
General Disclaimer

One or more of the Following Statements may affect this Document

 This document has been reproduced from the best copy furnished by the

organizational source. It is being released in the interest of making available as

much information as possible.

 This document may contain data, which exceeds the sheet parameters. It was

furnished in this condition by the organizational source and is the best copy

available.

 This document may contain tone-on-tone or color graphs, charts and/or pictures,

which have been reproduced in black and white.

 This document is paginated as submitted by the original source.

 Portions of this document are not fully legible due to the historical nature of some

of the material. However, it is the best reproduction available from the original

submission.

Produced by the NASA Center for Aerospace Information (CASI)

SCIeNCe
APPIIC-atIONS

INCORPORQiE'.D

J. .. 	 .t	 '. i.	 ^ . u .	 i J,	 .1 11 tiJ :7	 J i - . .

SPECIFICATION AND EVALUATION SYSTEM:
SOFTWARE VERIFICATION/VALIDAT.ION TECHNIQUES
Final Report (Science Applications, Inc.,
Huntsville, Ala.) 60 p HC A04/MF A01

Uncias
G3/61 31776

JJJ ^ l

	

y

.^^-	 ..
-.

,^

'^

TABLE OF CONTENTS

Section
	 Page

1. INTRODUCTION 1

2. CORRELATION OF SCOPE OF YORK TASKS
TO SECTIONS OF THE FINAL REPORT 	 2

3. SSES METHODOLOGY	 5

3.1 Software Specification and
Evaluation System (SSES)
DesignOverview	 5

3.2 Software Requirements Methodology 8

3.3 Software Specification Language 	 13

3.3.1	 Elements of the SSL
Computation	 Model	 13

3.3.2	 The	 Language	 14

3.4 Structured Fortran Preprocessor 	 17

3.5 Static	 Analyzer	 19

3.6 Data	 Base	 Verifier	 20

3.7 Dynamic	 Analyzer	 21

3.8 Structural Test Case Generator 	 22

4. SSES BENEFITS AND UTILIZATION EXPERIENCE 23

Appendix

A	 SSES Software Development Example A-1

ii

1a

^	 c

-. Y,

Page

Technical Documentation for SSES Components 3

Correlation of BOW Tasks to Final Report
Sections	 	 4

Augmented Development Cycle 7

Software Development Process (for SPACELAB) 0

Software Requirements Information 10

Software Error Occurrence and Cost 12

Page

Comparative Software Productivity Rates 25

lAffl

r

3

a

1. INTRODUCTION

The purpose of this report is to present an overview
of a software development system built by Science Applications
Inc., of Huntsville, Alabama, under the direction of the
Data Systems Laboratory of NASA, Marshall Space Flight Center,
The system, called the Software Specification and Evaluation

System (SSES), was designed for the effective and efficient

specification, implementation, and testing of computer software
Programs. The system as implemented will produce structured

FORTRAN or ANSI FORTRAN programs, but the principles upon

which SSES is designed allow it to be easily adapted to other
high order languages.

D

2. CORRELATION OF SCOPE OF WORK TASKS	
f '

TO SECTIONS OF THE FINAL REPORT

This final report describes the results of the work	
r

performed in fulfilling the scope of work tasks for contract
	

i

NAS8--31554. These tasks were (A) to complete the detailed

design of the Software Specification and Evaluation System

(SSES), and (B) to implement the critical SSES components.	 i'
In fulfillment of Task A, an overview of SSES is presented

(Section 3.1 of this report), along with an example which

depicts the use of SSES in the development of reliable software

(Appendix A of the Final Report).

' yl

2

II	
j

i

W

O CD

O 0
0 1-j-
(D n
0 ID
rF F'
U) d

O

Ca

;3
C+

P7
ct

Fil

O

M
O
ti

_	_ -	

•Y

rFr

1

1=

TECHNICAL DOCUMENTATION FOR

SSES COMPONENTS

Design	 User's	 Operation
Document	 Manual	 Guide	 Listing

Software Require-
ments Methodol-
ogy Design
Specifications

NASA Software Introduction NASA Soft- Separate
Specification to Formal ware Speci-. documenta•-
Language Transla- Specification fication Lan- tion with
for Unit nodule Technique and SSL guage Opera- no title
Descriptions tion Guide

NASA Structurod NASA Struc- Included Separate
FORTRAN Pre- tured FORTRAN Pre- in documenta-
processor Unit processor User's User's tion with
Module Descrip- Manual Manual no title

No changes	 Separate
to existing documen-
documenta-	 tatiOn with
tion	 no title

Included in Separate docu- Includes' in
User's lean- mentation	 an Appendix
ual	 with no	 to Design

title	 Document

Included in Separate docu- Included in
User ' s	 mentation	 Design
Hanual	 with no title Document

1. Other design documentation inclades:

Calling Hierarchy for Modules Constituting the NASA Structured FORTRAN Preprocessor
COWON Names and COMION Variables Referenced in the NASA Structured FORTRAN Preprocessor
Cross Referenes cf Modules and COb1MON Names in the NASA Structured FORTRAN Preprocessor

Flowcharts

NASA Software
Specification
Language Trans-
lator Flow-
charts

NASA Struc-
tured FOR-
TRAN Pre-
processor
Flowcharts

FACES
Flowcharts

SSE$
Com2onent

Software Require-
ments Methodology

software Specifi-
cation Language

structured
FORTRAN
Oreprocessor

Static
Analyzer

Data Base
Verifier

Dynamic Analyzer

Structural
Test Case
venerator

I

W
qR

fD

L^3
7

W

rJ]

tions I -

FACES Unit Module 	 Updates to
Descriptions Existing FACES
and Updates to Documentation

Existing FACES
Documentation

Data Base
Verifier Design

NASA Dynamic NASA Dynamic
Analyzer Analyzer and
Detailed Design Structural
Document Analyzer User's
Version II Manual
Revision O
and Dynamic
Analyzer FORTRAN
Data Base

NASA Structural NASA Dynamic
Analyzer Extension Analyzer and
to Dynamic Analyzer Structural
Detailed Design Analyzer User's
Document Ranual

:

Task

A

D

Bl

B2

B3

J

Final. Report

Section Title

3.1 Software Specification and

Evaluation System (SSES)

Design Overview

Appendix A SSES Software Development

Example

3.2 Software Requirements Methodology

3.3 Software Specification Language

3.4 Structured FORTRAN Preprocessor

3.5 Static Analyser

3.6 Data Base Verifier
s

3.7 Dynamic Analyzer

3.8 Structural Test Case Generator

3. SSES METHODOLOGY

3.1	 SOFTWARE SPECIFICATION AND EVALUATial SYSTEM (SSES)

DESIGN OVERVIEW

(Task A: SSES Design Completion.)

Early in 1975, SAT and NASA jointly began a software R&D

effort to develop a methodology which could reduce the effort

expended in a typical software test and verification activity

without sacrificing confidence in performance, thus improving

the cost effectiveness of the overall software development. The

Software Specification and Evaluation System (SSES) has been

developed to achieve these goals. The system includes special--

purpose languages and automatic requirements/code verification

and validation tools designed to improve the quality assurance,

traceability, testability and maintainability of the final

tics f' tware product.

a

The SSES comprises a set of integrated components based

on the following software development phases:

a	 For the Requirements/Specification phase, a
requirements methodology was developed to
insure the integrity and feasibility of the
software requirements. This methodology in-
cludes a prescription for the necessary content
of the software requirements specification.
Also, there is a formal Software Specification
Language (SSL). This language is used to
formally describe the overall software system
(or functional) structure and, thereby provide
a firm foundation for the software design
process. SSL automatically provides for the
traceability of requirements and checks element
interconnection consistency.

