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INTRODUCTION

Product random processes are used to model atmospheric turbulence in

aeronautical applications. One example is the process developed by Press

and his associates at NACA (references 1 and 2). This process is formed

by the product of two Gaussian processes, one representing the local

Gaussian properties of the turbulence and the other introducing a random

amplitude modulation. This process is the basis of the current application

of random process theory to the specification of aircraft strength

requirements for flight in turbulence (references 3 and 4) and has had

extensive application to the analysis and measurement of aircraft response

to atmospheric turbulence (references 5 through 7, for example). The

mathematical properties of the Press model have been examined in reference 8.

That study shows how the random process accounts for both the Gaussian

property of short term turbulence experience and the non-Gaussian form of

long term experience. In the present study the Press model is referred

to as either a product or an amplitude modulated random process.

Another random process which is used to model atmospheric turbulence

is that developed recently by Reeves (references 9 through 12). This

process is a modification of the product process by the addition of an

independent mean value process, which allows more versatility in modelling

the properties of measured turbulence data. The original development of

references 11 and 12 was primarily concerned with the simulation of the

short term properties of atmospheric turbulence. Consequently, the three

components of the total process (called the local, amplitude, and mean

value components in the present study) were specified to have the same

integral scale value.
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The present study is an extension and reinterpretation of the

development of references 11 and 12. The basic random process is re-

interpreted by introduction of the modulation concept: the local

Gaussian component is modulated by the slowly varying amplitude component

and by the addition of the slowly varying mean value component. The

resulting random process is referred to as either the amplitude-

modulated-plus-mess: (AMPM) or the total process. The first part of the

study is a general development of the first (at one time value), second

(at two time values), and higher order properties of the process without

restriction to the modulation condition. An approximate method, based on

the modulation concept, for the analysis of the response of linear dynamic

systems to the AMP, process is developed. Finally, the transition

properties of the process, which explicitly show the modulation effects,

are examined.

.W



A

b

C( )

c

det( )

E [ ]

erf ( )

erfc ( )

h (t)

i

M4

M, M

N ( )

N
or

p ( )

p (w I s)

r, R

S, S

T

t

W, W

Z, Z

SYMBOLS

standard deviation of either the subscripted process or

(without subscript) the R process

standard deviation of S process

characteristic function of subscripted process

standard deviation of M process

determinant of matrix

ensemble average

error function (reference 13)

complementary error function = 1 - erf ( )

impulsive response function of a linear system

unit of imaginaries,

fourth order flatness factor (or kurtosis)

mean value process

expected rate of positive slope crossings of indicated level

expected rate of positive slope zero crossings of R

1 A.
process = 27r Ar

probability density function of subscripted process

conditional probability density function of the w process

conditional on the value of s

local random process

amplitude random process

time interval

time

total or amplitude-modulated-plus-mean (AMPM) random process

product or amplitude modulated random process

3
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a	 ratio of the standard deviations of the Z and M

processes

8	 Fourier transformation variable for characteristic function

P(T)	 autocorrelation function of subscripted process

Q	 modulus of amplitude random process

T	 time difference variable

0 (w)	 power spectral density function of subscripted process

(W)	 normalized power spectral density function of subscripted

process
:

T (T)	 autocovariance function of subscripted process

W	 frequency, Fourier transformation variable of T

Superscripts:

SC	 integer index

Subscripts:

c conditional

d derivative

i integer index

in input random process

integer index

out output random process

q quasi-steady

tr transition



DRVRDopmm -OF THE Am'Limr-MODULATED. Pn -.MEAN (Am pm) RANDOM PROCESS

The mathematical properties of the AMPM process are developed in tre

present section. The development starts with the definition of the AMEN

process in terms of its three component processes. The probabilistic

.structure of the process, that is, the first order and the higher order

properties, is then developed. No restriction is placed on the relative

values of the integral scales of the three component processes. The

development thus supplements that of references 9 through 12.

Process Definition

The product random process is defined by the product of two component

processes.

z(t) = r(t) s(t)
	

(1)

The total or AMPM process is defined by the sum of the product process and

a third component process.

W(t) = z(t) + m(t)	 (2)

w(t) = r(t) s(t) + m(t)	 (3)

The three component processes are specified to be statistically independent.

They are identified as: the local process R, the amplitude process S,

and the mean value process M.* This terminology anticipates some

*The present notation is based upon that of referenc e 8. The R, S, and M
component processes correspond to the a(t), b(t), and c (t) processes,
respectively, of references 9 and 12.

5
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conditions which are subsequently placed on the relative values of the integral

scales of the components: the rapidly varying local process R is modulated_

b a slower amplitude	 _y	 p	 process S. The random process Z will be referred.

to as either the product process or tie amplitude modulated process. The

random process W will be referred to as either the total process or the

AAAPM process. In both cases the latter terms will be used when the modulating

properties of the amplitude component process are being emphasized. The

former terms are used in the present general development, since the

modulation condition is not introduced.

