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Abstract f 9

A class of optimal linear time-invariant tracking systems,
both in continuous time and discrete time, of which the number of

s;
1t

inputs (which are restricted to be step functions) is equal to
thenumber of system outputs, are dealt with in this report. 	 Along y
with derivation of equations and design procedures, two discretiza-
tion schemes are presented, constraining either the control or its
time derivative, to be a constant over each sampling period.	 De-
scriptions -are given for the linearized model of the -F-8C aircraft
longitudinal dynamics, and the C* handling _qualities ;criterion,
which then serve as an illustration of the applications of these

i linear tracking designs.	 A, suboptimal reduced state design is also
{ presented.	 Numerical results are given for both the continuous time

and discrete time designs.
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CHAPTER I

INTRODUCTION

j This report deals with a class of optimal linear tracking systems,

in continuous time and in discrete time. 	 An application to

the control of an aircraft is . discussed, along with a suboptimal y

design:
l The type of designs that this report focuses attention on is

-compensator design fora 	 class of multi-input-multi =output linear time-

invariant dynamical systems in which the number of controls is equal toi
the number of system outputs, and the system output vector is required

u.
to track a reference input vector of step functions with zero steady "

state	 It is found	 designs	 conceptuallyerror.	 that the resulting	 are x

` the proportional-integral-derivative (P-I-D) controller designs.'

Sandell [11,, and Sandell and Athans [2), present a continuous time com-
t e

a
I pensator design for such systems.	 Their designs suffer from the practi-

cal drawback that the initial jump in the control is very often too fast

.( and may rate-saturate the control actuator. 	 We pursue . this design in

t continuous time, but eliminate the above stated effect by imposing

f! continuity of the control everywhere.	 Holley and Bryson [3j give a regu-

lator design	 ith non-zero setgn	 points, and it is found to be of the same

structure as the one that we are ensuing. 	 Owing to the need

"for implementing control system_ " ;in digital computers, we concentrate much

E of our effort into getting a'parallel design of a discrete" timecompensator;

{
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k
The NASA F-BC digital-fly-by-wire (DFBW) aircraft is a-high per-

formance aircraft and is considered a very convenient testbed vehicle for

I mangy' flight control systems. 	 One of the purposes of this research is to

investigate and to characterize the idea of designing a-conceptual P-I-D

controller for the linearized longitudinal dynamics of this aircraft,

j

I

J using-a C* handling qualities criterion [10],	 [11]. {i

The C* parameter of an aircraft is a linear combination of the

i pitch rate and the normal acceleration (and possibly the pitch angle) of

the aircraft.	 We shall discuss its significance and motivation later,
k

along with a description of the linearized models of the F-8C-aircraft

longitudinal dynamics. 	 Briefly we can view the design problem as a

tracking problem [15] as follows: the pilot, by shifting the command stick !

position, inputs a desired steady state value of the C* parameter to the

' compensator, which is then required to track the system C* response to

'. this value, by minimizing an appropriate penalty function, with zero
j I?

steady state error.;
I

j Athans	 et al.	 [8] discusses briefly the desire'of using the

C* criterion in the control of the F-BC aircraft.	 Honeywell staff [121,

-^
[131 discuss a C*-design using model following techniques. Unfortunately,

their design procedures are not transparent enough to us, at least from

a theoretical point of view.

( It is our desire that eventually our design procedure will be

incorporated into the multiple model adaptive control (MMAC) scheme

assumed in [8).: Henceforth, we follow a design philosophy similar to [8')

}

. a

,
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and use the same set of data that it employs. 	 We exploit this further

in Chapters III and IV, t,

The remaining chapters of this report are organized as follows.

In Chapter II, we present most of the theoretical results required
L

for the deterministic designs in this report, together with some dis-

cussions on these theoretical issues. 	 First we derive the equations

for the P-I-D controller in continuous time, as a modification

'̂ of the results in [1] or [2]. 	 Then we ob->.ain similar results in the
x

discrete time case. 	 owing to physical motivations, we discuss two dis- z

cretization routines where we treat ( 1) the control, (2) the rate of the k

4 ,.
control, as a constant over each sampling period. 	 In other words, method (1)

a
{

<. uses- a zero-order hold and method ( -2) a first-order hold.	 As we shall

i discuss Later, due to sudden changes of the control, i.e. high rate of

change, method (1) may not be physically satisfactory for aircraft imple-

mentations.	 However', the difficulty ofgetting a proper linear realization

of method ( 2) may also impose additional problems.
I

After the completion of the work in this research, it has come

i to our attention that T.A.S.C. also came up to some P-I controller
#	 ^ k

designs in [41 for VTOL aircraft control. 	 The lest part of this

chapter is devoted to brief comparisons of these results.

i I
{I In Chapter III, the general motivations of applying the C*

Mcriterion in the controller design of the F-8C aircraft linearized

i longitudinal dynamics are discussed.	 We present a review of the
=!	

.A

linearized models of the , F-8C aircraft longitudinal dynamics (at 16

1
vat
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flight conditions), and the C* criterion.	 We then formulate the C*

tracking problem with reference to the results in Chapter II. {

Reference [81 presents a good approximation of the control gains

and transient responses of the linearized F-8C aircraft full state

longitudinal dynamics by a reduced state model. 	 This approximation is j
iS

also applicable to our present problem. 	 The task of Chapter IV is to

give an account of such a reduced state model. 	 Theoretical comparisons_

' between this model and the full state model are made. {

; In Chapter V, we present some numerical results, both in con-
^

tinuous time and discrete time. 	 Deterministic designs,

li simulations, mismatching of flight conditions', and full state

system versus reduced state system in performance are the major issues

that we touch upon.

Finally, in Chapter VI, we discuss the overall results and

draw some final conclusions. 	 Also we outline some possibilities for

future research.
^	 y
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CHAPTER II IT

r
I	 rs!

P-I-D CONTROLLER DESIGNS

W In this chapter, procedures are given for designing P-I-D con-

trollers for multi-input multi-output linear time-invariant systems.
t

+E Although results are first given for continuous time systems, the main

G parts of this chapter are devoted to discussions of discrete time

r , systems, discretized from the continuous time systems via two different
If

discretization schemes with sampling period T:

- (1)	 For each integer k, we constrain the control to be a

'	 ; constant over the sampling interval [kT, (k+l)T).

(2)	 For each integer k,, we constrain the time derivative{

-`
If

of the control to be a constant over the sampling
sIr

interval	 [kT,	 (k+l) T) .

For the discrete time systems obtained by scheme (1), we derive

:k
{ three different sets of procedures for designing the P-I-D control

gains.	 The first procedure is the discrete time equivalent of the

1	
{ continuous time design procedure;- the other two are simply approxima-

tions of the control gains of the continuous time systems.

it one-drawback in using scheme (1) is that it introduces a series of

<< steps in the control, and hence, a series of impulses in the control

• rate, which might then lead to rate saturation of the control actuator

°a in many physical systems.

l	 !
Scheme (2) is discussed in some detail. 	 There, the derivation of

^.
_ -12-
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,i

the design procedures bears many similarities to that for scheme (1)-, 	 r

although required conditions are somewhat stronger.
If

We divide this chapter into five sections. In Section 2,1, a

design procedure for the continuous time case, which is almost identical

to that given in [1], is presented. Sections 2.2 and 2.3 are discussions

on the discretization scheme (1), the first of which deals with the

scheme itself and a direct design, procedure of the discrete time	 r

systems, while the latter is concerned with approximations of the con-

a

	

	 -
tinuous time design. Section 2.4 deals with discretization'scheme (2)

a	 and Section 2.5 contains some final remai . ks and a comparison with the

j	 results in [4]:

i
2.1 Continuous Time Designs	 R

`

	

	 As a first result, we present a design procedure in the continuous

time case, which can be proved by adding in a constraint that the

control has to be continuous for all time, aril then using the method	 -

employed by [1] or [2]. For this reason, the proof is omitted here. 	 -w

A derivation of this procedure, which is of a somewhat different

flavor, can also be obtained if we attack this problem by using the

results in [3] .	 =#

• „

v

s
t

L	 ? ;A

{
1 t 	 ,

i
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where
,

x

s^

L= (K2 - K1A 1B)(C A-1B) 
1

— -- —
(2,5)— —

j N = fKl + L C)A 1
—

(2.6)

i,i
— ---

F The matrices K1, E2 are found from the positive definite solution of

the algebraic matrix Riccati equation

Ell_
—P12

A	 a A'
	

0— —Pll P12

I

i
I

i
P 

^

—12
P
22

0	

0

B	 0

'

	

—
P 

^

12
P
22

it
L,
t

a

(27)
5

P11 E12
0-

Pll P12 C^	
C 0

- R 
1

[0	 I] +

P12 P22
T

P12 42'

4

0

yy

}.

a,

0
0

with
r^ y

[R1 Kam ] _ -R^1 ,[0	 11	 pll p12
(2.8)

I' I k

—12 P22

whereP	 ,`P
—11

, P
12	 -'22

are matrices of dimensions nMn, nxm, mxm respectively.
d 

a ,

The structure of such a control, system is shown in Figure 2.1.
a

_,
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i

Fig. 2.1	 Continuous Time Linear-Tracking (P-1-D) Compensator. Design
r^
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Note that in equation (2.4) u(0) can be arbitrary. 	 In particular, {
. k

there are the following choices.