For the Coding phase, language disciplines
for the promotion of reliable . software have bees
identified and incorporated into a high-level,
structured FORTRAN language. This language
is translated to ANSI 3.9 FORTRAN through
a preprocessor. Further work in this area
includes the formulation of a complete pro-
gramming rrN , hodology to alleviate questionable
coding practices and, thus, increase reliabilit3
and flexibility.

5	
Aff

IF

6 i^AW

0

m	 For the Verification and Validation phase, there
is a Static Code Analyzer, a Data Base Verifier
a Dynamic Analyzer, and an Automatie Structural
Test Case Generator. The Static Code Analyzer is
used to enforce technical coding standards and to
document pertinent program information tc, be used
during other V&V activities. The Data Base
Verifier is used to analyze the program's a..:cessing
specifications and construct tables which describe
the stored data base. (This tool exists in design
only and will not be implemented until FORTRAN
CODASYL standards have been set.) The dynamic anal-
yzer is used to dynamically analyze the software
system's execution characteristics, providing execu-
tion path trace and variable trace information. In
order to provide adequate test case coverage, an
automatic test case generator is used to test the
final software product,

The application of the SSES components, the methodologies, reliabil-

ity disciplines, and software tools, to the software development

cycle are pictorially presented in Figure 3--1.

0

^A
4	 '

3

i

d

li

w

01SC IPLINES

DEVELOPMENTENT
STEPS

(P^D' G

 ESIGV
E:I'a.GE

Lr.ES

TOOLS
I

STATIC LODE
ANALYZER

1

i

STRUGTURAL TEST
CASE GENERATOR

,I

i	 .	 L-	 ----^l^ ---J
^	 I	 I	 I

l DATA BASE

SSL	
STRU:TURED	

ANALYZER	
VERIFIER

STRU OCES54R

1.761 SOS

Figure 3--1. Augmented Development Cycle

mkjol

3.2	 SOFTWARE REQUIREMENTS METHODOLOGY

(Task B].: Software Requirements Methodology Design)

In the area of software requirements, a method of

Stating requirements which enhances clarity, consistency, com-

pleteness, traceability, and testability had to be defined.
These requirement expressions represent all the relationships

between the input and output and between the to-be-produced
product and its environment without unnecessarily limiting the

passible configurations of that product. Using SPACELAB soft-

ware, an initial consideration of the approach that was devel-

oped for NASA to use in developing software requirements speci-

fication documents is presented in the following paragraphs.

As depicted in Figure 3-2, the software development pro-

cess consists of activities, documents, and reviews. In order for

the reviews to be maximally effective, the software and supporting
documentation needs to be clearly expressed and sequentially

traceable. In particular, with regard to the design requirements

review (DRR), the software requirements specifications should be a

function of (and must bridge the gap between) the prior activity--

system design (not depicted) and the succeeding activity--prelim-

inary' software design. Consequently, the software requirements

specification, whatever its particular format, should contain the

information listed in Figure 3-3.

The method in which such information is expressed should

probably be project or personnel dependent. Some factors affect-

ing the choice of method are:

o training and background of requirements developers

o desired breadth of requirements visibility

0	 generic type of software

®	 allocated finances and other resources

One specific format (for SPACELAB software) will be sug-

gested in the Software Requirements Design Specifications to be

delivered as part of the task work. The design document will

depict the key aspects of the Software Requirements Methodology.

low/
8	 ANOVIff AF

T!

o	 ^^

r^

:.3

S tLINED CrMIUM WaREMS
ctnamm u uviluo

8

I

OA
ye

L'

i

QD

1

J

PRELIMINARY

SOFTWARE DESIGN
d

s	 NAME

0	 PURPOSE

INPUTS, OUTPUTS

EXTERNAL INTERFACES

®

	

	 GLOBAL PERFORMANCE REQUIREMENTS

GLOBAL CONSTRAINTS

j	

s	 TOPDO%NN FUNCTIONAL OECOMPOSITION

TRANSDUCTION AND IMPLICATIONS

SOFTWARE REQUIREMENTS !NFORMATION
FIGURE 3-3

FAIF

^i

f

Al
?JJ

i

11g^

^f	 6f

5

j

Of all the software development phases, requirements def-

nition is undoubtedly the most important. The kind of inform-

tion depicted in Figure 3--4 illustrates the quality and cosh: ad-

antage that can be gained through a careful execution of this

nitial stage of software development.

SOFTWARE ERROR OCCURRENCE AND COST

MOST ERRORS IN LARGE SOFTWARE SYSTEMS ARE IN EARLY STAGES

70

60

DESIGN
OPTIONSso

40
Lu

LL

0
03

z	 CODINGuj
OPTIONS

2
C6

0

TRW	 TRW	 IBM	 IBM
C&C

	

	 C&C	 OS	 OS
DEVELOPMENT MAINTENANCE DEVELOPMENT DEVELOPMENT

& MAINTENANCE

IT PAYS TO CATCH SOFTWARE ERRORS EARLY

foa

SOURCES

50	 0 IBM—SDD

3.3	 SOFTWARE SPECIFICATION LANGUAGE

(Task Bl: Software Specification Language Imple-
mentation)

The purpose of SSL (Software Specification Language)

is to aid in the process of defining systems and modules in

order to alleviate software interface errors and improve re-

quirements/design traceability. A formal description of-the

syntax and semantics exists which has enabled the construction

of an automatic translator. The translator makes a series of

nontrivial consistency checks based primarily on a system flow

model that is assumed to exist apart from the SSL description

and which originated in the software requirements specification.

The essence of the flow model is checked implicitly by several

features within the language.

3.3.1	 Elements of the SSL Computation Model

SSL is a machinable design analysis tool with a

formal syntax and semantic description. It does not impose

artificial restrictions on data flow or software architecture

but does insist that both conform to a separately developed

system flow model. This affords the opportunity to perform

extensive nontrivial consistency verification and develop a

document that aids communication of design intentions and testing

criteria to subsequent phases. The basic elements underlying

an SSL description are data structures, modules, levels of

abstraction, and requirements.

Anyone with a-s understanding of data declarations in such

procedural languages as ALGOL and PL/1 can easily grasp

the concepts of variable and data structure in SSL. The lan-

guage provides a small number of basic data structures.

It, also provides a small number of basic data types for

which there is a direct implementation or trivial extension of

a direct implementation on most hardware. These types may be

used to affix attributes to simple variables or combined to

descr-ibe composite variables.

J7/
13	

40PVff At'

4

f

Generally, a module is understood to be a program unit

hat can be understood independently of the rest of the system.

xamples are COBOL paragraphs, ALGOL procedures, and FORTRAN sub--

outines. Modules are further combined into higher entities call-

d levels of abstraction under the interconnection operation.

Levels of abstraction are sets of modules, embedded with-

in a larger system, having several distinct properties:

Pl. A level of abstraction is a set of modules which
may share tlobal data (and perhaps hardware
features) among themselves, but not with modules
outside the set. In any case, a subjective com-
monality of function or purpose binds all modules
within a set.

