General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)

(NASA-CR-150299) NASA SOFTWARE N77-26828
SPECIFICATION AND EVALUATION SYSTEH:
SOFTWARE VERIFICATION/VALIDATION TECHNIQUES
Final Report {(Science Applications, Inc.,

| Huntsville, Ala.) 60 p HC AQ4/MF AO1

Unclas
31776

G3/61

SAI-78-556~HU

NASA SOFTWARE SPECIFICATION

AND EVALUATION SYSTEM

FINAL REPORT

SOFTWARE VERIFICATION/VALIDATION TECHNIQUES

CONTRACT NAS8-31554

Prepared under the direction of
Mr. John Capps

Marshall Space Flight Center
National Aeronautics and Space Administration

April 22, 1977

SCIENCE APPLICATIONS, INLZEC,
2109 W. Clinton Ave. ,Suite 800, Huntsville, Ala. 35805

(205) 533-5900

e

TABLE OF CONTENTS

Section Page
INTRODUCTION. . ittt e st s is s et e satnnsoasssananns 1
2, CORRELATION OF SCOPE OF WORK TASKS
TO SECTIONS OF THE FINAL REPORT 2
3. SSES METHODOLOGY . i vt ittt i vt o vsenrnaananas 5
2.1 Software Specification and
Evaluation System (SSES)
Design Overviewce i inrsienss 5
3.2 BSoftware Requirements Methodology 8
3.3 Software Specification Language 13
3.3.1 Elements of the SSL
Computation Model 13
3.3.2 The LangUage:0e0stnesnanens 14
3.4 Structured Fortran Preprocessor 17
3.5 Static Analyzert eaan i9
3.6 Data Base Verifier 20
3.7 Dynamic Analyzert it 21
3.8 B8tructural Test Case Generator 22
4. SSES BENEFITS AND UTILIZATION EXPERIENCE 23
Appendix
A SSES Software Development Example A-1

id

Figures

Table

LIST OF FIGURES

Page
Technical Documentation for SSES Components 3
Correlation of 80W Tasks to Final Report
Sections ...t ittt et e e e I -
Augmented Development Cyele I £
Software Development Process (for SPACELAB) 9
Software Requirements Information ,............ . 10
Software Error Occurrence and Costc000. . 12

LIST OF TABLES

Page

Comparative Software Productivity Rates 25

iii

1. INTRODUCTION

The purpose of this report is to present an overview
of a software development system built by Science Applications
Inc., of Huntsville, Alabama, under the direction of the
Data Systems Laboratory of NASA, Marshall Space Flight Center.
The system, called the Software Specification and Evaluation
System (SSES), was designed for the effective and efficient
specification, implementation, and testing of computer software
programs. The system as implemented will produce structured
FORTRAN or ANSI FORTRAN programs, but the principles upon
which SSES is designed allow it to be easily adapted to other
high order languages.

2. CORRELATION OF SCOPE OF WORK TASKS
TO SECTIONS OF THE FINAL REPORT

This final report describes the results of the work
performed in fulfilling the scope of work tasks for contract
NAS8-31554. These tasks were (A) to complete the detailed
design of the Software Specification and Evaluation System
(8SES), and (B) to implement the critical SSES components.

In fulfillment of Task A, an overview of SSES is presented
(Section 3.1 of this report), along with an example which
depicts the use of SSES in the development of reliable software
(Appendix A of the Final Report).

The remainder of Section 3 of the Final Report re-
flects the work performed in accordance with the specifications
of Task B. Most of the SSES components developed under Task
B resulted in new software tools for which many forms of tech-
nical documentation such as design documents, user's manuals,
operation guides, listings, and flowcharts were produced. The
chart appearing in Figure 2-1 contains a summary of the docu-
mentation delivered for each new software tool as well as for
the Software Requirements Methodology and the Data Base Veri-
fier. Since this documentation is very detailed, the sections
of this final report pertaining to the new or modified soft-
ware components present only overviews of the work performed
in each area. A summary of the Final Report sections and
their relationsnip to the scope of work tasks is presented in

Figure 2-2.

'1-g @In3Td

squauodwo)

9SS IO UOT1eIUaUMOOJ TBOTUUDSL

SSES
Component

Scftware Require-
meats Methodology

Software Specifi-
cation Language

itructured
FORTRAN
Oreprocessor

Static
finalyzer

Data Base
Verifier

Dynamic Analyzer

Structural
Test Case
Generator

TECHNICAL DOCUMENTATION FOR

Design
Document

Software Require-
ments Methodol-
ogy Design
Specifications

NASA Software
Specification
Language Transla-
tor Unit Module
Descriptions

NASA Structurod
FORTRAN Pre-
processor Unit
Hodule Descrip-
tions

FACES Unit Module
Descriptions

and Updates to
Existing FACES
Documentation

Data Base
Verifier Design

NASA Dynamic
Analyzer
Detailed Design
Document
Version II
Revision O

and Dynamic
Analyzer FORTRAN
Data Base

NASA Structural
Analyzer Extension

to Dynamic Analyzer

Deteiled Design
Pocument

SSES COMPONENTS

User's Operation
Manual Guide Listing
Intreduction NASA Soft- Separate
to Formal ware Speci- documenta-
Specification fication Lan- tion with
Technigque and 8SL guage Opera—- no title
tion Guide
NASA Struc~ Ineluded Separate
tured FORTRAN Pre- in documenta-
processor User's User's tion with
Manual Manual no title
Updates to No changes Separate
Existing FACES to existing documen-
Documentation documenta- tation with
tion no title

NASA Dynamic
Analyzer and
Structural
Analyzer User's
Manual

NASA Dynamic
Analyzer and
Structural
Analyzer User's
Manunl

1. Other desipn documentation inclades:

Calling Hierarchy for Modniles Constituting the NASA Structured FORTRAN Preprocessor
COMMON Names and COMNON Variables Referenced in the NASA Structured FORTRAN Preprocessor
Croas Referencs of Modules and COMMON Names in the NASA Structured FORTRAN Preprocessor

Included in
User's Man-
ual

Included in
User's
Manual

Separate docu-
mentation
with no

title

Separate docu-
mentation
with no title

Flowcharts

NASA Software
Specification
Language Trans-
lator Flow-
charts

NASA Struc-
tured FOR-
TRAN Pre-
processor
Flowcharts

FACES
Flowcharts

Included in
an Appemilix
to Design
Document

Included in
Design
Pocument

L

Final Report

Task Section Title
A 3.1 Software Specification and

Evaluation System (SSES)
Design Overview

Appendix A SSES Software Development

Example
Bl Sofitware Requirements Methodology
Software Specification Language
B2 Structured FORTRAN Preprocessor
B3 Static Analywer

Data Base Verifier
Dynamic Analyzer
Structural Test Case Generator

W W W w w wew
W 3 & U & W N

Figure 2-2. Correlation of SOW Tasks to
' Final Report Sections

3. SSES METHODOLOGY

3.1 SOFTWARE SPECIFICATION AN, EVALUATiO'1 SYSTEM (SSES)
DESIGN OVERVIEW
(Task A: SSES Design Completion)

Early in 1975, SAI and NASA jointly began a software R&D
effort to develop 2 methodology which could reduce the effort
expended in a typical software test and verification activity
without sacrificing confidence in performance, thus improving
the cost effectiveness of the overall software development. The
Software Specification and Evaluation System (SSES) has been
developed to achieve these goals. The system includes special-~
purpeose languages and automatic requirements/code verification
and validation tools designed to improve the guality assurance,
traceability, testability and maintainability of the final

software product.

