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. Abstract

A class of optimal linear time-invariant tracking systems,
both in continuous time and discrete time, of which the number of
inputs (which are restricted to be step functions) is equal to
the number of system outputs, are dealt with in this report.. Along
with derivation of equations and design procedures, two discretiza-
tion schemes are presented, constraining either the control or its
time derivative, to be a constant over each sampling period. De=-
scriptions are given for the linearized model of the F-8C aircraft
longitudinal dynamics, and the C* handling qualities criterion,
which then serve as an illustration of the applications of these
linear tracking designs. A suboptimal reduced state design is also
presented. Numerical results are given for both the continuous time
and discrete time designs. '
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CHAPTER I

INTRODUCTION

This report deals with a class of optimal linear tracking'systems,

in continuous time and in discrete time. An application to

. the control of an aircraft is discussed, along with a suboptimal

design:

‘The type of deéigns‘that_this report focuses attention on is

.compensator design for a ‘class of multi-input-multi-output linear time-
~invariant dyhamical systems in which the number of controls is equal to

. the number of system outputs, andltheysystem output vector is required

to track a reference input vector of step functions with zero steady
state error. It is found that the resulting designs are conceptually

the proportional4ihtegraléderivative,(P-I-D) controller designs.’

“Sandell (1], and sandell and Athans [2], present a continuous time com-
pensator design for - such systems.‘ Their designs suffer from the practi-

‘cal drawback that: the initial jump ln the control is very often too fast

and may rate-saturate the control actuator. We pursue(thls design in

"contlnuous tlme,‘but ellmlnate the above stated effect by imposing

'contlnulty of the :control everywhere. Holley and Bryson [3] give a regu-

lator de51gn w1th non—zero set poxnts, and it 1s found to be of the same,;

':structure as the one that we are ensulng. Ow1ng to the need




The NASA F~8C digital-fly-by-wire (DFBW) aircraft is a high per-

k]

formance aircraft and is considered a very convenient testbed vehicle for
magﬁ flight control systems. Oue of the puiposes of this research is to ) ¥
investigate and td‘characterize the idea of designing a conceptual P-I-D

controller for the lineérized longitudinai dynamics of this aircraft,

usin§~aic* handling qualities criterion [10], [11]. |

- The C* parameter of an aircraft is a.linear combination of the
pitch rate and the normal acceleration (and pqssibly the pitch angle) of
the airqraft, We shall discuss ité significance and ﬁotiyation later, o
; aldng with a desdription of the linearized models of the F-8C airc;aft ; |
longitﬁdinal dynamics. Briefly we can view the design problem és‘a
'ttacking problem ([15] as follows:.the pilot, by shifting the command stick
_ position, inputs a desired steady state value of the C¥ paxameter to the 4
compensatoi, which is then‘réqﬁired‘to track the system C* responsé to
4tﬂis.value, by'minimizing an appropiiate éenalty function, with zero
’steady state error.: |
Athans, et al. [8] diséusses briefly the desire 'of using thg

-C* criterion ih the ‘control of ﬁhe F-BC‘aircraft. Honeywell_gtaff [12}1,
[L3] diécuSsva'C*fdesign usiné model following techhiques. UnfOrtunately,
.:,théii‘de#ign procedﬁres are not transparéht enough to us, at least from :
a theoretiéalypointvqf view.
It is our_degire_that eﬁeﬁtually oﬁr design précedureﬁwili be
”incoiporéted into’thé multiéle model adaptive control (MMAC);Schéme

v,aSSUmed in [8l.. Hénéefbrth,’we,follow a design philosophy similar to- [8] D SR
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and use the same set of data that it employs. We exploit this further
in Chapters III and IV.

The remaining chapters of this report are organized as follows.

In Chapter II, we present most of the theoretical results required
for the deterministic designs in this report, together with some dis-
cussions on these theoretical issues. First we derive the equations
fer the P-I-D controller in continuous time, as a modificaﬁion
of the results in [1] or [2]. Then we ob:ain similar results in the
Aiscrete time case. Owing to éhysical motivations, we discuss two dis-
cretization routines where we treat (1) the control; (2) the rape of the‘
control, as a constant over each sampling period. In other words, method (1)
uses a zero-order hold and method (2) a first-order hold. As we shall
discuss later, due‘to sudden changes of the control, i.e. high rate of
change, method (l) mey not be physically satisfactory for aircraft imple~-
mentaeiohs. However} the difficulty'efbgetting a proper linear realization
of method (2) may also impose additional'problems.

After the completion of the Qork in this research, it has come
to our etreﬁtion that T.A.S.C. also came up to some P-I controller
_designs in [4]) for VTOL aircraft control.' The last part of this

chapter is devoted to brlef comparlsons of these results.

" In Chapter III, the general motivations of applylng the C*
crlterlon in the controller desxgn of the F-SF alrcraft llnearlzed
1ongltudlnal dynamlcs are discussed. We present a review of the

linearized'models‘of4the,F-SC‘eircraft longitudinal dyﬁamics (at 16

.t
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flight conditions), and the C* criterion. We then formulate the C*
tracking problem with reference to the results in Chapter II.

Reference [8] presents a good approximation of the control gains
and transient responses of the linearized ¥-8C aircraft full state
longitudinal dynamics by a reduced state model.y This approximation is
also applicable to our present problem. The task of Chapter IV is to
give an account of such a reduced state model. Theoretical comparisons
between this model and the full state model are made.

Ih Chapter V, we present some numerical results, both ip con-
ﬁinuous time and discrete time. Deterministic designs,
simulations, mismatc¢hing of flight conditions, and full state
system versus reduced state system iniperformance are the major issues
that we. touch upon..

Finally, in Chapter VI, we discuss the'overal} iesults and
draw some final,coﬁclgsions; Also we outline sohe possibilities for

future research.




CHAPTER II

P-I-D CONTROLLER DESIGNS

In this chapter, prOCedures are given for designing P-I-D con-
trollers for multi-input multi-output linear time-invariant systems.
Although results are first given for continudus time systems, the main
parts of this chapter are devoted to discussions of discrete time
systems, discretized from fhe continuous time systems Qia two different
discretization scﬁemes'with sampling period T:

(1) For each integer k, we constrain the control to be a

‘constant over the sampling interval [kT, (k+1)T) .

- (2) Fpr each integer k, we constrain the time derivative
of the control to be a constant over the sampling
interval (KT, (k+1)T).

For the disérete,time systems obtained by scheme (1), we derive
tﬁree different sets of procedures for designing the P~I-D control
géins. The fi£§£;p;ocedure is the discrete time eéuivaient of the
continuous timé design procedure; the other two'are simély approxima-
tions of the contrél gains of the continuous tiﬁe‘systems.

One -drawback in using schemé~(l) is that it introduces a series of

‘steps in the control, and hence, a series of impulses in the control

' rate, which might then lead to rate saturation of the control actuator

in many physical systems.

Scheme (2) is discussed in some detail; There, the derivation of

=12~
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the design procedures béars many éimilarities to that for scheme (1),
although required conditions are somewhat stronger.

We divide this chapter into five sections. In Section 2.1, a
design proce@ure for the continuous time case, which is almost identical
tovthat inén in [l],vis presented. Sections.2.2 and 2.3 are discussions
on the discretization scheme (1), the first of which deals with the
scheme itself and a difect design procedure of the discrete time
systems, while the latter is concerned with apéroximations of the con-
tinuous time design. Section 2.4 deals with,discretization scheme (2)
and Section 2.5 contains some‘finéi rema?ks and a compariscn Qith‘ﬁhe

results in [4].

2.1 Continuous Time Designs
As a first result, we present a design proceduﬁé in the continuous
time case, which can be proved by adding in a constraint that the

control has to be continuous for all time, and then using the method

“employed by ‘[1]1 or [2).  For this reason, Ehe'proof is omitted here.
A derivation of this procedure, which is of a somewhat different

flavor, can also be,obtainéd if we attack this problem by using the

results»in [3].




LY
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Proposition 2.1 Suppose that we are given a linear time-invariant

dynamical system in continuous time:

x(€) = A x(t) + B u(t) } (2.1)
- ‘System I
g =cxt) , | (2.2)

where x(t) € R", u(t) € R, y(t) € K", and A, B, C are n¥n, n¥m, mxn
real constant matrices respectively. |
We assume that
(i) rank A =n

(ii) (A, B, C] is a minimal realization

(iii) rank C _A_-lB =m.

We wish to minimize a cost functional;-
v i

J(u) =f [(_z;o'§- y(m) ' oz, - y(m) + _1;'(1')5 t_.x_(t)]dt (2.3)
0 L :

vwhere‘gé is an arbitrary step input, and Q > 0, R > 0 are n*n-

. positive semi-definite and mXm positive definite matrices respectively.

Then there exists a control u(t) such that the performance index J

is minimizgdli_T@e;iﬁpﬂfﬁware tracked with zéro steady state error:

for all stép4iﬁputs, and the closed loop system is stable. The con-
trol is given by
g(t)' :f Lz, - z_(r))d-; + N(x(t) - x) + 2’(0)  o (2',4)




~15~

where ; ) )

= - ) . . : 2.
L= (K -KA BI(CAB (2.5) .
. ' -1 ; | .
N= (K +LCA" : : (2.6)
- The matrices K,, 1(_2' are found from the positive definite solution of
the algebraic matrix Riccati equation
r - y
! ' :
§ +
T ] i :
| o . (2.7)
2. B0 | iy cge o
-1 R 1 1+
ey : . .
L .13.12 f-zz_j .1.:.~ .?-;2 "9, : -
_ - - ¥
E IR |
- .
: 01
= e
with
.. K.1==R"[0 II[P . (2.8
[5‘»1 "2‘] = e o =1l i ; (‘_ . )
o
‘ L
LBz
’where Pll' P12 __22 ‘are matr;ces of d:.mens:.ons ngn, nxm, mxm respectlvely. ’ “

The structure of such a control system is shown in Flgure 2.1,



(,1:" o

2

o |

o Fig. 2.1+ Continuous Time Linear Tracking (P-1-D) Corﬁpen;ator,Design ,
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Note that in equation (2.4) u(0) can be arbitrary. In_particular,
there are the following choices.