P2. A subset.of the modules with property P1 (called
entry or external modules) can be referenced
only from modules in other levels.

P3. There is a unidirectional dependence among the
sets (i.e. a higher level may reference an
entry module of a lower level but not vice
-jersa).

In SSL, there are four components to a requirement:

input, output, transduction, and constraint. Input and output

are named variables corresponding to system level stimuli

and responses. Constraints are simply named-entities attached

as attributes to various objects within a described system. Their

higher or conceptual meaning is not directly representable

in SSL. Transductions are also named-entities attached as

attributes to objects, but their purpose is to capture, via a

partial ordering, the flow model underlying the module decom-

position.

3.3.2	 The Language

Systems described in SSL are partitioned into one or

more subsystems where each subsystem corresponds to a level of

abstraction. Within each subsystem one or more modules are

described nonprocedurally. Module description statements per-

mit module connections and data flow to be depicted in a

^ , arivt, ,y of ways, subject to the restraints imposed by the

^AF

Aff" AV

115

nderlying flow model. The flow model (i.e., requirements) and

a.ta structiires are defined in a subsystem preamble. A partial

rdering of transductions is specified in the preamble.

Modules are the focal point of an SSL description of a

decomposition. Information represented about modules includes

input variables, output variables, called modules, and transduct-

ion attributes which guard all interconnections. The general form

-)f a. module description in SSL is:

MODULIII
{module name} [(local variable list)];

ASSUMES {assertion list};
SATISFIES

FULFILLS
	

{transduction and constraint list,;

ACCESSES

USES

CREATES

MODIFIES

EXECUTES

END MODULE:

{variable list} USING

{variable or component

USING { variable or com

ITERATIVELY -({module

CONDITIONALLY

{environment list};

{variable or component list};

{variable or
component list};

list}

ponent list);

reference list})

Transduction attributes play a role in limiting the ac-

cess scope of global data accessed in the MODIFY and USE state-

ments or USING clause. For e.-ample, each transduction attribute

of the module must be either the same as some transduction attrib-

ute of the variable or a successor (in the partial ordering sense)

of some attribute of the variable. The effect of this rule is to

limit the use of a variable to specific subnetworks. Similarly,

in order for one module to reference a. second module within the

same subsystem, the first module must have transduction attributes

that imply at least one attribute of the second module. This

insures that the module ordering will generally correspond to the

transduction ordering which, in turn, corresponds to some under-

lying flow model. Yet, the rule is not excessively constraining.

The produced module network is seldom a simple restatement of the

system level flowchart. The preliminary designer has considerable

freedom within which to decompose the flow processes.

D

3.4	 STRUCTURED FORTRAN PREPROCESSOR
(Task B2: High Level Language Disciplines
Determination and Structured Preprocessor Selection)

The goal of consistently producing reliable software

dictates certain criteria for the structure of t yle program

language employed. A list of criteria which an ideal programming

language should satisfy was derived from studying programming

languages that promote reliable code implementation. These

criteria are as follows:

® The language should follow naturally
from a top down approach and should
be able to reflect the problem at hand.

0 The language promotes a sequential imple-
mentation.

o Control structures should be explicitly
clear and should be kept to a minimum.

0 The language should exhibit the same
syntax structure for semantically similar
constructs.

a The language should allow indentation
and a type of modularization that clearly
defines the boundary of each module
and allows each module to be clearly
and completely locally understood.

s The language should have meaningful
reserved words.

m The language should allow the programmer
to write often used constructs with a
minimum of detail.

0 The language should offer a nonrestrictive
placement of comments which facilitates
trouble--free usage.

• Side effect changes of data should be
made explicit and restricted to a minimum.

®	 Data types and other information crucial -to
correct execution should be explicitly
specified preferably in several different ways.

r

i
4

r	 The language should have a context-free
syntax.

r	 The language should be amenable to automatic
code analysis.

r	 Machine overhead of often used constructs
should be kept to a minimum.

Attempting to find a language that satisfied the above

criteria while simultaneously acknowledging NASA's wide use of

FORTRAN influenced us to consider a structured FORTRAN preproces--

aor as a language vehicle. Existing structured preprocessors were

evaluated to determine which ones incorporated a large number of

the criteria listed above. A preprocessor developed by the U.S.

!army Missile Command at Redstone Arsenal was selected as the basis

:)f our work. It featured three primary control structures for

structured programming: the concatenation capability, the IF-THEN

-OR IF-ELSE construct, and the DO WHILE' construct. The FOR and

PEST CASE constructs were added for user convenience. The prepro--

:^essor accepts structured FORTRAN source statements as input, and

venerates corresponding ANSI 3.9 FORTRAN statements. These gener-

ited source statements can then be used as input to an ANSI

FORTRAN complier. Moreover, the structured FORTRAN preprocessor

arovides for automatic identification of nesting levels.

In addition, the original preprocessor as well as all

subsequent modifications were designed with transportability as

a priority. To date, the structured FORTRAN preprocessor has

been readily implemented on the IBM 360 and 370, CDC 6600,

UNIVAC 1108, PDP 10 and 11, and the SEL computing systems.

4)

Ell

:;.5	 STATIC ANALYZER
(Task B3: Static Code Analyzer Implementation)

After the desired software modules have been coded and

compiled, the next step in producing reliable software is to

verify and validate the code using software tools. From the SSES

rc^pvrf:ojr , the logical component to use first is the static
cod- analyzer. The static code analyzer accepts ANSI FORTRAN

sonrco code as input, evaluates the code according to intramodule

a ncl iii (rm ,)ciu l e c ons i derat ions, and produces appropriate output
whh-h identifies parts of the code which are likely candidates

I, i ►- inconsistencies and errors. Proper technical coding standards,
,card programming style, and appropriate program structure are all

:shacked during the evaluation of the source code. To satisfy the

task requirements in the area of static analysis, the following

:-.apabilities were added to the NASA static analyzer, FACES:

a EQUIVALENCE and EXTERNAL statements are flagged.

0 Unlabeled COMMONs are flagged.

a DIMENSION statement and variable which contain
an adjustable (variable) dimension are flagged.

r	 Arithmetic IFs are flagged.

® Targets of branches should not be other branches,
especially single GO TOs.

0 Occurrences of error-prone FORTRAN statements
such as ASSIGN statement, assigned GO TO, and
PAUSE are flagged.

'Phase now 1'eatures represent a significant increase in the

over.LII c! f'fectiveness of the NASA static analyzer.

19

1. 9

C

q.

U,

3.6	 DATA BASE-VERIFIER
(Task B3: Data Base Analysis Tool Design)

The approach to data base verification was based on

CODASYL's (Conference of Data Systems Language) view of a data

base management system. The CODASYL organization has been engaged
in the development of language standards for describing extensions

to existing high level languages (e.g. COBOL and FORTRAN) which

(will allow access and operation on the data base components as

well as describe the part of a data base which resides on perman-

ent storage. According to CODASYL's definition, a data base man-

agement system is a system which manages and maintains data in a

non--redundant structure for the purpose of being processed by one

or more applications. In a data base management system, an appli-

cations programmer writes a program in a higher order programming

language such as FORTRAN or COBOL which has been augmented to

incorporate Data Manipulation Language (DML) commands. The DML

statements provide interfaces between application programs and

d!i i,,i h., -ws during execution.