First Order Properties

The probabilistic structure of the total process is completely defined

by the structures of the three component processes. The development stems

with the formulation of the first order properties, that is, the random

process is considered at one value of time only. The formulation is developed

in terms of the characteristic functions, which are the Fourier transfor-

mation of the probability density functions ( reference 14).

Cw(e) = E[e
iwe ,	 (4)

The characteristic function of the product process is developed from its

two components, equation (1), by using the relation for the product of two

independent random processes (references 8 and 14).

Cz (6) = I ̂Cr (6s)p(s) ds
	

(5)

w.
L.
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The characteristic function of-the total process follows from the defining

relation, equation (2), which states that the process is the sum of two

independent random processes.

Cw(8) - CZ (8) Cm(e)	 (6)

Equations ( 5) and (6) express the characteristic function of the total

process in terms of the character-- ' -tic and probability density functions

of the three component processes.

The probability density function of the total process similarly can be

y-	
expressed in terms of the functions of the three component processes.

The relationship is formulated by writing the joint probability density of

the total process and two of its components. This is developed by using

the coordinate transformation of equation ( 3) and the independen :e of the

component processes ( reference 14).

F(w,s,m) _ -^ pr (" s m ) P(8) P(m)	 (7)

e

	

	
The probability density function of the total process is obtained from the

joint function by integrating over the range of the two component processes,

that is, as a marginal function of the joint density function.

OD

p(w)	 ICI a, p(w,s,m) ds dm	 (8)

Equations (7) and (8) are equivalent to equations (5) and (6). This

equivalence can be shown by using the appropriate Fou-ier transformation

relations (reference 15).



8

e

t

E- The total process can also be developed in terms of a conditional

process, which is related to the local R component. The conditional

process is the value of the total process for given values of the

amplitude and mean value components. The associated conditional probability

density function follows from the joint density functions equation (7),

and the definition of conditional probability.

pc (wIssm) = T, Pr(w s m )	 (9)

The preceding development has considered the characteristic and

probability density functions of the component processes in general terms;

no specific form has been assumed for these processes. Following the

developments of Press (references 1 and 2) and Reeves (references 9 through

12), the three independent component processes are specified to be stationary

and Gaussian with zero mean values. The first order properties of the

component processes are completely determined by their variances, which are

LY

t,	 E[r2] _ A2

E[s2] = b2

E[m2 ] = c2
	

(10)

This notation is guided by that used for the Press model of atmospheric

turbulence in the aeronautical literature.* 	 The probability density and

*The notation of A, b, and c for the standard deviations of the component
processes in the present study corresponds to that of aa s ab , and a 
respectively in reference 9.

t,	 i

1



defining relation, equation (3), and the moments of the three independent

components. All odd order moments are zero. The relations for the variisnce

and some of the higher order moments are

E[w23 = A2b2 + c2

E[w4 1 = 9A4b4 + 6A2b2c2 + 3c4

E[w6 3 = 225A6b6 + 135A4b4c2	
(13)

+ 45A2b2c4 + 15c6

The relations for the moments can be expressed in an alternate notation.

Since the total process is the sum of the independent product and mean value

processes, the ratio of the standard deviations of these two processes i., a

fundamental parameter of the total process.



asAbjc	
_	 --	 -(14) --	 --

IF the standard. deviation of the product process approaches zero, then the

value ofa becomes zero. In this case the total process is dominated by

the mean value process. If the standard deviation of the mean value

	

4	 process approaches zero, then the value of a becomes infinite. In this

case the total process is 4moi.nated by the product process.
f

	

The statistical moJffit:a.us can be expressed in terms of the a parameter	 s

by using equations (13) and (14).
19

	€	 E[w2]	 c2(a2 + 1)

	

S	 i

E[w4 ]	 3c (30L + 2a2 + 1)	 (15)

E[w6 ] = 15c6 (15a6 + 9a4 + 3(%2 + 1)

The associated fourth order flatness factor (or kurtosis) of the total

process is

M(w)	
E wk = 30a 4 + 2a2 + 1)	

(16)A	
E2[w2]
	 (a2 + 1).

This factor shows the probabilistic structure of the total process in a

concise manner. In the limit of small values of the a parameter, the

total process becomes the Gaussian mean value process; the flatness factor

	

}	 has the Gaussian value of three. In the limit of large values of the a

parameter, the total process becomes the product process, which is the

product of two independent Gaussian processes. The resulting flatness
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factor is equal to nine, whieh is the squareof the -Gaussian value.

The probability density and characteristic functions of the total

process are obtained from the functions of the three component processes.

The characteristic function of the product process is obtained by

using equation (5) (references 8 and 11).

CZ (6) ' (A2 b292 + 1)-112	 X17)

The characteristic function of the total process is obtained by using

equation (b).

1 _ 1 82c2

w(8) _ (A2b2g2 + 1)^ 2 e 2	 (18)

The development of the corresponding probability density function involves

an inverse Fourier transformation which appears to be intractable. The

formulation can be extended to include the first order characteristic

functions of a vector random process. However these functions are easily

obtained from the general form of the higher order function, which is

developed subsequently.

