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NASA DIAGONAGBRAKED TEST VEHICLE EVALUATION 
OF TRACTION CHARACTmISTICS OF GROOVED 

AND UNGROOVED RUNWAY SURFACES AT 
MIAMI INTERNATIONAL AIRPORT, 

MIAMI, FLORIDA, MAY 8-9, 1973 

1.0 1Ii"RODUCTION 

The National Transportation Safety Board, i n  a le t ter  t o  t h e  Federal 
Aviation Administration (FAA) dated February 9,  1973, requested FAA Fl ight  
Standards Service and t h e  National Aeronautics and Space Administration (NASA) 
t o  "evaluate the  w e t  runway stopping c h a r a c t e r i s t i c s  of Runways 27L and 27R at  
Miami In te rna t iona l  Airport." This request w a s  i n i t i a t e d  i n  connection with an 
accident inves t iga t ion  involvine; a Northwest Ai r l ines  B-747 which went c f f  t h e  
end of t h e  w e t  Runway 27L after an engine-out landing on December 15, 1972. 

1.1 
The preliminary resulf3 of  t h i s  evaluation were reported i n  Langley Working 
Paper-1107, Apri l  26, 1973. The Dade County Port  Authority decided t o  groove 
Runways 27L and 27R after t h e  March 14-15 t r a c t i o n  evaluation. 
l /k- inch groove pa t te rn  w a s  selected.  
9 and w a s  completed on M a y  2, 1973. 
7 and completed on May 23, 1973. 
27R w a s  i n i t i a t e d  by t h e  Dade County Port Authority and timed t o  take p lace  
along with grooving operations such t h a t  t h e  grooving machine alvays operated 
on freshly cleaned asphalt .  
using high pressure (6000 p s i )  water jets. 

A FAA/NASA team conducted t h e  requested evaluation on March 14-15, 1973. 

A 1 i / 2  x 1 / 4  x 
Grooving of Runway 27L commenced on Apri l  

Grooving of  Runway 27R w a s  s tar ted on May 
A rubber removal program f o r  Runways 27L and 

The rubber removal program employed equipment 

1.2 The Dade Cobnty Port Authority, i n  a le t ter  dated May 3 ,  1973, requested 
NASA t o  re-evaluate Runways 27L and 27R a t  M i a m i  In te rna t iona l  Airport so t h a t  
t he  improvement i n  t r a c t i o n  cha rac t e r i s t i c s  of t h e  runway surfaces  after groov- 
ing could be established. 
on May 8-9, 1973. 

A NASA/FAA team conducted t h e  requested evaluat ion 

2.0 TEST EQUIPMENT 

The equipment used t o  evaluate she  M i a m i  runways consisted of the  NASA 
Diagonal-Braked Vehicle (DBV) , ASTM smooth tread tes t  t i r e s ,  portable  wind and 
temperature measuring instruments, t h r e e  portable  t ransceivers  f o r  comunica- 
t i ons ,  a NASA grease k i t  t o  obtain a measure of runway surface tex ture  depth,  
two NASA water depth gages, water tank t rucks  furnished by t h e  Dade County Port  
Authority, and a radio equipped operations car .  

3.0 RUNWAYS 

Tests were conducted i n  March on Runways gR/27L, gL/27R, and 12/30; and 
i n  M a y  on Runways 9R/27L and 9L/27R. 
resurfaced i n  November 1972 with a &Inch asphal t  overlay using l o c a l  limestone 
aggregate. Before t h e  1972 overlay,  some por t ions  of Runway 9R/27L consisted 
of 30-year-old asphal t  as was a l so  t h e  case f o r  t h e  middle port ion of Runway 
12/30. The o ldes t  portions of Runway 9L/27R before t h e  1972 overlay 

The two east-west runways had been 
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consisted of 20-year-old asphalt .  
was also l o c a l  limestone. 

The aggregate f o r  the o l d  asphal t  su r f aces  

3.1 
s t r u c t e d  according t o  t h e  latest FAA standard s p e c i f i c a t i o n  which incorporated 
Corps of Engineers requirements, including a f i e l d  asphal t  density of no less 
than  98 percent o r  more than  100 percent of a laboratory density.  I n  order t o  
meet t h i s  dens i ty  requirement, heavy v ibra tory  r o l l e r s  had t o  be used at M i a m i .  
The p r d o u s  FAA asphal t  dens i ty  requirement (used up t o  1968) wag 92 percent 
of a t h e o r e t i c a l  dens i ty  (equivalent t o  95-97 percent of a laboratory densi ty) .  
For t h i s  o lde r  requirement, s a t i s f a c t o r y  compaction (asDhalt densi ty)  vas 
obtained by use of conventional non-vibratory r o l l e r s .  

The 1972 asphalt  overlays at Miami In t e rna t iona l  Airport  were con- 

3.2 The use of heavy v ibra tory  r o l l e r s  du r i rg  compaction of t h e  asphalt  
overlcqys an  Runways 9R/r(L end 9L/27R tended t o  depress the l imes tone  eggregate 
in t h e  gavement sur face  leaving these runms with a smooth sur face  f in i sh .  
These surfaces tended t o  be planar with random shallow holes r a t h e r  than 
planer with asperities pro jec t ing  above t h e  su r face  (aggsegatc p a r t i a l l y  
exposed). 
sharp  con t r a s t  t o  t h e  30-year-old asphal t  surface i n  the  middle of Runwq 12/30. 
Here, t h e  combination of a lower asphalt dens i ty  requirement (conventional non- 
v ibra tory  rollers used) and t h e  e f f e c t s  of 30 years o f  weathering and aircraft 
t r a f f i c  lef t  t h i s  asphal t  su r f ace  with a s u b s t a n t i a l  macrQtextu-e and partiel 
exposure of the limerock aggregate. The a i r c r a f t  touchdown areas on t h e  run- 
walys a t  Miami In t e rna t iona l  Airport were heavi ly  coated wi th  rubber deposits 
r e s u l t i n g  from a i r c r a f t  t i re spin-up at touchdown during landings under dry 
pavement conditions.  

This type of surface f i n i s h  f o r  the new asphal t  overlays was  i n  

3.3 
crown t o  improve water drainage during times of p rec ip i t a t ion .  
of t h e  runway cen te r l ine ,  t h e  t ransverse  grad ien t  of t h e  pavement was 1 percent 
f o r  t h e  first 25 f e e t  of run. 
t h e  t ransverse  grad ien t  var ied  between 1 1 /2  - 2 percent. 

The new asphal t  overlays at  Miami were constructed with a s u b s t a n t i a l  
On e i t h e r  s i d e  

From t h i s  point to  t h e  rmway edge (75 f e e t ) ,  

3.4 
and completed on M a y  23, 1973. The runways were t ransverse ly  grooved f r o m  end 
t o  end and t o  wi th in  10 feet of t h e  edges of t h e  200 f e e t  wide runways using a 
1 1/2 x 1/4 x l/b-inch groove pa t t e rn .  Two diamond-saw type grooving machines 
(= s i x  foo t  arbor) were ueed t o  groove t h e  runways. 
conducted at night during low t r a f f i c  periods with t h e  runway closed. The run- 
way being grooved was  r eopened  t o  airport t r a f f i c  after t h e  newly grooved run- 
ww sec t ion  was water flushed of t h e  s l u r r y  c rea ted  by grooving at approximately 
1 1 : O O  a.m. each day. 
rubber depos i t s  from t h e  runway sur face  before  each night's grooving operation 
took place.  

Grooving of Runways 9R/27L and 9L/27R at  Miami was s t a r t e d  on Apr i l  9 

Grooving operations were 

High pressure  water j e t  equipment w a s  useit t o  remove 

4.0 TEST PROCEDURE 

The evaluation consisted of surveying t h e  rumray for rubber deposi ts ,  
determining t h e  pavement su r face  texture, and conducting DBV braking stops 
from 60 m.p.h. under w e t  and dry conditions t o  e s t ab l i sh  t h e  t r a c t i o n  charac- 
t e r i s t i c s  of t h e  runway surfaces.  