Our data base verification subsystem concentrates on

the FOItTRAN applications program written in ANSI FORTRAN which
has been extended to include Data Manipulation Language (DML)

commands. It accepts CODASYL FORTRAN Data Manipulation Language

source code as input, and statically analyzes the program. Data

base.description tables are then constructed which describe

the stored data base that the program accesses and manipulates.

Finally, it prints a. report containing a summary of all the

inl'ormation collected about the components and the structure o

the stored data base. The user must then establish the con-

sistency and validity of the stored data base within the

f'i'i mfl w<^rk of the program descriptions by cross referencing the
LabI os.

20
	 .r/1

3.7	 DYNAMIC ANALYZER
(Task B3: Dynamic Code Analyzer Implementation)

Continuing the code verification and validation process
using the SSES methodology, the next logical software tool to exe-
cute would be the dynamic analyzer. The dynamic analyzer accepts

either structured or ANSI FORTRAN source modules (or a combined

stream of both types of modules) as input. The static analysis

section of the dynamic analyzer recognizes all the necessary

statement types, and sets up a program graph of the source code

which emphasizes branch nodes. The program graph is constructed

from the target program by assigning to each program statement

(line) a node on the graph and using the edges between these nodes

to represent control flow of the program. A decision-to-decision

(DD) path is a path which begins and ends on a decision or branch

node. The DD paths are important because they are used as indi-

c,ators for inserting probes into the code. One probe is placed

['or each DD path in the program-graph. The instrumented source

code is then written to a file which may be attached in the same
computer run or a later one. After this file has been attached,

compiled, and loaded (or link edited) with the Dynamic Analyzer

run time package, the module is executed and r oan time statistics

arc) collected. When the execution is completed, the third com-

ponent of the Dynamic Analyzer, the trace analysis package, reads

and interprets the data collected in the previous step. A de-

tailed module test report, including a node/sta.cement list, a DD

path analysis, and a monitored variable list along with a summary

report of the effectiveness of module testing is produced. (A

sample test report is presented in Appendix A.) These reports

provide the author of the software a comprehensive dynamic anal-

ysis of the software modules. The author can then determine by

inspection which areas of code are most critical. Since the test-

ing coverage is documented, the author has a reference for any

further testing of the software modules reg4rdless of whether

modifications are necessary.

!%i
21	 AVPFAff

I.3.8	 STRUCTURAL TEST CASE GENERATOR
(Task B3: Structural Test Case Generator Implementation)

The structural test case generator assists in the gener-

ation of test data sets that will exercise desired segments of

cede. It accepts structured FORTRAN code as input and performs

several different functions for the user. First of all, it deter-

mines the total number of execution paths from entrance to exit in

then module, based on some assumptions concerning the looping struo

Iture. Other functions of the test case generator are determin-

ations of minimum and maximum coverage tests and a measure of

probable testing effectiveness for these two testing alternatives.

For the first calculation, the minimum number of distinct test

cases which must be produced to meet the testing goal of covering 	 r

each DD path in at least one of the tests is computed. This set
or test cases represents the "best case" situation for testing

purposes. In the next calculation, the structural test case

generator determines the number of distinct test cases required

to satisfy the execution of all DD paths which represents a

"worst case" situation. Dividing these minimum and maximum

number of tests by the number of execution paths yie';ds a minimum

and maximum (probable) testing confidence measure, respectively.

In effect, this measure reflects how thoroughly, in terms of

total. possible execution paths, the program would be tested by

using the minimum or maximum number to achieve DDP coverage.

Resultant low values indicate that a high Level of confidence

can be placed in program behavior based on the DD path coverage 	 v9

}}
tests.

I	 The remaining test case generator function is a potential

;path selection which takes into account the previously calculated

measurements. The cover selector portion of the output report

Prescribes an ordered selection of DD paths in a sequence of steps,

which, will number between the minimal to maximal values, to be

executed in order to achieve complete DD path coverage. With the .j

output generated from this automatic code analysis tool, a user

can make a quick, more productive selection of paths for test data

gf neration.

AV
9

22	 ^^J

•	 t
	 1

4.0	 SSES BENEFITS AND UTILIZATION EXPERIENCE,'

All of the SSES components previously described except

the data base verifier have been implemented. During implemen-

tation, productivity figures were kept on the Dynamic Analyzer and

the Software Specification Language Preprocessor which were devel-

oped using as much of SSES as was available. Table 1-1 contains

these figures and their comparisons with industry standard pro-

ductivity estimates. The fact that personnel training and famil-

iarity with the SSES components is not reflected in the figures

must be taken into account when viewing Table 1-1. 	 The produc-

tivity rates for the SSES component development for which many

programmer interactions occurred show a 2 to 1 benefit ratio in

• omparison with the Aron figures. This increase in productivity

represented a corresponding cast reduction in the development of

reliable software which Was one of the original objectives of

^rS .

Experience has shown the Software Specification Language

to be a useful tool in evaluating the early design efforts prior

10 further expenditure of resources. The primary contribution of

he language is an existence proof that higher order verification

is possible. This is accomplished by two basic semantic rules
v that relate the decomposition to a sy^-:tem flow model without de--

nanding the system architecture be a simple restatement of the

odel. Simultaneously, the system encourages use of modularity,

igh level. data types, and levels of abstraction.

The Structured FORTRAN Preprocessor was used in the devel-

pment of SSL, the Dynamic Analyzer, and the Structural Test Case

Tenerator. It promoted "built-in" softw,are reliability by allow-

ing the implementots to use structured programming, and its ease
U

DC use simplified the coding of these software tools.

The static analyzer PACES has been usedfor a portion of

he shuttle structural testing data acquisi-lion system. FACES was

applied after the software had been debugged. Error conditions

were detected in 6.5% of the source code analyzed, and one half of

All .0

23

r^.

^^,

^;

^:

<<,

.^,.........w.__	 .,.	 .,	 ,,^__.^ ._	 3

tAD

cn

C-	 C	 C	 C-4 f 3	 ^. ;,	 t. >	 C

Table 1-1. COMPARATIVE SOFTWARE PRODUCTIVITY MATES

	

Aron	 Corbato	 SSES
(No System	 (System	 (System
Testing)	 Tested)	 Tested)

Very Few Programmer Interactions	 39 HOL Lines/	 50
Man Day

Some	 19	 5

Many	 6	 12

Using SSL, Structured Preprocessor, FACES

i

^^

r

a

tfi

4 .

APPENDIX A .

SSES SOFTWARE DEVELOPMENT EXAMPLE

The following pages contain an example of a
computer program developed by the NASA SSES
Software Development System. The program is
intended to solve the problem appearing on
the next page. For this program we have
written the following SSES documents and
listings: The Software Requirements
Specification., the Software Specification
Language, the Structured Preprocessor Listing,
the ANSI FORTRAN Listing, the Static Analyzer
Listings, the Dynamic Analyzer Listings and
the Structural Test Case Generator Listing.