The SSES comprises a set of integrated components based

on the Tollowing software development phases:

® For the Requirements/Specification phase, a
requirements methodology was developed to
insure the integrity and feasibility of the
software requirements., This methodology in-
cludes a prescription for the necessary content
of the software requirements specification.
Also, there is a formal Software Specification
Language (SSL). This language is used to
formally describe the overall software system
(or functional) structure and, thereby provide
a firm foundation for the software design
process. - SSL automatically provides for the
traceability of requirements and checks element
interconnection consistency.

-] For the Coding phase, language disciplines
for the promotion of reliable software have been
identified and incorporated into a high-level,
structured FORTRAN language. This language
ig translated to ANSI 3.9 FORTRAN through
a preprocessor. Further work in this area
includes the formulation of a2 complete pro-
gramming mes hodology to alleviate guestionable
coding practices and, thus, increase reliability
and flexibility.

For the Verification and Validation phase, there

is a Static Code Analyzer, a Data Base Verifier

a Dynamic Analyzer, and an JAutomatie Structural

Test Case Generator. The Static Code Analyzer is
used to enforce technical coding standards and to
document pertinent program information tc be used
during other V&V activities. The Data Base

Verifier is used to analyze the program's accessing
specifications and construct tables which describe
the stored data base. (This tool exists in design
only and will not be implemented until FORTRAN
CODASYL standards have been set.) 'The dyvnamic anal-
yzer is used to dynamically analyze the software
system's execution characteristies, providing execu-
tion path trace and variable trace information. In
order to provide adequate test case coverage, an
automatic test case generator is used to test the
final software product.

{The application of the SSES components, the methodologies, reliabil-

ity disciplines, and software tools, to the software development

cycle are pictorially presented in Figure 3-1,.

HEGUIRENVER TS TOP DOWN

La*.GUAGE

DISCIPLINES METHOOGLOGY DESIGN DISCITL1" ES
v 1
]
'
i \ A \ — J‘ 1
S0f TWARE DETAILED
DEVELOPMENT | 5yvsrem JREQUIRE = _{pesiGn bt JoETAIED o] AND MOBIEY
STEPS HEQUIRE =/ SysTEM MENTS PRELIMINARY CoDNG /VERIFICA- DESIGN
MINTS _/SPECIFICATION OESIGN DESIGN TION
; — N7
1 A} & | W —— - —t - - -
l ») r r‘ i
Y i
! [\ 1 l L -
t i I i —':]
|
} /DATA 8ASE
sst STAUCTURED : 2;':2:_“:;“ | [vemirigR _
FREPIVOCESSOR | H
TooLS ! !

h STRUCTURAL TEST
STATIC CODE CASE GENERATOR

ANALYZER

1-75-1535

Figure 3-1. Aungmented Development Cycle

3.2 SOFTWARE REQUIREMENTS METHODOLOGY
(Task Bl: Software Requirements Methodology Design)

In the area of software requirements, a method of
stating requirements which enhances clarity, consistency, com-
pleteness, traceability, and testability had to be defined.
These requirement expressions represent all the relationships
hetween the input and output and between the to-be-~-produced
product and its environment without unnecessarily limiting the
possible configurations of that product. Using SPACELAB soft-
ware, an initial consideration of the approach that was devel-
oped for NASA to use in developing software requirements speci-
fication documents is presented in the following paragraphs.

As depicted in Figure 3-2, the software development pro-
cess consists ot activities, documents, and reviews. In order for
the reviews t0o be maximally effective, the software and supporting
documentation needs to be clearly expressed and sequentially
traceable., In particular, with regard to the design requirements
review (DRR), the software requirements specifications should be a
function of (and must bridge the gap between) the prior activity--
system design (not depicted) and the succeeding activity--prelim-
inary software design. Consequently, the software requirements
specification, whatever its particular format, should contain the

information listed in Figure 3-3.

1. The method in which such information is expressed should
{probably be project or personnel dependent. 8Some factors affect-

ing the choice of method are:

training and background of requirements developers
desired breadth of requirements visibility
generic type of software

allocated finances and other resources

One specific format (for SPACFLAB software) will be sug-
gested in the SBoftware Requirements Design Specificaticons to be
delivered as part of the task work. The design document will
depict the key aspects of the Sofitware Requirements Methodology.

) } v DEIRE
- it
OFTWAR SOFTRARE LSERS_ &0 .'s'::?-rwf =
CFERATCAS. t &E .
1.00(3
PADDR
P—— DETARL ADGDD ; gz
ot AL
e vl] 1]
iy
—CEAL A ' puscrerany
SOFURE 4 RECORD
REQUIRENENTS 5 ,
SPECIFICATICH e
~ +
SormuMe FoPTARE AR IIAY BOTAILID l YALIORTION & SISt
REQUIRENENTS Ll ' -1 VIALFICAYIOR DTCRATION DR
CEVELCSALHT HET 7 oision] DESICH TEST [Hl T
&TIVITY H H 1 1
) I i oy i
: ! A
1 1 1 1
o
i n o
PILESTONES -
auf A
SEFINITION PHASE . ACQUISETID Faast oratiale Aot
Co = SASTLINED OILIVEXAILE SOCMENTS
4 . w* CERDOND AS REQIRD

SOFTWARE DEVELOPMENT PROCESS (FOR SPACELAB)
Figure 3-2

oy

0t

e

SYSTEM DESIGN

~

~

SOFTWARE REQUIREMENTS INFORMATION

NAME
PURPOSE

L i

" INPUTS, QUTPUTS

EXTERNAL INTERFACES

GLOBAL PERFORMANCE REQUIREMENTS
GLOBAL CONSTRAINTS

TOPDOWN FUNCTIONAL DECOMPOSITION

TRANSDUCTION AND IMPLICATIONS

SOFTWARE DESIGN
TUARE pes
7/
/
74
/
7/
/
— 7
/!
/ .
\ﬂ

SOFTWARE REQUIREMENTS INFORMATION

FIGURE 3-3

PRELIMINARY

\\

Of all the software development phases, requirements def-
inition is undoubtedly the most important. The kind of inform-
ation depicted in Figure 3-4 illustrates the guality and cost ad-
vantage that can be gained through a careful execution of this

initial stage of software development,

11

SOFTWARE ERROR OCCURRENCE AND COST

MOST ERRORS IN LARGE SOFTWARE SYSTEMS ARE IN EARLY STAGES

70 F—
0 |-
g DESIGN
£ s F OPTIONS
w
-
<
3 4 - —
o
=]
5 30 - coping
] OPTIONS
(4]
=4
W20 t-
ol
0
TAW TRW 1BM 1BM

C&C C&C 0s 0s
DEVELOPMENT MAINTENANCE DEVELOPMENT DEVELGOPMENT
& MAINTENANCE

IT PAYS TO CATCH SOFTWARE ERRORS EARLY

00
SUURCES
_ @ IBM-SDD

5o @ TRW
- ® GTE
E ® BELL LABS
< 20 -
o
..-
&
a 10 -
]
w
= 5
b
-l
T3]
&

2=

i L 7

| i | i

PRELIMINARY DETAILED CODE [INTEGRATE VALIDATE OPERATION
DESIGN DESIGN DEBUG

PHASE IN WHICH ERROR S DETECTED

Figure 3-4. Software Error Occurrence and Cost

12

3.3 SOFTWARE SPECIFICATION LANGUAGE

(Task Bl: Software Specification Language Imple-

mentation)

The purpose of SSL (Software Specification Language)
is to aid in the process of defining systems and modules in
order to alleviate software interface errors and improve re-
quirements/design traceability. A formal description of the
syntax and semantics exists which has enabled the construction
of an automatic translator. The translator makes a series of
nontrivial consistency checks based primarily on a system flow
model that is assumed to exist apart from the SSL description
and which originated in the software requirements specification.
The essence of the flow model is checked implicitly by several

features within the language.