4.1 
which were contaminated with rubber deposi ts  were establ ished.  
conducted during t h e  March DBV tests and represents  t h e  rubber accumulation on 
t h e  runways s i n c e  November 1972. Figures 1 and 2 show the  results of t h i s  
survey and t h e  layout of t h e  DBV test zones f o r  Runweys 9R/27L and 9L/27R, 
respect ively.  
May DBV tests because t h e  runways had just  been subdected t o  a rubber removal 
program, and t h e  rubber-coated areas on t h e  runway had not s t a b i l i z e d  i n  length.  
TyFical phctographs of t h e  pavement sur face  i n  each tes t  zone (be fo re  grooving) 
are shown i n  figure 3. 
grooving ( M a y  tests) are shown i n  figure 4. 

Runvsys 9R/27L and 9L/27R vere traversed end t o  end, and t h e  areas 
"his s u r v e y  w a s  

The runways were not re-surveyed f o r  rubber deposi ts  during t h e  

Typical photographs of  t h e  pavement sur face  after 

4.2 A measurement of t h e  sur face  texture depth was made f o r  each of t h e  
runway test zones evaluated during the  March DBV tests. This w a s  accomplished 
by means of  t h e  NASA grease test  which en ta i l ed  spreading a known volume of 
greaseebetween p a r a l l e l  tapes spaced 4 inches apa r t  on the  test zone surface.  
The length  of the surfbce between t h e  tapes  required f o r  t h e  grease t o  f i l l  
a l l  t he  a s p e r i t i e s ,  a ' ~ c i &  i n t o  t h e  known volume of grease used, y ie lded  t h e  
average texture deptk of  t k t  pavement surface.  The results of these measure- 
ments are shown i n  t&le  I. 

4.3 
with a g rav i ty  feed Epreader bar (see figure 5) w e t t e d  a path approximately 
10-feet wide and lOOCl-1500 feet long, depending upon t h e  rubber contamination, 
by making two and sometimes t h r e e  passes over t h e  test zone. More than  one 
pass with t h i s  water t ruck  w a s  necessary s ince  the  g rav i ty  water flow system 
employed could not put out s u f f i c i e n t  water i n  one pass t o  adequately w e t  t h e  
test surface.  Averq;e w a t e r  depths on t h e  pavement sur face  at  time of DBV 
run r e su l t i ng  from t h i s  wet t ing technique ranged between 0.006 inches and 
0.045 inches f o r  t h e  March DBV tests as shown i n  tables I1 and 111. I n  t h e  
May 33'1 tests, t h e  sune water t ruck  and wet t ing technique used i n  t h e  March 
tests w a s  employed t o  w e t  ungrooved tes t  zone D of Runway 9L/27R. 
r e su l t ed  i n  average water depths at t h e  time of  DBV runs of  between 0.035 and 
0.045 as shown i n  t a b l e  IV. 
tests employed mult iple  water t ruck  wet t ing (see f igu re  6)  where addi t iona l  
water t rucks  (up t o  th ree )  obtained from the  grooving cont rac tor  were used i n  
t ra i l  t o  increase  t h e  water coverage i n  t h e  runway test zones. The increased 
water volume w a s  required t o  provide suf f ic ien t  wetness on t h e  sur faces  of t h e  
grooved runway tes t  zones. 
r e su l t ed  i n  a damp t o  purldlea wetness condi t ion on t h e  grooved runway test 
sect ions.  
increased t h e  water depths present  at time of DBV test i n  the  ungrooved test 
areas  of zone B, Runway 9L/27R t o  0.05-0.06 inches (see table V I ) .  
water t ruck  wetting performed i n  t h i s  t es t  zone during t h e  March 1 5  tests 
yielded water depths of 0.006-0.019 inches. 
s t r i p  i n  8 test zone was a lways  placed on t h e  "up-wind" s i d e  of t h e  runway 
center  l i n e  during both t h e  March and M a y  DBV tests t o  insure  maximum runway 
wetness at time of t es t  run. 

During t h e  March DBV tests, a s ing le  2000 ga l lon  water t ruck  equipped 

This 

A l l  o ther  DBV wet runs conducted during t h e  M a y  

As shown i n  tables V and VI, t h i s  technique 

The increased water volume from t h i s  wetting technique subs t an t i a l ly  

The s i n e l e  

It should be noted t h a t  t h e  wetted 

b .  4 
t h e  t es t  area, t h e  DBV was acce lera ted  t o  a speed s l i g h t l y  above o r  near 60 
m.p.h. 

As soon as t h e  water t r u c k ( s )  made t h e  f i n a l  wetting pass and cleared 

Just before  en ter ing  t h e  test zone, t h e  transmission w a s  placed i n  



-4- 

neut ra l  sear. 
driver sharply appl ied brakes,  locking t h e  diagonal pair of wheels equipped 
with smooth tread ASTM test tires. A t  approximateJy 50 lb/ inch pressure  in 
the wheelbrakes ,  circuits t o  the d i g i t a l  speed meter and t h e  digi ta l  stopping 
d is tance  counter were energised. These c i r c u i t s  held t h e  DBV speed at brake 
appl ica t ion  constant i n  the speedmeter and s t a r t e d  t h e  stopping d is tance  
counter t o  measure stopping d is tance  from the  brake appl ica t ion  point .  The 
speed at brake appl ica t ion  and t h e  stopping d is tance  from t h i s  brake applica- 
t i o n  speed were v i sua l ly  read from these  instruments by the  dr iver /observer  
when t h e  DBV came t o  a complete s top  i n  t h e  test sec t ion .  
on board t h e  DBV measured t h e  angular veloc i ty  of each DBV main wheel, t h e  
angular veloc i ty  of  t he  t r a i l i n g  t e s t  ( f i f t h !  wheel, and t h e  longi tudina l  
acce lera t ion  of t h e  DBV. 
recorder equipped w i t h  an accurate  timer i n  t h e  DBV so t h a t  a permanent record 
and time h i s to ry  of  t h e  va r i a t ion  of these  parameters during a test run could 
be obteined. 
time of w ,  vind speed and d i r ec t ion ,  pavement water depth, DBV test heading, 
and ambient air temperature (see t a b l e s  11-VI)  . 

The DBV then coasted i n t o  the  wetted test zone where upon t h e  

Other instrumentation 

These parameters were recorded on a d i r e c t  w r i t i n g  

Other paremeters manually recorded during a test run included 

5.0 DATA ANALYSIS AND RESULTS. 

The data obtained f r o m  the DBV tests conducted i n  March (before  
grooving) and M e ~ r  1973 (after grooving), at Miami Interna$.ional Airport  were 
analyzed frau pavement drainage,  ASTM smooth t r e a d  t i r e  braking f r i c t i o n  

, and DBV stopping dis tance r a t i o  points  of view. Details of t h e s e  ' s g d  an yses and t h e  results obtained are presented i n  t h i s  sec t ion  of t h e  paper. 

5 - 1  Ungrooved Pavement Drainage.- A very comprehensive study on t h e  e f f e c t s  
of r a i n f a l l  i n t e n s i t y ,  pavement cross-slope, sur face  t ex tu re ,  and drainage 
length was recent ly  performed at the  Texas Transportat ion I n s t i t u t e  of t h e  
Texas AW University under laboratory conditions (s t i l l  a i r )  using simulated 
r a i n  making equipuent ( reference 1). In t h i s  research,  t h e  following equation 
w a s  developed t o  predic t  water depths on ungrooved highway pavements. 

where d - water depth standing above top  of t ex tu re ,  i n .  
T = averege t e x t u r e  depth, in .  
L = drainage path length,  it. 
I = r a i n f a l l  i n t e n s i t y ,  in./hour 
S = cross-slope, f't./i't. 

Equation 1 was based on water depth measurements obtained on the  nine d i f f e ren t  
pavement surfaces  described i n  t a b l e  VII. 

