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A THREE-DIMENSIONAL VISCOUS/POTENTIAL FLOW

INTERACTION ANALYSIS METHOD FOR MULTI-ELEMENT WINGS

By

F.A. Dvorak, F.A. Woodward and B. Maskew
Analytical Methods, Inc.

SUMMARY

An analysis method and computer program have been developed

for the calculation of the viscosity-dependent aerodynamic charac-

teristics of multi-element, finite wings in incompressible flow.

This work is an extension to three dimensions of the method deve-

loped previously under Contract NAS2-7048, Reference 1_.: The

methods differ in that a fully three-dimensional potential flow

program is now used to determine the inviscid pressure distribu-

tion about the configuration. The potential flow program uses

surface source and vortex singularities to represent the inviscid

flew. The method is capable of analysing configurations having at

most one slat, a main element, and two slotted flaps. Currently,

the configurations are limited to full span slats or flaps. The

configuration wake is allowed to relax as a force-free wake, al-

though roll-up is net allowed at this time.

Once the inviscid pressure distribution is calculated, a

series of boundary layer computations are made along streamwise

strips. Each strip is treated as if it were a separate infinite

yawed wing; consequently, the boundary layer methods developed

in Reference _! are used directly in the new program. Source dis-

tributions are determined along the streamwise strips from the

boundary layer and potential flow calculations. They are used to

modify the boundary conditions in the second and subsequent cal-

culations of the potential flow. These sources represent the



effect of the boundary layer in the modification of the potential

flow. The sequence of potential flow and boundary layer calcula-

tions continue until convergence of the lift coefficient (usually

2 to 4 iterations). Lift, drag and pitching moment coefficients

are then determined. The method is currently the only one of its

kind capable of analyzing finite wings.

The computer program is written in Fortran IV for the CDC

6600 and 7600 family of computers. The program operates in the

overlay mode, and requires an amount of storage dependent on the

number of panels used to describe the configuration. Typically

300 panels will require about 170,000 (Octal) words of storage.



INTRODUCTION

Background

An analysis method has recently been developed which is capa-

ble of predicting the aerodynamic characteristics of infinite

yawed multi-element wings (Ref. _!) . The effect of viscosity is

included in the calculation through the use of distributed sources

determined from the boundary layer analysis. These sources are

included in the subsequent potential flow calculation giving a

viscosity dependent flow field. Convergence of the method as

measured by lift coefficient is generally very rapid.

Application of the method for comparison with experiment has

demonstrated its validity for a wide range of problems. One such

case is the optimization of flap-gap and overlap for a multi-ele-

ment configuration resulting in maximum lift for a given angle-

of-attack. An extended version of the method (Ref. _2) has been

coupled with an optimization program for use in determining the

optimum slat locations for maximum lift.

Because most aerodynamic flows of interest are three dimen-

sional in nature, the ability to consider the effect of finite

span on such parameters as flap-gap is very desirable. A fully

three-dimensional method would have many applications important

to the designer of modern high-lift systems. Its availability

would greatly reduce the reliance on the experimental method.

Development of such a method was consequently undertaken, and the

resulting procedure is described in this report.

. Problem Definition

The calculation of the potential flow field about a general

three-dimensional multi-element wing (see Figure 1) represents

the first task of any analysis method. Because of the complex



nature of the configurations likely to be analysed, a geometry

control program will be an essential feature of the overall method.

As in the case of Program VIP (Ref. 1), the potential flow method

must be capable of predicting the pressure distribution at selec-

ted off-body points above the flap elements. An additional requ-

irement in the three-dimensional case is a wake representation

capable of providing for wake roll-up and ultimately for tip-edge

vortex roll-up. In three dimensions these effects become impor-

tant at relatively low lift coefficients.

With the potential flow field specified, it is necessary to

predict the boundary layer development over the multi-element con-

figuration. Calculations must include stagnation line initial

conditions, laminar, transition and turbulent boundary layer deve-

lopments and laminar or turbulent separation predictions for each

element of the wing high-lift system. The calculations must in-

clude accurate predictions of boundary layer development in the

regions where wing or first flap upper surface and cove boundary

layers merge with the downstream flap upper surface boundary layer.

Both longitudinal curvature and normal pressure gradient terms

must be included in the governing boundary layer equations as each

effect has a significant influence on the boundary layer develop-

ment, and subsequently on the section drag coefficient. These

effects are particularly important in the wing trailing-edge/flap

leading-edge region. Once the boundary layer development is known,

its effect on the external flow must be determined.

A complete analysis program for the aerodynamic characteris-

tics of general three-dimensional multi-element wings is developed

by combining the.separate goemetry, potential flow and boundary

layer calculation procedures. Iteration between the separate pro-

grams results in the prediction of viscosity-dependent aerodyna-

mic forces. The different calculation schemes that form the



elements of the integrated computer program are discussed in the

following sections.

LIST OF SYMBOLS

a.. Aerodynamic influence coefficient

b.. Normal velocity due to external source

C* Reynolds number at stagnation line

CD Profile drag coefficient =

CT Lift coefficient =
Jj 2

CM Moment coefficientM

c Airfoil normal chord

cf Local skin friction coefficient

Cp Pressure coefficient

D Drag force/unit span

H Shape factor, ratio of displacement to momentum

thickness, (a*/6)

K Non-dimensional pressure gradient parameter

1, m, n Direction cosines

L Lift force/per unit span

M_ Local Mach number

M^ Free stream Mach number

P Static pressure, pounds per square inch absolute



q. Source strength

R. Total normal velocity

R Chord Reynolds number U^c/v

Rfl Momentum thickness Reynolds number U9/v

Rg. Streamwise momentum thickness Reynolds number at

instability point

RQ Streamwise momentum thickness Reynolds number at
trans transition

T. . Transformation matrix

\JC Local Streamwise velocity
&

U^ Free stream velocity

V Tangential velocity at airfoil surface

u, v, w Components of velocity in x, y and z directions

t
U Friction velocity (T /p)

I Vr

x, y, z Components of length in the chord, normal and span-

wise directions

5 Distance along a streamline

£, n, ,; Panel coordinate system

6 Boundary layer thickness

p Density of air

T Shear stress

T Local surface shear stressw

y. Vortex strength
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POTENTIAL FLOW METHOD

Configuration Definition

A typical panel subdivision of a high-lift wing configuration

is illustrated in Figure 1. A reference coordinate system is esta-

blished with origin at or near the leading edge of the configura-

tion, having an x axis lying in the plane of symmetry parallel to

the streamwise axis, and a vertical z axis.