3.3.1 Elements of the 38L Computation Model

SSL is a machinable design analysis tool with a
formal syntax and semantic description. It does not impose
artificial restrictions on data flow or software architecture
but does insist that both conform to a separately developed
sysfem flow model. This affords the opportunity to perform
extensive nontrivial consistency verification and develop a
document that aids communication of design intentions and testing
criteria to subsequent phases. The basic elements underlying
an SSL description are data structures, modules, levels of

abstraction, and requirements.

Anyone with 241 understanding of data declarations in such
procedural languages as ALGOL and PL/I can easily grasp
the concepts of variable and data structure in 88L. The lan-
guage provides a small number of basic data structures.
‘IL also provides a small number of basic data types for
which there is a direct implementation or trivial extension of
a direct implementation on most hardware. These types may be
used to affix attributes to simple variables or combined to

describe composite variables.

13

rF

Génerally, a module is understood to be a program unit
that can be understood independently of the rest of the system.
fixamples are COBOL paragraphs, ALGOL procedures, and FORTRAN sub-
routines. Modules are further combined into higher entities call-
ed levels of abstraction under the interconnection operation.

Levels of abstraction are sets of modules, embedded with-|.

in a larger system, having several distinct properties:

Pl1. A level uf abstraction is a set of modules which
may share plobal data (and perhaps hardware
features) among themselves, but not with modules
outside the set. In any case, a subjective com-

monality of function or purpose binds all modules
within a set.

P2. A subset of the modules with property Pl (called
entry or external modules) can be referenced
only from modules in other levels.

P3. There is a unidirectional dependence among the
sets (i.e. a higher level may reference an
entry module of a lower level but not vice
versa).

In SSL, there are four components to a requirement:
input, output, transduction, and constraint. Input and output
are named variables corresponding to system level stimuli
and'responses. Constraints are simply named-entities attached
as attributes to various objects within a described system. Their
higher or conceptual meaning is not directly representable
in SSL. Transductions are also named-entities attached as
attributes to objects, but their purpose is to capture, via a
partial ordering, the flow model underlying the module decom-

position.

3.3.2 The Language

Systems described in SSL are partitioned into one or
more subsystems where each subsystem corresponds to a level of
abstraction. Within each subsystem one or more modules are
described nonprocedurally. Module description statements per-
mit module connections and data flow to be.depicted in a
variety of ways, subject to the restraints imposed by the

14

underlying flow model. The flow model {(i.e., requirements) and
data structures are defined in a subsystem preamble, A partial
ordering of transductions is specified in the preamble,

Modules are the focal point of an SSL description of a
decompeosition. Information represented about modules includes
input variabhles, output variables, called modules, and transduct-
ion attributes which guard all interconnections. The general form
of a module description in SSL is:

ENTRY
ASSUMES
SATISFIES

MODULE
{module name} [(local variable list)];

% {assertion list};

FULFILLS {transduction and constraint list};
ACCESSES {environment list};

USES {variable or component list};

CREATES {variable list} USING {variable or
component list};
MODIFIES {variable or component list}

USING { variable or component list};

EXECUTES [1TERATIVELY]'({module reference list})

CONDITIONALLY

- END MODULE;

Transduction attributes play a role in limiting the ac-
cess écope of global data accessed in the MODIFY and USE state-
ments or USING clause. For errample, each transduction attribute
of the module must be either the same as some transduction attrib-
ute of the variable or a successor (in the partial ordering sense)
of some attribute of the variable. The effect of this rule is to
1limit the use of a variable to specific subnetworks. Similarly,
in order for one module to reference a second module within the
same subsystem, the first module must have transduction attributes

that imply at least one attribute of the second module. This

15

e T ST — - : . A S SR

|

i
insures that the module ordering will generally correspond to the i
transduction ordering which, in turn, corresponds to some under- [
lying fiow model. Yet, the rule is not excessively constraining.
The produced module network is seldom a simple restatement of the
system level flowchart. The preliminary designer has considerable
freedom within which to decompose the flow processes.

i
;
:

16

3.4 STRUCTURED FORTRAN PREPROCESSOR
(Task B2: High Level Language Disciplines
Determination and Structured Preprocessor Selection)

The goal of consistently producing reliable software

dictates certain criteria for the structure of thhe program
language employed. A list of criteria which an idezl programming
language should satisfy was derived from studying programming
languages that promote reliable code implementation. These

criteria are as follows:

The language should follow naturally
from a top down approach and should
be able to reflect the problem at hand.

The language promotes a sequential imple-
mentation.

Control structures should be explicitly
clear and should be kept to a minimum.

The language should exhibit the same
syntax structure for semantically similar

constructs.

The language should allow indentation

and a type of modularization that clearly
defines the boundary of each module

and allows each module to be clearly

and completely locally understood.

The language should have meaningful
reserved words.

The language should allow the programmer
to write often used constructs w1th a
minimum of detail.

The language should offer a nonrestrictive
placement of comments which facilitates
trouble-free usage.

Side effect changes of data should be
made explicit and restricted to a minimum.

Data types and other information crucial to
correct execution should be explicitly
specified preferably in several different ways.

17

™ The language should have a context-free
syntax.

® The language should be amenable to automatic
code analysis.

® Machine overhead of often used constructs
should be kept to a minimum.

Attempting to find a language that satisfied the above
criteria while simultaneously acknowledging NASA's wide use of
FORTRAN influenced us to consider a structured FORTRAN preproces-
sor as a language vehicle. Existing structured preprocessors were
evaluated to determine which ones incorporated a large number of
the criteria listed above. A preprocessor developed by the U.S.
Army Missile Command at Redstone Arsenal was selected as the basis
bf our work. It featured three primary control structures for
structured programming: the concatenation capability, the IF-THEN
-OR IF-FLSE construct, and the DO WHILF construct. The FOR and
THST CASE constructs were added for user convenience. The prepro-
cessor accepts structured FORTRAN source statements as input, and
renerates corresponding ANSI 3.9 FORTRAN statements. These gener-
hted source statements can then be used as input to an ANSI
IFORTRAN complier. Moreover, the structured FORTRAN preprocessor

provides for automatic identification of nesting levels.

In addition, the original preprocessor as well as all
subsequent modifications were designed with transportability as
a priority. To date, the structured FORTRAN preprocessor has
been readily implemented on the IBM 360 and 370, CDC 6600,
UNIVAC 1108, PDP 10 and 11, and the SEL computing systems.

18

3.8 STATIC ANALYZER

(Task B3: Statiec Code Analyzer Implementation)

After the desired software modules have been coded and
compiled, the next step in producing reliable software is to
verify and validate the code using software tools. From the SSES
repoertoire, the logical component to use first is the static
cod analyzer. The static code analyzer accepts ANSI FORTRAN
source code as input, evaluates the code according to intramodule
and intermodule considerations, and produces appropriate output
which identifies parts of the code which are likely candidates
far inconsistencies and errors. Proper technical coding standards,
pood programming style, and appropriate program structure are all
checked during the evaluation of the source code. To satisfy the
task requirements in the area of static analysis, the following
capabilities were added to the NASA static analyzer, FACES:

o EQUIVALENCE and EXTERNAL statements are flagged.
o Unlabeled COMMONs are flagged.

@ DIMENSION statement and variable which contain
an adjustable (variable) dimension are flagged.

