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INTRODUCTION

Product rendom processes are used to model atmospheric turbulence in
aercneutical applications. One example is thé process develcped by Press
and his associates at NACA (references 1 and 2). This process is formed
by the product of two Gaussian processes, one representing the local
Gaussian properties of the turbulence and the other introducing a random
amplitude modulation. This process is the basis of the current application
of random process theory to the specification of aircraft strength
requirements for flight in turbulence (references 3 and 4) and has had
extensive application to the analysis and measurement of esircraft response
to atmospheric turbulence (references 5 through 7, for exeample). The
mathemstical properties of the Press model have been examined in reference 8.
Thet study shows how the random process accounts for both the Gaussian
property of short term turbulence experience and the non-Gaussian form of

long term experience. In the present study the Press model is referred

" to as either a product or an emplitude modulated random process.

Another rendom process which is used to model atmospheric turbulence
is that developed recently by Reeves (references 9 through 12). This
process is & modificetion of the product process by the addition of en
independent mean value process, which allows more versatility in modelling
the properties of measured turbulence date. The original development of
references 11 and 12 wes primerily concerned with the simuletion of the
short term properties of atmospheric turbulence. Consequently, the three
components of the total process (called the locel, amplitude, and mean
vaelue components in the present study) were specified to have the same

integral scale value.



Thé preéent study is én extension and reinterprefation of the
development of references 11 and 12. The basic random process is re-
interpreted by introduction of the modulation concept: the local
Gaussiar component is modulated by the slowly varying amplitude component
and by the addition of the slowly varying mean velue component. The
resulting random process is referred to as either the amplitude-
modulated-plus-mean (AMPM) or the totsl process. The first part of the
study is a general development of the first (at one time value), second
(at two time values), and higher order properties of the process without
restriction to the modulation condition. An approximete method, based on
the moculation concept, for the analysis of the response of linear dynamic
systems to the AMPM process is developed. Finally, the transition
properties of the process, which explicitly show the modulation effects,

are examined.



c()

det( )
E[]
erf ()
erfe ( )

h (t)

m, M

N()

or

p ()

p (w | s)

w, W

Z, Z

SYMBOLS

standsrd deviation of either the subscripted process or
(without subscript) the R process

standard deviation of S process

characteristic function of subscripted process

standard devietion of M oprocess

determinant of metrix

ensemble average

error function (reference 13)

complementary error fﬁnction =1-erf ()

impulsive response function of a linear system

unit of imasginaries, /-1

fourth order flatness factor (or kurtosis)

mean value process

expected rate of positive slope crossings of indiceted level

expected rete of positive slope zero crossings of R
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2m A,

probaebility density function of subscripted process

process =

conditional probebility density function of the w process
conditional on the value of s

locel random process

amplitude rendom process

time interval

time

totel or amplitude-modulated-plus—mean (AMPM) random process

product or amplitude modulated random process



a ratio of the standard deviations of the Z and M

processes

6 Fourier transformation variable for characteristic functiocn

p(T) sutocorrelation function of subscripted process

(o] modulus of amplitude random précess

T time difference variable

¢ (w) 7 power spectral density function of subscripted process

¢ (w) normalized power spectral density function of subscfipted
process

¥ (1) autocovariance fuﬁction of subscripted process

w fféqgency,”Four;gr transformation variable of T

Supé¥é§ripts: VK B

2 integer index )

Subscripts:

‘.c - conditional

d derivativé

i integer index

in input random process

3 integer index

out output random process

q quasi-steady

tr transition



.~ - DEVELOPMENT OF THE AMPLITUDE-MODULATED-PLUS-MEAN (AMPM) RANDOM PROCESS

t—; : s The nathematical properties of the AMPM process are deveioped in tiéi
present section. The development starts with the definition of the AMPM |
process in terms of its three coﬁponent processes. The probebilistic |

. structure of the process, that is, the firét order and the higher order
properties, is then developed. No restriction is placed on the relative
values of the integral scales of the three compbnent processes. The

development thus supplements that of references 9 through 12.

Process Definition

The product random process is defined by the product of two ccmponent

processes.

z(t) = r(t) s(t) (1)

The total or AMPM process is defined by the sum of the product process and

a third component process.

w(t) = z(t) + m(t) (2)

w(t) = r(t) s(t) + m(t) (3)

The three component processes are specified to be statistically indeperndent.

They are identified as: the locel process R, the amplitude process S,

and the mean value process M.* This terminology anticipates some

#The present notation is based upon that of reference 8. The R, S, and M
component processes correspond to the a(t), b(t), and c¢(t) processes,
respectively, of references 9 snd 12.

5



 conditions vhich are subsequently placed on the relstive values of the integral
scales of the components: the rapidly varying local process R is modulated
by & slower amplitude process S. The random process ~ Z will be referred

to as either the productrprocess or tire amplitude modulated process. The
randui process W will be referred to as either the total process or the

AMPM process. In both cases the latter terms will berused when the modulsting
properties of the amplitude component process are being emphasized. The .
former terms are used in the present general development, since the

modulation condition is not introduced.