The choice of 3(0+) in [1) optimizes the initial value to the integrator,

in the sense that the cost funéiicnal in equation (2.3) is minimized with

this particular choice. However, this procedure does not pay any regard to

u(Of), or to be-specific;‘the rate of change of the control at time t = O,

Which is not penalized in the performance index at all. Such an initial

jump in control may rate saturate the control system and lead to
subsequent fallure of the future control. On the other hand, (21

picks a choiCe’such that the control, g(t); at all time t is independent of
rlO). The problems of'rate saturation_are also present here, again dua-to:
the difference between u(O ) and u(O ). In order to eliminate rate satura-
tion, we need to inpose COhtlﬂUlty of the control, in partlcular, 1f we
constraln ) | |

u(O) = w0 R

‘Then 1t is easy to see. that the control is contlnuous for all- tlme t. This

is indeed our choice for this report.

Now we present a similar design procedure for a discrete time

~ system with a similar performanCe index. -

v2 2 Discrete Time Des;gns, Scheme (1)
) ..

In Sectlon 2 l, a deSLgn procedure for contlnuous tlme systems

is dxscussed. A slmllar procedure can be derived for a class of dls-

~,mcrete tlme systems, namely, syStems w1th a constant control over each

: sampllng perlod, and a 51m11ar performance index.‘ We discuSS thlS in

g‘wt
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, 1

Lo T P —
B )

- ﬁ . m " : m * “ l‘ :
~where x(kT) & R, u(kT) € R, xjkT) € R, and A,, gd( S5

x ((k+l)T)‘ = Agx(km) + B (kT) (2.10)

(2.11)

g(kT) = St x (k)

are nXn, nxm,
mXn real constant matrices respectively.

We assume that

(iv) rank (& - 1) =n

ﬂ - .
(v) [éd' Ed' Ed] is a mlnlmal,reallzatlon
-1

(vi) rank C (A -D gd'=j@.,

; We want to mlnlmlze a cost functlonal

'

BRI |
S 4 @GADD - 36T R@(GHDT - uGD) )]

where Eo is an arbitrary step lnput, and Qd > 0, ga > 0:are nxn

~ p051t1ve semz-deflnite and mxm p051t1ve definlte matrlces respectlvely.

Then there exists a,controI:sequence such that the performance

,‘1ndex J, is mlnlmlzed The 1nputs are tracked with zero steady state

d

! error’foé all step 1nputs and the closed loop system is stable. ,The

'control Ls glven by

(z_ - y_(j'l‘))' (z_ - y(3m). —

the following proposition. Then we summarize the relationship between this )
result and the previous proposition, é
"Proposition 2.2 Suppose that we are given a linear time-invariant ’
dynamical system in discrete time (with sampling period T) 2

é




where

The matrices

A‘t’

N,

K,
14

1o

o L

X
b, 4
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~ algebraic matrix equation -

(=
lo
vy
[

o]
o}

(2.13)

(2.14)

- (2.15)

are found from the positive definite solution of the

o~
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with

A
=
R JF
N N
d?

y
o §i<

where gild,'gizd,,gazé are matriqes of dimgnsioﬁs'ﬁxn, nXm( me respec- -

ktively&*n.
Proof

- Let
 (2.18a)

[}
R
]

B -wom -w, o @am

F(xT) . (2.180)

o

|e

L e—
+
I A
e
s

S

3

e d

where .

Ja
: 15
&
| L |
‘Ltn
4

~ which isﬁéasiiy“seehfto'be4thé unique solution of
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(2.21a)

RS N
z, = 3% (2.21b)
Then the dynamics of the system can be written as
B -
x((k+)T)} By B4 { ELtSvl I B
: = ' + v (kT) (2.22)
itk+nm| o L Rkm| | L

and the performance index given
ED M EACLECLY

3=0

Y'UD R y_(jfr)}‘

in’equation (2;12) is equivalent to

i i
3 :

] o I
a2 |[Eem

o F(57)

o

(2.23)

‘Hence the»p;oblem is:reéuced to an optimal linear ‘quadratic reguiator

roblein. ince C!
jo m Slnce Qd

to this regulator problem given by

'kzﬂkT)i% [§1

d

X,

 ‘where’
' d

K
1

kI 1x

‘Ed 2.0 Bﬁ >0, by [ 5], there exists a solution

[

d o
(2.29)

a:e:obtained by QQuatiohs (2.16)‘35&y(2.17$.‘ ‘
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i * ‘ Note: that

B, BkD) = R((+1)T) - A g(m‘ B | (‘2;25)“: |

F : i ' and assumption (vi) implies that Ed is of .rank m. Therefore there exists

a mxn,matrix‘ga'such that

~ which gives us

G(kT) = Fy X((k+1)T) - F A, gka) R (2.27)

Substituting this into equation (2.24), we get

v(kT) ='(§1a'- K ) x(kT) * K B

Fahg X((kH1)T)  (2.28)

: or equivalently,

SO = (§ - K, Fg(Rg = 1) R0 4 K, "““‘*”T’ - &0ar)
| - a a ; d ‘ L

; LS Tl (2.29)

j 7  "  Vu"i Now chobseyga‘such that

. y _ e e S | . . B 2.3,0 |
| K TEREB DL G20
I Sl o

" which gives
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- 1 _ -l
Fa Ty G L) By D
d d »
But from equation (2.26)
=1 -1
Ioh LGBy - D By
d 4
Therefore,
o ' -1 S |
Ed = (§_2 - 51 (ga - 1I) —d>(9d(§d I) gd)

d d

Using equation (2.30) and noting that

R0 = yom) -z

Ed
fahd
_::E_(‘(k-f-l)T) - _?g(kf) = x((k+1)T) = _:Ey(kiT)"
we . get
gmb=%@9fﬂmn¥gfag¢gﬁ)—gmn
16, |
ul ’(k+l)-'1")‘ ‘»... ulkT) = %(Eo, - L(x1) + -K-zdf-a-"_‘—" ( "’F_*l”T? )
- i(ki)) |

(2.31)

(2.32)

(2.33)

(2.34a)

(2.34b)

(2.35)

(2.36)
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which can also be written as

k-1
u(kT) =Z£d(5° - y@3T) + Ed(i(kT) - x(0)) + u(o) (2.37)
j= ‘
where
gd = EQdEd ‘ ‘ (2.38)

.and this completes the proof of this proposition.
Notice how similar this solution is to the one in proposition 2.1.
The struoture of the compensator thus constructed is shown in Figure 2.2.
A natural question would be what equivalence can one geo between
this discrete time system and system I. We answer this quéstion in the

following proposition.

Ptoposition 2.3 ~Suppose that we discretize system I in proposition 2.1

with sampling period T such that for each integer k, the control u(t) is
constrained to be a constant over the sampliﬁg.interval [kT, (k+1)T), i.e.

for each t in this interval,
u(t) = u(kT; kT <t < (k+1)T (2.39)

Then we have a sample-data realii&éion as follows,

R

(2.40)

XKD = Ax(KT) + By u(km)
, ~ : ' System II
y(kT) = C. x(kT) ' (2.41)

=4



x(kT)

e
. =
St
|
—gz-

:

Fig. 2.2 Disér_e’te Time Linear Tracking (P=1-D) Compensator Design
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with A., B_, C. matrices given by the relations

L
By = e ' o (2.42)
. [t
Ed ~/H2 drt B ‘ (2.43)
0
=2t ps
c =¢ o (2.44)

where g, B, g_afe the matrices defined by system I, egs. (2.1)(2.2).

If in addition, we have for all integer k

: ar
Inlh; (A) - A @) # k 3 | (2.45)
wheneﬁér
Re[d; (B) = A, ()] = 0 s (2.46)

for i # j, where Ai(é), Aj(gg are. (distinct) eigenvalues of A, then
the ASSumptions (i), (ii), (iii), in proposition'2.1 imply the assump-

tions (iv), (v),. (vi) in proposition 2.2.

Proof

Here we only prove the validity of assumptionsv(iv)vand (vi) due
>t0,(i),and (iii) . The ofher parts of thi$ proposition ére ail contained
in [61], heﬁce their proofs are omitted.

Since assumption (i), i.e.

Rank A =n
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implies that for all i, 0 < i <n

A @am £o

o therefore

A (AT)

. -1#0

But for every 0 < j < n, there exists an 0 < i < n such that

A (AT)
A (eé? -I)=e* " -1

o

-

rank(l_\d ';E) =n

which proves assumptioﬂ (iv).

Now note.that

i -1, _ o, AT _ _.-1 -1 A
Caag - D', = Cle 1) - 1)B
-=cals

Assumptzon (v1) 1s then obvxous from (111)

From now on we sh l"refer to thms discrete time system as system II.

'H'Note that thls system does not glVe us an equlvalenﬁfperformance 1ndex

(equatlon‘(2.12)) to that in systemw; (equation (2.3)).

Tequivalent to the extent that u(t) is %ept to be a constant over each
 sampling interval while evaluating the cost functional in equation (2.3).