® Arithmetic IFs are flagged.

e Targets of branches should not be other branches,
especially single GO TOs.

@ Occurrences of error-prone FORTRAN statements

' such as ASSIGN statement, assigned GO TO, and
PAUSE are flagged.

These new lealures represent a significant increase in the

overall effectiveness of the NASA static analyzer.

19

3.6 DATA BASE VERIFIER

(Task B3: Data Base Analysis Tool Design)

The approach to data base verification was based on
CODASYL's (Conference of Data Sysiems Language) view of a data
base management system. The CODASYL organization has been engaged
in the development of language standards for describing extensions
to existing high level languages (e.g. COBOL and FORTRAN) which
will allow access and operation on the data base components as
well as describe the part of a data base which resides on perman-
ent storage. According to CODASYL's definition, a data base man-~
agement system is a system which manages and maintains data in a
non-redundant structure for the purpose of being processed by one
or more applications. In a data base management system, an appli-
cations programmer writes a program in a higher order programming
Tanguage such as FORTRAN or COBOL which has been augmented to
incorporate Data Manipulation Language (DML) commands. The DML
statements provide interfaces between application programs and

darn hrses during execution.

Our data base verification subsystem concentrates on
the FORTRAN applications program written in ANSI FORTRAN which
has been extended to include Data Manipulation Language (DML)
commands. It accepts CODASYL FORTRAN Data Manipulationrbanguage
source code as input, and statically analyzes the program, Data
base desceription tables are then constructed which describe
the stored data base that the program accesses and manipulates.
{Finally, it prints a report containing a summary of all the
information collected about the components and the structure of
the stored data base. The user must then establish the con-
sistency and validity of the stored data base within the
framework of the program descriptions by cross referencing these

tablos.,

20

3.7 DYNAMIC ANALYZER

(Task B3: Dynamic Code Analyzer Implementation)

Continuing the code verification and validation process
using the SSES methodology, the next logical software tool to exe-
cute would be the dynamic analyzer. The dynamic analyzer accepts
either structured or ANSI FORTRAN source modules (or a combined
stream of both types of modules) as input. The static analysis
section of the dynamic analvzer recognizes all the necessary
statement types, and sets up a program graph of the source code
which emphasizes branch nodes. The program graph is constructed
from the target program by assigning to each program statement
(line) a node on the graph and using the edges between these nodes
to represent control flow of the program. A decision~to-decision
(DD) path is a path which begins and ends on a decision or branch
node. The DD paths are important because they are used as indi-
cators for inserting probes into the code. One probe is placed
for each DD path in the program-graph. The instrumented source
code is then written to a file which may be attached in the same
computer run or a later one. After this file has been attached,
compiled, and loaded (or link edited) with the Dynamic Analyzer
run time package, the module is executed and run time statistics
are collected. When the execution is completed, the third com-
ponent of the Dynémic Analyzer, the trace analysis package, reads
.Jand interprets the data collected in the previous step. A de-
taiied module test report, including a node/stacement list, a DD
path analysis, and a monitored variable list along with a summary
report of the effectiveness of module testing is produced. ‘(A
-'samble test report is presented in Appendix A.) These reports
provide the author of the software a comprehensive dynamic anal-
ysis of the software modules. The author can then determine by
inspection which areas of code are most critical. Since the test-
ing coverage is documented, the author has a reference for any
|further testing of the software modules reggrdless of whether

modifications are necessary.

21

3.8 STRUCTURAL TEST CASE GENERATOR

(Task B3: Structural Test Case Generator Implementation)

The structural test case generator assists in the gener-
ation of test data sets that will exercise desired segments of
code. It accepts structured FORTRAN code as input and performs
several different functions for the user. First of all, it deter-
mines the total number of execution paths from entrance to exit in
the module, based on some assumptions concerning the looping struc-
ture. Other functions of the test case generator are determin-
ations of minimum and maximum coverage tests and a measure of
probable testing effectiveness for these two testing alternatives.
¥or the first calculation, the minimum number of distinct test
cases which must be produced to meet the testing goal nf covering
cach DD path in at least one of the tests is computed. This set
of test cases represents the "best case" situation for testing
purposes. In the next calculation, the structural test case
generator determines the number of distinct test cases required
to satisfy the execution of all DD paths which represents a
"worst case" situation. Dividing these minimum and maximum
number of tests by the number ol execution paths yieids a minimum
and maximum (probable) testing confidence measure, respectively.
In effeét, this measure reflects how thoroughly, in terms of
total possible execution paths, the program would be tested by
using the minimum or maximum number to achieve DDP coverage.
Resultant low values indicate that a high level of confidence
.can be placed in program behavior based on the DD path coverage

tests,

| The remaining test case generator function is a potent1a1
;pdth selection which takes into account the previously calculated
measurements. The cover selector portion of the output report
prescribes an ordered selection of DD paths in a sequence of steps,

-

fwhich will number between the minimal to maximal values, to be
executed in order to achieve complete DD path coverage. With the
joutput generated from this automatic code amalysis tool, a user
can make a quick, more productive selection of paths for test data

generation.

22

1.0 SSES BENEFITS AND UTILIZATION EXPERIENCE™

All of the SSES components previously described except
the data bhase verifier have been implemented. During implemen-
tation, productivity figures were kept on the Dynamic Analyzer and
the Software Specification Language Preprocessor which were devel-
oped using as much of SSES as was available. Table 1-1 contains
these figures and their comparisons with industry standard pro-
ductivity estimates. The fact that personnel training and famil-
iarity with the SSES components is not reflected in the figures
must be taken into account when viewing Table 1-1. The produc-
tivity rates for the SSES component development for which many
programmer interactions occurred show a 2 to 1 benefit ratio in
comparison with the Aron figures. This increase in productivity
represented a corresponding cost reduction in the development of
reliable software which was one of the original objectives of

SSES.

Experience has shown the Software Specification Language
Lo he a useful tool in evaluating the early design efforts prior
Lo further expenditure of resources. 7he primary contribution of
the language is an existence proof that higher order verification
is possible. This is accomplished by two basic semantic rules
that relate the decomposition to a system flow model without de-
nanding the system architecture be a simple restatement or tha
model. Simultaneously, the system encourages use of modularity,
high Jevel data types, and levels of abstraction.

The Structured FORTRAN Preprocessor was used in the devel-
‘bpment of SSL, the Dynamic Analyzer, and the Structural Test Case
fenerator. It promoted '"built-in" software reliability by allow-
ing the implementors to use structured programming, and its ease
of use simplified the coding of these software tools.

The static analyzer FACES has been!used for a portion of
the shuttle structural testing data acquisition system. FACES was
applied after the software had been debugged. Error conditions

were detected in 6.5% of the source code analyzed, and one half of

23

1% of these errors were "fatal'". If FACES had been applied at the
beginning of the debugging phase, the benefits would have been
oreater.