First Order Properties

The probatilistic structure of the total process is completely defined
by the structures of the three camponent processes. The development starts
with the formulation of the first order properties, that is, the random
process is considered at one value of time only. The formulation is developed
in terms of the characteristic functions, which are the Fourier transfor-

mation of the probability density functions (reference 1k).
iwb
C,(0) = E[e™™"] (L)
The characteristic function c¢f the product process is develcoped from its

two components, equetion (1), by using the relation for the product of two

independent rendom processes (references 8 and 1h).

c,(8) =/~ c,(65) p(s) as (5)



The characteristic function of the total process follows from the defining
relation, equation (2), which states that the process is the sum of two

independent random processes.
c,(0) = ¢_(8) c_(e) | (6)

Equations (5) and (6) exprees the characteristic function of the total
process in terms of the character stic and probability density functions
of the three component processes.

The probability density function of the total process similarly can be
expressed in terms of the functions of the three component processes.
The relationship is formulated by writing the Joint probebility demsity of
the total process and two of its components. This is developed by using
the coordinate transformation of equation (3) and the independenze of the

component processes (reference 1lL).

¥V -m
8

p(w,s,n) = T:SET p.( ) p(s) p(m) (1)

The probability density function of the total process is obteined from the
Joint function by integrating over the range of the two component processes,

that is, as a marginal function of the Joint density function.
00 o0
p(w) = [ _J _plw,s,n) ds dm (8)
Equations (T) and (8) are equivalent to equations (5) and (€). This

equivalence can be shown by using the appropriaste Fovvier transformation

relations (reference 15),



_The_tqtal process can also be déveloﬁed in terms pf e conditiconel
process, which is related to the.local R _componenﬁ. The conditional___
process is the value of the total process for given velues of the
amplitude and mean value components. The associated conditionel probabllity
density function follows from the Joint deﬁsity function, equation.(T)g_

and the definition of conditionel probability.
o, (wlsan) = T*T'p == (9)

The preceding development has considered the cheracteristic and
probability density functions of the component processes in generel terms;
no specific form hes been assumed for these processes. Following the
developments of Press {(references 1 and 2) and Reeves {references 9 through
12), the three independent component processes are specified to be stetionary
and Gaussien with zero mean values. The first order properties of the

component processes are completely determined by their variances, which are

E[r2] = A%
E[s°] = p°
E[m?] = c2 (10)

This notation is guided by that used for the Press model of atmospheric

turbulence in the agronautical literature.® The probebility density and

*The notation of A, b, arnd ¢ for the standard deviaeticns of the component
processes in the present study corresponds to that of ca, Ub, and 0.
respectively in reference Q.



" cheracieristic functions of the three component processes have the Gaussian

‘functional form. Por the R component process the functicns ure

(r) = =2me™ (1)
Ppir , ',2_1;Aer |
-1 g22

c (0) =e ° (12)

The probability density and characteristic ﬁmctir.ona'of' the other
components have similer functional forms; the nd'i:"a.fion for the associated
variances is given in equation (10). : |

The statistical ﬁxoments of the total process are developed from the
defining relation, equation (3), and the moments of the three independent
components. All odd order moments are zero. The relations for the variance

and some of the higher order moments are

25

E[w A2b2 + c°

E[v'] = oa"b? + 62%2c2 + 3ot

Ly 2

6] = 225A§b6 + 1354t ¢ (13)

E[w

+ 452%02cH + 1500

The reletions for the moments can be expressed in an alternate notation.
Since the total process is the sum of the independent product and mean value
processes, the ratio of the standard deviations of these two processes i. a

fundamental perameter of the total process.
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a=Able Ty

If the stendard deviation of tre product procéss approaches zero, theﬁ the
valug,of o becomes zero. In thié case the total process is domineted by
the mean value process. If the standard deviation of the mean value
process appfoaches zero, treu the value of o becomes infinite. In this
case the total process is Jjominated by the product process.

The statistical momcuir can be expressed in terms of the o piremeter

by using equations (13) and (1k4).

E[w2] = c2(a2 +1)

Elv'] = 3¢*(30* + 202 + 1) (15)

E[w6] = 1506(15a6 + 9ah + 3% +1)
The associated fourth order flstness factor (or kurtosis) of the total

process is

M, () = —’g’%—l— - -3@?2*—2“211-& (16)
E“[vw®] (o€ + 1)
This factor shows the probabilistic structure of the total process in e
concise manner. In the limit of small values of the o perameter, the
total process becomes the Gaussian mean value process; the flatness factor
has the Gaussian value of three. In the limit of large values of the «
parameter, the total process becomes the product process, which is the

product of two independent Gaussian processes. The resulting flatness



1l

 factor 18 equal to nine, which is the square of the Gaussian velue.

The probability density and characteristic functione of the total ‘
_process are obtained from the functions of the three component processes.
The cﬁaracteristic function of the product process is obtained by

using equation (5) (references 8 and 11).
c,(6) = (A2p262 4+ 1)71/2 (17)

The characteristic function of the total process is obtained by using

equation (6).

1422

1
¢ (6) = (4%%2 +1) Ze 2 (18)

The development of the corresponding probability density function involves
an inverse Fourier trensformation which appears to be intractable. The
formulation can be extended to include the first order characteristic
functions of a vector random process. However these functions are easily
obtained from the general form of the higher order fumction, which is
developed subsequently.

