.40 microseconds while a L instruction takes 0.70 micro-
seconds, Thus it is advantageous to make as much use of registers
as possible,

In the FORTRAN compiler, when one specifies OPT=2, the compiler scans
the code searching for statement numbers. It uses statement numbers
to delimit blocks of code. Within a block of code, the compiler
attempts to make maximum use of registers, f.e., it attempts to keep
variables in registers rather than continually loading and storing
frequently used variables and intermediate values. By the end of

a block, the compiler must store variables that have been used in
registers, Consider the following:
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a) Q = R+3
b 10 S = T+9/5
c) T = 0+§

Figure 6 - Effect of Statement Numbers

Q is used shortly after its assiﬂnment and could be kept in a
register., It is also apparent that S, in b, could be kept in a
register, providing that enough ~egisters are available, until c.
However, FORTRAN will stop its scanning at b, statement number 10,
because it will be unable to save both § and S in registers, since
entry to the block of code is not necessarily from a., By statement
b the program will have stored 0 and $§, and at statement c it will
load § and S.

Thus statement numbers can be costly and should only be used when
required.

3.4 EXECUTION OF INSTRUCTIONS

Figure 7 below shows what the computer does to execute instructions,

(addresses) EXAMPLE CSECT (machine instruction code)

USING EXAMPLE,12

0 L 5, CON12 5850C 128
4 A 4) CON13 5AL0C 12C

128 CONT2 DG F'12!

12C CONT3  DC Fri3

Figure 7 - Example Instruction Execution

As the program executes, the instruction processor fetches instruc-
tions from storage, two double~words at a time, and places them in
the instruction stack. The instruction processor normally has in

the instruction stack the current instruction double-word and the
next three double-words. When fetched from storage, the two instruc-

tions above will be stored in a single doublie-word in the instruction
stack as follows:
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Instruction Stack

5850C1285A40C12C

Figure 8 - Double Word Fetch Instruction Stack

The instruction processor will then begin to decode the load instruc-
tion. As part of the decoding process, the absolute address of the
data in core (CONT2) is calculated, and a request for a fetch sent

to the Main Storage Control Element (MSCE) to obtain the data. While
waiting for the data from MSCE and until the Fixed-Point Execution
Element is free, the instruction processor will begin to decode the
add instruction. The dinstruction will send a request for a fetch
from core for CON13 to MSCE. When the MSCE receives a request for

a fetch (CON12), it searches queue 1ists, which contain addresses of
requested fetches and stores and requests just processed. If a match
is not found, the MSCE will add the request to the queue of fetch
request addresses., The MSCE processes the queued requests sequen-
tially. For each request a double-word is fetched. When the MSCE
receives the request for CON13, it finds that either the request for
COM12 is queued or has just been processed, and the data from the
fetch is in a buffer. Since both CON12 and CON13 are contained in
the same double-word, the MSCE will not do another fetch for CON13.
When the data has been fetched and the Fixed-Point Execution Element
(FPEE) is free, the instruction processor will send a lToad instruc-
tion to the FPEE, The FPEE will transfer the data from a buffer in
the MSCE to register 5. Upon completion the instruction processor
will send an add instruction to the FPEE., The FPEE will get the

data (CON13) from a buffer in the MSCE, fetch the contents of register
4, add the two together, and transfer the result from the FPEE to
register 4. Upon completion of the add instruction, the instruction
processor will fetch another double-word and continue decoding the
instruction stack.
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4.0 SUBSCRIPTING

4,1 SUMMARY

Subscripts for variables should be kept as simple as possible. In-
volved expressions cannot be incremented by a given amount which the
compiler can ascertain. The optimizer is able to recognize variables
and expressions in subscripts and calculate them separately from the
same variables or expressions not used in subscripts. Expressions
should be fully written out as outlined in the Common Expression
Elimination section (8). Subscripts should contain no subtraction

as this does not compile easily to machine lanquage code.

4.2 ARRAY STORAGE

Arrays are useful data structures and necessary mathematical entities
for solving problems on computers. Subscripts are used to refer to
the individual elements of the array. To locate the element in the
array, its exact Tocation in memory must be calculated.

For example: DIMENSION Vv(100,50)

where ¥V is a four byte flopating point array of variables, The array
is stored in memory with the first index varying most rapidiy and
the last most slowly as shown below, assuming that the first element
is located at location 1000:

V(1,1)  v(2,1)  Vv{3,1) ... Vv(98,1) Vv(99,1) Vv(100,1)
1000 1004 1008 1388 1392 1396
v(1,2)  v(2.2) V¥(3,2) ... Vv(98,2) Vv(99,2) v(100,2)
1400 1404 1408 1788 1792 1796

. . . s L]
[ . v e . . .

- - + " e L] . .

v(1,49) v(2,49) Vv(3,49) ... v(98,49) Vv(99,49) Vv(100,49)

20200 20204 20208 20588 20592 20596
v(1,50) v(2,50) Vv(3,50) ... v{98,50) v(99,50) v{100,50)
20600 20604 20608 20988 20992 20996

Figure 9 - Two Dimensional Array Storage

An array with three indices as: DIMENSION X(3,4,2)
would be stored with the subscripts as:
T,1,1 2,1,1 3,1,1 1,2,1 2,2,1 3,2,1 1,3,17 2,3,1 3,3,1
1,4,1 2,4,1 3,4,1 1,1,2 2,1,2 3,1,2 1,2,2 2,2,2 3,2,2
1;332 2,3,2 3,3,2 ],4’2 2’4’2 3,4,2
Figure 10 -~ Three Dimensional Array Storage
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SUBSCRIPTING

4.3.0 CODE COMPARISONS

4,3.1 Arithmetic in Subscripts
1)U v{2x{1+1),2%(1+1))
2) V(2*I+2,2*%1+2)

Example 1 requires approximately three times as lohg to execute as
Example 2, Ninety-six seconds as opposed to 27.6 seconds of the
70,000 passes through the loop.

4,3.2 Temporary Variables

The use of temporary variables to hold subscript expressions requires
more execution time as shcwn in the following examples,

3) J= I+2
U=v(J,J)

)1 U=v(I+2,1+2)
5) J1=(1*1)/1

J2=(I1*(I+1))/(1+1)

J3=J1+92

U=v(J3,J2)
6}  UsV((C(I*I)/T)+{T*(I+1))/(1+1) (1% (I+1))/(1+1))
Example 3 takes longer than Exampie 4, 89,4 seconds against 28.8
seconds., Example 5 took 367.2 seconds execution time whereas
Example & took 328.2 seconds for 70,000 executions.

4,3.3 Muiti-Subscript Arrays and Vectors

The effect of trying to avoid some subscripting by calculating the
expression in single subscript form will consume more time. As the
expression bhecomes more complex and the optimizer can no longer 'see'
the simple relationship, the time may even be doubled. However, if
the expression is already complex, it may be advantageous to rewrite
the subscript with one index and equivalence the single and double
subscript arrays together as in the following examples:

7) VV(2*I+2+(2%1+1)%100)

8yl y(2*1+2,2%1+2)

Where Example 7 has VV EQUIVALENCED to V and the single dimension
is the product of the doubly dimensioned array 1imits. Example 7
required 5.75 percent, or 79.2 seconds, of the run time whereas

Example 8 took only 2.00 percent, or 27.6 seconds of the 70,000
passes.
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4.3.4 Addition and Subtraction in Subscripts

The machine lanquage instructions are organized to allow a forward
displacement from a given address very easily, but not a displace-
ment backwards from an address, Addition in subscript expressions
may be done quite well whereas subtraction is siow.

9) DO 9 1=7,100
9 U=v(1-3,1-4)
10)! DO 10 1=1,94

10 U=y{I+3,1+2)

Example 9 took 1.18 CPU minutes to execute, but Example 10 used only
0.93 minutes for 70,000 executions,

4,4,0 HOW THE STATEMENTS ARE COMPILED

4,4,1 Element Location

To obtain the location of an element in the two index case, the
dimension of the first index is multiplied by the second subscript
minus one, then add the first subscript value. This quantity is
then multiplied by the byte length of the data and added to the
start of the array, minus the byte length of a data element. The
start of the arrvay must be backed up by the byte lenath of a data
element which allows the first element to be added to the stored
address and have the resulting address computation indicate the
proper locatian.

A1l other subscript values must have one subtracted from the value
to obtain the correct location., For example: V{(1,1) as outliined
earlier would be Tocated as follows:

(§2nd subscript-1)*dimension 1st index+ist subscript)*lengthtorigin-~lenath
( 1 -1})* 100 + 1 V¢ 4 + 1000 4=
(0+1)*4+71000-4 = 1000

or V(3,49)

{( 49 -1)* 100 + 3 Y* 4 + 1000 -4=
(4800+3)*4+1000-4 = 20208

The general location may be stated as follows:

I'_=0"1 +1 (S1+52—1 *D-|+S3-]*DZ*D]+S4~T*D3*D2*D~|+. . .+5n-1 *Dn_'i*Dn_z*- o a*D-I )
where memory location

origin of array

Tength of data element

subscript value
dimension of the ‘index

oo

L
0
1
S
D
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For three dimensional arrays the location is obtained as follows:

[(Bqd subscript - 1)* product of the dimensions of the I1st and 2nd
indices + (the 2nd subscript - 1)* dimension 1st index + 1st subscriptl*
lenqgth of an element + the origin of the array - an element length,

The four index case adds to the previous statement:

Tength of data element *(4th subscript * product of 1st 3 indices
dimensions).

It is obvious, therefore, that the more subscripts used in an array
the longer it will take to locate the particular element required.

4.4.2 DIMENSION Statemen*

The dimension of the last index is not used in calculating the 1o~
cation in the array but is necessary in reserving the proper amount
of memory for the array. With IBM FORTRAN, vectors (arrays of one
dimension) and arrays used in subroutines use the space allocated

in the highest Tevel program unit which defines the array (not true
of simple variables). For this reason vectors used in called sub-
routines need only have their dimension set to one to make the vari-
able an array. The Tast DIMENSION of a multidimensional array only
need be one. The general equation, for a vector., reduces to the
origin, minus byte length of an element, plus the subscript, times
the byte 1ength. Good programming practice is to document the size
of the vector or array in the DIMEMSION. When debugging remember
that the size dimensioned does not necessarily define the real limit.

4.4,3 Compiler Created Indices

The compiler recognizes the origin of the array and subtracts the
length of a data element and stores that constant for reference to
the array element, 1If only a part of an array is referenced as in
A(I,50) where only the most rapidly varying subscript changes, the
constant stored will be for the beginning of the referenced section.
If the subscript expression has constants added to it (less than
4096), the constants are translated as part of a single machine lan-
guage instruction and only the variabie is incremented. The value
of that increment is known in the loop. The increment is simply
added from its location to obtain the address of the next element
referenced. When the expression is not so simple, the increment not
known, or the entire loop structure involved, the expression is recal-
culated each time the subscript is needed (unless the common expres-
sion eliminator has found a sub-expression), This is the difference
between Examples 1 and 2. In loops such as:
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DIMENSION V(100,700)

DO 1 1=1,4
L=L+]
1 U=V({1,1)

Figure i1 -~ Compiler Generated indices

The variable I is used in three separate forms: 1) the simpie var-
jable I starting at one and incrementing by one (1, 2, 3, 4) (added
to L), 2) the first index starting at four and incrementing by four
(4, 8, 12, and 16), and 3) the second index starting at 400 (400,
800, 1200, and 1600).* When possiblie the compiler will hold separate
forms for all uses of the loop index and increments. When this is
not possible, the index is stored in the form as coded (starting and
incremented exactly as coded) and the location formula is applied

to obtain the element location.

*See section 4.4.1 for explanation of subscript values.
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5.0 EXPONENTIATION

5.1 SUMMARY

In writing variables with exponents, it is best to use an inteqger
constant or an integer variable and worst to use a real constant or
variable. Exponents of inteqer constants require only the standard
instructions to be generated in order to multiply the base to cal-
culate the result. Any other exponent requires a function to be
$a11gq involving extra memory and time to pass arquments to that
unction,

5.2.0 CODE COMPARISONS

5.2.1 Integer Constants and Variables as Exponents
11)  X*K**
12)1  X*K**2

Example 11 calls a library function to raise an inteqer hase to an
integer exponent (IHCFIXPI) and costs 40,67 CPU seconds for 300,000
executions., Examplie 12 will simply multiply K by K and uses 7.53
CPU seconds for the 300,000 executions. Any inteqer constant will
cause repeated multiplication. A power of 1000 used 14 multiplies,

5.2,2 Higher Power Exponentiation

13) X*%§

Example 13 will generate 3 consecutive multiplies, one of them mul-
tiplying the previous result.

5.2.3 Sinale Exponent Versus Repeated Multiplication
18) X*%2 * Xx+*3
15) X % X * X % %X * X

Example 14 causes separate calculations of squaring and cubing, using
one more multiply than Example 13. Example 15 doesn't recognize that
the previous products may be multiplied to obtain the final resuit.

Equivalent results were obtained by multiplying X any number of times.

5.2.4 1Integer Versus Real Exponents

Using integer variables is a better procedure than using real con-
stants or variables. The function used to calculate the results
(IHCFIXPI or IHCFRXPI, depending on the base, integer, or real) is
better than the one used for real exponents {IHCFRXPR). Real values
for exponents also require the ALOG and EXP library functions, Con-
stants written as real numbers will be treated as real exponents
even if their value is fintegral,
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16) X * I**)
17)1 X * X**]
18) X * I*%X
19) X * X*¥Y
20) X * X*%2,0
21) X * I%%2.0

In the following cases each example was executed 300,000 times.
Example 16 will call the integer to integer power subroutine and uses
40,67 seconds, Example 17 will need the real to integer exponent sub-
routine and uses 10.07 seconds {floating point hardware being faster),
Example 18 will convert I to a real number and vse the same real base
to real exponent which Examples 19 and 20 will also use. The timings
were 80.74, 76.17, and 76,78 seconds, Case 21 is treated similarly

to Example 18 and took 80.19 seconds.

5.2.5 Sauare Root Function Versus Exponentiation
22)! SQRT(X)
23) X**0.5

To find the square root of a number the base may either be raised

to the one half power {(specified as-a-ftuvating point number, not
1/2) or by calling the square root library function. In the 300,000
executions of each of the examples, Example 22 took 25.06 seconds,
and Example 23 required 3 times as much as the specific library
function, or 73,70 seconds.

5.3 HOW THE STATEMENTS ARE COMPILED

The compiler will try to use the shortest code possible. Multiplying
the number by itseif or a previous product is possible only for in-
teger constant exponents. Any other cases are handled by the library
functions. The requirements for each call are an initialization of

a location which points to an argument 1ist (the base and exponent
addresses), loading the functijon address and passing control to that
function. Upon return the result of the function is always stored,
even if it is to be used immediately. Extra memory is used for the
calling instructions, parameter 1ist, and the flag for the ISN (if
the compiler ID option is specified, default is on)., The relative
speeds of the functions for 300,000 executicons in seconds are:

24) IHCFIXPI (I**1) 1.67
253! THCFRXPI {X**I 1.43 (floating point hardware faster)
26 THCFRXPR Ke®X 6.92

Figure 12 - Speed of Exponentiation Library Subprograms
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The integer power functions Toop on the power multiplying the base,

or a previous product, by itself or the other results the proper
number of times. To raise real numbers to a fractional power requires
the logarithmic function which subsequently calls the ALOG and EXP
functions, whose timings have been included. Real constants are not
inspected to verify if the value is integral or not. Since the EXP
and ALOG functions are not exact and the total number of instructions
executed is larger, the results will not be as precise,
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6.0 MIXED MODE ARITHMETIC

6.1 SUMMARY

Numbers are stored and used in two forms within the computer. Who’e
numbers are called integers or fixed point variables (starting with
I - N, explicitly declared, and constants without a decimal point).
Numbers with fractions or exponents are called real or floating
point {starting with A = H or 0 ~ Z, explicitly declared, or con-
stants with exponents and/or decimal points). The representation

of the two types is different, and code is automatically generated
to convert the values from one form to another when the types are
mixed in expressions., If done to excess, or in a 1oop, the conver-
sion may be very expensive.

Within a DO Toop, it may be advantageous to increment a separate
counter to use in real expressions rather than convert the index on
each pass through the loop. The optimizer will, in most cases, hold
the converted index in a temporary variable and convert it only once.

Expressions involving constants of different mode than the variables
associated with the operator are often generated as the proper type
by the compiler; the major exception being exponents,

On the larger scientific machines, the floating point hardware is
significantly faster for multiplication and division than is the
fixed point hardware.

Conversion from real single precision (four bytes) to double pre-
cision (eight bytes) and expressions involving both have only one
added machine Tanguage instruction. Conversion from double to single
merely uses different instructions and ignores the lower half of the
double precision variable (i.e., no rounding is performed)}.

Complex arithmetic uses two real variables or constants and calls
library functions toe do multiplication and division eperations. Con-
version from either real precision to complex of length eight or

16 bytes uses zero for the imaginary part and treats the rest of

the conversion the same as it does for single to double precision if
required. This adds only four instructions. The complex to real
conversion drops the imaginary part of the compleéex number,

6.2.0 CODE COMPARISONS

6.2,1 Fixed Point to Floating Point Conversion

The conversion of integer to real, single, or double is a Tengthy
process for which a conversion constant {one per program unit? and
50 bytes of instructions are required for each conversion, Real
to integer conversion takes 44 bytes.

27) A I
28) X

T FIIMFT
FﬁiﬁiﬁﬂfﬁﬂG-Pﬁd}E PLANK NO
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29) A
30)! ¢

v
I

In the test program each of the above statements was executed 1,44
million times. Example 27 took 19,2 seconds, and Example 28 took

16.8 seconds. The two non-converts were very short, each eight bytes,
with 4.2 seconds for Example 29 and 3.6 seconds for Example 30,

6.2.2 Mixed Mode Expressions

31) A=J+AJ+K+AK+L+AL+I*K+AJ*AK+J*L+AJ*AL+J* AL *K
32) 1 As{J+K+L+I*K+I*L )+ (AJ+HAK+AL+AI*AK+AI*AL+ J*K*AL)

In the same loop Examples 31 and 32 took 15.46 percent and 9,20 per-
cent, respectively, to compute the two expressions for the 1.44
million executions, Example 31 required five conversions whereas
Example 32 took only two.

Wherever possible group like mode terms together. The result of the
expression determines the kind o1 conversions necessary as each oper-
ation from left to right is evaluated according to the FORTRAN lan-
quage rules,

6.3 HOW THE STATEMENTS ARE COMPILED

Expressions are evaluated by doing the higher order operations first,
If any conversion is necessary to complete the evaluation, it is
done immediately. As each pair of operands is evaluated, the con-
version is in favor of the longer and more complex form until the
Tast level of operations which take place, and the final conversion,
if necessary, is to the form of the result to be stored.

The optimizer, when possible, will recognize that a variable or
expression is needed elsewhere in the evaluation of & larger expres-
sion and will try to eliminate excess conversions, {For fu:ither
explanation, see Common Expression Elimination, section 8.)

Example 31 is treated as:

a) convert J and save

b) add AJ to FLOAT{(J) to form start of running sum

t) convert K and save

d) add AK to sum

e) add FLOAT(K) to sum

f) convert L
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g)
h)
i)
i)
k)
1
m)
n)
o)
p)
q)
r)
5)
t)
u)
v)

add FLOAT{L) to sum

add AL to sum

multipy J and K

convert product from i

add FLOAT{J*K) to sum

multiply AJ and AK

add 1 to sum

multiply J and L

convert product from n

add FLOAT(J*L) to sum

multiply AJ and AL

add result from q to sum
multiply AL and FLOAT(J) {(from a)
multiply s by FLOAT(K) (from c)
add t to sum

store sum

Example 32 is evaluated as:

a)
b)
c)
d)
e)
f)
g)
h)

add K to J, start sum’
add L to sum'

multiply J and K, save
add ¢ to sum’

multiply J and L

add e to sum' and save
add AK to AJ, start sum
add AL to sum
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i)
J)
k)
1)
m)
n)
0)
p)
q)

r)

multiply AJ ard AK

add i to sum

multiply AJ and AL

add k to sum

convert J*K from ¢
multiply FLOAT(J*K) by AL
add to sum

convert sum® (from f)

add FLOAT(sum') to sum

store sum
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7.0 DO L0OPS

7.1 SUMMARY

FORTRAN programs may alter their sequential flow in a number of ways.
One is by repeating a section of code a given number of times. The
DO statement provides this capability. It also provides the compiler
with a great deal of information, The information used includes the
starting value, the ending value, and the increment added to the
index each time through the loop. Sometimes, as with subscripts,
more than one index may be created (see Subscripting, section 4),

and each index has its own increment. This avoids repeated oper-
ations and simplifies the use of the index in the machine Tanguage
instructions., A1l of these values must be initialized and incre-
mented before and during the execution of the loop. For that reason
short loops, ones which include 1ittle code or ones which run over

a short range, are to be avoided., The setting up of the Toop can
cost more execution time than simply writing out the code that is
contained in the loop., Additionally, if the loop is kept simple
(relatively few variables), it is possible to use faster and shorter
machine language instructions than more complex loops.

7.2,0 CODE COMPARISONS

7.2.1 Loop Eliminaticn

Leops used for initialization of variables with less than 32 elements
will execute faster if written out, at the expense of eight bytes
per varijable set.

33) . po 1 4

34)! KK{3

Example 35 took 75.0 seconds and 30 bytes whereas Example 34 took
25.8 seconds to execute and 48 bytes of memory for the two miilion
executions. Short running loops are best used when the code within
the loop is complex.

7.2.2 Initialization

The best way to initialize variables in an array is to use a DATA
statement. While this requires more compile time and increases the
size of the object and load modules (by the number and data length
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of the array), it requires no execution time and no more memory

than not initializing the array or using any other of the methods.
(Caution: If the LIST option of the compiler is turned on, the
Tisting of the generated machine instructions will print a line for
every element initialized.) COMMON areas initialized with DATA
statements and their declaration statements are in a separate section
of code called BLOCK DATA. This creates a separate object module

for each COMMON area initialized.

The following examples show several ways of re-initializing an
array or, excepting Example 35, to transfer the contents from one
array to another., These re-initialization techniques in Examples
36 through 39 are faster when the array has not been set to a
constant. 9

35) DIMENSION A(1000)

.

D0 3 1=1,1000
3 A(I)=-]n0

36) DIMENSION A(1000),W0RK(1000)

DO 4 1=1,10
4 WORK(1)=A(I

37) DIMENSION A4(1000),HORK4(1000)
REAL*8 A8(500),HWORK8(500)
DATA A%2/1000%-1.0/
EQUIYALENCE (WORKA(1),WORK8(1)),(A4(1),A8(1))

.

1,1000
=A(I)

DO 5 I=1,500
5 WORKS(I)=A8(1I)

38) INTEGER*2 L{50),J(50)
REAL*8 XL{12),XJ(12)
DATA J/50%392/
EQUIVALENCE {X3(1),9(1)),(XL{1),L{1))

DO 6 I=1,12
6 XL(I)=xd(1)
L(49)=XJ(49)
L{50)=d(50)
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DO LOOPS

39)! OTMENSION A(1000),WORK(1000)
DATA A/1000%*-1,0/

@

CALL FMOVE(A,4000,40RK)

Example 35 which is straightforward, uses 138.33 seconds, or 19.90
percent of the execution time for 50,000 passes through the 11.586
minutes test step. Example 36 is essentially equivalent to Example
35, but an extra load from memory is required to move the data from
one location to the other, This used another 10 percent for 29,98
percent, or 208,40 seconds of the same test programs time. Exampie
37 sets up a more complicated data structure but only requires half
the passes through the loop that Examples 35 and 36 used taking
about half the time, 103.23 seconds (14.85 percent). The D0 Tloop
moves eight bytes at a time vather than the four in the other two
examples. No conversions are done since the type of variables on
both sides of the equal sign are the same. The data in memory could
be illustrated as shown:

A4(1)  A4(2) A4(3) A4(4) veenses A4(999) A(1000)

EB(T) R8(Z) AB(500)

Figure 13 - Four Byte Data Equivalenced With Eight Byte Data

This technique works as well with logical and integer values as it
does for these real variables. The savings are more pronounced
since the floating point hardware is faster than the fixed point.
The amount of data moved must be a muitiple of eight. The excess
above an even multiple may be transferred by specific assignments
as illustrated below and in Example 38:

1(1) I{2) 1(3) I(4) 1(5) 1(6) 1(7) 1(8)...1(45) 1(46) I(47) 1(48) 1{49) I(50)
XTT) X(2) B e
Figure 14 - One Byte Data Equivalenced with Eight Byte Data

Example 39 shows a call to the subroutine FMOVE, which is an assembly
moduie utilizing a machine language data moving instruction. The
documentation is in Appendix A. This is the fastest and most ob-
vious move and takes only 51.65 seconds, including the program
calling sequence and the time spent in the subroutine {7.43 percent).