In the original development (references 1 and 2) the tiroduct process

was formulated in terms of the associated conditional process, equation

(9), rather that in terms of the local R component process. The

probability density function of the conditional process associated with

the total process is determined by equation (9) and by the specific form

of the density function of the R component, equation (11).
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pc(wls,m) _ = e 2A2s2
/9 A's'	 (19)

Thus the conditional process is Gaussian with given values of the standard

deviation and mean. In this approach the total process is formed from the

conditional process by introducing the random variations of the standard

deviation and mean value. In the present formulation the amplitude compo-

nent is not the standard deviation of the conditional process, but can be

related to it by giving the standard deviation factor A a unit value and by

introducing a nev random process which is restricted to nonnegative values.

ar = (s(	 (20)

The probability density function of the new process follows from that of	 -

the amplitude process by using the indicated transformation. Since only the

modulus of the amplitude random variable appears in the probability density

function of the conditional process, equation (19), and in the joint

probability density function, equation (7), the formulation of the first

order properties can be developed in terms of either of these two processes.

Second and Higher Order Properties

The formulation is extended to the higher order properties, that is,

the relations for the total process considered at more than one value of

time. The defining relation of the total process, equation (3), is valid

at all time alues. It defines the development in time of the total process

in terms of the development of the three component processes. The higher

order properties of the total process are thus defined by those of the

three component processes.
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s
The autocovariance function is the ,joint second moment of the random

t

process (with zero mean value) at two time values. Since the component

processes are specified to be stationary, the autocovariance of the total

process is a function of the difference between the two time values only.

	

E [w(t1 ) w(t2 )) _ 'fw(T)	 (21)

where T = It  s t1i

Using the defining relation, equation (3), and the independence of,the

component processes, the autocovariance function of the total process is

determined by the functions of the three components.

w(T ). = TZ ( T ) + ffi(T)

where	 (22)

Tz (T) = Tr(T) T.(T)

The power spectral density function is the Fourier transformation of

the autocovariance function. Using equation (22), the power spectral

density function of the total process is expressed in terms of the

functions of the component processes (reference 16).

	

(w) = §z(w) + tm(w)
	

(23)

where
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The indicated integral is the convolution of the functions of the local and

the amplitude component process. The convolution operation follows from

the Fourier transformation of the product of the two autocovariance functions

in equation (22).

The derivative of the total process is expressed in terms of the

derivatives of the cosponent processes by using the defining relation,

equation (3).

v(t) - r(t)s(t) + r(t)s(t) + m(t)
	

(24)

(This assumes the existence of the indicated derivatives.) The derivative

is thus formed by the sum of two product processes and one mean value

pracess. The autocovariance function of the derivative can be expressed

in terms of the autocovariance functions of the components either from

equation (24) or from the autocovariance relation, equation (22).

The higher order probability density and characteristic functions of

the total process are determined from the corresponding functions of the

three component processes. The characteristic functions are generally

easier to develop. The seccnd order characteristic function of the

product process is

CO 00

CZ ( e1 , 82 ) = I I Cr(elsl,e282) p(sl ,s2 ) ds1 ds2 	 (25)
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Since the total process is the sum of the independent product and mean

value processes, equation (2), the characteristic function is the product

of the functions of those two processes.

C w(81 ,e2 ) = c^(el,e2) m(el,e2)	 (26)

The formulation can also be developed in terms of an associated

conditional process. The relation for the second order probability

density function of the conditional process is similar to that for the

first order function, E quation (9).

w
1 	w

2
pc(wl2w2lsl ,mis s2 ,m2 ) = 8182 pr( s 

ml
s2)

	 (27)

The associated second order characteristic function is obtained by taking

the Fourier transformation of the probability density function. Using

the appropriate identities or the Fourier transformation (reference 15),

the relation is

Cc (el ,e2 1sl,m1 ; s2 ,m2 ) = Cr(elslse2s2)
(28)

ielml + ie2m2

e

Since the three independent components are specified to be Gaussian

random processes, specific relations can be developed for the higher order

characteristic functions of the total process. The properties of the

Gaussian component processes are defined by their autocovariance functions,

which are conveniently expressed in terms of the standard deviations and

autocorrelation functions.

F

e



(29)

.I

(The term autocorrelation function is used herein ;,o identify the normalized

autocovariance function.) In a similar manner the power spectral density

functions of the three component processes are defined in normalized form.

0z (W) = A2b20Z M

(30)

mM = c2OmM

The normalized power spectral density functions are the Fourier transfor-

mations of the corresponding autocorrelation `unctions. The power spectral

density functions are normalized in the sense that the integrals of the

functions over the total frequency range have unit values. This property

corresponds to that of the autocorrelation functions having a unit value

when the time difference variable is set to zero.

The autocorrelation and normalized power spectral density functions

of the total process are related to the corresponding functions of the

product and mean value processes. The relations are developed by

combining equations (22) and (23), which relate the autocovariance and

spectral functions of the various random processes, with equations (29)

and (30), which relate the total and normalized functions of the component

processes.
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Pw(T)	 2a	 Ps(T) + 21
	 Pm(T)	 (31a)

M +1	 a +l

2
$w(W) = 2

a
	^Z(W) + 21
	

^m(W)	 (31b)
a +1	 a +l

These two relations show the contributions of the product and mean value

processes to the functions of the total process. In the limit of small

values of the a parameter, the functions of the total process become

those of the mean value process. In the limit of large values of the a

parameter, the functions of the total process become those of the

product process.

