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FOREWORD

This report constitutes a part of the work completed during the year

1975-1976 on a research project entitled "Radiation-Induced Precursor

Flow Field Ahead of an Entry Body in the Outer Planetary Atmospheres."

The work was supported by the NASA-Langley Research Center through

Contract NAS1-11707- 92. The contract was monitored by Mr. Randolph A.

•	 Graves, Jr. of SSD-Aerothermodynamics Branch.
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RADIATION INDUCED PRECURSOR FLOW FIELD

AHEAD OF A JOVIAN ENTRY BODY

by

S. N. Tiwari* and K. Y. Szema**

SUMMARY

The change in flow properties ahead of the bow shock of a Jovian entry

body, resulting from absorption of radiation from the shock layer, is inves-

tigated. Ultraviolet radiation is absorbed by the free stream gases, causing

dissociation, ionization, and an increase in enthalpy of flow ahead of the

shock wave. As a result of increased fluid enthalpy, the entire flow field

in the precursor region is perturbed. The variation in flow properties is

determined by employing the small perturbation technique of classical aero-

dynamics as well as the thin layer approximation for the preheating zone.

By employing physically realistic models for radiative transfer, solutions

are obtained for velocity, pressure, density, temperature, and enthalpy

variations. The results indicate that the precursor flow effects, in general,

are greater at higher altitudes. Just ahead of the shock, however, the

effects are larger at lower altitudes. Pre-heating of the gas significantly

increases the static pressure and temperature ahead of the shock for velo-

cities exceeding 36 km/sec. The agreement between the small perturbation

and thin layer approximation results are found to be excellent.

*Professor, Old Dominion University
**Research Assistant, Old Dominion University
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LIST OF SYMBOLS

A,V 	radiative strength of source, ergs [Eq. (3.13)]

a 
	 quantity defined in [Eq. (2.24a)], in cm-sec/erg

Bv (T)	 Planck black-body radiation function (Eq. (4.3)], erg /cm2

by 	quantity defined in Eq. ( 2.24b)

Ca 	mass fraction of species a

D	 dissociation energy, erg/mole

Fj 	perturbation potential function [Eqs. (3.16), (3.17)]

G 
	 quantity defined in Eq. (3.19)

H	 specific enthalpy, ergs/gm

Hj 	quantity defined in Eqs. (3), (20)

HT	total enthalpy per unit mass, ergs/gm

HT	total perturbation enthalphy (Eq. (2.12)]
1

%	 specific irradiance of radiation of frequency v, erg/cm2

Ho 	enthalpy of mixture [Eq. (5.5)], erg/gm

Hoa
	 enthalpy of species a, cal/mole

H1 	specific perturbation enthalpy [Eq. (2.7d)]

h	 Planck ' s constant - 6.6256 X 1027 erg-sec

I	 ionization energy, erg/mole

KH	net rate of production of species H, gm/cm 3-sec

KH2+	 net rate of production of species H2+, gm/cm 3-sec

a	 net rate of production of species a, gm/cm 3-sec
free stream Mach number

m1	 net weight of a H2 molecule, gm/molecule

NH	
number density of H2

2
P	 pressure, dyne/cm2

P^	 quantity defined in Eq. (2.23b)
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R.