7.3 HOW THE STATEMENTS ARE COMPILED

The DO loop testing is performed after the last statement in the
loop. The index is incremented and then compared with the final
value, If the index is smaller than or equal to the final value,

the loop is re-executed with the updated index. When the incremented
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index is larger than the final value, processing proceeds with the
next sequential instruction. For this reason loops whose loop end
value is zero or negative when a variable is used will execute once.
The value of the index is left at the loop end value plus the incre-
ment. This is important if ‘he index is to be used after the exe-
cution of the loop. If the loop is very simple in structure, it is
possible that the index wili never be stored in memory. The final
index will then be the initial value. For this same reason it is
possible that the index will not be known in code which does not
fall in the logical limits of the loop (between the DO statement

and the statement containing the statement number named on the DO
statement). An easy solution to the problem is to set another vari-
able equal to the index at the beginning of the loop and use this
variable for code outside the loop or after the loop's completion.
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8.0 . COMMON EXPRESSION ELIMINATION

8.1 SUMMARY

The optimizer, as part of its operation, tries to avoid as much
calculation as it can foresee, The programmer can do some things
to help the compiler recognize expressions that only need be calcu-
lated once Tor a group of statements. Each expression should be
written exactly the same each time excepting spacing, blanks, and
breaks for continuation cards, If the expression does not immedi-
ately follow the equal sign, it should be placed in parentheses.

In general, the use of temporary variables to hold sub-expressions
should be avoided as the compiler does a better job of maintaining
values internally. Temporary variables should be used when the
compiler is unable to pick up common expressions; when the Timits of
the optimizer are exceeded.

8.2 CODE _COMPARISQONS

40) H=H+A+B
G=G+A+B+C
F=F+A+B+C+D

41) H=A+B+H
G=A+B+C+G

F=A+B+C+D+F

42! H=H+§A+B)
G=G+{ (A+B}+C)
F=F+( (A+B+C}+D)

Example 40 will not recognize any common expressions in any of the
three statements. FORTRAN interprets the statements Teft to right
and cannot 'see' that A+B 1is common in the first iwo statements or
A+B+C is common to the second and third statements. Exampie 41 will
recognize A+B in the first pair of statements and A+B+C in the last
pair. Example 42 shows the use of parenthesis to explicitiy state
common expressions and is interpreted in the same way as Example 41.

8.3 HOW THE STATEMENTS ARE COMPILED

40) a) L+A 41) a) A+B 42) a) A+B
b; a+B b; save a bg save a
C store H c a+H c a+H
d) G+A d) store H d) store H
e) d+B e a+C e) a+C
f) e+C f) save e f) save e
g} store G g) e+G g) e+G
h) F+A h store G h) store @
i h+B i) e+D i) =D
j) i+C J) i+F 3; T+F
k) Jj+D k) store F k) store F
1) store F

Figure 15 - Expression Translation
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COMMON EXPRESSION ELIMINATION

Expressions are remembered ir high speed storage (registers) for up
to about two or three statements and for as many as one real or about
three integer unique expressions,

In DO loops, often used subscripted variables are moved to internally
generated temporary variables. This may help to avoid calculating
subscripts many times, If the subscripted variable is re-used many
times, the variable may access the temporary variable. The last

time the variable is referenced in a Toop will always cause it to

-be saved in storage.

Unsubscripted variables are always used from their real Tocations
uniess they are held in high speed storage {registers). Then they
are stored at the end of the Toop; or when the variabie is next
used, it is located in the register until it is stored.

The optimizer can only recognize axpressions which have the symbols
and operators in exactiy the sane order each time. The spacing and
syntax are not important as the symbol names are reduced to unique
internal symbols, which are not dependent on the programmer desig-
nated names. A+B is not B+A, however, ~(A+B) would be recognized

as the complement of the common expression A+B. The order of expres-
sions decoding is as given in the FORTRAN language references manual
{GC28-6515) and as summarized below:

1. expressions in parentheses

2. functions

3. exponentiation

4, multiplication and division

5., addition and subtraction

6. relational operators (.GT.,.GE.,.LT.,.LE.,.EQ.,.NE.)
7. JNOT.

8. LAND.

9. .OR.

Figure 16 - Operation Evaluation Order

Expressions written in parentheses are, therefore, recognized first;
and when the terms are written in a consistent order in each occur-
rence, the expression will be saved by the compiler from the first
use., Commen expressions may be built up, as Example 42 shows. When
parentheses are not used, expressions are evaluated 1eft to right

in order by the type of operator. Example 41 uses this to build its
common expressions and is why Example 40 has no common expressions,
Internal limitations set the Timit at about 300 expressions that
will be recognized, aund some are seen for about 39 statements, 672
bytes, and others are not seen in the following statement. Common
expressions should be placed early in the statement., If the expres-
sions occur closely enough together or if the instructions generated
are simple enough, the common expressions {up to two or three) will
be heid in registers, allowing for the fastest recall. Single vari-
ables will also be saved in registers when used frequently enough
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COMMON EXPRESSION ELIMIMATION

in a small section of code (up to three values each used six times
in 12 statements). Integers seem to be saved longer than real! vari-
ables, perhaps because there are more fixed point registers. When

a subscripted variable or expression is not kept in a reqister, it
will be placed in a compiler generated temporary. For subscriptad
variables this is done if the use is frequent or if the variable

is set often in a Toop.
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9.0 STATEMENT FUNCTIONS

9.1 SUMMARY

Statement functions can make the job of the programmer easier and
eliminate some possibilities of coding errors on expressions which
are frequently used. The increased cost in run time and the ques-
tionable amount at compiie time are more than offset by the ease of
use, (See also the section Common Expression Elimisation, section 8,
for additional thoughts.)

9.2 CODE COMPARISONS
43) IFUN(J,K, L M,N)=d%K + J*L 4+ M*N + K*K

I11=1FUN{TJ,IK,IL,IM,IN)
I12=TFUN(IL,IM.IN,1d.1K)

44)1 113=IJ%IK + TJ*IL + IM*IN + IK*IK
IT4=TL*IM + IL*IN + TJ*IK + IM*IM

Example 43 took 38.00 percent of the 5.637 CPU minute run time, or
128.52 seconds, of the 2.5 million executions. Example 44 required
eight bytes less memory, due to the optimizer recognition of terms
used later in the expression, and 36.74 percent or 124,26 seconds
of execution time for the same 2.5 million passes. Some saving is
seen but only 4.26 seconds,

To test the effect on compile time, 510 statement function references
were compiled as were the equivalent 510 statements., For ease in
creating the programs, the same five statements, or references, were
repeated 102 times, The compile time for the functions was .552
minutes on the 360/95 and .548 minutes CPY time for the equivalent
statements, also on the 360/95. The difference is within the accu~
racy of the timer and therefore considered the same,

9.3 HOW THE STATEMENTS ARE COMPILED

Statement functions are defined as a name on the left side of an
equal sign with a 1ist of variables in parentheses. The name is not
dimensioned, and the definition occurs before any executabie state-
ments. This acts as a pattern to generate the real statements in
the references. The variables used in the definition are dummy and
used only to connect the position in the variable list of the defi-
nition with the position in the expression. The correct variables
are generated when the reference is used in the program according

to the pattern. The dummy variables will not be used or even gen-
erated, When a reference is found to a statement function name, the
first variable in the 1ist is substituted in the function expression
wherever the first dummy variable is used. The two examples i1lus-
trate the process. It is possible to get better optimization with-
out the statement function, but the bulk of the optimization is done
after the expression is expanded. This accounts for the rather
slight difference during execution.
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10.0

10.1 SUMMARY

ARITHMETIC OPERATORS

Some internal machine instructions are faster to execute than others,
This is particularly true of fixed point operations. Multiplication
and division are very slow, whereas addition and subtraction are
quick. The difference in the floating point operations is most nota-
ble with the muttiply and divide, which are slow relative to addition
and subtraction, but better tham their fixed point equivalents.

Floating point multiplication is ordinarily better thar repeated

addition, but not when the quantity is to be doubled, then addition ‘
should be used. Fixed point addition should be used until four ke
additions, rather than multiplying by the constant. MultipTication

by constants is faster from five and up.

10.2.0 CODE COMPARISONS

10,2.1 Floating Point Addition Versus Muitiplicatioen

Percent of Run

46)1  X+X

a7 2.0%X

48; L ERES ¢
49)1  3,0%X

50; X+X+X+X
57)! 4.,0%X

52) XEX+X+X+X
b3} 6,0%)

54) X+0+X+XEXEX
55)1 6,0%X

—_——]
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Seconds

8.565
10.84

21.32
13,61

29,41
14.01

36.72
15,80

46,26
17.14

The first 10 examples were executed 100,000 times, and the percent- _
ages are for a total run time of 8.281 minutes. The results show A
clearly that to doubie a numbern, addition should be used. For any '
other quantity, the product is much faster than a repeated sum. -

10.2.2 Fixed Point Addition and Multiplication

Percent Run Time

56}! I+1
57 2*1
58} I+1+]
59) 3*1

1,10
2,50

1.34
2.01
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Seconds

7.03
15.97

8.57
12.85
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ARITHMETIC OPERATORS

Percent of Run Seconds
60; 1414141 2.02 12.92
61)! 4% 1,98 12.66
62; I+T4+I+1+1 2.65 16.95
63)! B*I 2.00 12.79
64 I+I+I+I+1+1 2.99 19.12
65)! 6*I 2.08 13.30
66; I+I+I+I+1+1+1 3.34 21,36
67)1 7*1 2.186 13,81
68) T+T+T+I+T+F+1+1 3.81 24.36
63)! 8*I 2.07 13.24
70; I+I4T+I4+T4+14+T4141 4.23 27.06
7130 9*] 1.94 12.41
72) I+I4+T4+1+14+14+14+14+1+1] 4.72 30.18
73)! 10*1 2.10 13.43

Each of the fixed point tests was run 1.8 million times for a total
CPU step charge of 10.658 minutes. A1l the multiplies were executed
as multiplies and none as the faster internal instruction. UWhen

the multiplier is four or less, repeated addition would be used for
best execution performance. Multiplication is preferred when the
multiplier is five or more.

10.2.3 Multiplication With Constants of Powers of Two

Percent of Run Seconds
74} I*16 0.94 5,62
75) 16*1 2.09 12.26
76} 1#32 1.01 5,92
77) 32*1 2.16 12.67
78) I1*64 1.11 6.51
79} 64*1 2.14 12,56
80) 1*128 1.10 6.45
81) 128”1 2,43 14.26
82) 1*256 1.80 10.56
83) 256%7 2.59 15.20
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ARITHMETIC OPERATORS

Multiplication tests by a constant whose value is a power of two
were run for 9.780 minutes and 1.8 million passes through the main
program loop. The first cases (74, 76, 78, 80, and 82) cause a
shift to be used, whereas the second examples (75, 77, 79, 81, and
83) used the regular multiply. The results speak for themselves.
The constant as the second operator appears to always generate the
faster shift instruction,

1%, 3 HOW THE STATEMENTS ARE COMPILED

The <ompiler may not always generate the internal code exactly the
«n; che FORTRAN program is written. Some subtraction of constants
and variables, as well, is performed by loading the additive inverse
of the value and adding, rather than subtracting, this reversed
quantity. Very 1ittle difference is seen in the inverse addition,

A notable difference is obtained if an integral quantity is multiplied
by a constant, which is two to a positive power, (2, 4, 8, 16, 32,
etc.). The compiler recognizes that this may also be done by a dif-
ferent and much quicker instruction, When the code is not complex,
the order of the operands will make no difference., If the constant
mu]EipTier is placed second, the faster instruction will always be
used.
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11.0 SUBPROGRAMS

17.7 SUMMARY

Subprograms make the programmer's job easi+r and the coding more
obvious to follow., They also shorten the program by allowing the

same code to be executed from many places, rather than writing the

same statement sequence many times. There is some overhead invelved

in transferring control from one subprogram to another, The trans-
ferring of variables back and forth between subprograms also requires
time and in some cases extra memory for the storage of local variables.

It is advisable to keep the number of calls as small as possible and
to keep the number of variables passed small, or even pass none at
all. Passing arguments by location should be avoided. Loops which
¢all subprograms should have non-loop dependent calls removed from
the loop and use a temporary variable to hold the result{s). Sub-
routines should, when possibie, have the loop placed in the routine
and the call removed from the body of the loop. COMMON areas should
be used to pass variables between subprograms. Simple variables
should be first in a COMMON area followed by arrays. The simple
variables are best allocated with the Tongest type first and the
shortest last (COMPLEX*16 to LOGICAL*T1)., Arrays should be ordered
with the one containing the smaliest total size (the number of ele-
ments times the length of an element) first and the longest ones last.

If the types of variables and arrays are mixed, the programmer will
have to ensure that each type starts on the proper boundary,
COMPLEX*16 data addresses must be divisible by 16 and always end
with a zero, Double word variables (COMPLEX*8 and REAL*8) have a
starting address which is divisible by eight (address ends with a

0 or an 8), four byte data (REAL, INTEGER, or LOGICAL) must start
at an address divisible by four (last digit of address is a 0, 4,
8, or C). INTEGER*2 data addresses must be divisible by two (last
character a 0, 2, 4, 6, 8, A, C, or E). LOGICAL*1 data may fall on
any address. When the longest type of variable is placed first, all
addressing is properly compiled,

For easiest debugging and program maintenance, the dummy arguments
in the SUBROUTINE and FUNCTION statements should, when possible,

be called the same name as those in the CALL statement or reference
to the function. This also applies to COMMON areas. Using a par-
ticular COMMON area is easiest to use when the same variable names
appear in all references to that COMMON. EQUIVALENCE statements
will allow sloppy coders the chance to change the names, but at the
cost of increased complexity, confusion, and reduced optimization
(see section 18).

11.2.0 CODE COMPARISON

A1l of the following ex. es {84 ~ 93) were executed nearly 10,000
times, requiring 21.835 minutes of CPU time, The subroutine and
function subprograms uvsed are illustrated in Examples 84 and 87 and
are the same for Examples 85, 86, 88, and 89.
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SUBPRORRAMS

11.2.17 Subroutine CALL With Ne Arguments (Passed in Common)

No argument 1ist was used to pass the arguments to the subroutine
in this first example.

84)! COMMON/ARGLST/A,B,C,D,E

CALL SUB

END
SUBROUTINE SUB
COMMON/ARGLST/A,B,C,D,E
E=-100.0
Do 1000 1=1,100
100 E={A*B~C)/D+A+E
RETURN
END

The call and subroutine execution time was 1.34 percent or 17.55
seconds. This used only 12 bytes for the CALL statement, and the
stbroutine took 264 bytes of memory.

17.2.2 Subroutine CALL With Arguments (Passed by Value)

When an argument Tist is passed, and the subroutine is the same,
time increased to 1.38 percent or 18.08 seconds as in Example 85.

85) CALL SUB(A,B,C,D,E)

END
SUBROUTINE SUB(A,B,C,D,E)

RETURN
END

This took 14 bytes foi the CALL and 328 bytes for the subroutine.

The values of the simple variables were passed to the subroutine and
then restored to the locations used in the subroutine. This accounted
for the extra time.

11.2.3 Subroutine CALL With Arguments (Passed hy Location)

The call by location is the worst, Example 86, and took 2.48 percent
(32.49 seconds). The CALL still takes 14 bytes for the 1n5truct1ons,
but the subroutine now uses 340 bytes.
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86} CALL SUB(A,B,C,D,E)

END
SUBROUTINE SUB(/A/,/B/,/C/,/D/,/E/}

RETURN
END

The same 3 examples were run with functions; passing arguments through
COMMON was the best as shown in Example 87, Example 88 was next best
by passing arguments in the normal manner (by value), The worst case
was the passing by location, Example 89. The functions were overall
slower than the same code used in a subroutine.

11.2.4 Function Reference With No Arguments (Passed in Common)

87)! COMMON/ARG/A,B,C,D,E

E=F(-~100,0)
END
FUNCTION F(X)
COMMON /ARG/ A,B,C,D,E
FaX
DO 4000 I=1,100
4000 F=(A*B-C)/D+A+F
RETURN
END

11.2.5 Function Reference With Arguments (Passed by Value)

The function is similar for Examples 88 and 89.

88) E=F(A,B,C,D)

END
FUNCTION F{A,B,C,D)

RETURN
END
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11.2.6 Function Reference With Arquments {Passed by Location)

89) E=F(A,B,C,D)

END
FUNCTICN F(/A/,/B/,/C/,/D/)

RETURN
END
Summary of Examples Memory Used N

Example Type % of Run Time Seconds (Caill Subprogram Total
84 subroutine common 1.34 17.55 12 264 276
85 subroutine value 1.38 18.08 14 328 342
86 subroutine location 2.48 32.49 14 340 354
87 function common 2.32 30.39 14 270 284
88 function value 2.63 34.46 14 312 326
39 function location 3.39 44,47 14 328 342

Figure 17 - Comparison of Subprogram Argument Passing
There are two common altternatives to external subprograms, which,
while not retaining all the coding advantages, are somewhat quicker.
11.2.7 Statement Function
90) SF(W, X, Y, K)={W*X~Y)/Z+W

E=-100.0
DO 7000 I=1,100
7000 E=SF(A,B,C,D)+E

Example 90 uses a statement function to do the same simple calculation.
The names in the statement function definition are dummy and act the .
same as dummy arguments for subprograms, This allows the flexibility
of using different arguments. Each statement function reference is
expanded in Tine. That is, the statement in the statement function
definition is substituted for the statement function reference,.

With many statement functions, the program size will increase as

each one is compiled. 1In Example 90 the in line expansion took 38
bytes and the whole example 58 bytes. The time was only 1.30 per-
cent or 17.03 seconds.
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11.2.8 Internal Routine

The quickest, and Teast flexible substitution for an external sub-
program is by using a local section of code which is referenced with
a simple GO TO and the return address ASSIGNed to a variable, The
assigned GO TO is used to return from the shared code to the proper
location. Example 91 required 36 bytes total.

91) ASSIGN 8000 TO K
GO TO 8001
8000 euuvaons

8001 E=-100.0

DO 8002 I=1,100
8002 E=(A*B-C)/D+A+E

G0 TO K,(8000, ....)

This took only 1.15 percent of the run time for 15.06 seconds for
both the ASSIGN, the calculation, and the return.

11.2.9 O0ptional Return

WWhen returning from a subroutine, the next FORTRAN source statement
is usually executed. In some cases data dependent or extraordinary
returns are needed. Either an index may be set, Example 92, or use
of the conditional return, as in Example 93, may be used,

92) DO 9001 1I=1,100

CALL SUB (A,B,II,d)
IF {J.EQ.1) E=E*E/E
IF {(J.EQ.2} E=E*E/E

80071 E=E*E/E
END
SUBROUTINE SUB(A,B,II,J)
A=(A*B)/B
B=B+A+A
J=(11/50)+1
RETURN
END
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93) DO 10000 11I=17,100

CALL SUB{A,B,II,&10001,&10002}
G0 TO 10003

10001 E=E*E/E
GO TO 10000

10002 E=E*E/E
GO TO 10000

10003 E=E*E/E

10000 E=E%E/E

END

SUBROUTINE SUB(A,B,II,%,*)
A=(A*B)/B

B=B+A+A

J=(11/50)+1

IF (J.EQ.T) RETURN 1

IF (J.EQ.2) RETURN 2

RETURN
ENB

The "RETURN digit' form indicates which statement number position

of the calling sequence is to be returned to. When the digit is not
specified, or is greater than the number of statement numbers indi-
cated in the CALL statement, the statement following the CALL is
executed upon return from the subroutine. Otherwise, the statement
number in the slot referenced by the digit is executed subseguent

to the return, The net effect is a combined CALL and computed GO
T0. While these two examples are very simple, a greater difference
will be observed in practical use than is demonstrated here. Example
92 58d - 43,01 percent of the CPU time, or 563.47 seconds. Instruc-
tions for the CALL and associated statements were 90 bytes, the sub-
routine used 314 bytes, for a total of 404 bytes.

Example 93 used 527.05 seconds (40.23 percent) and used 104 bytes
for the main program statements, 336 for the subroutine, totaling
440 bytes., The extra length is accounted for by the longer FORTRAN
code in this {1lustration.

11.3.0 HOW THE STATEMENTS ARE COMPILED

17.3.7 Arygument Lists

Subprograms which have an argument Tist will load an address for the
arguments to be passed. Each entry in the list, whether array or
simple variable, takes four bytes,

Another register is then loaded with the address of the subprogram

and the branch taken to the subprogram. If the ID option of the
compiter is on, which it is by default {NOID may be specified in
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the PARM field of the EXEC JCL statement for the compile step to
turn it off), a dummy branch instruction is inserted which contains
the ISN (internal statement number) of the CALL statement or the
function reference, It is used for debugging information and is
printed in the traceback when a program error has occurred which
the FORTRAN run time subroutines (the error monitor) trap. The ISN
is also avajlable in a dump.

11.3.2 No Argument List

Callirg a subroutine with no argument 1ist will load the register

which was used for the argument address list pointer with zero which

requires only two bytes and executes much faster than the load of

the address which takes four byies. "

11.3.3 Returned Values

The single value returned from a function is returned in a register
and is always stored. This is not dependent on the argument 1ist
but rather is the definition of a function.

Yalues returned from a subroutine are already in storage, and no
additional action is required of the calling program.

11.3.4 Subroutine tnitial Action

The initial internal action in the subroutine is different if an
argument T1ist exists or is absent. A subroutine always moves the
values of all simple variabies to a local area in the subroutine.
This provides multi-programming capabilities in that the calling
and called program units may each work with individual variables
within their own workspaces and not interfere with the calculations
in the other. Each variable requires eight bytes of memory for the
instructions which move the values.

11.3.5 Subroutine Exit Processing

Returning from a subroutine moves the simple variables in the argu-
ment 1ist whose values have changed, {appearing on the left side of
an equal sign, and marked on the map with an S?, back to the calling
program's area. This requires eight bytes of memory for the instru-
tions for each simple variable, as well as the storage space for the
variables in the subroutine. There is also a constant four byte
overhead., Returning from a subroutine with no argument 1ist takes
only the four bytes fixed overhead,

11.3.6 Argument Passing

Arrays passed between subroutines or functions and their calling
program unit require much less overhead for initialization and clean
up. The address of the array (along with the subscript) is passed
and loaded by the subprogram to reference the specific Jocation
desired, This also requires eight bytes for each array passed.
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When simple variables are passed by Tocation (enclosing the dummy
arguments in slashes), memory for Tocal variables is saved., The
corresponding increase in program time and subroutine Tength may

not be worth that memory. Arrays are always passed by Tocation.

