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ABSTRACT

An interim report is given of a calculation aimed at re-

constructing the three-dimensional distribution of optically

thin EUV emission sources associated with solar active regions,

from two-dimensional observations (projections) recorded by

the Goddard spectroheliograph on the OSO-7 satellite. Its

relation to other image reconstruction methods in the literature

is briefly discussed, together with special requirements im-

posed in the solar case such as a knowledge of the true solar

rotation function. A useful correlation criterion for es-

tablishing the physical validity of solutions is given.
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INTRODUCTION:

The Goddard X-ray and extreme ultraviolet spectrograph on the seventh

Orbiting Solar Observatory scanned the sun and its corona during the

period October 2, 1971 to July 6, 1974, producing spectroheliograms in

selected wavelengths corresponding to known, optically thin, emission

lines emitted by coronal ions [1]. In addition to "large raster" spec-

troheliograms covering the whole sun, "small raster" spectroheliograms

about five arc-minutes on a side were obtained which provided intensity

distributions for particular active regions. A typical small raster con-

tour plot is shown in Figure 1. In the case of many active regions, a

large number of such rasters were obtained at a given wavelength over a

period of days as the region rotated across the solar disk. The avail-

ability of these successive images or projections prompted the present

study to determine whether the three-dimensional emission distribution

within an active region can be reconstructed from a pair of OSO-7 rasters.

This article is an interim report on the calculation, which during the

past year has been carried to the point where it may be possible to de-

termine the feasibility, or otherwise, of such a reconstruction from the

available data. The calculation was developed independently of similar

methods in other fields (e.g. the medical field, in which striking ad-

vanes have recently been reported (reference [2], and other references

in the same issue of IEEE Trans. on Nuclear Science)), but relationships

will be discussed below. Two difficulties are encountered here beyond

those dealt with by image reconstruction techniques in the laboratory.

First, the source distribution is not necessarily constant with time,

as well as possessing no distinct boundaries either within or without.
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SOLAR
NORTH
POLE

Figure 1. The small square projected here on the solar disc represents a typical
OSO-7 small raster spectroheliogram observed in the Fe XV emissiona
line wavelength 284.1A. This particular raster, obtained on January
22, 1972, shows intensity contours of the active region McMath No.
11693.
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Second, the solar rotation rate is not well known at coronal levels.

Thus the general difficulty of the problem has been greater than anti-

cipated. In the course of the calculation, however, a three-dimensional

lattice of points is constructed which can be superimposed on an active

region at different times and has proved to be useful for the investi-

gation of its rotation.

Much of the calculation consists of basic geometrical and trans-

formational steps which will be included for completeness.

GIVEN DATA:

The orit;.nal OSO-7 measurements consist of a 23 x 16 irregular

array of intensity elements over a total field of view of approximately

5 x 5 arc minutes for each small raster, which requires about one minute

of time to record. For non-flaring active regions, up to twenty indivi-

dual rasters are melded together to improve statistical accuracy. Then

the elements are interpolated to produce a uniform array of 2500 intensity

values I(i,j), i and j each taking values from 1 to 50, with an equal

angular spacing of 6 arc seconds between points. Two such melded rasters,

recorded at successive times such that a suitable solar angle separates

them, are used in the following analysis and will be referred to as

rasters A and B. Associated pertinent information is included with each

of these melded rasters on a computer tape, such as: heliocentric co-

cordinates of the central point (rc, A c ) and four corner points (r l , A1;

r2 , 92; r3, 9 3 ; r4, 84): times of beginning and end of the period covered

by the individual rasters included in the meld; solar pole position

angle P and sub-earth solar longitude B0.
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PROCEDURE:

A basic coordinate system, used throughout the calculation, was

constructed as shown in Figure 2, with the sun's center as origin, x-

axis passing through the earth, and z-axis directed toward an arbitrary

direction here taken to be the projection of celestial north. (The

computations are somewhat simplified if the projection of the solar
i

north direction is taken as the z-axis, since P is then zero throughout,

but the calculation is presented here as it was carried out.) The

rasters A and B are considered to be two-dimensional images lying in the

(y,z) plane. First raster A will be dealt with.