P1	 pressure perturbation

POO
	 free stream pressure, dyne/cm2

QR	divergence of net radiant heat flux, erg/cm3-sec

g
IV
(0)	 specific radiative flux density at shock wave, erg/cm2

R	 universal gas constant - 8.3143 X 10 7 erg/mole-°K

R 
	 radius of the radiating gas cap, cm

Rs	radius of the bow shock wave, cm

r	 cylindrical radial coordinate, cm

s	 spherical radial coordinate, cm

T	 temperature, °K

Ts	temperature at the shock front, °K

T.	 free-stream temperature, °K

T1	first-order temperature perturbation, °K

T2	second-order temperature perturbation, °K

V	 velocity vector, cm/sec

V1	first-order velocity perturbation, cm/sec

V2	second-order velocity perturbation, cm/sec

V	 velocity component normal to the shock surface, cm/sec

VCO
	 free-stream velocity, cm/sec

Vlr	
velocity perturbation component at the r-direction in cylindrical

coordinate, cm/sec

Vlx	 velocity perturbation component at the x-direction, cm/sec

Vly	 velocity perturbation component at the y-direction, cm/sec

Vlz	 velocity perturbation component at the z-direction, cm/sec

Wa	molecular weight, gm/mole

YD	photodissociation yield

Y 
	 photoionization yield
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Z altitude of entry, km (Table 5.1)

z longitudinal coordinate, cm

S quantity defined in Eq.	 (4.5)

t quantity defined in Eq.	 (2.23a)

Y specific heat ratio

e effective emissivity

optical depth defined in Eq. 	 (3.3)

n quantity defined in Eq.	 (3.14)

IC inverse of photon mean free path, 1/cmV

A quantity defined in Eq.	 (3.14)

u quantity defined in Eq. 	 (3.14)

P density, g/cm3

Pi first-order density perturbation

a Stefan-Boltzmann constant - 5.6697 X 10 5 erg/cm 2-sec-°K'

aD (v) photodissociation absorption cross section, cm 

aI N) photoionization absorption cross section, cm 

potential function defined in Eq. (2.27)

i
potential function defined in Eq. (2.13)

quantity defined in Eq.	 (4.5)
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1. INTRODUCTION

The word "precursor" gets its name from a Latin word "praecursor"

(prae - before + currere - run) which means "forerunner." In the present

context, precursor region flow (or flow in the precursor zone) means flow

field ahead of a shock layer which is influenced by the conditions of the

shock layer. It is well understood now that at high speed entry conditions

(entry speeds in excess of parabolic speed), radiation plays a very important

role in the analyses of flow phenomena around the body and that the radiative

energy transferred to the body usually overtakes the aerodynamic heat transfer

[1-10).* Radiative energy transfer from the shock layer of a blunt body into

the free stream reduces the total enthalpy of the shock layer while increasing

the enthalpy of the free stream gases. Because of this increase in enthalpy

the entire flow field ahead of the shock layer and around the body is influ-

enced significantly. The precursor flow region is considered to be the region

ahead of a shock wave in which the flow field parameters have been changed from

free stream conditions due to absorption of radiation from the incandescent

shock layer. Most of the radiative energy transferred from the shock layer

into the cold region ahead of the shock is lost to infinity unless it is equal

to or greater than the energy required for dissociation of the cold gas. When

the photon energy is greater than the dissociation energy, it is strongly ab-

sorbed by the cold gas in the ultraviolet continuum range. The absorbed energy

dissociates and ionizes the gas and this results in change of flow properties

in the precursor region. In particular, the temperature and pressure of the

gas is increased while velocity is decreased. The change in flow properties

of the precursor region, in turn, influences the flow characteristics within

the shock layer itself. The problem, therefore, becomes a coupled one and

iterative methods are required for its solution.

*Numbers in brackets indicate references.
5



Only a limited number of analyses on radiation-induced precursor flow are

available in the literature. Works available until 1968 are discussed, in

detail, by Smith [11,12]. By employing the linearized theory of aerodynamics,

Smith [11,12] investigated the flow in the precursor region of a reentry body

in the earth's atmosphere. The cases of plane, spherical, and cylindrical

point sources were considered and solutions were obtained for a range of alti-

tudes and free stream conditions. It was found that for velocities exceeding

18 km/sec, precursor flow effects are greatest at altitudes between 30 and 46 km.