-	 s	
-

JiD

:

yf

'	 SOFTWARE SPECIFICATIOBI & EVALUATION SYSTEM (SSES)

_	
a

b15CI p L1•=ES

	

QFtEGUIAt—
	 7On CO:;N	 LASVGu41

SDFT:JARE	 DETAILED
DEVELOPMENT SYSTEt1	 RrOUIRE	 DESIGN	 INTERFACE	 DETAILED	 MAINTAIN
STEPS	 REQUIRE /	 SYSTEM	 5 _F	PREL]S7INARY	 CODING VEflIFIGA	 TESTING	 TESTING	 & AtDOIFV

MENTS	 SPECl F1 CATION	 DESIGN DESIGN	 TION

I	 `	 I	 I	 ! L _.	 !

f	 I
	_ 	 STRUC—	 IIDYNAMIC	 ! DATA BASE
' - ?	 TOOLS	 -	 SSL	

PTURED	 i	 ANALYZER (VERIFIES

!##	
-	 LESSOR	 I	 !

1

-	 STATIC	 STRUCTURAL
CORE• 4NALY-ER	 TEST CASE

. - E	 3ENERATOR

1-751585

PROBLEM

"A program is required to process a stream of telegrams.

This stream is available as a sequence of letters, digits and

blanks on some device and can be transferred in sections of pre-
determined size into a buffer where it is to be processed. The
words in . the telegram are separated by sequences of blanks and

each telegram is delimited by the word 'ZZZZ'. The stream is

terminated by the occurrence of the empty telegram, that is a

telegram with no words: Each telegram is to be processed to
determine the number of chargeable words and to check for occur-
rences of overlength words. The words 'ZZZZ' and 'STOP' are not

chargeable and words of more than twelve letters are.considered

overl,ength. The result of the processing is to be a neat listing

SOFTWA-E REQUIREMENT SPECTFTGATION

Name: Telegram Processing Program

Purpose: See Previous Page

Inputs :character stream on a drum of fixed length.records
Outputs: printed telegram with detailed changes

External Interfaces: Drum, Printer

Global Performance Requirements: Must run in 32K

Global constraints: Must run on a PDP-8

Functional Decomposition
.see Following Sheets

Transductions and Implications: ^

---y---- 	rA 	--..

REQUIREMENTS ACTIVITIESAND TRANSDUCTIONS

Print 1	 Collect words into telegrams
n._.2._t 1	 n__1	 L_ R_ t_9

f	 al

i1

AF

/

`'	 ^^^	 -----^------------------ --	 `^ !

^
|	 1

_	 / |

Print I

Words
~Telegram

)m—
Charoes

Print 2

Whole

Tel er

	

pram	

7.21	

Telepram
.

~~ Print 3

Detailed	 Printed

Charges	 1.3]	 Charnes

Inntit

Collect I

Cbarac-	 Words

ters

Over-
Words	 length

	

20).2	
or EOF
Message

Senarate

Last	 Next
Charac-	 Charac-
ter	

4(j)	
ter

'

Last	 Nex t ^Record	 Record.
SDI

	

^~—^~--^	 ^----_--^
OVERVIEW DIAGRAM

'

'

'

^

t

C.. C

In nu	 Out ut

Collect 1

Blank	 Read characters	 Word
and non-	 array
blank -	 Group non-blank characters 	 of
charac-	 --- "°`	 into wo rd s	 length

tars

	

	 12
Truncate words at leng th 121

In ut

Words of
length
12

End of
tel egrain

1.

Fl ag words of	 12

Flag end of telegram

DETAILED DIAGRAM FOR COLLECT I AND COLLECT 2

Output

Over-

length

message

EOF
flag

AV AV
m

A067

:i	
_	 _	 ^r - fir •	^

SOFTWARE SPECIFICATION LANGUAGE

A semi-automated tool that assists in conversion

from written requirements to computer code structure.

o	 Checks the consi_;tency of the logical flow of data

and computations sequence to generate the desired

output for a given input.

0 Provides requirements traceability.

REPRUD I..1CIBILfry OF THE^ i
10AIGINAL PAGE IS POOR

'FC [PICOT ICA	 •..I: tVbLuaricA	 Y , um

YFPCRT TAGLF OF CCATENTS —	 _	 .--•--	 _

SQI:RCF SOURCE
t

XP;
LINE PAGE FA+

= 1.i0. ,-V	 IF A 	 M 4 1.l .T .	 •
__.

«

?i f:LL FS
I

1. GF,T	 TELrGRA'a .	 1 .

.i
i. GFT	 ,Of	 u .	 . 1	 .	 .	 .-

i1lAFci^fLFS

1. A	 CI-AR •	 34
2. CHARGE . GJUNT 	.	 .	 a •	 .-	 s	 .w	 .	 •	 •	 6	 . .

• 	.
	 .	 •	 ♦ 	 •	 •	 •		 •	 °	 .	 .	 r	 °

=. TELEGRAM x	 . .
45 - EUF -FLAG	 ..	 w'

_
•	 .	 •	 •	 .	 .	 .	 14	 • .	 .	 •	 .	 ^'.	 •	 r	 s	 •	 •	 .^.~ a.	 .^.	 .	 °	 •	 a	 •	 .-r	 Zf

hi+t^		 •	 .	 .	 r	 12 w•	 •	 .	 •	 °	 •	 •	 . •	 •	 •	 r	 •	 .	 1
F. waRC_tLUNT		 5

..:
	 . ".		 1.

1 ntrc.rR	 'ECg TS	 i .. -.	 .	 .	 .
- •	 Y-	 1. COLLEC T 	 ...	 • .	 .-	 .	 .	 - •	 w	 •	 .	 . •	 •	 °	 •	 •	 • •	 •	 •	 •	 . •

......._::	 -...° -
.
_-

:_. a	 r	 .	 a	 w	 1
c.. PRINT.

't1RSYSTFF	 1 - 0	 _•_.._	 _	 ..^° `...'_-' _`	 '_	 Z
vci, l L ES w r	 .	 r	 .	 w	 ♦ 	 . •	 r	 s

1. GET- - CFAR	 2	 . ,		 E
e' . FILL_ELIFFER

...
.	 . .	 2	

.		
.	 1	

I

VARIbELES. .	 :		 2`

I . p.. G HA e^	 _. . ` .	 :' . ': •	 `, '	 2

i

SOFTWARE SPECIFICATION LANGUAGE

.SE.aTwt. qr. eaer . lr l:. 2T 1 . 1N. ACT '_VlLUATI7T3 SYSrcu

:, -.fx..ti FR[VV#'	 -r	 w[`	 -^` isiGr4T CU 	-.	 ,	 + 	 - 	 - -rtr	 -.
9. Cpi?Il14P utl , s 6.6

.ri. t ^AN^ _ULT1"r Lt,"C'	 1V s^'; r ; >ra
C,JTP-jr	 "ii

.. -	 -	 -	 L0. -	 ^,19!r^tF^	 C H M1a :F_C?ry '?T 	>>	 $;	 ',	 - arr'
-	 11. Sf47'l	 C^TJ p • :

	

IT CO E°: ers

L3:. SU9J`rrT^	 N p4f;,Cn '1'JT	 >_ CKd?GE_C i+J .,r; r#r
WORO:	 4 13 9AY f 121	 nF C44c;	 -	 - e#a

15. P41P	 P liTNT; ##t
16. EDF _FLAG:. 3004 E AN: n t#

FVP - PRINT.
IR.. Js F,ND nF PRFA t3Lr t/ ##t
19. JY MAIN RitUTTNF. TO COLLECT waPOS AND PRINT TELED p lLu HTTH WI)RD CIIUNT #J s*t
20. NODULE.GET_TELEGRAA: s)a#.
21. _FULF.IILS- PRINT; *^«
22. ,CREATE. 7E4EGRA)Er CHAW—COUNT	 USING	 RORO,' kaa
23. ..	 CREATRS	 NOPD_COUNT: ;b*x