Each wing element may be specified in its own or in the refe-

rence coordinate system. Individual coordinate systems are related

to the reference coordinate system by pivot points. The pivot

points are prescribed in the reference coordinate system. In order

to loft the configuration, element rotation angles must also be

prescribed. Given the pivot points and rotation angles, any ele-

ment may be translated and rotated to the desired location relative

to the reference coordinate system.

Wing twist, taper and dihedral can be readily accommodated by

the geometry control program.

If the wing configuration is made up of a main element and

one or more slotted flaps, then additional analysis is required

to determine flap upper surface longitudinal radius or curvature

for later use in the finite difference boundary layer calculations.

The spline technique as described ir. Reference 1^ is used in the

present method.

Each element of a multi-element wing configuration is repre-

sented by a series of streamwise airfoil sections given at selec-

ted intervals along the span. Planar surface panels are located

between adjacent sections, with the corner points being defined

by the section coordinates. The section coordinates may be given

in percent chord or directly in terms of the reference coordinate



system. The panels in each wing section are generally numbered

sequentially from the trailing edge on the lower surface around

the leading edge to the trailing edge on the upper surface. The

same number of points at approximately the same percent chord

locations must be used to define the wing upper and lower surfaces.

Each chordwise strip of wing panels contains a constant vor-

tex distribution starting at the trailing edge of the lower: sur-

face, around the leading-edge, and ending at the trailing edge of

the upper surface. These vortex strips are used to provide circu-

lation around lifting surfaces. One additional panel is defined

in the wake aft of each chordwise strip to provide control points

for satisfying the Kutta condition. The additional panel lies in

the plane of the trailing edge bisector.

Figure 1. Wing Panel Subdivision

PIVOT POINT
FOR FLAP ELEMENT



Each panel is defined by four corner points. Since these four

points may not lie in the same plane, an equivalent planar panel

is generated using the method of Reference _3, the details of which

are described in Appendix I. A panel coordinate system is defined

which has its origin at the panel centroid. The £ and n axes lie

in the plane of the panel, while the C axis is perpendicular to

that plane. The £ axis is oriented such that the £, C plane is

parallel to the reference x axis.

Figure 2. Panel Coordinate System

Since the velocity components induced by the source and vor-

tex distributions are given in terms of the panel coordinate sys-

tem, a nine-element transformation matrix, T.., is calculated for

each panel to transform the coordinates of points and the compo-

nents of vectors from the reference coordinate system to the panel
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coordinate system. In addition, the panel area, the coordinates

of the centroid, and the length of the principal diagonal are cal-

culated.

Inviscid Flow Model

The surface of the configuration is subdivided into a large

number of panels, each of which contains a constant source and

constant vortex distribution. A concentrated vortex originates

from the downstream corners of each vortex panel, and follows the

wing contour along the inner and outer edges of each strip of pa-

nels until the trailing-edge is reached. Downstream of the trail-

ing-edge, this system of vortices forms the trailing vortex wake.

Analytical expressions for the perturbation velocity field

induced by a constant source distribution on an arbitrary quadri-

lateral panel are given by Hess and Smith (Ref. _3) . Equivalent

expressions for the perturbation velocities induced by a constant

vortex distribution on the same arbitrary quadrilateral are given

herein. The perturbation velocities are used to calculate the

coefficients of a system of linear equations relating the magnitude

of the normal velocities at the panel control points to the un-

known source and vortex strengths. The source and vortex strengths

which satisfy the boundary condition of tangential flow at the

control points for a given Mach number and angle of attack are

determined by solving this system of equations by an iterative

procedure. Initially, the vortex wake is constrained to trail in

the free stream direction during this solution procedure. However,

an optional wake relaxation procedure is also available which

allows the trailing vortices to move in a vertical direction and

approximate the streamlines of the flow. Transverse movement of

11



the vortices is not permitted in order to avoid adverse interfe-

rence between the vortices and control points on downstream flap

elements. With this option, an additional iteration loop is super-

imposed on the basic solution procedure, in which the influence of

the wake on the wing is recalculated during each cycle. Complete

wake relaxation, including roll-up of the wing tip vortices, is

not permitted in order to minimize the number of iterations re-

quired for convergence.

The pressure coefficients at panel control points are calcu-

lated from the perturbation velocity components, and finally, the

forces and moments acting on the complete configuration are ob-

tained by numerical integration.

The Incompressible Velocity Components

The perturbation velocity components, u , v , and w , induced
n a «x

by a constant source distribution on an arbitrary quadrilateral

panel are derived in Reference _3-

The equations are given in terms of the panel coordinate

system.