In the original develcpment (references 1 and 2) the vproduct process
was formulated in terms of the associated conditional process, equation
(9), rather than in terms of the local R component process. The
probability density function of the conditiopal process asscciated witk
the total process is determined by equation (9) and by the specific form

of the density function of the R compoment, equation (11).
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[

§m <

/] 1
B

p.(v|s,m) = (19)

1
JE?lAlsl
Thus the conditional process ié Gaussian with given velues of the standard
déviation and mean. In this approach the total process is formed from the
conditional process by introducing the random variations of the standsrd
deviation and mean value. In the present formulation the amplitude compo-~
nent is not the standard deviation of the conditional process, but can be
related to it by giving the standard deviation factor A a unit value and by

introducing a new random process which is restricted to nonnegative values.
o= |s| (20)

The probability density function of the new process follows from that of
the amplitude process by using the indicated transformetion. Since only the
modulus of the amplitude random veriatle appears in the probability density
function of tke conditional process, equetion (19), and in the joirt
probability cemsity function, equation (7), the formulation of the first

order properties can be developed in terms of either of these two processes.
Second and Higher Order Properties

The formulation is extended to the higher order properties, that is,
the relstions for the total process considered at more then one value of
time. The defining relation of the totael process, equation (3), is valid
et all tim; 'alues.” It defines the developmernt in time of the total process
in terms of the development of the three component processes. The higher
order properties of the total process are thus defined by'those of the

three component processes.
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The subtocovarience function is the joint second moment of the random
process (with zerc mean value) at two time values. Since the component
rrocesses are specified to be stationery, the sutcocovarisnce of the total

process is a function of the difference between the two time values only.

Blw(t, ) w(ty)] = ¥,(7) (e

vhere T = [ty =t |

Using the defining relation, cquation (3), end the independence of the

component nrocesses, the autocovarience function of the totel process is

determined by the functicns of the three components.

v ()
vhere LT T T - (22)

v (1) = ¥ (1) ¥ (1)

¥ (1) + W&(T)

- The power spectral density function is the Fourier transformation of

the autocovariance function. Using equetion (2%), the power spectral
density function of the total process is expressed in terms of the

functions of the component processes (reference 16).

o) = ¢, + ) 3

where

¢, (w) = J7 o (0~ B)0_ (&) &b



1k

The indicated integral is the convolution of the functions of the local and
the amplitude component process. The convolution operation follows from
the Fourier transformation of the product of the two autocovariance functicns
in equation (22).

The derivative of the total process is expressed in terms of the
derivatives of the coxponent processes by using the defining relation,

equatior (3).
w(t) = #(t)s(t) + £(t)s(t) + m(t) (2h)

(This assumes the existence of the indicated derivatives.) The derivative
is thus formed by the sum of two product processes and one mean value
process. The autocovariance function of the derivative can be expressed
in terms of the ;utocovariance functions of the components either from
equation (24) or from the autocovariance relation, equation (22).

The higher order probebility density end characteristic functions of
the total process are determined from the corresponding functions of the
three component processes. The characteristic functions are generally
easier to develop. The seccnd order characteristic function of the

product process is

Cz(61,62) =/ Cr(elsl,eesa) p(sl,se) ds, ds, (25)
where 8y = s(tl)
i 8y = s(ta)
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" Since the total process is the sum of the independent product and mean
value processes, equation (2), the characteristic function is the product

of the functions of those two processes.

Cw(el’e2) = cz(el’ea) cm(el.ea) (26)
The formulation can also be developed in terms of an associated
conditional process. The relation for the second order probability
dengity function of the conditionﬁl process is similar to that for the
first order function, e_uation (9).
! “é - Ty
v,|s ) = o, ( ) (27)
1’ VplB) sl 5 8o, ]sl 2( 8y 8,

The associated second order characteristic function is cbtained by taking
the Fourier transformation of the probability density function. Using
the appropriate identities or the Fourier transformation (reference 15),

the relation is

Co840p]8ysmy 5 85umy) = C (8y8,,6,8,)

eielm1 + 162m2

(28)

Since the three independent components are specified to be Gaussian
rendom processes, specific relations can be developed for the higher order
characteristic functions of tke totel process. The properties of the
Gaussisn component processes are defined by their autocovariance functioms,
which are conveniently expressed in terms of the standard deviations and

sutocorrelation functions.
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¥ (1) = 822 (1)

¥ (1) = c?p (1) (29)
where ’

p (1) = o (1)p (1)

(The temm autocorrelation function is used herein %o identify the normalized
autocovariance function.) In a similar manner the power spectral density

functions of the three component processes are defined in normaslized form.

2
8, () = A%, (w)

(30)

8 () = c%_(w)

The normalized power spectral density functions are the Fourier transfor-
mations of the corresponding sutocorrelation functions. The power spectral
density functions are normalized in the sense that the integrals of the
functions over the total frequency range have unit velues. This property
corresponds to that of the autocorrelation functions having & unit value
when the time difference variable is set to zero.