24. MODIFIES	 UORO—CEWNT #•#

25. _ . USES. _	 EOF_FLAG: r#x
26. ACCESSES	 LINE_PRTNTER; St¢
27. EXECUTES ###

1. 20. ITERATIVELY	 tGET_51>J RD] ; ##a
\ x9. SATISFTES s#a

I 30. EOF;_FLAG	 OR	 HO.RO_COUNT - . . 0. sr
EiHIrMAULES ts#

32. J* PROCEDURE TO COLLECT CHARACTERS-INTO HORDS * /}
33. MODULE . GET 11DRD; b#

_'dam FIIIFIL45	 0741 LELTi^	 -	
Jt

0*
i. 35.. ..	 ExFcorES a*♦
I _ 3&. ITERATIVELY.	 tT_O.GET_CHAft : tA-CHAR.CHAR; Ef1F_FLJIGI.1". ##*

_	 _ 37. CREATES.. IIORDs 10F_FLAGS rte
38. ACCESSES	 LINE—FRUITER	 J# ' PRINTS t RRGR. 14USSAGES *J est
39. ENO MODULE t#^'

I
40. ENQ, SUBSYS,TEH; J a END OF HAIR SUBSYSTEM #% ^R#

The subroutine GET-WORD fulfill*; the
-	 -	 requirements transdUCtionS .COLLECT 1

'and COLLECT 2.

f

^:,

^ ..	 i	 °!

r.	
^	

^	 Cd

Y

REPRODUCIBILITY OP T- "
ORIGINAL PAGE IS POOR

im
f+

SOURCEPROGRAM
(STRUCTURED FORTRAN
AND ANSI FORTRAN
STATEMENTS)

NEW ANSI
FORTRAN SOURCE
PROGRAM

CONVERT STRUCTURED
STATEMENTS TO ANSI
FORTRAN CONSTRUCTS

jf^ 29Alf
mz;z

..	 _ .. _ _ ^.^.	
- -__..^..w._„^„^.:.a.=^^S,,:,r.-.tee».b......_: ±^. a^^ ^,,,.f _ , — - _ --	

. ^.,	 .^ ►-^

STRUCTURED TO UNSTRUCTURED FORTRAN PREPROCESSOR

9-75-1578

'F

j]p
N^

l^l

REPRODUCIBILITY OIL T.IS
oRieINAL PAGE IS POOR

0	 i	 STRUCTURED PREPROCESSOR LISTING

u

atjw,^,Ur IN	 t L T :	 (l.r l
lk ?, ::L)F

C	 Ff.1rH FS 	 f ,'!'	 L r:UI TLLL(,kA4
C	 1'x'1.4 i	 = ,rr,d{, C f l: +{S	 l.v IrC)rU
C	 ElIF	 F VILC FLAG	 1

W	 C	 i

lns,IC6c t'J I 	L 	 .
IIATn lolAJK

c	 !

f I 1;^	 I1	 =	 [,	 l'1
t,	 IW)R1iI) = f'L1',K

END VIN
L F N - .I-aLSi..

C
C	 FIN) F [,<ST ",C,N!ll. ANK CHARACTER

€ C HAR = [Hk_airK
MI w0if LL. (1 CrIAf{ .FQ. BLANK .AND. . 0,,i-T. L CF)

CAI L i,rTCJ IP (LCHAIR	 E(JF)
ENO fir)

t^	 C

C	 I:I,LL!CT

[^ I	 r

:111 WJILL (.'%-IT. 	 ICiiAR .t4.	 IvL+iAK
7	 .AAl). .,J!:3. EOr)

TrILrJ

L S+_

TI	 -'^
tI Tt (6	 1)

L	 +t'4IT (1H > 1 IJL,dki) UVrRFL;?I.)
(FN = eTRLJE.

	

{nJ'_ C, TCHP {ICltAR	 cr7PI	 i
f N1 ;rr)

C s; € f L! f? r,;

S s A t t lrw r 'ju , i,i s I ,1J Uii.

1R5 L'Ji!'.!.1 I	 II11 S ROUT1 'c.	 42 '.' A Z JS F CAR .	 Y5 LARDS OUTPY

71 Ir:T:+L L A ,, US tiLA).	 d1 T f ,TAL c,Kku'^
2 7,'r-1. ^U V.HIL- w S,	 l TOTAL 1	 S,	 J 1:1TAL JR IF

	

TS)T11. 1 - ilxI S,	 U TOTAL TLSr CASC^S.
i l)K<, iAA UNITS PKQC"_SSEU.

D

GENERATED ANSI FORTRAN

L 21.0 I JUN 14 !	 GS/SOJ	 0

—	 Gtlrll)lLrR 1,1 1 1 I,3 49 - 14o)F=	 HAIIVr01 1 T = 17 t LINECNI 5u,oIZC 1 7'11K,	 ti
Si)UkCL, tJCf)[C, N,IL fST,N'. I OF.CK IL'1A;1,;'11' wM'rh 17 r [tJ, `1[XkF.F	 r

	

,N 00) 1)2	 ,Ut1{IIUTfNk (itTWV SI' ,.0li9 LL1wI

	

.	 -N 00.13	 (PIT+:GLit 1itUt(U(17)
	tiJ	 „N 0004	 LLU.ICAL r 1JF7 LE:+w

	

N {10 !75	 f1,'1T , IoL4NK
	N Oil+)6	 IF(1	 i

.)6,) fi_1 	y99914	 1

	

r.

	 11

	

-N 004	 I ^d +.1 • ?U(I)

	

7	 1 JLANK
;N 0010

	

,N MI.	 [)Iti 1 (lt1F

	

;N 0012	 L;:,3 _ .t 41,5r..	 .

	

,N 0013] l H 1f'; -) I,LA, {K

	

1N 0014	 1 .`" [. "1111,	 •-^
(1..h1,1-^ .LU. hLANK ,ANj. .,YIJT. L JI I

{'	 I
	•N 0016	 4aLL l;'_ TGH-i S ICH !,h r tt}h)	 7

	

"	 ,N 0017	 i;r I0 ,??997

	

SN 0019)r.iSG C,3NTSt4UT
.	 001`)	 IF1 	 = 1	 1

	

SN 0027	 ' IWJ j IF(.NiIT.
S . X101* . I CI; 11 •. . I d. I oL ANK
.A :JJ. .r+JT. 1 IF)

	

iN 0p 27.	 11 { , f it o l .
S! .LL. 1t1

	

.IQU TI;	 C1)(993

	

,N 0074	 ICHAk

	

N 0025	 [= 1 + 1
	'.N 0022]	 t I F(I 911,41V2

	

N 0027	 99 1 ? 3 is 1 a T lNut

	

SN 007.8	 1r'(.NiJ
(.NJT. LEN)

	.11;1) 113	 y4^^1
	1N 0030	 ,ELI Tt (6, 1 1

	

1N 0031	 1	 (lil , 1311;1t;Ri) ,jVI_khLtly)
	5N 0037)-fnj = .TKi3i .

	

';N 0033	 Y)9S1 ,.ONI[NJF

	

';N 0034	 9'1	 r. l Y d f I.•.Jf	 I

	

1N 0035	 t ILL. f1-TCr1N S It;li,1H, LOF)
	SN 0036	 ; I I .1 i'FC9j
	,N 0037	 ?`73:, S'.J^,TIUUr.