The choice of-u(0 )	 in [1] opt:;,mizes the initial value to the integrator,

in the sense that the cost functional in equation (2.3) is minimized with

this particular choice.	 However, this procedure does not pay any regard to

u(0 ), or to be specific;'the rate of change of the control at time t = 0,

.
f+	

,
-

which is not penalizedenalized in the 	 erformance index at all.	 Such:.an_ initial '
a

jump in control may rate saturate the control system and lead to

subsequent failure of the future control. 	 On the other hand, [21

picks a choice such that the control, u(t), at all time t is independent ofr .

r x(0).	 The problems of rate saturation are also present here, again due to

' the difference between u (O ) and u (0 ).	 In order to eliminate rate satura-

tion, we need to impose continuity of the control, in particular, if we t

constrain

u(0+)	 = 

u(0 : )	 (2.9) ,

'i u

Then it is easy to see that the control is continuous for all time t. 	 This

is indeed our choice for this report.`

Now we present a similar design procedure for a discrete time

= system with a similar performance index. x
^s

262 " Discrete . TimeDesigns, Scheme (1)

In Section 2.1,_ a design procedure for continuous time systems

^ is discussed.	 A similar procedure can be dErived for a class of ds-
I

Crete time systems, namely, systems with.a constant control over each x

` sampling period, and a similtir performance index. '`We discuss this in r

, 1

^ V

k	 4

+{y,_

1

l
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;

` the following proposition.	 Then we summarize the relationship between this H

result and the previous proposition.
!.

/ Proposition 2.2	 suppose that we are given a linear time-invariant

dynamical system in discrete time (with sampling period T)

x ((k+ 1) T), = ^x	 u(kT) + Bd MT)	 (2.10)
e u

Y(kT)	 Cdx(kT)	 (2.11)

where-x(kT) E Rn , u(kT) a Rm, y(kT) E Rm, and A^, 9	 Cd are nxn, nxm, 1(

}mxn real constant matrices respectively. r
A

-

' We assume that	 -

(iv)	 rank (A	 - I) _' n. r

' (v)	 [^,, Cpl is a minimal realization

( (vi)	 rank Ccl (Ad - 
I) 

-lB-,3	
m.

We want to minimize a cost functional,

00 t

J (u)	 _	 r(z	 - y(jT) )^ gd (z	 - y(jT) )d	 -90
L^(2.12)

j=o

-	 +	 (u((7+1)T)	 - u(jT))	 1t(u((j+l)T)	 - uUT))
-	 JJd

s	 t where z	 is an arbitrary step input, and> 0, R	 > 0 are nxn-od —	 --d •.

positive semi-definite and mxm positive definite matrices respectively.

Then there exists a control sequence such that the performance

index Jd is minimized.	 The inputs are tracked with zero steady state

error 'for all step inputs and the closed loop system is stable. 	 The

x control is given by

:
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with
a

1;	
-1

El
	 K2, 	 [0	 Il	 Pll	 El, 	 [0	 I]

d	 d
d	 d	

+	 —	 —

a

Plld	 p1 2a	 —

(2.17)

I	 P^	 P
12 
	 AEli 	 d	 -^
	 Pd

it	 ^ 
x

'r	

pl2d	 P22d

+"	
{ 	 0	 I

wherePlla, 
P12a' E2 2dare matrices of dimensions nxn, nxm, mxm respec-

1	 ?1	 tively.
1	 ^^	

r

'	
Proof

?	 Let
f

x.(kT)" = x(kT)	 - x	 ( 2.18a)	 ;r

f	
—	 —	 0	 '1

x

uMT) = u (kT) - uo	 (2.18b)

v(kT)	 u((k+1)T)	 - u(kT)	 (2.18c)
—	 —

where

-x-o = - 
(Ad -' Z) 

-1Uo	
(2.19)	 ;.—.

f	 -10 = - (C
= 

( Ad - I) -1
) -1zQ	

(2.20)
14

j`	 which iseasily seen to be the unique solution of
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a

i

t

z I

x= A	 + B	 u-XO 	d ...,xo	 Rd -Uo (2,.21a) I^ ^

_C (2.2lb)

r:

Then the dynamics of the system can be written as
ii

t

x((k+l) T)
Ad	 Bd

x(kT) 0

:t v (kT) (2.22) ?'	 .

u((k+1) T)- 0	 I
-	 -

u (kT)
-

I
-

`s 3

..
ap ,

and the performance index given in equation (2.12) is equivalent to

Y	
. J =	 ( Cx' ( j T)	 u' (jT)]	 SA2dSd 	0	 X (jT)

p

o	 o (j T)
g	 u

y

+ v (j T) Rd v(jT)^ (2.23)

Hence the problem is ` reduced to an optimal linear quadratic regulator a

problem.	 Since C'oo--Cd L	 -Rd> 0,	 > O, by [5], there exists a-d°'d-	 - solution

to this regulator problem given by

y(kT) _	 [K ]	 (kT )ld	 E2d
(2.24)N

u (kT )'

s,

where Kl , K2	 are obtained by equations (2.16) and (2.17).
r.

d	 d

f

ri

- -

-	 ,r.
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l

f

s Note that
f

Bd 'uWT) = x((k+l) T) - Ad x(kT) (2.25)

it
"ofand assumption (vi) implies that B	 is,rank m. 	 Therefore there exists

+ t

a mxn matrix F	 such that

;i FdBd - I (2.26)

which gives us

u(kT) = F	 x((k+l)T)	 x kT 2.27

it

i Substituting this into equation (2.24), we get

v MT) _ (Kl	- K2	 -FdAd),' x (kT) + K2 F^ x ((k+l) T)
d	 d

(2.28)
d

i' ' or equivalently,

s	 ' v (kT) _ (K	 - K	 F (A	 - I)) x (kT) + K' F (x ((k+l) T) - x (kT))ld	 --2d -d -d	 —	 —	 —2ed — —
t( (2.29)

.if

Now chooseLd such that

El	- K2 Fa (Aa - I) _ -Cd (2.30):
d	 a#

I	 y

which gives tz

n

I

I^ I

G

tom—' tz. f ^_





ki. 'ra^,•'+.'—tee..w'^yz:?.'ARP"^' .t--'s'T,.'_...n. 	 -	 .^-.w.e....y^..^.,-. 	 ,.-...^vc ^..^,^.y..!°r°".a°....' 	 - 'w

-24- j

,r
t

^	 M

which can also be written as

k-1 - I	 r

R(kT)	 EL, (z
	

- X(]T)) + Nd(x(kT)	 x(0)) + u(0)	 (2.37) 3

where {

Ed	E2 Fd
	 (2.38)

d

and this completes the proof of this proposition. f,

Notice how similar this solution is to the one in proposition 2.1.
•'

fl
r

1 The structure of the compensator thus constructed is shown in Figure 2.2.

, i A natural question would be what equivalence can one get between

'	 A this discrete time system and system I. 	 We answer this question in the

following proposition.

Proposition 2.3	 Suppose that we discretize system I in proposition 2.1

f with sampling period T such that for each integer k, the control- u (t) is

r t constrained to be a constant over the sampling interval [kT, 	 (k+l)T), i.e.

rf for each t in this interval,

f
u(t)	 = u(kT):	 kT < t < (k+l)T 	 (2.39)

Then we have a sample-data realization as follows,

x((k+l)T) = Aax(kT) + Bd u(kT)	 (2.40)`

System II :.

y(kT)	 = Ca x (kT)	 (2.41);

T
r`



N x(0) U(o)
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f

y,

^
,

°

1

I '	 withA , B , G	 matrices given by the relations-d	 -d	 -d

j

I=	 ATe— (2.42)
1

r

__fe!TdT BPd
(2.43)

0
= A-1 (eAT- I)B

Ca 	C (2,44)
j

i

where A, B, Care the matrices defined by system I, eqs. 	 (2.1),(2.2).

If in addition, we have for all integer k

Im[71i (A)	 - X (A)1	 k 2T (2.45)

i
whenever

I^	 Re[X (A)	 - a. (A) ]	 = 0 (2.46)

for i	 j, where Xi (A), aj (A) are (distinct) eigenvalues_of A, then—	
—

the assumptions (i),	 (ii), (iii), in proposition 21 imply the assump-
:

tions (iv)	 (v)	 (vi) in proposition 2.2.

Proof J

Here we only prove the validity of assumptions '{iv) and (vi) due }
a

to (i) and (iii).	 The other parts of this proposition are all contained'

in [ 6 1, hence their proofs are omitted.
Y

Since assumption (i), i.e.`

Rank A = n
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' r

1
t

a <	 <implies that for all i, 0	 i	 n 4
t

^. (AT)	 0

. therefore
'r•

V'
{

^i(AT) ,+	 3
- 1	 0

s i

But for every 0 < j < n, there exists an 0 < i < n such that

X1(AT)
ATa^ (e—	 - I) = e	 - 1

i.e. }

k ^ r
c

17.....99.

j rank(Ad - I) `n ..	 i

which	 roves assumption (iv).P	 P,

Now note , .that ^#

Sd (Ad-I) -1B
d = C(e

AT -I) -1A-1 (eAll
 -I)B }

1
=CA	 B `^x	 ,,

;
i

Assumption (vi) is then obvious from (iii).
)

A

From now on we shall refer to this discrete time system as system I!. ?`
J

Note that this-system does not give us an equivalentt performance index
1

(equation (2.12)) to that in system I (equation (2.3)).

t

equivalent to the extent that u(t)'is kept to be a constant over each

ra

sampling interval while evaluating the cost functional in equation (2.3).
k

-W

t

i

• '.e	 AF _xn.su a-.me.iac8!ar°.'?dfc _- 	 <'	 `°'	 3:	 - y ,	 .. 	 ..s..ru•.. 	 ..-	 '_.	 e.^,n.
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2.3	 Two Approximate Schemes for Discretizing the Continuous Time

Compensator Design

The objective of this section is to investigate two ways of how

the continuous time l,inear.trackin 	 compensator design	 resented ing	 P	 g	 P
1

Section 2.1 can be discretized into discrete time designs by making some

approximations.

