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LO INTRODUCTION

Previous studies have shown that, on the basis of fuel efficiency, current production
helicopters can be competitive with other forms of transportation. Reductions in helicopter
energy consumption can be accomplished through the use of advanced technology in the areas
of powerplant design, improved rotor efficiency, reduced parasite drag, and reduced structural
empty weight.

In the main body of this report, baseline helicopters incorporating today's technology
were designed for a short range (200 n mi) and a very short-haul (100 n mi) mission scenario.
Parametric analyses were then conducted to determine the impact of technology improvement.

Many of the parameters varied are interrelated. This addendum presents a summary of
such interactions and adds some additional sensitivity values so that energy reduction and DOC
as affected by the major technological factors or operational modes are clearly defined.
Table 1 presents a summary of the techrological improvements (and their associated EI reduc-
tions)_to be addressed in the following parayraphs.

TABLE 1. SUMMARY OF PROJECTED TECHNOLOGICAL IMPROVEMENTS
AND THEIR EFFECT ON ENERGY INTENSITY

Technological Area Percent Improvement
Percent Reduction in

Energy Intensity

Improved Engine SFC 4.76% reduction 5.8%
(conventional engines)

Improved Engine SFC 14.3% reduction 16.6%
(regenerative engines)

Reduced Parasite Drag 54% reduction 3.1%

Improved Cruise Efficiency 20% increase 6.5%
(rotor L/De)

Improved Hover Efficiency 9.3% increase 9.2%
(rotor figure of merit)

Reduced Structural 12.1% reduction 12.5%
Empty/Gross Weight

C

I
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2.0 MATCHED HELICOPTERS

In both CR-144953 and this addendum, reference is made to the matched helicopter.
Such a matched helicopter is defined as a configuration having sufficient rotor solidity to
allow its rotor limit and NRP cruising speeds to be equal. (It is worth noting that such matched
vehicles exhibit minimum DOC values because of their ability to operate at NRP cruising
speed.) Vehicles having less solidity are rotor-limited to a lower cruising speed.

The sizing of matched helicopters can introduce significant EI penalties. Accordingly,
a more detailed discussion of the relative merits of matched versus unmatched helicopters is in
order.

As an example, if the parasite-drag level of a given vehicle is reduced and the vehicle is
resized with no accompanying change in solidity, the resulting helicopter will have the capabili-
ty to fly at a higher cruising speed but will be limited to the rotor-limit cruising speed dictated
by the solidity. Being limited tc this cruising speed and operating at a reduced power required.
results in a reduced fuel-consumption rate. Therefore, this unmatched vehicle exhibits a sig-
nificant reducticn in EI compared to the original vehicle. However, since it is operating at a
cruising speed less than its potential NRP cruising speed, it also exhibits an increased DOC
(compared to the original vehicle).

If the original vehicle is again resized at a reduced parasite-drag level, ar_' the rotor
solidity is increased to allow operation at a higher cruising speed, several things occur:

1. The structural empty-weight fraction increases, reflecting the increased solidity

2. The increased structural empty weight causes an escalation in the gross weight.

3. Since the helicopter is not rotor-limited and can fly faster, the fuel consumption is
increased.

The resulting matched helicopter thus exhibits less of an EI reduction relative to the
original vehicle than the corresponding unmatched helicopter.

In summary, then, helicopters which are rotor-limited (i.e., unmatched) exhibit greater
reductions in EI than those which are matched in such a way as to allow rotor-limit and NRP
speeds to coincide. However, helicopters which cruise at speeds lower than NRP speed have
higher DOC's than matched vehicles.

Since minimum-DOC operation is an important criterion for commercial helicopters,
the study cf CR-144953 emphasized the sizing of matched, minimum-DOC helicopters. The
fact remains, however, that any choice between matched and unmatched helicopters must
reflect a conscious choice between energy reduction and minimum-DOC operation.

2
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3.0 RESULTS AND DISCUSSION

3.1 Presentation of Results

The type of graphic presentation used in this addendum for illustrating the interactions
of Energy Intensity (EI) and Direct Operating Cost (DOC) with cruising speed is a vector repre-
sentation. This allows a more complete display of the factors involved in EI or DOC reduction
than bar charts or tables alone.