The subroutine will load the address of each of the simple arguments
passed and store that address in a separate location, taking four
bytes. When a value is needed, the address is loaded into a register
and then a Toad from that address is executed, This may at times
require extra loads, and the time increases with each reference and
compiexity of the program. The optimizer will attempt to reduce

the number of times the address is Toaded but is subject to the same
guidelines given in the Common Expression Elimination section (8.0).

An array name in an argument list is represenpted by the address of
the element given in the CALL - atement, If only the name is used
{(no subscript(s)), the address .f the beginning of the array is
used. This may -ome in handy when dealing with a row of an array
as shown below.

DIMENSION X(100,50)

CALL ROWMLT(X(1,10),C,100)

SUBROUTINE ROWMLT(X,C,N)
DIMENSION X(N)
DO 1 I=1,N
T X(I) = X(I)*C
RETURN
END

Figure 18 - Passing a Row of an Array

The effect of subroutine ROWMLT is to multiply by C all of the
named row in the second subscript of the CALL statement reference
for X (the tenth row in this case). This technique is only appli-
cable for rows. The elements in a multi-~-dimension array are in
order in storage as a vector array, by the first index.

17.3.7 Statement Function Expansion

Statement functions are another way to reduce the overhead involved
with external subprogram calling. Each occurrence of the statement
function is expanded in-1ine and so requires more memory for its
instructions, but the optimizer also has a chance to work on the
internal machine language code generated in the proper program unit.
(See also section 9.0 on Statement Functions.)
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11.3.8 Internal Routine Reference

Assigned GO TO routines use the assigned variable to contain the
return location so as to branch directly to the local code. The
argument list processing time is saved. (Refer to the Branching
section for a description of how the ASSIGN and assigned GO TO
statements work, section 12.3.3.)

61



12.0 BRANCHING

12.1.0 SUMMARY

The normal sequential flow through a program can be altered condi-
tionally or unconditionally. The conditional branching may depend

on the value of a switch, a single variable, or the value of an
expression. This is accomplished by the simple, computad or assigned
GO TO, and the arithmetic or Togical IF statements. The efficiency
of each type of branching statement depends upon where the branch

is performed and the location it is branching to.

12.1.1 Branching Statements Compared

The simple GO TO is the only unconditional branch and translates to
one internal machine language instruction, Branching on a switch

is best accomplished by the assigned GO TO. The next best testing
is the arithmetic IF followed in execution speed by the logical IF,
both having integer value compared to a constant. The arithmetic
and logical IFs execute in very nearly the same time and are depend-
ent on the statement order in the FORTRAN code. The branching
statement with the most overhead is the computed GO TO. When used
for its designed purpose, it is the quickest for the application,

12.1.2 Statement and Expression Ordering

Statement ordering is of importance and the following guidelines
should produce the best coding possible. With assigned GO TO state-
ments, the statements containing the referred statement numbers
should not follow the assigned GO T0. The statement ordering is

of no importance for the computed GO TO. Arithmetic IF statements
should have the most often executed branch as the first statement
number in the Tist of three. It should not directly follow the IF.
Testing for a value of TRUE witn a logical IF containing a simple
expression {(only one relational operator) is the best, and results
in the execution of the appended statement. ¥hen a lagical variable
is tested, the best branching is done when the value is false and
the appended statement is not executed. Complex expressions, using
ANDs, ORs, and NOTs, are discussed later.

12.1.3 Index Branching

Checking an index or variable for a value may be accomplished by a
series of arithmetic or Togical IF statements or one computed GO
TO. When the value of the index is to be six or less, a series of
arithmetic IFs proved the best. When the value of the index may
exceed seven, a computed GO TO statement is by far the best. A
series of logical IF statements proved to be the worst of the three
methods tested.

pRECHDING PAGE BLANK NOT FILMED
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12.1.4 Complex Logical IFs

Comptlex logical IF statements with several NOTs, ANDs, or ORs should
be avoided when possible; several separate IFs are hetter. Multiple
conditions should be tested as described below. A series of rela-
tional operations with only AND operators should test for the con-
dition which will fail first, causing fewer tests, and branch to

the most often executed statement as the one following the IF. The
appended statement should be the least often executed, i.e., the
exceptional case., ANDs should be used when most of the conditians
will be false.

When only OR operators are used with relational operands, the
appended statement should be executed most often, The condition
most often false, causing the branch to fall through, should be the
last condition in the 1ist. ORs are best used when the conditions
are usualily true and an extra statement is to be done. The relation
tested (GT,GE,LT,LE,EQ,NE) causes no difference in execution speed.

The NOT operator used previously with relational operands or mixed
ANDs and ORs will require the ~ntire expression to be evaluated
before any action is determined. MNo difference is apparent in either
doing or skipping the appended statement. Using several simple IF
statements to separate the ANDs and ORs improves the execution speed.
NOTs are to be avoided.

Logical IF statements with logical variables (typed explicitly in

a LOGICAL statement), with all ANDs or all ORs in a single expres-
sion, are executed the way outlined above for relational operands,
NOT used with either operator (all ANDs or all ORs) in a statement
merely tests the reverse true or false value, but the logic is the
same as mentioned before. With a NOT and AND series the first

test should cause the fall through. NOT with OR should cause the
appended statement {o be executed as soon as possible and the most
Tikely true variable placed first. The NOT operator will not force
the entire statement to be executed with logical variables. Mixed
ANDs and ORs, with or without NOTs, will force the entire expression
to be calculated before the final result can be analyzed to cause
the execution of or skip the appended statement. There is little
difference in which condition is tested,

12.1.5 Index T2sting in a Loop

When a conditional logical IF is to be placed in a loop, the togical
value part of the expression which does not change may be set out-
side the loop and tested in the loop. In logical IFs, most of the
time is spent in the evaluation of the expression., This causes an
improvement over the repeated calculations in the loop for each
test., The variable should be declared in a LOGICAL tvpe statement.
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12.2.0
12.2.1
94)

95)

96) 1

97)

98)

CODE COMPARISQONS

Switch Setting and Testing

ASSIGN 1001 TO K

ASSIGN 1002 TO X

GO TO K,(1001,1002)

—
i}
o

e = «

-y
—

IF (1) 2001,2002,2001

—
n
o

[l o = =

-
—

-
“Tin * =

(I.EQ.1) GO TO 3001

—
]
o

e o o

L |
——

IF (1.NE.1) GO TO 3002
L=.FALSE.

L=.TRUE.
IF (L) GO TO 4001
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99) I=0
1=1
60 TO (5001),1
100) I=1 Best when most often executed

statement dces not follow.

e o »

I=2

.

L ]

G0 TO (6001,6002),1

Example 94 shows setting and branching based on a switch. In the
test program, one set and one branch were executed two milTlion times
and required only 0.5 percent of the 5.079 minute execution time

for 1.52 seconds when the statement branched to did not follow the
GO TO statement. When the branch was next to the target statement,
1.45 percent or 4.42 seconds were taken for the same 2,000,000 passes
through the program. In this example, if K were ASSIGNed 1007, most
of the time it would be better to have statement number 1007 not
immediately follow the GO TO statement.

Example 95, using an arithmetic IF to test if a switch is zero or not
took 0.48 percent of the execution time for 1.46 seconds when the
most likely statement number did not follow the IF. When the most
1ikely statement followed the IF, 1.26 percent, or 3.84 seconds were
used for the two million passes.

Exampie 96 uses a logical IF statemett to test for a single value

of a flag., This took 0.48 percent of the run time, 1.46 seconds,

with the branch always executed. lhen the opposite condition was

tested as in Example 97, 2.5 seconds (0.82 percent) were used when
the branch was not taken and the following statement executed,

Example 98 shows setting a logical variable to TRUE (represented as
non-zero, usually one) or false (zero). When the condition was
FALSE, 3.07 percent or 9.36 seconds of the run time was used. If
the condition is true, 3.38 percent of the run time was used, or
10.30 seconds,

Example 99 uses a computed GO TO to branch to a single statement
numbeyr or fall through to the next sequential statement when the
index is not one. The time required for this type of branch was
12.52 seconds or 4,11 percent of the same 5,079 CPU minute execution
of the two million passes through the main Toop.
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Example 100 uses a computed GO TO. When the most 1ikely statement
does not follow the GO TO, 3.87 percent (11.79 seconds) was expended

branching.

When the statement which was most often executed branched

to follow the GO TO statement, 4,43 percent (13.50 seconds) was
spent in execution.

12,2,2 Simpile Expression Testing

10%)!

7001
102)

8002
103)

9003

9002
104} !

10001

10002
10003

105)

106)

12001

12003

IF (I.LT7.20) GO TO 7001
L=L+]

L=L+]

IF (I.GE.20) GO TO 8002
L=L+1

L=L+]

IF (L-20) 9001,9002,9003
L=b+]
GO TO 9004

L=L+1
GO TO 9004

IF (I~-20) 10001,10002,10003
L=L+1

GO TO 10004

L=L+1

GO TO 10004

L=L+1

GO TO 10004

GO TO (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1),1
L=L+1

ASSIGN 12001 TO K

IF (I.LT.20) ASSIGN 12003 TO K
GO T? K,{12001,12003)

L=L+

L=p+1
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107)! ASSIGN 13001 TO K
IF (I.GE.20) ASSIGH 13003 TO K
GO TO K,(13007,13003)
13003 L=L+1

13001 L=L+1

A1l the above examples (101 - 107) were run 2,000,000 times for a
total time of 5.079 minutes CPU time. The variable I varied from
one to 2,000,000 so it was greater than 20 most of the time. The
examples aill do the equivalent calcuiations, except for Example 104
which shows the additional testing possible with the arithmetic IF.

Examples 101 and 102 show the best way to conditionally branch on
the value of an expression. Example 101 is better when the con-
dition falls through, and used 5.09 seconds, or 1.67 percent of
the run time., When the branch was taken, as in Example 102, the
time expended was 6.58 seconds or 2.16 percent,

The arithmetic IF statements were executed in very nearly the same
time, but checked on the 'equal to' condition as well, and did more
work in the same time as the Togical IF, Example 103, where the most
often executed statement did follow the testing of the expression,
used 8.41 seconds, 2.76 percent of the step execution time. Example
104 with the most likely statement not followina the test, expended
8.26 seconds or 2,71 percent of the run time,

Example 105 is included to show the unorthodox use of a computed GO
70. If only the first of a number of conditions is to be tested,
this would be a possible way to code the test. The exampie took
3.74 percent of the time and was executed for 11.40 seconds. {Also
see the following sub-section coverina Index Branching, 12.2.5.)

Examples 106 and 107 use a fiag set to determine the object 3f the
branch. This sort of scheme would work best when the assigned GO

TO was in the range of an inner loop and the ASSIGN and the LOGICAL
IF were outside that loop. Example 107 would be the best choice. 1In
this test case, both the GO TO and the ASSIGN with the Toqical IF
statement were executed.

12.2.3.0 Complex Expression Testing

A1l of the examples (108 - 134) were executed 40,000,000 times, half
with the conditions failing on the first test and half requiring all
of the expression to be evaluated. This required 12.041 minutes of
CPU time. Each type of testing was performed on relational and
logical operands with the appended statement being a simple GO TO
or adding one to an index. The results, in summary, indicated the
best relational tests are done with a series of simple Togical IF
statements. Complex IFs with only ANDs or ORs are significantly
worse. Mixed ANDs and ORs are worse yet and NOTs are at the bottom
of the group tested. The relational operands were always slower
than the Togical operands.
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The values used in the tests were such that B, C, D, £, and F were
not changed from their value of ten. A was 11 or -11. L1 switched
hetﬁeen .TRUE. and .FALSE. while L2, L3, L4, L5, and L6 were al' 1ys
.TRUE..

12.2.3.1 'NOT' With 'AND' Operators

108) (,NOT.{(A.GE.B).AND,.NOT.(A.GE.C).AND..NOT.
.GE.D).AND..NOT.(A.GE.E).AND, . NOT.(A.GE.F)) 60 TO 14100

IF
(A
109) %F (.NOT.(A.GE.B).AND..NOT.(A.GE.C).AND,.NOT,
A
IF

1

1(A.GE.D).AND,.NOT,{A.GE.E}.AND. .NOT,(A.GE.F)}) I=1+1

(.NOT.LT.AND..NOT.L2.AND..NOT.L3.AND..NOT.L4.AND.
T.NOT.L5.AND. . NOT.LB) GO TO 14300

1) IF (.NOT,LT.AND,.NOT.L2.AND. . NOT.L3,AND, NOT.L4.AND.
1.NOT.L5.AND, .NOT,L6) I=T+]1

110) !

The relational operators were sTow, using 4.34 percent (31.35 seconds)
for Example 108 (GO TO as the appended statement) and 4.20 percent
{30.34 seconds for Example 109 {add as the appended statement)).

The Togical operands were faster; Examples 110 and 111 both used

2,42 percent, or 17.62 seconds of the 12.041 minutes CPY run time.

12.2.3.2 'NOT' With 'OR! QOperators

112) IF (.NOT.(A,LT.B).OR,.NOT.(A,LT.C}.OR..NOT,{A.LT.D}.OR.
1.NOT.(A.LT.E).OR..NOT,(A.LT.F)) GO TO 15100

113) IF (.NOT.(A.LT.B).OR..NOT.(A,LT.C).OR..NOT.(A.LT.D).OR.
T.NOT.(A.LT.E).OR..NOT.(A.LT.F)) I=I+1

114) IF (.NOT.L1.0R..NOT.L2.0R..NOT.L3,0R..NOT.L4.0R.
1.NOT.L5,0R..NOT.LE) GO TO 15300

115)! IF (.NOT.L1,0R,.NOT.L2,0R..NOT.L3.0R..NOT.L4,0R.
1.NOT.L5.0R..NOT.L6) I=I+]

In these examples the unconditional GO TO as the appended statement
of the relational operators was the quickest, with Example 112, 4,12
percent (29.76 seconds), The add, Example 113, 4.29 percent (30,99
seconds) was just slightly worse. The logical operators were faster,
and the GO TO was the slower case., Exampie 114 used 2,53 percent
(18.28 seconds), and Example 115, with an appended add, used 2.45
percent for 17.70 seconds,

12.2.3.3 Mixed 'AND' and 'OR' Operators

Mixed ANDs and ORs faired better than NOTs. No great amount of
execution time differencs was noted if the ANDs and ORs were grouped
togethey as in Examples 116 - 119, or interspersed as in

Examples 120 - 123.
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116) IF (A.GE.B.AND.A.GE.C.AND.A.GE.D,OR,A,LT.E.OR.
TA.LT.F) GO TO 16100

117) 1F (A.GE.B.AND.A,.GE,C.AND.A.GE.D.OR,A,LT.E.OR.
TALLT.F) I=I4]

118}! IF (L1.AND.L2,AND.L3.AND.L4.0R,L5,0R,L6)} GO TO 16300
119) IF (LT.AND,L2.AND,L3.AND,L4.0R.L5.0R.L6) I=I+1

120) IF (A.GE.B.AND.A.GE.C.OR,A.GE.D.AND.A.GE,E.OR.
TA.LT.F) GO TO 17100

121) IF (A.GE.B,AND.A.GE.C.OR,A,GE,D.AND.A.GE.E.OR.
T1A.LT.F) I=1+1

122)! IF (L1.AND.L2,0R,L3.AND.L4.0R,L5,AND,L6) GO TO 17300
123) TF (L1.AND.L2,0R.L3.AND.LA,OR,L5.AND.LG) I=I+]

With the ANDs and ORs separated by relational operators (Examples
116 and 117), both took the same time, 3.79 percent for 27.38
seconds of the total step time. The logical operators with the
simple GO TO as the appended statement, Example 118, received 2.09
percent of the run time for 15.01 seconds. Example 119, Togical
operator with an appended add, took 2.10 percent (15,17 seconds)
of the 12.041 minutes run time.

With the ANDs and ORs interspersed (Examples 120 - 123), the
relational operators took 3.7%4 percent and 3.83 percent (27.01

and 27.67 seconds) with the appended GO TO, 120, and the appended
add, 121, respectively. With the logical operators, the appended
GO TO was again the slightly faster. Example 122 used 2.14 percent
(15.46 seconds). Example 123, with the add statement, used 2.22
percent for 16.04 seconds of the measurement time.

12.2.3.4 Separate 'AND' and 'OR' Operators

The usage of ANDs or ORs exclusively in a statement was better yet
than mixed operators.

124) IF (A.GE.B.AND,A.GE.C,AND.A.GE.D.AND,A.GE.E.AND.
1A.GE,F) GO TO 18100

125) IF (A.GE.B,AND.A.GE.C,AND.A.GE.D.AND.A.GE.E.AND,
TA.GE,F) I=I+]

126) IF (L1.AND.L2,AND.L3.AND.L4,AND.L5.AND.L6) GO TO 18300
127} IF {(L1.AND,L2.AND.L3.AND.L4 AND.L5.AND.L6)} I=I+1
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128) IF {(A.LT.B.OR.A,LT.C.OR,A.LT.D.,OR.A.LT,E.OR,
1A.LT.F) GO TO 19100

129) iF (A.LT.B,OR.A,LT.C.OR.,A.LT.D.OR.A.LT,E.OR,
TA.LT.F) I=I+1

130) IF (L1,0R.L2,0R.L3,0R.L4.0R,L5.0R,L6) GO TO 19300
131) IF (L1.0R.L2.0R,L3.0R.L4.0R.L5,0R.L6) I=T1+1

Examples 124 and 125 used 2.22 percent {16.04 seconds) and 2.37
percent (17.12 seconds) for the two relational tests for the simple
AND case., The OR examples took 2.21 percent (15.96 seconds) for
Example 128, and Exampie 129 took 2.52 percent (18.21 seconds).

The logical operators were as usual faster. Example 126 used 2.04
percent or 14.74 seconds, and Exampie 127 used 2.19 percent or
15.82 seconds. The logical operands with the ORs took 2.02 per-
cent, or 14.59 seconds for Example 130 and 2,25 percent, or 16.25
seconds for Example 131.

12.2.3.5 Separate IF Statements for 'AND'

The best testing for relational operators wss achijeved by separating
each test into a serijes of separate IF statements.

132) 1F A.GE.B% G0 TO 20000
IF (A.GE.C) GO TO 20000
IF {A.GE.D) GO TO 20000
IF (A.GE.E) GO TO 20000
iF (A.GE,F) GO TO 20000

I=1+1

20000 .....
133)1 F (A.GE.B) GO TO 21000
A.GE.C) GO TO 21000
E.D) GO TO 21000
E.E) GO TO 21000
% E% GO TO 21000

B i T e it P

21000
21001

134) IF
22000 IF
22001 IF
22002 IF

.GE.B) GO TO 22000

.GE.C) GO TO 22001

LBE.D) GO TO 22002

.GE.E) GO TO 22003

22003 IF (A.GE,F) GO TO 22004
GO TO 22005

22004 I=I+1
22005 ,....
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These three examples show the separate tests for AND, OR, and a poor
case of AND respectively. Example 132 is significantly the best
ANDing with 1.49 percent or 10,76 seconds of the 12.041 minute exe-

cution time.

The separate ORing, as shown in Example 133, used

1.46 percent or 10.55 seconds of the same total run time. Example
134 shows a bad case of using separate IFs to accomplish an AND.
This required 2.67 percent for 19.29 seconds.

12.2.4
135} !

136)

Multiple IF Statements

100

IF (I.LT.20) GO TO 100
L=L+1
L=L+2
L=L+3
L=L+4
L=L+5

* s s

IF (I.GE.20) L=L+]
IF (1.GE.20) L=L+2
IF (I.GE.ZO; L=1+43
IF {I.GE.ZO L=L+4
IF {I.GE.20) L=L+5

These two examples were also executed 2,000,000 times for a total
charge of 5.079 minutes for the measurement step. The variable I
ranged from one to 2,000,000 so that the addition statements were
executed most of the time. Example 135 was better with 5.74 percent,
or 17.49 seconds. Example 136 used almost twice the time with 10.15
percent for 30.95 seconds. While these two examples may look ridic-
ulous, programs which are often and carelessly modified may contain
some symptoms of the above examples,

12.2.5
137)

Index Branching

25101

25102

25103

25104

(J.EQ.1) GO TO 25101
%J.EQ.E) G0 TO 25102
J.EQ.3) GO TO 25103
(J.EQ.4) GC TO 25704
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138)!

139)

140)

IF {J-1 25240,25201,25210
25210 1F (J-2) 25202,25202.25220
25220 IF (J-3) 25203.25203,25230
25230 IF (J-4) 26204.25204,25240
25240 ® ¢ 58 e ¢
25201 vvvnnn
25202 v.ueun.
25203 vuveues
25208 ..n.n.s

GO TO (25301,25302,25303,25304), J
25307 ....
25302 vunven.
25303 veuun..
25308 .......

IF (J.EQ.1) GO TO 26101

IF (J.EQ.2) GO TO 26102

1F (J.EQ.B; 60 TO 26103

1F %J.EQ.4 G0 TO 26104

IF (J.EQ.5) GO TO 26105

IF {(J.EQ.6) GO TO 26106
26]01 - 6h &30
26102 +envnes
26703 vuvuves
26108 vuuvs
26105 .-:- * &
26706 vuvuvos
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141)!

142)

143)

26210
26220
26230
26240
26250
26260

26201

26202

26203

26204

26205

262006

26301

26302

26303

26304

26305 ..

26306 -
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GO
GO
GO
GO
GO

GO
GO

26260,26201,26210
26202,26202,26220 |
26203,26203,26230 :
26204,26204,26240 :
26205,26205,26250
26206,26206,26260

TO
TO
70
T0
TO
T0
TO
TO

27101
27102
27103
27104
27105
27106
27107
27108
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144)

27101

27102

27103

27104

27105

27106

27107

27202

27203

27204

27205

L LI N

LI IR N ]

e 8 & & & & & & s = 3 & =

[P oV ' ol i
I 1 I
O~ P —

27280,27201,27210
27202,27202,27220
27203,27203,27230
27204,27204,27240
272)5,27205,27250
27206,27206,27260
27207,27207,27270
27208,27208,27280
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27206 .......
27207 & 2 a5 43080

27208 ..... .

145)! GO TO (27301,27302,27303,27304,27305,27306,27307,27308), J

27301 uenrens

27302 ..

27303 ..

27304 ..

L

* # = 8 & s % & & o

27305 .......

27306 ..

27307

27308

N -
-
* B & = &8 2 & ¥ & s =
»

Examples 137 to 139 were executed 1.8 million times for a total

time of 9.149 minutes., Example 137 took 10.91 percent of that time
for 59.89 seconds. The multiple arithmetic IF statements in Example
138 took only 8.40 percent and 46.11 seconds and are aiways better
than multiple Togical IF statements. Example 139 used 61.15 seconds
or 11.14 percent of the same run time.

Examples 40 to 142 executed each type of branch, in groups of six,
40,000 times. This required 3.999 minutes for the measurement step.
The computed GO TO (Example 142) is still the worst with 31.67
seconds {13.20 percent), Example 140 was the next best and took
29,10 seconds (12.13 percent). Example 141 used 27,16 seconds
(11.32 percent).
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Examples 143 through 145 test for eight specific values, and the
computed GO TO statement is now the best (Examplie 145, 11.18 per-
cent, 26,36 seconds}. Each of the examples 143 - 145 was executed
300,000 times for a total test program execution time of 3.929
minutes. The arithmetic IFs (Example 144, 14,22 percent, 33.52
seconds) are still better than the lTogical IFs (Example 143, 15,77
percent, 37.18 seconds).

The savings are more dramatic as the break at seven tests is moved
away from. Examples 95, 26, 97, and 100 show the result of one or
two comparisons. A test was also run with ten index values, The
200,000 executions took 16.370 minutes for the test program. The
logical IF statements required 3.32 percent, or 32.61 seconds., The
arithmetic IFs used 2,86 percent or 28,10 secdnds., Significantly
better was the computed GO TO which required 1,93 percent of the
run time for 18,96 seconds.