24

gz

Table 1-1. COMPARATIVE SOFTWARE PRODUCTIVITY RATES

Aron Corbato
{No System (System
Testing) Tested)
- Very Few Programmer Interactions 39 HOL Lines/
' : Maa Day
Some 19 5

Many 6

. ‘
Using SSL, Structured Preprocessor, FACES

SSES™
{(System
Tested)

50

12

APPENDIX A

SSES SOFTWARE DEVELOPMENT EXAMPLE

APPENDIX A .
SSES SOFTWARE DEVELOPMENT EXAMPLE

The following pages contain an example of a
computer program developed by the NASA SSES
Software Development System. The program is
intended to solve the problem appearing on
the next page. For this program we have
written the following SSES documents and
listings: The Software Requirements
Specification, the Software Specification
Language, the Structured Preprocessor Listing,
the ANSI FORTRAN Listing, the Static Analyzer
Listings, the Dynamic Analyzer Listings and
the Structural Test Case Generator Listing,

Sz e e L L e e, ‘y.

i i - b i

SOFTHARE SPECIFICATION & EVALUATION SYSTEM (SSES)

ANALYZER

QISCIPLINES Réouuat—
MENTS TOP DOWN LANGUAGE) .
METHOD - DESIGN ISCIPLIMNES
- OLAGY
‘ ‘ _ /. v < B))
f \ Zz
né ELOPLENT | SYSTEM P gg;g;so MAINTAI
v B R REQUIRE INTERFACE DETANRED| | !
STEPS s~/ SYSTEM [Tmenys /precimunany|] COOING /| cveica |] TESTING | | TESTING & MoDiFY /-
SENT: SPECLFICATION DESIGN uss:r.m no~ .
' i L_
i ¥
| |
| |
B |
I
t DYRAMIC
TODLS
|
|

STRUCTURAL
TEST CASE
GENERATOR

1-75.1585

PROBLEM

. "A program is required to process a stream of telegrams.
This stream is availabie as a seduence of letters, digits and
blanks on some device and can be transferred in sections of pre~
determined size into a buffer where it is to be processed. The.
words in the telegram are separated by sequences of blanks and
each telegram is delimited by the word 'ZZZZ'. The stream is
terminated by the occurrence of the empty telegram, that is a
”telegrim with no words. Hach telegram is to be processed to
determine the number of chargeable words and to check for occur-
rences of overlength words. The words 'ZZZZ' and 'STOP' are not
chargeable and words of more than twelve letters are considered
overlength. The result of the processing is to be a neat listing
~of the telegrams, each accompanied by the word count and a message
indicaﬁing the-occurrende ofranIOVerlength word." |

| - o PRELIMINARY
SYSTEM DESIGN ~ ~ SOFTWARE REQUIREMENTS INFORMATION . SOFTWARE DESIGN
N D | | | T/
N * NAME | | : 7
- > .l [e - reunrose | | /

INPUTS, OUTPUTS /
EXTERNAL INTERFAGES -/

GLOBAL PERFORMANCE REQUIREMENTS ﬁ

GLOBAL CONSTRAINTS /

.

' R e TOPDOWN FUNCT!ONAL DECOMPOSITION

e TRANSDUCTION AND IMPLICAT!ONS

3a.
3b.

0 ~N o

SOFTWARE RﬁQUIREMENT SPECIFICATION

Name: Telegram Processing Program

Purpose: See Previous Page

Inputs : character stream on a drum of fixed length records
Outputs: printed telegram with detailed changes

External InterFaces: Drum, Printer

Global Performaﬁce Requirements: Must run in 32K
Global constraints: Must run on a PDP-8
Functional Decomposition :

: _ see Following Sheets
Transductions and Implications:

REQUIREMENTS ACTIVITIES AND TRANSDUCTIONS

Print 1 : Collect words into telegrams
Print 2 : Print whole telegrams
Print 3 Print all telegram charges

Collect 1: Collect characters into words

Cotlect 2: Print averlength word messages and physuca1
record end of file messages _

Separate : Return next character in telegram file

Read ~ : Enter next physical record from drum into
- character buffer

‘Collect 1, Collect 2 € Print 1

Read € Separate

Main

Print 2

1

.2

Prinf 3

1.3

Print 1
1.1
Collect 1 Coliect 2
]'}i]=3(]) 1.1.2=2(1}.2
1
1
1
Separate
4(1)
Read
5(1)

- TABLE OF CONTENTS

Words

input

Whole
Telegran

Input

Netaited

Charges

{nput

Charac-
ters

nput

Hords

Inout

‘Last
Charac-
ter

'InDut

Last
Record

Print_J
— 1.1
| Print 2
' 1.2
‘ Print 3.
- 1.3
Coltect 1.
— 3(1)
Collect 2
——e T
2{1).2
Separate
. a(1) §
o Read
o 5]

OVERYVIEM DIAGRAM

Gutput

ihole
Teleqaram

Datailed
Charges

Quipuk

Printed
Telegram

Qutput

Printed
Charoes

Output

Yords

Qutput

Over-

length
or EQF
Message

flutput

Next
Charac-
ter

Dutput

Next
Record .

_

Input

Blank

and non-

biank -
charac-
ters

Collect 1

‘Read characters

Group non-blank characters
into words

Truncate words at length 12

Input

Words of
lenath -
i2
End of

teletram

Collect 2

Flag words of ~ 12

Flag end of teleqgram

DETAILED DIAGRAM TOR COLLECT 1 AND COLLECT 2

Qutput

llord
array

length
12

Qutput

Over-
length
message

EOF
flag

w

USING SOFTWARE SPECIFICATION LANGUAGE

MODULES AND
INTERCONNECTIONS

DESCRIPTION OF SYSTEM
AT HIGH LEVEL OF
DETAIL -

MODULES AND
INTERCCNNECTIONS

MORE DETAILED
DESCRIPTION

AUTOMATIC
TAANSLATION

p

CORRECTION OF
INCONSISTENCIES

\

TO DETAILED DESIGN
. 1-75.1532

SOFTWARE SPECIFICATION LANGUAGE

A semi-automated tool that assists in ¢onversion

from written requirements to computer

Checks the consistency of the logical
and computations sequence to generate
output for a given input.

Provides requirements traceability.

code structure.

flow of data
the desired

REPRUDUUIBJ.LITY O THE
DRIGINAL PAGE IS POOR

CHFCTFICATICN AGE EvabLoallrh S?S]EM

“FPCRT TABLF OF CCATERTS ' T T e e

SDURCE . SOURCE ' PLI
LINE _ PAGE E A

ILASYSTFH #alw e et s e e e e a aa s e e s s e a b e s as s s esas e neale s e s .
SRCRLLES e 4 e o s s s n aaie e s e s s as s e s e aTeu s e e s e e w s e e o

GFT TELEGRB™ & & o o o o o ¢ 5 a s &« o = & 2 s o« = a o

« CGFT wilny a % B @ & & 8 ¢ wW W T W s e oww - ow

R

CVAKIZELES | . e e e o s

.
L]
-
.
3’
.
.
L]
L]
3
.
.
*
»
L]
L]
L]
.
-
.
L]
-
.
*
*
.
L]
]
L]
*
]
L]
4
*
.
s

1. A CHAR

. - - - '. - - - - - - L] - L3 - - ‘. - - l - L] - - - L] . w - - - - - L] - -

E_‘c CHARGE _EKJUNT s o 4 % & e e .0 a e = 6 4 o 2 s a o s % 4 o 8 2 e s & » " e e a = e & @