T ey T T a4

-28-

2.3 Two Approximate Schemes for Discretizing the Continuous Time

Compensator Design

The objective of this section is to investigate two ways of how
the continuous time linear .tracking compensator design presented in
Sestisn 2.1 can be discretized into discrete ﬁime:designs by making some
aééroximatiohs. |
The’discretised system:that we want to chdracterize heie is one
EWhich has a constant control over eééh sampling interval. To be specxflc,
glven‘afcontlnuous time system and a control 1aw-whlch tracks the system

output to a step input, z,

x(t) = A x(t) + B u(t) R ' (2.47)

y(t) = Q_i(tf : | : | "~ (2.48)

‘u(t) = gf - y(1))dat + N(x(t) = %(0)) + u(o) - (2.49)
o 9 T

where L, E.érekmatrices specified bybequations (2.5)f(2.8), we propose

to ﬁind a contsol law wish control gsiss EQ:}ED' giyen T
. k= ‘ P ‘ : ) L
Cutkm) =L ,é% (25 = 8O + N (x(kT) - x(0)) + w(0)  (2.50)
ult) = u(kT)  for kT < t < (k+1)T a1y

A}

'ﬂ’whlchlrepresents an approx1matlon of the contlnuous t;me control law
‘ '(equatlon (2. 49)), and is appllcable to the sampled dynamlcs of the

7system, w1th sampllng perlod T

T N T
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. AT ’ T A )
x((k+1)T) = e= x(kT) + f e='at B u(kT) : (2.52)
. - : 0
W
. E
y(kKT) = C x(kT) ' ' L (2.53)

vWe‘proceed to find Eb, ED by two different sets of approximations:

(i) First-order approximation

We asgpme that approximately,

o | ey _ 1
Ej; ,(EO - y(t))dr~ T g_ij:‘b (z, = £(3T) | | ‘_(2.54)

‘Here as a first—order approximation,'wé take
=TL | - o (2.55)

=y B DRI (2.56)

(ii) Agproximation with constant intégral over sampling interval and

' % S gole?ailoéétion

Noting that N, and N, are feedback gains on the states in the
continuous time and discrete time systems, respectively, we try to make
‘use of the pole allocation method. In closed-lqop'form, the syStém

dynamics can be written as —
] |

Cx(t) = (A + B N)x(t) + g_‘g._f '(go;— ¥.(T))4aT + B(u(0)-N x(0))
, Ll ey te RS =T |
(2.57)

for the continuous time, and -

-\1\" = : - .
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. k-1 '
CRRHLT) = By + BN x(KT) + Byl E) (2, - Y(IT))
+ _1_3_D(_11(0) - N _x(0)) o - (2.38)
for the ld:"Lscrete time. We assume that

Et k-1 o _
]c;, (50 -y(m)dr=T Jé}) (?-o -y Ty R (2.59)

for kT < t < (k+1)T, and
- B(u(0) - N x(0)) = B, (u(0) - §D§(0))- - | - (2.80)

which is exactly true when u(0) and x(0) are zero. Therefore, we may.

now write
. (A+BNT - . o (2.61)
éD + BE,NI: = e ) . )
T a+BNT ‘ ' '
BL =T - = : - (2.62
BL = j; e= ate E. | 3 . (2.62)

l

which give us, §_ipce B, hence By is’ of maximal rank, a (minimum norm) solution

1
(BD?D

)le-'[e(&“E._)T_éD:],,.' | S o (2.63).

&Z

—D-D
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'2.4 A Discretization Scheme Which Reduces Rate Saturation

In the last two sections, we discussed a discretization scheme
whichkconstrains the contfol to be‘a COnstant over each sampling interval,
and»some compensator designs associaygd withbit. ’These designs, howevér,
aré susceptible to éontrol rate saturé;ion because the derived conérols
‘arevstep functions.” As ankalternati6£; iﬁ this section, we present a
second discfetiéation scheme which éonstrains the time derivative of the
control to be a_constant over each sampling interval, but enjoys an
équivalent+ performande index to that in system‘I, subject to this con-
straint. This has f:he"merit'that the problem of control rate saturat":i»o.nv

can be reduced considerably.

Proposition 2.4 If we discretize system I with sampling period T by

constraining the time rate of the control, é(t), to be a constant

over the sampling period [kT, (k+1)T) for each integer k, i.e.
u(t) = u(kT) = constant for kT <t < (k+1) T ‘ (2.65)

then we get an equivalent realization in discrete time,

sy

u((k+1)T) 0 | |uxm T I ' ‘
SYst%m III
i e o ‘ DR
ym = ¢ o] [xexm .
' | (2.67)

atkr) |

~Tequivalent to the extent that u(t) is kept to be constant over each

-sampling interval.while evaluating the cost functional in equation (2.3).



where z_xd, Ed are matrices from system II, given in propositions 2.2

and 2.3, the C matrix is from system I, and Eo is given by

: T‘S"AT ,
’ . D =ff e—"dt ds B
-0 =
o o : ) .

where A, B are from system I.

Moreover, we obtain an equivalent per

where

S - with

.Fo).

=

T

[f A
: e

Q

'

]
L
e
~A.$‘
s
s}

D {lom - x)

C+2lEGD - x) @D - w) 188G
~ +A(TR 4G
Eorg ¢ far

0

] f et tg__'g.g E/.fe-z}-Tdes]E at

0-

formance index,

@G -u)] @

(2.68)

(2.70)

2.71)

o (2.72)

k,(2.73)

(2.74)
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which are the steady state values of x(t) and u(t) in both continuous

time and discrete time.
Proof

"Firstly note that X 0 4 given by equations (2.73) and (2.74)
are unique solutions to any one set of the three following sets of
equations, thus establishing fhe equivalence of steady state vaiues

in continuous time and discrete time.

0=A%X +Bu : ]
O=Ax +Bu | | ;
o s ‘ S , (2.75)
z =C X
~° ,=v°
C :
Ty
X, TR, Y B : | T
B < , : ‘ (2.76)
> =2
oo 5] [o].
= ; + u (2.77)
, , -0 M tld
g 2 i) (%] 7y
u =0
—o’ ———

It is easy to see that equations (2.73) and (2.74) indeed give the
 uhiqpe solution of B, and 8 and M have the'Same éolﬁtidns for 56, go.;'
Therefore, all we need to do is to show that they are also solutions

to o. Solving o, we get

g ‘a‘ o i BN T
u, = ‘(g;é.._)ﬂ z — . » N ,;£2¢79)7

=0 o ' g
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But from equations (2.42) and (2.43), we know that
-1 -1 | -
3y -D7g =X (2.80)
which implies that equations (2.73) and (2.74) are also solutions
to a.
System I can be realized as Emﬁ;'ﬁ
» 5 x(t) - x A g x(t) - x 9 RN
; v : ; e vl R = - + | u(t) - (2.81)
’ u(t) - u, 9 QOl{ut) -u I
oeln s AR g o | v (2.82)
u(t) - 3
. X - v . . ' C -
y = - - ' . I -
J(u) f{.[(i(t) x) (B.(f-’ ‘\_10) e Qﬁg o) - xg
o ' : : 2
0 SO Jult) - u
! - '; ~- ‘- H w
+ é’ (t) .&i‘!ﬁi},dt PRI o (2.83
: COnstralnlng u(t) = éjkT) for kT < t < (k+1)T, ‘we get by [7] an"
: ‘iequlvalent dlscrete tlme reallzatlon,.'
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X((H)T) - x [a B x(kT) * x
= expt T;
a((k+1)T) - u | o 9 ukT) - uj
| (2.84)
T (A B ]
+6/exp{ T}d’t é_(kT)
| o o z
y(kT) -2z = [C 0] | x(kT) =~ X
(2.85)
a(kT) - u k
and an equiVal?nt performance index
= Z “(yjr) - %) @G - u) ]g X(3T) - x_
j=0 B -
u(jT) - u
+z[(x(3T) - x) _(g_(JT) - u) 1M u(iT) . (2.86)
+ (M éé(jw)}
, Whére SET r ‘ - . '
; ro A o] ege o A B
Q= f‘exp{ : t}' exp;{ t}dt
oo Yol M a0 o of 7
. N - L (2.87) PR
-~ AT (]2 2of yleee o e Ja Bl o
gi_=ffexp{ ’ ; t} , : [fexp{ g s}ds] lat
kL B 0 o o) Yo o 4
i | - o = : s

. (2.88)
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After some algebra, we see tia

~expl
T
JE
o .
~ A
Q=9
M=
R=R

N

I

D

0,
Jt
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B L
B
}ds]dt
9
o
9
Tzd'l'
L

W
) ESN . |

I+ |o
—_—

jo

(=]

(2.89)

(2.90)

(2.91)

(2.92)

(2.93)

(2.94)

f,where D, QJ M,kR are glven Hv equatlons (2 68), (2 70) (2. 72), thus

completlng‘the proof of thls ~rop051tlon.

From now on, ‘we shall cz.l this system, given in propos1tlon 2 4,

system ITII.

~such that the performance indax J in equatlon (2 69) is mlnlmlzed

We are now 1n a.4051t10n to obtaln a compensator de51gn

turns out that we get a very r*mllar expresslon for u(kT) as in propo-—

[

|

Ry
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sition 2.2 for system II. The results are given in proposition 2.5.
Since the technique in proving them is similar to the one we used

in proposition 2.2, we only give the major steps in the proof.’

Proposition 2.5

a) Suppose that we are given system III (in proposition 2.4), and we
want to minimize the performance index given by equation (2.69) , then

the optimal control rate éng) is given by the expression
u(kT) = (X,
; (2.95)

u(kT) - u

- )

. Where Ky K, are matrices of dimensions mXn, mXm respectively, and

are found by the‘relation

in which G is the solution to a steady state matrix difference equation

¢=10-p R (e -gp@+ e piere - b B
) AA]_A ' ) : e - |
[ -HR"MI - S (2.97)

where the matrices ¢ D, R, M, g_are all glven in prop051t10n 2 4,

- assumlng that

f(yil) [Q D] 1s cont;ollable.
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b) If in addition, we assume that

(viii) rank [56 + DK, - Il =n

o rar - -1 ~
(ix) rank [gjéa +~D‘Kl I) (gd + D Kz)] =m
then thé.éontrol u(kT) is given by
, k-1 .
u(kT) = E Liz_ - y(3T) + Nx(kT) - x(0)) + u(0) (2.98)
where
L= TR, - KBy + 08 - DB+ D)
e , (2.99)
xIC(A, + DK -I) Y, +Dp X)L
—d ~o-l =d o2 .
R=(@k +Lo @ +pk - (2.100)
- -1 == 4 =01 = ’
Proof

For (a), the result is immediate by using [ 71. For (b), from

equation (2.66) and (2.95), we obtain

+ DK 1(x(KD - x)

'_‘,(g((ku)'r) -x) = [éa' )
+ [_B_d + 1_301(_2] (E_(k'l‘) - 1_10) : | ’ (2.1?9;)

‘fAssumption (ix) implies that;thefe exists a mxn matrixyg_such that

D)=L b (22102

LF

(B4 +‘
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Hence using equations (2,101), (2.102) and (2.66) in equation (2.95),

we obtain

1 = (R - R B(A + 0w -
T (u(k+1)T) - u(kT)) = [K, - KF(A, ,+ D K ) 1(x(kT) = x)
K F (k1)) - x ) (2.103)

This implies
k-1-

wkn = R - K@y + DE, - DI - x)

- j=o

+ T KF(X(T) - x(0)) + u(0) | (2.104)

After some manipulations, this reduces to equation (2.98) and thus
completes the proof.