12.2.6 Expression Reduction of Complex Logical IF Statements

There are several ways to evaluate Togical IFs which test conditions,
The simplest condition setting, using the rules outlined in the
opening paragraphs of this section, should be followed.

146) IF (.NOT.(L.GT.M).AND..N0T.(I.GT.Jd)) K=,FALSE,

This example is the worst way to set K and took 5.52 percent, or
32,39 seconds, of the 2.780 minute CPU time for 1.8 million exe~
cutions. The examples 146 through 152 were also executed the same
number of times, and the total run time was also 9.870 minutes.
The values of L and I in each example were negative to start with
and reversed each pass through the Toop so there was no preferred
order to influence the tests. Example 146 evaluated the entire
expression and required two NOTs,

147) IF {.N0T.(L.GT.M,0R,TI.GT.J)) K=,FALSE.

This took §.15 percent of the run time (30.22 seconds), The saving
was achieved by only one NOT operator being used.

148) 1IF (L.GT.M) 60 TO 21001
IF (I.GT.J) GO TO 21001
G0 TO 21002
21007 K=,TRUE,
21002 LI I B )

Here the two conditions are split apart, and the time is reduced to
13.14 seconds, 2.24 percent of the 9.870 minute run time.

149) IF (L.LE.M) GO TO 22001
GO TO 22002
22001 IF (I.LE.J) K=,FALSE,
22002 LK B BN B BE BN Y )
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Exampie 149 requires somewhat less branching and shows a minimal
improvement over Exampie 148, This test took 2.19 percent for
12.85 seconds.

150) IF {(L.GT.M,0R.I.GT.J) K=.TRUE.

Example 150 combines the two statements and does not use ANDs or
NOTs. This took 2,18 percent of the run time for 12.79 seconds.

161)1 IF (L.LE.M,AND.I.LE.J) K=.FALSE.
This, the best (2.07 percent, 12.14 seconds), is the preferred method.

When the values are not changed in the loop, some terms of a logical
expression may be calculated outside the loop at a significant saving.

152) LOGICAL X1

L

K1= L.EQ.M.AND.T.LE.J

DO 23001 N=1,NN

IF (K1) K=.FALSE.
Example 152 required 9.56 seconds (1.63 percent) of the 1.8 million
executions for the IF statement alone. The combination of both
statements was also measured at 29.70 seconds, or 4.96 percent.

12.3.0 HOW THE STATEMENTS ARE COMPILED

12,3.1 Machine Language Branching

A11 conditional branching statements result in the setting of two
bits in the program status work (PSH), called the condition code,

and testing their value. There are 16 test combinations of the four
possible condition code values which may be tested for (zero ta 15).
A conditional branch checks which bits are on and takes action from
there. If no bits are to be checked, the branch is never taken, and
the next sequential instruction is always executed, An unconditional
branch to the specified address is taken when the check asks all
combinations to be checked. Al1 other combinations of bits specified
in the conditional branch must match the condition code value in

the PSW field before the branch is taken, If the condition code does
not match the combination of bits, instruction processing 'falls
through' to the next instruction in sequence.
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12.3.2 Simple G0 TO Statement

The unconditional GO TO statement is a single unconditional branch
instruction to the correct location. This requires four bytes.

12.3.3 ASSIGH and Assigned GO TO Statements

Each of these statements use eight bytes. The ASSIGH statement Toads
the address of the statement which is specified by its statement
number to a register and then stores it in the variable location
named. The assigned GO TO statement loads the address for the branch
from the variable Tocation to a register and then uses an uncondi-
tional branch to the address in the register.

12.3.4 Computed GO TO Statement

The processing of a computed GO TO statement first checks the value

of the index to see if its value exceeds the number of executable

statement numbers in the FORTRAN statement. The constant of the

number of statement numbers in the 1ist is loaded into a register

as is the index. These are compared, and the condition code set.

The index is then always shifted left two places, causing a multiply

by four, for use when the index is acceptable. The conditional

branch is set to branch to the statement following the computed GO

TO statement (fall through) when the index is greater than the num-

ber of statement numbers in the 1ist. Assuming the index is in the !
propar range, the modified index is used to space down the proper

number of entries into a table which contains the addresses of the
statements named in the 1ist by their statement numbers., Each address
entry is four bytes long--the reason for the shift. When the index :
is one, the address four bytes from the beginning of the 1ist is y
used; when the value is two, the addross eight bytes down is used, '
etc. When the index is zero, the address at the start of the list

is used. This first address points to the statement which follows

the computed GO TO in the FORTRAN source. No checking is done for

a negative index, and it probably will cause an addressing error,

The processing required for this statement is somewhat involved and
accounts for its slowness when the range of the index is small., It

has a fixed number of instructions (24 bytes) which are executed no :
matter how long the 1ist of statement numbers is, This is advan- ;
tageous when many values of the index are possible. The length of

the address 1ist is four bytes plus four times the number of entries

in the computed GO TO list. This Tist is created for every computed

GO TO even if the 1ist is the same in more than one statement.

12.3.5 Arithmetic IF Statement

After the expression which is enclosed in parentheses is evaluated,
the condition code is tested according to the pattern of the state-
ment numbers.

79



BRANCHING

The order in which the condition code is tested depends on the
statements which follow the arithmetic IF, When all the statement
numbers are different and one follows the IF statement, that con-
dition is not checked. Otherwise the checking procedure follows
from left to right., The following illustration should make the
point clear:

IF (I-1) 1,2,3 IF (I1-1) 1,2,3 3 IF (I-1) 1,2,3
2

2 1 2

3 3 1

test and branch on test and branch on test and branch on
equal to or greater Tess and greater than: 1less than and equal
than; fall through 7all through on equal to; fall through when
for less than to greater than

Figure 19 - Arithmetic IF Statement Ordering

When one of the named statement numbers follows, a conditional branch
is used to check all three possible condition code settings. Yhen
two of the statements numbers are the same, the checking is again
order dependent, but the position with the repeated statement num-
bers encountered first, from right to left, has the condition code
test altered to reflect the dual code. 1If the statement which fol-
lows the IF is numbered as one of the targets from the IF, that
gondition code(s) is not checked and becomes the fall through con-
ition.

For these reasons it is best to avoid placing the most often branched
to statement after the IF statement. The condition should also be
set up so that the most often branched to statement number is the

one which occurs first in the statement number 1list that does not
follow the IF statement,

The setting of the condition code may be done through the arithmetic
statements. In the three iilustrations shown above, the subtraction
will set the condition cede. This is true for any expression., If

a single variable is to be checked, a special instruction whose main
purpose is to set the condition code is used, This instruction uses
a register and does not access memory (although the initial load

of the rcyister may obtain the value from storage). The condition
code checking branches are then executed, no matter how the condition
code was set.

12,3.6,0 Logical IF Statement

12.3.6,1 Single Expression

The logic is the same for relational operators or logical variables
when only ANDs or only ORs are used in a single expression. ANDs,
for relational operators, test on the reverse condition from that
coded, The branch from each test is to the statement which followed
the IF in the FORTRAN source code. Only when all the conditions

are met is the appended statement executed. This logic also holds
true for logical variables preceded with NOT,
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As each relational operator is evaluated, the condition code is

set and tested., If the condition code testing is true, the rest

of the testing is skipped and the following statement executed.

Vthen the appended statement is a simple GO TO, the final test in the
series is as coded and the appended GO TO executed. The following
statement is then *‘fallen through' from the unsuccessful last test.

Logical operands use the same instruction which is used for con-
trolling short running or simple DO loops. First a register is
cleared {to zero) and the value to be tested is placed in another
register., The test is done (not using the condition code); and when
the index is zero (non-zevro for NOT), the next statement is branched
to. Uhen the index is non-zero (zero for NOT}, the next condition
is tested. When the appended statement is a simple RO 7O, the final
test is reversed and causes the appended GO T0 to be taken.

12.3.6.2 Multiplie Expressions

Multiple ORs in an IF statement try to branch to the appended state-
ment after each test of the relational operators. Uhen the appended
statement is an unconditional GO TO, the branch is to the specified
statement rather than a separate GO TO statement. UWhen the appended
statement is not a GO TO, the last test is reversed and the statement
following the IF in the FORTRAN source is branched to if the condition
code is matched, skipping the appended statement. Ordinarily the
condition code is tested as written in the FORTRAN program. Logical
operators with a string of ORs use the same logic as described for
refational operators, but the instructions are those as described for
AND operators. A NOT prefix only changes the instruction used for
testing the index and not the logic flow.

Using NOT with the relational operators forces the entire expression
to be evaluated before the appended statement s executed or skipped.
The relational operator is evaluated and a zero or one JTpaded into a
register to record the true or false result, respectively, of each
relational test. The NOT operator causes the reculting value of the
relational test to have one subtracted from the value and then the
number reversed {1s complemented) in the register, The results of
these two operations are ANDed or ORed together and the final result
tested, This last test, to execute the appended statement or skip
its execution, uses the same instructions as the logical variable
does., When the appended statement is a simple GO TO, the test will
branch to the named statement number when the final truth value is
true. The branch is to skip the appended statement with a false
condition in any other case.

Compound and mixed ANDs and ORs with logical variable operands use
the machine language instructions. The final result for loagical
variables is evaluated as outlined previously. MNT is evaluated with
the same two instructions used for relational operators, without
using the condition code testing,
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13.0 INPUT/QUTPUT

13.1 SUMMARY

Passing information between external storage and the processing

unit is the siowest operation of a computer program. Significant
reductions in time (CPU, I/0, as well as wall clock) can be realized
if a 1ittle care and forethought is exercised. Data wkrich {s inter-
mediate, used only by programs and not viewed by human readers,
should be kept in internal form, i.e., not formatted, using either
FORTRAN or FTIO, described in Appendix D. Data to be presented for
human consumption should be kept as simple as possible, the list of
variables short, and formatting instructions explicit. Unformatted
direct access, or random access I/0 should be used only when required.
The advantages of DAIO and FORTXDAM (Appendix C) should be explored.

13.2.0 CODE COMPARISONS

The following tests, unless otherwise noted, were made by placing

a READ statement in a loop which was executed 25 times, The READ
consistently transferred the equivalent of an array 20 by 1000 of
the same floating point numbers., Test results with WRITE statements
show essentially the same results, with some changes in the time
spent formatting the data.

13.2.1.0 Formatted I/0

13.2.1.1 Element Transfer

153) DIMENSION A(20,1000)
DO 10 N=1,25
DO 10 I=1,20
DO 10 J=1,1000
10 READ (10,20) A(I,J)
20 FORMAT (F4.1)

In this example each element of the array is read individually,
and the I/0 routines are called for each element, This required
7.190 minutes CPU time and 9.453 minutes I/0 time.

13,2,1.2 Row Transfer by Implied Loop

154) DIMENSION A(20,1000)

10 READ
20 FORMA

—_—

83 PRECEDING PAGE BLANK NOT FILMED



INPUT/OUTPUT

The use of an implied loop reduced the calls to the Tibrary routines
and took half the CPU time, 3.189 minutes and saved over 15 times
the I/0 charges, 0.538 minutes.

13.2.1.3 Row Transfer by Subroutine

155)1 DIMENSION A(20),AA(20,1000)

=1,

Do 1 =1,
10 READ (10,2

CALL FMOVE
20 FORMAT (20
The amount of overhead involved with the implied DO loop is again
reduced, and the intent of the READ clearer to the library functions.
The call to FMOVE makes the examples exactly alike and required 0.16
seconds CPU time. The same number of calls to the I/0 support rou-
tines were made, but this method used oniy 2.700, excluding FMOVE,
CPU minutes and 0.535 I/0 time. A savings of 6 percent in CPU time
and no change (<1 percent) in the I/0 time over the implied Toop.

13.2.1.4 Array Transfer by Name
156) DIMENSION A(20,1000)

DO 10 N=1,26
10 READ {10,20) A
20 FORMAT (20F4.1)

This simplest setup uses 2.765 minutes of CPY time and 0.538 1/0
minutes. These are essentially the same as before but with less
cading, and all the data has been placed in the proper location in
the array. The slight increase in CPU fime is probably attributed
to the generation of the second subscript being less efficient when
implied, It should be specified.

The double implied joop is slower as shown in Example 5.

13.2.1.5 Array Transfer by Implied Loop

157) DIMENSION A(20,1000)

DO 10 N=1,25
10 READ (10,20) ((A(I,J),1=1,20),d=1,1000)
20 FORMAT (20F4.1)
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This used 3.161 minutes CPU time and 0.543 I/0 minutes,
13.2.1.6 Effect of JCL

The DCB parameters coded on the DD statement for the file affect
the 1/0 times as shown in the foliowing example., Examples 153
through 157 were run using:

DCB=(RECFM=FB,LRECL=80,BLKSIZE=3200)
Example 158 uses the same code as Example 156 but has:
158) DCB=(RECFM=F ,BLKSIZE=80)
The CPU time used was 2.852 minutes, a 3 percent increase, but the
1/0 time was increased by 13.208 minutes, a 2400 percent rise. Al
1/0 should be blocked if possible. In this case the additional
memory required to contain the buffer was 6240 bytes, not a consid-
erable amount.

13.2,2.0 Ynformatted IO

Exampies 155 and 156 were also run without formatting and showed
dramatic savings as illustrated below in Examplies 159 and 160,
Example 159 has the call to FMOVE to make the results of both exam-
ples exactly the same, The call accounted for 1.4 CPU seconds,

13.2.2,1 Row Transfer by Subroutine

159) DIMENSION A{20),AA(20,1000)
DO 10 N=1,25
0 1=1,1000
READ (10) A
10 CALL FMOVE (AA(1,I),80,A)
13.2.2.2 Array Transfer by Name

160)! DIMENSION A{20,1000)

D0 10 N=1,25
10 READ (10) A

Example 159 required 0.265 total CPU winutes and 0.537 minutes I/0
time, saving 11 times the CPU as Example 155 and 11 percent of the

I/0 time. Example 160 displayed more spectecular savings. CPU time

was reduced to 0.097 minutes, a saving of 96 percent (or 30 times
faster), and the I/0 time of 0,498 minutes is a reduction of 14
percent.
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13.2.3 Simplifying 1/0 Lists

The same savings realized by reading in an array with a single item
in the I/0 Tist can also be used to read in various kinds of data.
The data is read into an array and EQUIVALENCEd to the proper vari-
ables as show~ in Examples 161 and 162,

161) Long I/0 List

DO 10 N=1,25
DO 10 I=1,1000

10 READ (10,20)A1,B1,C1,D1,E1,F1,A2,B2,C2,D2,E2,F2,
1A3,B3,C3,D3,E3,F3,A4,B4,C4,D4,E4,F4

20  FORMAT (F4.1,A4,A3,23,1X,13,A2,¢4,1,A4,A3,23,
11X,13,A2,F4,1,A4,A3,23,1X,13,A2,F4.1,A4,A3,
273,1X,13,A2)

162)! Array for Long I/0 List
DIMENSION A(24)

QUIVALENCE (
éﬁ),Fl).(A

b = e

o nn
el mad
121" )
— Y LT
o

10 READ
20  FORMAT (F4,1,A4,A3,73,1X,13,A2,F4.1,A4,A3,73,TX,13,A2,
1F4.1,A4,A3,23,1X,13,A2,F4.1,A4,A3,23,1X,13,A2)

Example 161 took 2,199 CPU minutes whersas Example 162 used 1,756
minutes, saving 0.443 minutes or 20 vercent. The I/0 time was
identical.

13.2.4 Variable or Execution Time Formats

Variabie formats are useful but can be expensive. The following
is the same as Example 161 but uses a dynamic format.

163) DIMENSION A(20,1000)
REAL*8 FMT{TZ)
DATA FMT/'(F4.1,A4","',A3,23,1','X,
1'A3,73,1X","',13,A2,F,"4,1,84,A",'3

2" 1,A4 A%, 1,73,1%,1",'3,A2) Y/

I3,A2,','F4.1,A4,",
$73,1X,",'13,A2,F4",

DO 10 N=1,25
10 READ (10,FMT)A1,B1,C1,D1,E1,F1,A2,82,02,02,E2,F2
1A3,83,03.03,E3,F3,A4,84,04,04,E4,F4
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Example 163 took 3.550 CPU minutes and 0.558 1/0 minutes compared to
2,199 and 0,540 for Example 161. This is an increase of 38 percent.

164) DIMENSION A(20,7000)
DO 10 N=1,25
D0 10 I=1,1000
10 CALL FREAD (A(1,1),10,80,%99,898)

This required 0.143 minutes CPU time and 0.537 minutes I/0 time, a
savings of 33 percent CPU over Example 7159. FTIO, which performs
unformatted I/0, is described in Appendix D.

13.2.5 Direct Access I1/0

Direct access I/0 was tested “n a program which wrote 1000 records,
each 7200 bytes, to each of four different data sets. The records
were checked for accuracy by comparing the first element read with
the calculated value, _

Three I/0 packages were tested: FORTRAN, DAIO (a locally written
replacement package), and FORTXDAM (un IBM written asynchronous

I1/0 package, see Appendix E). DAIO provides the same direct access
1/0 functions as FORTRAN, see Appendix D. FORTXDAM enables the user
to start an I/0 operation and then resume his program processing.
The calling program must pause when the data being read is to be
used, or the data being written is to be changed, until the I/0
operation is complete. The test program was altered to go round=-
robin between the four files and to keep count of the number of times
calculations could have been done while waiting for I/0 operations
to compiete, Each file maintained its own buffer as a program array
for reading and writing, The results of the tests are shown below,

CPU 1/0 MEMORY USED
MIN MIN % DATA SET WAIT BYTES
165) FORTRAN 2.341  10.799 82.40 146K
166) DAIO 0.707 7.236 93.25 78K
167) FORTXDAM  6.257  10.389 27.80 78K

Figure 20 - Direct Access I/0 Comparison

The data set wait figure indicates the percent of time the program
was waiting on a busy device.

For general purpose use, DAIO shows significantly better I/0 time

and remarkably better CPU time than FORTRAN. FORTXDAM was marginally
better at 1/0 than FORTRAN, 3 percent, but was able to do over 2.62
CPU minutes of other work. The PPE reports show 57 percent of the
CPU time spent in FORTXDAM and 42 percent in the main prcgram. The
wait counters in the program totalled 10,123,841 for bLuth read and
write for all four files indicating the number of times additional
CPU work could have bheen done.
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13,3 HOW THE STATEMENTS ARE COMPILED

Any 1/0 request causes a call to IBCOM#, an entry in IHCECOMH, which
is the extended communications hrndler. Each item in the I/0 list
generates a call, hence, reduciny the number of variables in the 1/0
T1ist causes less CPU time to be used, TIHCECOMH processes infor=-
mation between the user's program and the I/0 device by utilizing
other 1/0 package programs to call the system and data management
services. Encoded with each call to ITHCECOMH is information about
the options in use, END= or ERR=, the buffer location, and memory
location, descriptions and formatting, if required. TIHCEFIOS (ex-
tended FORTRAN input/output system) is the interface module to the
system supplied data management routines for sequential reading,
writing, and file positioning. IHCEDIOS (extended direct access
input/output system)} does the same job as IHCEFIOS for direct access
data transfer., If formatting is roguired, IHCFCVTH translates the
data and moves it, otherwise IHCECOMH moves the data. Other modules
used are IHCERRM, the error monitor, which is called when an error
occurs to print the messages. It also determines what options for
recovery have been set by looking in IHCUOPT (user option table).
IHCEFNTH is used to patch up arithmetic errors such as overflow,
underflow, and divide checks. If trace back information is to be
printed, IHCETRCH prints this information. The table of default
unit information for READ, PRINT, and PUNCH statements as well as
file descriptor information and buffer addresses are held in
IHCUATBL (unit assignment table).

Formatting time can be considerable., Print space which is not used
should be skipped by using the X format specification, not wide format
fields, In order, by the quickest formatting conrversion routine,
first are alphameric, hexadecimal, logical, integer and floating

peint (F, E, D, G, and C all nearly the same), Variable formats
require more time for processing during execution for data to be
transferred, Each time an I/0 statement is executed the format

is verified and transtated to internal code.

The breakdown of time spent in each module for the different exam-
ples is given on the next page.
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Seconds Seconds Seconds Seconds Seconds Minutes Minutes

Example MAIN THCECOMH IHCFCYTH IHCEFIOS THCFIO0S2 cPU 1/0*
153 4 131 134 111 3 7.190 9.453
154 4 50 129 6 A 3,198 0.538
155 0 23 128 5 2 2.722 0.535
156 0 21 135 4 2 2.785 0.538
157 7 46 130 4 2 3.161 0.543
158 0 15 104 5 1 2.852 13,498
159 0 4 0 6 2 0.265 0.537
160 0 8 0 2 2 0.097 0.498
161 1 71 52 6 2 2,199 0.540
162 0 44 53 5 2 1.765 0.540
163 ] 152 52 1 2 3.550 0.558
164 0 FREAD = 6 0 0 0 0.143 0.531

Seconds Secands Seconds Minutes Minutes % Data
MAIN 1/0 Handler System Routines CPU 1/0 Set Wait

165 FORTRAN 37 650 36 2.341 10.799 82.40

166 DAID 28 13 0 0.707 7.236 93.25

167 FORTXDAM 160 214 1 6.237 10.38% 27.80

* Adjusted to show only I/0 charges to input tape. The time to write the measurement
tape has been subtracted from the reported time,

Figure 21 - Summary of 1/0 Examples
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The direct access routines read a specified record from direct access
storage. The records may be read or written in any order and do

not require spacing over the previous records as would have to be
done with sequential operations, At the front of each record is
identifying information, This is used to verify that the proper
record is being read or written and insure that the entire record

is transferred. FORTRAN and FORTXDAM require that the entire data
set is preformatted. FORTRAN does this automatically, and FORTXDAM
requires a special call to be made by the user. DAID gains some

of its savingz by only formatting those records actually used.

FORTXDAM should have the data sets it accesses on separate channeils
so it is physically possible to access the data sets simultaneousiy
without interfering with other accesses., This is done by coding
SEP=ddname in the UHIT field of the DD statement. After the new
data sets have been formatted, I/0 operations are started. 1If plan-
ning has been done carefully, then the calling program should be
able to do other processing while waiting for the 1/0 operation to
be completed, For read operations the data is not avaiiable until
the completion of the request, and for writing, the data shoulid not
be aitered. When all other work is done, the state of the I/0
request may be tested or the caliing program placed in a wait state
until the compietion of the I/0 request. The main program will be
restarted automaticaily in the Tatter case. With some thought and
programming utilizing double buffering, it is possible to overlap
quite a bit and realize savings in elapsed time.

The DCB parameters specified for any kind of data set may affect the
amount of time charged to the cxecution of the program. The buffers
are used as an intermediate storage location between the system I/0
functions and the user's program. The user must allow space for

the buffers in his region. FORTRAN does no overlapped I/0 and there-
fore uses only one buffer, of the two default, at a time, BUFNQ=1
coded in the DCB subparameters will save the number of bytes used

by the second buffer, Al11 data sets should be blocked if possible

by including the letter B in the RECFM field and adding the LRECL
subparameter. LRECL specifies the length of the logical record for
fixed length records (F in the RECFM field) or the longest possible
logical record for variable length records (V in the RECFM field).
The BLK3SIZE specifies the amount of space to be allocated for buf-
fers and the size of the physical records. It is the number of
physical records transferred which determines the I/0 charges. The
larger the blocking factor, BLKSIZE:LRECL, the less I/0 time charged,
the more region used. The largest block size for 2314 disks is 7294
and 32767 for tape. The BLKSIZE choosen should be a compromise be-
tween the frequer:y of I/0 requests to the data set and the amount

of region requirud. When an 1/0 request is made, the data manage-
ment routines check to determine if the logical record is available
in the buffer, If it is not, a physical I1/0 operation for a physical
block is made. AT1 subsequent logical I/0 requests can be filled
from memory until that buffer is exhausted, The larier buffer
requires less pnysical I/0 time.
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14.0 FLOATING POINT ARITHMETIC

The relationship between the structure of floating point arithmetic and the way a
programmer codes an algorithm is at best clouded. There are two main reasons
why this is so:

1, Even with the "most sensible" of definitions for floating point arithmetic
operations, the usual laws of real arithmetic fail to hold in many cases.

