
General Disclaimer 

One or more of the Following Statements may affect this Document 

 

 This document has been reproduced from the best copy furnished by the 

organizational source. It is being released in the interest of making available as 

much information as possible. 

 

 This document may contain data, which exceeds the sheet parameters. It was 

furnished in this condition by the organizational source and is the best copy 

available. 

 

 This document may contain tone-on-tone or color graphs, charts and/or pictures, 

which have been reproduced in black and white. 

 

 This document is paginated as submitted by the original source. 

 

 Portions of this document are not fully legible due to the historical nature of some 

of the material. However, it is the best reproduction available from the original 

submission. 

 

 

 

 

 

 

 

Produced by the NASA Center for Aerospace Information (CASI) 



NASA TM X-73618

N77-26829

Unclas
G3/61 35460

NASA TECHNICAL
MEMORANDUM

00

M	 (NASA-TM-X-73618) SOLUTION OF TRANSIENT
OPTIMIZATION PROBLEMS BY USING AN ALGORITHM

X	 BASED ON NONLINEAR PROGRAMMING (NASA) 13 p
HC A02/MF A01	 CSCL 09B

F-

az

61

SOLUTION OF TRANSIENT O PTIMIZATION PROBLEMS

BY USING AN ALGORITHM BASED ON NONLINEAR PROGRAMMING

t
by Fred Teren

Lewis Research Center
Cleveland, Ohio 44135

TECHNICAL PAPER to be presented at the
Joint Automatic Control Conference

f	 San Francisco, California, June 22-24, 1.377

h.
rJ ^V	

v\

p L V,77

rr
	 RECEIVED	

.

t.	
A STI FACIUT1

N INPUT BRANCH
'J
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ABSTRACT

A now algorithm is presented for solution
of dynamic optimization problems which are non-
linear in the state variables and linear in the
control variables. It is shown that the optimal
control is bang-bang. A nominal bang-bang solu-
tion is found which satisfies the system equa-
tions and constraints, and influence functions
are generated which check the optimality of the
solution. Nonlinear optimization (gradient
:*arch) techniques are used to find the optimal
solution. The algorithm is used to find a mini-
mum time acceleration for a turbofan engine.

I. INTRODUCTION

In recent years, linear-quadratic regulator
theory has been developed for the design of
multi-input, multi-output control systems. An
account of the theory and application is given,
for example, in reference 1. Use of the theory
has been facilitated by computer programs such as
those described in references 2 and 3, which rap-
idly and efficiently calculate the optimal feed-
back control gains, given the system description
and performance index.

In addition to the design of regulators, the
problem of minimizing the time required to trans-
fer from one set point to another is also impor-
tant; this problem cannot be solved systemati-
cally by use of linear quadratic regulator theory.
Minimum-time trajectory optimization has been con-
sidered by many investigators for many years.
Athans and Falb (ref. 4) give a good account of
the literature dealing with time optimal systems
in their chapter 7. However, nearly all of their
discussion is concerned with problems having only
asingle control variable. Furthermore, the sys-
tems are assumed to be linear and time invariant,
and the control limits are not dependent on the
state or time. It is shown that the optimP'_ con-
trol for such problems is bang-bang; t.e., the
control always operates at either r%e upper or
the lower limit.

Wolske (ref. 5) considered the problem of
fuel-optimal control of a dynamic system which is
nonlinear in the state and linear in the control.

The controls are assumed to be bounded in magni-
tude, and the resulting optimal control is bang-
bang. The problem is solved by linearizing about
a nominal history, which is neither optimal nor
feasible (i.e., it does not satisfy the terminal
constraints). The optimality condition and term-
inal constraints are expressed as linear inequal-
ities, and linear programming techniques are used
to improve the solution until a feasible optimum
is attained.

In this report, a new algorithm is developed
for solution of dynamic optimization problems
which are nonlinear in the state variables, and
linear in the control variables. Specifically,
the problem considered is to minimize a perform-
ance index subject to satisfaction of the system
dynamic equations, a set of terminal constraints
(the number of which may be less than or equal to
the number of states) and path inequality con-
straints. The performance index, system equations
and path constraints are all linear in the control
variables.

It is shown that the optimal control is bang-
bang, except for possible singular arcs, which are
not considered. The algorithm requires that a
nominal bang-bang solution be found that satisfies
the system dynamic equations and terminal con-
straints. Once such a feasible solution has been
found, influence functions are generated which
check the optimality of the solution and determine
whether or not additional control switches are
needed. Nonlinear optimization (gradient search)
techniques are used to find the values of the con-
trol switching times which result in a minimizing
solution. The nonlinear optimization technique
described in reference 6 is used to generate the
numerical results presented in this report.