The expression for the second order characteristic function of the

total process is developed from the characteristic and probability density

functions of the three component processes. For example, the second order

characteristic function of the R component process is

	

r( e11 82 ) = exp(- 2 A2[el + 2Pr(T)ele2 + e2]}	 (32)

The function is dependent upon the difference between the two values

of time, which appears in the autocorrelation function. The second order

characteristic functions of the other component processes have the same

form, with the appropriate notation for the corresponding moments indicated

in equation (29).

The second order characteristic function of the total process is

developed from equations (25) and (26) by using the appropriate functions

for the components and performing the required integrations.
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w(el ,e - _ [ (1 - pr) -(1 - ps )02,e2 +	 + 2prp8S102

+ e2 + l] ^/2 exp[- 2 c2(el + 2pme182 + a2)]	 (33)

where	 r'
f-

01 = Abe
i i = 1,2

The associated second order_ rabt:bJlity density function is obtained by 	 -

the inverse Fourier transforciation jof the characteristic function in both

variables. The resulting inversions appear to-be intractable.

The second order characteristic function can be used to develop other

quantities of interest. An example is the development of the

characteristic function of the first derivative of the total process,

[
which is obtained by using the approach of reference 1T.

C .(e ) = lim C (- 
ed

. ed),
V d	

T-^o 
w T T

-1/2	 -1/2

_ [1 - A2b2pr(0)ed]	 [1 - A2b2p8(o)ad]	 (34)

exp[2 c2pm(0)ad]

The characteristic function of the derivative is the product of three

separate characteristic functions. The first two of these are the

characteristic functions of the product of two independent Gaussian processes,

equation (1T). The third Is the characteristic function of a Gaussian

process. Thus the derivatire of the total process is the sum of three

independent processes of the form indicated. This corresponds to the

form of the derivative of the total process indicated by equation (24).

L-2.1
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The formulation can be extended to the development of higher -order.

properties. The characteristic functions of higher order can be developed

frm the higher order functions of the Gaussian component processes. The

following notation is used for the autocorrelation functions of the R`

component process.

E[r(ti)r(t3 A = A2pr ^ i3 	 (35)

Similar notation is used for the amplitude and mean value components.

Using the independence of the product and the mean value processes, the

a	 characteristic function of general order is the product of the functions

of these two processes.

CiM = CiMc-(U)	 (36)

The characteristic function of the mean value component is that of a

Gaussian process. The characteristic function of the product process is

given in reference 8.

Z(6) = [det( gi3 + 6io)]-1/2

where
n

qij = A2b26i R.=1 pr,iieips.JQ	 (37)

did = Kronecker delta function
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This relation is developed as the general order characteristic function

of a scalar process, that is, for a scalar process at a general number

(equal to the dimension n) of time points. The relation is also the

point characteristic function of a vector process at a single time point,

with appropriate interpretation of the correlation coefficients of the

component processes. Similarly the relation is the characteristic

function of a vector process at several time points, with appropriate

interpretation of the correlation coefficients. Thus equations (36) and

W) are the general development of the characteristic functions of the

total random process.

QUASI-STEADY APPROXIMATION

An approximate method for the analysis of the response of linear

dynamic systems to the AMPM process is developed by using the modulation

concept. This method, termed the quasi-steady approximation in reference

8, was inherent in the original development of the amplitude modulated

Process (references 1 and 2) The resulting analytical technique has had

extensive application in the analysis of aircraft dynamic response to

atmospheric turbulence (references 5 and 6, for example). The concept of

the quasi-steady approximation is applied to the AMPM process in the

present section.

The modulation concept introduces the idea of random processes with

significantly different time scales. The amplitude component is assumed

to be sufficiently slowly varying relative to both the local R process and

the system dynamic properties that it does not significantly influence

the dynamic aspects of the system response. The system dynamic response

to the amplitude modulated process is thus due to the rapidly varying R
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component process; the amplitude component influences the response only in

a static manner. Since the dynamic response is entirely due to the local

•

	

	 R process, which is Gaussian, the probabilistic structure of the response

of the linear system can be completely determined. The addition of the

mean value component introduces no fundamental difficulty in the analysis

of linear system response, since that component is Gaussian and independent

of the amplitude modulated process.

The development of the quasi-steady approximation is shown by the

analysis of the response of a linear dynamic system to the AMPM process.

For linear dynamic systems the response or output is the convolution of

the impulsive response of the system and the input function.

wout(t) 
= f h(T)wi.(t - T)dT
	

(38)
0

Using the defining relation, equation (3), the input process is expressed

in terms of its three independent components.