Note that in synthesxs, this compensator des;gn has the same

kstructure as the one for system II. Also note that the valldlty of

assumptions (viii) and (ix), unlike assumptidns (i) = (vii) ‘depends
not only on the system matrices, but also on the weighting‘matrices in

the'performance index. Furthermore, equation (2.66) gives

5((k+1')'r) | _d_(kT) + (B4 -;1,1- D _)u(kT) + ln D ul(k+1)T)  (2.105)

 The presence 6f>£ﬁe‘1ast term‘Qn the right'siae ;f equation (2;105)'a22ears
to be a‘serious’dfaﬁback’in uéingfthe control»lawiwhich we havei

kﬁust fbrmuiated in proposition 2.5, because qomputatioh of g}(k+15T) in |
4’this schemé_reqqiresvknowledge of x((k+1)T). It appears that the system has

 become noncausal, and some approximations must be used to make it causal.
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Two possible ones, which are both ad hoc, are

‘ a) approximate éjkT)’byn%p(EjkT) — u(k-1)T)), giving

x((k+1)T) = gd_:g(k'r) +’A V('Bwi +

i

Dy) u(kT) - & D ul(k-1)T)

=

{2.106)
If T is large, the dev1atlon introduced by such an approximation might
be considerable, especxally for the first few time steps, where
the system is by no means near steady state.

b) simply use
3:_((k+1)T) = A_X(KT) + B u(kT) | : (2.107)

bﬁt;again, this may leatho.rate-sateration.,
Depending on tﬁe acfual system, any such aéprox1matlon
© can induce lnstablllty, a hlghly unde51rable outcome in controller
‘design. Moreover, one might argue that whichever of the above approxi-
mationsewe take,jﬁe are in eféecfigenerating sﬁep like controls. Hence
all eur considerdations which led us te‘éroposition'2.§ are essentially
violated: we are still faced with a prebleﬁ of rate saturation and
may even have wo;seped the situation by introducing apprqiimatiees.
-§ On ciosef eéamination, however, all these problems are nen-

existent, if we do exactly whatlp%e§051tion 2;5 says - its actual goal
is a continuqus time cempensator which generates a seéuence of ramp functions

as the control signals. Specifically,



~41-

u(e) | | (2.108)

o

x(t) =2 gz_(tj) ¥

uft) = uk? + (tkDaGkn © (2.109) -

g

for kT i't < (k@iiT. Note that 3}k¢i, éjkT) only depend on the values
of z5, u(0), x(0), x(T),..., x(kT), and y(0), y(T), ...,y((k=1)T)
(equations (2.98) , (2.95)) . These computations can all be carried out by
a diéital—computer in a sampled data fashion, provided one has a device
to generate u(t), glven in equatlon (2. KB) (e g. an 1ntegrator) Using

equations (2.95), (2.73), (2.74) and (2.80), this can be written as
u(t) = wk) + (¢ - k) R x(k1) + & u(k‘I‘) + (€, - £a’lp) c a~lp) gl
(2.110)

There does not exist any non-causality problem at all.

2.5 Final Remarks

In this chapter we»have presented several determinietic designs
of compensators that can be used to control a linear time4iﬁyariant
system to track a step input in contlnuous time, and discrete tlme.

In the next two chapters, we shall concern ourselves with the formula-
tion of the llnearlzed 1ong1tud1nal dynamlcs of the F-8C aircraft and
the C* handllng qualltles crlterlon, and then formulate a control
problem us;ngrsome of the xesults obtained in this chapter.:, ;ei .t\ffa
’fComéarisons among theEe various designs are made-‘in Chapﬁer 5;- :
‘via simulations,, It is showo there that the approx1mate scﬂenes pre-
sented 1n Section 2. 3 are in general less effe V than the schemetln
Section 2.2. i ' |
»Before>We cloee‘this ehapter,»iet~ue compare briefly the servo

1.
i
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controller designs by T.A.S.C. [4] with these results.

Firstly let it be said that in places where there 'are similarities,.
T.A.S.C.'s approach looks more similar to [2], while ours is closer to [1].
In partieular, instead of penaiizing 2, - y(t) direefly, they penalize
ER - x(t), which is clearly equivalent as shown in [1] or [2] orveven in
the proof of proposition 2.2. Also [2] shows rhat the techniques ean be

_extended to the case when one puts an additional penalty term on

u(t) - u., which is often done in [4]. Furthermore, if one cares to

-0
do the algebra, one‘can easily see that the invertibility

o : A B _ ; .
assumption of the matrix [E‘ 6] by T.A.S.C. (and [2]) is necessary for

tﬁe assumptions (i) and (iii) in preposition 2.1, .and the same holds
for rhe corresponding results, too. Having said this, we shall consider
the above to be equivalent conditions.

The basic similarities between the two apprdaches-are the issues of
P—I:ccntroller designs; Indeed, the derivations and results of T.A.S.C.'s
rontinuous time and discrete time designs are the same as;onr'results for
.5gystem I and II respecﬁively, except fer rhe choice of EﬂO).’They consider
.also issues of P-I-I controller, which we do ner,touch at all.

The discretization scheme of the continuous time system and the
cost penalty presented in- [4] is compietely the same as that derlved in
[7], ‘which we referenced Hence T. A S.C. con51dered the case that u(t)
is constralned to be step functlons, and no detalled con51derat10n has
been glven to problems of rate saturatzon. We constraln u(t) to be ramp
functlons, and derlve the correspondlng 0pt1mal control law, and dlscuss

also the apparent~non-causality problem. .
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CHAPTER III

F-8C AIRCRAFT LONGITUDINAL DYNAMICS
AND THE C* ‘CRITERION

j In this~ chapter, we' descrlbe brlefly a llnearmzed determlnlstlc

model and a C* handling qualltles crlterlon of the F-8C aircraft longltu—

dlnal dynamlcs. Then we formulate‘afcontrol problem (of the tracking type)v

on this linear model, using the C* criterion, in such a way that we can

apply the results developed in Chapter II.

3.1 Linear Equations of the F-8C Aircraft Longitudinal Dynamics

The F-8Cfaircraft is a nonlinear system whose dynamics depends on a

. set. of parameters, lncludlng its Mach number, altltude and dynamlc pres-

sure, Each such set of parameter deflnes an equillbrlum fllght condltlon

=

: fbrithe a;rcraft. J. Gera [14] llnearlzed the nonllnear longltudlnal
~dynamics about various selected flrght,condltlons tovarrlve:at linear

' eqnations for the longitudinal motion of the F-8C aircraft.

" In this report, we elect to usepsixteenlflight?Conditions,,namely,

r.flibht condit;cns 5-20, from?fi4], which represent a clean wing—down,con-

figuration of the vehicle. Note that this is the same set of data used

by'[8]. Indeed one of the objectives of this research is to inﬁestigate
htheifeasibility of incorporating the resultingmcontroller design of this'.

“report“tq7the.MMAc scheme [8].

-T4‘3_’_, =
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In the linear model, there are

four state variables inherent from

the longitudinal dynamics of the aircraft:

State Variables

q(t)
a(t)

pitch rate
Gelbcity error

angle of attack
trimmed value)

o(t)
trimmed value)

and Ge(t) is the perturbed elevator
value, driving these states. -

condition, are given by

rad/sec

ft/sec

(from
rad.

pitch attitude (from

rad.

angle (in rad.), from its trimmed.

linearized dynamics, for eaéh flight

| q(t),fj SRR SRERREL VY | q(t) | blw

; v(t)| _{: . v(t) b_|

eq' N i R . 1+] 2 §_(®) (3.1
= , t - S TR - | b

: a( ) 31 | 14 o(t) 3

B(t) 1 0 0 0 |6 b

T . -4k JL 4 L4,

! ' - ' v B

j ' R R AinG Brng

; and in the sé:vo—sy5tem, the»actuatdr.dynémics'érevrepfesented by

P ' : ‘ g e A ‘ L S
P | | ’ G (t) 3 -12 S (B) + 12 6 (t) (3.2)

X(6) = A x(t) + B u(t)

where Sec(t) is the COmmaﬁded elevator angle (in rad.). Furthermore,
we include in the stétés a wind disturbance state w(t) (in fadL). Choosing

E; S Seé(t):as a control, the complete dynamics can now be written as,

(3.3)
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where
" q(t) ]
V(t)
x(p) = [ ¢ (3.4)
g o(t)
8, (t)
i w(t) ]
ue) =g e S - (3.5)
- A, B are 6x6, 6xl matriqeswr?spectively,‘éiven by
Poe P oo |
G TG ay3
(4x4)  (4x1) a
3 . ,
A= > 7 (3.
'iw - . : 0 .
o -12 0
| (2x4) "0 w
°
B = (f},{‘l) (3.7)
112 ‘
0

‘where'w is ‘the windpole depénding on the flight condition, given by

<

7 v, . o . ‘ | i
»w‘— -2 5 ; ; , | ’(3.8)
whéré Vo is the vélocity of the aircréft, i.é.

Vo,# Mach nq.kx vgioéity dfysqund (altf)‘ : ‘, (3.9)
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~ and |
oA ) 2500 ft. if alt. > 2500 ft.
et | P = | | 5 (3.10)
200 ft.  if alt. = 0 '

We assume that our sensor takes two measurements, one on pitch
rate,‘q(t),,and the other on normal acceleratioh, az(t), which is given,
about equilibrium, (positive in the upward direction) by

a, () = 2 (alt) - &t)) (3.11)

where g is the acceleration due to-gravity (32.2 ft. sec-z).