The autocorreletion and normalized power spectral density functions
of the total process are related to the corresponding functions of the
product and meen value processes. The reletions ere developed by
combining equations (22) and (23), which relate the autocovariance and
spectral functions of the various random processes, with equations (29)
and (30), which relate the total and normalized functioms of the component

processes.
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2

: Q ‘ 1

p (1) = Z.. p, (1) + :é-:—]"pm('t) (31a)
(@) = 6 (@) + —2— 6 (o) (31b)

¢w w) = G? .1 ¢, (w) a? +1 9 (0 | 3

These two relations show'the'contributions of the product and mean value
processes to the functions of the total process. In the limit of small
values of the o parameter, the functions of the totel process become
those of the mean value process. In the limit of large values of the a
paremeter, the functions of the total process beccme those of the
product process.

The expression for the second order characteristic function of the
total process is developed from the characteristic and probability density
functions of the three component processes. For example, the second order

characteristic function of the R component process is
- 1 2742 2
C.(8,,6,) = exp{- 5 A°[6] + 2p,(1)6,6, + 63]} (32)

The function is dependent upon the difference between the two values
of time, which appears in the autocorrelation function. The second order
characteristic functions of the other component processes have the same
form, with the appropriate notation for the corresponding moments indicated
in equation (29).

The second order characteristic function of the total process is
developed from equations (25) and (26) by using the appropriate functions

for the components and performing the required integrations.
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. orn ey L2y 24,2 2 o : EE
C,(8,,6,) = [(1 = p2)(1 - 0218763 + 65 + 20,0, 8,8,

2, . 1=1/2 ., . L 22 2
+ B+ 1777 - expl- 5 c%(8] ¢+ 2qm0162 +6,)) (33)
where

8i = A0, 1=1,2

The associated secondrorderyiiggiﬁlyity density functipn is obtained by
the inverse Fourier transfoé&g&iqgﬁgf the charactexistic:fnpction‘in:both,
variebles. The resuiting inveréions appear to-be intractab;e.

The second order characteristic function can be used to develop other
quentities of interest. An example is the development of the
characteristic function of the first derivative of the totel process,

which is obtained by using the approack of reference 17.

6., ©
lim CV(- '.‘Tg'» ?g')
T*0

C;(04)

/2 /2

-1
[1 - A%Pp!(0)6%] (34)

-1
[1- A?bap;(O)Ggl

exply o201 (0)03]
The characteristic function of the derivative is the product of three
separate characteristic functions. The first two of these are the
characteristic functions of the product of two independent Gaussian processes,
equation (17). The third ie the characteristic function of & Gaussien
process. Thus the derivative of the total process is the sum of three
independent processes of the form indicated. This corresponds to the

form of the derivative of the total process indicated by equation (2k).
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‘The formulation can be extended to the development of higher order . .

5i=; propertiea. The=characteriafic functions of higher order can be developed
"“'j‘frum the higher order functions of the Gaussian component processes. The
,ﬁé% fbllowing notaxion is used fbr the autocorrelaxion functions of the R’

- ;j,camponent process._
Elrt)ele)]l =a% ., o (35)

‘Similer notation is used for the smplitude and mean value components.
Using the independence of the product and the mean value piocegses, the
characteristic function of general order is the prodﬁct of the functions

. of these two processes.
cz(®) = cz(B)e=(B) -~ (36)

The characteristic function of the mean value component is that of a
Gaussian process. The characteristic function of the product process is

given in reference 8.

¢;(8) = [aet(qy, + 6,17/

where
n

- 2
A?b £=1 r,ilelps,lj : (37)

513 = Kronecker delte function
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This relation is developed as thg general order cﬁaracteristic functi§n
of & scalar process, that is, for a scaler process at & general number
(eguai to the dimension n) of time points. The relation is also the
' Joint characteristié functioﬁ of e vector process et a single'time point,
with appropriate interpretatioh of the correlaticn coefficients of the
-component procesgses. Similarly the relation is the characteristic
: fuﬁction of a vector proceéé at several fime points, with appropriate
, inte%j@etq;ign of the correlation coefficients. Thus equatiouns (36) and
(37) are the ggnefél déﬁélo;&kmx of the characteristic functions of the

total random process.
QUASI-STEADY APPROXIMATION

An epproximaste method for the analysis of the response of linear
 dynamic systexs to the AMPM process is developed by using the modulation
concept. This method, terhed the quasi-steady approximation in reference
8, was inherent in the original development of the amplitude modulated
process (references 1 and 2). The resulting analytical technique has bed
extensive application in tke analysis of sircraft dyneric respcnse to
atmospheric turbulence (references 5 and 6, for example). The concept of
the quasi-steady approximation is epplied to the AMPM process in the
present section.

The modulation concept introduces the idea of random processes with
significantly different time sceles. The amplitude component is assumed
to be sufficiently slowly varying relstive to both the local R process and
the system dynamic properties that it does not significantly influence
the dynamic aspects of the system response. The system dynamic response

to the amplitude modulated process is thus due to the rapidly varying R
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component process; the amplitude component influences the response only in
& static menner. Since the dynamic response is entirely due to the local
R process, which is Gaussian, the probabilistic structure of the response
of the linear system can be completely determined. The eddition of Lhe
mean value component introduces no fundamental cifficulty in the analysis
of linear system response, since that component is Gaussian and independent
of the amplitude modulated process.