It was further concluded that preheating of air may cause an order of magnitude

increase in the static pressure and temperature ahead of the shock wave for

velocities exceeding 15 km/sec. Lasher and Wilson [13,14] investigated the

level of precursor absorption and its resultant effect on surface radiation

heating for earth's entry conditions. They concluded that, for velocities less

than 18 km/sec, precursor heating effects are relatively unimportant in deter-

mining the radiative flux reaching the surface. At velocities greater than

18 km/sec, the amount of energy loss from the shock layer and resultant pre-

cursor heating correction was found to be significantly large. Liu [15,16] also

investigated the influence of upstream absorption by cold air on the stagnation

region shock layer radiation. The thin layer approximation was applied to both

the shock layer and the preheating zone (the precursor region). The problem

was formulated for the inviscid flow over smooth blunt bodies but the detailed

calculations were carried out only for the stagnation region. The general

results were compared with results of two approximate formulations. The first

approximate formulation neglects the upstream influence and the second one

essentially uses the iterative procedure described by Lasher and Wilson [13,14].

The results are compared for different values of a radiation/convection para-

meter. A few other works, related to the effects of upstream absorption by air

6



on the shock layer radiation, are discussed by Liu [15,16]. Some works on

precursor ionization for air as well as hydrogen-h( :ium atmosphere are pre-

sented in [17-21].

The purpose of this study is to investigate the changes in flow properties

in the preheating zone of a Jovian entry body resulting from absorption of the

radiation from the chock layer. As a first approach, the perturbation tech-

nique adapted by Smith [11,12] for the earth's atmosphere is used here for the

•	 hydrogen-helium atmosphere. By introducing appropriate thermodynamic and

spectral information on hydrogen-helium atmosphere, proper modifications are

made in the governing equations and results are obtained for Jupiter's entry

conditions. Basic formulation of the problem is presented in Sec. 2 and solu-

tions for special cases are obtained in Sec. 3. perturbation equations are

specialized for the photoabsorption model in Sec. 4, sources of data and solu-

tion procedures are discussed in Sec. 5, and results of flow perturbations are

presented in Sec. 6. Finally, in Sec. 7, an alternate approach of thin pre-

cursor region approximation is adopted for analysis of the entire problem and

the results are compared with the results of small perturbation theory.

7



2. BASIC FORMULATION

The physical model and coordinate system for a Jovian entry body is shown

in Fig. 2.1. The flow field ahead of the body can be divided primarily into

two regions, the precursor region and the shock layer. In this study, attention

is directed to the precursor region where flow is assumed to be steady and invis-

cid. The flow properties are considered to be uniform at large distances from

the body. For this region, conservation equations can be written as [22-24]

Mass Continuity: V - (PV)	 0 (2.1)

Momentum: p(V - VV) _ -Op (2.2)

Energy: p(V - OH T ) - QR (2.3)

Species Continuity: p(V - VCa) = Ka (2.4)

State: p - pRT	 (Ca/Wa) (2.5)
a

where the t^tal enthalpy per unit mass is given by

HT - H + V2/2	 (2.6)

In the above equations, Q R - 0-qR is the net rate of radiant energy absorbed

per unit volume per unit time, Ka represents the net rate of production of

species a per unit volume per unit time, and W a is the molecular weight of

species a .

As a result of increased fluid enthalpy, the entire flow field in the

precursor region is perturbed. By following the small perturbation technique

of classical aerodynamics, the flow properties can be expressed in perturbation

serie- as [11,12,22,23]

8
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P s p. (1 + p 1 + p2 + ...) (2.7a)

P = p".( 1 + p 	 + p2 + ...) (2.7b)

V = VOO(k + V1 + V2 + ...) (2.7c)

H = HOD + V.(H 1 + H2 + ...) (2.7d)

T = T^ + T1 + T2 + ... (2.7e)

Ca = Ca	+ C	 + C	 + ... (2.7f)aa	
1	 2

In these equations, all the perturbation variables (except temperature)

are expressed in nondimensional form.	 The unit vector k represents the

direction of unperturbed free-stream velocity.