1

+- m , y

Figure 3. Panel Geometry
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The panel corner points are numbered in a clockwise direc-

tion. The perturbation velocities at an arbitrary point, P(x,y,z),

are given as the sura of the contributions of the four sides of the

quadrilateral as follows.

u = - S G - S G - S G - S G ( 1 )
S 1 2 1 2 2 3 2 3 3 4 3 4 4 1 1 ( 1

= C G + C G + C G + C G ( 2 )
S 1 2 1 2 2 3 2 3 3 1 ( 3 4 4 1 4 1

w = F + F + F + F ( 3 )
S 1 2 3 i»

where

s = -—L— . s - . s
12 ( 23Z 3 I 3 H T^

1 + B 2 Vl + B * W
12 " 23 "

- B 2

12 ' 23 ' 34

-1

1 4 B
4 1

C = B S , C = B S , C = B S , C = - B C
12 12 12 23 23 23 34 34 34 41 41 41

and B . . =ij n. - n±

Ei,j = ̂  ^i- Bi,J (y-
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(B. . , - B. . Ll )Z d.
-i ifi-l 1,i+l i

F. = tan
1 E. . . E. . . + (1 + B. . ., B. . , ) .Z 2

l fl-l 1,1+1 1,1-1

G - 1
. .

di = V Cx ~ €±)Z + Cy " ni)2 + Z2

Clearly, the expressions for the velocity components given above

may be extended to a panel having any number of sides.

For points located at a distance from the centroid greater

than four times the length of the major diagonal, the quadrilate-

ral is approximated by a point source at the centroid. In this

case, the .expressions for the velocity components are considerably

simplified, becoming

XA '(4)

(5)

w =
S d3

, , 2 2 , 2 2where d = x + y + z

and A = panel area

14



Additional multiple expansions given in Ref. 3^ for the velocity

components of points located at intermediate distances from the

centroid are not used in this program.

The perturbation velocity components, u , v and w , induced

by a constant vortex distribution on the same arbitrary quadrila-

teral panel may be derived in a similar manner. In this case, the

direction of the elementary bound vorticity must be specified in

advance, and is chosen to be parallel to the panel leading edge

(between corners 1 and 2) •

41

TRAILING
VORTEX
SHEET

ELEMENTARY BOUND VORTEX

LINEARLY VARYING EDGE VORTEX

TRAILING VORTEX

Figure 4. Vorticity Distribution

The contribution of the bound vorticity is obtained by integration

(see Ref. 4) . The resulting perturbation velocities at an arbi-

trary point, P(x,y,z) are obtained:

15



Vy «.-Bj2W8 (8)

Wv = B
12

V
S~

Us

The bound vorticity on the panel generates linearly varying

vortices along the side edges 1-4 and 2 - 3 . These edge vorti-

ces have zero strength at the leading edge, and a strength D.. at

the trailing edge, where D±. = J (^ - £.)2 + (n7~ n^)2. The

edge vortices continue downstream from the trailing edge, main-

taining a constant strength, D... If the side edges are of un-

equal length, a constant vortex sheet is contained between the two

trailing vortices having a net strength equal to their difference

in vorticity.

Each of these edge and trailing vortices makes a contribution

to the perturbation velocities. Formulas for these velocity in-

crements are derived in Ref. 4_, and tabulated in Appendix II.

Compressibility Corrections

The velocity components in compressible flow are found by

applying Gothert's Rule (Ref. 5_) . Two options are available in

the program for applying the compressibility corrections, and are

designated Rule 1 and Rule 2.

Rule 1 applies the method originally proposed by Gothert.

The incompressible velocity components are calculated on an analo-

gous body obtained by the following transformation:

16



xa = x

Ya = By (10)

z = Bz
a

where

B = VI - M2

The boundary conditions of tangential flow are applied on the an-

alogous body, and the resulting incompressible perturbation velo-

cities are transformed back to the real body by

u = u /B2
a.

v = v./B (11)
d

w = w /Ba

The total velocity vector at a given point is then

U = U^ cos a cos 3 + u

V = U^ sin 0 + v (12)

W = U sin a cos 0 + w
CO

It is now known that this compressibility rule yields good results

only for slender bodies at small angles of attack. The validity

of this rule decreases with increasing values of the surface slope.

17



This effect is particularly noticeable for two-dimensional airfoil

sections. In the vicinity of the nose, Gothert's Rule (which is

equivalent to the Prancitl-Glauert Rule in this example) gives ex-

cessively high suction peaks on the upper surface. The reason for

this failure of the theory is the manner in which the boundary con-

ditions are satisfied at the surface of the analogous body which

is thinner by the factor B than the real body, the curvature of

the flow near the nose is correspondingly increased, resulting in

higher suction peaks. In order to eliminate this effect, it is

necessary to satisfy the boundary conditions on the surface of the

real body.

Rule 2 was first proposed by Kraus in Reference 6_. Beginning

with the analog body as before, the expressions for the perturba-

tion velocity components are corrected for compressibility, using

Equation (11), prior to solving the boundary condition equations.

The boundary conditions of tangential flow are then applied on the
i

surface of the real body, resulting in improved results for the

velocities and pressure coefficients.

The Boundary Condition Equations

The boundary condition of tangential flow at panel control

points establishes a system of linear equations for determining

the strengths of the source and vortex distributions. The geo-

metrical relationship between each panel and control point is re-

quired to evaluate the coefficients of this system of equations

for a given free-stream Mach number.

18



Normal Velocity at Panel Control Points

Each surface panel is assigned a control point located at the

panel centroid. Each vortex strip is assigned a control point just

behind the trailing edge of the wing in the plane of the trailing

edge bisector. (This point is normally located 0.1 percent of the

local chord behind the trailing edge.)

The resultant velocity normal to panel i at its control point

(̂ ii) is the sum of the normal component of the free-stream velocity

vector and the normal velocities induced by the panel source and

vortex distributions. Setting the magnitude of the free-stream

velocity vector equal to unity, its component normal to panel i is

R. = cos crcos .fl'ri + sin B-n + sin a* cos B*nz (13)
1 i ^i i

where h , n , and n are the direction cosines of the normal of
i yi zi

panel i (see Appendix I ), a is the angle of attack and $ is the

angle of yaw of the free-stream velocity vector in the reference

axis system.