The development of the quasi-steady approximation is shown by the
anal&sis of the response of a linear dynamic system to the AMFM process.
For linear dynemic systems the response or output is the convolution of

" the impulsive response of the system and the input functionm.

v

om.,(1:) = Z h('t)vin(t - T)dt (38)

Using the defining relation, equation (3), the input process is expressed

in terms of its three independent components.

w

out(t) = é h(t}rin(t - T)sin(t - 1)dr

(39)

[

+ i h(r)min(t - T)dt
The system output process is formed by the two terms of equation (39),
vhich correspond to the system response to the emplitude modulated end
the mesn value terme of the iaput process, equation (2). The respomse
of the linear system to the mean value component process can be

analyzed exactly.
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@
'ﬁbht(t)”iwi'h(t)'minlt - T)dr N (ko)
Since the input mean velue process is Gaussian, then so is the output

- meen velue process. This is a general relation for lineer systems;

there is no restriction on the value of the integral scale of the mean
value process.

The quasi-steady ap;foximaxion is applied to the analysis of the
response of linear dynemic syétems to the amplitude modulated process,
which is the first term of equation (39). Two basic assumptions are
mede. First, it is assumed that the impulsive response function of the
system is essentially zerc after soﬁe time period T, so that the function
can be set to zero with negligible chenge in the computed system response.
The upper limit on the time integral of the amplitude modulated term in
equation (39) can accordingly be set to T. Second, the amplitude process
is assumed to be sufficiently slowly varying, so that the amplitude is
essentially constent over the system response period T. Since the
amplitude is then constant during the integration period, it can be
removed from the integration. Using these two assumptions, the system

response, equation (39), becomes

v (8) = 5 (t) f'g B(t)r, (4 - 1)t

+m_ (t) (k1)

out

The integral,which now involves only the local R component process, is

the same basic relation as equation (k0).
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rout(t) = fo h(t) rin(t - 1) 4t (k2)
The output R component process is Gaussian since it is the response of e
linear system to a Gaussian process.

The expression for the response of the linear system to the AMPM

process is obtained by combining the previous reletions.

v () = r  (8) 8 (8) 4. (t) (43)
Both the system input and output processes have the same probabilistic
structure since they have the same defining relation, equations (3) and
(43),between the three independent and stationary Gaussian component
processes. Thus the input and the system output are both AMFM random
processes; they differ only in the forms of the autocovariance functions of
the associated R and me;.n value component processes. The quasi-steady
approxiration is a method for developing the response of linesr dynamic
systems to the AMPM process. The restrictions of the method are that the
local R component process is Geussian and that the amplitude component
process is much slower than both the R component process and all significant
espects of the system dynsmic response. The mean value component process
must be Gaussian®. In the present development all three component

processes are stationary asnd Geussian.

%In the subsequent devel 'u’nt the mean value component is elso assumed
to be slowly verying in tue same sense as the amplitude component,
although this property of the mean value component is not necessary

for the validity of equation (L3).
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'ﬁéiﬁé'tﬁé qﬁabi-steédy appibximation, the problem of the analysis of
the response of linear dynamic systems is reduced to the determinalion of
the variances (or the covariance functions) of the system response. The
following notation is used for the variances of the components of the i.put

random process.

2 =
E[rin] 1

Bls? ] = v (k)

E[m%n] = c2

The input R component process is defined to lLave unit variance. This
condition establishes an arbitrary factor between the R and amplitude
component processes, which is inherent in the defining product relation,
equation (1). The following notation is used for the variances of the

components of the cutput process,

2 2
E[rout] = Ar

(5)
22

2
E[mbut] AhF
The relations for the variances of the system input and output process

follow from the defining relation for the AMPM process, equation (3),

and from equations (43) through (L5).
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2 2 2
E[wi,n] = b + ¢
(L6)
2 ,_ .22 .22
E[Wout] X Arb + Amc

These reletions express the variances of the two AMFM processes directly

in terms of those of the component processes. Alternately, the variances
can be expressed in terms of the variance of the mean value component
process and the o parameter, which is the ratio of the standard deviations

of the amplitude modulated and the mean value processes, equation (1k),

2 2(nl
E(wi ] = c®(aj +1)

(47)
2 22,2
E[wout] A c (c:‘mt +1)
The relation between the o parameters of the input and output
Drocesses is obtained by combining the previous relations.
Arb Ar
Q‘ou‘t’. = Ac = A ain (k8)
m m

This relation shows the effects of the system dynamics upon the
probabilistic structure of the system ovtput process. If the system is
static, then the variances of the local R and mean value comronent
procesces are changed by the seme factor; the o parameters for the
input and the output processes are equal. The system input and ocutput
processes then have the same probebility density functions, except for
the difference in the values of the standard deviation of the total

process. In the general case the dynemic properties of the system will



change the value of the o parameter. For a dynamic system which acts

as a low-pass filter, the slower meen velue component is increased relative
to the R component process, resulting in a decreased value of the a
parameter. For a system vhich acts as a high-pass filter, the R component
is increased relative to the mean value component process, resulting in an
increased value of the « parsmeter. Thus the system dynamic properties
can change the relative contributions of the amplitude modulated and the
mean value processes to the total random process, resulting in different
functional forms of the probability density functions of the input and
output processes.