Figure 1 is a diagrammatic representation of such a typical EI vector diagram. Note
that the vector's origin (point A) always corresponds to the EI value for the current-technology
(1975), compromise design-point helicopter. Note also that the end point of the vector (points
B, C, or D) corresponds to the EI value of a resized helicopter incorporating either changes in
technology level or design ground rules. Thus, the resulting vector illustrates both the magni-
tude and direction of the EI and cruising-speed changes obtained for such modifications in
technolor3y level or design ground rules. For example, vector AB illustrates a reduction in EI
accompanied by an increase in cruising speed; vector AC illustrates a reduction in EI at a
constant cruising speed; and vector AD represents a decrease in cruising speed at a constant EI
level. It should he further noted that these EI-cruising speed vectors can be added together
vectorially. This is illustrated in Figure 2, where vectors representing various technological
modifications are added together to create a resultant vector incorporating all the individual
technological changes.

	

-	 3.2 Results

3.2.1 Effect of technological advances on matched aircraft. — Figure 2 presents in

	

`	 graphic form the effects of the following on Btu/passenger mile and DOC for matched aircraft.

Each vector represents the change (from the baseline value) in EI and cruising speed

	

-	 due to a given technological improvement.

Y or clarity's sake, the vector for a 4.76-percent reduction in SFC has not been included.
It has the :ame direction as the 14.3-percent SFC reduction vector, but a smaller magnitude.

Vector 01 represents a 14.3-percent reduction in engine SFC due to incorporation of
regenerative-engine technology. Reduction in SFC results (because of the iterative nature of
the sizing process) in a reduction in vehicle gross weight. Note, however, that this does not
result in any change in vehicle cruising/rotor-limit speed.

Vector 10134N represents a 54-percent reduction in vehicle parasite drag. Reduced para-
site power required enables the helicopter to fly faster for the same amount of installed power.
However, rotor solidity must be increased to allow the helicopter to fly faster without en-
countering the rotor limit. Thus, matching the helicopter NRP cruising and rotor-limit speeds

3
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Figure 2. Effect of technological advances on the energy intensity of matched helicopters
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results in an increase in cruising speed somewhat at the expense of EI. It is because of this
matching that a large reduction in parasite drag (54 percent) does not reduce the EI in the
amount that would be expected if no rotor limits were impose_. The EI reductions possible
if these rotor limits are relaxed is discussed in Section 3.2.2.

Vector 03 represents a 20-percent increase in rotor L/D e. As in the case of vector 02 ,
reduced power required enables the helicopter to fly faster and thus dictates a solidity increase
to achieve a matched vehicle.

1

Vector ® represents a 9.3-percent improvement in figure of merit. The increased FM
results in lower hover power requirements and thin lower installed power. This, in turn, results
in an NRP cruising speed lower than the rotor-limit speed with the subsequent requirement
to reduce the solidity to achieve a matched vehicle. Additionally, the reduced engine size
results in lower fuel-consumption rates, and thus lowered EI.

Vector (D represents a 12.1-percent reduction in structural empty/gross-weight frac-
tion. The considerable reduction in gross weight caused by the reduced empty weight results
in a decreased hover power requirement and lower installed power. As in the case of vector ® ,
this results in lower fuel-consumption rates, and, therefore, a reduced EI.

Vector © represents a combination of all technological improvements considered.
Note that the solidity requirement for the combination is dictated by the need for a rotor-limit/
cruising speed match for vector ZO .

Figure 3 presents the effect of the same technological improvements on direct operating
cost. Superimposed on the vectors is the locus of points for a series of helicopters sized to
operate at cruising speeds less than NRP speed. Note that the baseline vehicle is located at the
minimum DOC speed and that operation at lower speeds results in an increase in DOC. Since
minimum DOC is obtained when the helicopter is operated at NRP speed and each vector
represents a vehicle sized to operate at VNRp, it is logical to assume that each vector in itself
represents a minimum-DOC-point vehicle.

Table 2 lists the dimensional, weight, power, drag, speed, energy, and cost characteris-
tics of the vehicles defined by the technological improvement vectors plotted in Figures 2 and 3.

Figure 4 illustrates the helicopter sizing trends overlaid on Figures 2 and 3. The upper
trend line is the locus of points of a series of helicopters sized to the baseline helicopter ground
rules. All vehicles represented b- • this line have a main-rotor solidity of 0.100. Only the base-
line vehicle uses this solidity fully, flying its mission at its NRP/rotor-limit cruising speed. All
the other helicopters on this line fly at less than their NRP cruising speed. The lower trend line
is the locus of points of a series of helicopters sized to baseline helicopter ground rules — but
with a 50-percent parasite-drag reduction. Up to a cruising speed of 200.8 knots (the baseline
vehicle rotor-limit/NRP speed), the rotor solidity is equal to 0.100. In the area between points
A and B, progressive increases in rotor-limit speed are achieved by increasing rotor sohdit-r
until a match between rotor-limit and NRP cruising speeds is achieved at point B.