The normal component of velocity induced at the control point

of panel i by the source and vortex distributions is given by

N
vn. fn 'v + n • v +n • v la.1 x. x.. v. V-. z. Z . . / T\ i ID *i -'in i IT J

N

where v , v , and v are the three components of velocity
Xij Yij ij

parallel to the reference axis at control point i induced by a

19



unit strength source or vortex distribution on panel j , a. . is the

aerodynamic influence coefficient, and a • is the strength of the

j singularity.

The three components of velocity parallel to the reference

axes are obtained by multiplying the velocity components calculated

in the panel coordinate system by the transformation matrix given

in Appendix I. For example,

v = u. . H + v. . I + w. . £

= u. . m + v. . m + w. . m (15)

Combining Equations (13) and (14),

V = R. + v
n. i xi ±
1 (16)

N

R. + a. .a.
D

Solution of the Boundary Condition Equations

The boundary condition of tangential flow at panel control

points is satisfied if the normal velocities are set equal to zero

on all panels.

20



Thus
Vni = 0 i - 1,N

or N

aijaj = "Ri

In matrix notation,

[A ± j ] { a . } = -{ R±} (18)

where A. . is the matrix of aerodynamic influence coefficients, and

the right side of the equation is given by Equation (13).

This sytem of equations can be solved by direct inversion to

determine the unknown source and vortex strengths. However, for

the large order matrices usually encountered in aerodynamic prob-

lems, an iterative solution procedure described in Reference 7. is

used.

The aerodynamic matrix is subdivided into smaller blocks,

with no block exceeding order 60. The matrix elements in each

block are carefully chosen to represent some well-defined feature

of the configuration. For example, a wing block represents the

influence of one chordwise column of wing panels, and includes

the influence of the vortex strip as well as the source panels.

The initial iteration calculates the source and vortex

strengths corresponding to each block in isolation. For this step./

only the diagonal blocks are present in the aerodynamic matrix,

and the solution is obtained by a direct inversion of the diagonal

blocks. Once the initial approximation to the source and vortex

21



strengths is determined, the interference of each block on all the

others is obtained by matrix multiplication. The incremental nor-

mal velocities obtained are subtracted from those specified on the

right side of Equation (18). This process is repeated until the

residual interference velocities are small enough to ensure that

convergence has been achieved.

In the method of Reference 7_, four optional iteration proce-

dures are available to provide rapid convergence. These are:

.1. Blocked Jacobi (JB)

2. Blocked Gauss-Seidel (GSB)

3. Blocked Successive Over-relaxation (SORB)

4. Blocked Controlled Successive Over-relaxation (CSORB)

In general, CSORB gives the most rapid convergence.

Calculation of the Pressures, Forces and Moments

Once .the source and vortex strengths have been determined,

the three components of velocity at control point i may be obtained.

N
ui = cos <> cos 3 + vx a.. (19)

j=l ^

N

v. = sin 8 + / . v a. (20)
i ^— ' Yii D

j=l n

N

w. = sin a cos 3 + >^ v a. (21)z..

where the a. includes both source and vortex strengths, and

22



v , v and y are defined following Equation (14). The pres-
H • i. y * * Z.iID *ID 13
sure coefficient is calculated using the exact isentropic formula

['* (1 -*] 3.5
- 1 (22)

where

wi

For M < .1, the program uses the simpler formula

Cpi = i ~ (23)

The forces and moments acting on the configuration can now be

obtained by numerical integration. The normal force, side force,

axial force, and pitching moments (about the origin of coordinates)

of panel i are given by:

xi " Ai CP± V (24)

i CP. VJ (25)

Zi ° Ai CPi
 nz..

(26)

Mx. i - YiZi
(27)

23



V n

M.. = xz

(28)
*• I) • X k

i i i

(29)
.... _ x.v.

M,

where A. is the area

tion

and n are thei 11 n i anu. "„of the panel, nx^, ny^, Zi

v1 and z. are the coordinates
cosine, of the normal, and x,, ?i

o£ the panel control point. lcients are obtained by sum-

The total force and monent <-«̂  es Qf the plane of

mlng the panel forces and ««nt. on

symtaetry:

N (30)

• N

24
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1
c = "

N (33)

i- V M,*l
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CM = -^z £ M (35)
Mx Ac ~ Xi

w 1=1

Finally, the lift, side force and drag coefficients are:

CT = C^ cos a - (Cv cos B - C_- sin B) sin a (36)
Ll il A JL

C_ = Cv cos 6 + Cv sin 6 (37)
O JL .A

= (Cv cos B - Cv sin 3) cos a + C_ sin a (38)
A i «

The program computes the forces and moments acting on the

wing, and sums them to obtain the total forces and moments on the

complete configuration. Wing section forces and moments may also

be calculated at the user's option.

25



Relaxed Wake Model

In the analysis of configurations with high circulation,

the orientation of the trailing vortex sheet can have an important

effect on the calculated results, particularly in the case of mul-

tiple components, e.g., a wing with slotted flap or wing with

tailplane. The trailing vortex sheet should, in fact, carry no

load, but, satisfying this condition renders the problem non-linear

insofar as the pressure distribution -and the wake shape are inter-

dependent. Analysis of such problems, therefore, requires an

iterative procedure in which the wake shape is first assumed in

order to solve for the pressure distribution; knowledge of the

pressure distribution allows the streamlines to be calculated,

which give the force-free orientation of the trailing vortex sheet.

Further iterations may be necessary to make the pressure distri-

bution and wake shape compatible.

In the present method, the wake model and iterative tech-

nique are similar to those used in a quadrilateral vortex-lattice

method (Ref. J3 ) . The trailing vortex sheet is represented by a

system of discrete vortices (Figure 5) attached to the panel edges

at the trailing-edge of each component (i.e., wing, flap, etc.).