1. Use of raster A:

The coordinates of the center point and corner points of raster

A are given by:

(yc, z c) = (- rc sin(9c + P), rc cos(9c + P))

(y l , z l ) = (-rl sin(9 l + P), r l cos(9 l + P))

(Y2, z2) _ (-r2 sin(9 / + P), r2 cos(92 + P))	 (1)

(y3 , z 3 ) - (-r3 sin(93 + P), r3 cos(93 + P))

(Y4 , z4) _ (-r4 sin(94 + P), r4 c0s(94 + P))	 i

Using these coordinates a two-dimensional grid of N 1 x N2 points (yp,q ; zp,q)

lying within the raster is constructed in the following way. The lengths

of the sides of the raster are given by i t = [(y2 - Y3 )2 + (z2 - Z 3 ) 2 1 .

l2 = [(y4 - y3 ) 2 + (z4 - z3 ) 2 ]^ while the slopes of the sides are

ml = ( z3 - z2 MY3 - Y2) and m2 = (z3 - z4)/(Y3 - y4 ). Choosing the

distances between the grid points as Al l = K1 111(Nl + 1), At  g K2 22 /(N2 + 1),

with K1 and K2 as desired fractions of the raster dimensions to be covered
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Figure 2. Coordinate system used in the text, with origin at the center of the
Sun, z axis in the direction of celestial north, earth observer at the
point (d, O, O) on the x axis. D represents the solar rotation axis,
of which the projection on the (y, z) plane lies at the angle P to the
north direction; 15 is tilted out of the (y, z) plane by the angle Bo. A
detailed discussion of the solar parameters P and Bo may be found
on pages 347 .9 of reference (8). R represents an observed point in
an EUV raster, lying in the (y, z) plane and defined by the solar disc
coordinates (p,e).
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by the grid, a first grid point is constructed as:

Y l ' l M s ign(Y3 - Y4)[^(N2	 1) At2 /( ' + m2
2

+ sign(Y3 - Y2)[^(Nl	 1) At,/(l + ml -2 ) k ]	 (2a)

z l'l s (similarly)

Points (yp,,;zp,l) are then constructed as

yp,l - sign (Y2 - Y3 )[(P - 1) L1 1 10 + ml-2)	 + yi'l	 (2b)
z p'l - (similarly)

and general points (yp,q;zp,q) are further constructed according to

Yp,q - sign (Y4 - Y3) [(q 	AZ2/(' + 
m2-2 01 + yp'l	

(20
zp,q - (similarly)

This produces the desired two-dimensional grid, centered within raster A.

Corresponding polar coordinates of these points in the (y,z) plane are

Pp,q - [ypjq 
2 + z p,q 2]^	

(3)
Op,q = tan-l[-Y p,q /zp,q]

These grid polar coordinates are next used to produce a three-dimensional

lattice of N 1 x N2 x N3 points (xpqrs Ypqr l zpqr) extending throughout

the volume of solar atmosphere viewed by the raster, consisting of

successive two-dimensional grids separated by a chosen distance 1:

x	
dp2 ppq + d[p4 ppq 4- (d 2 + P2 pjq )((l + rj )2	

P2 p,q)]

d2 + 02 
p,q

Ypq,r	 -EPp,q (d - x p,q,r ) sin Op,ql/d	 (4)

z p,q	 [Pp,q (d - xp,q,r cos 0p)qI/d

d being the earth-sun distance in solar radii.

I
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In this lattice, successive points (p..{,r), (p,q ) r + 1) 0 (p,q, r + 2), ...

lie along a line of sight joining the earth (observer) to the point

(yp,q ; z ,, ,g ) lying in the (y,z) Plane (see Figure 3); thus the lattice,

composed of N1 x N2 such lines converging to the earth, is not exactly

a cubic lattice but departs from parallelism by the small angle of less

than 1 arc-minute or 0.0003 radian ixisting between the lines. For the

present purpose this small depart4re can be neglected.