5.1.1 The B r i t i s h  Road Research Laboratory conducted a s i m i l a r  study 
(reference 2) on two extremely course tex tured  pavement surfaces:  a brushed 
concrete surface ( t e x t u r e  depth = 0.072) and a r o l l e d  acphalt  w i t h  chipping8 
surface ( t ex tu re  depth = 0.095). The B r i t i s h  found no e f f e c t  of t ex tu re  depth 



for these  surfaces and developed t h e  following equation for predic t ing  water 
depths on pavements i n  s t i l l  a i r :  

0.47 
d = -  0.005 (LI) 

so. 20 (equat ion 2) 

where d = water depth ( i n . )  
I = rainfall i n t e n s i t y  ( i s . /hour)  
L = drainage path length  ( f t . )  
s = slcpe ( f ' t . / f ' t . )  

5.1.2 
equations 1 and 2 and t h e  ac tua l  water depths obtained during na tu ra l  r a i n  on 

Figure 7 shows t h e  comparison between t h e  water depths pred ic ted  from 

two colicrete runways having E cross-slope 0 9 1  (ft) and an average texture 
100 (n) 

depth (NASA grease test) = 0.004 for r a i n f a l l  i n t e n s i t i e s  ranging from 0.005 
t o  1 .5  inches/hour. It shocld be noted t h a t  t h e  na tura l  r a i n  on t h e  runways 
w a s  accompanied by sur face  winds w h i l e  t h e  predict ions o f  equations 1 and 2 
are f o r  laboratory ( s t i l l  a i r )  conditions.  Figure 7 wmpares t h e  experimental 
water depth data w i t h  p red ic ted  water depths f o r  a drainage path length of 10 
feet which w a s  t h e  agproximate dis tance from t h e  runway uenter l ine  t o  the  
water depth measuring points .  
a2proxirnate main landing gear  wheel pos i t ion  f o r  severa l  j e t  t ranspor t s  (see 
table VIII! i f  t h e  a i r c r a f t  are r o l l i n g  a l ined  with t h e  runway center l ine .  
w i l l  be not iced t h a t  t h e  predicted watey depths tend t o  be considerably less 
than t h e  ac tua l  water depths measured f o r  t h i s  drainage path length condition 
which ignores the  e f f e c t  of winds. Using a drainage path length of 200 feet 
( f igu re  7)  gives  much bet ter  correspondence between predicted and experimental 
water depth values .  The ac tua l  drainage path d i r ec t i cns  occurring during 
na tura l  r a i n f a l l s  are determined by the  vector  sum of the  wind and gravi ta-  
t i o n a l  forces  ac t ing  on t h e  water-covered sLirface, and a 200 feet drainage 
path length niay not be unreasonable f o r  c e r t a i n  cross  s lope,  longi tudinal  
s lope,  and wind dl rection/speed cmdi t ions .  

This d is tance  (10 feet)  a l so  corresponds t o  t h e  

I t  

5.1.3 A l a r g e  e f f e c t  of sur face  winds on ungrooved pavement drainage was 
a l s o  noted i n  t h e  May 9 tests on Runway gL/27R, zone B .  
multiFle water t rucks  were used t o  v e t  t h e  upwind s i d e  of the  runway i n  t h e  
presence of a quar te r ing  wind (10 knots/l65 degrees) .  
s t rong enough t o  prevent water drainage against  t h e  wind down the cross  s lope 
of the  runway, and t h e  water depths i n  t h e  wetted ungrooved t e s t  zone remained 
constant from approximately 0.05 t o  0.06 inches during the  DBV tes t  period 
( 4  t o  5 minutes) a f t e r  wetting. 

I n  these  tests, 

This cross  wind was 

5.1.4 it i s  concluded from these  observations (5.1 t o  5.1.3) t h a t  wind 
e f f e c t s  can s t rongly a f f e c t  t h e  drainage of water from ungrooved pavements , 
and t h a t  t h e  Texas Transportation I n s t i t u t e  and B r i t i s h  Road Research Labsra- 
tory equations f o r  pred ic t ing  water depths on ungrooved pavements a r e  v a l i d  
only f o r  s t i l l  a i r  conditions.  
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5.2 Grooved Pavement Drefnagc. - Grooving pavements increases t h e  average 
texture depth of  t h e  sur face  as s h o w  i n  f'igure 8(b) .  
depth of t h e  pavement i s  known, then  t h e  grooved t e x t u r e  depth of t h e  pavement 
may be estimated from the equation (der ived i n  f igu re  8 ( b ) ) .  

If t h e  ungrooved t u c t u r e  

- T (P-2 w) + m  
TG - P (equat ion 3) 

where TG = grooved pavement texture depth, i n .  

T = ungrooved pavement texture depth, in .  
P = groove p i t c h ,  in .  
W = groove width,  i n .  
D = groove depth, in .  

Using %he TTI water depth equation (equation l) ,  s t i l l  a i r  water depths were 
ca lcu la ted  fo r  a cross  s lope  1/100 (Miami runway des ign) ,  drainage path length  
= 10  feet, pavement t ex tu re  depths ranging 'from .005 t o  . lo0 inches,  and f o r  
r a i n f a l l  i n t e n s i t i e s  ranging from 0-6 inches/hour. 
i n  figure 8(a). Figure 8(a) may be used with figure 8(b)  t o  demonstrate t h e  
improved water drainage r e su l t i ng  from pavement grooving. 
p lo t s  i nd ica t e  t h a t  standing water w i l l  develop on a ungrooved pavement having 
a average t ex tu re  depth = 0.02 in .  when t h e  r a i n f a l l  i n t e n s i t y  reaches 0.32 
inches/hour. Grooving t h i s  pavement t o  a 1 1 / 2  x 1 / 4  x l/b-inch groove con- 
f igu ra t ion  increases  t h i s  pavement's average t e x t u r e  depth t o  0.0545 inches,  
and s tanding water develops a t  a r a i n f a l l  i n t e n s i t y  of approximately 1 inch/ 
hour, thus showing a considerable improvement i n  pavement drainrge from 
grooving . 

These r e s u l t s  are p l o t t e d  

For example, t hese  

5.2.1 
pavement drainage from grooving as the  following arguments !l lus+,rate,  
Grooving t h e  pavement with machines using diamond equipped cu t t i ng  blades 
produce8 pol ished groove channels which considerably decreases f l u i d  flow 
res i s tance  i n  the  grooves as compared with t h e  flow re s i s t ance  through t h e  
pavement texture. I n  addi t ion ,  as soon as water depths develop i n  t he  groove 
channels, a small pressure head from t h e  water depth present  tends t o  accel-  
erate water escape through the  channel increasing pavement drainage. 
water flow i n  t h e  pavement grooves is not dis turbed by sur face  wind e f f e c t s  
as is water draining through o r  on top  of  t h e  ungrooved pavement texture. 
The t o t a l  result of  t hese  g roov i r?  effects on water drainage is t o  dramati- 
ca l ly  improve the drainage cha rac t e r i s t i c s  of the  pavement as shown i n  figure 
6 .  
drained of standing water 25 seconds after wetting, whereas t h e  same pavement 
ungrooved s t i l l  re ta ined  0.05 - 0.06 inches o f  s tanding wa5er 4-5 miautes a f t e r  
wetting (see paragraph 5.1.3). This i s  an impro-rement i n  drainage time of at 
least 12  fo ld .  