Equations (3.11) and (3.1), and the fact that a,; =1, ag, = 0 for all

the flight conditionéyfgive us a linear combination of the state variables,
i.e.,

B A4 o o : )
R ____O_ - - NS o T ' ' 3.12
az(t) —T 3 ( i, V(t) LI a(t) b, Ge(t)) ‘( ‘ ’)

‘Therefore, in the form of an observation matrix equation, we

S e 5
9wr=gga_:. ST LR (3.13)
'whére“g_is a2x 6. matrix given by
1 o 0o 9 0 o |
c=1| | oy L (3.14)
= b Y% Yo VoP3 o
0o - 0o - 0
~ g g g
] ) P

‘and
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q(t)

E' . _ y(t) = ~ ' | (3.15)
% - az(t)'
g .
§ This completes a brief deterministic description of the linearized
% ‘ F-8C aircraft longitudinal dynamics. |
5 3.2 F-8C Aircraft C* Criterion
| ‘ In this section we summarize and discuss briéfly the significance
i of a C* handling qualities criterion in the longitudinal dynamics of a F-8C
% aircraft. |
g 3 * | .1WIn'today's technology, the implementation of flight control systems
‘in an aircraft has been widespread. In order for an engineerfto make
o | sound judgement on the merits or short-comings of a control design,_he
i , ‘ needs‘a well defined criterion on the handlinquualities of the aircraft.
; A proper choice of suéhvcritérion is clearly éssentia; to demonstrate the
“M,Effééﬁivéness of a good flight control system.
,I?“gsed t; ge a.common pr&ctice in‘classicalvdéSignS'to use a "short
| periéd‘dgméinér;étio" type of criterion. This’is beComing out-of-date for
the'fbllowing,;gESQns}
3(i57vi£ éssumeé”that only one variable is é;édoﬁiﬁéntly sensed
J by ﬁhe.pilot, namely, khe nofmal_aéce;g;;tion;n' |
" b(2i&;it assumes that the ShortbperiOd'fésg$%§;,dﬁ’gh%;system may’
: e  ;55f if ‘. be répresénéed by a 1ine$;r;econd'oréeiiéystem;" E
: ) 1it‘does not%giVe gn exacfméicture of'whéﬁ fhé airéﬁéft is
i  1 reéily;dcingkiﬂithé transient period. | i
Fpr'a ﬁigh petfofmancebaircraft such aéjghé F;Bciih,which;maneuvefsV 
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are frequent due to its agility, this is.certainly not -satisfactory. It
a 2 ;has'beenvobserved that normal acceleration, as well as pitch attitude and
pitch rate, are all important cues to a pilot, and their relative impor-
tance depends on the velocity of the aircraft [10). Specifically;'normal
acceleration is more important when the velocity is high, and the pitch:
variables predominate when it is low. Moreoter, an aircraft is more com-
plex than any simple representation by a second oréerllinear'system.
Also it seems reasonable to rely on a criterion ib the'tiﬁe.domaib,
rather than one in the frequency c{oa.aln, partly because of its ease to
perceive, and partly because of the past success of modern eontrol theory.
Thus ig iskintuitive that in orxder to oevelop a more,satisfaetory
'ctiteriOn of aitcraft handling, we may want to first establish a time
history envelope for one or more chosen parameters‘of tbe aircraft dynam-
ics. Such an idea is well illustrated ini[loj,k[ll], by a so-called C*
~hand11ng quallty crlterlon, and indeed thls is the step that we take.
We‘WlVe a brlef formulatlon of thlS crlterlon in terms of the F-8C
‘alrcraft 1ongltud1nal‘dynam1cs below.;

A varlable C*(t) is defined to be a llnear comblnatlon of the normal.

acceleratlon, a, (t), and the pltch rate, q(t), whlch is glven by the

| followxng relatlon (1n g' s)>

‘ o cf(t) =,kl az(t).‘+.k2> qit) L o , (3.1’6’)~

tgwhere k., k» are some arbltrary pair of constants, an6~tan be v1ewed as

1t

t1ve welghtlngs of the lmportance of these two state varlables

: ;ih:tﬁe’pllot,s;sen51ngg Arblt;arlly,’kl-ls chosen to be unlty1 and
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correspondingly, k_ is given the value

2

Ky = cross-over velocity (ft/sec) (3.17)

g (ft/secz)

.where the cross-over velocity is the aircraft speed at which the normal

acceleration and the pitch rate give equal cues to the pilot. Approximately,

k, is thus found to be equal to 10 with respect to the F-8C aircraft

dynamics, or equivalently,
C*(t) = a (t) + 10 g(t) (in g's) _ . (3.18)
Figure 3.1 shows a time history envelope for the C* parameters thus

defined, representing an acceptable range of the C* transient response to

a step input from the pilot.

3.3 Comtinuoms”Time Formulation of a C? Tracking Design
Thus fat wé have given almost all the preliminaries required for a
deterministic compensator design, sﬁoh_that tme Cc* transient response of
the F-8C aircraft to ahstep input is made to fall within the C* time
' hlstory envelope, e. qg. along the middle dotted llne of the envelope in
F1g 3 l. In what follows, our task is to give a phy51cal motivation
for the overall desxgn, and then dlscuss the various theoretlcal issues. -
In the next section we shall extrapolate these ldeas into the dlscrete
'tlme de51gns for the F-8C'a1rcraft. ‘yb . -" Vi
When a pilot attempts to control an alrcraft, most probably he applies
an impluse llke action to the command stlck, 1nduc1ng a step like shift
in the stlck posltlon. This in turn is transformed into a pilot's desired

lnput,value to the dynamlcs by some servo-mechanlsms. With regard‘to the

: 'C*wcrlterlon,we.lmaglne'that such a step input thus generated would bera
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desired steady state C* response that the :ilot wants to have the
short period response of the aircraft to #:1low. We summarize these in
Fig. 3.2. s

Note that in this model we have assuned that a C* desired value is

 generated by the pilot at time to’ repress:ted by C*¥ , and there

P
is no time delay in the pilot's reflexes ad motion, nor in the servo-

mechanisms ofvthe aircraft. From now on, ve shall assume impiicitly
thié part of the model, and only consider :3,-the desired C* response, as
a step input to the aircraft at time to. vithout loés of generality, we
take t, = 0. | ‘

The formulation of the control problemn thét wé are aiming at is now
clear. SPecifiéally, we are given the lirzar iongitﬁainal dynamiés of’the
F-8C aircraft, described by the equations 3.3) - (3.11) in section 3.1,

and we want to find an optimal control furnction
ult) =8 (&) . te [0, @ ‘ ©(3.19)
ec
such that the following performance index :s minimized:
’w, ! P ' " . I N
J(u) =_/ [(c* - C*(t))2Q + 32 (t)R] dat (3.20)
s d ec ‘
whére Q, R are some chosen non-negative numbers.

‘We divide the specification of this problem into two parts:

(i) Statement

The deterministic descriptio:s of the dynamical system

’
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Fig. 3.2 C* Pilot-Aircraft Interaction Model
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are

x(t) = A x(t) + B u(t) (3.21)

C*(t) = c* x(t) - (3.22)

~ where A,B, x(t), u(t) are described by equations (3.4), (3.5) and (3.7),(3.8).

; ' In particular, C* is a 1 x 6 matrix, given by

' v, v v,
! - . Cc* = 10 - — a - - - — (3.23)
; o g 32 g a33 0 g b3. 0

In addition, we are given a desired steady state value of C*(t), namely

?i | C;, which serves as an input (step at t=0) to the system. We want to

find an optimal, everywhere continuous control uf{t) such that this per-

L s formance index i%'ﬁinimized,

% | ‘ : o o | , o

P J(u) =f [(Ca -C*¥(t)) Q+u (t)R] dt (3.24)
{ ’ . o . '

| where Q, R are positive real numbers.

(ii) ~~Solution
It is easy to see that this belongs to the class of problems‘
examined in proposition 2;1,~with scalai output and contrql, if we assume
that |
o 4) §.§$¢hon-siﬁ§ﬁlar;1  
i . i
ii) [A,B, ¢*] is minimal;

iid) gféflgiis invertible.

For the purpose of this chapter; let us simply assume them to hold and

-wé ghall‘see_in Chapter V that all the flight conditions éatisfy ii) and -

|
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iii), and except for a few of them, i) is also satisfied. The exceptions
are due to numerical approximations in the data.
By proposition 2.1, we are then able to find a scalar constant L and

a 1l x 6 matrix N such that

u(t)

t
Lf (CX-C*(1)) dT + N(x(£) - x(0)) + u(0) (3.25)
0

is the optimal control solution. Fig. 3.3 shows the structure of the con-
§

. v .o .0 e w
trolled aircraft, where Nq, N,N,N,N7 , N are entries in the N matrix.

3.4 Discrete Time Formulation of the C* Tracking Design

Recall that in Chaéter II, we discuss two schemes of discretizing
the continuous time dynamics, i.e. system II and III. Here, for each of
them, we outline a furmulation of a control,problem,kon the F-8C aircraft
longitudihal dynamics, which is equivalent to the'one just given for con-
tinuous time. Becaﬁse of the possibility of too many redundant discussions
with Chapter II, and the many similaritieé to the continuous time problem,
much of the detail here is omitted. For simplicitykof discuSsions, we
assume conditions such as controllability, obéerVability and’invertibility

of matrices implicitly whenever they are needed.

1) Discretization using Scheme (1)

The continuous time linea:ized'F»BC aixcraft.longitudinal dynamics,

described in section-3.l, can be diScretiéedvby constraining u(t) (i.e.,

;Géc(t)) to be a constantyoVér each sampling period T, i.e. for each k and

t e [kT, (k+1)T),
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Fig.3.3 Continuous Time C* Controller Structure for the F=8C Aircraft
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u(t) = u(kT) = uk (3.26)

with the application of proposition 2.3. Specifically, we get a detexr-

ministic discrete time realization

u : S o (3.27)

= A +
Bevl T A%t Ba%
C* = C* (3.28)
X x B
where
_ AT o
A = e= : . (3.29)
= e |
, . - ‘
By ﬁ!ﬁ e— 4T B

Suppose in addition, we.are given a steady state desired value of C*(t),
say C%, and we are“required to minimize the performance index

]
I = Z e - ey + tayyy ~up R (3.31)

. wherede; Hd are positive real numbers. Then, by applying proposition 2.2

d

crete‘time»éohtroi law is given by

we can find a scalar L, and.a 1 x 6 matrix gd such that the optimal dis-*bb

Vk-L jZO (c*-c;) + N (’—‘k":fo),*uof i (3.3‘2)7‘

Instead of considering a performance index such as equation (3.32),

one might want to ﬁse one of the twoapproximations bf,theicbntinuous time

~ decign, discussed in Section 2.3. Then the éont#plvlaw‘isigiveh,by'
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k-1