2. Most floating point architectures found in real computers do not conform
completely to the "most sensible" definitions.

We shall concentrate our discussion on point one since the situation is bad enough
in this case, We shall content ourselves with one example of how point two causes
problems.

Let us begin with some terminology. We shall assume that our computer words

are composed of 32 bits; these bits are numbered zero through 31. The usual
representation of a floating point number is as follows:

i.e, the zero bit contains the sign; bits one through seven contain a non-negative
binary represented integer e called the exponent such that 0<< e < 127; bits eight
through 31 contain a non-negative binary represented integer f called the fraction
such that 0 < f < 225-1.

Such a computer word represents the real number whose magnitude is

162-64 _f
166

Note that as the definition stands, the representation of a given real number is
not unique, e.g.
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@) 0=16 '“--54(1)
166

for any permissible value of e

(i) 16¢-64 _L = ]gle-1)-64 }_ﬁ
168 168

for any e, e-1, f, 16f in their respective permisgsible ranges,

This problem is eliminated by the stipulation that the representation be nor-~
malized, i, e.,

(i) 01is represented by e = f = 0 (the sign convention varies on different
machines)

1 f
(i) 161< f<16%0r — < — < 1
16 166

This means that the hexadecimal digit formed by bits eight through 11 is non-
zero for a non-zero number,

Note that while hexadecimal and binary arithmetic seem to be equivalent, once
normalization entersg the picture this is definitely not so; binary normalization
demands that bit eight=1, i, e.,

1 f
—=s|— )< 1.
2 168

The ramifications of this difference in normalization will not be pursued since
it is not applicable to our discussion,
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Floating point numbers shall either be represented as six significant hexadecimal
digits or as an exponent-fraction pair (e,f). The floating point sum of x and y
will ke denoted by x plus y to distinguish it from x + y, the real arithmetic sum.
Similarly for x - y we write x minus y, for x x y write x mul y, and finally for

x / v write x div y.

In order to introduce our "most sensible" definitions of arithmetic operators,
we need one more definition:

Given any non-negative real number x (a portion of any floating point nur-ber)
we define rd(x) as follows:

If 16°! < x <16°,

rd(x) = 16°°6 x greatest integer less than or equal to (166°° x + 1/2)
rd(0)=0

If x <0, rd(+x) = - rd(-x)

What this amounts to is that rd(x) is "x vounded to six hexadecimal digits".
With these definitions we can now define:
For floating point numbers x, y:

x plus y = rd(xt+y)

(1) X minus y = rd(x-y)
X mul y = rd (xxy)
x div y = rd(x/y)

whenever the appropriate real arithmetic operation leads to a number "roundable"
to a floating point number.

There are two ways this condition can be violated, Let z be the resulf of real
arithmetic operation. Overflow occurs if {z| > 16 63 (1-16-6 ) and underflow occurs
when |z| # 0 but |z| < 1665, The actual result of such operations on a given
machine will depend on the hardware and the setting of specified "masking bits"

in a certain location. For our purposes, such results are undefined. Henceforth
we assume that no onerations lead to overflow or underflow unless specifically
mentioned.

Besides the algebraie "closure' property which we have just seen does not hold,
real arithmetic assumes five basic laws:
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associativity x+ (y+z)=(x+y)+ z
X*k(y*2)=(X *y) * 2

commutativity xty=y+x
X% y=y* X

distributivity Xk (y+t 2)=x 2y + X% 2
existence of for each x, there is a unique -x such that
additive inverse X+(=x)=0
1
existence of for each x # 0 there is 2 unique-; such that

multiplieative inverse x *% =1
The law of existence of additive inverse implies the only solutiontox+ y=xis
y = 0. The law of existence of multiplicative inverse implies the only solution
tox*y=x(x#0isy=1,

Let us examine each of these laws for floating point arithmetic.

We can dispense with commutativity quickly since it is the only one of the five
laws to hold, viz,

Xxplusy=rd(x+ y)=rd{y + x) =y plus x
xmuly=rdx *y)=rdly * x) =y mul x

Unfortunately the discussion of the other four laws will be centered on showing
that they do not hold for floating point arithmetic.

Let us begin with associativity:

(i) (111113, plus -111111,) plus 7,51111=2. plus 7.51111 = 9,51111
but 111113, plus (-111111, plus 7.51111) = 111113, plus
rd(-111109,AEEEF) = 111113, plus (-11110A) = 3,

(i) (4.00001 mul 1.70001) mul 9, 0000A = rd(5. C00570001) mul 9, 0000A
= 5, C0005 mul 9. 0000A = rd(33. C006680032) = 33. C008 but 4. 00001 mul
(1.70001 mul 9.00004) = 4, 00001 mul rd(C. F00176000A) = 4. 00001 mul
C.TF0017 = rd(33. CO068TF0017) = 33, C0O7

It is possible to concoct examples where overflow or underflow results from one
sequence of operations but not from the other,
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It should also be noted that in a sense associativity of addition "fails more
egregiously" than associativity of mulfiplication, i.e., it happens more often
and the relative discrepancy between answers is larger.

Distributivity perhaps fails worst of all and the next example shows that relying
on the disfributivity law can lead fo disasterous consequences:

(iii) 200000, mul (F,00001 plus -F.) = 200000, mul .00001 = 2.
but (200000, mul F.00001) plus (200000, mul ~F.) = rd(1E00002.) plus
~1E00000, = 0,

This example also shows that floating point arithmetic is not an integral domain,
i.e. it is possible for u mul v=u mul w but u # 0, v # w.

Next let us consider counterexamples to the additive and multiplicative inverse
laws:

{iv) If (e)»f ) and (e2 f ,) are such that e, = 92 4+ 8 then (e ) plusg (e of )
(el,f Jo (On some machmes e ;s e, + 7 is enough to ma}ke this happen.)

Similarly,
(v) .100001 mul ,FFFFFF = rd(.100000EFFFFF) = ,100001
The lack of regulasity exhibited in the previous five examples can surface in
many subtle ways in particular programs. We present two examples where
verification is left to the reader,
(vi) In real arithmitic (x+ y)2<2(x2+ y2), (This formula is the basis for
the fact that variances are always non-negative,) In floating point
arithmetic this need not be true,
(vil) In real arithmetic, for each x<y,x< _x_-:-_)_r <y (i.e., geometrically the
midpoint of an interval lies between the end points.) Again, in floating
point arithmetic this need not be true.
Lest the reader think that there are no positive results concerning floating point
operates, we present a theorem which provides limited information about floating
point addition.

Let x, y be floating point numbers.

Let x' = (x plus v) minus y

Let y" = (X plus y) minus x'
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(Note that x',y" are both able to be calculated effectively. ) then:

(x + ¥) ~ (x plus y) = (x minus x') plus (y minus y").

Of course if associativity held, then x' would be x and y'" would be y and the
theorem would say that x + y = x plus y.

While the previous theorem gives a scheme for discerning the difference between
real and floating addition, it is too cumbersome to apply in large scale programs.
The interested reader is referred to [1] or [2] for further reading on the sub-
ject, [1] is written from the point of view that floating arithmetic is merely
"inexact!' real arithmetic, [2] represents the point of view that floating arith-
metic is an exact branch of mathematics, albeit, with fewer helpful properties
than real arithmetic. [2] also contains an extensive bibliography.

It has been mentioned that troublesome as ine definitions given in (1) are, most
machines do not even completely conform to them. We limit ourselves to an
example involving addition:

Suppose the hardware of the floating point adder on a given machine operates as
follows. (Againwe neglect overflow and underflow.)

1, The fraction adder keeps seven hexadecimal digits.

2. The fraction of the number with lesser exponent is right shifted until
exponents match.

3. Tractions are algebraically added.
4, Resulting fraction is left shifted if necessary to normalize it.
5. Fraction is rounded to six hexadecimal digits.

i.et us see an example where such an adder will not get x plus y for the sum of
xand y.

Let x = (54,, - .800001)
v =(5B., .100000)

Then x plus y = (5A., . FFFFFF), but .if one follows the adder rules just espoused,
the eighth digit of x wi.l be shifted out before the fraction normalization takes
place. Hence the adder will get (5B., .1) as the sum. Although the relative

error is emall, the absolute error is 1614,
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Thus in summary, the programmer must be aware that under the best circum-
stances he must be wary of interchanging floating point algorithms that are
algebrically equivalent. While the subject of floating point arithmetic is finally
being treated in a positive rather than negative fashion, there is still little of a
quantitative nature to guide him. For the time being, analysis of floating point
arithmetic is more of an art than a science.
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15.0 FUNCTIONS AND APPROXIMATIONS

The use of the FORTRAN library of transcendental functions is very convenient /
but is alsc very costly. The simple statement

Y = EXP(X)

invokes a function subprogram with over 30 statements. While this is immaterial

in situations where the total execution time is small, in large scale programs it

can become an unnecessarily large expense. Let us examine three ways to cir- Ko
cumvent the use and hence the cost of the FORTRAN library functions,

1. Common subexpression elimination either by the compiler or by the pro-
grammer is of paramount importance when transcendental functions are involved,
(See Comm m Expression Elimination.) For example the pair of statements:

Z1 = EXP(X) * COS(Y)

72 = EXP(X) * SIN(Y)

should be written as:
TEMP = EXP(X)

Z1 = TEMP * COS(Y)
72 = TEMP * SIN(Y)

whether it is done implicitly by the compiler or explicitly by the programmer,

2. The use of algebraic identities that exist among certain classes of fune-

tions can lead fo considerable savings of execution time, Indeed, in some 4
cases, it can also lead to increased accuracy, since formal manipulation '
before evaluation is roundoff error free, Let us look at an easy example, '

Suppnse cos?x - sin’x is fo be calculated, As it stands, this expression involves

tv . *~iponometric evaluations, two multiplications and one subtraction, Of
course, using the well known identity:
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sin’x + cog’x = 1,

the expression can be reduced to the form:
1 -2sin2x.

which can be evaluated with one trigonometric evaluation one addition and one sub-
traction, This is not only faster but more accurate.

Certainly the preceeding example is a straw man that we set up so that we could
knock down. However, the number of transcendental function identities is large,
and vigorous effort should be made to use these identities to optimize code when~
ever possible, Note that the word "optimize" was used, not "speed up''. Often
one is faced with a fradeoff of accuracy for speed, Sometimes it is not clear
exactly what kind of tradeoff is involved. A general rule of thumb is that if a
substitution of an identify leads to more floating point algebra, a loss of accu-
racy can be expected. We complete our discussion of identities with an example
that illustrates why it is impossible to make hard and fast rules.

Suppose one wishes to calculate cos(,001n) and sin(.001n) for n =1,4000. A
straight forward way to code this is:

(i) T=0,0
DO 9000 I = 1,4000
T=T+ .001

X(I) = COS(T)
9000 Y(I) = SIN(T)

If one recalls that:

cos {{n+ 1)x) = cos(nx) * cos (x) - sin(nx) * sin(x) and
sin ((n+ 1)x) = cos{nx) * sin (x) + sin(nx) * cos(x)

it is not hard to see that the following code is equivalent algebraically to the
previous code:

(if) XA(1) = COS(.001)
YA(1) = SIN (.001)
DO 9000 T = 1,3999

XA(I + 1) = XA(T) * XA(1) - YA(T) * YA(1)

9000 YA(I + 1) = XA(I) * YA(1) + YA()* XA(1)

See also note 1 at the end of this section, Before looking at the results, one
would ordinarily comment that code (ii) should be must faster, but less accurate
than code (i). Now let us look at some of the actual results of these codes in the

100



FUNCTIONS AND APPROXIMATIONS

following table., The column "Actual Value" was derived from "Ejght Place
Tables of Trigonometric Functions" by Pitey, published by Edwards Bros, Inc,,
1989, Columns E; and E, represent the absolute error *10* for codes (i) and
(ii) respectively.

All values are rounded to seven decimal digits,

Actual
Value Code (i) Code (ii) E, E,
cos(.01) 9959500 2999500 3999500 0 0
cos(0.1) .9950041 9950043 9950039 .002 002
cos(0.3) 5553364 9553375 95563351 011 013
c0s(0,5) 8775826 87758563 8773766 027 D60
cos(0.7) ,7648418 L7648476 L1648360 .058 .058
cos(1,0) .0403023 5403126 5402973 .103 050
cos(2.0) -.4161468 -.4156359 -.4160949 5,109 519
cos(3.0) -.9899925 -,9898351 ~.9898616 1.574 1,309
cos(4.0) -.6536437 -.6548992 -,6530568 12.555 .869
sin(.01) 0099960 0095998 .0089998 .038 038
sin(0.1) 0998324 .0998327 0998313 003 011
8in{0.3) .2955204 2955171 2955070 .033 .134
8in(0.5) 4794255 4794204 4794015 .051 240
8in(0.7) 5442182 5442113 (3441829 069 353
sin(1.0) 8414710 8414643 8414217 067 493
sin{2.0) .5092975 .8095311 .9092358 2,336 617
sin(3.0) 21411201 .1422198 .1411141 10.997 L0567
sin(4.0) ~.7568024 -,7557162 -, 7566550 10.862 1.474

Figure 22 -~ Accuniulated Error in Repeated Function Evaluation

Asg per our original comment, code (ii) executes approximately 25 times faster
than code (i), on the 360/95. If one examines the accuracy of the two methods

for arguments < 0.7, it is true that code (i) is more accurate than code (ii).

For arguments in this range, one would have to decide whether the loss of
accuracy is fatal, However, for larger arguments a strange phenomenon occurs,
namely code (ii) has an absolute error that grows much more slowly than code (i).
Thus for arguments between one and four code (ii) is 25 times faster and more
accurate,

The reason for this seemingly anomolous behavior is as follows: The number
.001 can certainly be expressed exactly with a one decimal digit fractic ., How-
ever, in the hexadecimal number system this number cannot be expressed
exactly, no matter what finite number of hexadecimal digits one has, For

001, = .004189374BC6AT . . .,,. Thus if a floating point variable T is "set
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equal to" ,001,,, it will actually equal ,00418937,, = .000999999,,, This seem~
ingly insignificant difference is the reason code (i) gets much worse for larger
values of the argument. Indeed adding together 4000 ,001's, the exact FORTRAN
answer is 3.99833965, The discrepancy is now larger than the step size! A pos-
sible solution to this problem would be to recall the sin and cos function after 500
evaluations to maintain accuracy.

Thus each individual problem must be treated with great care, The trigonometric
identities provide the programmer with options. The ability to chose among the
options is an art, an art the programmer must cultivate,

We present a list of the most common elementary identities for sin, cos, exp and
in functions in appendix 1. Those interested in an expanded coverage of such
information are invited to see [1]. Those who have occasion to use identities
that exist among the so called "'special function'" of mathematical physics such

as Bessel, Legendre, hypergeometric ete. should consult [2], [4] and [6]. In
[4] a bibliography of other sources can be found. [2] contains a concise deriva-
tion of many of these advanced identities.

3. The final method for lowering the cost of calculating transcendental func-
tions is the method of approximations. Here we touch upon one of the most
far reaching branches of mathematics, I'rom Linear Interpolation to Fune-
ticnal Analysis, Approximation theory encompasses a huge field, Thus

w2 will limit ourselves to a few useful formulas and general remarks about
other approximation methods.

The most common method of approximation for transcendental functions is the
method of Taylor polynomials. The rationale for this is based on Taylor's theorem
which in its entirety can be found in any good elementary differential calculus

text, We limit ourselves to the Taylor polynomials for sinx, cos x, e*, fn(l + x)
VI + x, about x, = 0, on an interval of radius A < 1, i.e. on the interval (-A,A).

() s x3 x5 x2n+l
1 SMX=X=- — + — =~ .., +(-1I)" +
3! 51 D (2n+1)! E;
where:
A2n+2
(2n+2)!
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ii cos xX=1- — + — -, .+ D" + E
21 41 1 (2n)! 2
- where:
% A2n+1
|E, |
(2n+1)!
2 3 n
X X X
ii et = + + — —_ -
(iii) 1 X Y Py + ... F ~ + E,4
where:
e AMF1

iE,| <

30T Tae)

2 3
(iv) n(l+x) = x - R -1+l X +E
2 3 " 4

= where:

Al‘l+l

E =
I 4'““* nt1

[ ]

3 n
VIV i+x =1+ X % 3x7 - (=1t 3547, #(In-3)x
2 4 8 Mgt

+E5
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where:

3#5%7w., ®(2n-1) AM*1

IE.| <
; 201 (ra )t

Several remarks are in order concerning these formulas,

First, although formulas (i), (ii) and (iii) hold for any A > 0, they are not much
use for ‘A > 1 since the error term does not converge to 0 as n gets large.

Second, if one has an a priori error bound that must be satisfied, the size of n
can be determined to make E smaller than the error bound, e.g.

To approximate cos x on (-1,1) to within 10'4, one chooses n such that

1
(2n+1)!

<1074 ie.n=3

To approximate cosx on (-%, %) to within 10™*, one chooses n such that

B2 <104 je n>2
(2n+1)!

The same techniques may be used with the other formulas.

Third, if one is interested in an interval about some other point besides X, =0,
one can rederive the Taylor polynomials about the new x,. (See a good calculus
text), If values are needed on an interval of radius greater than one, it is often
possible to use identities to reduce oneself to the case of unit radius, e.g., to
approximate e* on the interval (-2,2}, note:

eX = eZ*xI2 = (ex/2)2

2

1+-+3 +.. ..+ —

2 2! o n!

hence X
. G)
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approximates e*, As usual when one uses identities, one must be careful about
accuracy. (See discussion of identities in the first part of this section),

Finally, when coding polynomial approximations, one should optimize the algo-
rithm for calculating the polynomial., (See the section on polynomial evaluation).

There are other polynomial approximation schemes besides Taylor polynomials,
In particular, the use of Chebyschev polynomials is recommended in certain
instances. TFor such considerations, the reader is referred to [3].

Non-polynomial approximations, such as rational functions, continued fractions,
Fourier series, ete., are beyond the scope of this document, The interested
reader is referred to [5] which is a handy introduction to this subject and a
useful bibliography.

One final word of caution ig in order; approximations are just that, approxima-
tions. Indeed, the FORTRAN library itself consists of approximations, albeit,
of a very sophisticated form. The user should be wary of properties of approxima-
tions he may not desire. Tor example, in general polynomials of degree n have
(n-1) relative maxima and minima, i.e., they oscillate. An error estimation
may miss the fact a certain program is sensitive to such oscillations. In this
case, high degree Taylor polynomials are worse than useless,

NOTE 1: Also if caleulating sin(x + §) and cos(x + &) many times where § is
relatively small,

sin(x, + 0) = sinx, cosd + cosx, sind and
cos(x, + §) = cosx, cosd - sinx, sind
hence sinx, + cosx need be called but once, Use Taylor series, to approxi-

mate to required degree for accuracy, for sind and cos 6. The same may be
done for

exp(x, + 8) = expx, expd

as well,
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16.0 EVALUATION OF POLYNOMIALS

At first glance many programmers may be surprised to find a section devoted to
polynomials, After all, what could be simpler? Indeed, FORTRAN was designed
to make polynomial evaluation an easy task to program, viz:

P(x) = ayx* + a,x3 +a,x? + ;X +a,
becomes:
P = AO:}:X:{::;:4+A]_ :1:Xthz{=3 A2 X2+ A3uX+ A4

However if execution time optimization (and accuracy) are crucial questions,
then a more sophisticated approach is demanded. The study of efficient means
of polynomial evaluation goes back {o 200 B,C. hence predating the electronic
computer. But with the advent of large scale problems on high speed computers
this study has blossomed into a branch of mathematies in its own right.

We shall start with the problem of evaluating the general polynomial

P(x) = agx" +a,x™1 +. . +a  x+a

1

for a "random" input value of x. We shall assume that the coefficients of P are
coded as follows:

C=a,, A(D= a,i=1n.

We shall assume that F(I) is the floating point variable whose value is I, I=1,n,

Let us start with the most naive and perhaps worst method of evaluating P,
Consider:
NMl=N-1
P =C * X *x F(N)
DO 9000 1= 1, NM1
9000 P = P + A(N - I) * X #* F(I)
P =+ AN
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which evaluates P correctly, but is highly wasteful of execution time, Most
programmers will quickly see that the following code is a substantial improvement:

NM1=N-~-1

P=C#*X* N

DO 9000 I = 1, NM1
9000 P=P + A(N - I) # X #x I

P=P+ A(N)

The fact that a fixed point variable, rather than a floating point variable is used
as an exponent, allows the use of a faster exponentiation routine.

However, the preceeding code is far from optimum,. Indeed it is many times
slower than necessary. Consider:

P=C
DO 9000 I = 1,N
9000 P = P * X + A(I)

The reader may show that the results of this code are {algebraically) the same
as the previous code. First, there is no explicit exponentiation. Second, there
are only as many multiplications and additions as in the previous code, Tinally,
the indices of A are simpler., This simpler arthmetic is manifested in (usually)
enormous execution fime savings,

This method of evaluating P(x) as:

P(x)=((...((a0x+a1)x+az)...)x+an

is called Horner's method (although it was known to Newion). Although Horner's
method represents a tremendous improvement over naive evaluations, when
gpecial circumstances hold, it can be improved still further., We present three
examples of special techniques.

1. On a machine whose architecture allows pipelining or parallelization of
arithmetic operations, it is possible to devise higher order Horner methods
to make full use of this capability, Let us suppose that P(x) is of even degree
n=2m, (The reader may supply details forn=2m + 1,) If we let y = x%, we
can write P(x) as:
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P(X)= (apy™ + 2,y 1+ .. +a _,y+a)
+ (@ y™ ! Fay™t 4L ke, )X
=((...((gy+a)y+a)...+...)y+a)

(o (@ytay +ag).. )y +ag )X

This translates to FORTRAN as:

P1 = A1)

P2=C

Y=X*X

NM3 =N - 3

DO 9000 T = 1, NM3, 2

Pl=Pl* Y+ A+ 2)
9000 P2 = P2 * Y + A(L+ 1)

P=Pl*X+ P2 % Y+ A(N)

The separation of calculations of the even (P2) and odd (P1) terms allows a
machine, such as the 90 series 360's and 370's, to make better use of the
reservation stations in the hardware,

Actual test cases of calculating a polynomial of degree 10 by the naive code
(with integer exponents), by Horner's method and by the just mentioned Horner's
method of second order revealed that the naive code is approximately 25 times
slower than either Horner's method, and that Horner's method of second order

is at least several percent faster than the original Horner's method, on the
360/95,

2, There are several occasions where one wishes to calculate several poly-
nomials which are related in such a way that intermediate information can be
"shared" by more than one polynomial, TFor instance suppose one wishes to

calculats P(x) and its derivative,

' — -
P)=nax"t + ...+ 2 , +a_,
The following code calculates P and DP (=P') without the explicit calculation

of ikan_kf .
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P=C

DP=0,

DOY000I=1, N

DP=DP +X+ P
9000 P=P x X+ A(I)

5. In many problems of numerical approximations one wishes to calculate
P(x) on a sub-set of an arithmetic progression, i.e. on equally spaced data

Xy Xg+hy, xg+2h, ., .} . If this is to be done for a large number of
values compared to the degree of the polynomial, it is worthwhile to set up
difference tables, for one is then able fo calculate values of P using only n
additions and no multiplications per value after a transient phase,

This technique is based on the following fundamental theorem.