This algorithm is then used to find a minimum
time acceleration history for the F100 engine, a
two-spool turbofan engine used to power the F15
and F16 aircraft. A piecewise-linear engine model
is used. The linear models used in this report
were obtained by linearization of a nonlinear
model at five equilibrium points, and were taken
from reference 7. The linear model which applies
at a given time in the trajectory is determined by
calculating a normalized "distance" from the cur-
rent state to the state at each of the equilibrium
points; the linear model associated with the
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closest equilibrium point is than used. The model
has three states and tour controls. In addition,
there are linear state/control constraints which
correspond to speed. temperature, pressure, and
mechanical control limits.

II. A NONLINEAR OPTIMIZATION PROBLEM,
LINEAR IN CONTROL

Problem Statement

We consider a fairly general dynamic optimi-
sation problem, which is subject to one important
restriction - the performance index, system equa-
tions, and path constraints must all be linear
functions of the control. As will be shown later#
this leads to a bang-bang solution. We wish to
find the vector control history u(t) which mini-
mizes the scalar functional

tf

J - #(x(tf),tf) + i (a(x.t) + bT(x,t)u)dt

(2.1)

subject to Vae vector system differential equa-
tions

x - f(x,t) + g(x,t)u	 (2.2)

and path inequality constraints

ci (x,t) + di (x,t)u < 0	 1 - 1,2,....q	 (2.3)

The initial state and time are assumed to be spec-
ified, i.e.,

X(to) - xo

while the terminal state and time are subject to
the p terminal constraints (p < n + 1)

*i(x(tf),tf) - 0 	 1 - 1.2,...,p < (n + 1)

(2.4)

In the above, x is the (n x 1) state vector, and
u is the (r x 1) control vector. The functions
+, a and ci are scalar functions of x and t,
while b and di are vector functions of dimen-
sion (r x 1). The vector function f and matrix
function g have dimension (n x 1) and (n x r),
respectively. The terminal time t f may be
either fixed or free.

The path constraints (2.3) serve to bound the
allowable values of the control A path constraint
is said to be active if ci + diu - 0; it is said
to be inactive if c i + dju < 0. State variable
inequality constraints are not considered in this
paper; the :-esults presented herein are extended
to include state variable inequality constraints
in reference 8.

NECESSARY CONDITIONS FOR A LOCAL MINIMUM

Using the techniques employed in reference 9,
a Hamiltonian function is defined as

H A a(x,t) + bT (x,t)u + AT [f(x.t) + g(x.t)u]

q

+	 yi [c i (x,t) + di(x,t)u,	 (2.5)

i-1

where 1 and u are undetermined Lagrange mul-
tiplier vector functions of time, having dimen-
sion (n x 1) and (q x 1), respectively.

The necessary conditions for a local minimum
are

T - _6a_abT 	Taf	 T1Y
Z	 8x	 ax a- 1 axc - 1 3x u

q

sTIci

	

û i 3x + Ii 2x u	 (2.6a)
i-1

q

b  + 1Tg +

	

Em
idi	 0	 (2.6b)

L-1

ui > 0; P i - 0	 if	 ci + d�u < 0

(2.6c)

In addition, the Lagrange multipliers must sat-
isfy the following terminal conditions.

XT (tf ) - V  ^ (x(tf).tf) + ^ (x(tf),tf)

(2.7)

where v is a (p x 1) undetermined parameter
vector. If the terminal time is not specified,
another necessary condition which applies is

	

a0(x ( t f ). tf )	 30(x( tf ),tf)
H(tf ) - -	 atf	 - VT	 atf

(2.8)

The optimal control is determined by satis-
fying (2.3) and (2.6b and c). For given x and
t, the functions b, c, d, g, and A are all
constant. Therefore, the determination of the
optimal u (for each x and t) is simply a lin-
ear programming problem, which can be readily
solved by using the Simplex method (ref. 10).
Except for singular arcs, which are not consid-
ered, the optimal control is always determined by
r active constraints from (2.3). The optimiza-
tion problem is simply to choose the r con-
straints which result in satisfaction of (2.6b
and c).

The r constraints which satisfy (2.6b
and c) change from time to time along the trajec-
tory. When a change of constraints occurs, the
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control variables jump discontinuously from one
boundary to another. Such control is referred to
as bang-bang control, and the points at which the
jumps occur are called junction points.

DETERMINATION OF OPTIMAL TRAJECTORY

We now assume that the linear programming
problem has been solved to yield the active con-
straints and the optimal control. If we assume
that the active constraints are constraints 1
through r and form these into a vector-matrix
representation, i.e.,

Cl 	 dl

T

C ' C2 , DT	 .2

C	 ar
then we can solve for the optimal control from

u ' - D-TC	 (2.9)

where the superscript (-T) denotes the inverse of
the transpose. Also, equation (2.6b) can be re-
written using vector-matrix representation for the
active constraints as

b  + A T g + uIDT . 0

and this equation can be solved for u to yield

	

V ' - D-1 (b + gTa )	 (2.10)

Substitution of (2.9) and (2.10) into (2.2) and
(2.6a) results in a simpler version of (2.2) and
(2.6a)

x - f - gD-TC	 (2.11)

AT - 3x (a - bTD-TC) 1T 
x 

(f _ gD-TC)

(2.12)

III. A NEW ALGORITHM

In this section, the nature of the optimal
control strategy derived in Section II is used as
the basis for a new algorithm for the solution of
such optimization problems.