The solar latitude Bpqr and the height Hpqr above the surface of each

of the lattice points is given by

Bp ,q ,r - ( 1 + rl)-1 sin-l[xp,q,r sin Bo - yp,q,r sin P cos Bo

(5)
+ zp,q,r cos P cos Bo]

Hp,q.r - (6.9598 x 105)rf	 (in km)

The volume of solar atmosphere encompassed by this lattice may be

considered to be composed of discrete rectangular source blocks, each

centered on a lattice point (xpgr , ypgr , zpgr), so that along a line of

sight (p,q) the total intensity IP A emitted toward the observer is the

sum of separate contributions S(p,q,r), S(p,q, r + 1), S(p,q, r + 2) ...

emitted by the source blocks centered on the corresponding lattice points,

thus Ip,q emerges from the end of a source column of rectangular cross-

section whose axis is the line of sight (p,q). To obtain I p ^ q from the

actual raster intensities I(i,j), the latter values are summed over values

of i,j which lie within the cross-section of the source column. In this

step the following equivalence between raster indices (i,j) and rectangular
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coordinates (y,z) is needed:

Y( i , j )= 2i-1
IY3+1 (2j-1)(y4-y3))+(1- 

2i-1
)IY2+ 1 (2j-l)(Yl-y2)]

100	 100	 100	 100

(6)
z(i,j) = (similarly)

Now, by transforming from the triplet of variables p,q,r '_o two new

variables t,i by the transformation

t = N2 (P - 1) + q	
(7)

i = N2 Nl (p - 1) + N3 (q-1) + r

a set of linear equations is constructed which expresses the fact that

each intensity value Ip q = I t corresponds to a source column t composed

of contributions S t,i, S t,i+l, St,i+2....:

I(1) = S(l,i) + S(1,2) + ... + S(1,N3)
(8)

I(2) = S(7_,N3 + 1) + S(2,N3+2)... + S(2,2N3)

I(N1 N2 ) = S(Nl N21 Nl N2 N3 - N3 + 1)+...+S(Nl N2, Nl N2 N3)

2. Use of raster B:

Since the active region registered on raster A at time to has

rotated through an angle b ^ 360((tB - tA)/24) about the solar axis by the

time it is registered on raster B at time tB , one must rotate the lattice

blocks centered on (xpgr , ypgr , zpgr ) by the same amount and around the

same axis. The rotation of a vector r through an angle d about an arbitrary

axis D, in a clockwise direction when viewed along the positive direction

9



a

of D, is given by the transformation [3):

r^	 r + sin b (D x r) + (1 - cos ^) (D x (D x r))	 (4)

Application of this rotation to the original lattice points (xpgr,

Ypqr , zpgr ) results in the new lattice (Xpgr , Ypqr , Zpqr ) superimposed

on the active region in its later position, as registered in ranter B:

XP, q , r _ xpgr + (PD.zpgr - 'YD-Ypqr) 
sin bpgr

+ (1-cos bpgr)[h(aD-Ypqr - PD .xpgr ) - YD (YD.xpgr - CID.zpgr)l

Yp,q,r = Ypqr + (YD-xpgr - OID -
zpgr) sin bpgr

(1 - cos Bpqr) [YD (OD.zpgr - YD-Ypqr) - aD(CID'Ypgr - PD.xpgr)]

Zp,q,r 
= zpgr + (aD-Ypqr - OD .xpgr ) sin Spgr

+ (1-cos Bpqr) ['XD(YD .xpgr -	 .
zpgr) - A)(,%'zpgr	 YD'Ypgri I

(10)

where ciD = sin Bo, OD = - sin P cos Bo , YD = cos P cos Bo , and the rotation

angle Spgr - a function of the latitude Bpqr of each point - has been

taken here initially to be a function of the form a+ bsin 2 Bpqr, based

on the latitude dependence of solar rotation which is generally accepted

in the literature. Remarks on the importance, for this calculation,of

finding a correct function to represent sngr will be made in concluding

sections.