Actually,  t h e  TTI equation considerably underestimates the  improved 

F ina l ly ,  

This f i gu re  shows t h a t  t h e  grooved wetted tes t  sec t ion  w a s  completely 

5.2.2 
inch p a t t e r n  has grea t ly  improved runway pavement drainage, espec ia l ly  under 
rainfall conditions accompanied with wind. 
improvement i s  t h e  f a c t  t h a t  as long as the grooves are not flowing Pil l ,  t h e  
grooves force  t h e  draining water t o  t ake  a minimuul drainage path length 

It i s  concluded t h a t  grooving t h e  Miami runways t o  a 1 1 / 2  x 1 / 4  x 1 / 4  

Chiefly responsible  f o r  t h i s  
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( t h e  groove channeis).  Water drainage i n  t h e  groove channels is shielded from 
t h e  sur face  winds, and water flow i s  acce lera ted  (over water flow through o r  
on t o p  of t h e  paveaent surface texture) by increased flow depths and decreased 
flow res i s tance .  It  is  estimated t h a t  t h e  groove channels w i l l  not choke 
(develop s tanding water on t h e  pavement sur face)  u n t i l  na tura l  r a i n f a l l  inten- 
sities of st least  2-3 inches/hour are reached. Thus, a i r c r a f t  operating pro- 
blems r e s u i t i n g  from spray inges t ion  and dynamic hydroplaning on flooded 
runways a t  Mimi w i l l  be g r e a t j  reduced becmse  such high r a i n f a l l  i n t e n s i t i e s  
required t o  f h o d  t h e  grooved pavement are i nfrepuently 
most rainstzrms. 

encountered during 

AS kid’- 5.3 ASTM smooth t r e a d  t i r e  braking f’riction cDeff ic ien t ,  p 
mentioned i n  paragraph 4 .4 ,  permanent record time his tor ies>were obtained f o r  
t h e  DBV ground speed (from t h e  t r a i l i n g  b i cyc le  wheel ins t runenta t ion)  from 
the poin t  of  brake a2pl ica t ion  t o  the  vehic le  stopping point  f o r  each DBV run. 
Typical. ve loc i ty  time h i s t o r i e s  obtained from t h e  tes t  records are presented 
i n f i g u r e s  9-11 f o r  w e t  runway tes ts  and figure 1 2  f o r  d r y  runway tests. The 
t i m e  h i s t o r y  de t a  presented i n  these  figures has been normalized t o  a ve loc i ty  
zero/time zero base f o r  each test run by subt rac t ing  the  record time at  each 
ve loc i ty  reading from the  t o t a l  t i m e  requireti t o  br ing  t h e  DBV from brake 
appl ica t ion  speed (immediately after diagonal-wheel lockup) t o  a complete s top  
(ve loc i ty  zero) .  

5.3.1 
is obtained by measuring t h e  s lope 

shown i n  figures 9-12 between adjacent ve loc i ty  readings. 
t r ead  t i r e  braking f r i c t i o n  coe f f i c i en t  u 
measurements by means of t h e  equation 

The dece lera t ion  encountered by t h e  DBV during a diagonal-braking s top  
dv of t h e  velocity-time curves 

(dt’vehi c l  e 
The ASTM smooth 

may be obtained from these  s lope  s k i d  

where 

dv 
Z ’ v e h i c l e  

dv 
(E) t ar e 

X 

’skid 

(equat ion 4 )  

DBV breking dece lera t ion ,  g 

DBV unbraked dece lera t ion ,  g 

incremental DBV dece lers t ion  due t o  
longi tudina l  runway gradien t ,  g 

locked-wheel t r a k i  ng f r i c t i o n  coe f f i c i en t  

v a r i a t i o n  w i t h  speed is  shown i n  The DBV unbraked dece lera t ion ,  (-g$tare, dv 
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f igu re  l3 (a)  and i s  a t t r i b u t e d  t o  air r e s i s t ance ,  unbraked t ire r o l l i n g  
r e s i s t ance ,  and transmission drag e f fec t s .  
e f f ec t  of head o r  t a i l  winds on t h e  DBV unbraked dece lera t ion  with speed. 
60 m.p.h. t h e  curves ind ica t e  t h a t  a 10  knot head / t a i l  wind increases/  
decreases t h e  DBV unbraked dece lera t ion  by approximately 0.007g. 
mental DBV dece lera t ion  due t o  longi tudinal  u p h i l l  runway gradien ts  increases  
approximately 0.01g f o r  each 1 percent increase  i n  longi tudina l  gradient .  
longi tudina l  downhill  g rad ien ts ,  t h e  s ign of x must be reversed because t h e  
g rav i t a t iond .  compoient now imposes an acce lera t ion  t o  t h e  DBV. 
poses of t h i s  ana lys i s  (Miami lons i tud ina l  gradient  = O), wind and runway 
longi tudinal  gradient  e f f e c t s  can be ignored w i t h  l i t t l e  loss  i n  accuracy, 
thus s implifying t h e  ce lcu le t ion  of p 

5.3.2 
smooth tl-ead t i r e  braking f r i c t i o n  coe f f i c i en t  us 
DBV nofmalized time histox5es g'Lven i n  f igu res  9-!ESdand are p lo t t ed  aga ins t  
.-peed i n  f igures  14-16. 

5.4 Pavement sk id  res i s tance . -  Research performed st NASA and elsewhere 
coccur i n  t h a t  pavement wet s k i d  r e s i s t ance  is  highly dependent upon t h e  
macrotexture and microtexture of  a pavement surface.  Tire/ground f r i c t i o n  
lo s ses  t h a t  occur on w e t  pavements r e s u l t  from t h e  development of viscous 
and dynamic water pressures under t he  r o l i i n g  or  s l i d i n g  t i r e  foo tp r in t  as 
vehicle  o r  a i r c r a f t  speeds increase.  Only very t h i n  unbroken water films 
n e d  t o  be present or  a smooth pavement sur face  f o r  viscous hydroplaning t o  
occur at t h e  higher speeds. 
g r i t t y  sand paper) can puncture and displace t h e  t h i n  water f i l m  trapped i n  
t h e  t i r e  foo tp r in t  and thus  prevent o r  g r e a t l y  a l l e v i a t e  t h e  buildup of viscous 
water pressures  w i t h  speed t h a t  c r ea t e  t h i s  type  of  f r i c t i o n  loss. 
water on t h e  pavement. must be present f o r  dynamic water pressures  t o  be 
developed under t h e  t i r e  footpr in t .  
t he  square of t h e  vehic le  speed and crea tes  t h e  w e l l  known phenomenon ca l led  
t i r e  dynamic hydroplaning unless  a l l ev ia t ed  by the pavement macrotexture. A 
good pavement nacrotexture  has h i l l s  and va l leys  praduced by t h e  protruding 
aggregate ev- - ,d  i n  the  pavement sur face  over which t h e  t i r e  drapes during 
t h e  rcrlling o r  s l i d i n g  process. Drainage channels are thus formed i n  t h e  
val leys  of t h e  pavement macrotexture which allows bulk water trapped i n  t h e  
t i r e  foo tp r in t  t o  escape and thus  a l l e v i a t e  t h e  development of dynamic water 
pressures  w i t h  increasing vehic le  speed and reduce t h i s  type of f r i c t i o n  loss. 

Figure L3(b) shows t h e  ca lcu la ted  
A t  

The incre- 

For 

For t h e  pur- 

skid '  

Using t h e  procedure described i n  p a r a g a p h  5.3.1, values  of  ASTM 
were ca lcu la ted  from t h e  

A good sharp pavement surface microtexture ( l i k e  

Standing 

This type water pressure develops w i t h  

5 .5  Skid resistance-Runway 9L/27R,- The clean ungrooved asphal t  sur face  
of Runway 9L/27R (zone B )  had an average t ex tu re  rlepth o f  0.017 inches ( s e e  
t a b l e  I> from the  NASA grease t es t .  This sur face  i s  ccnparable i n  t ex tu re  
depth t o  sur face  four  of t he  TTI drainage study ( re ference  1) described i n  
t a b l e  V I I .  
t h e  zone B pavement sur face  has a small macrotexture and  possible  poor t i r e /  
pavement drainage under standi. ig water conditions.  
sup2orted by t h e  usk.- 
These data  ind ice t e  $Rat t h e  ungrooved pavement s k i d  r e s i s t ance  decreases with 
increasing water depth and speed. A i rc ra f t  and ground vehicles  operating on 
t h i s  s * z f a c e  a t  high speeds w i l l  therefore  encounter dyiiamic hydroplaning when 
standfng water develops cn t h i s  surface during rainstorms. Grooving t h i s  

This r e l a t i v e l y  low value of average tex ture  depth ind ica tes  t h a t  

"his point o f  view is  
data o t ta ined  on t h i s  sur face  shown i n  figure 16. 



sk id  pavement t o  an 1 1/2  x 1/4 x l /b-inch pa t t e rn  considerably reduces t h e  M 
speed gradient  as shown i n  f igu re  16, ind ica t ing  t h a t  t he  pavement grooves 
have g r e a t l y  a l l ev ia t ed  t h e  sxsceptabi l i ty  of t h i s  surface t o  dynamic hydra- 
planing e f f ec t s .  