First, a feasible solution is obtained which
satisfies all path and terminal constraints, and
for which the controls always lie along r con-
straint boundaries. The Euler Lagrange equations
are not utilized in the determination of this fea-
sible solution; it may or may not be a local mini-
mum. Then, it is shown that the Lagrange multi-
plier time history can be easily and uniquely cal-
culated from this feasible solution. The

optimality of the feasible solution is established
by consideration of functions of the Lagrange mul-
tipliers. An improvement scheme which makes use
of nonlinear optimization (&radiant search) tech-
niques to converge to a local minimum is proposed
for use in those cases in which the initial feas-
ible trajectory is not a local minimum.

Feasible Trajectory

In order for a trajectory to be a local mini-
mum solution to (2.1), equations (2.11) and (2.12)
of Section II must be satisfied, and the control
must satisfy constraints (2.3) and optimality con-
ditions (2.6b and c). In addition, terminal con-
straints (2.4) and (2.7) must be satisfied, and
equation (2.8) must be satisfied if the terminal
time tf is free. In developing the numerical
algorithm for the solution of this problem, it
will be assumed initially that tf is free.
Later, we will show how to modify the algorithm
for the case in which t f is specified.

We define a feasible trajectory as one which
satisfies the system differential equations (2.2)
and the terminal constraints (2.4), and where the
control u(t) is consistent with the necessary
conditions for optimality - that is, the control
is determined by r of the path constraints (2.3)
at all points along the trajectory. It is not
necessary that the control be determined by the
same r constraints at all points along the
trajectory - in fact, we will usually require the
control to be determined by several different con-
straint sets, as will be seen shortly. Such a
trajectory may or may not be a local minimum solu-
tion for the perforrance index (2.1).

In order to obtain a feasible trajectory,
there are p terminal constraints (eq. (2.4))
which must be satisfied. In general, there must
be p degrees of freedom available in order to
satisfy the p terminal constraints. In order to
provide these degrees of freedom, it will be as-
sumed that there are p segments in the trajec-
tory. For each segment, the control is determined
by choosing the r constraints which are active.
The set of active constraints may be chosen arbi-
trarily for each segment except that the con-
straint sets may not be identical for any two
adjacent segments. The durations of the p seg-
ments are variable, and provide the p degrees
of freedom necessary to satisfy the p terminal
constraints.

The choice of the constraints to be active
for the various trajectory segments should be made
carefully. There is no guarantee that a solution
exists for arbitrary choice of the active con-
straints, or for any choice of active constraints,
for that matter.

The combination of p degrees of freedom and
p terminal constraints is known as a multipoint
boundary value problem, and must generally be
solved iteratively. Two widely used classes of
methods for solution of such problems are Newton-
Raphson methods and gradient methods.



I

Fixed Fin*

It was assumed in the above discussion that
the terminal time tf is free. If tf is fixed,
then the duration of the final segment does not
provide a degree of freedom. Therefore, there
must be (p + 1) segatnts for p terminal con-
straints, and the durations of the first p seg-
ments provide the necessary degrees of freedom.

CALCULATION OF LAGAANGE MULTIPLIERS,

W* consider first the case in which the term-
inal time is free. Suppose a feasible trajectory
has been found. We will show that the Lagrange
multipliers x and u can be uniquely calculated,
as a function of time. Once the multipliers have
been calculated, the local minimslity of the fee-
sibla trajectory can be checked. If the feasible.
trajectory is not a local minimum, an iterative
improvement scheme is developed which converges
to a local minimum.

Let the ith trajectory segment have initial
time ti_1 and final time t i . The control for
the ith segment was determined by a set of r
active constraints, and the control just prior to
t i is denoted by u(ti). Just after t - t i , the
control is determined by different active con-
straints, and is given by u(tl) 0 u(ti). It may
be shown (ref. 9) that the Hamiltonian must be
continuous at t - t i. Therefore, we must have

[bT (ti) + aT8(ti)^ [u(ti) - u(ti), - 0

i - 1,2.•.•. (p - 1)	 (3.1)

Equation (3.1) must be satisfied at each of
the (p - 1) junction points between trajectory
segments. Also, as sham in reference 9, the
terminal a and H must be given by (2.7) and
(2.8). If we use (2.5) for H, and substitute
for u and a from (2.9) and (2.7) respectively,
equation (2.8) is converted to

VT dt ( t f) +d d tf
)
+a (tf)-bT (tf)D T ( tf)C(tf) - 0

(3.2)

Equations (3.1) and (3.2) give p equations which
must be satisfied, and there are p multipliers
which may be varied. Thus, we have a multipoint
boundary value problem, similar to that which must
be solved iteratively to determine a feasible tra-
jectory. However, in the present case, iterative
solution is not required. Instead we can solve
for the parameters v as follows:

First, we find (p + 1) backward solutions of
the { equation (2.12) for vT - (0.... $0)1

vT - (1,0,...,0), vT - (0,1,0,...,0),...,
VT - (0,0,...,0,1) where

T	 r a*a (tf ) axf + v aXf

These backward solutions are called

a(o) (t). a (1)
(t).	 X(p)(t)	 (3.3)

Then a(t) is given by

X(t) - a (o) (t) + A(t)v	 (3.4)

where A(t) is defined as

i	 1

A(t) s [a (1) (t) I ...	 XP (t),	 (3.5)
i	 1

There are (p - 1) equations for the contin-
uity of H:

[u(ti) - u(tp [b(t i ) + gT(ti)a(o)(ti)

+ ST (t i)A(t i )A -0	 1. 1,2....,(p - 1)	 (3.6)

and at t f , we must have

T
a(tf) - bT ( tf)p-T (tf)C(tf)+ t (tf)+(^( tf)) v - 0

(3.7)

these equations may be put in matrix form as fol-
lows:

Define vectors r  and q i and matrices Q
and R by

qi	 [u(ti) - u(ti),TgT(ti)A(ti)

i - 1..... (p - 1)

ri	 [u(ti)  - u(ti), T [b(t i) + 8T(ti)i(0)(t.),

T A dO(tf)1T
qp

rp	 a(t f ) - bT (t f ) D-T (t f )C(t f ) + d ( tf)	 (3.8)

T	 T
q 1 	 rl

A	 A
Q -	 R -	 (3.9)

qP	 rP

4

4

)
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Then v may be calculated from

V . - Q IR	 (3.10)

Once th^ v are known, (2.7) can be used to
calculate a (t f). and a(t) can be obtained by
integrating (2.12) backward in time, or by using
(3.4).

Fixed Final Time

In the above: development, it was assumed that
the terminal time tf is free. In the event that
t f is fixed, the equations for calculation of v
are easily modified. In this case, (3 . 2) is not
applicable. Instead, there are p of equations
(3.6), instead of (p - 1), sin=e there are (p + 1)
sagmento for this case. The p equations (3.6)
are sufficient to calculate the p parameters, v.

Improvement of Feasible Tralectory

The Lagrange multipliers can be used to de-
termine if the initial feasible trajectory is a
local minimum. The optimal control is obtained as
a function of time by using equations (2.6b and c),
with x(t) and a(t) as determined from the fea-
sible trajectory. If uop t ( t) is identical to
the control time history ufe(t) utilized in the
feasible trajectory, then the initial feasible
trajectory is a local minimum, and no further cal-
culation need be made. On the other hand, if
uopt (t) differs from ufe(t) for even a portion
of the trajectory, then the feasible trajectory is
not a local minimum.

Suppose, for example, the control uopt(t)
differs from ufe(t) during trajectory segment k
Then the performance index (2.1) can be improved
by splitting segment k into two parts, and using
control as follows.

U(t) - uopt (t) - tk-1 < t < tsw
(3.11)

u(t) - ufe(t), taw < t < tk

where tow should be chosen to be only slightly
greater than tk-1, so that the modified trajec-
tory differs only slightly from the initial fea-
sible trajectory. Because of the modified control
history, the new trajectory will not satisfy the
p terminal constraints (2.4). Therefore, the or-
iginal p junction times should be adjusted,
while holding tow fixed, so that the terminal
constraints are satisfied. Since the trajectory
was modified only slightly from the initial fea-
sible trajectory, the process of reconverging the
trajectory should be accomplished easily.

switching time, i.e., 2J/2t w can be obtained.
It is shown in reference 8 that

2taw H(teW) - H(tew) aT (esw) g (tsw) tu(tew)

	

- u(taw)] +bT (tsw)[u(tsw)_u(tow)]	 (3.12)

The set of all such switching points taw
and corresponding gradients, can be used in con-
junction with a nonlinear search technique to
search for the values of tw such that the
gradient vector 23/2tw is equal to, or nearly
equal to, zero. At this point, a local minimum
solution has been achieved.

IV. PIECEWISE-LINEAR MODELS

An important special case of the problem
considered in Sections II and III is when the
performance index, system equations and path con-
straints are all linear in both the state and the
control. This case occurs frequently in practice
because linear approximations to complex dynamic
systems are readily available. Furthermore,
solutions to linear problems are easier and less
costly to obtain because the system and Euler-
Lagrange equations can be integrated in closed
form.

If the actual system is only slightly non-
inear, a single linear approximation to the non-
linear system may suffice over the full operating
range. However, if greater accuracy is desired
and/or the actual system is very nonlinear, a
series of linear models may be used, each of
which is obtained by linearizing about a different
equilibrium point. Linear equations are still
used to describe the oyster at each state point,
but coefficients in the linear model vary from
point to point. Such a model is called a piece-
wise linear model.