6
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Vectors Ql 	20 , and 03 depict three possible paths for employing parasite-drag
reduction in the sizing of a helicopter.

Vector (1) represents the result of applying a 50-percent parasite-drag reduction
entirely to El reduction. It is obtained simply by resizing the baseline helicopter with a 50-
percent reduction in parasite drag and for operation at a fixed cruising speed of 200.8 knots.

Vector 0 represents the result of applying a 50-percent parasite-drat reduction en-
tirely to an increase in cruising speed. It is obtained by resizing a helicopter from the baseline
drag trend line at a fixed level of EI and with a 50-percent reduction in parasite drag. Note
that the resulting increased cruising speed corresponds to the baseline rotor-limit cruising
speed of 200.8 knots.

Vector Q3 illustrates the result of reducing parasite drag by 50-percent and then in-
creasing rotor solidity to allow full utilization of the potential cruising-speed increase (i.e.,
matching the rotor-limit and NRP cruising speeds). This is the sizing path followed in NASA
CR-144953. Note that the resulting vector exhibits smaller changes in both EI and cruising
speed than vectors Q or (2) , respectively.

3.2.2 Effect of change in ground rules on energy intensity. — Figure 5 illustrates the
effect on vehicle EI and cruising speeds of relaxing the basic rotor-limit and cruising-speed
sizing ground rules of CR-144953. Lines QA and ® are the upper and lower trend lines
referred to in Figure 4. Line © is the locus of points of helicopters sized to the baseline
helicopter ground rules — but with a 50-percent parasite-drag reduction, no rotor-limit speed
restrictions, and with retreating-blade stall eliminated. Note that as the cruising speed decreases,
lines ® and © begin to converge, illustrating a corresponding reduction in retreating-blade

	

stall effects. Line QI) reflects, in addition to the assumptions of lineCQ , a reduction in 	 -
rotor solidity from 0.100 to 0.065. This reduced solidity results in maximum FM being
achieved at the vehicle hover/takeoff conditions. The fact that this lower rotor solidity can be
tolerated at the vehicle cruising speeds is a reflection of the removal of rotor-limit constraints.

i
It can be seen that line QD represents the best EI reduction that might be achieved

for the configuration and mission design ground rules. It should be emphasized, however, that
this reduction depends on the following hypothesized assumptions:

Complete elimination of retreating-blade stall.

2. Either complete elimination of the rotor limits or the expansion of the limit boundaries
sufficiently to allow the selection of rotor solidity based on maximizing hover performance
only.

Vectors (1) and 0 refer to the two options available if parasite drag is reduced as
presented in Figure 4. Vector 03 represents the application of a 50-percent Fe reduction and
the elimination of retreating-blade stall and rotor limits to a baseline helicopter sized to cruise
at NRP.

10
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Vector ® represents the vector 0 vehicle with rotor solidity reduced to maximize
hover/takeoff performance.

Table 3 lists the dimensional, weight, power, drag, speed, and energy characteristics of
the vehicles defined by the retreating-blade stall/rotor-limit vectors plotted in Figure 5.

Figure 6 is a vector representation of the effect on helicopter EI of hover-sizing and
cruising-speed ground-rule change.

Vector 01 illustrates the effect of resizing the baseline helicopter to a two-engine con-
figuration without any attempt to meet the hover OEI requirement. The resulting helicopter
exhibits substantial reductions in EI and DOC relative to the baseline. This is due to both the
smaller size of the engines and their operation at more optimum partial-power settings (with
resultant fuel savings), and additionally to the iterative nature of the sizing process. Note also
that this vehicle is a minimum-DOC vehicle since its cruising speed is at NRP.

The substantial reduction in EI and DOC realized by this vector underscores the impor-
tance of further investigation into means for meeting the HOEI requirement with a two-engined
configuration without recourse to engine oversizing.

Vector2Q is the result of resizing the baseline helicopter to fly the design mission at
99 percent of best-range speed. Note that although the EI saving is over 13 percent, the DOC
shows a-marked increase. This is a result of resizing the helicopter at a cruising speed lower
than VNRp. This trend of increasing DOC with decreasing cruising speed is well illustrated
by the trend lines shown in r'igure 3.

Vector30 is included for reference purposes and shows the effect of reducing parasite
drag by 50 percent and resizing the resulting helicopter to operate at the baseline rotor-limit
speed of 200.8 knots.

Figure 7 presents the effects of ground-rule changes on direct operating cost.