W

w 
out (t) = b h(T)rin(t - T)sin (t - T)dT

(39)
00

+ f h(T)min(t - T)dT
0

The system output process is formed by the two terms of equation (39),

i.hich correspond to the system response to the amplitude modulated and

the mean value terms of the input process, equation (2). The response

of the linear system to the mean value component process can be

analyzed exactly.



out (t) = I h(T) min(t - T)dT	 (40)
0

Since the input mean value process is Gaussian, then so is the output

mean value process. This is. a general relation for linear systems;

there is no restriction on the value of the integral scale of the mean

value process.

The quasi-steady approximation is applied to the analysis of the

response of linear dynamic systems to the amplitude modulated process,

which is the first term of equation (39). Two basic assumptions are

made. First, it is assumed that the impulsive response function of the

system is essentially zero after some time period T, so that the function

can be set to zero with negligible change in the computed system response.

The upper limit on the time integral of the amplitude modulated term in

equation (39) can accordingly be set to T. Second, the amplitude process

is assumed to be sufficiently slowly varying, so that the amplitude is

essentially constant over the system response period T. Since the

amplitude is then constant during the integration period, it can be

removed from the integration. Using these two assumptions, the system

response, equation (39), becomes

wout (t) " sin(t) Ioh (T)rin(t - T)dT

+ mout(t)	
(41)

The integral,which now involves only the local R component process, is

the same basic relation as equation (40).
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rout (t) = fo h(T) rin(t T ) dT

The output R component process is Gaussian since it is the response of a

linear system to a Gaussian process.

The expression for the response of the linear system to the AMPM

process is obtained by combining the previous relations.

v out (t) 
z r

out (t) sin(t) + mout(t)

	
(43)

Both the system input and output processes have the same probabilistic

structure since they have the same defining relation, equations (3) and

(43),between the three independent and stationary Gaussian component

processes. Thus the input and the system output are both ANFM random

processes; they differ only in the forms of the autocovariance functions of

the associated R and mean value component processes. The quasi-steady

approximation is a method for developing the response of linear dynamic

systems to the AMPM process. The restrictions of the method are that the

local R component process is Gaussian and that the amplitude component

process is much slaver than both the R component process and all significant

aspects of the system dynamic response. The mean value component process

must be Gaussian*. In the present development all three component

processes are stationary and Gaussian.

*In the subsequent deve] v,, nt the mean value component is also assumed
to be slowly varying in tuc same sense as the amplitude component,
although this property of the mean value component is not necessary
for the validity of equation (43).



Using heg	 quasi-steady approximation, the problem of the analysis of

the response of linear dynamic systems is reduced to the determination of
F

F the variances (or the covariance functions) of the system response. The

following notation is used for the variances of the components of the I.put

random process.

Erin) = 1

Elsin^ = b2
	(44)

E[ ink = c2

The input R component process is defined to have unit variance. This

condition establishes an arbitrary factor between the R and amplitude

component processes, which is inherent in the defining product relation,

equation (1). The following notation is used for the variances of the

components of the output process.

E[rout] = Ar

(45)

E[mout] Amc2

The relations for the variances of the system input and output process

follow from the defining relation for the AMPM process, equation (3),

and from equations ( 43) through (45).

24



Elwin] b2 + c2

E[wout1 
A r2,b2 + Am2c2

(46)
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These relations express the variances of the two AIWM processes directly

in terms of those of the component processes. Alternately, the variances

can be expressed in terms of the variance of the mean value component

process and the a parameter, which is the ratio of the standard deviations

of the amplitude modulated and the mean value processes, equation (14).

Elwin]	 c2(ain + 1)

E[wo
ut

] 
m Amc2(gout + 1)

The relation between the a parameters of the input and output

processes is obtained by combining the previous relations.

Ab A
_ rr

out - Amc - Am 'in

This relation shows the effects of the system dynamics upon the

probabilistic structure of the system ovtput process. If the system is

static, then the variances of the local R and mean value component

processes are changed by the same factor; the a parameters for the

input and the output processes are equal. The system input and output

processes then have the same probability density functions, except for

the difference in the values of the standard deviation of the total

process. In the general case the dynemic properties of the system will

(47)

(48)
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change the value of the a parameter. For a dynamic system which acts

as a low-pass filter, the slower mean value component is increased relative

to the R component process, resulting in a decreased value of the a

parameter. For a system which acts as a high-pass filter, the R component

is increased relative to the mean value component process, resulting in an

increased value of the a parameter. Thus the system dynamic properties

can change the relative contributions of the amplitude modulated and the

mean value processes to the total random process, resulting in different

functional forms of the probability density functions of the input and

output processes.

The relations for the quasi-steady :orm of the AMPM process are

obtained from those for the exact process by setting the dynamic properties

of the amplitude and mean value component processes to zero. The dynamic

properties of the quasi-steady process are thus due to the R component

process only. An example of this procedure is the development of the

relations for the derivative of the quasi-steady process. The derivative

of the exact process is the sum of three independent processe,;.

'(t) = r(t) s(t) + r(t) s(t)

(24)

+ m(t )

The characteristic function of the derivative of the exact process,

equation (34), is accordingly the product of three characteristic functions.