2. TEL EGRI&M LA B P A I S R 5 - e 4. ﬂ'-‘o__ ti_'_t S e ® e e e =+ oa i & & @+ a. bl
ll“ EOF- FLAG : O I ‘ : " s & 8 = e 14‘ . ®w & 4 9 & & -’ L ;N.. - 9 “.m. .-'.n”‘-: ; : e & 4 \.. . : ' 1‘
Ee WLERD o " e s v e e b omom o . 12 o o % o 8 a = « L T R L T I I R I S) 1
E'. HQRU-CDUNT B T ‘e e w % w e 9 - W e » v .‘ - - ; . » - - ; L])- 4 - p = - .. -n ‘.‘ - -].u
) ﬁEQl.I RFI."KENTS L L I T T R ”- * & 8 @ 3 5 @« 8 &4 2= h . -‘ ; .- E - 7- . ,.-». -A * e o 4 % o 2 % ® 1‘
- 1 - ' CGL LECT N) . B - ‘_‘ . - - - - - ‘. -l‘:‘ :-‘-: ; v.. ’ .- . .-.-:' .““: “'. - - ._ - “—T - - - A. ;M"l--—.--‘ - L - - “; 1 ’
e Za PRINT . 4 ° = s @ e * A s 2 s - e R . » & ®» & = . - n e * A % e s s 1-
‘:HBS\'STEV I_U . - & = -. 2 » & ' & » = = L L L L I T) e« . .® 2 0 8 ¢ s 4 s w oo 1
pcl‘oilLES . " e s s - U ‘. w = 2 4 e o e e . * % A e 4 3 0 #£ & 4 & e & ¥ eI 4 oew T Eos . 1
.16 . GET_C"AR - &' s & 4 % & &4 B - w» " a @ -. LI I T 2 « . - . . - = a 1
Zi FILL.BUFFER S 2 - S r e a e e e - 1

. VARIABLES T

. 4 % % 4« a4 8 & @ & 4 ® & = 8 m 9 % W o w' e & 8 8 e W e m e e s & = 2
e ALCHAR . T e T T T L e S TS A T T S TTNTR T e TTe T e 2
) _2-' CHARACTER_FI « = s s @ PR - w . 47 ¢ o e &« = 8 4 3 = = 2 & 8 v ® B o* b & 4 4w e w 2.
S E.. BUFFEKR am & = e 2 & “ eis » 49 o « a0 8 = 2 8 8 8 8 % w = » P - . e s & # = ® Z2
‘1- EUIL'..FLAG o . a = * 8 8 % ® & @« = 53 © % ® 2 & = & & ® & @& v & '-_ * ».® 8 & & @ ® w0 » 2~
. £. CHAR—»INDE‘X . ¥ 4. % & a '._ « a2 = ':'—.A- - Sl “« = - '- . _l--'. P LI . . @ e s e ® ¢ we = - s . 2
HEbu I:T?EI"-EN TS~‘¢--‘-" a :hb: . ; e .,:--_..-.- :.-. .—:“--_ - PR A - .—-.l * 3 8 # % = w oA e e ee e s e 2
. k‘—l—-—‘ﬁsnﬁ T 1‘--—-—-.‘7 ;-:---;--: 4 T-:._ « & @ & 9 —-_":. ‘s e-w % be @ & -
___'___2_.'___“5 EPA_E_‘IIE‘ I T I I -____.: « & & 4 # '8 5 W H W e w4 s e i

:SampleVTable{of Cbnfehts from‘an-SSL Réport_-

) EMHUU UUWM&— R
. GRIGINAL PAGE IS POOR

e _ . SOFTWARE SPECTFICATION LANGUAGE
L SEETWARF. REECTE{IATLIN AND TYALUATION SYSTEW : : '
: 5)""‘5[:!‘ ﬂ‘][_t) . .
P s gl q,mg‘ 3 O"E NAt EMARYRTAW Vg = - . ' - R L
1.7 .0 REQUIRENELT . . S - C ewe
e N TRANSHYC T STLLITT TN ATy s S
5. FTPyT FTELT 549, CHA e T VRN . ;e
LN _EM. CEQUTETvENTy - T - S h
Te . VAT AL T - TELTATAVE TTYTY e i : ey
#, . : TSR LA PR ET] J L L - f -~un
J. "”T'T' : e
L0 . ! : IR 'l‘l"l}"\ l.'Hﬂ.ﬂ';r._C:“J"T w3 £ Ll
“Ele S WORS_COUNTE 1ITEGERY]
12. . . T REE pIfyT: : T
13, . : SUBIECTTT WOAL_CANT = ru.m;= LT | ARk
4 - 0 <. WORD:T ARSAY (12} AF CuAR: Bhds
15. -] FOR PUINTS LTk
15. '_ O . EDF_ FI.AG‘ O0LEAN . .) e mes
17. : FOR PRINTY S o : ‘ LAk
[R. . #% END TIF PREAMALE #/ B ¢
19. 7% MAIN ROUTINE Y© COLLECT unms ann PRINT TELEGRAM WITH HORD CTIUNT w»/ e
20, - " MKODULE GET rE!.EGRw: T anm
21. [EULFILLS. PAIN . : LA
22+ 7 ., SCREAYES TELEGRAM. CHARGE_COUNT USING WORD$ ' , B)
23, . - . CREATES WORD_COUNT: . T i B i
24y HODIFTES WORD. COUNT: B .) . B b
. @8 USES. LEOF_FLAG: R . . U e P 15 S
L 26, : ACCESSES LINE_PRINTER3 o N 7 : R
2t . . EXECUTES . : - i
20 . . TTERATIVELY IGET_WORDIZ) " - . . wE
- 29, . SATISFIES - . 1]
" . EOE. FLAG ar HDED COUNT .= D : - RS
o __3le L END._HODILES - e e e e R
Qs 32a ‘% PROCEDURE TO anLE{'.T cHﬁRAETERS INTD HDRDS EY . : : i
o .. AOOULE . GET_MORDF . - - . Ll
CFULFTALLS . RQLLE;T., . e o . Loken
EXECUTES - L : B b
: TT_ERATIVEL‘!‘ T, O.GET GHAR (A...l:HAH.-(:HAR. EOF FLAG) 1 . e
CREAIES . HORD: EOF_FLA . ik
ACCESS5ES LINE_PRIHTER .r* ‘PRINTS ERROR. H’ESSAGES *} SRk
END MODULE s
ENI} SUBS\'STEH. 7& END OF MAIN SUBS?STEH tf LW
R - [N e ww e - - —— -
o . The subroutine GET-WORD Tulfills the
- T - requirements: transductions COLLECT 1 -
i een e i e ~and ‘COLLECT 2. s

Sample SS_'L Source Program

APFTntnlk SYeCIFTCATION ARG EJELLaFILN SYSTIM

o IS S - R N

S+ ® a v 9

A CF
Qs
[FEE
Flu

al]
wiill

SUMFATY OF var TIRLEZ%URULE COMGE (T TCNS

1 ¢ 3

AR I . X .
BE CEUNT I £ 4 .
Crn Il X o @
il AG I % X «
I X X .

CLLNT I X o «

SSL Requirement to Module Connectivity Matrix

REPRODUCIBILITY OF THR
ORIGINAL PAGE IS POOR

SOFTWARF SPHOIFICATICN AND EVALLATICN SYSIEM

SLMMARY OF kb QLIS U¥INT/YPQILE COARECTICAS

1. CftivcT i .
74 PRINT I x

SSL Module to Module Connectivity Matrix

SO Tabeb SFEIIFTOAVEICN 2ol FFALLATIUN SYSTEM

SUNPLSY 4, F #EDLLE /AL E CORMREL TILNS

i 23
1o CFT TFLFCRAL | o o &
7. CFT LIRD 1 X . -
3. CF1 CHAR 1 .