The -discretized'system that we want to characterize here is one

which has a constant control over each sampling interval. 	 To be specific,

given a continuous time'system and a control law which tracks the system

L..	 i 	 ._	 1.....

output to ,a step input, z-0,
-	 ..

x(t)	 - A x(t) + B u(t)	 (2.47)

>{ Y(t)	 = C x 	 (2.48)

t
`

u(t)	 = L	 (EO - Y(T))dT + N(x(t) 	 - x(0)) + u(0)	 (2.49)
fo -

where  L, N are matrices specified by equations (2.5)-(2.8), we propose

to find a control law with control gains Lam , ND, given by

k-1
u(kT) = L9 E	 ( .EO - u(jT)) + N^(x(kT). ' x(0)) + u(0) 	 ( 2.50)— —	 —

0

u(t) _ = uMT)	 for kT < t < (k+l)T	 (2.51)

whichirepresents an approximation of the continuous time control law
r

(equation (-2.49)'), and is applicable to the sampled dynamics of the

system, with sampling period T,

it

p
x
l
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J _,r

ATx ( (k+1) T) _ e- x (kT) + f
	

eATdT B u (kT) (2.52)
i
f

A-L
ED si	 r

y

Z(kT )	 C x(kT) (2.53)-

' We proceed to find LD , ND by two different sets of approximations:
rt

{

(i) -orderFirstapproximation x`•

We assume that approximately, ,<

kT	 k- l ff
L f (% - Y(T) )dT	 T L F	 (z^ - y(]T)) (2.54)

0

Here as a first-order approximation, we take

L	 T L (2.55)

NN (2.56)D
s^

(ii) Approximation with constant integral over sampling interval and

pole-allocation
. i

Noting that NA, `and N	 are feedback gains on the states in the i
—D

r.

continuous time and discrete time systems, respectively, we try to make

i

use of the pole allocation method. 	 In closed-loop `form, the system

{'	
w^ 	

I dynamics can be written as

i

t
(zo - y(T))dT + B(u(0)-N x(0)X(t) _ (A + B N)x(t) + B L 

fo

3,,

(2.57)' -:

for the continuous time, and

i

y
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r
1

I
k-1

x(k+l)T) _ (A_D + -0ND)x(kT) + EDI^D E (z-0 - y(7T))

f

J_0
t

^j + D(u(0) - NBx(0)) (2.58)

for the discrete time.	 We"assume that

t	 k-1 s

(?O - Y	 ) dT•	 T	 (zO - y.(] T))fo, (2.59)
!u

for kT < t < (k+l)T, and

B (u(0)	 N x(0)) = BB W(0)	 N^x(0)) ` (2..60)
a

which is exactly true when u(0) and x(0) are zero.	 Therefore, we may

now write
3

+BN)T
+D- 

e (A (2.61)

(A+B N)TBALD = T	 e —	 dTB, L
fo

T{
(2.62) 

„
a

^ rwhich give us, since B, hence B-0 is of maximal rank, a_(minimum norm) solution

N	
- 

(BBB+
) _ B ^

Ie
(A + B N) T_	 ) (2.63)

T
= T (B-DBE) -1-0
 BL

foa(A + B N)T
dTB L (264)

Z

`	

v

Y j
f

T	 '.
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d

2.4	 A Discretization Scheme Which Reduces Rate Saturation

In the last two sections, we discussed a discretization scheme`

which constrains the control to be a constant over each sampling interval,

i and some compensator designs associated with it.	 These designs, however,

are susceptible, to control rate saturation because the derived controls

are step functions. 	 As an alternative, -in this section, we present a

second discretization scheme which constrains the time derivative of the

control to be a constant over each sampling interval, but enjoys an

_equivalents performance index to that in 'system I, subject to this _con-

' straint.	 This has the merit that the problem of control rate saturation` 4

- can be reduced considerably. r
s;.

Proposition 2.4	 If we discretize system I with sampling' period T by

f constraining the time rate of the control, u(t), to be a constant

I over the sampling period [kT,	 (k+l)T) for each integer k, i.e.

U(t)	 u(kT) = constant	 for kT < t < (k+1')T 	 (2.65)

r ;

then we get an equivalent' realization in discrete time,

x(:k+l)T)	 A^	 Bd	 x(kT)	 Do

+ u(kT) (2:66)
u

u( (k+l) T) 0	 I u MT)— T Z

D

S stem III
=.

i^y (kT) ,s	 [C	 01 x(kT) I

(2L.67

u(kT)
s

c

equivalent to the extent that u(t) is kept to be constant over each
sampling interval.while evaluating the cost functional in equation (2.3).
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i

i

j

^,

where Ad,
Bd

are matrices from system II, given in propositions 2.2 {

w and 2.3, the C`matrix is from system I, and D 	 is given by r
i

o

f	

n
f
,,

T	 s'

D= r	 eATdT ds B (2.68) i
-o	 f	 —

o	 0

where A, B are from system I.

Moreover, we obtain an equivalent performance index,'

G
00

I J -
(
1r(x(jT)	 - x')^	 (u(jT)	 - u ) 	 x(JT)	 - x—	 -o	 —	 -o 	—	 ro

f'
j=0 zt

j	 x^
u( jT)	 - u

ro

( 2.69)
I^

..
+Z[(x(jT)	 - ;xo )	 (u( j T)	 - uo )	 ]M u(jT)

'̂ + u(jT)R u(jT) X

^t
T

L where
x

1

Tr ^

eA tC'^	 C eAtdt	 0

f r

_ ° (2.70)

0	 0j

f 

T	 is
Apt 

e— C'	 C[ ffeETdTds1B dt

M
J°	 o o (2.71)

— t,

R = R T (2.72)

with

a
x-o = -(Aa - . I) -1

Bduo (2.73)
Y

_(C(Ad - I)-1)-1 (2,74) t

a
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f

which are the steady state values of x(t) and u(t) in both continuous

time and discrete time.4

Proof,
,I
a

iE
Firstly note that xo , uo given by equations (2.73) and (2.74)

e	 _

{
c are unique solutions to any one set of the three following sets of •

.$ equations, thus establishing the equivalence of steady state values

in continuous time and discrete time.

E0 = A x	 + B u

a	 (2.75)

`
J

Z	 —_ C X

Y
AA

^

Q	 (2.76)
r

t

-0
pp1

- + u	 :(2.77)' -0

H

{

u	 u0 0	 I -o T I

u"	 =	 0
a
a

-o	 _ a

t

It is easy to see that equations '(2.73) and (2.74) indeed give the ?,

unique solution of S, and S and u have the same solutions for x 	 u 3
l --o	 -0

Therefore, all we need to do is to show that they are also solutions

to a.	 Solving a, we get

I x--AlBuo	 (2.78)-o_

y

_ - (0 A-1B -1^	
!2.79)
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r

I

But from equations (2,42) and (2.43), we know that

^I (A- I) -1Bd = A 1B—	 — — (2.80)

which implies that equations (2.73) and (2.74) are also solutions

to a.

System I can be .realized as

x(t) - x	 A	 B	 x(t) - x	 0

U(t) - u 0	 0 U(t) - uo z

G	 , Y(t) - zo = [C	 01-	 — x(t) - xo
—

(2.82) .

u (t) — u g j—.	 —^

i

J (u)	=
J	

{[(x(t)	
- 

xo)^ (u (t)	 - uo )^ ] C'27 C	 0 x(t) - xo it

t	
i 0	 0 u (t) - u?
a

+ u' (t)	 R u(t);^ dtu	 I (2.83) ,

constrainin	 u(t)	 MT 	 for kT < t < (k+l)T, we get by4 —	 —	 — [7J an

equivalent discrete time realization,
s

. v

s,

L
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l

A

t

R	 RT + [0	 I]	 exp

A,	 0

s ds

0,- C	 0

J J

°	 0 B 	 0 0	 0

t

x[ f exp A_	 B

s ds]dt
D (2.89)

0 0	 0 I

After some algebra, we see t)at

B
Bd

exp(

A
_

_?+	 - (2.90)
l 0	 0 0	 I

Jq
F

T

f exp
,j

A	 3

T d T
0

_
D

(2.91) r
a

0 0 I— T I
— a

* _Q_26
(2.92) f 9

.
3

{

a
M -M (2.93)

R = R ,(2.94)

n'

where D ,	 M,	 are given h! equations (2.68) , (2.7o)-(2.72), thus

completing the proof of this -roposition.

From now on	 we shall ca z this system, given in,,	 Y	 ► g	 proposition 2.4, E

system III.	 We are now in a aosition to obtain a compensator design

l r such that -the performance ind--x J in equation (2.69) is minimized:. It.`' ;.
i >

turns out that we get a very i1milar expression for u(kT) as in propo-
i,
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sition 2.2 for system II.	 The results are given in proposition 2.5.

Since the technique in proving them is similar to the one we usedq	 P	 9 
I	 '

I
in proposition 2.2, we only give the major steps in the proof.'

`	
Proposition 2.5	 s

a)	 Suppose that we are given system. III, (in proposition 2.4), and we

s

s

want to minimize the performance index given by equation (2.69), then

the optimal control rate u (kT) is given by the expression

u (kT) _ [ 2]	 x (kT)	 - xK1	
K 

'	 (2.95)
u(kT) - u
—	 -o

whereK1 , K2 are matrices of dimensionsm xn, mxm respectively, and

—	 —
are found by the relation

[Kl	 K2 1 _ -(R 1M + [R + D 	 D] -1 [	 - D R 1M']}	 (2.96)	
t'

in which G is the solution to a steady state matrix difference equation

G = [	 - D R	 M']	 [G - G D"(R + D'G D) 	 D`G][0 - D RIM']	 n

+	 M R-1M']	 (2.97)	 _3—

where the matrices (D, D, R, M,	 are all given in proposition 2.4,

assuming that

(vii)	 [(D , D] is controllable.