5.5.1 
pavement macrotexture and microtexture. The macrotexture l o s s  i s  shown 
c l e a r l y  i n  tab.,e I where t h e  average texture depth decreases from 0.017 inch 
(c lean  a q h a l t )  t o  0.006 inch i n  t h e  heavy-rubber-coated touchdown area.  
"his reduct ion i n  macrotexture makes t h e  rubber-coated ungrooved sur face  more 
suscept ib le  t o  dynamic hydroplaning e f f e c t s  as r e f l ec t ed  by t h e  lower high 
speed f r i c t i o n  coe f f i c i en t s  ( f i g u r e  14) developed on t h i s  sur face  compare& 
t o  the  high speed f r i c t i o n  coe f f i c i en t s  of t h e  ungrooved c lean  surface 
( f i g u r e  16).  The loss i n  pavement microtexture from rubber deposi ts  cannot be 
ascer ta ined  from t h e  NASA grease t e s t ,  but (according t o  t h e  discussion of 
paragraph 5 . a )  may be in fe r r ed  from pavement sk id  r e s i s t ance  losses  t h a t  occur 
at low vehic le  speeds where dynamic hydroplaning ( V 2  ~ R W )  e f f e c t s  are small 
o r  negl igible .  Comparison of t h e  p values a t ' l ow speeds f o r  t h e  clean 
ungrooved sur face  ( f fgu rz  16) with ?kkdlow speed p . values f o r  t h e  ungrooved 
rubber coated surface ( f i g u r e  1 4 )  c l ea r ly  shows a %h& drop i n  sk id  r e s i s t ance  
f o r  t h e  rubber-coated surface.  This l o s s  is  increased with increased amounts 
of  rubber deposi ts  as shown i n  f i gu re  1 4 .  It i s  evident from these  data t h a t  
rubber coritamination of t h e  pavement tends t o  reduce the  sur face  microtexture 
and makes t h e  pavement more suscept ib le  t o  viscous hydrorlzning e f f e c t s .  

Rubber deposi ts  on Runway 9L/27R tend t o  reduce both t h e  ungrooved 

5.6 Skid resistance-Runway 9R/27L.- Figure 15 shows t h e  va r i a t ion  of  
p . Kith speed f o r  t he  four  c lean and rubber contminated areas  of Runwsy 
9875C)L t e s t e d  by the  DBV before  tind a f t e r  grooving under w e t  and dry con- 
d i t i ons .  These da t a  for  t h e  ugrooved surfaces  show the same t rends  with 
regard t o  macrotexture and micrr'textix-e e f f e c t s  as j u s t  described (paragraph 
5.5) for  Runway 9L/27R. 
clean asphal t  surface as compared w i t h  ungrooved surface ( f igu re  15c) a l so  
shows t h e  same trends as found f o r  t h e  clean asphal t  grooved and ungrooved 
surfaces  of  Runway 9L/27R ( f i g u r e  16 ) .  The  m a i n  point  t o  be discussed with 
f igu re  15 i s  t h e  e f f ec t  of rubber contamination on t h e  w e t  id  r e s i s t ance  of 
t h e  grooved pavement. Figure 4 shows t h a t  t he  lands b&ween the  grooves of 
t h e  grooved pavement i n  zone D a r e  heavily-coated with rubber and the  micro- 
t ex tu re  of t he  lands i s  very smooth. The grooved pavement u 
heavy rubber ( f i g u r e  15A) shows considerably l e s s  sk id  res i s fance  with speed 
than t h a t  found f o r  t h e  clean grooved sur face  ( f i g u r e  i 5 ( c ) ) ,  although a sub- 
s t a n t i a l  improvement is  ind ica ted  over t h e  ungrooved rubber-coated surface.  
This r e s u l t  suggests t h a t  the  1 1 / 2  x 1 / 4  x l/h-inch groove pa t t e rn  cannot 
completely r e s t o r e  or t ake  the  place of pavement microtexture.  
f r i c t i o n  losses due t o  viscous hydroplaning e f f e c t s  m u s t  be expected on 
grooved pavements having no appreciable  microtexture on t h e  lands between t!r 
grooves. It i s  not expected t h a t  t h e  w e t  sk id  res i s tance  of t h e  grooved sur- 
face  of zone D of Runway 9R/27L w i l l  decrease much mor(' than t h a t  shown i n  
f i gu re  IS( A ) .  However, it is expected t h a t  t h e  o the r  rubber-contminated 
areas of Runway 9R/27L (zones B & D) w i l l  decrease t o  the  sk id  res i s tance  
l e v e l  of zone D upon fu r the r  rubber deposi t  accumulation. 
suggests t h a t  per iodic  rubber removal programs may be required on the  touch- 
down areas  of theRrooved runways a t  M i a m i  t o  r e s t o r e  t h e  pavement microtexture 

The increase i n  skid r e s i s t ance  for t h e  grooved 

curve on 
k i d  

As a r e s u l t ,  

This observation 
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when t h e  rubber-coated areas become extensive i n  length.  

597 The comparison of t h e  sk id  r e s i s t ance  of clean grooved and porous 
pavement surface treatments obtained under w e t  and dry conditions by t h e  DBV 
i s  shown i n  f i g u r e  i 7 .  
groove p a t t e r n  used a t  M i a m i  I n t e rna t iona l  Airport compares favorably with 
both t h e  1 x 1/4 x l/b-inch groove p a t t e r n  used at  Beale AFB, and t h e  porous 
asphal t  su r f ace  used a t  Marham RAFB, England. 
C-141 j e t  t r a i s p o r t  developed near dry stopping performznce when t e s t e d  under 
t h e  same w e t  runway braking conditions o f  t h e  DBV t e s t .  

This comparison ind ica t e s  t h a t  1 1 / 2  x 1/4 x l / L i n c h  

On these  l a t t e r  two su r faces ,  a 

5.8 
method f o r  estimating t h e  s l i ppe r ines s  of a i r p o r t  runways i s  extremely simple 
i n  concept and e a s i l y  obtainable  from DBV w e t  and dry pivement stopping 
dis tance measuremec' :. 
type a i r c r a f t  i nd ica t e  t h a t  t h e  DRV 3DR reasonably p red ic t s  t h e  a i r c r a f t  SDR 
up t o  DBV S D R ' s  o f  approxinately 2.0 f o r  many w e t  runwav surfaces .  The NASA 
method i s  based on a DBV brake appl icat ion speed of 60 a.p.i.1. 
DBV %-ill not be at exactly 60 m.p.h. when brakes are applic-d, and t h e  tes t  
stopping dis tance obtalned i s  corrected t o  t h e  60 m.p.h. base by means of t h e  
equat i o 3  

DBV stopping d i s t ance  r a t i o  ( S D R ) . -  The NASA ieveloped DBV SDR 

Correlation tests performed w i t h  Peveral j e t  t r anspor t  

Usually, t h e  

3600 

"B ( t e s t )  
s =  B 2 'B (raw) (equation 5 )  

srhere 

- DBV stopping dis tance ( V  = 60 m.p.h), f t  sB B 
I 

'B (raw) DBV stopping dis tance a t  V B ( t e s t ) ,  ft 

DBV tes t  brake appl icat ion speed, m.p.h. 'B ( t e s t )  

The DBV SDR is  obtained from t h e  equation 

'B (wet 

dB (d ry )  
SDR - (equat ion 6 )  

where 

- DBV w e t  pavement s t o p p i w  dis tance corrected t o  
60 m.p.h. base (equat ion 5 ) ,  f t  'B ( w e t )  

- DBV dry pavement stopping dis tance corrected t o  
B (d ry )  60 m.p.h. base (equation 51, f t  

S 

Tables 1 1 - V I  l i s t  t h e  raw stopping dis tances  and brake applicLe,ion speeds 
obtained f o r  t h e  DBV runs made during t h e  March (before  grooving) and May 
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(af ter  grooving) t e s t s  a t  Miami I n t e r n a t i o n d  Airport .  
11-VI are t h e  corrected DBV s topring d is tances  (equation 5 )  and t h e  SDR values 
obtained from equation 6. 