If	
Q 
	 and	 Ka	 can be considered as first-order perturbation terms,

then substitution of Eqs.	 (2.7) into Eqs.	 (2.1)-(2.6) results in the first-

order perturbation equations as

Continuity:	 0	 V1 + apt /az = 0 (2•$)

Momentum:	 avl/az _ -(1/yM2)Op (2.9)

Energy:	 aHT /az	 QR/(per V3) (2.10)

1

Species:	 ac  /az	 Ka/(per 0)
(2.11)

1

HT	H1 + V1z (2.12)

1

The boundary conditions are that perturbation quantities vanish at z

and that no singularities exist except at the origin.

10
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It can be shown that the flow under consideration is irrotational [ 11,22].

Thus, there exists a potential 0 such that

Vl = VO	 (2.13)

For z-direction, integration of Eq. (2.9) results in

pl = _ (y 2) a^/a z = -(yM 2 )Vlz 	(2.14)

Equation (2.8) now can be expressed as

02 0 + ap1/az = 0	 (2.15)

In order to evaluate 3p,/3z and to relate H 1 to other variables, it is

necessary to consider the gas model and radiation.

For the Jupiter ' s atmosphere, the gas model is taken to be: CH 
2 
= 89%

and CHe - 11% by mole fraction (or CH2 - 80.82% and CH2 = 19.18% by mass

fraction). The radiation effect on the gas ahead of the shock produces Hn

H, and electrons e - by photodissociation and photoionization, and also

increases the enthalpy. Any other species which may be produced are neglected.

The contribution of radiation to the gas pressure is neglected. It is further

assumed that the internal degrees of freedom of various species (i.e., vibra-

tional and electronic modes) are not excited. For this gas model, the equation

of state ( for the first order perturbation) can be expressed as

pl =	
I

(400/180.17)
`CH + C

H +)/21 + (T T".) + p l	 (2.16)
2	 .!

By following the procedure described by Smith [11 , 12], the first-order

perturbation relation for enthalpy is found to be

H I = (1/V2) 51.527 RT 1 + C(5/4)RT,, + I/2, C, +

+ C(3/4)RT^ + DICH 
5	

(2.17)

11



QR = NH f CO

 Hv a(v)dv
2

(2.18)

ki

where I and D represent the ionization and dissociation energy respectively.

It should be pointed out here that D in the above equation actually represents

half the energy required for dissociation.

As pointed out earlier, the upstream gas absorbs the energy radiated from

the shock layer in the ultraviolet continuum range. The radiation from the

perturbed gas due to recombination (i.e., emission) is neglected. The amount

of radiative energy absorbed by the perturbed gas per unit volume and time,

QR , is given by

where NH2 is the number density of H 2 , Hv is specific irradiance and a(v)

is the photon absorption cross section of H 2 at frequency V.

In determining the rate of production of species in the precursor region,

only photodissociation and photoionization are considered. Recombination is

assumed to be a second-order effect and, therefore, is neglected in the present

linearized treatment. The net rate of production of species, therefore, is

given by [11,24)

I	 al NH2 f co
 
(Hv/hv) QD(v)dV	 (2.19a)

KH2+ = ml NH f (Hv
/hv) QI (v)dv	 (2.19b)

z

where ml represents the weight of a H 2 molecule (in grams per molecule),

and Vv) and QI (v) are the absorption cross section for photodissociation

and photoionization, respectively.

Since the problem treated here is linear, it is permissible to obtain a

solution for arbitrary frequency, and then integrate this solution over the

spectrum to obtain the solution for the problem. Thus, in the development that

12



follows, flow-field perturbations will be considered for a unit frequency

interval. Equations (2.10) and (2.11) now can be written as 	 w

aHTl /az = NH2 a M ( P:, VCO) Hv 	 (2.20)

aCH/az = C ml NH2 YD Q(v)/(P„ V. hv )J Hv	 (2.21a)

3CH2+/ 3z = [Ml N H 2 Y  a(v)/(P. V. hv)] H 	 (2.21b)

where YD and Y  represent photodissociation and photoionization yields,

respectively.