I	 [

a



x b)	 If in addition, we assume that

(viii)	 rank (Ad + -DoKl - I] _ n

( ix) , rank [C QAd + K,- I)	 (Pd + DK2 ) l = m

i
then the control u(kT) is given by

k=1

n(kT)	 _	 L(zo - y(]T) ), + N(x(kT) 	 - x(0)) + u(0) (2.98)
j=0

r

where x
^

N	 M	 N	 N	 -	 N

k VE2 - K1 (Aa + DoKl - I) 1(Bd + ^^)] -
I

(2.99)

x [C (A	 + D K	 - I) -1 '(B	 + D K ) ] _1
- -d 	-0-1 	-	 -d

y

«

4
l

N = (TKl + LC )	 (Ad 
+DDo-K-1 -I') (2.100)

_

t

i

E Proof

For (a) , the result is immediate by using [ 71. 	 For (b) , from

equation ( 2.66) and (2.95), we obtain

t
(x((k+l)T) - x

0 ) _ [Ad + _D,oK_1 ] (x (kT) - xo)

1

+ [Rd + DoK2 ] (u (kT) - u (2.101)'

! Assumption (ix),im lies that there exists a mxn matrix F such thatP	 P

,
F(% + -D^oKK	 = I-	 _ (2.102)
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j

Hence using equations (2.101), (2.102) and (2.66) in equation (2,95),

we obtain	
r,

T(u ( (k+l) T)	 u MT)) _ [K1 R2F (Ad + „D^ 1 ) (x (kT)	 x)

	

+ K2F(x((k+l)T) — xo)	 (2.103)	 s

a
This implies

P

{	

k-1

u (kT _E	 — )	 T (Kl _ K2F (	 + -.oKl - I,) (x (j T)	 xo)
1

F

{

+ TK2F(x(kT)	 x(0)) + u(0)	 (2.104)
r	 —

E	 After some manipulations, this reduces to equation (2.98) and thus 	 r:

t
r ;	s	 completes the proof.

: Note that in synthesis, this compensator design has the same 	 x

structure as the one for system II Also note that the validity of

assumptions (viii) and (ix), unlike assumptions (i) - (vii) depends
E,

not only on the system matrices, but also on the weighting matrices in

the performance index. Furthermore, equation (2.66) gives

x((k+l) T)	 ; dd (kT) + (Bd' - T D u(kT) + T D u((k+l) T) (2.105)

The presence of the last term on the right side of equation (2.105)' appears

toto be a serious' drawback in using the control law which we have

just formulated in proposition 2.5, because computation of u((k+l)T) in

this scheme requires knowledge of x((k+l)T). It appears that the system has—	 i

become noncausal, and some approximations must be used to make it causal.

e	 a

f

t
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1di -

Two possible ones, which are both ad hoc, are

r a)	 approximate u(kT) by 
T 

(u(kT) - u(k-1)T)) , giving

X(($+l)T) _ Aax(kT) + ( Bd + T DO ) u(kT) - T DOu((k-l)T)

(2.106)

k! If T is large, the deviation introduced by such an approximation might

{ be considerable, especially for, the first few time steps, where

the system is by no means near steady state.

b)	 simply use

i.
x( (,k+- 1) 	 = AA x(kT) + Bdu(kT)	 (2.107)

Y

but again, this may lead to rate-saturation.

Depending on the actual system, any such approximation

can induce instability, a highly undesirable outcome in controller

A design.	 Moreover, one might argue that whichever of the above ;approxi-

mations -we take, we are in effect generating step like controls. 	 Hence

all our considerations which led us to proposition 2.5 are essentially
s

violated:	 we are still faced with a problem of rate saturation and

may even have worsened the situation by introducing approximations.

On closer examination, 	 all	 problems arehowever,	 these	 non-

i existent,	 if we do exactly what proposition 2.5 says - its actual goal

° is a continuous time compensator which generates a sequence of ramp functions

F
 t

as the control signals. 	 Specifically, _a44

r^^wIPa
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x(t) _ A X  + B u 	 (2.108)

1 u(t)	 u(kT) + (t-kT) u(kT)	 -	 (2.109)

for kT < t < (k+l)T.	 Note that u(kT), u(kT) only depend on the values

a of z-0, u(9), x(0), x(T),..., x(kT), and Y(0), y(T), 	 ...,y((k-l)T)—	 ——	 —

' (equations (2.98), (2.95)). These computations can all be carriedout by

a digital-computer in a sampled data fashion, provided one has a device

to generate u(t), given in equation (2:109) (e.g. an integrator).	 Using—

equations (2.95), 	 (2,73),	 (2.74) and (2.80), this can be written as
s.

u 	 = u(kT) + (t - kT) [R1x(kT) + K2u(kT) + (K, - K1A-1B) (C A 1B)-1z0}
—	 —	 —	 -	 --

(2.110) 9t

There does notexist any non-causality problem at all.

2.5	 Final Remarks

In this chapter we have presented several deterministic designs

of compensators that can be used to control a linearp	 time-invariant u
h

system to track a step input in continuous time, and discrete time.

s In the next two chapters, we shall concern ourselves with the formula- y

tion of the linearized longitudinal dynamics of the F-8C aircraft and

the C* handling qualities criterion, and then formulate a control : 	 r

problem using some of the results obtained in this chapter. A

{ Comparisons among these various designs are made in Chapter 5,

via simulations.	 It is shown there that the approximate schemes pre-

sented in Section 2.3 are in general less effective than the scheme in i

Section 2.2.

Before we close this chapter.,Aet`us compare briefly the servo

r
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controller designs by T.A.S.C. 	 [41 with these results.

1.

Firstly let it be said that in places where there are similarities,.

} T.A.S.C.'s approach looks more similar to [21, while ours is closer to [1].

In particular, instead of penalizing zO - Y (t) directly, they penalize
j

xQ - x(t), which is clearly equivalent as shown in [1] or [21 or even in

the proof of proposition 2.2.	 Also [21 shows that the techniques can be

extended to the case when one puts an additional penalty term on

u(t) - Eo , which is often done in [4J	 Furthermore, if one cares to

do the algebra, one can easily see that the invertibility }}_
A	 B I	 3

assumption of the matrix -'	 —1I by T.A.S.C.	 (and (21) is necessary for f	 a
IC	 J i	 a

the assumptions U) and (iii) inp	 proposition 2.1	 and the same holdsi- j£	 a

for the corresponding results, too.	 Having said this, we shall consider

the above to be equivalent conditions.
r

The basic similarities between the two approaches are the issues of

P-I controller designs. Indeed, the derivations and results of T.A.S.C.'s

continuous time and discrete time designs are the same as our results for

system I and II respectively, except for the choice of u(0). They consider

also issues of P.-I-I controller, which we do not touch at all.

' The discretization scheme of the continuous time system and the

. cost penalty presented in [4] is completely the same as that derived in

[71, which we referenced. 	 Hence T.A.S.C. considered the case that u(t) A

i	 l

" is 'constrained to be step functions, and no detailed consideration has
 4

=s' been given to problems of rate saturation. 	 We constrain u(t) to be ramp

functions, and derive the corresponding optimal control law, and discuss

i; also the apparent non-causality problem.

t -
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CHAPTER III 1°	 '

-8C AIRCRAFTAIRCRAFT LONGITUDINAL DYNAMICS I
AND THE C* CRITERION 1

r

' this	 describe	 deterministicIn	 Ater, we	 briefly a linearizedchapter,
z

model and a C* handling qualities criterion of the F-8C aircraft longitu-

dinal dynamics.	 Then we formulate,a control problem (of the tracking type)
It

on this linear model, using the C* criterion, in such a way that we can 1,

apply the results developed in Chapter II. r=

. 4

3.1	 Linear Equations of the F-BC Aircraft Longitudinal Dynamics a

The F-8C.aircraft is a nonlinear system whose, dynamics depends on a x

i set of parameters,-including its Mach number, altitude and dynamic pres-

sure.	 Each such set of parameter defines an equilibrium flight condition

for^ttie aircraft.	 J. Gera [14] linearized the nonlinear longitudinal E

dynamics about various selected flight conditions to arrive at linear

equations for the longitudinal motion of the F -8C aircraft.

In this report, we elect to use sixteen flight conditions, namely,

e•{ fl	
-.

ght conditions 5-20, from [141, which represent a clean wing -down con-

figuration of the vehicle. 	 Note that this is the same set of data used

f
l

by [8].	 Indeed one of the objectives of this research is to investigate

s` the feasibility of incorporating the resulting controller design of this

! It s report to the MMAC scheme [8].

I -43-

jv	 _



-44-

.qq
1

In the linear model, there are four state variables inherent from

the longitudinal dynamics of the aircraft:

State Variables Units

q(t) pitch rate rad/sec
s

V(t) velocity error ft/sec

a(t) angle of attack ( from -
t trimmed value) rad. ')
1

0(t) pitch attitude ( from
trimmed value) rad..

and Se(t) is the perturbed elevator angle ( in rad.), from its trimmed

value, driving these states. 	 The linearized dynamics, for each flight j

condition, are given by

q(t) all•	 . a14 q(t) bl x,

7

V (t) V(t) b
d + 2 6	 (t) (3.1) r

` dt a(t) a31.	 .a34 a(t) b3 e

i

-e(t) 1	 0	 0 -	 0 6(t) b4 }
J

2̂WG LNG
t'

< and in the servo-system, the actuator dynamics are represented by
•

de (t) _ -12 8e (t) + 12 dec (t) (3.2)
F

e.

whereSeC(t) is the commanded elevator angle (in rad.).	 Furthermore,

we include in the states a wind disturbance state w(t)	 (in rad.). Choosing
E

t
a	

as a control, the complete dynamics canec(t) now be written as,
,.

x xw = A X(t) + B u (t) (3.3)

r -
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where

q i

V 

_ e t

de (t)

` w s

U  _ °ec
(t)

(3.5)

-^ A, B are 6x6, 6x1 matrices respectively, given by
B

rt

A	 B	
a13

LNG	 --LNG	 a23

(4x4)	 (4xl)	 a33
A = j.