Also shown i n  t a b l e s  

5.8.1 
a given a i r c r a f t  lsnding condition on a w e t  r-xiway. 
ted  i n  f i gu re  18 (obtained fran reference 3 ) .  
standards f o r  acceptable o r  unacceptable l eve l s  of runway s l ippe r ines s  ex i s t  
f o r  c i v i l  a i r p o r t s  i n  t h i s  country. However, t h e  present Federal  Aviation 
Regulations f o r  a i r c r a f t  lsnding c e r t i f i c a t i o n  (FAR-25.1251, and a; .rcraft  land- 
ing  operation (FAR-121,195) may be used t o  obta in  a reference runway s l i p p e r i -  
ness l eve l .  

Reference 3 developed a method f o r  es t imat ing t h e  average DBV SDR f o r  
This  method i s  i l lustra-  

A t  t h e  present t i m e  no f ede ra l  

5.8.1.1 Using t h e  a i r c r a f t  landing terminology shown i n  f i gu re  18, t he  air-  
c r a f t  dry landing d i s t a w e ,  SL, i s  determined from dry landing c e r t i f i c a t i o n  
tests ('without use of reverse  t h r u s t )  i n  accordance w i t h  Federal  Aviation 
Regulation (FAR-25.i?5). 
rule (FAR-121.195) increases  t h i s  dry landing d is tance ,  S , by t 3 e  f ac to r  
1.667 t o  a r r i v e  at  t he  a i r c r a f t  dry landing f i e l d  lengti,LSFm. For det t rans-  
p c r t  operat ion on wet rmways, FAX-121.195 a r b i t r a r i l y  increases  SFm by a n  
addi t iona l  15 percent o r  by a f ac to r  of 1 .15.  
t i o n  dry landing d is tance  S . Using the  L t o  obtain t h e  j e t  t ranspor t  wet runway f i e l d  length ,  S 
terminology of  f igu re  18, each segment comprising t h e  c c r t i r f E h t i o n  dry land- 
ing d is tance  S 
t h e  wet. landing f i e l c  length SFAR (wet) 

The Federal Aviation Regulatian landing operatiomil 

Thus, t!;c a i r c r a f t  c e r t i f i c a -  
is  increased by t h e  f ac to r s  1.667 x 1 . 1 5  =: 1.92 

P1LX 

may be ind iv idua l ly  increased by t h e  f ac to r  1.92 t o  ob ta in  L 

'FAR (wet) = 1.92 S + 1.92 ST + 1.92 SB (equat ion 7 )  A 

Since S 
tance,  fl.92 S 
Federal Aviation Regulation (FAR-121.195) governing j e t  transpart landings on 
wet runways makes allowance f o r  a runway s l ippe r ines s  l e v e l  equivalent t i >  SDR 
= 1.92. 

i n  equation 7 i s  the  aircraf t ,  c e r , i f i c a t i o n  dry runway braking dis- 
i s  t h e  equivalent of an a i r c r a f t  SDR = 1.92. Thus, t h e  present B 

5.8.1.2 The DBV on a l e v e l  runway under zero w5nd conditions requires  approxi- 
s a t e l y  1900 f e e t  t o  coast  t o  a s top  from 60 m.p.h. i n  a n  unbraked condition 
due t o  t h e  r e l a t i v e l y  small decelerat ions ac t ing  on the  DBV r e s u l t i n g  from a i r  
r e s i s t ance ,  unbraked t i r e  r o l l i n g  r e s i s t ance ,  and transmission dreg (see 
f i g w e  1 2 ) .  This tes t  condi t ion i s  equivalent t o  a pavement sk id  r e s i s t ance  of 

Pavements with high s k i d  sk id  zero (rr  
r e s i s t ance  under wet condi t ions develop D7V SDR values near 1 . 0  while pave- 
ments with low skid r e s i s t ance  i n  t h e  w e t  fend to produce higher SDR values 
t h a t  approach t h e  zero f r i c t i o n  boundary SLR = 12.7. 
values encountered i!i runway evalcat ions up t o  t h e  time of t h e  present  t e s t s  
were obtained on a wet asphal t  surface and a hard packed snow-covered surface.  
The wet asphal t  surface s tudied  was a heavily rubber-coated t a r  seal coat with 
g ran i t e  chips (3/16 in-minus) ro l l ed  i n t o  h9t tar  w d  heavily broomed. Th: 
average L,exture depth f o r  t h i s  sur face  (NASA grease t e s t )  was 0.0039 i n .  

= 0 )  arid r e s u l t s  i n  a DBV SDR ?. 12.7. 

T h e  highest  DBV SDR 
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When a r t i f i c a l l y  wetted (water depth y 0.02 i n . )  and t e ; t ed  with the  DBV, an 
SDR = 4.05 was obtained. 
w a s  tested by t h e  DBV and a C-141 j e t  t ranspor t  ( re ference  3).  On t h i s  sur- 
face,  t he  DBV obtained an SDR = 4.16 and t h e  C-lhl a i r c r a f t  an SUR = 3.71. 
thus can be seen t h a t  smooth runway surfaces  when covered with small amounts 
of water can be as s l ippery  t o  a i r c r a f t  and ground vehic les  as runways 
covered with compacted snow o r  i c e ,  

5.8.2 DBV SDR evaluat ion of M i a m i  I n t e rna t iona l  Airport  runways before  a g  
a f t e r y . -  
mcnts obtained on Runways 9R/27L and gL/2TR before and a f t e r  t h e  1972 asphal t  
wer l ays .  
be more s l ippery  when w e t  than the  old surfaces  they replaced. Also shown i n  
t a b l e  I X  are Mu-Meter f r i c t i o n  reading values obtained before and a f t e r  t h e  
1972 asphal t  overlays. The Mu-Meter f r i c t i o n  readings,  espec ia l ly  on Runway 
9L/27R,' does not show t h i s  t rend  and ind ica t e  a d i r e c t l y  opposi te  trend-- 
t h a t  t he  new asphal t  overlay sur face  on Runway 9L/27R was a superior  wet 
f r i c t i o n  surface t o  t h e  o ld  asphal t  surface it replaced.  

5.8.3 
after grooving.- 
9R/27L bei'ore and a f t e r  grooving. 
t rends shown from t h e  ASTM braking f r i c t i o n  c o e f f i c i e n t ,  11 , analys is  of 
these  surfaces  performed i n  paragraphs 5.3-5.7. 
with decreasing values of u kid. 
wet pavements noted i n  t h e  Is analys is  over t h e  ungrooved pavement lJ 
values i s  r e f l ec t ed  i n  t a b l e  5 . 4 ~  correspondingly lower DBV SDR iralues. 