The relations for the quasi-steady . .rm of the AMPM process sre
obteined from those for the exact process by setting tbe dynamic properties
of the amplitude and mean value component processes to zero. The dynamic
properties of the quesi-steady process are thus due to the R component
rrocess only. An example of this procedure is the development of the
relations for the derivative of the quasi-steedy process. The derivative

of the exect process is the sum of three independent processes.

w(t) = r(t) s(t) + r(t) s(t)
(24)

+ m(i)

The characteristic function of the derivative of the exact prccess,
equation (3L4), is accordingly the product of three characteristic functionms.
The characteristic function of the quasi-steady process is obtained from
that for the exact process by setting derivatives of the autocorrelation

functions of the amplitude and mean value component processes to zero.
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-1/2
2 u(0y62
% (0) = 12 - 2% (0)63) (49)

Since this is the characteristic function for product of two independent

Gaussian processes, the derivative of the quasi-steady process is
¥ (t) = x(t) s(s) (50)

The quasi-steady approximation has the effect of removing the mean value
variation from the derivative of the AMPM process. The derivative
operation acts as a high-pass filter which completely removes the mean
value component, at least to th;a accuracy of the quasi-steady approximation.
For the quagi-steady derivative the ‘ralue of the a paraweter is
ufinite., The fourth order flatness factor of the derivative has a wvalue
of nine as opposed to the values between three and nine for the original
process, as indicated by equation (16).

One important applicetion of the quasi-steady approximetion is ihe
development of the associated exceedance expression, which is the
expected frequency of positive slope crossings of a givep level of the
random process. The exceedance expression is developed from ihe Jjoint
probability density function of the random process eand its first
derivat © (reference 18). Using the quasi-steady approximetion, this
Joint probability density furnction is developed from that for twe
uncorrelated random variebles at one time point. This in effect cmits
the locel varistion of the amplitude and mean velue component processes.

The resulting relation for the exceedance expression is

N(w|s,m) p(s) p(m) ds dm (51)

b

N(w) = [
-0
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The exceedance expression of the conditional process is equel to the product
of one-half of the first absolute moment of the derivetive and the
Gaussian conditional probability density function (references 18 and 19).

, I W -m
N(w|s,m) -ﬁpr(——s ) (52)
Using the probability demsity functions of the three component processes
and evaluating the integrals in equation (51), the exceedance expression

of the quasi-steady process is

w
2 2
Bu) . Lee 2 e TR S
or ec 2Ab
v
Ab W ¢
+ e erfc(— + )} (53)
2¢ f@hb
where
w>0
R(-w) = R(w)

This is expressed in terms of tke standard deviations of the three component

processes. An slternate form for the exceedance expression is

208 X
M) o L™ (e 14 erg(E- - L)
or 2¢c 20
.
+ e%C eppe(-X- + 1)} (5k)

2e V2o
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where

7w_2‘0

N(-w) = N(w)

This is expresied in terms of the stendard deviation of the mean value
compdnent and the o parameter. The exceedance expression contains
both the exponential dependence of the amplitude modulated process and
the Gaussian dependence, through the error functions, of the mean value
component process. The general case is a combination of these two
functional forms. The expected number of zero croscsings of the quasi-~
steady process is

1

20° 1
N(w=0)=N_e ® erfe(—=) <N (55)

V2a r

It is thus important to distinguish between the expected number of zero
crossings of the AMPM process and those of the R component process,
since these two quantities are generally not equal. The difference
between the two is due tq;the quasi-steady effect of the meean value
camponent.

The expected number of zero crossings, equation (55), hes two
limiting cases. In the limit of & vanishing contribution from the
rean value component, o becomes infinite; the expected nuamber of zero
crossings is equel those of the R component process. In the limit of a
varishing contribution frcm the emplitude modulated rrocess, ¢ becomes

zerc; the expected number of zero crossings approeches zero.

;i.:N(w=0)=NorE a-+0 (56)
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In this case the mean value component becomes dominant. However the’
expected number of zero crossings of the AMPM process does not approach
that of the mean value process, since the dynamic properties of that
component have been eliminated by the quasi-steady approximation in the
development of the exceedance expression, equations (53) and (54).

Several limiting cases of the quasi-steady exceedance expression are
of interest. In the limiting case of vanishing contribution from the mean
value component, ¢ becomes infinite; the exceedance expression reduces

to the exponentiel form of the amplitude modulated process.

lim N(v) = N__ & 1vl/m (57)

(¢ 2o
This expression was the basis of the original development of the amplitude
modulated process in reference 1. The limit of vanishing contribution
from the amplitude modulated process (a beccmes zerc) is more complicated
since the dynamics of the daminant mean value component have been eliminated
by the quasi-steady approximation. However the general case of non-zero Q
and finite w can be considered. For small values of both the « perameter
and the level of the AMPM random process, the exceedance expression

approaches the Gaussian form of the mean value component process.

¥
2

2c
N(|w|<<c; a<<1) = \Enor ae (58)

For extreme values of the AMPM process, the exceedance expression approaches
the exponential form of the amplitude modulated process regerdless of the

(non-zero) value of the & parameter.
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L
2
N(|w|] >> ca) = N__ 20 o=lvl/oe (59)
Thus if there is any contribution from the amplitude modulated process to
the AMPM process, that is, if the @ parameter is not exactly zero,
the contribution from the amplitude modulated process will dominate the
exceedance expression at sufficiently large values of the AMPM random
process.