SSL Varigble to Module Connectivity Matrix

o

e

S TP,

JURICPRI

s T ot

/

STRUCTURED TO UNSTRUCTURED FORTRAN PREPROCESSOR

SOURCE PROGRAM
{(STRUCTURED FORTRAN
AND ANS! FORTRAN
STATEMENTS)

CONVERT STRUCTURED
STATEMENTS TO ANSI
FORTRAN CONSTRUCTS

_—

NEW ANSI
FORTRAN

PROGRAM

SOURCE

1-75-1578

\

REPRODUCIBILITY OF THR j;
NRIGINAL PAGE IS POOR a

STRUCTURED PREPROCESSOR LISTING

T

SURPLUTINE GETar (adkds LUF)
FETOHFS oAl oWl 3 kRO TELEGRAA S[LT
FIR = HAKAL U LS Liv WU
CiIF = tNg F FLLD FLAG

[aEnRalel

PREE SR Twitd i))
LOGLCAL b, Lt
NATA IpL AR £ 46 /

(aRal

e AN FRLL g

FUlk {1 = 1y 17)
Twiadd b = I 'LANK

ENOD FOR

LFN = Lhal5i.

o FIND FIRST MUNDL ANK CHARACTER
POHAT = 1AL ALK _
D wHILL (1CHAKM (M. BLANK oAND. JALT. LOF)
CALL GFTCH® {LCHAR : TUF)
END)

c CLLLIGCT win™
[=1
O wHILEL (efdTe TLnAR oF e [HEGKK
? JAND, LT, EOF)
IF [l LEs L)
THEH
Fqu{1) = ICMAR N
[= 1+ 1
LSt
IF (1T, LEN)
THily
WRITeE (b6y 1)
L FortMAT (Le oy 1 BEawdRD Qe R LD
LFN = JTRUE.
Ea o1e”
imD e
LAl CETCHR {ICIHAR, ENF)
TN)

Ri TURM
£ND
DL STATEMONT uMath sy Bduag,

Aobe RS A0 T TS ROIUTE NG 42 CTARLS r[aDl. 5 LARLS UUT

GOPITRRATILE0S iy i . 7o TOTAL LASUS RLAD, 31 THTAL warws
2 TOTAL CSu mHlbeTs, 3OTOVAL 17495, . JoTUTAL R IF
A TUTAL Rkt S, U TUTAL TCST CASKE'S,

3 PHTL4Ad UNTTS PRICESSED.

B

e

GENERATED ANSI FORTRAN
'L 2.0 [Juw Ta) LS/ 300 rindepi N

LGP TLTR T T - NAATE MARNSUPF=Id LINECNT 250 401402 VYK,
SOUKCLy 30RIC AL TSTeNUDECK JL AN AP NEFD LT ¢ [0 MIAKEF

SN0 SUBRAUTINE GETHD {TWwlithy EUR)
SN 003 EMTL0Le twurul L)
N D004 LilCAL FEuFy LEN
‘N Qs HATA THLANK /7 AH /
WNCODDG IFE 1
vefiTae 1/
I TR Y9949y
\N 00\)‘3 D'] ‘39‘7‘1“
. I = 1,y 12
N 009 [getizfl) = 1JLANK
SN 0010 Guaya CUNT INUE
SN 00LL gunay CORTINUF
AN 0012 Lo 5 orntSe,
SN Q013 TLHAR = [ELAIK
SN 0014 G997 (T (.NUT,
. [lutad Jtlaas HLANK JANO . NIT. LUl
. L3060 T GUYnE
N O00le ALt GhTU (JChAKy Bl)
N G017 G 1D 9a97
SN Qals 9% CONTINUT
N 0019 e
SN 0029 BOOGh TR JNUT,
. [aritJTu 1CHAK ol W ol ANK
g e ANIe atidTe LNF)
N RSV B ¥ B T
AN 022 Le { tatel,

. {1 Lta L)
ol T 95993

JN 0024 Pad2i1) = ICHAK
SN D02Y 1= 1 +1
NOOD26 w)l T aGguez

N 0027 999793 O T INULE

SN 002R T {oNGT o

. [.NJT. LEN)
Sl T 9939]

WN Q030 AaRITE {6, 1)

00731 P A IAT (L L3HWCRIY uVERFLLW)
9N 0032 LFe = JTRUL,

SN 0033 GOOGL CANTINUE

SN ONY4 PR LA R § 0 3

N 0035 LALE GoTCed {I0HAKR, CUR}

5N 0036 el f juews

N Q037 V9% LUNT AL

SN 0038 SETURN

SN 0039 TND

STATIC CODE ANALYZER

REPORT SUMMARIES
STANDARD THAT PINPOINT
ggu RCE 8= POORLY CONSTRUCTED
OGRAM SOFTWARE SEGMENTS

STATIC CODE
ANALYZER

PROGRAM CHECKS TOTAL PROGRAM

CONSISTENCY BETWEEN

SUBROUTINES

L TYPES OF VARIABLES

. DIMENSIONS OF VARIABLES

L SUBROUTINE CALLS

TN

y 4

P P

e A PR T

e B 1

g o ke

FATEFS PrIMALY LISTING KEPGHT
LRI XCFCE SIS IV ANSG SR DB L KLk

FPGKAM MATN
INTTCER IWCROL12)
LiGCIC AL EUF
COMACN LIACE. JACE, KACE
#% 210 rUrEAL CEPMEN 1S UNLABELLED . <tosem
[ACF =
JACE = |
LIN «FALSE.
FCF «FALSE.
IFt 3
««iTe 100
SIGUH TC GISYS
i, $4ych
. 1 = Ly 1CGO
CALL (ETWO {IWiiRos clF)
&4935%3 GONTIRUE
€sogg (CNTINULE
STiP
ENI}

it n

2k F AP L ANAGOTIONS * % %

Static Code Analyzer Output

FACES vl acY L ESTING REPGRT
DAV IRV YN FURA G Lo LB nRAGHEY

SULECLUTINE GETaY (Iv(FU, ECF)
1afFCFR IwORDE L2}
Li.GELAL EUFe LEN :
CATA TLLANK / 4k / }
Fe 1
alia 12
L. TC 999%9
0T 5454563
. I =1+ L2
[axlil) = IS5LANK
s LONTIMUE
$694G7 CuinTINUF
i = JFALSE.
[CHAT = 13LANK
DEDEY S S N N o B
. {ICHSS obEwe BLANK LAND. JNOT, E0F) :
LIGE TC §59%06 |
w140 LATLT LGCAL VARIAGLE ULANK 15 LNINITTALIZE L. cfee—————— :
Call CGETCHR (lCHAR, EOF) ;
¢ T 96697 . i
5% 26 CUMTIAUE :
i =1
€594% IFL.NCT, :
. {«NUT. ILFAR JEQ. IBLAMK
s «ANDa NCT. EGF) :
G0 T 59964 ;
£ ({NCT. ‘
. {l .LE. 12}
L1610 TG 69653
TaFRCIE) = ICHAR
P= 1 + 1
oL 1C 95592
%593 COMNTIAUE
Tr{«ACT.
. {NOT. LENI
G 16 949581
WRETE {6e 1)
1 FLEYAT {1k 5 1AHaoRD GYERFLUWD
|€Zr‘- - -TFU[:. :
€553l CUNTINUF)
§64%52 CLNTINUE) i

CALL CETCHR (ICHAR, ECF) i
GLOTC $5%9% !
64494 LLNTINGE i
¥ YN . i
Ftu :
w OF THE :
DJlr}. 1

ODUCE OR

A GIAL PAGE 15 F0

8% & b AFLANAT IONS %% &

19X TETT EXISTS A PATH SUCH THAT A LOCAL VARTASLE I8 UNINITIALIZEL.

STATIC ANALYZER Report on GET-WORD

STANDARD
SOURCE
1 PROGRAM

QutPuTs A GRAPHICAL PICTURE
oF DATA EXEcCUTION

Dynamic Patd TrRACE
NUMBER OF .EXECUTIONS.
PERCENT % OF EXECUTIONS
VARIABLE MONITORED

- In1TIAL VALUES

- Min./Max. VaLuEs

- FI1rsT anD LasT VALUES

\.