(3.6)
0

0	 -12	 0

(2x4)	 '0	 W

f' f

I
a

.,
0

j
B =	

j(4x1)
(3.7)

I	
, _ j

_

12
y'

r

y

0

where w is the windpole depending on the flight condition, given by

1
t

j

V
W-2B—°—°

-

(3.8)

k where V is the velocity of the aircraft, i.e.
0

ri V	 = Mach no. x velocity of sound (alt.) (3.9)
i,I

o }

r 

}
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j

and

ft.	 if alt. > 2500 ft.
I

12500

P:
(3.10)

200 ft.	 if alt. = 0

We assume that our sensor takes two measurements, one on pitch

rate, q(t), and the other on normal acceleration, a Z (t), which is given,

about equilibrium, (positive in the upward direction) by

V

' a ,(t)	 _	
o	

(q(t) '- a (t))Z(t)	
g

(3.11)

-2where g is the acceleration due to gravity ( 32.2 ft. sec	 ).
?^

y

Equations ( 3.11) and (3.1), and the fact that a 31 = 1, a34 = 0 for all
_a

the flight conditions , y give us a linear combination of the state variables,

n

r

V

I a	 _ —o (-a	 V (t) - a	 a(t) - b	 b (t))_(t) (3.12) I

z 	 g	 32	 33	 3	 e c

I Therefore, in the form of an observation matrix equation, we a	 d'

!j
write a

z	 ^̂
Y(t) = C x (t) (3.13)

i

where G is a 2 x 6 matrix given by

1	 0	 0	 0,	 0	 0

C -
(3.14)

G

j oa32	 oa33	 ob3-	 -	 0	 -	 0

g	 g	 g

and
r
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ii

q (t) l
I Y(,t)	 _ (3.15)

f
a (t)z

i.

This completes a'brief deterministic description of the linearized

i ' F-8C aircraft longitudinal dynamics.

3.2	 F-8C Aircraft C* Criterion

• In this section we summarize and discuss briefly the significance
I	

r

of a C* handling qualities criterion in the longitudinal dynamics of a F-8C ;)

aircraft. i+

: i In today's technology, the implementation of flight control systems

in an aircraft has been widespread,. 	 In order for an engineer to make

' sound judgement on the merits or short-comings of a control design, he

needs a well defined criterion on the handling qualities of the aircraft.

A proper choice 6f such 'criterion is clearly essential to demonstrate the ?

effectiveness of a good flight control system.

It used to be a common practice in classical designs to use a "short

period damping ratio" type of criterion.	 This is becoming out-of-date for

the following reasons:

(i:)	 it assumes that onlyone`variable is predominantly sensed

j by the pilot, namely, the normal acceleration;-

(2) . it assumes that the short period response WE the, system may

be represented by a`linear second order system;

(3)	 it does not give an exact picture of what;-the aircraft is

'	 really doing in the transient period.
i

For a high performance aircraft such as the F-8C in which maneuvers
r

:= :.	 =txarace	 .va.vu^n'uv..=..e.z. ^^S.^,-r .v5s.s...a 	 -'ass'+c	 -	 '
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'
i

are frequent due to its agility, this is certainly not-satisfactory. 	 It

has, beenobserved that normal acceleration, as well as pitch attitude and

jI
pitch rate, are all important cues to a pilot, and their relative impor-

tance depends on the velocity of the aircraft [10].	 Specifically, normal

acceleration is more important when the velocity is high,, and the pitch

variables predominate when it is low. 	 Moreover, an aircraft is more com-

plex than any simple representation by a second order linear system.

Also it seems reasonable to rely on a criterion in the time domain,

I rather than one in the frequency do„zin, partly because of its ease to

I
perceive, and partly because of the past success of modern control theory.

Thus it is intuitive that in order to develop a more satisfactory

criterion of aircraft handling, we may want to first establish a time

history envelope for one or more chosen parameters of the aircraft dynam-

ics.	 Such an idea is well illustrated in [10],	 [11], by a so-called C*#

handling quality criterion, and indeed this is the step that we take. j
1 I

We °give a brief formulation of this criterion in terms of the F-8C
^ a

='

t	
s aircraft longitudinal dynamics below.

A variable C*(t) is defined to be a linear combination of the normal
i
f

;t I
1

acceleration, aZ(t), and the pitch rate, q(t), which is given by the
P,

following relation (in g's)
k1 •

C*(t),= k	 a (t)	 + k	 q(t)	 (3.16)
1	 z	 2

{	 ` where k	 k	 are some arbitrary pair of constants 	 an-can be viewed as
3,'	 2	

d

the relative weightings of the importance ofthese two state variables {

in the pilot's sensing. 	 Arbitrarily, kl is chosen to be unity, and x
f
^I

t

I•



correspondingly, k2 is given the value

F'm

' i rcross-over velocity (ft/sec)
k2 =	 (3.17) ^.

g	 (ft/sect)

where the cross-over velocity is the aircraft speed at which the normal j=

acceleration and the pitch rate give equal cues to the pilot.	 Approximately,

k	 is thus found to be equal to 10 with respect to the F-8C aircraft
2

dynamics, or equivalently,

,	 t

k

C*(t)	 a	 (t)	 + 10 q(t)	 (in g's)	 (3.18)
z j^

f'Figure 3.1 shows a time history envelope for the C* parameters thus

defined, representing an acceptable range of the C* transient response to

a step input from the pilot. "~

3.3	 Continuous Time Formulation of a C* Tracking Design

Thus far we have given almost all the preliminaries required for a

-	 deterministic compensator design, such that the C* transient response of

the F-8C aircraft to a step input is made to fall within the C* time

history envelope, 'e.g. along the middle dotted line of the envelope in

Fig. 3.1.	 In what follows, our task is to give a physical motivation

for the overall design, and then discuss the various theoretical issues.

In the next section we shall extrapolate these ideas into the discrete

time designs for the F-8C !aircraft.

When a pilot attempts to control an aircraft, most probably he applies
7

an impluse like action to the command stick, inducing a step like shift

in the stick position.	 This in turn`is transformed into a pilot's desired a

'	 input value to the dynamics by some servo-mechanisms. 	 With regard to the

C* criterion, we. imagine that such a step input thus generated would be a

)
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t desired steady state C* response that the ;ilot wants to have the

Y

#;.

short period response o€ the aircraft to :-:flow. 	 We summarize these in

Fig. 3.2. =^

Note that in this model we have assumed that a C* desired value is

generated by the pilot at time to , represe:_ed by C*d , and there t	 j
P

is no time delay in the pilot's reflexes a.d motion, nor in the servo- t

mechanisms of the aircraft.	 From now on, 
Ve shall assume implicitly

thispart of the model, and only consider y3, the desired C* response, as ?[

a step input to the aircraft at time t 	 without loss of generality, we
f

O ,f	 ;a

take to0'
i	 a

;t

The formulation of the control problem that we are aiming at is now .;y

p	 y, we are .given the linear longitudinal dynamics of theclear.	 Specifically,F

F-8C aircraft, described by the equations 	 3.3) - (3.11) in section 3.1 5

and we want to find an optimal control funztion
r<

-yw
s

U(t)	 &	 (t)	 t E	 [0, 00)	

(3`.19)

p ec

4
such that the following performance index _s minimized: j

P
;

J (u) °f 2Q(C a - C* (t))+ =2	 (t) R1
1 dt	 ( 3.20)

. 0	 eG	 J ;;

'where Q, R are some chosen non-negative numbers.

We divide the specification of this youblem into two parts:

(i)	 Statement

The deterministic descriptio:s of the dynamical system

i+
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are

; x(t)	 A x(t)	 + B u(t)	 (3.21) f

E C* (t)	 = C* x(t)	 (3.22)

where A,B, x(t) , u(t)	 are described by equations	 (3.4) ,	 (3.5) and (3.7) , (3.$) .

In particular, C* is a 1 x 6 matrix, given by

? C* _
—

V	 V	 V
10	 -	 o a
	 a	 Q	 -	 ° b	 032

(3.23)  4g	 g	 33_	 g	 3

In addition, we are given a desired steady state value of C*(t), namely °.
A

Ca, which serves as an input (step at t=0) to the system.	 We want to
1

find an optimal, everywhere continuous control u;t) such that this per-

formance, index is minimized,

00

J(u) J (C* - C* (t)) 
2 

Q + u2 (t) Rd dt	 (3.24) ?	 ti
0

)

where Q, R are positive real numbers.
t

(ii)	 =Solution

It is easy to see thatthis belongs to the class of problems

examined in proposition 2.1, with scalar output and control, if we assume

that

i)	 A is.__non-singular;.

ii)	 [AB, C*J is minimal;
x

iii)	 *A 1 isCB	 invertible.

For the purpose of this chapter, let us simply assume them to hold and

we shall see in Chapter V that all the flight conditions satisfy ii) and
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iii), and except for a few of them, i) is also satisfied. The exceptions

are due to numerical approximations in the data.

By proposition 2.1, we are then able to find a scalar constant L and

a 1 x 6 matrix N such that
y

t !!
u 	 = L	 (C*d-C*(T)) dT + NWQ - x(0)) + u(0)	 (3.25)

I
--	 —o

I

is the optimal control solution. 	 Fig. 3.3 shows the structure of the con-
S

trolled aircraft, where Nq , Nv , Na , N^, N e , Nw are entries in the N matrix.