In order to express the governing equations in terms of perturbation

potential, p l is first eliminated by combining Eqs. (2.14) and (2.16). The

resulting equation is then differentiated with respect to z and use is made

of Eqs. (2.21). Next Eqs. (2.12,2.13 , 2.17,and 2.20) are combined to give

ap /az = -t a2 0 /
3 z2 - P  H 	 (2.22)

where

r	 0.727 Y M2 	(2.23a)

Pv a  + by/hv	 (2.23b)

av = NH
2 
a(v)/(P„ Vm Ham )	 ( 2.24x)

by = -(avm1 / 2)[(I - 0.89 RT.)Y I + ( 2D - 1.89 RT,,)YD , ( 2.24b)

Upon combining Eqs. (2.15) and (2.22), the governing equation for the flow is

obtained as

v20 — r 3 2 ^/az 2 - P,^ H,J	
(2.25)

13



4 -f ^ dv
0

(2.27)

wr

For axisymmetric case, this is expressed as

r-1 3/Dr (rao/ar) — r a 2 0/ aZ2 - P  H 	 (2.26)

Equations (2.25) and (2.26) are seen to be the classical potential

equations for compressible flow with a forcing term proportional to radiation

added. It should be pointed out that the form of Eq. (2.25) and (2.26)

will be retained for any linearized gas model, although the expression for

PV will depend on the gas model used. The potential for the flow induced

by a radiant source with a spectral distribution is obtained by integrating

the contributions of each frequency as

14



3. SOLUTIONS FOR SPECIAL CASES

As discussed by Smith [11,12], solutions of the governing equations,

presented in the previous section, can be obtained in special cases depending

on the model used for the distribution of spatial radiation. If the radius of

the radiating gas cap, Rc , is large compared to the photon mean free path,

then the problem can be treated like radiation from a plane source. On the

other hand, when the radius of the radiating gas cap is small, then the

problem can be treated like a spherical point source for radiation from the

gas cap and a cylindrical point source for radiation from the wake. Note that,

in general, Rc may not be the same as the radius of the bow shock, Rs.

3.1 Radiation from a Plane Source

For radiation from a plane source, it is essential to integrate the H^

contribution over the plane, as attenuated by passage through the absorbing

medium. The relation for H. in this case, is given by [24]

HV a 2gV (0) E2 (-K,,z)	 (3.1)

where q,(0) is the spectral radiative flux density at the shock wave, KV

is the spectral absorption coefficient, and E n (t) is the exponential integral

of order n . The expression for K  (which may also be interpreted as

inverse of the photon mean free path) is given by

	

K^	 uH a(V)	 (3.2)2 

i

sIn this form KV represents the absorption coefficient of H2 molecules. If

(and hence K` ) can be taken to be independent of zthe number density NH2 

(which is a good approximation for small ionization and dissociation), then the

optical depth is defined by

4

	

y	 KVz	 (3.3)

i
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t

For the plane radiating source (where V 2 	= 0), therefore, a combination	 -

of Eqs. (2.25,3.1-3.3) results in

[2 PV
 qV (0)/( r K2 )]E2 (-0 	 (3.4)

Integration of this yields the result

_ -(2 PV qV(0)/(rK2)]E<<(-0 	(3.5)

where the boundary condition of (ao/ aC) -+ 0 as C -► -m has been used.

From Eq. (2.13), the velocity perturbations, ahead of the shock front, now

can be written as

vlx = vly = 0	 (3.6)

v 1 = -(2 PV qV (0) /(rKV)]E3 (-0 	(3.7)

From Eq. (2.14), the expression for pressure perturbation is found to be

p1 = (2 Y PV qv (0) /Kv ] (:;; 	 (3.8a)

For high speed entry, M 2 >> 1 and (M m N, 1	 Thus, Eq. (3.8a) can be
00	 Go

 by

P, = (2 Y PV qv(0)/KU]E3(-0
	

(3.8b)

The expression for density perturbation is obtained by combining Eqs. (2.15) and

(3.4) and integrating the resulting expression such that

P1 = r2 ?V :.V(0) /UKV)1-3; -0 	(3.9)