= Y - + (3.33)
o = Ip ;Z% (CF = CD + Nplxg = x) +u,

where LD is a scalar, ND is a 1x6 mat:ix computed by using either

equations (2.56) and (2.57) or equations (2.63) and (2.64)..
2)< Discretization: using Scheme (2)

Alternatively, we may discretize the continuous time problem by

keeping Geé(t) to be a constant over each sampling period T, i.e. for

each k and t € [kT, (k+1)T),

alt) = k) = Gk (3.34)

Then by proposition 2.4, we obtain the following discrete time realization

‘for the deterministic C*‘dynamics,

I=9e| |+ é.“k - ‘ (3.35)

(3.36)

where

(3.37)
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° © | . (3.38)

I
I

Matrices éd' Ed are given by equations (3.38), (3.39). Moreover, we arrive

at a performance index equivalent to that for continuous time (equation

(3.25)),
= 2 %% O(x. - + (x2 - x)M U, + 05 Rl (3.39)
J j§) [(_:_c_J x3) Qxy xg) + (% xPu 5 3 ]
where -;TW‘ i |
5 - Qf.:eé't crocr BE qp | (3.40)
[o) WL
T t s
A ) )t . A
M=0Q e— ~ C*°C* [ff e=' 4T ds]B dt (3.41)
o o O O - ;
R=rT . o (3.42)
and
x, =2ty ey ()

=d 4

 Applying proposition 2.5, the optimal sequence u . such that this perfor-

mance is minimized is given by
k-1

= * - c%) +N(x - x) L i 3,44
-,uk t:?___%(cdfcj)*‘y'(?sk _x_:o?+uo 7 (3.44)

where L is a scalar and IEI_ is'a 1 x 6 matrix found by the procedures given.

~in that proposition. Along the linéb; we also obtain a 1 x 6 matrix K. and

1

a scalar Kz such that ‘the 'th'i'mial control rate for t g [KT, (k+l)T) is

given by
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'

ule) = ukm) = w =& (x - x5 + K (u - uy) (3.45)
where
e | ' eanly <1 - '
) ‘ Ug = (TR 3 SR ~ (3.46)

and the control generated should be asequenée of continuous time ramp func-

tions, to be applied to the continuous time system, given by

u(t) = u + (t - kT)Gk (3.47)

;. Thus we ﬁavevcompleted the diééussions on full state contiol é;acking
désigns for?thg;E-BC aifcraft longitudinal dynaéic;, using the C*‘handliné
qualiﬁies ciitgrion. In Chapter IV, we present a suboptimal design, by
redqqing thé:ﬁhmber'of states, which we compare with in Chapter V on the
baéis,@f numerical results. Howéver,:we only considér system I (ééntinuous

‘timé) and system II‘(diSCreté time);;ana*ieave systém IITI for fﬁture—

' research.



CHAPTER 1V

A SUBOPTIMAL REDUCED STATE DESIGN OF THE
F-8C AIRCRAFT LONGITUDINAL DYNAMICS

4.1 Preliminary Remarks

In [8], it is sketchily peinted out thatka reduced state design can
be aA ektﬁemely geo&:aééreximation to the transient beha&ipr of the full
FStat% Ff8c aircraft longitudinai‘dynamics, particularly in»the suboptimal

' regulator design. The purpose of this chapter is to erploit this idea
:;in the C* desigh forﬁulated'in Chapter III. Treatment here includes
a brief account of the desirability of such a reduced state design, and
* : some detail of the design equations:‘ We cehpare and centrast,this design
with the optlmal one along the Lheoretlcal lssues. Numerical comparisons
'are glven in the next chapter. i |

Here we derive how one can go from a fu)r state model to a reduced
state model in contlhuous time by maklng approxlmatlonsvand llnear trans~
'forgatlohs{ To obta;n a reducedastate model in dlscrete trme,”we remark
that'this can be aeeomﬁiished‘byfdiscretizing the continuousﬂtime reducede
state model using either one of the methods glven 1h Chapter II, as
we - have done™ for the full-state model 1n chapter III. Bearlng this lnv
mlnd,lwe restrict ourselves to dlSCUSSlons in the contlnuous tlme case

' only for the rest of thls;chapter,vSane the discussions in Chapter III

on discrete time systems serve the purpose equaily well here, provided that

-60-
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one remembers to deal with a reduced state system instead of an optimal ' .
one.
Note that notations used in .Chapter III are also used here with *
the same meanings; no attempt is made to redefine them, ' .

4,2 Reasons for Studying the Reduced State Model ’ ‘ 4

From a study of the components of the system matrices, é# of the
different.f;ight.conditions, it . is noted that two of the states, namely,:
the velocity error,_V, ahd-the pitch attitude, 0, seem to have very small
effect oh the short terﬁ transient responses'of the F-8C aircraft, Thi@i
is further.confirmed by an analysis of the eigenﬁalues and eigenvectorsg“~
of the systeh matrices. Apparently; Qe can eliminate these two variables
from the model design, without degrading much of the short éeriod perfor- o .
mance of the aircraft. | | ST |
‘Such an ;htultrve 1dea 1s pursued in [8],’1n the deslgn of a subop—
timal feedback regulator. It is noted that the feedback gains on V and |
B,are very~sma;1 in»the!full state regulator'deSLgnf Indeed, feedback

gains on the other state variables, i.e. q, o, Ge, Gec' w, are approximately fk

’the same as those from a“reduced state model desigh, which,uses ohly'these
five variables,as statest‘ Different plots of‘ciosed—loop poles}rand gaihs,-
: élus a very detailed analysis of sihulations,‘show that’the transient'f
E responses of the alrcraft in both cases appear to. be very similar.

It is zntultlvt that if a reduced state de51gn is acceptable, we may s -

'expect that the overall englneerlng de51gn (lmplementatlons, etc. ) can be

srmplifled, Ellmlnatlng the state varlables v and 8 from our - i EE %
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full state model in Chapter III, we arrive at the following (deterministic)

dynamical representation: i
|y - . N
q(t) a,;i 4 b a.. q(t)

oEE [N
1 P13 1 fasf 1N
OL(t) ]a a b. a a(t) ‘ 0 o
’% e T T 73 e 1 s w @
ot s o o -12 o ||s ) 12| °°
e | : € '
wit) | | o 0 0 w w(t) 0.
5 i L - L - L. -

We take a step further from this by replacing the state variable O(t)
by a new (but familiar) state variable, az(t), the normal acceleration.
This can be eaSil& accomplished by techniques such as matrix transforma-

tion, giving us

. . a a .
94 r 13 13 1Tr -
. a,;, =-g&—" p--—="p a q(t)
Fq(t) ; 1LV | Vo 233 1 a33V 3 13
* ' o! o Vo 2
3, (8. |-agsg 333  12Dby= 3 233 3® }
e 1= : : ;
s,e0] - | O o o-12 o |8
e ¥
w(t) o] 0 : 0 LW - wi(t) J
- L b : . ) B - - Gaane
Y
v ,
il
-12 b;3 3 6 , ;
+ , (t) ' (4.2)
S I PR : |
= |
- -

To‘simplify hotationé)“we write this as

A =R x(® +B ue @y
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Hence the C* parameter is given by
C*(t) = (10 1 VOk 0]§r(t) v (4.4)
c* |
L =r

This transformation is justified fof tﬁe following reasons:

(i) - Computations, whether on-line or off-line, are redu;ed;

(ii) Since we make measurements 6n the pitch rate and normal accel-
eration, and the c* parameter depends only on these two stafes,ftherefore
such a transformation provides us the convénience of having a constant
observaiion ma£xix C, and a constant matrix C* for all flight conditions;

(iii) We can form C*(t) directly from the measurements.

We remark further that except for the use of equations (4.3) and
(4.4), a C* tracking design on this model can use the same performance

index used in the full state system.design, i.e.
| i

{

J =f [(c% - cx(t))2 o + w2 ()R] at (4.5)
’ o] ) .

Using this,'ahd applyiﬁg‘pfoposition 2.1, we thus obtain a scalar Li, and

and a l x4 constant matrix

=, n, ng al (4
Z e : :

such that a suboptimal detérministic’designkis‘achieved, with a control



-64=

law given by

t ,
u(t) = L, L (C} - c*(T))dT + N (x (£) = x.(0)) + u(0) (4.7)

Fig; 4.1 shows the structure of this reduced state controller,. and

. , a
is to be compared with Fig. 3.3 for the full state design, where qu,_er,
Nae w ) . . g f , ¥
r ! Nr are entries in the Nr~mi€r1x. Equivalently, we can write this as
t : : . .
u(t) =L C* - C¥* dt + N t) =- + u{(0 4.8
(t) - J[ ( 3 ’(T)) T _f(gj ) x(0)) u(0) ( )
where
E.f=.tir setecesesiiacianne ‘ (4.9;

0 . I
(2 x4) 0 (2x2)

and x(+) is the full state vector.
We shall analyze the effect of such a suboptimal design on the
full state aircraft model, by studying some numerical examples in

.Chépter V.
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7 CHAPTER V

NUMERICAL EXAMPLES

5.1 Overview
In this chapter, we present some numerical results on the F-Bc air-
craft linearized longitudinal dynamics that illustrate our work on the

deterministic design, both in continuous time and in discrete time. We

- selected to use sixteen of the flight conditions (5-20) from Gera [14],?»_““T'

wbich répresent linearized dynamics of the F-8C aircraft in clean wing dowé
configurations. Table 5-1 showé each of the sixteen flight conditions
(altitude, Mach no., dynamic pressure). Throughout this chapter, we em-
phasize the fact that the full statemodel of the F-8C aircraft (see Chapter
III)Vis very well approximated by the reduced state model discussed in
‘Chapter IV. Thus é major part of this chapter contains fesults for the
reduced state désigns, although brief notes of comparisoanith the full
state model are given along the discussions.

We remark that in linear simulations OnWa:digital computer, one in

general does not encounter the probiémﬂpf rate saturation of the control

o e

f'wh@?h is discussed in some detail in the later part of Chapter II. There-

fb:e, for the purposes of this report, We‘bnly‘use,System II (See proposi-
tions 2.2, 2.3) and leave aéidg;SystemfIII"(sée proposition 2.4). Also

inhSection,2.3, we presented two discrete time designs which make use of

~ and represent'(approximate) discretizations of the continuous time design.