Suppose, for example, the nonlinear system is
linearized about a number of equilibrium points.
In the neighborhood of each equilibrium point, we
have

	

x - Fj (x - xej ) + Gj (u - usj )	 (4.1)

where xej and uej are the equilibrium values
of state and control at the equilibrium point J.
The system matrices F and G  also differ, in
general, for each equilibrium point. The path
constraints may also be linearized about each
equilibrium point to yield

cij (x - xej ) + dij (u - uej ) + eij < 0
Once a modified trajectory has been obtained

and the terminal constraints satisfied, the
Lagrange multiplier time history may be calculated
for the modified trajectory in the same manner as
it was calculated for the initial feasible tra-
jectory. From the Lagrange multipliers, the grad-
ient of the performance index with respect to the

i - 1,2....,q	 (4.2)



The path constraint vectots cij and dij also
differ for each equilibrium point.

With a pieeewise linear model, the system is
described by line t equations at each state point,
but the linear systak coefficients vary from one
point to another. A question that arises is
which equilibrium model applies beat for a given
state, x? It is natural to choose the equilib-
rium point which is closest to x in some sense.
Since the various states do not necessarily have
the saw physical dimension, a normalized dis-
tance function is used to determine which equilib-
rium point is closest. For a given state x, the
distance functions

I  - (x - xej ) IW (x - xej )	 (4.3)

are calculated for each equilibrium point j, and
the equilibrium point is chosen for which I  is
a minimum.

Since the I are continuous functions of
x, model switches (any, from j to k) occur when
I  - I  or

(x - xej ) TW(x - xej ) - (x - xek ) TW(x xek)

Necessary Conditions for Optimality

The problem to be solved is to minimize

tf
/

J - d(x(tf ),tf ) +	 / (aTx + bTu)dt

to

subject to the system differential equations

x - Fj (x - xej ) + Gj (u - uej)

and path inequality constraints

Cij (x - xej ) + dij (u - uej ) + e ij < 0

i - 1,2,...,q

where the linear model index j is determined
from

min(x - xej ) TW(x - xej)

i

The Hamiltonian is defined as

H A J. + bTu + 1T !j (x - xej ) + Gj (u - uej )

q	

T	 l
+	 ui Ccij(x - xej ) + dij (u - uej ) + eijJ

i-1

and the Euler-Lagrange equations are

q

1T	
- aT - aTlj -	 I+icij

i-1

where the model index j is the same function of
time as determined by integration of the system
equations. In addition, it is shown in refer-
ence 9 that the Lagrange multipliers are discon-
tinuous at model switching points, the jump in A
being given by

a (t e}	 x(ts ) + calk

where

ajk 
A 2lxk - xT W	 (4.4)

and t is the time at 

\

which the model subscript
change: from j to k. Furthermore, since the
switching time is not specified a priori, the
Hamiltonian must be continuous at t - to.
Therefore, we must have

(A (te) + tajk ) Tx(ts) - AT (te)x(t B )	 ( 4.5)

which gives

AT(ts)C$(ta) - x(ts),
t -

OT x(t+)	
(4.6)

jk a

V. DEMONSTRATIVE EXAMPLE

The ideas developed in Sections II through IV
are illustrated in this section with the aid of a
numberical example. A problem will be solved in
which the system equations are nonlinear in the
state and linear in the control.

Problem Statement

Consider the problem of finding u(t) which
transfers the system

1t- -x2+u
(5.1)

y--4y+u

6
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subject to the control lisilts Jul < 2 from initial
condition (xo,yo) - (1,1) to terminal conditims
(xf, yf) - (0,0) in minim time.

We have in (2.1), (2.3) and (2.4)

m	 t f , a - b - 0

Cl - - 2, dl	 1
(S.2)

C2 - - 2, d2	 1

01 ' xf' *2 Yf

The Hamiltonian (2.5) is

H- Ax(-x2+ u) + Ay(-4y+ u) + ul (-2 - u) + P2(-2+ u)

(5.3)

and the Ruler Lagrange equations are

Ax - 2Axx
(5.4)

Ay - 4Ay

The control is determined from

min(Ax + Ay)u	 (5.5)
u

which results in

u .. -2 sgn(Ax + A y )	 (5.6)

The terminal conditions on the Lagrange multi-
pliers are

A(tf) - v
(5.7)

H(t f ) - - 1

Initial Feasible Solution

Since there are two terminal constraints and
the terminal time is free, the initial feasible
trajectory must have two segments. The only pos-
sible control for these segments is u - +2.
Therefore, we assume tentatively that the optimal
control history is given by

u--2, 0<t <tl
(5.8)

u 	 2• tl<< t—<tf

with t and tf to be determined such that
xf - yf - 0. The state equations (5.1) can be in-
tegrated in closed form when (5.8) is used as the
control. The result is

1-T tan r2tl
x(ti) -

1+ 1 tan Tt1

Y(t l ) - - 2 (1 - e 4tl
) +	 e-4tl	

(5.9)

Iterative solution of (5.9) for tl and tf such
that x(tf) - y(tf) - 0 results in

ti - 0.56. t f - 0.69

CALCULATION OF LAGRANGE MULTIPLIERS

For this problem, we have a# /ax n 0 and

a^,/ax - I. Therefore, A(tf) - V. We must inte-
grate ( 5.4) backward with three sets of initial

conditions - A (0) (tf) -(0). AM (tf) ' ( 01).