,, 3.4	 Discrete Time Formulation of the C* Tracking Design

Recall that in Chapter II, we discuss two schemes of discretizing
i

the continuous time dynamics, i.e. system II and III.	 Here, for each of

1 them, we outline a fo :-mulation of a control problem, on the F-8C aircraft
t

longitudinal dynamics, which is equivalent to the one just given for con-

a tinuous time.	 Because of the possibility of too many redundant discussions
4

with Chapter II, and the many similarities to the continuous time problem, )

much of the detail here is omitted.	 For simplicity of discuss-ions, we

assume conditions such as controllability, observability and invertibility

of matrices implicitly whenever they are needed.
i

?
"

1)	 Discretization using Scheme (1)
^a

i

I

The continuous time linearized F--8C aircraft longitudinal_ dynamics,

described in section 3.1, can be discretized by constraining u(t)	 (i.e.,

&eC (t)) to be a constant over each sampling period T,' i.e. for each k and
^ x

t E MT,	 (k+l) T ),
i

i

Y

r)

9
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u(t) = u(kT)= uk	-(3.26)

with the application of proposition 2.3. 	 Specifically, we get a deter-

ministic discrete time realization

-
X

c+l	 ^^ + Bdu	 (3.27)k 

C* = C*x	 (3.28)

where

A	 = _eAT	 _(3.29)-
r T

t̀

_ f

	
eAT dT B	 (3.30)

o

/t

;

Suppose in addition, we are given a steady state desired value of C*(t),

say Ca, and we are required to minimize the performance index-
j:	 a

s,

2Qd	2Rd ]J(u) _	 L (Ca - C^)	 + (uj+1	 U. 	 (3.31)
3-0

where Qd , Rd are positive real numbers.	 Then, by applying proposition 2.2 ?

we can find a scalar L d , and a,1 x 6 matrix NN	 such that the optimal dis- fj^

Crete time control law is given by

k-1
uk = Ld F1	 (C*o. - Cj) + Nd(	 - xx	 + uo	(3.32)

J=O t	

gg

'j Instead of considering a performance index such as equation (3.32),
C

one might want to use one of the two approximations of the continuous time

deFign, discussed in Section 2.3.	 Then the control law is given by
i	 x



W
	 i

3

-57-

I
is k-1

uk _ LD F1 	 + -ND (?F4' - xo) + uo (3.33)

J°0

where L	 is a scalar, ND is a lx6 matrix computed by using either

equations (2.56) and (2.57) 	 or equations (2.63)	 and	 (2.64).,

2)	 Discretization-using Scheme -(2)

Alternatively, we may discretize the continuous time problem by

keeping d	 (t) to be a constant over each sampling period T, i.e.	 for

1 each k and t E [kT,	 (k+1) T) .
;fl k	 ;

.Ei
u(t) = u(kT) _uk (3.34)•

r

r

Then by proposition 2.4, we obtain the following discrete time realization 3i

i,	 I
for the deterministic C* dynamics, p:

^,

rUk+l

+1
+ D uk (3.35)

 uk ,

.3

I	 ^

f	 I

i C* = [C*	 01	 x (3.36)
t`

j _

uku	 ,

where

I

^ (3.37)
I

o

F _
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i

IT S
e	 dT ds B

J	
AT

D° (3.38)

f

T

Matrices Aa, Bd are given by equations ( 3.38), (3 . 39). Moreover, we arrive

at a performance index equivalent to that for continuous time (equation

(3.25) )_,
f

CO

J =	 L (x^ -) ^(xj - x^) + (x^ - x̂') M uj + u^ R]	 (3.39)

j=0

i
where

g= Q J	 eA't C* ^C* eAt dt (3.40) a

T	 t	 s

r	 eAT dTM - Q J	 Xt C* 'C* L^J
r ds ] B dt (3.41)

o	 0	 0

4

i

1	
R	 RT

f
(3.42)

and
i

x, = A 1B (C*A 1B) -1Ca (3.43)

i
Applying proposition 2.5, the optimal sequence uk such that this perfor-

mance is minimized is given by

t	 k-1

uk = L
	 (Cd* - C]) + N ( xk - 

-X0) +
uo (3.44)

j=0

where L is a scalar andN is a 1'x 6_matrix found, by the procedures given

in that proposition. 	 Along the line, we also obtain a 1 x 6 matrix R1 and

'	 a scalar K	 such that the optimal control rate for t E [kT,	 (k+l)T)	 is
E	 2

given by
j
1

t

r' ^* R
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CHAPTER IV

-'. A SUBOPTIMAL REDUCED STATE DESIGN OF THE

i
-F-8C AIRCRAFT LONGITUDINAL DYNAMICS

4.1	 Preliminary Remarks

In [8], it is sketchily pointed out that a reduced state design can

be anextremely good approximation to the transient behavior of the full

state) F-8C aircraft longitudinal dynamics, particularly in the suboptimal

regulator design.' The purpose of this chapter is to exploit this idear

in the C* design formulated in Chapter III.	 Treatment, here includes
I;
rx

' a brief account of the desirability of such a reduced state design, and

some detail of the design equatioxs.	 we compare and contrast this design	 j

with the optimal one along the ilieoretical issues. 	 Numerical comparisons

are given in the next chapter.

/ Here we derive how one can go from a full state model to a reduced

state model in continuous time by making approximations and linear trans-

formations.! 	To obtain a reduced state model in discrete time, we remark

that this can be accomplished,by discretizing the continuous time reduced

state model using either one of the methods given;in , Chapter II, as

a we have done for the full state model in Chapter III'. 	 Bearing this in 	 ?:

mind, we restrict ourselves to discussions in the continuous` time-case

x
only for the rest of this chapter,, since the discussions in Chapter III

Ii on discrete time systems serve the purpose equally well here, provided that

FY

ni

f	 s
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one remembers to deal with a reduced state system instead of an optimal

one.

Note that notations used in.Chapter III are also used here with =,

the same meanings;	 no attempt is _made to redefine them,

4.2	 Reasons for Studying the Reduced State Model

From a study of the components of the system matrices, A, of the

,c different flight conditions, it is noted that two of the states, namely,
i

'
the velocity error, 	 and the pitch attitude, 6, seem to have very small. V,

effect on the short term transient responses of the F-8C aircraft. 	 This

ii is further confirmed by an analysis of the eigenvalues and eigenvectors°
t

t4 of the system matrices.	 Apparently, we can eliminate these two variables
r,.

;

from the model design, without degrading much of the short period perfor-
^	 I

mance of the aircraft.

a^ Such an intuitive idea is pursued in [8], in the design of a subop-

timal feedback regulator.. 	 It is noted that the feedback gains on V and

8 are very small in the full state regulator design. 	 Indeed, feedback

gains on the other state variables, i.e, q, a,,de , SeC , w, are approximately
G'

 ,t the same`as those from a reduced state model design, which uses only these

five variables as states`. 	 Different plots of closed-loop poles, and gains,;

j plus a very detailed analysis of simulations, show that the transient

responses of the aircraft in both cases appear to be very similar.

It is intuitive that if a reduced state design is acceptable, we may

expect that the overall engineering design (implementations, etc.) can be

simplified.	 Eliminating the state variables V and A from our

r

_ _	 _
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j

t

k full state model in Chapter III, we arrive at the following (deterministic)

dynamical representation:

- n!
q(t), all'

b	 a

13	 1	 13
q(t)

f

d a(t)
j a31	 a33	 b 3	 a33 a{t) 0_

dt )
_ + Sec (t)	 (4.1) r

S	 (t) 0	 0	 -12	 0 S	 (t) 12t i e e
w(t) 0	 0	 0	 W w(t) 0'

^€

f'

ij
ii

We take a step further from this by replacing the state variable a(t)

{ by a new (but familiar) state variable, a  (t), the normal acceleration.z

This can be easily accomplished by techniques such as matrix transforma-

tion, giving us

a-;

a	 a
•	 a	 _	

7

13	 b -	 13 b
q(t)	 11	 33	 1	 a33	

30
a
13

q(t)

iaz (t) -a33 g	 -33	 12 b3Vg—° S a33 az (t)

I
_

de (ti 0	 0	 -12 0 de (t)

w(t) 0	 0	 0 W W (t)
..

I

1	 ! o
i

1 Vi
°-12 b —

3g
+ g	 (t) (4.2)

x.12, ec
j

_

0--

2

f

1
To simplify notations`, we write this as

i^

(t)_	 x^ (t) + ^x u(t) (4.3)

1	

i 	 ^

t

f c

,

•q	 i

{

^

s

».	
a3 _

r c`
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i

.e a

t

Hence the C* parameter is given by

C*(t)	 _	 [10	 1	 0	 0]x	 (t)	 (4.4)

}
c*

i
_r

^i This transformation is justified for the following .reasons: ^.
i

(i)	 Computations, whether on-line or off-line, are reduced;

(ii) Since we make measurements on the pitch rate and normal accel-

eration, and the C* parameter depends only on these two states, therefore !'

such a transformation provides us the convenience of having a constant rr̀

observation matrix C, and a constant matrix C* for all flight conditions; r

E

(iii) we can form C*(t) directly from the measurements.

We remark 'further that except for the use of equations ( 4>.3) and
2,I

(4.4), a C* tracking design on this model can use the same performance

index used inthe full state system design, i.e. }:
<i

^

J = f	 [ (C*d - C* (t)) 
2 

Q + u2 (t) R] dt	 (4.5) .:
tt

O A

Using this, and applying proposition 2.1,_we thus obtain a scalar Lr, and
• s

•
a

and a 1 x 4 constant matrix

_ [n	 na	 ns	 wl( 4.6)q Y

z	 e

such that a_suboptimal deterministic design is' achieved,,`with a control-,=

M

; x

T ''

MM
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CHAPTER V

NUMERICAL EXAMPLES

5.1	 Overview

In this chapter ., we present some numerical results on the F-8C air-

craft linearized longitudinal dynamics that illustrate our work on the

deterministic des gn, both in cont inuous time and in discrete time.	 We
k

selected to use sixteen of the flight conditions (5-20) from Gera [14]

{ which represent linearized dynamics of the F -8C aircraft in clean wing dowk:

! configurations.	 Table 5-1 shows each of the sixteen flight conditions r	 -:
a

(altitude, Mach no., dynamic pressure). 	 Throughout this chapter, we em-

phasize the fact that the full state model of the F-BC aircraft (see Chapter

III) is very well approximated by the reduced state model discussed in
^i

Chapter IV.	 Thus a major part of this chapter contains results for the

reduced state designs, although brief notes of comparison with the full_

state model are given along the discussions.