Each vortex is segmented over the region from its starting point

to a station a short distance downstream of the last component.

The segment lengths in this region :̂ an be varied from vortex to

vortex so that small segments can be used where the vortices are

expected to bend most, and larger segments can be used where little

displacement is expected. This helps to minimize computing time.

Downstream of the segmented region, each vortex is straight, semi-

infinite and streamwise. Initially, all the vortices are assumed

straight in the streamwise direction. In the iterative procedure,

each vortex segment is aligned with the local mean velocity —

26



CIRCULATION VALUES ON THE LEFT
AND RIGHT CHORDWISE STRIPS

TRAILING VORTEX
STRENGTH

MEAN VELOCITY GIVES
DIRECTION FOR NEXT SEGMENT

Figure 5. Trailing Vortex Segments
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calculated near the segment mid point, Reference Q, Figure 5 - to

render the segment approximately force free. But, the spanwise

movement of the vortices is not allowed in the present program;

this restriction is necessary at this time to avoid spurious re-

sults when the discrete trailing vortices from one component pass

close to the surface control points on another surface. Canceling

the spanwise movement of the vortices maintains the correct rela-

tionships between the discrete vortices and the control points.

This is a near-field problem associated mainly with discrete vor-

tex models, and is particularly apparent in clcse-apprcach situa-

tions such as when the wing wake passes over a slotted flap. How-

ever, techniques such as those of Refs. 9 and 10 can remove this

restriction to allow a complete wake roll-up calculation.

The strength of each trailing vortex is the difference in

circulation between the two chordwise panel strips adjacent to the

start of the vortex (Figure 5 ). The strengths are changed at

each iteration (Figure 6 ). To minimize the computation in each

iteration, the influence coefficient matrices for the wake vor-

tices are stored separately. Clearly, the surface panel influence

coefficients remain constant as the wake shape changes; only the

wake contributions need be recalculated in each iteration. Stor-

ing the wake influence coefficients separately allows the new set

to be compared with the previous set; then only the differences

are added to the main influence coefficient matrices.

The number of iterations for wake shape is an input parameter

at this stage. The first iteration gives most of the non-linear

effect, and is probably as far as the calculation need be taken

with the present restriction of canceling the spanwise movement.

This model should be adequate up to C values of the order of 2.

Higher lift values, and also more detailed evaluation of pres-

sures such as in the tip-edge vortex region, will require the
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complete roll-up calculation and more iterations. In this case,

a convergence criterion would be required to control the number

of iterations. This criterion could be based on the changes in

wake influence coefficients or on some overall parameter such

as C, .
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BOUNDARY LAYER CALCULATION METHODS

The finite span multi-element wing .is divided into a number

of streamwise strips. Each strip is treated as if it were a

separate infinite span wing. On each strip the boundary layer

development is calculated along stream lines from the stagnation

line to the trailing edge of each element using the boundary

layer methods currently in Program VIP (Ref. 1) . No major modi-

fication of the boundary layer programs has been made. At the

current state of development of three-dimensional analyses for

high-lift systems, it is believed that the infinite span boundary

layer methods adequately predict the boundary layer development.

At high angles-of-attack, or with very low aspect ratios the

infinite-span methods are not expected to accurately predict the

boundary layer development, particularly in the wing tip region.

However, other phenomena, such as tip vortex formation, wake roll-

up and main wing vortex wake-flap interaction greatly influence

the inviscid flow, and must be taken into account before fully

three-dimensional boundary layer methods are considered.

The boundary layer methods are described in detail in Refe-

rence !_, and are summarized briefly in the following paragraphs.

Stagnation Line Flow

Theoretical predictions of the stagnation line flow of an

infinite yawed wing by Cumpsty and Head (Ref. 11 ) and Bradshaw

(Ref. 12_ ) as well as others indicate that the boundary layer

approaches an asymptotic state where frictional forces are balan-

ced by divergence of the flow from the spanwise to the streamwise

direction. Cumpsty and Head found that the stagnation line bound-

ary layer integral parameters (H, 8, and Cf) and the state (laminar
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or turbulent) correlate with the parameter C* = V2/(vdU).
ds

Cumpsty and Head (Ref. 13 ) later experimentally verified their

theoretical correlations, and it is these correlations that are

used to determine the boundary layer characteristics on each

element of the swept finite wing.. If the wing is unswept, then

conventional two-dimensional correlations are used to start the

boundary layer calculations.

Conventional Boundary Layer Methods

Integral boundary layer methods are used for all conventional

boundary layers such as on the upper and lower surfaces of the

main element, the lower surfaces of flap elements and the upper

surfaces of flap elements up to the slot exits. If the Reynolds

number is sufficiently low to allow laminar flow on a swept wing,

the two-dimensional equations of Curie (Ref. 14 ) are solved along

external streamlines to determine the laminar boundary layer

development. It is assumed that laminar cross-flow effects have

a negligible influence on the overall calculation, at least for

moderate sweep angles.

The streamwise boundary layer characteristics are used with

the correlation of Smith (Ref. j^5 ) to determine the point of la-

minar instability. With the point of instability, the momentum

thickness Reynolds number distribution, RQ, and the pressure gra-

dient parameter, k, known, the transition point is determined

using Granville's correlation (Ref. 16 ). The turbulent boundary

layer development over an infinite swept wing is calculated using

the method of Cumpsty and Head (Ref. I7_) . If the initial stagna-

tion line flow is turbulent, Cumpsty and Head's method is used

from the stagnation line to the element trailing edge.
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In those cases where laminar separation occurs prior to

transition, a correlation based on the data of Caster (Ref. 18 )

is used to determine if turbulent reattachment occurs. Should

reattachment be predicted, the calculation continues for turbulent

flow; if catastrophic separation is predicted, the boundary layer

calculation is terminated.