Let P be a polynomial of degree n, (AP) (x) = P (x + h) - P(x), (A" P) (x) = A
(A*P) (x) k=1, n -1, Then (A"P)(x) = 8 (n1)h" for all values of x = x,, x, + h,
X + 20, 0000

0

We now define the difference table of P, (This construction is applicable to all
functions, not just pelynomials. But for a non-polynomial function, no column is
ever constant,)

X P AP Ap ete
Xy Yo Vi =¥, (Yo - ¥y) = (v ¥y} ete
x0+h ¥y YooV (yg"'YZ)"(YZ"YI) ete
Xo ¥ 2h ¥y Y; =¥, (Y4 -¥3) "'(.Vg -y etc

. . - [ ] L
* L] L ] L] LJ

L . L] - *

The basic feature of this table for our purposes is that the sum of any two
consecutive horizontal values yields the value under the leftmost of the original
two values. Thus if one can calculate the top row and the rightmost column,
one can generate the whole table by successive additions, In particular, the
lefimost column yields the function values derived. (In many applications, the
high order differences also play an important role. From our point of view,
they are an unexpected bonus.,)
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One example is worth a thousand words in getting the "hang” of using the table.

Let P{x) = %3+ 1, X, =0, h=.1, (The simplicity of the polynomial in no way
affects the validity or complexity of the table construction).

P(0) = 1,000, P(.1) = 1,001, P(,2) = 1.008, P(3) = 1.027

Let us start the {able:

X P AP A’P AP
0.0 1.000 001 .006 .006
0.1 1.001 007 012

0.2 1.008 .019

0.3 1,027

Note that ,006 =1 * 3! % (.1)3 and that the theorem previously quoted guarantees
that the entries in the A*P column are .006.

Let us fill out the table

X P AP AP Alp
0.0 1,000 .001 .006 006
0.1 1.001 .007 012 006
0.2 1.008 ,019 A .006
0.3 1.027 B c .0086
0,4 D E T .006
0.5 G H I 006
as follows:

A = 012 + ,006 = 018
B=.019 + A =.037
C=A+ ,006=.024
F=C+ .006 = .030
E=B+ C=.061
P(.4)=D=1,027 + B = 1,064
I =F+ .006 =109
H=E+ F=.091
P(.5)=G =D+ E =1,126
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EVALUATION OF POLYNOMIALS

The table may now be continued downward as far as one pleases. FEach row
depends only on three additions. The lack of multiplication makes for a marked
speed improvement over Horner's method,

Let us point out that we have barely scratched the surface of the subject of
polynomizal evaluation, In particular we have not mentioned the technique of
coefficient "adaptation,” Further references on this subject and the difference
calculus in general can be found in (1], [2] and [3].

Finally, note that there has been no discussion of accuracy. This is a thorny
problem entwined with the general problem of floating point arithmetic, We
make a few general comments.

(i) Hormer's methods are at least as accurate as naive evaluation.

(ii) In evaluating P(x) and P'(x) simultaneously, implieitly ka__, is evalu-
ated as

kan_k+an__k+...+a

3 n-k* /s
k terms

These two floating point operations need not give the same answer.
(iii) In constructive difference tables, the calculation of Ap = a, (n!) h”

should be done with extreme accuracy, since errors ia this quantity propagate
in meaningful form back to the polynomial values {see [1] p 27).
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17.0 OVERLAY PROGRAMS

17.1 CONSIDERATIONE @

This section will cover minimization of the region size needed to execute a given
algorithm on a 360 computer. Covered topics will include overlay construction,
specific linkage editor techniques, overlay aids such as OVLY, LOADMAP and
reusability and reentrancy considerations which the FORTRAN programmer
must consider when coding his routine to make overlaying practical. Since
reading a dump from an overlayed load module is just a bit more difficult some
hints on dump reading are included.

17.2 STRUCTURE

OS supports a reusable multiple tree overlay system where each {ree consists of
one node (called the root segment)and the remaining nodes (segments) partitioned
into sets of nodes each of which appears as a tree. This support can be visualized
with a simple example common to most programs. Consider a typical program
with three main service areas;

1. Input parameter and data verification.
2. Main processing.
3. Oufput formatting and printing.

These would typically be organized in memory as a simpls Liock (a one node
tree) such as:

memory for each module total cumulative memory
60K ﬁi% 60K
70K i‘g‘éT 130K
150K %rﬁ’ggss 280K
80K g%tg,‘gw 360K

Pigure 23 ~ A Simple Program

This program can be logically viewed as a driver (root segment) and three
additional processing segments (input, processing, and output) only one of
which needs to be in memory at any given time.
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OVERLAY PROGRAMS
MAIN
INPUT PROC OUTPUT

Figure 24 - A Simple Program Tree

Now, if core requirements are considered for this simple tree:

MATN (60K)
(60K)
INPUT (70K) PROC| (150K) OUTPUT (80K)
(130K) (14‘01{)
(210K)

Figure 25 - A Simple Overlay

Two things should be apparent from figure 25. The program now occupies only
210K, a saving of 150K (or about six hours turnaround on a husy 360/95 day) and,
more subtly, code added to INPUT or OUTPUT is "free" in that the program

will get no longer until INPUT or OQOUTPUT exceeds PROC in its memory demands.
It is possible to reduce the needed region further still by viewing the PROC
routine as the root segment of another tree and logically partition the PROC
algorithm into its component parts, BOUND {20K) and INVERT (30K),

MAN (60K)
(60K)
INPUT (70K) PROC |(100K) OUTPUT (80K)
(130K) (160K) (140K)
BOUND (20K) INVERT (30K)
(180K) (19'01{)

Figure 26 - A Near Minimum Size Overlay

The total core required for this structvre is now 190K and BOUND can be added
o the list of routines which can be "freely" expanded without increasing the size
of the module, -
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17.3 CHANGES REQUIRED FOR OVERLAYING

Under ideal conditions where each branch of a program flow is executed once
such as in Figure 25 an overlay program will take no more 1/0 time and only
minimal moxre CPU time than the non-overlayed version of the same routine.
The system will load each segment once as it is needed. When the FORTRAN
statement CALL INPUT in MAIN is executed it automatically calls the segment
containing the INPUT subroutine into memory. When INPUT completes its
processing and returns to MAIN, its code remains unaltered in memory and
can be recalled from MAIN without a further I/0 charge. In the processing
portion of the program PROC calls both BOUND and INVERT to perform the
necessary calculations. Since BOUND and INVERT share the same memory
they are never in memeory simultaneously and cannot call each cthewr at any
time. Any attempt to form a call between routines located exclusively, such
as BOUND and INVERT will result in a linkage editor diagnostic IEW0182,

If this diagnostic messages is circumvented by coding the LET option the first
call from BOUND to INVERT will operate properly but if INVERT attempts to
return (in 2 FORTRAN sense, by the RETURN statement) to BOUND an 0Cx
abend will oceur in the part of INVERT where BOUND used to be located.

MAIN
. T )
INPUT PROC OUTPUT
BOUND .- INVERT <

(\INVERT attempts exclusive r@
BOUND calls INVERT

Figure 27 - An Invalid Exclusive Call with LET Specified

If, however, INVERT is an ALC routine which does not return to BOUND hut
branches instead to somewhere in PROC or MAIN it is legal to form the over-
lay structure as shown in Figure 27 and the message IEW0172 is issued. Afier
verifying the program branching, the XCAL option in the PARM field to the
linkage editor can be coded which will cause it to check the validity of the ex~
clusive call and issue an IEW0161 warning message,

PROC can, however, call BOUND and INVERT (but not INPUT or OUTPUT since
they are mutually exclusive) ag often as required. Alternate calls between two
(or more) exclusive routines will cause the called routine to be brought into
memory replacing the existing routine. Each time one of the segments is
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loaded info memory there is an I/0 charge of 32 milliseconds for each approxi-
mately 6K of loaded code. In our example:

MAIN (60K)
(GOEK)
INPUT (70K) PROC l(lOOK) OUTPUT (80K)
(130K) (160K) (140K)
BOUND (20K)  INVERT (30K)
(1851{) (190K)

4 blocks = 128 ms, 5 blocks = 160 s,

Figure 28 - Some Overlay Timings Estimates

A return from BOUND and a call from PROC {o INVERT would bring five
""blocks" into memory costing 160 milliseconds of I/0 time and a RETURN
from INVERT followed by a call from PROC to BOUND would bring in about
four blocks costing 132 milliseconds of 1/0 time. A limited amount of calling
back and forth clearly justifies the memory savings but is impractical for an
iterative routine where convergence requires repeated execution of exclusgive
routines not loaded in memory simultaneously. That is:

DO 1001 =1, 50
CALL BOUND
100 CALL INVERT

Figure 29 - A Simple Driver Program

The example in Figure 29 would require almost 30 seconds of I/0 time for
loading the necessary segments into inemory. This can only be justified on the
longest path of a long running program.

The above examples illusirate the essential steps in deciding how to construct
an overlayed load module. First, and clearly the most important step, is to
draw the logical flow of the module in tree form as shown in the above figures.
Include in this drawing the sizes of the modules, takenfroma prior link edit
map, and determine the size of each segment by totaling the module sizes within
that segment, Next to each name note the length of the module, Below the name
show the length of the path from the root segment.
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segment 1 (1C8)
(IBM routines) (12840)

(12A08)
segment 2 segment 3 segment 4
2 (5264) D (21B4) H (11390)
(17C60) (14BBC) (23D98)
B (74CC) E (82A8)
(LF138) (LCE64)
F {4340) I (12870)
(21144) (36608)
G (10F4)
(29298)

Figure 30 - Some Sample Overlay Segment Sizes

Prom Figure 30 it is clear that segment four is the lengest since routines H and
I are much longer than their exclusive cousins D, E, F and G, Resist the urge
to overlay D, E, F and G any further, even though they, as small routines, are
probably simpler than H and I, The goal should be to balance the tree as much
as possible, In this example the module is about 230K as overlayed in Figure 30.
If routines H and I can be overlayed into separate segments by converting seg-
ment four in segments four and five, the total module will drop to about 150K,

'
17.4 CODING CONSIDERATIONS FOR OVERLAYED PROGRAMS

Most fully debugged programs can be overlayed with no source code or logic
alternations. Counters and initialization flags may have to be moved to a
common block under some circumstances, For example:

SUBROUTINE DEMO
LOGICAL FIRST

DATA FIRST/, TRUE, /
IF (FIRST) GO TO 100

COMPUTATION CODE .

aaQo

GO TO 200
100 CONTINUE

INITIALIZATION CODE

aao

FIRST = ,FALSE.
200 CONTINUE

Figure 31 - Common Block Initialization
17
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The first time the routine in Figure 31 is executed that DATA statement will
make FIRST true and the initialization code will be executed. Each future pass
through subroutine DEMO will find FIRST false and only the computation code
will be executed. If, however, the subroutine is in an overlay structure such
that it is repeatedly loaded, the DATA statement will cause FIRST to always be
TRUE with each new load of the routine,

DRII'VE

DEMO ’

EXCL

Figure 32 - Exclusive Segments

When the DRIVE routine calls DEMO it will automatically be loaded with FIRST
. TRUE. and the initialization code will execute properly, If DRIVE then calls
EXCL, a routine exclusive to DEMO, and recalls DEMO at a later {ime the
overlay supervisor will automatically load EXCL and reload DRIVER as needed,
The reloaded DEMO will again have FIRST set to TRUE from the DATA
statement and the initialization code will be re-executed, probably erroneously.
To preserve the reusability of DEMO, the DATA statement must be either re-
moved and FIRST passed as an argument from DRIVER which has a DATA
statement to initialize FIRST, or a common block and BLOCKDATA routine
must be used to initialize FIRST. The common block must be sufficiently close
to the root so as not to be overlayed during the "life' of FIRST, Another
difficulty can be created with the use of counters in routines which may be
overlayed and recalled, If a counter is initialized to zero in a DATA statement
and inecremented each time the routine is entered it must be in the argument
list or & common block if it is to survive the overlay process when the routine
is sharing address space with another exclusive segment and being reloaded.
The FORTRAN compiler automatically provides reusability for such things as
DO loop ranging variables and they cause no difficulty in overlaying routines.

The ALC programmer can, in general, overlay routines with the same considera-
tions as above. He must be careful not to issue an OPEN without the correspond-
ing CLOSE in a segment which is to be overlayed. If he does, any future I/0 to
the DCB in the overlayed segments will result in an abend with a very difficult
durrp to debug, Similarly, a GETMAIN should have a corresponding FREEMAIN
issued or special care should be taken to preserve the addresses necessary to
'free! the storage later., With these considerations reentrant routines should
present no usage difficulty,

118



OVERLAY PROGRAMS
17.5 THE MECHANISMS OF THE LINKAGE EDITOR

The linkage editor numbers the segments of code consisting of one or more
routines (subprograms, common areas, or CSECTS) from top to bottom and
left to right as shown in figure 33 below,

segmenfi 1 MAIN (with IBM support)

I ]
segment 2 segment 3 segm!ant 6

INPUT ANALYZE ouUTPT
COND DRIFT FORMT
COR(,:B
i |
segment 4 segment 5
MTH1 MTH2

Figure 33 - Overlay Segments

The primary tool for describing the overlay structure is the INSERT card, It
says to the linkage editor: "take the routine named from segment one (the root)
and place it in the segment where I currently am". An OVERLAY card is used
to indicate the beginning of a new segment and identical names on OVERLAY
cards start at the same level in the tree as the first time the name appears.
For figure 33 the required cards are:

OVERLAY TOP

INSERT INPUT
INSERT COND
OVERLAY TOP

INSERT ANALYZ, DRIFT, CORCR
OVERLAY MID

INSERT MTH1
OVERLAY MID

INSERT MTH2
OVERLAY TOP

INSERT OUTPT -
INSERT FORMT

Figure 34 - Overlay Control Cards
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The INSERT and OVERLAY cards must not begin in column one; more than one
name can be placed on an INSERT card, The three OVERLAY TOP cards define
the first major branch and the two OVERLAY MID cards define the next level of
overlaying, There is no effective limit on the number of levels it is possible to
have but storage is reserved for the longest leg found by the linkage editor and
no advantage is gained by overlaying other legs which are not the longest.

17.6 OVERLAY TOOLS

17.6.1 OVLY program - to draw a {ree

A program is available which will take an existing overlayed load module and
produce a tree, such as the ones drawn in this section, and optionally print or
punch the necessary control cards fo reconstruet the tree. The program pro-
vides useful information when trying to optimize an existing overlay structure
or debugging an overlay program where the suspected bug is in the overlay
structure itself, As with all standard programs a procedure is available
which operates on a catalogued library, or data set, to produce the desired
picture and control cards. The documentation ig contained in appendix G.

17.6.2 LOADMAP - to map a load module and list cross references

LOADMAP produces a listing of all the routines in a specified load module,

A linkage editor map and two cross references listings which show all the
routines a specific routine calls and all the routines that call a specific routine.
Common area references are likewise cross referenced. This is useful to a
program which is to be overlayed so that a tree may be drawn, The documentu-
tion for this program is in appendix F.

17.7 OPTTLIZATION OF AN EXISTING OVERLAY l

The techniques described above will produce a substantial core saving in most
programs which are not now overlayed. Through the use of the OVLY and

LOADMAP programs some additional memory saving can usually be realized .
with only a slight increase in execution time. It is also possible to decrease

the complexity of most large overlay structures with no increase in memory

necessary for program execution, The two principal rules to remember are:

120



OVERLAY PROGRAMS

1, Combine short legs inio one larger leg, being careful that it does not
become the longest leg, and

2. Carefully search the longest leg for any routines which can be re-
located to a shorter leg.

For example:

MA}N (with IBM modules)

INIT PROCES

; A 3 ALG1
ALG2
PRNT
FRMT

Tigure 35 ~ A Candidate for Overlay Optimization

The routines A and B can be combined into the INIT segment and the segment
containing PROCES will still be the longest in the program. On careful examina~
tion of the segment containing PROCES we see that the routines ALGI1 and ALG2
are not used in the same run thus the overlay tree can be redrawn as:

MAIN
___1|:(zBM FORTRAN modules)

[(EA RN ISR RSN R SRR X 2
-

' *

1| INIT PROCES }

i :

HES PRNT i path 1 —m-mmm-n

i :

} B FRMT E path O srsessrens
ALG1 ALG2!

TFigure 36 - A Balanced Overlay Tree

where the total length of path one is approximately equal to path two. No
further overlay optimization is likely to occur unless a more advanced technique,
outlined below, is employed.
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17.8 MULTIPLE REGION OVERLAYS

Occasionally there is an opportunity for a further reduction in the required
region that can be obtained from the processes outlined above, If two vr more
support routines are usedby twoor more major legs of the program, where one of
these legs is the longest leg and the two routines do not call each other, they
can be relocated from the root segment and placed parallel o each other in a
second bhase area of the overlay structure called, confusingly, a region,

MAIN (200K)

SUP1 (100K)

SUP2 (100K)

(200K)
(300K)
| (400K)
] A(20K)
(420K)

B (60K)

(460K)

Pigure 37 - A Candidate for Multiple Region Overlaying

The entire module in Figure 37 may take 460K as shown, a saving of 20K from
the straight line linking with no overlay., Since SUP1 and SUP2 do not call each
other but are called by A and B they normally reside in the root segment but
can be relocaied in a second region with the following control cards:

OVERLAY
INSERT
OVERLAY
INSERT
OVERLAY
INSERT
OVERLAY
INSERT

ONE

A

ONE

B

SUPT (REGION)
SUP1

SUPT

SUP2

Figure 38 - A Multi-region Control Card Deck
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The control cards as shown in Figure 38 would generate a tree which would
look like:

MAIN {200K)

(200K)
A (40K) B (60K)
(240K) (260K)

———————————————————————— region 2 (at 260K)

SUP1{(100K) SUP2|(100K)
(360K) (360K)

Figure 39 - Multi-region Overlay Tree

The above multi~region overlay gives a saving of 100K,

A total of four regions can be designated and each of the regions must be com~
plete before the next region is begun with an OVERLAY nare (REGION) control
card, The IBM routine IHCERRM can be moved easily from the root segment
{o a second region provided confidence exists that there is no arithmetic error,
such as an underflow, since it is possible for IHCERRM to be invoked for all
FORTRAN routine errors.

17.9 BUGS, DUMPS, HAZARDS AND PIT FALLS

Do not overlay a routine having a FORTRAN DEFINE FILE statement until all
processing for the associated unit is complete. Do not overlay a routine con-
taining an ALC OPEN until the corresponding CLOSE is issued.

Be especially careful about DATA statements used to initialize counters, they
will be reset each time the routine is called after being overlayed, Use BLOCK
DATA and common areas to be sure. Insure the common areas are in the root
segment, or high enough in the tree so they are not overlayed at the wrong time.

There is only one serious dump "caussd"” by an overlay structure,
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MI?IN
SUlBl

[ 1

C1 c2

Figure 40 - A Structurally Caused Failure

In Figure 40 MAIN calls C1, C1 calls SUB1 which calls C2, The linkage editor
will not detect the exclusive call and C1 will be overlayed by the code for C2,
The resulting 0Cx traceback will show C2 being called by SUBI1 having been
called by a possible invalid reference while the forward trace will show MAIN
calling C1. You can determine the segment in storage from the following table
which is always at the beginning of your load module:

+8 =~ Last segment currently in region 1
+9 - Highest segment of region 1
+A - Last segment currently in region 2
+B - Highest segment of region 2
+C -~ Last segment currently in region 3
+D - Highest segment of region 3
+E -~ Last segment currently in region 4

+F ~ Highest segment of region 4

Figure 41 - Segment Table ($SEGTAB) Format

Normally you only need to examine byte nine of your load module and look up
the segment number found (shown in hexadecimal) in the linkage editor map or
LOADMAP link map. If the routine in the trace table is not in the segment
shown ox in its path to the root segment, you have made an illegal exclusive
reference and must reexamine your overlay structure.

Further information and format information can be found in the IBM manuals

LINKAGE EDITOR AND LOADER GC28-6538, and SYSTEM CONTROL BLOCKS

GC28-6628.
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18.0 The Different IBM FORTRAN Compilers

The following discussion relies heavily on Appandix H, "FORTRAN IV
(H) Optimization Facilities" from the IBM manual "FORTRAN IV (& and
H) Programmers's Guide", GC28-6817.

18.1 COMPARISONS

FORTRAN IV G, G1, and H with OPT=0 generate code with approximately
the same level of sophistication., It is very straightforward and
each type of FORTRAN statement creates a specific set of assembly
instructions. The compilation times are the 1nwest and execution
times the longest of the laevel of optimization available with FORTRAN
H. These should not be used for other than syntax scanning, excep-
tionally quick or one shot programs. The G and Gl compilers are
almost the same. 61 is usable from TSO and supports 1ist directed
I/0 and the TEST option. G and H ds not support these new features,
FORTRAN H allows the following: (a) arithmetic operations with one
byte variables and options for generating optimized code, (b) pro-
ducing a structured source 1isting, (c) a cross reference list of
variables and statement numbers, ?d) controlling the amount of
storage used when the compiler is attached, and (e) allowing the
compiled source code to execute even if there were source errors,

The H compiler does not support the DEBUG facility which is available
with G and G1,

18,2 FORTRAN H OPT=1 QPTIMIZATION

When 0PT=1 is specified, the compiler execution time increases
slightly, but a large savings is evidenced in the executior of the
compiied code. The improvements in the generated code are:

1, Placing often used variables in registers and retaining the
value for later use,

2. The same is done for FORTRAN generated values (base registers
for data areas, COMMON, or table addresses).

3. Use of branching instructions which utilize registers,
The code generated is still very similar to unoptimized code but
makes better use of the registers and uses several faster instruc-
tions,

18.3 FORTRAN H OPT=2 OPTIMIZATION

0PT=2 requires more compile time but generates even better code than
OPT=1. The following are done in addition:

4. A1l values are attempted to be held in registers (variables,
constants, and FORTRAN generated values).

5. Recognition of redundant calculiations and use of registers to
hold values of intermediate results,
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DIFFERENT FORTRANS
6. Moving code ahead of T1nopz which is not changed within the
body of the loop.
7. Removing calculations which are not used.

8. Generate the fastest possible branch and logical testing
instructions,

O0PT=2 generated code is more sophisticated than any other FORTRAN
generated code and requires the programmer to be alert to possible
errors which may be generated. These are discussed below,

18.4 COMPILE AND EXECUTION SPEED TIMINGS

A general purpose test program was compiled and executed utilizing
the various compilers and optimization levels. FORTRAN & timed out
after 14.25 CPU minutes and was excluded from the tests.

CPU MINUTES COMPILER TIME IN MINUTES

OF EXECUTION CPU 1/0
FORTRAN Gl 13.861 0.057 0.123
FORTRAN H OPT=0 14,123 0.011* 0.074
FORTRAN H OPT=1 8,502 C.,011* 0,078
FORTRAN H 0OPT=2 2,303 0.085 0.180

* Inciudes a BLOCKDATA routine

Figure 42 - Compiter Comparison Timings

18.5 0OPT=2 WARNINGS

0PT=2 causes analysis of the program structure. B8locks of code are
analyzed as a unit for the most active values, A block starts with
a labeled statement, or the first statement in the program unit, and
ends with another labeled statement, a branch statement {including
READ with END or ERR specified), or a CALL, Within the body of a
biock, registers can be fully utiiized and intermediate results,
partial caiculation of expressions, and base addresses are generated
once and reused from their high speed positions, Excessive numbers
of branches or referenced statement labels will reduce the effec-
tiveness of the optimization by reducing the scope of a block.
Optimization is also reduced when a block starts with an IF state-
ment, conditional G0 TO, a READ statement with END or ERR, and a
CONTINUE to end a loop where other than a DO loop follows and no
values are initialized. These statements or combination of state-
ments provide a second path which the compiler views as equally
1ikely and must save or set up values again before leaving or en-
tering the block at the implied path. ?For example, a computed GO
TO may fall through, READ with END or ERR may not fall through, or
the start of a loop may be obscured when there are no values init-
ialized after a CONTINUE.)
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DIFFERENT FORTRANS
Errors or code which executes differently than intended may be gen-
erated with OPT=2. The following are things to watch for:
1. Code is moved fror inside a loop to the initialization of the
loop when all values in an expression or subexpression are not changed
in the loop. This occasionally will not give the expected results,

For example:

. DG 11 1=1,10
! DO 12 J=1,10
IF (B{I).LT.0) GO TO 11
12 C(J)=SQRT(B(I))
. 11 CONTINUE

The IF statement contains no expression relying on J, the index, or
a value calculated in both Toops and therefore is rearranged as
though the following was written:

D0 11 I=1,10
TO1=SQRT(B(1))
DO 12 J=1,10
IF {B(I).LT.0) GO TO 11
12 C(J}=T01
11 CONTINUE

It is now apparent that the computation of the square root of B(I)
is always perfomed before B{I) is tested for a valid value. The
compiler recognized that the computation of SQRT{B(I1)) does not
depend on the inner loop index, J. To preserve the intent, the code
should be rearranged as shown below:

D0 11 I=1,10
IF (B(I).LT.0) 60 TO 11
D0 12 J=1,10

12 C{3)=SQRT(B(1))

11 CONTINUE

Other checks made to ensure the successful execution of statements
following the one with the test may be moved to a useless place.
Adding and subtracting a value in the loop will cause retention of

. the statement in its proper place {IF (B{I)+J-J.LT.0). This should
only be done when a probiem really exists.