We remark that in linear simulations on a digital computer, one in

general does not encounter the problem -of rate saturation of the control

wh:oh is discussed in some detail in the later part of Chapter II.	 There-

fore, for the purposes of this report, we only use System II (See'proposi-

tions 2.2, 2-3) and leave aside System III (See proposition 24). 	 Also'`

in Section 2.3, we presented two discrete time designs which make use of

and represent •(approximate) discretizations of the continuous time design.

We shall not give any numerical results for them, but instead we point out

'

l,

here that simulated results have shown that both of them are less effective

-66-
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r
!_	 x4

flight Condition Altitude Mach. No.,	 Dynamic Pressure (PSF)

5 sea level 0.3 133.2

w 6
^^	 ^^ 0.53 416

7
^^	 ^^ 0.7 726

8  n 0.86 1098 }?

9  1.0 1480

10 20.000 ft. 0.4 109 }

0-.6 245 ,

12 ,^	 ^ 0.8 434 l

z 13 "	 " 0.9 550

14 ^^	 ^^ 1.2 978

15 40,000 ft. 0.7 135

16  ,^ 0.8 176 ;+

17 ^^	 „ 1.9 223

18 ^^	 ^^ 1.2 397_

19 " 1.4 537

20 ^^	 ,^ 1.6 703

'Table 5.1	 Flight Condition Parameters

r

i,

.nl

..

k

i
A.

__
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I x.
I:

than the discrete time design derived directly from the dynamical system

(See propositions 2.2, 2.3), though the first order approximation method

gives rather satisfactory results. Indeed the one obtained by pole-alloca-

tion is far from satisfactory and should not be used in practice.

There are five different designs to be investigated in this chapter,

including two continuous time designs, and three discrete time designs

However, only the ones that deal with the reduced state model will be dis-

cussed in detail. We summarize them in Table 5.2a.

We selected three * of the sixteen flight conditions for simulations in

order to demonstrate the effects of mismatching in the C*-controlled flight

trajectory.	 Namely, they are flight conditions 7, 11 and 12, representing

variations in dynamic pressures, with flight condition 7 being the highest,

and 11, the lowest. 	 We assume that the aircraft is in flight condition 12,,

^f while control gains from one of these three flight conditions are used.
i

We 'remark that all of these fli ght conditions are . subsonic, where theg
A

Y

C*-theory plays the most significant, role. 	 We shall assume that initially
h

t
all the statesare zero and the desired C* steady state value is a step of

t i g._	 Also U(0) _ 6ec (0) is chosen to be zero. 	 We summarize them in
x

Table 5.2b.

From now on, for simplicity purposes, with reference to Tables 5.2

a and b, we shall refer to the simulation i, 1<i<3, for the design SZ,

y SZ	 A,B,C,D,E, as the simulation Q-i.	 We remark that simulations 1 and 2

represent mismatches in gain scheduling. 	 Where appropriate, we shall attach

plots of simulations to the discussions. 	 All the simulations are for 6.25

r



a T u _	 .._.
3

Design Time Set Simulated Model 	 Gains

4

Simulations

A continuous reduced state	 from reduced state model A

B full state   ^ B

C discrete reduced state	 , ^	 ^^	 ^^ C

D full state	 ,^	 ,^	 ^^ D

G

E full state	 from full state model E

ry

w.
;

E

Table 5.2a	 Summary* of the Designs Simulated

r
^

Flight Control	 Initial Conditions
Simulation	 Condition	 Gains'(F/C)	 of States %*d(g's)

1 12
_,7	

all zero 1

2 12 11_	 (i)	 ^ 1

3 12 12  l

Table 5.2b	 Summary of the Simulations for Each Design in Table 5.2a

F

I
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1

x

seconds, with a time step of 0.125 second, which is the sar ►.rpling period r

for discretization.

For each of the two reduced state designs (designs A and C), we show

a mismatch stability table of the sixteen flight conditions, which indicates

.whether the flight .would be stable when control gains computed for flight;

condition i (5'<i<20), are,'scheduled to be used in controlling the aircraft 13

in flight condition j (5^Sj<20).	 These tables, together with the simulations, tr

form the basis for the mismatch stability analysis in this report.

We arrange the rest of the chapter as follows:
rx

Section 5.2 deals with the continuous time designs (designs 'A and B). (t;

There brief notes are given for the choice of the weightings in the cost

i
^a function, and mismatching of the flight conditions.	 A very, detailed analysis

for th!a reduced state design is presented. 	 Control gain' are computed for

^- the reduced state and the full state models.	 The same is done in Section }i
f	

y

f 5.3_for the discrete time designs (designs C and D).	 In addition, a full' ,1
4

i
state model with full state control gains ( design 'E) is also discussed-.

^

^ In Section 5.4, we draw some conclusions and add some remarks.

.. For simplicity. and reference purposes, all notations used in this chap- s;

j ter are the same as those in Chapters III and IV, unless otherwise stated. -'

It should be noted that use has been made of Sandell and Athens [16]

and Kleinman [171, in the computing work done for this report.

5..2	 Continuous Time Designs

The first step that one should take is to choose the appropriate

,E weightings, Q and R, for the cost function given by equation ( 3.25).

_ z	 y-
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1

In doing so, we pick R from a consideration of the rate saturation of the

actuator dynamics;	 f

r	
l	 (5.1)	 i

R =	

d2
ecmax

.'.	
A

where

sec	
_ 0.435 rad/sec (25 deg/sec)	 (5.2)	

n

max

Then we chose Q in such a way that the short period C* responses of the

closed loop dynamics fall more or less in the middle of the C* time his-

tory envelope shown in Fig. 3.1, i.e., along the dotted line. 	 We found .

out	 b	 trial and error, that a y	 good choice for Q is

Q = 1	 (g
-2 ^

1

1	
(5.3)

Figure 5.1 shows representative C* responses. 	 k

_r

1	 (i)	 Design A	
*	 ;.

-Using this pair of values of Q, eq. 	 (5.3), and R, eqs.	 (5.1) and (5.2),

one can then proceed with the (continuous time) design discussed in Chapter

'	 IV for the reduced `state, model.	 That is given equations 	 (4.3),	 (4.4),	 f'

and (4.5), one is to find the controls 	 {t) given by equation (4.7).
ec 

It is observed that, for allflight conditions, the matrices A

, C** satisfy all the three assumptions required by proposition 2.1. 	 We

can therefore apply the design procedures given by this proposition and ob-

tain the gains L r , N
r
 directly,	 y

;Figure 5.2 shows a plot of the resultant dominant complex poles of
r

the closed loop , system for all the flight conditions.	 The magnitude of	 a'

.	 rt
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i
ti

j,

the complex pole increases as the dynamic pressure increases, at each alti-

tude.	 These, of course, correspond to the short period dynamics. 	 For m

i
'	 the purposes of comparing this C* design with some other traditional handling

criteria of aircrafts, we draw in three straight lines to show the range ,^£
i

'	 a

of damping ratios through these flight conditions.	 One such criterion

is the Cornell Aeronautical Laboratory "thumbprint" [10].	 This "thumbprint"
1

represents combinations of short period natural frequency ( Wn ) and damping j	 3

ratio Q) that were preferred by pilots of several variable stability is

t^
aircrafts, and is valid on the assumption that the predominant variabl ep	 p	 4

i

sensed by the pilot is normal acceleration, a Z .	 Figure 5.3 shows such a

' thumbprint plot together with three vertical lines corresponding to the

.; damping ratios in Fig. 5.2. 	 Comparing these two figures, we see that all

the flight conditions lie more or less within the thumbprint, except flight
t

conditions 9 and 14 which represent transition behavior between subsonic

and supersonic flights,	 The fact that flight conditions 18-20 lie close to

the boundary is not surprising since they are supersonic.	 Most important
;

of all, we observe that flight conditions 5, 10 and 15 lie very close to

{	 the boundary.	 This is explained b : 	fact that they have low.Mach numbers,

i and indeed, the pitch variables are more important cues to the pilot.

Y Table 5.3 is a mismatch'stablity table,, 	 the sense that the{ .

aircraft is in flight condition i, 5<i<20, but one is using control gains

calculated from flight condition j, 5 5j<20.	 Specifically, the closed loop

dynamics are

x(t)	 = A . x(t)	 + B	 u(t)-	 (5.4)

s

a
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Damping Ratio	 0.44, 0.63, 0.83
8

U
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LU
D
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Fig. 5.3	 Cornell Aeronautical Laboratory "Thumbprint"

'fit



STABILITY SUMMARY TABLE

CONTROLLER
TRUE 5 6 8 9 10	 11	 12 13	 14 15 16 17 18 19 20
FC

5
6

10

12
13
14

17
18
19
2C

U=UNSTABLE
*=STABLF,

Table 5.3 Mismatch Stability Table for Design A
(All mismatches are stable.)



1

U (t) = L	 t (C* - C*-'(T))dT + N	 (x(t)	 - x(0)) + u(0)	 (5.5)

r 	 ajf
t;

o

where A	 , B	 are A , B	 matrices of flight condition i, and L 	 and-^'	 _

N	 are control gains from flight condition j.^j•
It is seen from Table 5.3 that all mismatches give stable flight

for the system.	 Also we can see from the simulations A-1 to A-3 (Figures

+5.4 - 5.9) that the C* and g	 responses are in general very satisfactory,
ec

with acceptable control rates. 	 When there is not any mismatch (i.e., i,j-12),

the system gives the best response, as is expected. ,Observe how nicely

the C* respo;Ise fits into the C* envelope in simulation A-2 (Figures 5-6, 5-7).

Mismatches give a little slower response, and more overshoot.