The characteristic function of the quasi-steady process is obtained from

that for the exact process by setting derivatives of the autocorrelation

functions of the amplitude and mean value component processes to zero.
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-1/2
c . ( 8d ) 	 [1 - A2b2Pr(0)62d)	 (49)

q

Since this is the characteristic function for product of two independent

Gaussian processes, the derivative of the quasi-steady process is

wq(t) = r(t) s(t)
	

(50)

The quasi-steady approximation has the effect of removing the mean value

variation from the derivative of the AMPM process. The derivative

operation acts as a high-pass filter which completely removes the mean

value component, at least to the accizacy of the quasi-steady approximation.

For the quasi-steady derivative the • ralue of the a parameter is

.-Afinite. The fourth order flatness factor of the derivative has a value

of nine as opposed to the values between three and nine for the original

process, as indicated by equation (16).

One important application of the quasi-steady approximation is "he

development of the associated exceedance expression, which is the

expected frequency of positive slope crossings of a given level of the

random process. The exceedance expression is developed from the joint

probability density function of the random process and its first

derivat' • (reference 18). Using the quasi-steady approximation, this

joint probability density function is developed from that for two

uncorrelated random variables at one time point. This in effect omits

the local variation of the amplitude and mean value component processes.

The resulting relation for the exceedance expression is

N(W) = I I N(vis,m) p(s) p(m) ds dm	 (51)
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The exceedance expression of the conditional process is equal to the product

of one-half of the first absolute moment of the derivative and the

Gaussian conditional probability density function (references 18 and 19).

A'

	

N(w,8sm) _ ---I. pr 	m)	 (52)

Using the probability density functions of the three component processes

and evaluating the integrals in equation (51), the exceedance expression

of the quasi-steady process is

_w

H w = 1 ec2/2A2b2 {e 
I

[1 + erf( w - c )]
Nor 2
	 rc .T2Ab

V_

+ eAb erfc( w + c )}	 (53)E	 rc r2Ab

where

V > 0

N( w) = H(w)

This is expressed in terms of the standard deviations of the three component

processes. An alternate form for the exceedance expression is

1

N w = 1 e {e msW [1 + erf(w - 1 )]
Nor 2	 rc Ta

X
+ e01C erfc ( w + 1 ) }	 (54)

rc ra
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where

-w > 0

N(-w) = N(w)

This is expressed in terms of the standard deviation of the mean value

component and the a parameter. The exceedance expression contains

both the exponential dependence of the amplitude modulated process and

the Gaussian dependence, through the error functions, of the mean value

component process. The general case is a combination of these two

functional forms. The expected number of zero crossings of the quasi-

steady process is

1
.	 2

N(w = 0) = Nore2a erfc( —1 )  S Nor	 (55)/2-a

It is thus important to distinguish between the expected number of zero

crossings of the AMPM process and those of the R component process,

since these two quantities are generally not equal. The difference

between_the two Is due to-the quasi-steady effect of the mean value

component.

The expected number of zero crossings, equation (55), has two

limiting cases. In the limit of a vanishing contribution from the

mean value component, a becomes infinite; the expected number of zero

crossings is equal those of the R component process. In the limit of a

vanishing contribution from the amplitude modulated process, ct becomes

zero; the expected number of zero crossings approaches zero.

limN(w = 0) = Nor fir a -1-0	 (56)roa-

i
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-

	

	 In this case the mean value component becomes dominant. However the

expected number of zero crossings of the AMPM process does not approach

that of the mean value process, since the dynamic properties of that

component have been eliminated by the quasi-steady approximation in the

development of the exceedance expression, equations (53)and (54)•

Several limiting cases of the quasi-steady exceedance expression are

of interest. In the limiting case of vanishing contribution from the mean

value component, a becomes infinite; the exceedance expression reduces

to the exponential form of the amplitude modulated process.

lim N(w) = Nor a (w,'Ab
a-M

This expression was the basis of the original development of the amplitude

modulated process in reference 1. The limit of vanishing contribution

from the amplitude modulated process (a becomes zero) is more complicated

since the dynamics of the dominant mean value component have been eliminated

by the quasi-steady approximation. However the general case of non-zero a

and finite w can be considered. For small values of both the a parameter

and the level of the AMPM random process, the exceedance expression

approaches the Gaussian form of the mean value component process.

2w_ 2

N(Iwl«c; a«1) X Ir. Nor a e 2c
	

(58)

For extreme values of the AMPM process, the exceedance expression approaches

the exponential form of the amplitude modulated process regardless of the

(non-zero) value of the a parameter.

(57)

x
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1

N(jwj >> ca) 2 Nor 
e 20 e- jwj/ac	 (59)

Thus if there is any contribution from the amplitude modulated process to

the AMPM process, that is, if the a parameter is not exactly zero,

the contribution from the amplitude modulated process will dominate the

exceedance expression at sufficiently large values of the AMPM random

process.

The preceding development of the exceedance expression is based upon

the quasi-steady approximation, which eliminates the dynamic properties

of the amplitude and mean value component processes. The validity of the

resulting quasi-steady exceedance expression is questionable In the case

of small values of both the a parameter and the level of the AMPM process.