The corners of each source block centered on a given lattice point

(xpgr, Ypqr, zpgr) are similarly rotated into their new positions. With

10
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the aid of the new corner coordinates, the equations of the six bounding

planes of a given source block may be obtained; for convenience we

denote them here as:

alx + b ly + c l z + dl = 0; a4x + b4y + c4 z + d4	0

a2x + b2Y + c2z + d2 = 0; a5x + b5y + c5z + d5 = 0	 (11)

agx + bgy + cgz + d3 0; a6x + b6y + c6z + d6 = 0

Now, unlike the simpler situation existing in the case of raster A,

a line of sight to the point (Xpgr , Ypqr , Zpgr) does not intersect any

other point (Xp y r " Yp I g I r " Zp Ig I r ') in general, so that a corresponding

observing cylinder of rectangular cross-section will intercept the source

blocks along its path in various fractional volumes. Thus such an ob-

serving cylinder (p,q,r), corresponding to an observed intensity Ip q,r,

will intersect a certain volume Vp,q ^ r of the source block centered on

(Xpgr , Ypqr , Zpgr), and will intersect other source blocks (Xuvw ,Yuva„ Zuvw)

in the vicinity of the line of sight in further particular volumes Vuvw.
-i

If the full volume of a source block is V o , then the contribution of

source block (Xpgr , Ypqr, Zpgr) to the observed intensity Ip .q, r is

Vpgr /Vo , and similarly the contributions of neighboring blocks (u,v,w)

are VuVW /Vo . These contributions will then all be less than unity.

The four planes bounding a typical observing cylinder may be written

for conciseness as:

a7x + bey + c 7 z + d7 = 0; agx + b 9y + c9z + d9 = 0
(12)

agx + b8y + c8z + d8 = 0; alox + bl0y + c loz + d 10 = 0

11
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To obtain the actual value of the volume of intersection of observing

cylinder and source block - specified by the intersection of the set of

planes (11) with the set of planes (12) - a Monte Carlo procedure is used

in which random points are thrown into the source block, and the numbers

of these points which also fall within the observing cylinder are counted.

(This turns out to be a difficult problem to solve analytically.)

The contributions Vpqr/Vo and VuVW/Vo are just the coefficients

at ,i required in a set of linear equations which state that the observed

intensities Ip,q,r (obtained by appropriately summing intensities I(i,j)

of raster B over the cross-section of observing column (p,q,r), as was

done for raster A) are sums of source contributions along the line of

sight to the point (p,q,r), and which will be added to the first set con-

structed for raster A. To formulate this additional set we transform from

the variables (p,q,r) to the variable t by the relation:

t = Ni N2 + N2 N30-1) + N3(q-1) + r	 (13)

with the relation between i and (p,q,r) remaining as in (7). This results

in the set:

I(Nl N2 + 1) = J 
a(N l N2 + l,i) S(N l N2 + l,i)

I(N1 N2 + 2) = i a(N1 N2 + 2,i) S(N l N2 + 2,i)	 (14)

I(N1 N2 + Nl N2 N3 ) = i a (Nl N2 + N1 N2 N3, i) S(Nl N2 + N1 N2 N3,0

with i taking values from 1 to N 1 N2 N3 as before.

12



These equations, together with the first set (8), can be represented

by the following full matrix equation for the unknown source vector S

whose elements are the emission strengths of the individual source blocks:

I = I A I S
	

(15)

in which the coefficient matrix J A I, a sparse matrix, is of dimensions

(Ni N2 + N1 N2 N3 ) x (Nl 1112 N3 ). The general form of J A I can be repre-

sented schematically as in Figure 3.

DISCUSSION AND PRELIMINARY RESULTS:

1. Relationship to other three-dimensional reconstruction methods:

Gordon and Herman [4] classify existing three-dimensional reconstruction

methods into four main categories: summation, use of Fourier transforms,

analytic solution of integral equations, and series expansion approaches.

Budinger and Gullberg [2] expand this classification further into thirteen

detailed procedures, one of which consists of direct matrix and linear

equation methods (included within the series expansion approaches described

by Gordon and Herman). The present calculation falls into this category

which is discussed in a physically meaningful way by Budinger and Gullberg.

Further, it deals with a "situation where we are limited in the number

of views" in which Budinger and Gullberg note that the resulting matrix

may be close to singular, and may therefore require for its solution the

use of iterative methods.