We attach also plots of the L and N gains against Mach numbers and
I

dynamic pressures (psf) 	 (Figures 5-10 - 5-19).	 Notice that in each plot r

Y	

i

the subsonic flight conditions are readily divided into three groups according
s*3

4

to altitude, and the supersonic flight conditions form a single group by ;.

themselvp-s r--,,

i (^..) Design B

In Chapter IV it was discussed how one can apply the reduced state

control gains computed in design A to -a full state model, in equations

(4.8) and (4.9).	 We study such a design strategy by doing simulations.

It is seen that the responses in all cases are almost identical to {
a

the corresponding ones for design A.	 Also we remark that this design gives

stable flights for all mismatches. 	 This suggests very strongly that the

reduced state design is a good design for the system, at least asfar as -	 _"
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continuous time is concerned.	 As an example, we attach Figures 5.20, 5.21

which show simulation B-3 of the matched flight condition 12.
it

5.3	 Discrete Time Designs

X

To pick appropriate values for the weightingsQ d , Rd, in the cost

function given by equation (3.39), one might want to do it in such a

way that this cost function approximates that for continuous time, jr
i.e., equation (3.21).	 We elect to use the following values:

Qd = TQ	 (5.6)
.	

Rd - R/T	 (5.7)

where T is the sampling period,, which is 1/8 sec. in our design, and

the choice of Q and R is given by equations (5.1),-(5.3). 	 This was done

because we can use the approximations	 -

u((k+l)T)-u(kT)
u(kT)	 (5.8)

T

f(T)dTZ 
T k- 1 f(JT)	 (5.9)f ]f -00	 j=0

for any real continuous time function f(•) and hence (C*d - C*(•)) 2Q. JI

Thus, we use the following weighting parameters in Eq. 	 (3.39)

1Q-	 (5.10)
d	 s

Rd	8 x 0.435	 (`5.11)`

(i)_	 Design, C r

E	
Using the above values of Qd	and Rd, and the discretized reduced

state model	 obtained by applying the discretization scheme in propo-

sition 2.3 to the continuous time reduced state system given by equations
ti

(4.3),	 (4.4), we can follow the design procedures in proposition 2.3
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3

to find control gains L 	 and Na	That is, we may write,
r	 r

xr((k+l)T) _ Adx r (kT) + pd	 u(kT)	 (5.12)
r	 r

uMT) _ L	 k-1 (C*	 _ C* (jT)) + N	 (x MT) - x (0) )+ u(0)	 (5.13)d	 E	 -x3	 -r	 -r
tt
1	 Fd

r 3
_0	 r #	 ^!

Indeed the assumptions required by proposition 2.2 are found to be }#

.: satisfied by all the sixteen flight..conditions. :
q y

• Considering mismatches, we form the dynamics s,-1
S

((k+l)T)	 :^d	 x 
(kT) + Ba	 u(kT)	 (5.14)

ri	ri

u(kT) = L	 k^l (C* — C* (ZT)) + N	 (x (kT) -x (0)) +u(0) ^?	 x

dr. R=O	 d	 r. --r	 (5.15)
7

where 5<i,j<20 and Ad
	 Ed
	 are Ad ,Ba	 matrices of flight condition i,

ri	 r	 r	 r
:r

and Ld	, N	 are control gains Ld , N	 from flight condition j.
ai r^	 r	 r	 r

A mismatch stability table for this design is shownin Table 5.4.

Here instead of universal mismatch stability, as in the continuous

I

time case (Table 5.3), there are about '10%'of the mismatches that

are unstable.	 In particular, most of them are mismatches of controllers

from flight conditions that have _low dynamic, pressures to flight 'condi-

tions of high Mach numbers (and high dynamic_ pressures). 	 Of course

the system is always stable whenever there is no mismatching.

Looking at the simulations (Figures 5.22-5.27), we observe that they -

:i
all show very desirable responses. 	 Indeed they are almost the same as

those for design A, although now we have a little more overshoot.	 The



- STAEILITY SUMMARY 	 IABLE

CCNTRULLER

TRUE -5 6 7 8 9	 ltd	 11	 12	 13 14 15 16 17' 18' 19 20
F 

6 # * * *
7 U * * * *	 U	 *	 *'	 * * U U
B U U' ,. *	 U	 U	 *	 * * U U U
5 U U ,^ - ,^ U	 U	 U	 U * U U U

10 * * * * *	 *

11 * *
*	 *	 *	 * * * ,^

12 *' * * *	 *	 *	 *	 * * * * * * * *'

13 U * *' *.	 U	 *	 *	 * * U * * * - * * w

14 U * * * '+	 U	 U	 * * U U U

16 * * * '^ *

15 * *' * U

U=UNSTABLE
—*=STABLE

Table 5.4 Mismatch Stability Table for Design C

(e.g. if the aircraft is in-FC 9 (row) and one use the controller of FC 7
(column), the closed loop aircraft will be stable; if one uses control-ler
of'FC 12 (column), the .closed loop aircraft will.be unstable.)

.r
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controls differ somewhat, with higher initial rates of change here, but

the slopes are more or less the same. -Again these mismatches seem to

impose no problem at all in the overall control of the aircraft. I

We also attach plots of the L and N gains against Mach numbers

' and dynamic pressures (psf)	 (Figures 5.28-5.37).	 Notice that, similar

to the continuoustime case (design A), in each plot, the subsonic

flights are readily divided into three groups according to altitude, x

and the supersonic flight conditions form a single group by themselves.

I
(ii) Design D f •.

I.
1

Similar to the continuous time case, we can use the control gains

from the reduced state design C, in the full state model. 	 That is, we

generate the control by the relation

r

u(kT)	 = Lr	 kE l ; (C*d - C*(jT))'+ N^	 (x(kT)	 - x(0))`+ u(0)	 ( 5.16)
I —	 d=0	 d -

i. where a

C

N	
__

N
2 x6

d 0 0 0 0 1 0 (5.17)

0 0 0 0 0 1

The simulated results are almost identical to those in design C,

and in fact, are very similar to the continuous time simulations (de-

signs A and B) . 3

(iii)Design E

In doing	 ' reduced state design,ga, one is using less information -

t'I, '
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s

sthan what is available to him.	 One may expect, therefore,, that a full

state, design is more accurate and performs better than the reduced

state design.	 The full state design is described by equations (3.35)

to	 (3.40). 

Comparing the simulations of such a design, with design D, it_ 'is !observed that

both the responses and controls almost coincide exactly in the two

cases.	 As an example, Figures 5.28-5.29 show simulation E-3, which

is a matched simulation for flight condition 12. ,

If one examines the gains, one can see that they are very close -

together for this design and the design D. j

5.4	 Final Remarks

In general,,the reduced state design does seem to provide a

j	 very good approximation to the full state design. 	 As far as responses

are concerned, all designs (A E) are very similar. 	 This shows a strong

correspondence between the continuous time designs and the discrete

{	 time designs.	 Higher initial rate of change of the control occurs
,f

for the discrete time designs, however.	 Nevertheless, they all seem

to be acceptable.

If one compares the plots of control gains for the continuous

time reduced state design (design A) with those for the discrete time

`	 reduced state design (,design C), one can see that the N gains are in
general rather close together, with the continuous timeg	 g	 _	 gains being

j	 somewhat smaller.	 Also the continuous time L gains are approximately

J one eight of those in discrete time. 	 This accounts for much of the partial
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CHAPTER VI
i

CONCLUSIONS AND SUGGESTIONS

The approach taken in this report seems to provide satisfactory {
a

gg

j results on -linear time-invariant dynamical systems, which are required I

-; to track step inputs, both from a theoretical and a practical point of ?

view.	 Theoretically, it is illustrated by the propositions given in

t Chapter II, where we give digressions of both the continuous time and 4

j discrete time designs.	 Their applications to the F"-BC aircraft linear

` ized 'longitudinal dynamics _, using a C* handling, qualities criterion,

r	 ^
provide us a'lot of physical insights, as we have observed from the

control gains and various simulations.

Apparently the reduced state designs possess very high practical
t	

^^^ values.	 Chapters III and IV iilustrate in some detail how they can be

i
implemented in the aircraft. 	 It is believed that further study into

,
this can be very fruitful.

The two discretization schemes discussed in Chapter II, of which t ;

one keeps the control to be a constant over each sampling period, and the a

other, its rate, bear very important significance in physical interpre-

tation, because of the possibility of rate saturation in the actuator

dynamics.	 We think the different controls computed by these two different

I schemes should generate different performances of the system. Since a

f
k

r

x _
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,I 	a

scheme II constrains the control to be continuous, it is likely that =t

approximates the continuous time system better. Apparently from Char V,

the continuous time design provides the best result. However, the dxrital

	

N 	 3

	Is	 requirements in implementation limit its usefulness. On the other hmd,

I,
the discrete time designs by scheme I seem to be acceptable in the liiear

simulations. So we expect that scheme II should be able to give more
:;

satisfactory compensator designs. More research effort should be spelt in

	

i j	 investigating them.IIi

In this report, we do not discuss any stochastic aspects of the

control designs, but we believe that they are very important also,- an:

	

ti	 a lot more should be done in this direction, especially for the disc---te- „

time designs which are seldom touched upon in literature.`

In developing the theoretical results for this report, we were

_just aiming at a P-I-D controller for the F-8C aircraft, and hence -thy

consideration was not made very general. We believe that one can gaiT

	

t	 much further and develop more adequate theory if one takes disturbancfs

into consideration, be they known or unknown, measurable or unmeasurare.

Also for simplicity and generality, hlt^hy of the conditions that we iagased

racan be relaxed to simply require that the matrix " 	 be or_a rank

equal to the sum of the numbers of controls and outputs. Also, more

general system or input types can be considered, e.g., type-k systems and

polynomial inputs. Also a study of the robustness of the systems and°ts

sensitivity to parameter variation can be very useful, as is indicates in

Chapter V.
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