In this case it is necessary to develop the exact form of the exceedance

expression of the AMPM process, following the approach of references 11

and 12. The resulting exceedance expression apparently can not be

expressed in analytical fora, but requires numerical integration procedures.

TRAZdSITION PROPERTIES

The transition properties associated with a random process show the

nonstationary development of the process from an initial value of time.

In the case of the AMY process, the transition properties explicitly show

the effects of the slowly varying amplitude and mean value components upon

the total process. The transition properties show the development of the

random process from the initial Gaussian form of the local R component

process with a given amplitude and mean value to the non-Gaussian form of

the fully developed AP  process.
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Rye prima y -quantity of interest is the transition probability density

function of the AMPM process at one time value, conditional on the value

of the - process of an earlier-time value (references 19 and 20). For-the-

AWK process the transition probability density function is 'conditional

on the earlier value of all three component processes

--- ptw(t2 )Ir(t1 ), s(tl ), m(tl))

= p[x2lrl, $ls 
'1 3
	t  < t2 	(60)

The transition of the AMY. process between the two values of time occurs

in two stages, since the component processes are classified as rapidly

varying (the R component) and as slowly varying (the S and M components).

In the first transition stage the density function becomes independent of

the initial value of the local R process. This transition is not important

in most applications and is omitted in the subsequent discussion. In the

second transition stage the probability density function becomes independent

of the initial values of the amplitude and mean value processes, thus

explicitly showing the effects of the development of these two components.

The transition probability density function is obtained from the

conditional function of the original process and the transition functions

of the amplitude and mean value components.

M ao

	

p ( v2 lsl ,ml) = I I p(w2 , s2 , m2 1s1 , ml ) ds2 dm2	(61a)

m

	

P(v2 l sl ,ml ) - I I p(w2Is1, ml' 
s2 , m2 ) P( s2

1
s

1
)	 (61b)

P(M21ml) C102 dM2
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The first relation is the development of the marginal function from the

joint transition probability density function. The second relation is

the combination of the first with the definition of the conditional

probability density function.

Equation (61b) is simplified by using a functional property of the

conditional probability density of the original process.

P(w2 1sl' ml' s2' m2 ) = P(w2ls2' m2 )
	

(62)

Thus the conditional form of the ANPM process,that is, conditional on the

values of the amplitude and mean value components at the same time value,

is independent of the values of those two components at an earlier time

value. This relation follows from the functional properties of the

associated characteristic function.

C(e2 1 51% ml;s29 m2 ) = C(el,e2ls`,ml;s2,m2)1el = o	 (63a)

_ Cr (eisl' e2s2 )eielml 

+ ie2m2le = 0

	 (63b)
1

The first equation expresses the characteristic function as a marginal

function of the second order characteristic function. The second equation

is the combination of the first with the functional relation, equation (28),

for the joint conditional characteristic function of the AMPN: process.

This equation shows that the conditional characteristic function and thus

the conditional probability density function is independent of s l and

ml , thereby establishing equation (62).



The relation for the transition probability density function is

obtained by combining equations (61b) and (62).
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OD OD

P(v2 lsl ,ml) - f J p(w2 ,s2 'm2 ) P(82181)
-CD -M

p(m2 1ml ) d62 dM2
	 (64)

The transition probability density thus can be developed from the first

order conditional density function of the original process and the

transition functions of the amplitude and mean value components. These

functions are known from the basic formulation of the AMPM process. Since

the component processes are stationary and Gaussian, their transition

distributions are known from the associated mean and variance. For the

amplitude component for example, the transition probability density

function is

_	 1
P(s2Is1)	

1 - ps (T) b
(65)

exp { 
-(s2 - Ps(T) 

x112 }
2b2(1 - p$(T)l

Since the time dependence of the transition functions of the amplitude

and mean value components appears only in the associated autcccrrelatior_

functions, the development of the transition probability density function

of the AMPM process, equation (64), is dependent, solely upon the

autocorrelation functions of those two components.
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The previous relations can be used to develop the limiting cases of

the transition probability density function. The limiting functions of

the amplitude component process are

lim p(s2
1s
l ) - 6(s2 - sl )	 (66a)

rolo

lim p( s  	_ (s )	 (66b)
2181) 	 p 2T)-

where 6(s) = Dirac delta function

Thus in the limit of small time differences the amplitude component is

equal to its initial value s  with probability one. In the limit of

large time differences the amplitude component process reaches its fully

developed form with the probability density function being independent

of the initial value. Similar relations hold for the mean value component.

The corresponding limiting cases of the transition probability density

function of the total process are developed from equations (64), (66a),

and (66b).

V
AM P(w2 Is1 "1) = p(wl ^sl ,ml ) = 171T1  Pr ( is ^)	 (67a)
T-ro  	 1

lim P( w2 j sl .ml ) = P(w2 )	 (67b)

Equation (9) has also been used in the first relaticn. In the limit of

small time differences, the transition function has a Gaussian form with

given amplitude and mean value. In the limit of large time values, the

transition function approaches the form of the fully developed process,

which is independent of the initial values of the amplitude and mean value

components.