We shall not give any numerical results for them, but instead we point out

. here that simulated results have shown that both of them are less effective
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% Flight Condition Altitude Mach. No. Dynamic Pressure (PSF)

% 5 sea level 0.3 . 133.2

% 6 " " 0.53 416

% 7 " " 0.7 726

% 8 “ooow 0.86 1098

% 9 " " 1.0 1480

; 10 20,000 ft. 0.4 109
11 oo 0.6 : 245
12 " " 0.8 , 434
13 .o 0.9 550
14 " " 1.2 978
15 40,000 ft. 0.7 135

: 16 .o 0.8 176

§ | 17 " " 1.9 : 223

§ 18 noo 1.2 o 397

i 19 oo 1.4 | 537

§, 20 W 1.6 703

Table 5.1 Flight Condition Parameters
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than the discrete time design derived directly from the dynamical system
(See propositions 2.2, 2.3), though the first order approximation method
gives rather satisfactory results. Incdeed the one obtained by pole-alloca-
tion is far from satisfactory and should not be used in practice.

The:e are five different designs to be investigated in this chapter,
including two continuous time designs, and three discrete time designs.
However, onlj the ones that deal with the reduced state model will be dis-
cussed in detail. We summarize them in Table 5.2a.

We selected three of the sixteen flight conditions for simulations in
order to demonstrate the effécts of mismatching in the C*-controlled flight
trajectory. Namely, they are flight conditions 7, 11 and 12, representing
variations in dynamic pressures, with flight condition 7 being the highest,
and 11, ﬁhe lowest. We assume that the aircraft is in flight condition 12,
while control gains from one of these three flight conditions are uéed.

We Leﬁé?k that all of these flight conditions are subsonic, where the
C*-theory plays thé most significant role. We shall assume that initially
all the states are zero and the desired C* steady state value is a step of
'1kg. Also u(0) = Sec (0) is chosen to be zéro. We summarize them in
Table 5.2b. |

From now on, for simplicity purposes, with reference to Tables 5.2
a and b, we shali refer to the simuiafion i, 1<i<3, for the design 2,

Q =a,B,C,D,E, aé the simulation Q-i. We remark that siﬁulations 1 and 2
‘represent mismatches in gain schedulihg. Where'appropriate, we shall attach

plots of simulations to the discussions. All the simulations are for 6.25



Simulated Model Gains Simulations

1 N ' Dpesign N Time Set

A . continuous
B Cn
C 8 discrete

D‘ o ”

;educed stété from reduced state model A
full state " " " " | B
fedﬁCed state " ' " " " C
full state " " " " | D
full state v from full state model ' | E

»Table 5.2a  Summary of the Designs Simulated

Flight

, ; Control Initial Conditions
- Simulation Condition Gains (F/C) of States C*d(g's)
1l 12 7 all zero 1
2 ‘ i 12 11 (i) v‘u " 1
3 . ' 12 12 u u 1

Table 5.2b  Summary

—69—




-70-

seconds, with a'time step of 0.125 second, which is the sampling period

. for discretization.

For each of the two reduced state designs (designs A and C), we show

a mismatch stablllty table of the sixteen fllght condltlons, whlch indicates

,whether the flight would be stable when control gains computed for flight

condition i (5f}§?0);~are scheduled to be used in controlling the aircraft

in flight condition j (55j<20). These tables, together with the simulations,

~ form the basis for the»mismatoh stability analysis in this report.

We arranée the rest of the chapter as follows:

‘Section 5.2 deals with the continuous time designs (designs A and B).

There briefinotes are‘given for the choice of’the weightings in the cost
function, and mismatching of the flight conoitions. A vety detailed analysis
for thz reduced state design is presented. Control gains arebcomputed for
the reduced state and the full state models. The same is done in Section

S. 3‘for the dlscrete tlme deSLgns (desxgns C and D). In addition, a full

state model with full state control galns (de51gn E) 1s also dlscussed

, In Sectlon 5.4, we draw some conc1u51ons ‘and add some remarks.

- For slmp11c1ty and refegence purposes, all notations used in this chap-
ter are the same as thbse in Chapters IIX and Iv, unless otherwise stated.

"It should be noted that use has been made of Sandell and Athens [16]

'and Klelnman [17], in the computlng work done for thls report.

5.2 Continuous: Time Designs

-The first step that one should take‘is‘to choose the appropriate

:weightings;,Q.and R, for the cost function given by’ equation (3.25)" g
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In doing so, we pick R from a consideration of the rate saturation of the

actuator dynamics;

R = =1 (5.1)
8
ec
max
where
éec' = 0.435 rad/sec (25 deg/sec) S (5.2)
max

"~ Then we chose Q in such a way that the short period C* responses of the

closed loop dynamics fall more or less in the middle of the C* time his-

. tory envelope shown in Fig. 3.1, i.e., along the dotted line. We found .

out, by trial and error, that a good choice for‘Q‘is
e=1 (g7 (5.3)

Figure 5.1 shows representative C* responses.

(i) Design A°

Using this pair of values oF Q, eq. (5.3), and R, egs. (S.l) and (5.2),
one can then proceed with the (contincous time) design discussed invchepter
Iv for the redﬁced state model. Tﬁat is given equations~(4.35, (4.4),

and (4.5), one is to find the control 5ec(t) given by equation (4.7).

It is observed that; for all flight conditions, the matriCes A i

VB ’. C* satlsfy all the three assumptlons required by prop051tlon 2. l We

‘can therefore apply the de31gn procedures given by this prop051tlon and ob~-

taln ‘the galns L e N -directly.

Flgure 5.2 shows a plot of the resulfant domlnant complex poles of

ythe closed 1oop system for ‘all the fllght condltlons. vThe magnitude of
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~ TIME (SECONDS)

“ ‘F'ig.: 51 - “vll‘:‘l;;froﬁons of how Choice Of Q is Made. Shown Above are
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the complex pole increases as the dynamic pressure increases, at each alti-
tude:“*These, of course, correspond to the short period dynamics. For

the purposes of comparing this C¥ design with some other traditional handling
criteriatof aircrafts, we draw in three straight lines to show the range

of damping ratios through these fllght conditions. One such criterion

is the Cornell Aeronautlcal Laboratory "thumbprint" [ld]. This "thumbprint"
represents ‘combinations of short period natural frequency (mn) and damping
ratlo (C) that were preferred by pilots of several: varlable stability
alrcrafts, and is valid on'the assumption that the predominant varlable
sensed by the pilot is normal acceleratron, az. Figure 5.3 shows such a
thumbprlnt plot together with three vertical lines correspondlng to the
damplng ratios in Fig. 5.2. Comparing these two figures, we see that all
the flight conaitions lié more or less within the thumbprint, except flight
conditions 9 and»14'which represeht'trahsition behavior between subsonic
and‘supersonic.flights,itThe fact that‘flight conditions 18-20 lie olose to
the houndary is not surprising since'they are supersqnic. Most important

of all, we observe that flight condltlons 5, 10 and 15 lle very close to

'the boundary. ThlS is explalned by the fact that they have low Mach numbers,

‘Vand lndeed, the pltch varlables are more 1mportant cues to the pilot.

i

i Table 5 3 is a mlsmatch stablllty table, 1n the sense that the
airoraft is in fllght,condltlon 1, 55}520, but one is using control gains
calculated from flight condition j, 5¢j<20. Specifically, the closed loop
dynamics are

_:;(t:) =A x(t) + B u(t)’r e - e (5.4)

: e S
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t : .
= K - * - +
u(t) Lr.f (cy - C*(DMAT + N (x(t) - x(0)) + u(0) (5.5)
iJ, 3
where A , B are A , B matrices of flight condition i, and L and
;T -r’ =T ‘ L rj

Er' are control gains from flight condition j.

J
It is seen from Table 5.3 that all mismatches give stable flight

~ for the system. Also we can see from the simulations A-1 to A-3 (Figures

5.4 - 5.9) that the C* and 6e responses ate in general very>satisfactory,
with acoeptable control rates? When there is not any mismatch (i.e., i,j=12),
the system gives the best response, as is expected.k,observe how nicely

the C* response fits into the C* envelope in simoiation A-2 (Figures 5-6, 5-=7).

Mismatches give a little slower response, and more overshoot.

We attach also plots of the L and N gains against Mach numbers and

' dynamic pressures (psf) (Figures 5-10 - 5-19). - Notice that in each plot

the subsonic flight conditioms are readily divided into three groups according

to altitude,-and‘the supersonic flight conditions form a single group by

themselves.

(ii)vDesign‘B
In Chapter IV‘ituwas discﬁssed how one can apply the reduCed state

control galns computed 1n desxgn A to a full state model, in equatlons

 (4.8) and (4. 9) We study such a deszgn strategy by doing sxmulatlons.

It is seen that the responses in all cases are almost 1dent1ca1 to
the correspondlng ones for de51gn A. Also we remark that thxs desxgn QLVes
stable fllghts for all mlsmatches.v Thls suggests very strongly that the

reduced state desxgn is a good desmgn for the system, at least as far as . -
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continuous time is concerned. As an example, we attach Figures 5.20, 5.21

which show simulation B-3 of the matched flight condition 12,

5.3 Discrete Time Designs

To pick appropriate_values for Fhe weightings Qd’ Rd' in the cost
function given by equation (3.39), one'might want to do it in such"a
‘way that this cost function approximates that for continuoﬁs time,
i.e., equation (3.21). We elect to use the following values:

Qd = TQ ; (5.6)
Rd"= R/T | ‘ (5.7)
where T is the samgling period, which is 1/8 sec. in our design, and

the choice of Q and R is given by equations (5.1)=(5.3). This was done

because we can use the approximations

u{(k+1)T)-u(kT)
T

(kT2 (5.8)

fkT gmar T 5t £Gm (5.9)
0 j=0 -
for’any real continuous time function £(-) and hence (C*d - C*(«))ZQ.