Confluent Boundary Layer Method

The boundary layer development from the slot exit to the

trailing edge of each flap upper surface is determined using an

infinite swept wing version of a finite difference method deve-

loped by Dvorak (Ref. IjM . This method treats the upstream element

wake and flap boundary layer as if it were all one thick boundary

layer with initially an embedded potential core. The differencing

scheme is based on the method of Crank and Nicholson (Ref. 20 ),

as modified by Dvorak and Head (Ref. 21 ). The turbulent closure

is via an eddy viscosity model modified for the confluent bound-

ary layer from the two-dimensional model for boundary layers and

wall jets developed by Dvorak (Ref. 19_) . The calculations include

the effects of longitudinal surface curvature and the variation

of static pressure through the boundary layer. The static pres-

sure field, p(s,z), is determined directly from the potential

flow solution.

The initial velocity profile required to start the finite

difference calculation at the slot exit is constructed from: (1)

the integral boundary layer solution at the slot exit on the

upper surface of the component in question; (2) the potential

core as determined from the potential flow solution; and (3) the

upper and lower surface boundary layer solutions at the trailing

edge of the upstream element. With the initial velocity profile
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the surface curvature and the static pressure field known, the

boundary layer equations are solved in a forward inarching fashion

to the trailing-edge of the component.

VISCOUS/INVISCID INTERACTION

The effect of boundary layer displacement on the potential

flow is simulated by distributing sources of known strength on

the panels used to describe the wing geometry. The strengths of

these sources are determined directly from the boundary layer

solutions as q. = -=— (U.6 .) where U. is the streamwise potential
i do JL ̂ '—. 1

flow velocity at the edge of the boundary layer and 6. is the

streamwise displacement thickness.

The addition of this source distribution modifies the normal

velocity at the control point of panel i. Consequently, the bound-

ary condition (Equation 16) is modified as follows

N

Vni = Ri + 9±
 +

Since q. is known for each iteration, the right hand side only of

Equation 18 is altered, giving (in matrix notation)

a, = - R, - q, (40)

Because the original geometry is not modified by the use of

distributed sources, the aerodynamic influence coefficient matrix

need not be recalculated. Subsequent iterations between the po-

tential flow and boundary layer calculations results in convergent
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solutions. The alternative procedure, that is, modifying the geo-

metry directly by addition of the displacement thickness, while

quite widely used in two dimensions, becomes untenable in three

dimensions. Primarily, this is a result of having to calculate

and invert a new aerodynamic influence coefficient metrix at each

iteration due to the change in geometry. Without considering the

additional cost of smoothing the geometry and redefining the panels

at each iteration, the additional cost of calculating and invert-

ing the influence coefficient matrix at each iteration can be seen

from the following illustration.

Wing; Kolbe and Boltz (Ref. 22)

— sweep angle 45

— taper ratio .5

— aspect ratio 3

— number of panels 510

— computer CDC 7600

Calculation and inversion of the aerodynamic influence coef-

ficient matrix required 193 CP seconds on the CDC 7600. The

iterative solution required 2.1 CP seconds. Subsequent iterations

with the source method requried only the 2.1 CP seconds per itera-

tion to obtain a new potential flow solution, with convergence

acheieved in 4 iterations. The direct displacement thickness

method would have required as a minimum an additional 193 CP

seconds per iteration to obtain the desired solution. Assuming

that it would also have converged in 4 iterations, an additional

(193 x 3) = 579 CP seconds would have been needed to complete the

viscous/inviscid calculation. On slower computers, the additonal

time requirements would be prohibitive.
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CALCULATION PROCEDURE

The computer program is made up of a series of overlays, as

shown in Figure 7. The executive program, VIP3D, controls the

overall analysis by calling in turn the overlays containing the

potential flow and boundary layer calculation methods. The cal-

culation sequence is outlined as follows.

i) The input geometry, as represented by a series of

streamwise planar panels is lofted in Program WBPAN.

ii) The potential flow pressure field is computed for the

multi-element configuration in Program WBAERO. Off-

body pressures over flap upper surfaces are computed

as part of the analysis. Included in the calculation

is the force-free wake analysis. The multi-element

wing can consist of up to four elements, a leading-

edge slat, the main wing and double slotted flaps.

iii) The boundary layer development is determined for each

streamwise strip beginning inboard and proceeding span-

wise to the wing tip. Each strip is treated as a sepa-

rate infinite yawed wing. The laminar and turbulent

boundary layer developments are determined for each

element of the strip as a function of the potential

flow pressure distribution. Transition or laminar

separation and turbulent separation are predicted, if

present. Program IBL is used for the integral boundary

layer analysis, and Program INSPAN, the finite differ-

ence method, is used when flap upper surfaces are con-

sidered.

iv) Source distributions representing the boundary layer

displacement effect are determined for each streamwise
strip.
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v) A new potential flow solution is computed taking into

account the source distribution computed in step (iv).

Steps (iii) through (v) are repeated until convergence (based

on configuration lift coefficient) is achieved. Forces and moments

are then calculated, both for the complete configuration, and for

the individual sections. The calculation procedure is illustrated

in Figure 8 .
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CALCULATIONS AND DISCUSSION OF RESULTS

Calculations have been made to compare with experimental

results available from a recent NASA Langley Research Center

study. The experimental configuration consisted of a rectangular

wing of aspect ratio = 6 mounted on a splitter plate in the wind

tunnel. A range of angles of attack were investigated for a se-

ries of sweep angles. Calculations made for the zero sweep case

are shown in Figure 9. Comparisons with experiment show some

improvement in the predicted spanwise load distribution with vis-

cous effects added. Predicted streamwise pressure distributions

(fourth iteration) at three spanwise locations are in good agree-

ment with experiment. Tip-edge vortex formation and wake roll-up

are not modelled in this calculation, although at the angle of

attack considered (6°) their effect would be small. There is,

however, already some modification to the experimental pressure

distribution at the 98.8% semispan location due to the tip-edge

vortex at a = 6°. The boundary layer calculations were based on

forced transition at 10% chord on the wing to correspond to a

transition strip at 5% chord on both upper and lower surfaces of

the wing in the experimental case.