36

The transition properties of the AMPM process can also be developed

in terms of an associated transition random process. This nonstationary

process corresponds to the transition probability density function,

equation (64). The transition process is formed from the Hilly developed

R process and the transitional forms of the amplitude and mean value

components.

Wtr a r str + mtr"	 (68)

The definition of the transition process in terms of the associated three

compoient processes follows from both equation (61b) and the form of the

relations for the transition process, which correspond to the appropriate

relations for the original AMI process, equations (7) through (9).

The transition processes of the amplitude and mean value components are

defined by their transition Irobability density functions, for example,

equation (65).

The transition process has an associated set of transition moments.

ELwt^ =
CO

 1 w2 p(w2 ^sl ,m1 ) dw2	(69)r 

The transition moments are obtained from the definition of the transition

process, equation (68), by expressing the transition moments in terms of

the moments of the independent component processes. The first four

transition moments are listed in table 1. The transition moments are

functions of time since they are functions of the autocorrelatior_
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-	 !unctions-of-the-amplitude and mean value components. The transition

properties allow the possibility of a non-zero values of the odd order

moments, which are zero for the fully developed form of the AM process.

"he transition moments show the two limiting cases of the AMPM proces° for

small and large time values. In the limit of small time values, the mean

value of the transition process approaches the initial value of the mesa

value component. In the limit of large time values, the transition moments

approach the moments of the billy. developed process, which are independent

of the initial values of the amplitude and mean value components. All

odd order transition moments become zero in the limit of large time values.

The transition properties can also be examined by using the

associated flatness factors, which are obtained from the transition moments.

In the limit of small time values, the fourth order flatness factor is

3A4s4 + 6p292 2 + 4

"MTft 
M4^tr(T)	 1A2s2 +m 2 2	

(Z4)
(	 1	 1)

This factor has a minimum value of one and a maximum value of three. In

the former case the moments are dominated by the initial value of the mean

value component. In the latter case the initial value of the amplitude

modulation process is dominant; the flatness factor has the Gaussian value

of three, which results from the fully developed R component process. In

the limit of large time values, the fourth order flatness factor becomes

that of the fully developed AM process, equation (16).



-2E2 [m ]} E[m

	

tr	 tr

E[wtr] = 9A4E2[str]- 6A'^E4 (
StrJ

 + 6A2E[str ] E[mtr]

	

2	 4
+ 3E2[mtr] — 2E (mtr]
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The transition random process has an associated exceedance expression,

which also shows the nonstationary effects of the development of the

amplitude and mean value components. The transition exceedance expression

is developed from the relations for the second order transition probability

density function, which is similar to equation (64), from which the joint

density function of the transition process and its first derivative can be

developed. Using this joint probability density function and the quasi-

steady approximation, the relation for the transition exceedance expression is

m
N(w2 lsl ,ml )	 lI N(w2ls29m2) P(s2.s1)

(71)

P(m2 lml ) ds2 dm2

All of the required quantities are known: the conditional exceedance

expression follows from equation (52) and from the conditional density

functions of the amplitude and mean value processes. !!us the transition

exceedance expression can be determined. However it can not be obtained

in explicit form since the double integration of equation (71) is apparently

intractable. The transition exceedance expression shows the limiting

cases of the transition process. In the limit of small time values, the

exceedance expression becomes that of the quasi-steady conditional process

at a single time value, equation (52). In the limit of large tire values,

the exceedance expression becomes that of the fully developed process,

equations (53) and (54).



SUN40Y OF RESULTS

The mathematical properties of a random process formed by the product

of a local and an amplitude process, and the sum of that product with a

mean value process are examined. The probabilistic structure of the re-

sulting amplitude-modulated-plus-mean (AMPM) process is developed from the

structures of the three component processes (the local, amplitude, and

mean value components), which are specified to be stationary and Gaussian.

The development includes the first and second order properties, and the

characteristic function of general order.

The quasi-steady fora of the AMPM process is derived by omitting the

dynamic properties of the amplitude and mein value components. A method

for the analysis of the response of linear dynamic systems to the quasi-

steady form of the AMY. process is developed. The system response is

shown to be an AYYM process also, at least to the accuracy of the quasi-

steady approximation. The probabilistic structure of'the system response

car. however be different from that of the excitation process, depending

on the properties of the dynamic system. An analytical relaticn is

developed for the exceedance expression of the quasi-steady form of the

AM process. The exceedance expression shows a combination of the

exponential form of the amplitude modulated process and the Gaussian form

of the mean value component process.

The transition properties of the AMPS process are examined. The

transition properties show the nonstationary aspects of the process, which

are due to the development in time of the amplitude and mean vai-ie component 	 .

processes. The basic relations for the transition probability density and

4o
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characteristic functions are derived. The transition properties show the

development of the AMPM random process from the initial Gaussian form of

the process with given values of the amplitude and mean value to the

non-Gaussian form of the fully developed process.
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