Thué, we use the following weighting parameters in Eq. (3.39)-

1 , % :
% = § e | (5.10)
Ry =8x0.435 ) ' (5.11)

(i) Design C
Using'the above values of Qd"and.Ra.and the discretized reduced
state model obtained by applying the discretization scheme in propo-

sition 2.3 to the continuous time feduced state system given by equations

(4.3),‘(4.4), we can follow the design procedures in proposition 2,3



~95%

(¢ g
Ao o e s P i e e e e e e g e -
L] - . - . ».
. . - - . .
- r - - LJ - Ld
. : - . . . .
PIRSRURNPLY PO |l e S e e o M o e e e P A
. - - . . .
. M . - . . .
. g - . . . .
- - L3 - -~ L
ke e R e e — e ———— 3 o o e o s e e et o e X = o e ot %*
‘- y - - . - -
- y - - . o .
- ~u - - . . -
- - - - . -
tpm e e — i —————— O e e e *
- - - L) » -
4
- - Ll - - -
E
- - . - - -
4
- - . - - -
§
3 e e e [ e o e e e e S i e e e K e o e P e e e
. A ‘- . . EY .
] e . - : ‘. .
4
- N L - - - -
- ‘. - - . -

B i e -4

- - -
- - -
- . -
- - «
lllllll B o e 3l e e e
- - -
- ‘- -
. - -
- - .

- - -
. - -
L) - L2

s, o e S e s 3.2 e e B e S S e e o 3k

A e R e e Mo e i e o e 3 e fapiiiieiy =00 L AL LT PR

COCHEOLTL Lu=H0LTH o LC=T070 LO=ECRTh Ly-30E "7

(s,b) osuodsai-yD

3.125

1.25

5.00 5.€25 6.25

4.375

3.75

2.50

1.875

0.625

(seconds)

Time

Match (12-12)

C*-response to a unit step C*d input;

Simulation B-3;

5.20

Fig.



9=

o . 8 oy S . o o, 2 e o oo
- - . .

- . . o

- - - -

- - . -

HL o o e v S e s Bt e e o i e e
LY - * -

L3 - L3 -

- - . -

- - - .

- - L3 . -

- - . -

- . . -

- - - -

o e S e o e 0 e e s i i B e o o S
- - - -

Y

- - - '3

- - - -

- - * -

- - - -
- - - -
- - - -
- - - -
e S
- - - -
- - - -
- - - -
- - - -

&w.l-!l.l.lnl-ll..&ﬂ.lel||.’!||.lnblvl,l[ill;Y!.-«Y,'l.l-.l-!u!all-«n

- - - - -

- - - - -
N - B - - - -

- - N L2 - -

R e o s e s i e e ot o e e i i e o e o e

- - » e .

- - - - -

- - - - .

.

- - -

S ot e s Y s i Ut o e i i e

- - *

- ~ .

- - -

- [ ] *

e e ettt St e e e

- - -

- - .

- « .

- - -

o

(*pex) mmcoawmuno G

———s -

w'
i
!
———p— ik
-
i
.m.
!
)
{
s
P S
Akl
i -
»
-
| |
|-
%.
M t
i
L
A -
B -
A

3.75 4.375

1.25 1.875 2.5C 3.125

0.625

(seconds)

Time

match (12-12)

-
14

t

s

g inpu

Sec-response to a unit step C*

Simulation B-=3;

5.21

Fig.



-97-

to find control gains L. , and N. . That is, we may write,

a Ba
r r

g&ﬂk+l)T) = édrir (kT) + gdr u(kT) . (5.12)

utkr) = L, 7 (cr - 4D + N (x (kT) - x_(0))+ u(0) (5.13)

r i=0 ; r

Indeed the assumptions required by proposition 2.2 are found 6 be
satisfied by all the sixteen flight conditions.

Considering mismatches, we form the dynamics

gt((k+l)T) A §r(kT) +

A, u(kT) (5.14)

Za
r. r,
i i

u(kT) =L kgl (C* - c* (4T)) + N (x (kT) - x (0)) + u(0)
a_ .2 d —d_ - -
r.4=0 r, (5.15)
J , ]
where 5<i,j<20 and_l}dr v gdr are édr,gdr matrices of flight condition i,
i i '

| N, 3 ! gﬁ from flight condition j.
rj rj : r r

A mismatch stability table for this design is shown in Table 5.4.

and L : N are control gains L

Here instead of universal mismatch stability, as in the continuous
time case (Table 5.3), there are abbut 10% of the mismatches that

are unstable. In particular, most of them are mismatches of controllers

from flight conditions that have low dynamic pressures to flightvcondi-

ﬁions of high Mach numbers (and high dynamic pressures). Of course

the system is always stable whenever there is no mismatching.

Looking at the simulations (Figures 5;22-5.27),VWe‘observe that they
ali show very desirable responses. Indeed they are almost the same -as

those for design A, althcﬁgh now we have a little more overshoot. - The
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controls differ somewhat, with higher initial rates of change here, but
the slopes are more or less the same. Again these mismatches seem to
impose no problem at all in the overall control of the aircraft.

We also attach plots of the L and N gains against Mach numbers
and dynamic pfessures (psf)‘(Eigures 5.28=5.37). Notice that, similar
to the continuous time case (design A), in each plot, the subsonic
kflights are readily divided into three groups according to altitude,

and the supersonic flight conditions form a single group by themselves.

(ii) Design D
Similar to the continuous time case, we can use the control gains
from the reduced state design C, in the full state model. That is, we

generate the‘control by the relation

w(kT) = L_ 5T1 (C*. = C*(3T)) + N, (x(KT) - x(0)) + u(0)  (5.16)
= r, . d P -

d j3=0 d

where
C
"I x6 - L

N_ =N : .
Fa TFg {oooo1o0 ' (5.17)

looooo1

The simulated results are almost identical to those in design C,
and in fact, are very similar to the continuous time simuiations (de-

" signs A and B).

(iii)Design E

In doing a reduced state design, one is using less information
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than what is available to him. Onévhay expect,thergféxe, that avfﬁll
' state design is more accurate and pérfo;ng_bettef-than the reduced
state>dgsign. The fgll state design is described by equations (3.55) ‘ .
to (3.40). -
'7 Comparing the simulations of'Sﬁch é desigﬁ, with design D, it i;iobserved that
both the responses and controls almost coincide exactly in the two
cases. As an éﬁampie, Figures 5.28-5.2§ show simulatiqn E-3, which
is a ﬁatched simulation fotfflightichdition 12.
If one ékéhiﬁésrfhe.ééins;réh; éanﬂsee that they are very)cldse
together'fQE‘tﬁié design and the design D.

5.4 Final Remarks

4d;n general,:thé redﬁced sta%e'design does seem to provide a
'verytébod;apprbximatiAh:%o tﬁe Full state design. iAsmfAr as responsés
~are %oﬂcérned, all designs (A-E) are very similar. This shows a strong
~corre$ponéence between #he conﬁihubus;time designs and the aiscretek
time desigﬁgt Higﬁé: initial raﬁe of change of the control occurs.
for theﬁéiscrete time designs, howéver. Nevertheless, they all seem
to be acceptabie._

Ifjg;e coﬁégres the plots of control gains fof the co@gihuous N
Jtiﬁe°reducedf$£éte §E§ign_(§$§§gn‘A) with those for the diséiete'timé_“‘
'féauéééistatevdesignv(design C), one can see thét thé N‘éaiﬁs'éfe iﬁ
Qeneral'rathe§:¢idse together, with the contiﬁuous‘time gains being
:éohewhat sﬁaile:. .Also;the’continuoﬁéktimeiL gains are Approximately

one eight of those in discrete time. This accounts for much of the partial
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success of the method of first order approximation of the continuous
time design (although results in design C are better).
The above discussion holds, at least as far as the linearized

system dynamics go. In particular, it confirms our theoretical results.
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CHAPTER VI

o _CONCLUSIONS AND SUGGESTIONS

- The approach taken in this‘report seems to provide satisfactory
resultsmon~linear time-invariant dyoamical eystems, which are required
to track step inputs, both from a. theoretlcal and a practlcal polnt of
v;ewan Theoretlcally, it is- Lllustrated by the proposztions given in:
'Chapter 1I, where we give dlgre551ons of both the continuous time and
dzscrete t;me desxgns. Their appllcatlons to the F-Bc alrcraft llnear-
lzed*longltudlnal dynamlcs, ESLng a C* handllng qualltles crlterxon,
provxde us a’ 1ot of phy51ca1 1nsxghts, as we have observed from the
control gains and various 51mulatlons.

.Apparently the reduced state designs possess very'high practical
’ Vaiués. Cbaéters III and Ivliilustrate in some éetail how they can be
implementeo in the_aircraft.‘ It is beliered that.fprther study into
',this can be rery fruitful.

The two discretization schemes discussed in Chapter II, of which

e
i -

one keeps the control to be a constant over each sampling'period, and the
other, ltS rate, hear very 1mportant sxgnlflcahce in physical- 1nterpre—

‘ tatlon, because>of the p0551b111ty of rate saturation in the actuator

; dynamlcs.r We thlnk the dlfferent controls computed by these two different

’*schemes should generate dlfferentvperformances of ‘the systenu Since

< e
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scheme II constrains the control to be continuous, it is likely that -t
approximates the continuous time system better. Apparently from Chapcar V,
the continupus time design provides the best result. However, the dxrital
requirements in implementation limit its usefulness. On the other hamd,
the discrete time designs by scheme I seem to be acceptable in the liiear
simulations. So we expect that scheme II should be able to give more
satisfactory compensator deﬂsigns. More research effort should be speit in
investigating then.

In this report, we do not discuss any stochastic aspects of the
control designs, but we believe that they are very important also, an:
a lot more should be done in fhis direction, especially for the discmte
tiine designs which are seldom touched upon in literature.

In developing the theorétical results for this report, we were
just aiming at a P-I-D controller for the F-8C aircraft, and hence ths
consideration was not made very general. We believe that one can gair
much further and develop more adequate ’theory if one takes disturbancis

‘ . ~ : @

into consideration, be they known or unknown, measurable or unmeasuraiie.

Also for simpliéity and generality, m‘égﬁtg of the conditions that we imosed
o ‘ 12 B
c 9

equal to the sum of the numbers bof controls and outputs.  Also, more

can be relaxed to simply require that the matvrix‘ be or a rank

general system or input- types can be considered, e.g., type-{ systems and
polynomial inputs. Also a study of the robustness of the systems and its
sensitivity to parametér‘ variation can be very useful, as 'is‘ indicatec in

Chapter V.
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