A second ccnfiguration investigated was the swept wing case

of Kolbe and Boltz (Ref. 22). This case is of interest because

of the low aspect ratio (3), the sweep angle (45°) and the taper

ratio (.5). Several investigatators have used the experimental

data to compare with their calculation methods. Of particular

interest are the studies by Hess (Ref. 23). His inviscid calcu-

lations indicated a spanwise load distribution approximately 15%

higher than experiment. He postulated that the difference was

due to viscous effects, and attempted to prove it by, in his own

words, adding a crude estimate of displacement thickness to the
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wing. The new calculations were in much closer agreement with

experiment, and according to Hess, justified his assumption. Cal-

culations by the present method, however, dispute this assumption.

As shown in Figure 10, the inviscid calculation also is high by

about 15% in spanwise loading, with only modest improvement when

the number of spanwise strips used to model the wing is doubled.

At the Reynolds number of the test, 18 million, the calculations

indicate that the viscous interaction with the pressure field is

quite small, smaller in fact than the difference between calcula-

tions using 5 and 10 spanwise strips. Because of the high Reynolds

number and the symmetric, relatively thin airfoil section (7.6%

t/c on sections parallel to the plane of symmetry) and the low

angle of attack (a = 8°), viscous effects should be small. There-

fore some other hypothesis is needed to explain the differences

between theory and experiment. The explanation appears to come

from the shape of the wing tip (rounded in the case of Kolbe and

Boltz) and from the low aspect ratio. Experimental evidence col-

lated by Hoerner (Ref.,24) shows that rounding tip edges (lateral

and streamwise) reduces the effective aspect ratio and the lift

curve slope of the wing. As geometric aspect ratio decreases, the

influence of rounding becomes more and more predominant. Since

the inviscid calculation methods (Hess and the present method) do

not specifically take into account the tip-edge shape, they will

likely over-predict the lift distribution.

A simple calculation substantiates this assumption. Sharp

lateral-edge wings with an aspect ratio of 3 have a lift curve

slope, dCT/da° = .058, whereas with rounded edges, dC,./da
0 - .05

(Ref. 24). The difference in CL for wings having symmetric sec-

tions at 8° angle-of-attack is approximately .065, or very close

to the difference between theory and experiment shown in Figure 10.
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It would appear that in order to obtain improved results for low

aspect ratio wings, the potential flow methods must use more real-

istic paneling in the tip region, and, perhaps even incorporate

tip-edge vortex roll-up model.

The multi-element capability of the program was checked using

a wing configuration that has been tested in the Ames 40- by 80-

foot Wind Tunnel (Ref. 2 ). The wing, consisting of the RAE 2815

airfoil and single slotted flap cross-section had a span of 52.6

feet, and a reference chord of 5.58 feet, giving an aspect ratio

of 9.43. The calculations were performed using 68 chordwise

panels and 3 streamwise strips to represent the wing on one side

of the plane of symmetry. This is a rather coarse paneling, but

it should demonstrate the trends. The calculations for lift,

drag and pitching moment coefficients for a series of angles-of-

attack are shown in Figure 11. The spanwise distributions of

lift, drag and pitching moment are shown in Figure 12. The cal-

culations which include viscous effects are determined from the

third iteration through the program. A second calculation was

made with the wing and flap wakes allowed to relax in a plane

parallel to the plane of symmetry. This resulted in a slightly

reduced lift coefficient as indicated in Figure 11. Further work

will include detailed comparisons between the predictions of this

theoretical method and the data from the Ames experimental program.
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CONCLUSIONS AND RECOMMENDATIONS

The three-dimensional viscous/potential flow interaction

analysis program described in this report is currently the only

one of its kind. Its present capability includes the analysis of

multi-element wings having full span slats and slotted flaps. A

:force-free (relaxed) wake model is included in order to improve

the prediction of surface pressures on the individual wing com-

ponents. Wake roll-up and tip-edge vortex roll-up are not yet

modeled, but will be required in the future if partial span slats

or flaps are to be considered.

The method in its present form has been compared with only a

very small data set; however, the various programs which make up

the complete program have been used independently or in combina-

tion with other programs for some time. In general, the methods

are stable and have demonstrated good agreement with experiment

over a wide range of applications. It is concluded that the pre-

sent program will also prove to be very useful over a wide range

of three-dimensional wing applications.

A specific conclusion can be drawn in regards to the use of

sources to represent the displacement effect of the boundary layer

on the potential flow. In three dimensions, the computational

superiority of this approach is clearly what makes such a calcula-

tion procedure practical. The direct addition of displacement

thickness with the accompanying necessity to distribute and smooth

the new surface, and subsequently reinvert the aerodynamic influ-

ence matrix at each iteration is almost prohibitive of computer

time.

It is recommended that once the close-approach problem of a

vortex wake interacting with the vortex elements of a downstream
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surface is solved, the calculation procedure be expanded to include

models for complete wake roll-up and tip-edge vortex roll-up.
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APPENDIX I

PANEL GEOMETRY CALCULATION PROCEDURE

The analytical procedure presented here follows closely the

method first developed in Reference 14. A quadrilateral surface

element is described by four corner points, not nesessarily lying

in the same plane, as shown in the sketch. Note that the number-

ing convention of the corner points differs from that used in the

preceding text. The quadrilateral element is approximated by a

planar panel as follows:

The coordinates in the reference coordinate system are identified
4-

by their subscripts. The components of the diagonal vectors T

and T. are

•T... - x. - x T = y3 - yf Tiz = 2 3 - 2 ,IX 3

T = y - v* 1
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We may now obtain a vector N (and its components) by taking the

cross product of the diagonal vectors.