2. Assigned GO TO statements with an incomplete statement number

. 1ist may not compile properly. Be sure to have an accurate 1ist of
all possible branches,

127



DIFFERENT FORTRANS

3. When a user subprogram has the same name as a FORTRAN supplied
subprogram, errors may occur if: 1) variables are remembered from
one call of the subpruyram to the next, 2) I/0 is performed,

3) the subprogram saves into COMMON or its arguments. Avoid the
problem by explicitly declaring the name of the subprogram in an
EXTERNAL statement., The FORTRAN supplied subprogram may not be
referenced in that program unit.

4. Since values are held in registers certain relationships may

not be known outside the body of the physical loop and rarely after
the completion loop. These are impliied equivalences, indices from

DO Toops and implied loops, and FORTRAN generated temporary variables.
An impiied equivalence is illustrated by:

cOMMON/COMMON/A(10),8,C
DIMENSION E{12)
EQUIVALENCE (A,.E)

10 CONTINUE

The data in memory would be as follows:

A%l) A%E) A%3) ... A(9) A(10) B C

E(L) E(2) E(3) ... E(9) E(I0) E(11) E(12)

E{11) and B occupy the same location as do C and E{12). 1In the
example it is possible that B will not contain the just calculated
value of E(11). The optimization is done by name, not by location,
In general, variables in EQUIVALENCE statements are marked so they

are not moved or partial results calculated using them. This may
cause serious downgrading of optimization.

5. Call by value arguments, enclosed in slashes, may not be passed
properly unless placed in COMMON,
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19.0 COMPILER INTRINSIC FUNCTIONS

The FORTRAN IV H compiier provides a number of built-in pseudo-functions

which are useful for logical operations and bit manipulation. The
logical operations pseudo-functions are coded as regular functions
but generate instructions in-line, which utilize assembler code to
do the precise operation requested. These functions are extremely
fast. To make the implementation of these functions as in~line code
requires that the XL option be on (by specification on the PARM
field or by default).

19,1 BOOLEAN AND SHIFT PSEUDQ-FUNCTIONS

The pseudo~function and its use is described below, The operation
treats the data as a bit string and pays no attention to any partic-
ular numeric format. The correct use is the responsibility of the
programmer,

Number of
Operation Arguments Argument Type Function
LAND 2 1, 2, or 4 hyte logical and
LOR 1, 2, or 4 byte Togical ar
LXOR 2 1, 2, or 4 bvte Togical exclusive or
LCOMPL 1 1, 2, or 4 byte lTogical complement (1's)
SHFTL 2 4 hyte * Togical shift left
SHFTR 2 4 byte * iogical shift right

* The second argument is an integer which indicates the number of
bits to shift.

The following truth tables give the results of the first four pseudo-
functions.

LAND | 01 LOR | 01 LXOR | 01 LCOMPL
) 011
1701 1111 1110 110

Individual bits may be tested by using the TBIT pseudo-function., It
uses two arguments. The first is the variable to be tested and is
four bytes or less, The second indicates the bit position to test,
the left-most bit being zero., HNo checking is performed to insure
the bit position requested falls within the length of the variable.
The result is a four byte logical value of ,TRUE. or .FALSE,

Another special purpose function is the MOD24 function. Its form
is A=MOD24(A), where A must be a four-byte integer variable. This
function returns the value of its argument except that the high-
order byte is set to zero. The resulting value will be declared
INTEGER*4.
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19.2 BIT PSEUDO-FUNCTIONS

The bit setting facilities are not pseudo-functions but are used as
statements. The pseudo-function must be set to a variable and use
that same variable as the first argument. It may be subscripted but
both references should be identical. The second argument specifies
the bit to set and must be an integer with a value of zero to 63
incTusive. The bit facilities are:

V=BITON(V,K) to turn on bit K
V=BITOFF(V,X to turn off bit K
V=BITFLP{V,K) +to reverse the value of bit K

19.3 EXAMPLES

Find the value of I and J, ORed, ANDed, and exclusive ORed
together,

168) DATA 1,J/3,15/
K=LAND{I,d)
L=LOR(1,J)
M=LXOR(I,J)

The results from I=3 (0011,) and J=15 (1111,} are K=3 (0011,), L=15
(1111 5), M=12 (11005).

Find the logical complement of I.

169) DATA 1/0/
J=LCOMPL(1}

The result in J is all bits on or ~1.
Shift 1 6 bits to the right and 15 bits to the left,
170) DATA 1/64/.N/15/
K=SHFTR(I,6)
L=SHFTL{TI,N)
The results are K=1 (0001,) and L=2097152 (221),

Test each bit in a four byte variable, F, and call a subprogram it
the bit is off.

171) Do 10 I=1,32
. IF (.NOT.TBIT(F,I-1)) CALL NOBIT
0 L ]

Test the first bit in each byte of a double precision variable, D;
and if off, flip the first 2 bits, turn off the next 2 bits, and
turn off the Tlast 4 bits,
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172) DO 10 I

=1,64,8
IF (TBIT(D,I-1§) G0 TO 10
D=BITFLP{D,I-1
D=BITFLP§D,I}
D=BITOFF(D,I+1)
D=BITUFF(D,I+2)

1
2
D=BITON(D, I+3
D=BITON(D,I+4
D=BITON(D,I+5
D=BITON(D,I+6)
10 CONTINUE

19.4 STRUCTURE STATEMENT
STRUCTURE//V1],U-|2,V13,..-//V21,V22,V23,.--//Vn-! ”VHZ’VU3"' .Vn n

NHERE: V'l‘lngng‘Is,oc.V21ng2,V239-n-Vn n

Represent names of variables that will be equated to displacement
values. If these variables are declared in a Type statement, this
statement must precede the STRUCTURE statement.

Note: The // immediately following the word STRUCTURE may be omitted.

The variables may be impliicitly or explicitiy declared as any type
or length. They must not be dimensioned and must not appear in
COMMON or EQUIVALENCE statements. A variable may appear more than
once in STRUCTURE statements within a single program or subprogram
provided it is given the same displacement by each program.

If D is the name of a structured variable, it must always appear

in an executable statement with a single subscript, e.g., DI},

An expression such as D(I) refers to a variable of the type speci-
fied for D which is located in main storage at the base address
specified by the value of the subscript expression, I, plus a dis~
placement equal to the total number of bytes in the length specifi-
cation of all the variables preceding D in the STRUCTURE statement
in which it appears. For the object program to execute successfully,
it 1s essential that the value of the subscript plus the displace-
ment always be an integral multiple of the length of the referenced
field. Displacements may not exceed 255, The subscript expression
must be declared as integer or logical.

173) LOGICAL*] ADJ, MT
INTEGER CH, PTR
STRUCTURE CH, PTR//ADJ//CH, MT

Here the STRUCTURE statement shown in Example 173 is used to define

a 2-word structure where the high-order byte of each word is over-
lapped by a 1-byte field.
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i
I i
| |
Lt - e e s e s et e o e 8k e El
.......
ADJ MT
e e T e e et e e e
CH PTR

If J contains a pointer to such a structure, its fields may be refer-
enced as ADJ(J), CH(J), MT(Jd}, and PTR(J).

If a structured variable is used incorrectliy, the compiler may issue
a diagnostic message.

132



Appendix A
DAID

DAIG, direct access input/output, is a locally supported replacement
package for FORTRAN's direct access T1/0. A complete description can

be found in the current version of the M&DO 360 User's Guide.
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Appendix B
FMOVE

FMOVE is an assembly subroutine used to move data from one field

to another. These fields may overlap. The subroutine makes use

of the MVC instruction which moves up to 256 bytes, the equivalent
of 64 four-byte variables with one instruction. Uhen more than 256
bytes are to be moved, the subroutine loops moving the specified
amount of data., FMOVE uses 172 bytes.

The calling sequence is:
CALL FMOVE(to,lenqgth,from)

"to" is the storage area which is to receive the data. It may be
specified as a simple variable, an array name, or a subhscripted
variable,

"Tength" is the number of bytes of data to move. The four-byte
integer may be specified as a constant, a variable, or an expression.

"from" is the storage area where the data ic copied from. It may
be ?pecified as a simple variable, an array name, or a subscripted
variable.

The effect of a call is to move "length" bytes of data from "from"
to "to". To obtain the proper length in bytes, determine the number
of variables to be moved and multiply by the length of each of the
variables (1, 2, 4, 8, or 16 bytes).

FMOVE is located in SYS2.GSFCLIB and is automatically linked into
the user's Toad module when the LINK, LIMKGO, or LOADER procedure
is executed,

To zero an array, or set it to any other specific value:

174) DIMENSION A{2000)

-

A(1)=0.0
CALL FMOVE(A(2),7996,A(1))

is done nne hyte at a time, and the variables are filled
then A(3)=A{2) until all the remaining portion of the array

NOT FILME:
TOT G‘PAGE=BLAIHE
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Move mixed data into the middle of a work array from a COMMON area:

175) COMMON/COMMON/A(50),B(50),1(10),c{20),H(80)
INTEGER*2 H
LOGICAL*1 C
DIMENSION  TEMP(300)

CALL FMOVE(TEMP(150), 50%4+50%4+10%4+20+80%2,A) .

The length has been expressed as the sum of each variable length
times the number of elements., Since the "from" field is in COMMON,

all the arrays are contiguous in storage.
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FORTXDAM

1 FUNCTIONS

FORTRAN extended direct access method, FORTADAM, is a subprogram
with seven entry points. It moves unformatted fixed Tength blocks

of data between disk storage and memory with no buffering and returns
¢ontrol to the user once the read or write operation is started.

The amount of data which may be moved can be from one byte to one
cylinder, 145880 bytes. Each record starts at the beginning of a
track. To use space more efficiently, the record Tength shouid be

as close to a multiple of the track length as is possible, 7264.

No blocks or records are split across cylinders. The following table
shows the relationship of record lengths to tracks and cylinders for
2314 disk storage. There is some work space required in each track.

Record Length Tracks/Block Blocks/Cylinder
1-7264 1 20
7265~14528 2 10
14529-21792 3 6
21793-29056 4 5
2805736320 5 4
25321-43584 6 3
43585-72640 7-10 2
72640-145280 11-20 1

Figure 43 - Space Requirements for FORTXDAM Data Sets

2 ARGUMENTS

The subroutine is contained in SYS2.GSFCLIB and will be inciuded in
the lToad module automatically when the LINK, LINKGO, or LOADER pro~-
cedure is used. It uses 1408 bytes of memory. FORTXDAM is re-entrant
except when entry points XDOPEN, XDFORM, and XDCLOS are active,

The seven entry points, the calling sequence, and functions are
documented beiow. The following names are used as symbolic argu-
mants:

'field' - The area where the data is transferred. It must be large
enough to contain all the data requested and may be specified as an
array name or a simple or subscripted variable,

"{ength® - The record size in bytes to read or write. It must be

a four byte integer value and may be specified as a constant, a sim-
ple or subscripted variable, or an expression.
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*ddname’ - The eight character left justified name of the JCL DD
statement which defines the data set FORTXDAM s to read or write.
A11 eight characters must be specified using blanks to pad the name
on the right. It may be specified as a Titeral constant, a simple
or subscripted variable name, or an array name,

'flag' - A four byte integer variable which contains the completion
code g? the previous operation. It may be a simple or subscripted
variable,

'biock' - A four byte integer value specifying the number of the
block (or record) to transfer. It may be specified as a constant,
an expression, or a simple or subscripted variabhle.

'unit' - A four byte integer variable which contains the internal
file identification information,

3.0 CALLING SEQUENCE AND FUNCTION

3.1 XDOPEN

CALL XDOPEN(unit,length,ddname) is called first and prepares the data
set control blocks for input/output operations, 'length' bytes are

always transferred on subsequent access to the file 'unit', It also
acts as a flag with the following meanings:

a positive value - the data set was opened successfully

-1 - the data set was not opened successfully, probably a DD state-
ment error

-2 - insufficient memory to open the data set, increase the region
size

-4 « the data set record length is wrong, greater than 145280 bytes,
or the SPACE field of the DD statement did not specify CYL

The value of 'unit' should not be changed once XDOPEN has executed
successfully. If the length of the records in the data set is to
be changed, it must be closed and reopened.

3.2 XDFORM

CALL XDFORM{unit,flag,field) formats a new data set for subsequent
operations by FORTXDAM. XDOPEN must have been successfully executed.
The entire data set is written with the data stored in 'field', 1In
this way the unused records may be flagged, set to a particular value,
or certain fields initialized, If used in a multi-tasking environment,
it should be noted that the eight bytes before 'field' are altered;
upon completion of XDFORM they are restored., The values of 'flag’

are: .
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a positive value -~ the data set was successfully formatted and
may contain a maximum of 'flag' blocks (records)

a negative value - a write error occurred as explained:

-2 - a wrong length record condition was found, check 'length'
in the call to XDOPEN

~4 - an uncorrectable error occurred
-8 - an unidentified error occurred

A11 data sets that are written for the first time must be formatted,
If the length is being changed, then it must be reformatted,

3.3 XDWRIT

CALL XDWRIT(unit,block,field) starts the transfer of 'length' bytes
from 'field’ to record 'block' in file 'unit' {assigned by XDOPEN)
on disk. A call to XDCHEK wmust precede any other I/0 operation to
‘'unit'. The memory area ‘'field' should not be changed until the
completion of XDWRIT as the values may be changed before the trans-
fer takes place.

3.4 XDREAD

CALL XDREAD(unit,block,field) starts to transfer *length' bytes from
disk record 'block® of file 'unit' (assigned by XDOPEN) to 'field"'.

XDCHEK must be called before any other I/0 operation to 'unit', The
memory locations 'field' should not be used until the completion of

the I/0 operation since the data may not yet be present.

3.5 XDTEST

CALL XDTEST(unit,flag) tests the progress of the I/0 operation last
requested on 'unit'. The calling program continues after the test
is made. The meanings of 'flag' are:

1 - no I/0 operations are active, XDCHEK has been cailed, and
'unit' is ready to read or write

0 - the previous operation is complete and XDCHEK needs to be
called

~T - an 1/0 operation is currently active
3.6 XDCHEK
CALL XDCHEK{unit,flag) completes an 1/0 operation to 'unit'. If the

I/0 operation is still proceeding, the calling program waits for it
to complete. 'flag' indicates the status of the completed operation:
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1 - all operations are complete
0 - record 'block' was successfully transferred

=1 =~ 'block' is too large, the file does not contain that many
records

=2 = a wrong Tenath record condition was found, and the number
of bytes of data transferred is uncertain, check *'length’
in XDOPEN

-4 - an uncorrectable I/0 error occurred
-8 ~« an unidentifiable error occurred
3.7 XDCLOS

CALL XDCLOS{unit) is not required, unless changing the record length
of a file. The system will automatically close all data sets used
at the end of the program'’s execution.

4 JeL

The DD JCL statement for a FORTXDAM data set accessed via FORTXDAM
should only specify the UNIT, SPACE, and optionally the DSN and DISP
keywords. The SPACE parameter must be in the form:

/! «.. SPACE={CYL,n,,CONTIG)

where 'n' is the number of cylinders needed to hold the records of
the data set, see Figure 44, If full advantage is being made of the
asynchronous input/outpit capabiiities, the SEP subparameter of the
UNIT field should be coded for new or work data sets. This will try
to place the data sets on channels which are logically independent
from one another and allows full physical overlapping of I/0 oper-
ations.

5 EXAMPLES
Create a new file and reference it in the same program.

176)

c ALLOCATE ARRAY SPACE AT NEAR 1 FULL TRACK(4*1800=7200)
DIMENSION RECORD(1800),L0C(400)
¢ INITIALIZE FILE TO ZERCS

DATA RECORD/1800*0.0/

L 3

¢ OPEN FILE AND ASSIGN FORTXDAM UNIT REFERENCE NUMBER
CALL XDOPEN{IUNIT,7200,'FTOIF001")

140



FORTXDAM

c PREFORMAT DATA SET FOR USE AND INITIALIZE UNUSED RECORDS
CALL XDFORM(IUNIT,NFLAG,RECORD)
¢ CHECK TO BE SURE FILE PROPERLY FORMATTED

IF (FLAG.GE,0) GO TO 10
WRITE (6,20)NFLAG
20 FORMAT (' *** FORMATTING ERROR CODE = ',I3/
1 ' PROGRAM ENDED *#**')
STOP 4

c WRITE ENTIRE FILE IN THIS LOOP, 'NUMREC® IS LESS THAN 401
1¢ DO 100 I=1,NUMREC

c START TO WRITE RECORD - 'LOC' ARRAY CONTAINS BLOCK NUMBERS
CALL XDWRIT(IUNIT,LOC(I),RECORD)

¢ DO OTHER CALCULATION WHICH DO NOT USE RECORD

¢ CHECK STATE OF WRITE AND WAIT FOR COMPLETION

c WAIT PLACED HERE SINCE RECORD ABOUT TO BE USED

CALL XDCHEK(IUNIT,NFLAG)
IF (NFLAG,LT.0) GO TO 200
50 RECORD( ) = ...

Y

GO TO 100
200 WRITE (6,210)NFLAG,LOC(1)
270 FORMAT (' #** WRITE ERRQR CODE ,'I3,' FOR BLOCK',13)

GO TO 50
100 .
c START INPUT OPERATION FOR BLOCK 11
CALL XDREAD(IUNIT,II,RECORD)
c NOW NEED TO USE RECORD - HALT PROGRAM UNTIL 1/0 DONE

CALL XDCHEK(IUNIT,NFLAG)
IF (NFLAG.GE.0) GO TO 300
WRITE (6,220)NFLAG,II ,
220 FORMAT (' *** ERROR CODE = ',I3,' READING BLOCK',I3)
GO TO 100
300

The JCL required for the data set would be:
//FTO1F00) DD UNIT=2314,SPACE=(CYL,20,,CONTIG)
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The number of cylinders was calculated as 400 records; one track
one record. 400 tracks divided by 20 tracks per cylinder is 20
cylinders.

Copy one old file to another old file.
177)

c

OO0

100
105

200

210
220

ALLOCATE RECORD SPACE FOR TWO 14400 BYTE BUFFERS
DIMENSION R1{3600),R2(3600)

OPEN FILES TO USE
CALL XDOPEN&IUNITA,LEN,'FIRST ")
CALL XDOPEN({IUNITB,LEN,'SECOND ')

READ IN FIRST RECORD FROM UNIT A INTO R1
CALL XDREAD(IUNITA,1,R1)

SET UP LOOP - READ & VWRITE DONE IN PAIRS OF
WRITE CURRENT RECORD AND READ NEXT RECORD
LOOP THEREFORE GOES BY TWOS AFTER INITIAL
RECORD READ

NMT1=NUMREC~-1

0O 240 I=1,NM1,2

L 3

WAIT FOR PREVIOUS READ TO FINISH TO WRITE RECORD FROM BUFFER R1
CALL XDCHEK(IUNITA,IFLAG)

IF {IFLAG) 100, 200, 200

WRITE {6,105)IFLAG,I

FORMAT (' ERROR CODE’,I13,' AT FIRST CHECK IN LOOP, RECORD = ',I3)
DUMP CURRENT RECORD

CALL XDWRIT(IUNITB,I.R1)

START TO READ NEXT RECORD INTO R2 BUFFER

CALL XDREAD(IUNITA,I+1,R2)

NOW WAIT FOR UNIT B TO COMPLETE WRITING WHILE UNIT A IS READING
CALL XDCHEK(IUNITB,IFLAG)

IF (IFLAG.GE,0) GO TC 220

WRITE (6,210)IFLAG,I

FORMAT (' ERROR WRITING RECORD, CODE IS',I3,* RECORD = ',I3)
WAIT FOR READ TO FINISH BEFORE STARTING WRITE OF BUFFER R2

CALL XDCHEK(IUNITA,IFLAG)

IF (IFLAG.GE,0) GO TO 230

WRITE (6,225)1FLAG,I
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225 FORMAT (' ERROR AT STATEMENT 220, CODE = ',I3,' FOR
TRECORD®,I3,%+1"')
¢ NOW START TQ WRITE BUFFER R2 AND READ BUFFER R1
230 CALL XDWRIT(IUNITB,I+1,R2)
CALL XDREAD({IUNITA,I+2,R1)
c CHECK FOR THIS READ AT TOP OF 240 LOOP
240 CONTINUE

The JCL for the two DD cards wouid be:

//FIRST DD DISP=SHR,SPACE=(CYL,70,,CONTIG),DSN=0RIGINAL
//SECOND DD UNIT=2314,SPACE=(CYL,10,,CONTIG),DSN=COPY,
/! DISP=(NEW,CATLG)

Save the results of caiculations during an iteration when there is
I/0 time available., The previous results will be accessible later
for restarting. An old FORTXDAM data set is to be used, At most

save 10 results.

178)
C ALLOCATE A WORK SPACE AND AN I/0 SPACE
DIMENSION COEFF(100,100,2),RHS(100,2)
c OPEN FILE TO BE USED
CALL XDOPEN(IUNIT, 40400, 'SAVEDATA")
c PREPARE LOOP TO DO 1000 ITERATIONS AND INDICATOR FOR WHICH
C AREA TO USE
IDUMP=0
J=2
K=1
DO 10 I=1,1000
CALL ITER(COEFF(1,1,d),RHS{1,d)) .
" CHECK IF FILE AVAILABLE FOR WRITE \
CALL XDTEST{IUNIT,N) 1
C CONTINUE LOOP IF BUSY
IF (N.LT.0) GO TO 10
C FILE IS FREE WRITE RECORD, FINISH I/0 OPERATION

CALL XDCHEK(IUNIT,N)
IF (N.GE,O) GO TO &
WRITE (6,6)N,IDUMP
6  FORMAT (*® ERROR ON INTERMEDIATE OUTPUT, ERROR IS',
113,' RECORD IS',I3)

GO TO 10
C SET BLOCK NUMBER
5 IDUMP=TDUMP+1
¢ CHECK IF MORE THAN 10, IF SO RESET

IF (IDUMP.GT.10) IDUMP=1
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C SET V?LUE TO ADJUST BUFFER LOCATION SUBSCRIPT
KeK¥*-
CALL XDWRIT(IUNIT,IDUMP,COEFF(1,1,d))
113, RECORD 15',13)
c MOVE DATA FROM BUFFER TO NEXT CALCULATION AREA
CALL FMOVE&COEFF(1, »J),COEFF(1,1,J+K),40000)
CALL FMOVE(RHS(1,J),RSH(1,J+K),400)
C RESET BUFFER ADDRES
J=d4K
10 CONTINUE
C WRITE LAST SAVED RECORD NUMBER
WRITE (6,20) IDUMP
20 FORMAT ('0 RECORD OF LAST SAVE 1S',13)

The JCL would be:

1
S

//SAVEDATA DD DSN=FORTXDAM.DATA,DISP=SHR,SPACE=(CYL,4,,CONTIG)

The number of cylinders of space required is calculated by using
Figure 43. A record Tength of 40400 bytes takes 6 tracks; 3 records
storeg in each cylinder., Four cylinders will hold the required 10
records.
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Appendix D
FTIO

FTI0, a FORTRAN callable subprogram, supports unformatted sequential
I1/0. Backspacing is not permitted, and the data to transfer must

be go?tinuous in storage. There are nine entry points which function
as follows.