A (2) ( t f ) - (1) in order to find A(tl ) and

00) (t i ). Equations (5.4) may be integrated in
closed form as follows:

Ay(t) - Ay(tf)e4(t-tf)

-2Ax(tf) -2A 
y 

(t f )  - Ay(t)(-4y(t)+2) t' tl

_x2 (t) + 2
Therefore, we obtain

A(0)(tl) - (0^

0 	

Al(tl)- 
(1-03)

 0

	

, A2(t l ) - (0 
0

.5951

Equations (3.6) and (3.7) give

((

	

4(1,1)(1 035 
0 - 59	 v2

0

and

(2,2)(v21) - - 1

Which can be expanded to give

1.035v i + 0.595v2 - 0

vl+v2--0.5

Solving for v 1 and v2 yields

v l - 0.676, v2 - - 1.176

Therefore, from (5.7) we have

Ax(tf) - 0.676, Ay(tf) - - 1.176	 (5.10)

For this problem, the state equations and Euler-
Laprange equations can be integrated in cloned
form. The result is

7



Ay (t) • - 1.176e 4(t-c f)

-1 - A (t)(-4y(t) + 2)

Ax (t) '.
-% (t) + 2

<t< of

-0.252+1.414 tanh T (t- t1)
1 - 0.178 tank l (t - tl)

y(t)	 0.5 1- 
i 4(t-tl) _ 0.340 a 4(t-tl)

(5.11)

Ay(t) - - 0.699 a4(t-tl)

1 - Ay (t)(4y(t) + 2)
A (C) -
x	 x2(t) + 2

0<t`-ti

x(t)	
1 - 1.414 tan l t

1 + 0.707 tan T t

y (t) - - 0.5(1-e-4t)+e 4t

(5.12)

Optimality of Initial Feasible Solution

The initial feasible trajectory was obtained
under the tentative assumption that the optimal
u(t) is given by (5.8). According to (5.6), this
control strategy is optimal only if

Ax+Ay>0. 0<t<tl

(5.13)

Ax + Ay < 0, ti f t < tf

To determine if this is the case, (Ax + A ) is
calculated as a function of time from (51) and
(5.12). The result is plotted in figure 1, and
shows that for this problem, the initial feasible
trajectory is a local minimum. Therefore, no fur-
ther improvement needs to be made. The optimal
trajectory, a(t) and y(t), is shown in figure 2.

VI. APPLICATION TO TURBOFAN CONTROL

In this chapter. the algorithm described in
Sections III and IV is used to find optimal tra-
jectories for an aircraft turbofan engine. Spe-
cifically, values of the control variables are
found as a function of time, which allow the
engine to accelerate from one steady state power
setting to another as rapidly as possible, while
adhering to the engine constraints.

T	 T
c ix+d iu+e i < 0. 1-1,...,q	 (6.5)

ZNGINE MODEL

Because of Lhe virtual impossibility of us-
ing nonlinear feedback control theory for realis-
tic systems, control system softwave Is usually
developed using linear models. For turbofan en-
gine control system design, nonlinear dynamic
simulations such as reference 11 are linearized
about various equilibrium conditions, and linear
models obtained. This process produces equations
of the form

x - F(x - xe) + G(u - u s )	 (6.1)

where xe and us are equilibrium values of
state and control, respectively. Other engine
variables which are not modeled as states are
also of interest. Such variables will be called
outputs, and denoted by y. The linearized out-
put equations are given by

Y - Ye + C(x - xe) + D(u - us )	 (6.2)

If the outputs have upper (or lower) bounds which
must not be exceeded, then combined state/control
path inequality constraints of the form

Ye + C(x - xe) + D(u - ue) - Ymax <_ 0

Ymin - Ye - C(x - xs ) - D(u - ue) <0

(6.3)

are produced. Mechanical limits on the control
variables also have the general form of (6.3)
with C - 0.

TRANSIENT PERFORMANCE

We consider the problem of minimizing the
time required to accelerate the F100 engine from
one equilibrium power setting to another as rap-
idly as possible. In solving this problem, a
piecewine-linear model of the F100 engine will be
used, having three state variables and four con-
trol variables. There are four equilibrium linear
models at power level angle (PLA) settings of 36,
52, 67 and 83 degrees. The coefficient values in
(6.1) to (6.3) are different for each of the
models. The linear model which applies at a
given time is selected by minimizing the quad-
ratic function

i i - (x - xe i ) TW (x - xei)	 (6.4)

with respect to i; the model whose equilibrium
state 1s "closest" to the actual state at that
time is chosen to represent the engine.