By combining Eqs. (2.20 ,3.1-3.3), one obtains

oH.r
1 
/3^ _ (2 gv (0)/(P,o V.)]E3(-0

16



Intcgration of this over the plane of the shock wave gives the result for the

total enthalpy as

'I - [2 gv (0)/(P. V')]E3 (- o
	

(3.10)

By employing Eqs. (2.12,3.7, and 3.10), the expression for the static enthalpy

is found to be

H1 . 2gV(0){[1/(P,,,, V.)] + Pv /(rKV)' E 3 (-C)	 (3.11)

The concentrations of H and H2 are given by integration of Eqs. (2.21) as

CH - [2 WH
2 m

l/(PW V" hv)]YD (V) gV (0)E 3 (- 0

CH + - [ 2 W  ml /(Poo C0 hV)] YI (v ) gV(0)E3(-;)
2	 2

(3.12a)

(3.12b)

By employing Eqs. (3.8,3.9, and 3.12), Eq. (2.16) is solved for the temperature

variation. For this case now all the flow properties at any point upstream of

the shock can be determined.

3.2 Radiation from S pherical and Cylindrical Point Sources

The physical model for radiation from spherical and cylindrical point

sources is shown in Fig. 3.1. A spherical point source is a source which

radiates equally in all directions. A cylindrical point source is a source

which radiates as a cylinder of infinitesimal radius and length. For both

cases, the incident radiation at any field point s is given by [11,12]

HV - ( AV/s 2 ) exp(-Kvs)(sin g)j
	

(3.13)

In this equation, AV represents the radiative strength of the source, s is

the distance from the source,and 9 is the angle between the free stream

velocity vector and a line from the field point to the center of the source.

17
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The superscript j - 0 for a spherical point source and 1 for a cylin-

drical point source.

Equation (3.13) can be substituted in Eqs. (2.25) and (2.26) to obtain

the corresponding equations for the perturbation potential. Within the con-

fines of the assumptions made in obtaining Eq. (3.13), however, both problems

(spherical as well as cylindrical point source) can be considered to be

axisymmetric. The governing equation for the perturbation potential, there-

fore, can be written as

	

n-1 a/an (nam'/an) — r a 20 , /;C 2 - A u-2 e-u (sin 9) j	 (3.14)

where

i

	 P - IC S,	 n - KV r,	 0' - KV0,	 A - A(V) - K  PV AV

A procedure for general solution of this equation is suggested by

Smith [11]. For entry flows, however, M 2 >> 1 and Eq. (3.14) can be solved
00

by expanding 0' in a series in ( 1/r) in the vicinity of the body. Thus,

one can express 0' as

m' - - ( IC V/r +j (^,n) + (1/r)Fj(1)(^,n) + (1/r) 2 Fj (2) (;.n) + ...^	 (3.15)

where Fj 's are functions for perturbation potential. Substitution of this

relation into Eq. (3.14) gives

a 2 Fj
 
/ac t - u-2 exp(-u)(sirs `' ) j	 (3.16)

and

a2Fj(n)/;^2 - -n 1 a/an(n 3Fj
(n-1) /ar,) 	 (3.17)

The problem, therefore, is reduced to quadratures in the vicinity of the

body. In the present analysis only the term in ( 110 will be retained. By

integrating Eq. (3.16) twice. the expression for F 	 is obtained as

Fj (C,n) -
 J 

uo2 exp(-uo )( rl/uo ) j ( y - S0 )d;o	(3.18)

19



where uo • n 2 + ^ 2 	For convenience, let us denote

	

a^
Gj	 aFj /a^ of U 2 exp(-uo)(n/uo)j d;o

	 (3.19)

A i (^,n) - aFj /an •f; p;3 exp (-uo )C(n /u) j 	 [n +

(3.20)

(n/uo )(2 + j)l - j'(; - ;o)d^o

With these definitions of 	 Fj , Gj , and Hj , the perturbation quantities

can be expressed as

0' - -(A/r)Fj (3.21)