1 ENTRY POINTS AND FUNCTIONS

FREAD - read a record

FREADB - read a file backwards, Tast record first, etc.

FWRITE - write a record

REWIND - close the file and position at the start of the same file

UNLOAD - dismount the tape and free space used for controlling the
file and buffers

POSN - position to the start of a specified tape file

LEAVE - close a file, free some file control space and buffers, and
position at the end of the current file

MOUNT - $q?nt a tape and optionally advance to a particular tape
ile

MEMBER - Tocate a member in a partitioned data set on direct access
2 HOW TO USE

The subprogram is located in SYS2.GSFCLIB and is automatically
included when the LINK, LINKGO, or LOADER procedure is used. It
requires 2589 decimal bytes.

In the discussion which follows, a record is one continuous group of
individual data items, A data set is a related collection of records,
A file is the manner in which a program refers to a data set. A

file may consist of one or more data sets by concatenation. The
FORTRAN unit number is the file name and is coded as the ddname on

the DD statement, A tape file is a given data set on tape. There

may be more than one stored per tape. When referenced through JCL,
the physical s=2quential position on the tape is specified in the
first field of the LABEL parameter of the DD statement.

A particular file may not be referenced both by FORTRAN and FTIO

at the same time since certain system information within control
blocks is different, Control blocks are created when a data set is
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opened. When a data set is closed, certain pointers are reset and
the buffers are freed, FTIO and FORTRAN may use the same files

but only if the file has been c¢losed by the first I/0 package used
to perform the operations before the other package opens the file,
Data sets are implicitiy opened by accessing the file. In FORTRAN
the READ and WRITE statements cause an open, in FTIO calls to FREAD,
FWRITE and FREADB open a data set. Closes are done by ENDFILE and
REWIND statements in FORTRAN and by calls to REWIND, UNLOAD, POSN,
LEAVE, MOUNT, and MEMBER.

FREAD, FHRITE, and REWIND are used just 1ike the FORTRAN statements
READ, WRITE, and REWIND, Several of the other calls allow the pro-
gram to handle certain functions usuaily assigned to the JCL., Spe-
cific tapes may be dismounted (UNLOAD) and mounted (MOUNT)., 1I1/0
operations may be directed at a specific physical tape file without
a separate DD card for each tape file and dynamically changed (POSN
and MOUNT). A tape file may be closed and 1ogically positioned at
the end of the physical tape file (LEAVE). For disk data sets which
are contained in a partitioned data set, a specific member may be
transferred and dynamically altered (MEMBER), Files may also be read
backwards {(FREADB), that is, read the records in reverse order. The
contents of the record are unchanged.

3,0 EXAMPLES

The specific argument 1ists for each of the calls are shown below.
Some entry points may have more than one form. Only the calls as
shown are legal.

3.1 FREAD

CALL FREAD{record,unit,length,&end,&err)
CALL FREAD(r=cord,ddname,length,®,&end,&err)

This will cause the number of bytes returned as 'length' to be read
from *unit' (FTunitFPR1) or 'ddname' into memory at the location
starting with 'record'., If an I/0 error occurs, statement 'err' is
passed control upon exiting FREAD, When the end of a file is read,
statement ‘rr' will have control. The data set will be opened if
necessary.

3.2 FREADB

CALL FREADB§record,unit,1ength,&end,&err)
CALL FREADB{record,ddname,length,p,&end,&err)

The function is the same as FREAD except the records are read back-
wards. That is, the last record is read first until the first record.
The data in each record is in its proper order, The record format

of the file must be fixed blocked or unblocked (F or FB specified

1n the RECFM subparameter of the DCB operand)., The data set will

be opened if necessary.
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3.3 FURITE

CALL FMRITE{record,unit,1ength)
CALL FWRITE(record,ddname,length)

FWRITE will take 'length' bytes starting at location 'record' and
write them to the file specified by 'unit' (FTunitFPp1) or 'ddname',
The data set will be opened if necessary.

3.4 REWIND

CALL RENINDsunit)
CALL REWIND(ddname)

REWIND positions the file to the first record in the file referenced
by 'unit' (FTunitfF@pl) or 'ddname'. The data set is closed if
necessary.

3.5 UNLOAD

CALL UNLOAD{unit)
CALL UNLOAD(ddname)

For tape files only. The tape referenced by file 'unit' (FTunitfF@@1l)
or 'ddname' 1is dismounted and physically removed from the tape drive.
A1l control block space is freed for reuse., The data set is closed
if necessary.

3.6 POSN

CALL POSH(option,unit,tfile)
CALL POSN{option,ddname,tfile)

For tapes only. The tape mounted on file ‘unit' (FTunitFpgl) or
‘ddname' is positioned at the start of ohysical tape file 'tfile'.
'option' specifies the type of 1/0 operation to be performed next.
The data set is closed if necessary.

3.7 LEAVE

CALL LEAVE{unit)
CALL LEAVE(ddname)

The file referred to by 'unit' (FTunitF@p1) or 'ddname' is posi-
tioned at the end of the current physical sequential file being pro-
cessed. The data set is closed if necessary.

3.8 MOUNT
CALL MOUNT{option,unit,volume)
CALL MOUNT;option,unit,vo1ume,tfi1e)

CALL MOUNT(option,ddname,volume)
CALL MOUNT(option,ddname,volume,tfiie)
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MOUNT will place the tape labelled as 'volume' on the tape drive
assigned to file 'unit® (FTunitFPA1) or 'ddname'. Optionally the
tape may be positioned to the physical sequence tape file 'tfile',
Default is to the first tape file when not specified., 'option'
specifies the type of 1/0 operation to perform next. The file will
be closed if necessary.

3.9 MEMBER

CALL MEMBER{option,unit,membér)
CALL MEMBER{option,ddname,member)

The next I1/0 operation will take place at the start of the member

specified by 'member'. The operation will be as described by 'aption'.

The partitioned data set is referenced by file 'unit' (FTunitFpal)
or 'ddname'’., The data set will be closed if necessary.

4 ARGUMENTS

In the description of the calls to each of the entry points, the
following symbols are used to represent the arquments.

record - A continuous area of storage in which the I/0 transfer takes
place. It may be an array name or a simple or subscripted
variable and have 'length' bytes of storage following,

unit - The unit number of the file to be referenced, The four byte
integer value must be between 1 and 50 inclusive. The name
of the file is generated according to the rules of FORTRAN.
It may be specified as a simple or subscripted variable or
a constant or expression.

ddname - Is an eight byte Titeral which specifies the DD name for
the file to be read. Trailing blanks must be inciuded,
It may be coded as a literal constant, a simple or sub-
scripted variabie, or an array name.

length - The number of bytes of data to be transferred. The four
byte integer value may be coded as a constant, expression.
or a simple or subscripted variable. The 'length' is cal-
cu.lated by multiplying the Tength in bytes of the data item
(1, 2, 4, 8, or 16) by the number of items of each length.

option -~ Is a four byte integer value which specifies the type of
1/0 transfer which will be done. It may be given by a con-
stant, expression, simpie or subscripted variable. The
values and tkeir meanings are:

1 for dinput, read

2 for output, write
3 for input backwards, read backwards
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tfite - Is a four byte integer value which specifies the physical
tape file to which to position. It may be given in a con-
stant, simple or subscripted variable, or an expression.

voiume - Gives the tape volume serial number, The alphanumeric
field is 1eft justified and should contain trailing
blanks to Fi11 the six byte field, It may be written as
a literal constant, a simple or subscripted variable, or
an array name.

member - Is an eight byte name which is left justified and contains
@rai1ing blanks. It may be specified in any manner 'volume'
is.

end -~ Specifies a statement number. This statement is given control
when a read is issued and there are no more records in the
file., It must be given as a one to five digit number which
appears as the label of an executable or CONTINUE statement.
It is coded with a Teading ampersand, as shown in the descrip-
tion of the calls and in the examples,

err - Specifies a statement number. This statement is given control
when an I/0 error has occurred. It is specified as 'end' is.

5 RETURN CODES

If an invalid request is made of FTIO, the user condition code is
set for the job step, and the step is terminated. The codes and
their meanings are:

201 - tunit' is out of range, larger than 50 or less than 1

202 - the file referenced is being used for direct access, rather
than sequential input/output

210 - 'option' is invalid, greater than 3 or less than T

220 - 'Jength' is invalid, check with the value coded in the LRECL
subparameter of the DCB operand for FTunitF001 or 'ddname’

230 - the DD card for FTunitF001 or 'ddname' is missing
6 PROGRAM EXAMPLES

Create a file and use it later, The data will be written to FTI10FO001.
Each record contains 1000 real variables, .

179) . DIMENSION A(1000)

C WRITE OUT A RECORD
CALL FWRITE (A,10,4000)
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C RESET FILE TO READ FROM START OF FILE
CALL REWIND (10)

C READ IN A RECORD
CALL FREAD (A,10,L,299,398)

C END OF DATA SET FOUND
99 CONTINUE

C AN I/0 ERROR FOUND
98 CONTINUE

Read data into an array. When file DATAIN is all read, process
the data.

180) DIMENSION RECORD(80,100)

.

C READ IN UP TO 100 RECORDS
po 10 I=1,100
CALL FREAD(RECORD(I),'DATAIN ',L0,0,8100,&50)
10 CONTINUE
C MORE THAN 100 RECORDS PRESENT - SKIP REST

50 WRITE (6,60)1

60 FORMAT (' READ ERROR ON RECORD',I3,
1' OF DATAIN - RECORD SKIPPED')
GO TO 10

c PROCESS DATA
100 CONTINUE

Read a record into a COMMON area. Process the individual variables

and stop the program when all the data is read. The unit number
and tape volume serial number are read on file five,
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1817)

10

30
40

99

FTIO

REAL*8 VOL
COMMON /DATA/ A(3),B,I,L(6),X(9)

»

READ (5,5) IUNIT,IFILE,VOL
FORMAT (214,A6)
CALL MOUNT(I,IUNIT,VOL,IFILE)

CALL.FREAD(A,IUNIT,L,&QQ,&3G)

PROCESS DATA

GO TO 10

WRITE (6,40) TUNIT

FORMAT ('ERROR READING UNIT',I3)
GO TO 10

STOP

END
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Appendix E
ICHMPAR

ICMPAR 1s an assembly Tanguage function used to compare up to 256
bytes of data. The function uses 96 bytes and makes use of a CLC
instruction. ICMPAR is in SYS2.GSFCLIB and is automatically in-
cluded when the LINK, LINKGO, or LOADER procedures are used. This
instruction stops its left to right byte-by-byte comparison as soon
as an inequality is found. The fields to compare may overlap. The
value returned by the function depends on the relationship of the
comparands, It is a full word integer which may also be treated

as a four byte logical value.

The calling sequence is:
ICMPAR(fieldl,field2,1ength,offsetl,offset2)
or,
ICMPAR(field1,field2,length)

"field1" is the first data string to compare. 1Tt may be specified
as g simple variable, an array name, or a subscripted variable,

"field2" is the second data string to compare. It may be specified
in any of the ways that "fieldl" is specified.

“Tength" is an integer value in four bytes which specifies the num-
ber of bytes of data to compare in "fieldl" and "field2", It may
be a constant, simple, or subscripted variable or an expression,

If the value is not in the range 1 to 256, the value used is taken
as modulo 256,

The next two arguments ave optional and may either both be 1eft out
or both be included in the argument list. If not used, both values
default to zero.

"affset1" is the number of bytes to skip in the first data field
before starting the comparison, The four byte integer quantity
may be specified in any manner as outlined for "length"., A value
of zero skips no data and starts with the first byte of the data
area given in "fieldl",

"gffset2" has the same function as “"offsetl” but for "field2".
The result of the function is:
-1 or .FALSE, "Fia1di" is Tess than "field2"

0 or .TRUE. “fieldl" is equal to "field2"
1 or ,FALSE. "fieldl" is greater than "field2"

nun
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Eh? sorting sequence for alphameric data is given on the lines
elow:

Be.<(+|&18*)37/,% >7:#@ ' ="ABCDEFGHIJKLMNOPQRSTUVKHXYZ0123456789
Figure 44 -~ Standard IBM Collating Sequence

Compare ine first five characters of A with the first five characters
of B,

182) *nA.«8 A/'ABCDEFGH'/,B/'WXYDEF12'/

J=ICHMPAR(A,B , 5)
J will have a value of «1 or .FALSE..
If the three character string starting with'the fourth character
was done with A and B as in Example 175; the following would be
used to set J:
183) J=ICMPAR(A,B,3,3,3)
and J would be zero or .TRUE..

To compare the first eight values in C with the last eight, the
code might be:

184) REAL*8 C(100)

IF(ICMPAR(C,C,64,0,92*%8))1,2,3

Note: The second offset is the element number minus one, since the
first offset is zero, times the Tength of an element of the array.

Compare the fifth through tenth elements with the sixth through
eleventh elements in array L.

185) LOGICAL*1 L(20)

IF(TCMPAR(L(5),L(6),6))100,200,300
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Appendix F
LOADMAP

LOADMAP produces the following: 1) a linkage editor map, 2) an
alphabetic 1isting of all CSECT and entry point names, 3) a 1ist

of &11 unreferenced names, 4) cross-reference listings of called
entry points and CSECT's as well as entry points and CSECT's which
are called, and 5) a 1ist of CSECT and entry point names with inter-
nal identification. A CSECT, or control section, is a main program,
subprogram (subroutine or function), COMMON area, STATIC EXTERNAL
area, or a pseudo-register vector.

The 1istings are controlled by keywords in the PARM field of the
EXEC JCL statement. Any option not desired should be prefixed by
the two letters NO. The folliowing describes the function of the
keywords with the default underlined., If only the defaults are to
be used, no PARM field need be coded.

ID/NOID - 1ist CSECT name, address, type, iength, seament number,
and—internal identification number

MAP/NOMAP - produce a linkage editor map

LIST/NOLIST -~ produce an alphabetized listing of all CSECT and entry
point names with the same information as ID provides

UNREF/NOUNREF - F1¢t a1l unreferenced, nut called or used, CSECT
and entry point names with the same information as ID provides

XREF/NOXREF - produce cross-reference listings to show all external

references a CSECT makes (cails or references to COMMON, STATIC EX-
TERNAL areas, or pseudo-register vectors) by the calling CSECT and

a list of where a CSECT, or entry point, is referenced by the called
CSECT or entry point. Both 1istings are alphabetized by name.

LINECNT=82 - specify the total number of lines per page to be used
for the reports. The two-digit quantity must be between 13 and 82
or the default will be used. Space for headings and footings is
included.

The heading on each page includes: the report title, LOADMAP ver-
sion number, time, date, page number, the contents of the PARM field,
entry point address of the load module (in decimal), user region re-
quired for the program {exclusive of buffers and dynamicaily loaded
modules) in decimal K, first volume serial number, DD name and load
module attributes, The renorts are muiticolumn and read down the
columns.

The program requires 446K 5 additional table space which is depen-
dent upon the number of CSLCT and entry point namas and the number
of external references. Most programs can be mapped in the default
region or at most 100K and require 1/2 minute for both CPU and 1/0
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time on the 360/95. The amount of memory required to complete pro-
cessing is reported on the bottom Tine of the next to last page of
the report for each load module mapped. If not enough memory is

assigned, the amount required to finish processing that phase of
execution is given.

More than one load module may be mapped per execution, but the pro-
gram options remain unchanged. A named DD card, which may be chosen
to comment on the load module, is included for each load module and
must include both the data set and member names. The reports are
produced on SYSPRINT.

LOADMAP is in SYST1.LINKLIB and may be executed by either PGM= oar
the LOADMAP procedure, LIB is the symbolic name for the data set
and MEM var the member name. Any other Toad modules to be mapped
should have their own DD cards behind the EXEC card and not use
the DD name SYSLIB.

186) //MAP EXEC PGM=LOADMAP
//ONE DD DSN=USRID.XYZ. LOAD(MEMBER) DISP=SHR
//BACKUPY2 DD DSN=BACKUP. LOAD(VERSIDNZ) DISP=SHR
//SYSPRINT DD SYSOUT=A

//MAP EXEC LOADMAP,LIB='USRID.XYZ,LOAD',MEM=MEMBER
//BACKUPY2 DD DSN=BACKUP,LOAD(VERSION2),DISP=SHR
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Appendix G
ovLy

OVLY produces a tree diagram of an overlayed program from a load
module. Each segment is shown with all of the CSECT's it contains
and the length, in hexadecimal, of the segment., A CSECT, control
section, is a main program, subprogram (either subroutine or func-
tion), COMMON area, STATIC EXTERNAL area, or a ps:udo-register

vector., Optionally a 1ist or deck of linkage editor control cards
is produced.

Two keywords may be specified in the PARM field of the EXEC JCL
statement. NAME= is required and supplies the member name of
the 1oad module to be illustrated from the partitioned data set.
DECK, if specified, supplies the overlay control cards which can
regenerate the overlay structure,

The DD statements required are: SYSPRINT for the tree diagram,
SYSPUNCH to contain the overlay control cards when DECK is speci-
fied, SYSLIB to point to the load module data set, and SYSUT1 which
defines a scratch partitioned data set used as a work area.

The program is stored in SYST.LINKLIB and also has a procedure to
call it. The procedure assumes a listing of the overlay control
cards is desired. LIB is the symbolic name used for the data set
name, MEM for the load module member name, and PUNCH=B will punch
the overlay control cards. OVLY uses 46K and illustrates most
programs in 1/2 minute for both CPU and I/0 time. The load module
may either be a regular or multi-regi n overlay.

The following examples punch an overlay control card deck.

187) //TREE EXEC PGM=QVLY,PARM='NAME=MEMBER,DECK'
//SYSPRINT DD SYSQUT=A
//SYSPUNCH DD SYSOUT=8B
//SYSUTI DD UNIT=2314,SPACE=(TRK,(2,1,

1,1)
//SYSLIB DD DSN=USRID.LOADMOD.LOAD,DISP=

)
SHR
Using the procedure the example would be:

188) //TREE EXEC OQVLY,LIB='USRID,LNADMOD.LOAD',
// MEM=MEMBER, PUNCH=B
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Appendix H
TIMING SUMMARY

The table below lists all of the examples presented in this quide.
The examples are arouped according to the tests performed with a
blank Tine separating each test. The last column indicates which
examples may be compared since they were in the same job step or

are intended to show equivalent code.



Appendix H

CPU Time Percent of Total Run Time Examples Which
Example (Sec) Total Run {Min) # Exec, May be Compared

1 96.0 6.96 23,000 70,000 1-10
2 27.6 2,00 ﬁ 1

3 89,4 6.48

4 28.8 2.09

5 367.2 26.61

6 328.2 23,78

7 79.2 5,74

8 27.6 2.00

9 70.8 5.13

10 55.8 4,04 , ,

1 40.67 7.80 8.693 300,000 11-26
12 7.53 1.44 A

13 - -

14 - -

15 - -

16 40.67 7.80

17 10.07 1.93

18 80.74 15,48

19 76.17 14,60

20 76.78 14,72

21 80.19 15,37

22 25.06 4,80

23 73.70 14.13

24 1.67 0.32
25 1.43 0.27

26 6.92 1.33 1 ] :

T2 9.2 T T T Y aa0.000 27-30

28 16.8 -

29 4.2 -

30 3.6 -

3] 15.46 31~32
32 9,20

33 75.0 T 2,000,000 33-34
34 25.8

35 138.32 19.90 11.585 50,000  35-30
36 208,40 29,98
37 103.23 14,85

38 - -

39 51.65 7.43
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CPU Time Percent of Total Run Time Examples Which

Example (Sec) Total Run {Min) # Exec. May be Compared
40 -
a1 -
42 -
i 128.52 38,00 5.637 2,500,000 43-44
an 124.26 36.74
a5 .
16 8.55 1.72 8.281 100,000 86-55
47 10.84 2.18 \
18 21.32 4.29
19 1361 2.74
50 29,41 5.92
51 14,01 2. 82
52 36.72 7.39
53 15.80 3.18
54 46.26 9.3
55 17.14 3.45 ‘ 1
Tss 7.03  1.10 10.658 1,800,000 56-73
57 15,97 2,50 A !
58 8.57 1.3
59 12.85 2.01
60 12.92 2.02
61 12.66 1.98
62 16.95 2.65
63 12.79 2.00
64 19.12 2.99
65 13.30 2.08
66 21.36 3.34
57 13.81 2.16
68 24.36 3.81
69 13,24 2.07
70 27.05 3.23
71 12,41 1.94
72 30,18 4.72
73 13.43 2.10 i

0 o e v g ke T o o S A o B B 0 g S R S e e b B Gt A ok S A L Gt S e A A 00 o e T
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CPU Time Percent of Total Run Time Examples Which

Example (Sec) Total Run {Min} # Exec. May be Compared
103 8.41 2,76

104 8.26 2.71

108 11.40 3.74

106 -

107 , ,

108 31.35 4.34 12.041 40,000,000  108-134
109 30,34 4.20 \ )

110 17.62 2. 44

m 17.62 2.44

12 29,76 4.12

13 30,99 4.29

14 18.28 2.53

115 17.70 2.45

116 27,38 3.79

17 27.38 3.79

18 15.01 2.0:9

119 15.17 2.10

120 27.01 3.74

121 27.67 3.83

122 15.46 2.14

123 16,04 2.22

124 16.04 2.22

125 17.12 2.37

126 14.74 2.04

127 15.82 2.19

128 15.96 2.21

129 18.2] 2.52

130 14.59 2.02

131 16,25 2.25

132 10.76 1.49

133 10.55 1.46

134 19.29 2.67 r r

% 17.48  s.78 5.079 2,000,000  135-136
136 30,95 10.15 i 94a~107
137 59.89 10.91 9,149 1,800,000  137-138
138 26.11 8.40

139 61.15 17.14

e o S o i o AT T o ot S0t B A B b G ke Y R ) R S T, 0 G T S G W R -
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CPU Tima Percent of Total Run Time Exampies Which

Example (Sec) Total Run (Min) # Exec. May be Compared
140 29.10 12.13 3.999 40,000 140-142
121 27.16 11.32
142 31.67 13.20
143 378 15.77 3,929 300,000 143-145
144 33,52 14.22
145 26. 36 1.18
146 32.39 .52 9.780 1,800,000
147 30,22 5.15 9 770 1,800,000 147-152
148 13.14 2.24
149 12.85 2.19
150 12.79 2.18
151 12.14 2.07
152 9.56 1.63
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Execution Time (Minutes)

Examples Which

Example CPU 1/0 # of Passes May be Compared
153 7.190 9,543 1000 153-157

154 3.189 0.538 1000 153-157

155 2.700 0.535 1000 163-157,159,160
156 2.765 0.538 1000 153-157,159,160
157 3.161 0.543 1000 153-158

158 2,852 13.208 1000 157

159 0.265 0.537 1000 155,159,160,164
160 0.097 0.498 1000 166,159,160

161 2,199 1000 161,162,163

162 1.756 1000 161

163 3.550 0.558 1000 161

164 0,143 0.531 1000 159

165 2.341 10.799 4000 166,167

166 0.707 7.236 4000 165,167

167 6.257 10.389 +10,000,000 165,166
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