The preceding development of the exceedance expression is based upon
the quasi-steady approximation, which eliminates the dynemic properties
of the amplitude and meaﬁ velue component processes. The validity of the
resulting quasi-steady exceedance expression is questionable in the case
of small values of both the o parameter and the level of the AMPM process.
In this case it is necessary to develop the exact form of the exceedance
expression of the AMFM process, following the approach of references 11
end 12. The resulting exceedance expression apparently can not be

expressed in analytical form, but requires numerical integration procedures.

TRANSITION PROPERTIES

The transition properties assccisted with a random process show the
nonstationery development of the process from an initiel velue of time.
In the case of the AMFM process, the transition properties explicitly show
the effects of the slowly varying emplitude and mean value components upon
the total process. The transition properties show the development of the
random process from the initiel Gesussian form of the locel R component
process with a given emplitude and mean value to the non-Gaussien form of

the fully developed AMPM process.
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=
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- The primary quantity of interest is the transition probsbility density
function of the AMRM process at one time value, conditional on the value
of the process at an earlier time value (references 19 and 20) - For -the-
AMPM proéess'thé'transitioh probgbility'density function is conditional

on the earlier value of all three component processes.
plw(t,)|r(t;), s(t,), mlt,)]

The transition of the AMFM process between the two values of time occurs
in two stages, since the component processes are classified as rapidly
varying (the R component) and as slowly varying (the S and M components).
In the first transition stage the demnsity function becomes independent of
the initial value of the local R process. This transition is not important
in most applications and is omitted in the subsequent discussion. In the
second transition stege the probebility density function becomes irdependent
cf the initial values of the amplitude and meen value processes, thus
explicitly showing the effects of the development of these two compcnents.
The transition probability cdemnsity function is obtained from the
conditional function of the original process and the transiticn functions

of the anplitude and mean velue corponents.

(welsl.ml) = f J p( 5 Bos mzlsl, m ) ds, (61a)
p(vzlsl,ml) = fm {m?(w2lsl’ 5 By, m,) p(selsl) (61v)

plmy|my) s, am,
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The first relation is the development of the marginel function from the
Joint tramsition probability density function. The second relation is
the combination of the first with the definition of the conditional
probability density function.

Equation (61b) is simplified by using e functional property of the

conditional prcbability density of the original process.
p(v,[8y, my5 8,0 my) = D(Wys,, my) (62)

Thus the conditional form of the AMPM process,that is, conditionel on the
values of the amplitude and mean value components at the same time value,
is independent of the values of those two components at an earlier time
velue. This relation follows from the functional properties of the

essociated characteristic function.

C(0,]5ys m 38y, my) = C(8,,6, s:’ml‘sz’mz)lel - (63a)

i@ + i0.m
2 '~
= Cr(elSl,ezse)e lml ‘!e =0 (63b)

1
The first equation expresses the characteristic function &s a marginal
furction of the second order characteristic function. The second equation
is the combination of the first with the functional relation, equation (28),
for the Jjoint conditional characteristic function of the AMPM process.
This equation shows thet the conditional cheracteristic function and thus
the conéitionel probability density function is independent of s, and

1
m , thereby establishing equation (62).
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The relation for the transitiqn probability density function is

obtained by combining equations (61b) and (62).
plvple m) = 1 [ plwylsyimy) pisyls))
p(mzlml) ds, dm, (6k)

The transition probability density thus can be developed from the first
order conditional density function of the original process and the
transition functions of the amplitude and mean value components. Thesge
functions are known from the basic formulation of the AMPM process. Since
the component processes are stationery and Gaussian, their trensition
distributions are known from the associated mean and veriance. For the
amplitude component for exemple, the transition probability density

function is

1

p(s ls)=-————-————-——
2t /ﬁ’l-pg(r)b

~ls, - py(1) 8,1°

(65)

exp {
2671 - p2(1)]

Since the time dependence of the trarnsition functions of the emplitude
and mean value components appears only irn the associated autcccrrelaticn
functions, the Gevelopment of the transition probability demsity function
of the AMPM process, equetion (64), is dependent. solely upon the

eutocorrelation functions of those two components.
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The previous relations can be used to develop the limiting cases of
the transition probability density function. The limiting functions of

the amplitude component process are

lim p(s,|s,) = &6(s, - s,) (66a)
215 8275
lim p( ) = p(s,) (661v)
P salsl p(s,

where 6(s) = Direc delta function
Thus in the limit of small time differences the amplitude component is

equel to its initial velue s, with probsabiliity one. In the limit of

1
large time differences the amplitude component process reaches its fully
developed form with the probability dersity function being independent

of the initial velue. Similar relations hold for the meen value component.
The correspording limiting cases of the transition probability density
function of the total process are developed from equations (6L), (66s),

and (66b).

, _ ! V1o
i:z p(walsl,ml) = p(wllsl,ml) = ]sll Pr( 5 ) (67a)
lim p(wzisl,ml) = p(w,) (éT1v)
T+

Equation (9) has also been used in the first relaticm. In the limit of
small time differences, the transition functior has & Gaussian form with
given emplitude and mean value. In the limit of large time values, the
transition function approaches the form c¢f the fully developed process,

which is independent of the initial velues of the amplitude and mean velue

components.
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The transition properties of the AMPM process can also be developed
in terms of an associated transition random process. ;This nonstaticnary
process corresponds to the transition probability densityrfunction;
equation (6L). The transition process is formed from the fully Geveloped
R process and the transitional formsrof theramplitudé an& mean velue

components.
% T Sgp By (€8)

The definition of the transition process in terms of the associated three
compor ent processes follows from both equation (61b) and the form of the
relations for the tramsition process, which correspond to the appropriate
relations for the original AMPM process, equations (T) through (9).