The trajectory must also satisfy path in-
equality constraints given by

i8;IT,



The coefficients ci. dii, and ei are different
for each equilibrium model. Same of the path in-
equality constraints correspond to angina physical
limits. others to control mechanical limits. Spe-
cifically, the constraints which apply to this
problem stet

(1) Turbine inlet temperature cannot exceed
the equilibrium value at the PLA - 830
equilibrium point by more than 50 de-
grees.

(2) Fan and compressor speeds cannot exceed
the equilibrium values at the FLA - g30
equilibrium point by more then 50 RPM.

(3) Pan and compressor surge margins must not
be less than five percent.

(4) Inlet guide vanes. compressor vanes, ex-
haust nozzle area and fuel flow rate must
not exceed their mechanical limits.

The problem to be solved is stated as fol-
lows. Find controls u(t), 0 < t < tf which
minimise the terminal error function.

3	 2

1(xf ) -	 (xi 

xid 
idt
	(6.6)

i-1

while satisfying the system equations (6.1) and
path constraints (6.3). A sequence of solutions
to such problems for different acceleration tips
t f may be used to find the minimum time solution
for a given value of terminal error. Necessary
conditions for an optimal solution are given in
Section II. The problem is solved by using the
now algorithm described in Sections III and V.

RESULTS

Consider the problem of minimizing the term-
inal error for an acceleration from a part-power
condition (PLA - 36 0) to intermediate thrust. The
final time is specified to be t f - 0.6 seconds.
The problem variables (states, outputs and con-
trols) for the optimal trajectory are shown in
figure 3. The state variables, fan speed, com-
pressor spend and augmentor pressure. are shown as
functions of time in figure 3(a). (b). and (c).
It can be seen that the states approach the de-
sired final values smoothly and with no overshoot.

The outputs are shown as a function of time
in figures 3(d) to (g). Because of the way in
which the outputs are defined in equation (6.3),
these variables are in general discontinuous st
model switching points and points of discontinu-
ous control. However, if the piecewise linear
model is a good representation of the engine, the
discontinuities in the outputs at model switching
points should be small. In figure 3. the discon-
tinuities in the outputs are. for the soot part,
so small that they are not visible. These dis-
continuities are substantial only for the fan and
compressor surge margins.

The optimal control strategy calls for turbine
Inlet temperature to have its maximum value for
the entire trajectory; this is shown in figure 3(d).
Pan and compressor surge margins remain well above
acceptable minimums (figs. 3(f) and (g)). Thrust
(fig. 3(a)) increases smoothly and monotonically
with time.

The controls are shown as a function of time
In figures 3(h) to (k). Fuel flow jumps at t - 0
from its idle value, then increases slowly to
maintain constant turbine inlet temperature. The
optimal value of nozzle area is constant. The in-
let guide vanes and compressor variable vans@ are
constrained to be within +7 degrees of the Bill-
of-Material control scheduled values.

VII. CONCLUDING REMARKS

A new algorithm has been presented for solu-
tion of dyanmic optimization problems which are
nonlinear in the state variables, and linear in
the control variables. It is shown that the op-
timal control for such problems is bang-bang, ex-
cept for possible singular arcs, which are net
considered. The algorithm requires that a nominal
bang-bang solution be found that satisfies the
system equations and terminal constraints. The
Euler-Lagrange equations are not utilized in the
determination of this feasible solution; it is
generally not a local minimum. Equations are de-
rived for the determination of the Lagrange mul-
tipliers (sensitivity functions) which correspond
to the initial feasible solution. These sensi-
tivity functions are then utilized, along with
nonlinear optimization (gradient search) tech -
niques, to converge to a local minimum.

The new algorithm has several advantages over
methods currently in use for solution of such
problems. First, the system dyne+fc equations are
uncoupled from the Euler-Lagrange equations: the
Euler-Lagrange equations are not utilized in the
determination of the initial feasible solution.
Second, use of the new algorithm minimizes the
number of variables involved in the gradient
search. With the new algorithm, the search var-
iables are the constraint switching times - the
times at which switches take place from one set of
constraint functions to another. Other methods
currently in use generally discretize the trajec-
tory into a large number of intervals, and search
for the optimal values of the controls for each
interval.

LIST OF SYMBOLS

a	 scalar function in performance index (2.1)

b	 (r x 1) vector function in performance
index (2.1)

c i	scalar path inequality constraint function
in (2.3)

C	 (r x 1) vector function of active constraints

d i	(r x 1) vector path inequality constraint
function in (2.3)

t- Y



(r x r) matrix funftion of active con -
straints

scalar path constraint limits
I. A. E. Bryson, Jr., "Control Theory for Random

Systems,	 Stanford University, Rapt.

(n x 1) vector of system functions
SUDAAR-447, 1972; also NASA CR-192054.