5.8.4 Average DBV SDR f o r  Runway 9R/27L before  and a f t e r  grooving.- 
runway survey, described i n  paragraph 4 .1 ,  indicate.: t h e  following l e w t h s  f o r  
t h e  DBV tes t  zones on Runway 9R/27L f o r  March lh, 1973: 

The dry com9acted snow-covered concrete ramp studied 

It 

Table I X  sh3ws t h e  comparison of DBV SDR measdre- 

These data  ind ica te  t h a t  t h e  cew asphal t  overlay ;drfaces tended t o  

DBV SDR evaluat ion of  M i a m i  I n t e rna t iona l  Airport  runways before and 
Table X shows t h e  DBV SDR comparison f o r  Runways 9L/27R and 

These data are i n  good agreement with t h e  

The DHV S8kiffends t o  increase 
The improved sk id  r e s i s t ance  of the grooved 

sk id  

The 

- Zone Lewth, ft 

A 
B 
C 
D 

3i300 
3200 

2000 
1150 

TJsing t h e  highest  DBV SDR values found for these  tes t  zones i n  t a b l e  I T  
(before  g roovhg)  and t a b l e  V ( a k e r  grooving), t h e  average DBV SDR f o r  
Runway 9R/27L was computed according t o  t h e  method described i n  f igu re  18. 
The results obtained are shown i n  t a b l e  XI. The da ta  shown i n  t h i s  t a b l e  
indica'.;. t h a t  hnway 9H/27L before grooving was more slippery then the  re fer -  
ence w e t  runway devel.oped i n  paragraph 5.8.1.1., while t h e  runway af ter  groov- 
ing was less s l ippe ry  than  t h e  reference w e t  runway. I t  should be noted t h a t  
by using t h e  zone lengths  measured i n  March 1973, a very conservative everage 
DBV SDR is  obtained i n  table XI f o r  t h e  grooved runway. This r e s u l t s  from t h e  
f a c t  t ha t  t h e  rubber depos i t s  on Runway 3P.127L were removed at  t h e  time of 
grooving. 
t h e  May UBV tests (af ter  grooving) were much shor te r  than those  found during 
ti;.? March survey, which represented a n  approximately 4-month rubber accumulation 

The length  of  the  rubber depos i t s  observed b u t  not  measured during 
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period ( s ince  tne  Hovember 1972 overlay) .  
t rack  ind ica tes  a t rend f o r  a i r c raF t  t i r e  spin-up at touchdown t o  occur i n  a 
shorter time pe?iod f o r  a grooved runway than f o r  an ungroovee i'anway. !#us 
rubber deposi ts  from an a i r c r a f t  touchdcxn on a grooved runway s k o u l d  %e a t  
least sho r t e r  i n  l eng th  than those  found on an ungrooved rmway f o r  similar 
landing conditions.  It is ant ic ipa ted ,  therefore ,  that  t h e  average SDR of 1.n 
found f o r  Runway 9L/27R i n  table X? w i l l  not be reached u n t i l  September-October 
1973 whcc the  rubber deposits on the runway should then approximate t h e  March 
14, 1973, survey condition. 

5.8.5 
described i n  paragraph 4.1, indicated t h e  following lerlgths f o r  t h e  DBV tes t  
zones on Runway 9L/27R for March 14, 1973. 

Research at t h e  NASA landing loads 

AveraRe DBV SDR f o r  Runway gL/27R before  Rrooviq.-  The runway survey, 

Zone - 
A 
a 
C 
L 

Length, f t  

1700 
4800 
1000 
3000 

Using the highest  DBt' SDR values found f o r  
(before  grooving), t h e  average DBV SDR for 
ing t o  t h e  method described i n  figure 18. 

these test zones i n  table I11 
Runway 9L/27R yas computed accord- 
The results Dbtained are shown i n  

ta3le X I .  
grooving was  aore  s l ippery  than t h e  reference w e t  runway developed ir. para- 
graph 5.8.1.1 when tested i n  an a r t i f i c a l l y  w e t t e d  condition. An average DBV 
SDR f o r  Iiunway 9L/27F. (after grooving) could co t  be computed because grooving 
of t h e  runway had no:. bfen completed at t h e  tine of the  May e-9 DBV tests. 

The data ahown i n  t h i s  table ind ica t e  t h a t  Runway 9L/27R before  

6.0 CO!KLUDING REMARKS 

Rumrays 9R/27L and 9L/27R were evaluated under a r t i f i c a l l y  wetted 
conditions with t h e  NASA DBV before and after g rowing  the  runway surfaces  t o  
a 1 1/2 x 1/h x l/h-inch groove pat tern.  
incLL4-d a pavement drainage ana lys i s ,  a pavement sk id  r e s i s t ance  ana lys i s ,  
and a 3Br wet / -  s topping d is tance  r a t i o  (SDR) ana lys i s  y i e l d  t he  following 
general  observations:  

Results of t h e  evaluat ion which 

1. The construct ion techniques employed i n  lay ing  t n e  
November 1972 asphal t  overlays on rumrays 9R/2?L and 9L/27R 
resCLted i n  obtaining a smooth sur face  f i n i s h  on these run- 
ways wi th  adequcte a i c ro t ex tu re ,  but  r a t h e r  small macrotexture. 

2. The drainage analysis inciicated that t h e  ungrooved run- 
way surfaces  were slow draining under w e t  condi t ions,  

I n  con t r a s t ,  
t h e  grooved pavements drained rap id ly  under wet conditions 
even i n  the presence of sur face  winds. 

3pecially i n  the presence of sur face  winds. 
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3. The pavement skid resis tance analysis  indicated t h e  

(a) 
ungrooved runway surfaces was low under w e t  
conditions indicat ing poor i n t e rna l  water &ai+ 
age at t h e  ti relpavement-sur f ace-macrotexture . 
(b) The low speed skid resis tance of t he  wet 
ungrooved runway surfaces was high i n  areas of t he  
runway uncontaminated with rubber deposi ts ,  and 
low i n  the  touchdown areas t h a t  were heavily con- 
taminated with rubber deposits. 

following: 

The high speed skid res i s tance  of t h e  w e t  

( c )  
speed gradient a t  high speeds, and subs t a&fh ly  
raised t h e  high speed skid res i s tance  of t he  runway 
surfaces under w e t  conditions. 

Grooving t h e  runways decreased the LI 

( d )  
skid res i s tance  of the w e t  pavements i n  t h e  heavy 
rubber contaminated areas. 

Grooving t h e  runways improved the low speed 

(e) 
res i s tance  of t he  surfaces under dry conditions. 

The DBV SDR analysis  indicated t h e  folluuing: 

Grooving t h e  pavements did not change tde  skid 

4. 

( a )  
ungrooved runway surfaces tha t  were heavily contam- 
inated with rubber. The SDR values measured on such 
surfaces were of t he  same order of magnitude as SDR 
values measzed on snow- and ice-covered runways. 

Vehicle stopping performance was poor on w e t  

(b) 
on w e t  grooved clean asphalt  runway surfaces and 
approached the  vehicle  stopping performance obtained 
under dry pavement conditions. 

Vehicle stopping performance w a s  grea t ly  improved 

( c )  
improved when t h e  heavy rubber coated touchdown areas 
of  t he  runway were grooved (SDR = 2.5 grooved com- 
pared with SDR = 4.62 ungrooved) , but t he  reduced 
s l ipperiness  l e v e l  rrom grooving s t i l l  exceeded the  
s l ipperiness  l e v e l  of t h e  reference w e t  runway (SDR = 
1.92). This result indicates  periodic rubber removal 
program8 may be required t o  r e s to re  the  pavement 
microtexture when the  rubber deposi ts  on t h e  runways 
become extensive i n  area. 

Vehicle w e t  stopping performance was considerably 
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TABLE I.- Ungrooved pavement average texture depths at M i d  International 
Airport March 14-15, 1973 (obtained f r o m  NASA grease test). 