The transiticn processes of the amplitude and mean value components are
defined by their transition probebility censity functions, for example,
equation (65).

Tke transition process has an associated set of transition moments.
o
E[wg' =17 wR' plw, |5,z ) aw (69)
tr° 2 2717 2

The transition moments are obtained from the definition of the transition
process, equation (68), by expressing the transitvion moments in terms of
the morents of the independent component processes. The first four
transition moiients are listed in tsble 1. The transition moments are

furctions of time since they are functions of the autocorrelation
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functions of the amplitude and mean value components. The transition
properties allow the possibility of a non-zero values of the odd order
roments, which are zero for the fully developed form of the AMPM process.
The transition moments show the two limiting cases of the AMPM procese for
small and large time values. In the limit of small time values, the mean
value of the transition process approaches the 'in:'ltial value of the mea'n
value component. In the limit of large time velues, the transition moments
approach the moments of the fully developed process, which are independent”
of the initial values of the emplitude and mean value components. All
odd order trensition moments become zero in the limit of large time values.
The transition properties can also be examined by using the
associated flatness factors, which are obtained from the transition moments.

In the limit of small time values, the fourth order flatness factor is

BAhs’{ + 6A28:2L 2, m:
e R IR TR
v ° (A 8] +m1)

(70)

This factor has a minimum value of one and & maximum velue of three. In
the former case the moments are daminated by the initial value of the mean
value component. In the latter case the initial value of the amplitude
modulation process is dominant; the flatness factor has the Gaussian velue
of three, vwkich results from thke fully developed R component process. In
the limit of large time velues, the fourth order flatness factor becomes

that of the fully developed AMPM process, equation (16).
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TABLE 1. Transition ioments of the AMPM Process

Elmg ] = oy
Bln2 ] = (1 - p2)e? + plnd
E{s, ] = pg8)
B(s2,] = (1 = pE0® + p2el
Elw,) = Eln,, ]
Bl ) = 42062 ] + ElnZ ]
E(wi ] = (34%E(s2 ] + 3E(af ]
-2E2[mtr]} Elm, ]
E[v:r] = 9A"Ez{sfr]-6A:‘El‘[str] + 6A2E[s ) E[ )

+3E2[m ]—2E[m ]
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The transition random process has an associated exceedance expression,
vhich also shows the nonstationary effects of the development of the
emplitude end mean value components. The transition exceedance sxpression
is developed from the relations for the second order transition probability
density function, which is similar to equation (64), from which the joint
density function of the transition process and its first derivative can be
developed. Using this jJoint probability density function and the quasi-
steady epproximation, the relation for the transition excecedance expression is

o
N(walsl,ml) = fi N(wzlsa,mg) p(sz!sl)
(71)
P(mp|m;) ds, dm,

All of the required quantities are known: +1he corditionsl exceedance
expression follows from equation (52) snd from the conditional demsity
functions of the amplitude and mean value processes. %hus the transition
exceedance expressi~-n can be determined. However it can not be obtained

in explicit form sirce the double integration of equation (Tl) is apparently
intractable. The transition exceedance expression shows the limiting

cases of the trznsition process. In the limit of small time values, the
exceedance expression becomes that of the quasi-steady conditional process
at & single time value, equation (52). In the limit of large time values,
the exceedance expression becomes that of the fully developed process,

equations (53) and (54),



SUMMARY OF RESULTS

The mathematical properties of a random process formed by the product
of & local and an amplitude process, and the sum of that product with a
mean value process are examined. The probabilistic structure of the re-
sulting amplitude-modulated-plus-mesn (AMPM) process is developed from the
structures of the three component processes (the local, amplitude, and
mean value components), which are specified to be stationary and Gaussian.
The development includes the first and second order properties, and the
characteristic function of general order.

The quasi-steady form of the AMPM process is derived by cmitting the
dynaric properties of the amplitude and meean wvalue components. A method
for the analysis of the response of linear dyramic systems to the quasi-
steedy form of the AMPM process is developed. The system response is
sktown to be an AMPM process also, at least to the sccurecy of the quesi-
steady approximation. The probabilistic structure of the system response
car however be different from that of the excitation process, depending
on the properties of the dyremic system. An asnelytical relsticr is
develored for the exceedance expression of the quesi-steady form of the
AMPM, process. The exceedance expressiocn shows a combination of tke
expenential form of the amplitude modulated process end the Gaussian form
of the mean value component process.

The transition properties of the AMFM process are exemined. The
transition properties show the nonstationary aspects of the process, which
ere due to the development in time of the amplitude and mean valie comporent

processes. The bacic reletions for the trensition probebility density end

Lo
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characteristic functions are derived. The transition properties show the
development of the AMPM random process from the initiel Gaussian form of
M the process with given values of the smplitude and mean value to the

non-Gaussien form of the fully developed process.
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