•> -*• ->
N = T2 x Tj

N = T, T - T Tx 2y 12 ly 2Z

N = T T - T Ty ix 2Z ax iz

N = T T - T T
z 2X ly ix 2y

-»•
The unit normal vector, n/ to the plane of the element is taken as
-»•
N divided by its own length, N (direction cosines of outward unit

normal) .

N. xn = VT-X N

N
ny =

N

where N
f N^ + N^ + N^ J

The plane of the element is now completely determined if a point

in this plane is specified. This point is taken as the point

whose coordinates, x, y, z", are the averages of the coordinates of

the four input points.
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= T I X +X + X + X
* I 1 2 3 <» J

= 4 ~ | y + y + y - | - y
Ll 2 3 it J

j~Z

L l

y

_ _ i
+ Z + Z + Z

2 3 if

Now the input points will be projected into the plane of the ele-

ment along the normal vector. The resulting points are the corner

points of the quadrilateral element. The input points are equi-

distant from the plane, and this distance is

d . = n (x - x ) + n (y - y ) +' n (z - z )I •*• y z

The coordinates of the corner points in the reference coordinate

system are given by

yk = yk + (-Dn yd k = 1, 23, 4

zk '- zk + (-

The element coordinate system is now constructed. This re-

quires the components of three mutually perpendicular unit vectors,

one of which points along each of the coordinate axes of the sys-

tem, and also the coordinates of the origin of the coordinate sys-

tem. All these quantities must be given in terms of the reference

coordinate system. The unit normal vector is taken as one of the

unit vectors, so two perpendicular unit vectors in the plane of
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the element are needed. Denote these unit vectors t and t . The
- » • - » • 1 2

vector t is taken as T divided by its own length, T , i.e.,

T
t = 1X

ax T

T
I —
1Y ~ T 1

T
t = 1Z

iz T

where

The vector t is defined by t = n x t , so that its components

are

t = n t - n t?x y iz z iy

= Vix

t2z

The vector t: is the unit vector parallel to the x or £ axis of
-»•

the element coordinate system, while t is parallel to the y or n
->•

axis, and n Is parallel to the z or £ axis of this coordinate sys-

tem.

The corner points are now transformed into the element coordi-

nate system based on the average point as origin. These points

have coordinates x' , y', z' in the reference coordinate system.
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Their coordinates in the element coordinate system with this

origin are denoted by £, , r\. , 0. Becuase they lie in the plane of
K K.

the element, they have a zero z or £ coordinate in the element co-

ordinate system. In the (5,ri) coordinate system, the corner points

of the element are:

«k = tix**- *V + t i t f - yk>
 + Sz^- 2k}

- XV + Stf - yk} + Sz^ - Zk>

These corner points are taken as the corners of a plane quadrila-

teral . The origin of the element coordinate system is now trans-

ferred to the centroid of the area of the quadrilateral. With the

average point as origin, the coordinates of the centroid in the

element system are:

3.n2 - n.

These are subtracted from the coordinates of the corner points in

the element coordinate system based on the average point as origin

to obtain the coordinates of the corner points in the element co-

ordinate system based on the centroid as origin. Accordingly,

these latter coordinates are

k = 1, 2, 3, 4
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Since the centroid is to be used as the control point of the ele-

ment r its coordinates in the reference coordinate system are re-

quried. These coordinates are:

X0

y = y + t E + t
'o * iyS

0 iZ^o

Finally, the area of the quadrilateral is

A =

One additional rotation of the C, n axis is performed in

order to ensure that the 5, £ phase is parallel to the reference

x axis of the configuration.

The direction cosines of the axial vector, A, and transverse

vector, m, are given in terms of the normal vector, n, as follows:

n ~n

my

mx - Vz my =
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APPENDIX I I

INFLUENCE OF TIP AND TRAILING-EDGE VORTICES

The perturbation velocity components induced by the edge and

trailing vortex systems associated with a vortex panel are derived

in Reference _4. Formulas for constant and linearly varying vor-

tices are listed below. The perturbation velocities are given at

an arbitrary point, P(x,y), and induced by a vortex which lies

along the x axis between x = 0 and x = «°.

Constant Line Vortex

u = 0

- -

I]

1 J
where

r2 = y2 + z2

and
d2 = x2 + r2
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Linearly Varying Line Vortex

u = 0

v == - — [x + dl
r2 L J

w =

For vortex panels having a constant distribution of vorticity,

and non-parallel leading and trailing edges, a constant vortex

sheet is generated and contained between the two trailing vortices

in the wake. The perturbation velocities induced by this vortex

sheet, which originates along the panel trailing edge and extends

downstream to infinity are given below:

u = 0

v - -.5(BU - B3if)(F3 + F4)

w ' -5<B - B)( C G + H)

where

2
r, . r3

+ \ (x - ?.) + r. *.,

and B^^., C.̂ ., F^ Gi- are defined following equations (3) in the

in the main text. The subscripts 3 and •* refer to the outboard

and inboard trailing edge corners of the vortex panel.
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All of the above formulas are v;ritten assuming that the wake

lies in the plane of the vortex panel, and that the edge and trail-

ing vortices are parallel to the £; axis of the panel. If the panel

side edges or trailing vortices lie in the panel £,n plane, but

are inclined at an angle, 6 t with respect to the £ axis, the follow-

ing transformation applied:

u = u1 cos 6 - v1 sin 6

v = v1 cos 6 + u1 sin <S

w = w*

where u', v1 and w' are the three components of velocity calcula-

ted in a primed coordinate system aligned with the vortex under

consideration.
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