, RUNWAY 

9R/27L 

9L/27R 

12/30 

zom 
A 
B 
C' 
D 

A 
B 
C 
D 

MIDDLE 

GREASE AREA 

9.25 x 4 = 37 I N 2  
6.75 x 4 = 27 I N 2  

16.75 x 4 = 67 I N 2  
7.5 x 4 = 30 IN2 

11 x 4 = 44 I N 2  
7 x 4 = 28 IN2 
6.25 x 4 = 25 I N 2  

20.375 x 4 = 61.5 IN2 

2.75 x 4 = 11 IN2 

VOLUME OF GREASE USED = 0.486 I R 3  

AVERAGE TEXTURE 
DEPTH. I N c H E j  

.013 

.018 

.016 

.007 

' . 011 
.017 
.019 
.006 

.044 

TJ2lCMJR.E DEPTH = VOLUME 
AREA 
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TABLE VI1.- Description of pavement surfaces used i n  Texas Transportation Institute 
study on pavement drainage (reference 1) 

~~ 

Aggrewte Taxa8 Mighway 

In. Speci f icat ions 

314 cla88 A 

IUniarm Sire,  Dapartncnt 

Item 364 

3f 4 C I J S 8  A 

Item 364 

Surface Type I 
~~~ ~~ 

A ve rqe  Terture 
brpth, +* 

In. 

0.035 

0.0% 

Rounded Sil lceou8 
Gravel Port land 
Cement Concre+.t 
(lran8verrc drag)* 

6 r a w I  kor t land  
Cemnt Concrete 
(long i t ud' n r  I 
drag) * 

2 Clay f l ' l c d  Tar 
Enul8lc.n (Jmni te )  
Sea I 

0.009 
No Aqgregate - 

3 

4 

5 

' 6  

7 

~ ~~ ~ 

Crurhcd Llartone I /2 fyp. 0 0.003 
Aggre)rte Mot Mln 
Asphr I t Concrete 
(Terrazzo F in i  rh )  

Crcn'ied S I I I ceous 1 /4 TY# F I 0.019 
C r a w l  M o t  M I X  A i -  
phrlt Concrete Item 350 

It- 340 

Rounded SiliCeOU8 Sf 0 hp. c 0 .OB 
Gravel Mot Mix A8- 
phrlt Concrete Item 340 

Rounded Si l iceous I /2 Grad. 4 0.141 
Craw l  Surface 
Treatmnt (Chip 
Sea I Item 320 

Synthetic Llght-  I /2 G r d c  4 0.165 
weight Aggregate 
Surface Tr ra t -  

f 

8 Synthetic L l g h t -  
wight Apgregate 
Mot A i r  Asphatt 
Concrete 

1 /2 Type L 

Sp. Item 2103 

0.020 

W i t h  respect t o  d l rec t l on  of v rh lcu la r  t r a w l  

**Obtrincd by Putty Irrprersion Bathod (E) 



TABLE VII1.- DISTANCE BGlWEEN MAIN LANDlNG GEARS FOR SOME JET TRANSPORT 
TYPE AIRCRAFT. 

AIRCRAFT TYPE 

BAC 1-11 

DC-9 

CARAVELLE 

B-737 

B-727 

C'J-880 

cv-ggo 

DC- 8 

B-707 

B-747 

SE-210 

DISTANCC BETWEEN 
MAIN LANDING GEARS, FEET 

14.25 

16.42 

17.08 

17.17 

18.75 

18.83 

19.92 

20.83 

22.08 

36.08 



TABLE 1X.- Comparison of t r a c t i o n  measurements ou Miami In t e rna t iona l  A i r p o r t  
&ways 9R/27L end 9L/27R obtained before  and after 1972 asphal t  overlays. 

RUNWAY 

9Rf27L 

9L/27R 

ZONE 

A 
B 
C 
D 

A 
B 
C 
D 

DBV 
*DEC 1971 

2.87 
1.59 

4.64 
-- 

2.13 
1.68 

2.73 
-- 

DR > 

MARCH 1973- 

3.51 
2.34 
2.52 
4.62 
I 

2.38 
1.78 
2.29 
3.16 

* FROM TABLE If REPORT NO. FAA-RD-72-61 

WJ-METER FRIC 
*DEC 1971 

.52 

.63 

a 30 
-- 

.58 

.58 

.50 
-- 

EON READING 
:':*JAN 1973 
-- 

.455 

.55 

.435 
-- 

l 70 
,665 

.58 
-- 

* FROM MEA$Ult"WNTS MhDE BY PAVEMENT SAFETY COW. FOR MDE COUNTY 
PORT AUTHORITY. (S?URCE NTSB) 
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AC!CUAI, WATER DEpIlIs I N  NATURAL RAIN - - 
SURFACE AIRPoRT TEXTURE SLOPE, ft 

ft 

CROSS- 

DEPTH, I N .  

CONCRETE 1 
100 
- .004 

0 -  

PREDICTED WATER DEPTHS 
I - -- BRITISH ROAD RESEARCH (EQUATION 2) 
- TEXAS TRANSPORTATION * O r  

INSTITUTE (EQUATION 1) 

L = 200 ft. 

012 - 

I 
0 .2 .4 .6 , .8 1.0 , 1.2 1.4 , 1.6 

RAI~FALL INTENSITY, I ,  IN./HOUR 

FIGURE 7.- EFF'ECTS OF RAINFALL I m S I T Y  AND DRAINAGE PATH mm 
ON UNGROOVED PA- WATER DEPTH. 



d = E.38 x lo-' (L)'4s (I)'" ($ ) *42  1 i -T (equation 1) 
2 

PAvEMElyT AVERAGE 
TEXTURE DEPTH, T ,  I N .  

a 

0 1 2 3 4 5 6 

RAINFALL IlJTENsITY, I,  I N .  /HOUR 

A) CALCULATEXI EFFECTS OF RAINFALL INTENSITY, AND PA- AVERAGE 
TEXTURE DEPTH ON PAVEMAlOT WATER DE?TH I N  STILL A I R .  

PATTERN, 114. 
GROOVE 

L I 1 I I I 4 
0 0 02 0 0 4  .06 . 08 .10 .12 

UNGROOVED PAYWEXF AVERACE TEXTURE DEPTH, T , I N .  
Bj CALCULATED INCREASE IN 'PAYEMX~VT AVERAGE TEXTISKT DEPTH FROM 

RUNWAY GROOVES. 

FIGURE 8.- CALCULATED EFFECTS OF PA- AVERAGE TEXTURE DEPIlI AND RAINFALL ImSITY 
ON WATER DE€THS DEVELOPED ON P A W m S  DURING RAI14STORMS I N  STILL A I R ,  
PAVEMENT CROSS SLOPE, (s), 1 . DRAINAGE PATH LENGTH, (L), 10 feet. 
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TZME To STOP, SEC. 

FIGURE 12.- COMPARISON OF DBV H O W Z E D  VELOCITY TIM3 HISTORIES OBTAIRED 
DURING .STS OR DRY RUIWAYS AT MIAMI INTRIIOATI03AL AIl?F'Oi?T. 
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MARCH 15, 1973, DBV 
(AVERAGE OF RUIIS 1& h 16) 

FRXCTIOIO 
Lo6sDuETo 
IHCREASED RUBBER 

M Y  8, 1973, DBV TEST 
OF RURS 4 h 6 )  
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FIGURF, 14.- ?3F'FECT OP INCREASED RUBBER DEPOSITS (ACCRUED BJCWEZIV MARCH 15 AND MAY 8, 1973) 
IN ZONE D op EUWAY 9~/2m OH ASTM TIRE BRAKZEOG F~ICTION COEFF'ICIEIST, IJ SKID. 
TVTS MADE WITH SINGLE WATER TRUCK WEFTIm. 
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FIGURE 15.- CONCLUDED. 
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FIGURE 16.- SKID RESISTANCE OF MIA RUNWAY 9 L / 2 7 R  ZOm B (CLEAN ASPHALT) 
BEFORE AND AFTER GROOVING UNDER DRY AND WGT CONDITIONS. 



DRY PAVES.IENT 

Asm SMOOTH 

TREAD T I R E  
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F I G U R E  17.- COMPARISOM OF S K I D  R E S I S T A N C E  OF GROOVEDAND POROUS PAVEMENT SURFACE 
TREATMENTS UNDER DRY AND WET CONDITIONS.  



cl istance,~ 

-- Dry landing distance, SL 

k-._Dry landing field length, SFAR -__- 
Threshold (SI, 1.667) 

&Aircraft brAe appliration p i n t  
/ / I / /  / I /  - - /Rubber-roated area Clean Rublwr-coated area 

- s 6 -  

Aircraft landing terminology. 

S -I 
(sl + s2 - SS) x* + (s3 + s53 5 + s4xc - 

X =  s - S6 

FIGURE 18.- METHOD FOR CALCULATIlVG THE AVERAGE DIAGONALBRAKED TEST VEHICLE 
Wm-DRY STOPPING DISTANCE RATIO X FOR A G I M O  AIRCRMT LANDING 
CONDITION. 
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