Table 4 lists the dimensional, weight, power, drag, speed, energy, and cost characteris-
tics of the vehicles defined by the ground-rule change vectors plotted in Figures 6 and 7.
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TABLE 3. RETREATING-BLADE STALL/ROTOR-LIMIT VECTORS SUMMARY 

Vehicle Dimensional and Weight Characteristics V.hicle Power and Drag Chilracteriltic:s V.hide Speed and Energy Characteristics 

Percent 
Rotor Total Parasit.· Energy cu. in 

Gl-oss Empty MlSSiO~ Rotor Rotor Rotor FiIjus. Installed Drag CruisincJ Int.nsity Energy 
W •• t WbJht Fuel ( Dloilmeter GaplSfaCJl)l"f Rotor Operational of Pow.r Ar.a Spped (EI) Intensity. 

Vectors (Ib) (Ib) (Ib) (ft) Ratio SoIiditv Hoyer CT/II ® Merit@ (slip) (rt2) (ktas) (Btu/pas·n mi) .1EIIEIBASE 

Baseline 84.133 56,073 6,100 87.5 0.113 0.100 0.070 0.75 15.710 47.93 2OO.S® 5,612 0 

I. Baseline With ~ 
2OO.S@ F. Reduction 82.576 55.312 5.461 86.7 0.114 0.100 0.070 0.75 15,423 23.75 5.024 10.48 

2. Baseline With 50% 
Fe Reduction and 

211.2@ Matched Rotor· 84.702 56.912 5,930 878 0.113 0.106 0.066 0.743 15,970 24.04 5,456 2.7 
Limit Cruisin9 
c..pabilihes 

3. Baseline With 5,"~ 9) 
F. R.duction. No 

219.4(2) Rotor Urnu$, No 82,908 55,513 5,600 86.8 0114 0.100 0.070 0.75 15,495 23.79 5,152 --S.2 
Retreating· BLid. 
St .. 11 

4. Baseline With 50';" ® 
F. Reduction. No 

227.2@ Rotor LImits. No 76,880 SO,595 4,806 83.6 0.119 0.065 0.1076 0.787 13,719 22.95 4,422 212 
Retr.ating·Blade 
St.U 

NOTES: Q) Actual fuel consumed during miSSion. does not Include reserves. 

® Hover CT based on Wi A 7.0 psf, VT 705 (ps, Trw 1.1135, SL 9()OF conditions 

G) Rotor fllJure o( merit at SI., 9()'>f' conditions. 

0 Cruismq speed NRP I:TUISIn.} speed rotor·limit ,peed. 

® Cruisin9 speed rOfor·linlll speed. 

@ Cruising speed NRP cruIsing speed rotor-limit speed. 

0 CruisiRCJ speed NRP cruls'"g ,peed. 

® Cruisi,lCJ speed NRP crulSlIlq spt'ed. 

® It COlnnot be ernptwsazed too stron9'Y thilt vectors 3 and 4 are the resuh of the assumption that retr.ating·blade stall and rotor limits can 
somehow be .'iminated. Vector 4 utilizes this lauer a"mption (ully by reducing rotor solidity (to optimize hover .fficiency) to a 
value well below tholt dictated bv an NRP·rotor·limit cruising-speed match. 
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Figure 6. Effect of ground-rule changes on helicopter energy intensity
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4.0 CONCLUDING REMARKS

The conclusions arrived at in this addendum can be summarized as fcllows:

1. Unmatched helicopters exhibit greater reductions in energy intensity than matched con-
figurations. However, matched helicopters are always min0num-direct-operating-cost
vehicles. Therefore, the choice between matched and unr. atched helicopters must re-
flect a conscious decision between the goals of maximum-energy-intensity reduction and
minimum-direct-operating-cost operation.

2. The manner in which a parasite-drag reduction is applied in the resizing of a helicopter is
important in determining the level of EI reduction obtained. Thus, the relatively small
EI reduction noted for the matched vehicle of CR-144953, which was resized with a
54-percent reduction in parasite drag, was due to that aircraft's utilization of its reduced
parasite power in increasing design cruising speed rather than operating at a fixed cruising
speed and reduced fuel (energy) consumption.

3. Substantial reductions in EI could be obtained if a satisfactory way could be found to in-
crease rotor efficiency by simultaneously performing the contradictory tasks of reducing
retreating-blade stall and reducing solidity requirements (through the expansion of rotor
forward-flight operating limits).

P

4. Substantial reductions in both EI and ICC could be realized if a means cculd be found for
meeting the HOEI requirement with a two-engine configuration without recourse to
engine oversizing.
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