(n x n) constant system matrix
2. A. E. Bryson and W. E. Hall, "Optimal Control

and Filter Synthesis by Eigenvector De-

n x r) matrix of cont-ol distribution composition," Stanford University, Rapt.

functions SUDAAR-436, 1971.

(n x r) constant control distribution
3. L. C. Geyser and B. i.ahtinon, "Digital Pro-

matrix gram for Solving the Linear Stochast.c
Optimal Control and Estimation Problem,"

variational Hamiltonian
NASA TN D-1820, Mar. 1975.

distance functions
4. M. Athena and P. L. Falb. Optimal Control:	 An

Introduction to the Theory and Its Appli-

performance index
ca ions.	 New York:	 McGraw-Hill, 1966.

number of states
S. G. D. Wolske and I. Flugge-Lots, "Minimum Fuel

Attitude Control of a Nonlinear Satellite

number of terminal state constraints System with Bounded Control by a Method
Based on Linear Programming," Stanford Unt-

paver level angle, deg. varsity. Rapt. SUDAAR-374, 1969.

number of path inequality constraints
6. P. E. Gill, W. Murray and R. A. Pitfield. "The

Implementation of Two Revised Quasi-Newton

vectors defined by (3.10) Algorithms for Unconstrained Optimization,"
National Physical Laboratory Division .:f

matrices defined by (3.11) Numerical Analysis and Computing, Rapt.
DNAC-11. 1972.

number of controls
7. R. J. Miller and R. P. Hackney, "Research on

vectors defined by (3.10) P100 Multivariable Control," Pratt and
Whitney Aircraft, Rapt. FR-7809, 1976.

matrices defined by (3.11)
S. F. Tares. "Minimum Time Acceleration of Air-

time craft Turbofan Engines by Using an Algorithm
Based an Nonlinear Programing," Department

(r x 1) control vector of Aeronautics and Astronautics. Stanford
University, to be published.

(n x n) weighting matrix
9. A. E. Bryson, Jr., and No Yu-Chi. Applied

(n x 1) state vector Optimal Control: 	 Optimization. Estimation
and Control.	 New York:	 Halsted Press, 1969.

output variable
10. G. Dantzig, Linear Programing and Extensions.

model switching vectors Princeton:	 Princeton University Press.
1963.

jump parameter
11. J. R. Ssuch and K. Seldner. "Reel-Time

(p x	 undetermined parameter vector Simulation of FIOG-PW-100 Turbofan Engine
Using the Hybrid Computer,	 NASA TM X-3261,

(n x 1) undetermined Lagrange multiplier Aug. 1975.

vector

(n x n) block-diagonal system matrix

scalar undetermined Lagrange multiplier

scalar function of to urinal conditions in
(2.1)

scalar terminal constraint function



ft

!tl

4A

61

0	 .2	 .4	 .6	 .8

TIME, SEC

Figure L - Switching function as a function of	 I:LJ

	

tine for initial feasible trajectory.	 CA

V

(a ► STATE VAR IABLE x.

1.

0

^	 t -1

xA
2f0
Ez

TIME, SEC

(bi STATE VAR IABLE y.

Figure 2. - Initial feasibit trajectory for ex-

ample problem.



.5
ZLAJ

tA

0

100 aN
W (0^Z W

W =
C7

v+ a ^^

50,
O

(a) FAN SPEED,

if) FAN SLRGE MARGIN.
.5

0

(g) COMPRESSOR SURGE MARGIN.
100

0

I=	 100
0NN a
W 1+ 1ix

re
0v'a
U	

50

(b) COMPRESSOR SPEED.

4t loo—

(.D

^V1U

Laa 50

(r) AUGMENTOR PRESSORE_

100

Uj 4 v 50

^a

0
(d) TURB I NE INLET TEMPERATURE.

i00

iAN W

4

0	 .2	 .4	 .b
T I NE, SEC

(e) THRUST.

Figure 3. - Acceleration from part-
power to intermediate.

wUW VY
W_ 

W I^.i^LA.
CL

(n) FUEL FLOW.
OPEN

N
ga

CLOSED

(i) NOZZLE AREA.

W Zz 0

^ N
^Rv

AXIAL

(j) INLET GUIDE VANE PC5ITION.

W

IS Z
tA
Vf >0
W

W ^

`-o
o'a

	AXIAL	
.2	 .4	 .6

	

U	 TIME, SEC

lk) COMPRESSOR VARIABLE VANE
POSITION.

Figure 3. -Concluded.

NASA-Lewis

=_	 -- - -- AAA


	GeneralDisclaimer.pdf
	0011A02.pdf
	0011A03.pdf
	0011A04.pdf
	0011A05.pdf
	0011A06.pdf
	0011A07.pdf
	0011A08.pdf
	0011A09.pdf
	0011A10.pdf
	0011A11.pdf
	0011A12.pdf
	0011A13.pdf
	0011A14.pdf