	

')N 0038	 NT11'dN'

	

')N 0039	 .v:)

0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0

El

STATIC CODE ANALYZER

STANDARD
SOURCE
PROGRAM

REPORT SUMMARIES
THAT PINPOINT
POORLY CONSTRUCTE
SOFTWARE SEGMENTS

STATIC CODE
ANALYZER
PROG RAM CHECKS TOTAL PROGRAM

CONSISTENCY BETWEEN
SUBROUTINES

TYPES OF VARIABLES
DIMENSIONS OF VARIABLES

•	 SUBROUTINE CALLS

moel

f'

AmovffI

r

FAC. 5	 1:'a'Y iIST1 0%G RE-PGF:T

^rT Y
on I,

.,, ?UDucjBIl 33 S Poop,

R^.GINNL
PAGE

G

a I• A F L t N A T 1 Cl N S r Y*

l9X	 TFrt% EXISTS A LATH SUCH TEAT A LGCAL VAPTAi{LC IF UNINITIALIZF.I:.

STATIC ANALYZER Report on GET-WORD

Af
MAY

tV

SLr G LUTINE	 Gi- TAS	 II'r'I.r'S;,	 iCFI
I tr[CFeel	IViORD(I G)
[.;X[ICAL	 cUFv	 LEN
(PT.?	 W'LLNK	 /	 4h	 !
[f {	 1

..ri.	 12

,r	 555Sr3
I	 =	 1.	 1L

In ;i:Uii l	 =	 IliLANK
m 1:CNT INU F.

[r;9	 Ia."T I NUF
I I:[.	 =	 .r ALSE.
101.1 4	=	 I:SL	 NK

17 IFI.NCT.
I ICHa%	 .E.,j.	 °LANK	 .ANU.	 .NCr.	 tt?FI

TC	 55946
t^#	 l y C	 I,NI'.T LGCAL	 VARIAOLt	 L!Ll,Kk	 IS	 LNINITIALUtt.

CALL	 c1• rCHIS	 (I CHAR v	 WF)
CC	 Tc 94597

5 c. t, >6 C("1T INUE
I	 =	 I

SS ri If I .NLT.
{ .NUT.	 liar-Aft	 .EQ.	 I13LAAK

°i	 .AND.	 .1-Ji^T.	 EGF)
}r,[.	 T[}	 59954
If 1.NCT.

II	 .LE.	 12)
TC	 995;-3

i: rF i:III	 =	 ICHAK
I	 =	 I	 +	 1
CC TC 995,2

51,')3 [:['r,TINut
rr:l.ncr.{ .NUT.	 LEND

IG	 99551
(SITE	 Irr e 	11

1 F(.[, ' A AT	 lIH	 ,	 13H.OkL	 0V F.FFL[}r,)
I €:P.	 =	 .TRUE.

54`J)l CCNT INUF
1;4 4I,Z C..n +.TINUF

BALI.	 CETCHR	 IICH4R.	 LCFI
GL	 Ti. 55595

N i- 1 IJ14 N	 '

Ft"j;

i

DYNAMIC CODE ANALYZER (DCA)

	

11	
STEP 1: GRAPH ANALYSIS

	

1	 0 PATH TRACES

DCA 1	
0 ID OF NODES

STANDARD

SOURCE
	 ^ 7

0
PROGRAM
	 ao^o

OUTPUTS A GRAPHICAL PICTURE

OF DATA EXECUTION

a DYNAMIC PATH TRACE

STEP 2; GENERATE PROBES

0 MANUAL ANALYSIS OF NODES

i CREATE CONTROL CARDS

® GENERATE TEST DATA

c3

a NUMBER OF EXECUTIONS	 STEP 3; DYNAMIC EXECUTION

0 PERCENT % OF EXECUTIONS 	 0 INPUT CONTROL CARDS

0 VARIABLE MONITORED 	 8 INPUT SOURCE PROGRAM

- INITIAL VALUES	 0 INPUT TEST DATA

- MI N . /flAX, VALUES	 0 COMPILE AND EXECUTE

- EIRST AND LAST VALUES

O

`^3^i4o.^^_:..lirua^ls^iew_`^^..m.^..^.^....3.:. ry-._ 	_, -.^.	 —:-. -.c^..si......aa.:...rr:.:,_m.w,...	 __y^w.^oA^^r

C	 -.i--. .	 ^.	 ^.	 _	 ,i'......._	 .._...._......^.-,..,'	 .,'.,......'.:.......	 '	,	 _	 ..	 .
x

.	 .	 ._^.. ,..._.	_

k^

..	 -.....	 ...^._	:....		 ^..	 ,		 ^.	

Atlrff 9

,	 ^	:	 ..:	 -	 ...	 :.	^	 _	 ^	 ,		 ,._,^.	 .	 .^.		 _	 ^	 .	 .	 '.	 ..	 ^	 ,

...		 -..	
-.	 -..	 ^	 S^^ Y

^.	 ^

^	 r	 -
RFYRUDUCIBII.ITY OF THE
ORIGINAL PAGE IS POOR

I

** MOJULE DETAIL REPURT FUR GETWO	 *s

-- NODE/STATEMENT LIST ---

STATEMENT	 140DE	 STATEMENT
NUMBER	 NUMBER	 NUMBER

LABEL

to

TEXT

so

so

M

Zs

-'i

f

1 SUBROUTINE GETWU	 I	 IWORD,EOF)
2 G FETCHES NEXT WORD FROM TELEGRA4
3 C IWCRD = CHARACTERS 	 IN WORD
4 G._..	 ._. _ EOF	 = END OF FILE FLAG
5 C
6 INTEGER	 L1rORD(12)
7 LOGICAL	 EOF,LEN
d DATALBLANK / 4H
9 C

10 C BLANK FILL WORD
L1 1 FOR	 (1	 =	 1,12)
L2 2 iwnRD(1)	 =	 IBLANK
L3 3 ENO FUR
14 4 LEN	 =	 .FALSE.
15 C
16 _C. FIND FIRST NONRLANK CHARACTER
17 5 (CHAR =	 IBLANK
18 6 DO	 1%HILE	 1	 1CHAP.EQ.bLANK.AND..r
19 7 CALL	 CETCHR(ICHAR,EOF)
10 8 END DO
71 C
22 C COLLECT	 I+ORD
23 9 1	 =	 1
24 10 CU	 WHILE	 (.NOT.ICHAR.EQ.IBLANK.
25 11 IF	 1	 T.LE.12)
26 THEN
27 12 IWORU(1)	 =	 ICHAR
28 13 1	 =	 I*1
Z9 14 ELSE
30 15 IF	 (.NCT.LEN)
31 THEN
32 16 WRITE	 (611)
33 17 I FORMAT	 (IH ,	 13HWORO OVERFLOW)
34 lu LEN	 =	 .TRUE.
35 COMME NT:	 ELSE	 INSERTED
36 19 ELSE
37 21 END	 Il-
ia 21 END	 IF
39 22 CALL	 GETCHR(ICHAR,EOF)
4J 23 END DC
41 C
42 24 RETURN
43 25 END

Dynamic Analyzer Static Analysis Report

Ar

MR

.^
a^

	

^	 -	 _:.'^:`'^r '^'x°'
Y%'•zn^-.-^	 — - .