Direct inversions of the coefficient matrix J A I have been attempted,

as a first trial, for pairs of rasters separated by solar rotation angles

from 150 to 470 . The three-dimensional lattice used was 5 x 5 x 5, gi.ving

13
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Figure 4. General appearance of the final coefficient matrix A; the non-zero
elements denoted by x have values between zero and unity. All
elements other than unity or x are zero.
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dimensions of 125 x 150 for JAI. Unique solution vectors S, in the

mathematical sense of satisfying the original equation (15), are obtained

which however possess some r.egative - nonphysical - elements. These

solutions may nevertheless contain some physical reality. (In this

connection one may note that a standard procedure in some of the ART

(algebraic reconstruction techniques) algorithms [2], [4] is to set

negative elements equal to zero.) We are now at a stage in the calculation

in which it may be possible to assess the reality, or non-reality, of

these solutions. A correlation method which we expect to use for this

purpose, and whose general principle does not appear to have been

suggested previously, is described in the following section.

2. A Correlation Criterion for Validity of the Solution:

When a solution S(xpqr , ypgr , zpqr ) of the matrix. equation (15) is

obtained, one would like to establish whether it is a physically valid

solution or not. This is not a trival problem in the case at hand, since

active region distributions are expected to be diffuse rather than compact,

as mentioned in the Introduction where it was uuLed that in this respect

the present problem is more difficult than the medical three-dimensional

reconstruction problem. A correlation method is described here which

may be of general interest in such cases. The method consists of running

the calculation, on a given pair of rasters, with successively decreasing

grid sizes which produce corresponding solution sets S a (xapgr , Yapqr'

a	 b b	 b	 b	 c cz pqr), S (x pqr' Y pqr' z pqr), 
S (X 

pqr, Yc pqr' 
zc pqr).... For a given

pair of solution sets, say S a and Sb , one first interpolates the function

Sa(xapgr, yapqr, z apgr ) to find its values Sa(xbpgr, 
ybpqr' zb pqr ) at

15



the lattice points of the second solution S b . For a given r -	 i.e. for

a given height in the solar atmosphere - the following normalized

correlation coefficient is then constructed:

I' (a,b)	 Pt 
Sb(xbpgr. 

Ybpgr ' zbpgr)
	 Sa(xbpgr> Yb Pgr ' zbPgr)

r	 (16)

E [S>(xbpgr) ybpgr' zbpgr)J2plq

where S> represents the larger of S a or Sb . Th is coefficient is seen to

approach unity the more closely the solution field S a resembles the

solution field Sb . The final overall parameter describing the correlation

of solution S a with Sb is then r(a,b) _ E rr (a,b). The hypothesis under-
r

lying the use of this parameter is that a physically valid solution field

will be independent of the size of the lattice used. It is expected to

be of value for example in improving the trial rotation period used in

the calculation, since one can vary the assumed rotation period so as to

maximize r(a,b) or more generally the quantity rtotal E N i,j).
j>i

3. Requirements imposed by the data:

The present procedure could be extended to include more than two

projections (rasters) without undue difficulty, but two projections only

were used in this first attempt because of limitations imposed by the nature

of the solar sources dealt with. An ideal source region, for the purpose

of this inversion calculation, would possess the following properties:

(a) the source distribution should remain reasonably constant with time;

(b) its emission should be much greater than that of any background

which is present; (c) its size should be appreciably less than the

raster size, i.e. than the cross-section of the observing "beam"; and

16



M its rotation rate should be accurately known. Actual solar active
regions fall short of the ideal in all of these respects. The solar

rotation rate is known only to a first approximation, being a function

of several variables such as solar latitude, altitude above the solar

surface, type of feature considered (sunspots, coronal features, magnetic

features, etc.). Recent papers which give further references on this

topic are those of Henze and Dupree [5] and Simon and Noyes [6]. The

present uncertainty which exists in the field may be illustrated by the

fact that while Simon and Noyes find "constancy of rotational rate be

tween chromosphere and corona" and Henze and Dupree similarly "cannot

discern a variation in rotation rate between chromosphere and corona

El-Raey and Scherrer [7] find that "the upper chromosphere and lower

corona rotate from 5 to 8% faster than either the photosphere or corona".

On the other hand, since the present calculation requires an accurate

solar rotation function ab input for a successful solution, it also has

the potential of establishing such a function unambiguously.

The further limitations imposed by conditions (a), (b) and (c) above

are presently being explored in the OSO-7 data.

17
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