///’— DYNAMIC CODE ANALYZER (DCA)

STep 1: GRAPH ANALYSIS

@ PaTH TRACES
¢ ID oF Nopes

STep 2: GENERATE PROBES

e MaNUAL ANALYSIS ofF NoDES
8 CreaTE CoNTROL CARDS
o GENERATE TEST DaTA

STEP 3: Dynamic EXEcuTION

o Input ConTrROL CARDS
@ InpuT SourRce ProGRAM
o InPuT TEST DATA

@ CompILE AND EXECUTE

*¥._ NASS DYNAMIC ANALYZER INPUT _REQUESTS . #% _

BIALECT sTaRLCTYRED
e ... ANALYZE. ALL
REPORT MATA
(REPCRT .. GEThC)
REPORT GETCHR
e ee e $e0F oo L.
END OF JJ8 STREAM)
. - e e _. Dynamic Analysis Report requested

for GET-WORD.

DYNAMIC ANALYZER COMMANDS

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

#% MOUULE DETAIL REPURT FUR GETWD %

-== NODE/STATEMEMT LIST —--

STATEMENT WODE _ STATEMENT TEXT
NUMBER NUMBER NUMBER
i - LABEL

SUBROUTINE GETWL (IWORD,EOF)

L

2 c FETCHES NEXT WORD FRUOM TELEGKAM
3 C IWORD = CHARACTERS IN WORD
4 il PR EQF = END OF FILE. FLAG

5 c

6 INTEGER IwWORD(12)

7 LUGICAL EOF,LEN

8 DATAIBLANK /7 4H

9 c

10 c BLANK FILL WORD

L1 1 FOR (I = 1,12)

12 2 IWNRD(1) = IBLANK

13 3 END FOR

14 4 LEN = .FALSE.,

15 c

Y lé6 S R R =k . FIND FIRST NONBLANK CHARACTER

17 5 ICHAR = IBLANK

18 6 DO WHILE (ICHAR.EQ.BLANK.AND..!
19 7 CALL CETCHR(ICHAR,ENF)
29 8 END DO
21 c
22 G R 5 .. COLLECT wORD =5
&3 9 I =1
2% 10 A CO WHILE (.NOT.ICHAR.EQ.IBLANK.
25 11 P4 TaLEsl2 '}
26 THEN
27 12 IWORDI{I) = ICHAR
28 13 jimclel

29 14 ELSE

30 15 IF ({ «NCTJ.LEN)

3l THEN

32 le WRITE (641}

33 17 1 FORMAT (1H 5 13HWORD OVERFLOW)
34 18 LEN = .TRUE. : At
35 COMME NT: ELSE INSERTED

36 19 ‘ ELSE

37 29 END IF

38 21 : % END IF ‘

39 22 -CALL GETCHRI[ICHAR,EOF)

44J 23 EAD DC ST
41 c

42 24 .~ RETURN

43 25 END

Dynamic Analyzer Static Analysis Report

s+ _MODJLE DETAIL_REPORT_FOR_GETHD e (Pace2)

Sh e 4 s amene YA MA YIS TS s

JLCP BEGIN ST i ey MEMBER . SR EN DDP CONDITIONS . - oooi
NJde NUJE NCDES NCODE TYPE

1 B e, s R e D e on SRS e L 1 s e BN R

EOR T LRVl)

L. 4 G R S W R SIS 6 CFORUTL.GTe12)

B 7 S O - I CHARS ER S B ANK AND s s NOELEAE) oo e
6.9 10 DUW NOT.{ [CHAR . EQ.BLANK JAND. . NOT.EOF)

2

3

4

& a9y : HiE " 11 DOW (.NOT.ICHAR.EQ.IBLANK.AND..NGT.EQF)

& Rt e T el e e S DT S ST L T CHAR B0 IBLANE CAND S SNOT LEOF)
7

3

—emll - 12:°13.21..22..23 Ly S s o it § ooy 1ol 05 1 29 Re) polliaiees
) B B I 15 AES Br=ELSE=~

Bl R R R SR G0 By B ans b e a0 TEE W SNOTRLENSY e - e IR G
19515 19 20 21 22 23 Cadi SAAte Ny ppetgnopranesina L S Se i Dl S s B
e e e AT TORE D VAR TABLE LIS i L e T R
HERES . e e o i e e TYPE AR e S T ey
3 VARIABLES WERE MCNITORED FOR THIS MGLULE R e SRR T e S

Dynamic Analyzer Static Analysis Report

y 4

——-%%% _.MOOULE —TESTING EFFECTIVENESS SUMMARY. *2%

MOSILE TIMES [NVOKED ¥ DD PATHS 5 EXECLTED®
MRIN e R 2
GET ») R [b L5010 . 4
GETCHR) 2 3
Tl T O S R 6

#(AT LEAST ONCE)

Dynamic

Analyzer Run Time Report

&

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

-2¥% _OETAILED REST- REPORT FOR MODULE GETWD = .#*%% _

MOOULE 5=Tad WAS INVUKED 100 TIME(S) T
DDP JdUMBER ENTRY COUNT . PERCENT EXECUTIUN Mg R
1 1290 80.2 [s T e s e s
.2 e R e A T S i O g i P e (2 T S, e o i b
3 0 0.C |
4 100 Beds A | %%]
5 0 0.0 |
6 L00 6.1 | %%
Neval o] 0.0 |
=Dt R a0a i ¢ GRS Gl s P oAl b RS b R D I Ak e G NS)
S J 0.C I
FERTEIPES |7 B 0 SICEHIE RS s 104 3 | B : R A0S
e e e | I | e e B B
S] S i Al | 10 20 30 40 ..50 60 T0 80 190 100 .
A e ol S L TN Segnns Sl e T ARG ENT. - EREE YN
TOTALS
10 1500 PERCENTAGE DD PATHS EXECUTED 40.0

Dynamic Analyzer Run Time Report

&

&

(Implemented)

STRUCTURAL TEST CASE GENERATOR

e COVER SELECTOR - To gauge the number of execution paths in the
program and to select an optimal cover for
testing purposes.

e DDP CONDITION LINKER - To associate a series of decisions (in

simplest form) with each execution path.

e NEXT TEST - To select the best next path for test case

generation based on testing history data.

7

y 4

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS PONR

ar COVER—SELELTOR—AND-ANALYTIL RATH -ANALYSIS-REPURT FOR-MUDULE GETWD — ws

ANALYT LGP A TH-ANALY S | S-mmm

5 == NUMBER OF DECISIUON NODES
s | Y NUA B ER—BF—BEG | 5H-ON~TO-UECESTUN-PATHS ~(DDPLS)

1——=—NUHBER~OF - PRACTICAL- EXFCUTTON -PATHS: — —moom oo

M IN P UM -NUMBER-OF—TEST—CASES A w Evy—BEST-CASE-DOP—LOVERAGE——
0.063 -- IMPACT ON EXHAUSTIVE TESTING

6 —— MAXIMUM NUMBER OF TEST CASES (I.E., WORST-CASE DDP CCVERAGE)
Gy 3 P HPAC T ON-EXHAUS TV ETES FING—

GOVER—SELECTOR

FIRST TEST DD? 1L

THcN ONE OF ODP 2
e FHE N~ ON B0 D D a3 -—D DRk

THEN ONE OF DODP 5, Q0P 6
e THEN-GNE-OF —0DA- T4 H50-8

THEN DNE OF DODP 9, DDP 10

STRUCTURAL TEST CASE GENERATOR REPORT

y