^	 ^	 M	 r	 ^

^^

sf_ -MOU'1Lt_DEtAIL-REPOP.T_FOR_GETkD	 #s : (Paae 2)

--^- DOP	 A!:aLYSIS --- _ __ _..—__ _ .__-___ —__.	 -

^l ►;P dEGI^t -	 .-	 --	 r^E"r^ER	 - EkJ DDP CUNDITIONS. -- --_---. __-----.._.---._^ _
vJ. NUJr NCDES PI,r,DF TYPF

- --.. ._----------°-^-- - --- __. --_.--- -.. _ .._.- - ^---- - ^- - --- -- ---___.._w.-^.__	 ..r.

1 1 2 -	 3	 - -	 -	 - 1 _	 _ --ENTRY--	 --	 -	 ---. .	 .	 ._.	 .	 _.._._	 __ _ ..
FOk (I	 .LE.12	 1

2 1 4 S 6 F0^2 i	 I	 .GT. 12)	 .. --. _	 -	 _	 _	 . _..- .-	 -

3 -	 -	 -- o-- -7 -3 - -- .- ___--_--• ^ ----._ __...-- . _.	 6	 . DOW -
-	 -^-	 ------------------------ --

_ I - iCHAR. EQ.BLAYK.ANO.. \UT.E7F_I _ ^_.
4 6 9 .10 OU:1 -tvJT.I	 ICHAR.EQ.BLANK.AND..VUT. =_ilF	 I

5 1J
--	 _ ...	 -	 . - ---^._-_ -. _..-.._----..-.	 __	 _

11 ^JO^i
-- --------------------------.---------_-------_	 _

{	 .3VOT.ICHAR.EQ.IBLANlC.ARiD..NCT.EOF)
6 1J --._. .	 . ___,__---_-__-	 ._--__.--._..._-_._	 _... 24 D04^ .NOT.(..NOT.ICHAR.fQ.IBLANK.AND..NOT.EOF..I._-

_ 7- .	 ._L1 --12._ 13.__21__22 _23__	 _____.^	 ___ _	 IJ .IFS
--------------------------------------•----------

DI I.LE.12 -1 _____^	 _^^..---
8 11 14 15 IFS Fl--ELSE--

9 li 16 17
------•--^____..._---__.^_--

18	 20	 2I	 22	 2] 10
-----.
[FS

_-	 - --------__-^.--------------------...._	 -	 •	 --•--------	 --^---._	 __._--_.----^-•'
i^t	 .kUT.LEt^k)

1J _i9__ 19--2:1-_?1.^2._23__`___. , ..__-___-.	 _ 1°^ 1FS t9--ELSE=-____: ^_^.^_ .. _. ___.__._--_—_.

--^ ---- -__--_ :10NI iUP,ED VARIABLE .LiST-. _--_. _.	 _ -.__-. __ .	 - . --•--_ _	 -_._

NA.dE--	 - -- TYPE...----._ _.	 _	 _---._	 ^1AME.	 .	 --- TYP`- --.	 -	 ----

,^

0 VA2IAdLES atRE MCNITOPED FUR THIS MCCULE

	

Dynamic Analyzer Static Analysis Report
	

f/

	

^^	^.,	 _ -..	 ,^_^	 —	 ._..^._	 ..^.^	 .._. . ._..	 ^	 . ^,...^^..^.^ .

	

.	 ._	 .	 . . ,. .:>.		 :.:	 ,,.

	

. .	 ri^ u^=_s. <E^^ ^-^ . 	 .	 ,	 - .^
,..^^ . :^	 ^

V
40	 10

^

ir

'4w .	 ^' .	 w w	 qw tv	 aw	 7	 !^

3

^

ttEPRUDUCIBll,11'Y OF THB
ORT(7INAI. PAGF IS P()OR

.aaa	 L;ETAILED .iESI- REPDRT FOR MQDULE—GEIwD a*d

MUL)ULi=	 iscTail WAS	 INVJKEfl	 100	 TiMEES3 - -	 —	 -
-	 -	 --- - - ^...—.--

Dt)P .y UM6c2 ENT:ZY COUNT PERCE!VT EXECUTIGJI
1 12JU 80.J laaa.raaa*amaca^**aatar.^*#aa**r•a**+x*aa**t
2 _ . .	 LOU ---- -	 ---^----	 ------

^	 s a o. c !
4 100 6.7..	 _ !oa* _
5 0 0. c I
6 LOJ 6.7 !*#* _.
7 J 0.0 I

^---	 -d--	 -	 -- - - _0_ --- - -- - _ _-----0•_G---- ._ ... --	 ^	 _...	 _	 _..	 _ - - -. .	 _.	 _.. .	 -- ---	 ----- ---_-._._._ _—^_.
9 J O.0 I

10 0

0	 10	 20
I----1--- I----I----1----f----I----i----I----I----I

30	 40	 -. 50	 60	 70	 d0	 __.90	 100

,_ _	 .-	 ,	 - -. - -----^^.---•----• ----	 - ___ . _ ----	 - --?EFCENT	 EXECUTLON__
TLITALS

10 1500 PEkCENTaGE DD PATHS ExECUTED	 40.0

^

Dynamic Analyzer Run Time Report

^

	

; •	 ._
..	 _

A,	 A..

4amommW 4t

STRUCTURAL TEST CASE GENERATOR

`	 (Implemented)	 • COVER SELECTOR - To gauge the number of execution paths in the

program and to select an optimal coven for

testing purposes.

• DDP CONDITION LINKER - To associate a series of decisions (in

simplest form) with each execution path.

• NEXT TEST r

	

	 To select the best next path for test case

generation based on testing history data.

MOCArl

_I

tir+	 "tr	 "%	 i

tZEYkUUUCllill,l'1'Y OF 1'11K
OR.IGINAL PAGE IS POO1;

-----f..7VFSt-S-Ea:^LTOR^til1-ANAL-YI;t---RASI4-AAA4YSlS-RfiP[JtiT-Fl]R-MUDULE-LEI.MD 	 —

----------+:HA L-Y-I f-^P ^ TH-.1N ALY-S{ S-- -----	 --

5-- NUARER OF DEClS[UN NODCS
-----i,;—NUABER HF-BEGI rrH74-TR-UEGi-5i0fF-PATHS--lDOP- I SA---

-^•-16----NUH9E.T-OF- PRAC T I C.1L-- EXFCGT IUN -PATHS - ---- --- --------•------ — _ ----

--E----HINIMUM-NUK l: ER •-STF--TbST--CASt	 SE--OOP--CUVFRAGE. i
0.061 -- IMPACT ON EXHAUSTIVE TESTING

6-- MAXIMUM YUMBEP. OF TEST CASF.S II.E,, bURST-CASE ODP CCYERAUE 3
- —as375- ---{+fPAET--41,M-E-X+ikifS^NfE-T-ESi-fNG--

-	 --G. ,̂VER-6cLE-GTi3R ---

FIRST TEST ODP 1

THEN ONE OF q DP 2
-	 —,T. iv!-OtiC-13F^.OP--lr-1TOa 4

THEN Cl\E OF DDP 5, DDP 6
^THEaI &k € OP OOP-Tr-08;+-8	 - -

THEN DNE OF OOP 9. DDP 10

► +

STRUCTURAL TEST CASE GENERATOR REPORT

roA. ^

.^..,,^.." ..

r