Vlr ' (A/r)Hj(^ ,n) (3.22)

Viz • -(A/r)Gj (3.23)

pl - YAGj (^,n) (3.24)

01 '	 (A/r)Gj (^,n) (3.25)

H
T1 

' (Kv AV /P„ Vm) Gj (;,n) (3.26)

CH ' (ml AV Kv/Pm V. hv )YD (v) Gj (^,n) (3.27a)

CH2+ ' 
(ml A

V Kv/P„ V„ M Y i (v) G j (^,n) (3.27b)

Note that for the case of spherically radiating point source 	 j	 1 in the

above equations.	 Also, these equations are obtained for arbitrary frequency.

The expression for total potential, for this case, can be obtained by combining

Eqs.	 (2.27) and (3.15)	 as

D • -(1/r) fog (A0)/ K V )Fj („n)dv	 (3.28)

20



Furthermore, it should be noted that the above solutions are valid in the

region where [U-2 exp(-u) (sin B) i ] does not vanish. This is the case

of spherically symmetric flow ahead of the entry body and is of primary

concern in the present study. Other cases involving cylindrical point source

are discussed in [11,12].

3.3 Solutions for the Transition Range ( XRc - 0(1))

As mentioned earlier, for KVRc << 1 , the axisymmetric solutions for

the spherically and cylindrically radiating point source are valid and for

KVRc >> 1 , the one-dimensional equations apply. The solutions for the spheri-

cally radiating point source approach one-dimensional solutions as K VRc _* Co .

Thus, spherically radiating point source solutions are valid for the precursor

flow ahead of a blunt body with KVRc >> 1 and KVRc << 1 . Since the

KVRc - O(1) range lies between these two limits, the spherically radiating

point source analysis could be applied (to a good approximation) also in

the transitional range.

1



4. PERTURBATION EQUATIONS FOR PHOTOABSORPTION MODEL

In order to obtain specific results for the perturbed quantities, it

is essential to have a realistic model for the spectral absorption coefficient

of the absorbing gas. The photoabsorption model employed in this study is

discussed in this section and the governing perturbation equations are expressed
	 I

in special form for this model.

4.1 Photoabsorption Model

Photoionization absorption coefficient is a continuous non-zero function

of photon energy (because of bound-free transition) for all values of photon

energy that exceed the ionization potential of the atom. Similar remarks

apply to the photodissociation and radiative recombination. A critical

review of ultraviolet photoabsorption cross sectic •is for molecules of astro-

physical and aeronomic interest, available in the literature up to 1"71, is

given by Hudson [25]. Specific information on photoionization and absorption

coefficient of molecular hydrogen is available in [25-31].

Photoionization and absorption cross sections of H 2 , as obtained from

references [25-31], are plotted in Fig. 4.1. From this figure it is evident

that the ionization continuum starts at about 804 A and continues towards
0	 0

lower wave lengths. Between the wave lengths of 600 A and 804 A, the absorp-

tion cross section for ionization continuum are included in the total absorp-

tion (i.e., absorption due to ionization as well as dissociation). For wave-

0
lengths below 600 A, however, the ionization continuum absorption is equal to

the total absorption. The total absorption cross section for continuum range

0
below 304 A can be closely approximated by the two rectangles (I and II)

shown in the figure with broken lines. The ratio of ionization cross section

'2
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to the total absorption cross-section (i.e., the value of Y I) is taken to

be unity for rectangle I and 0.875 for rectangle II. For wavelength greater

e
than 804 A (where by is below ionization energy), the value of Y I is taken

to be zero. Little information is available in the literature on the absorp-

tion cross-section for dissociation of H 2 molecules. There is strong evi-

dence, however, that photodissociation starts at about 2600 A and continues
0

towards lower wavelengths to about 750 A [26-28]. There are also a few

diffuse bands in this spectral range [26,28). Thus, it becomes difficult

to evaluate the absorption cross section in this spectral range. For this

0
study, the absorption cross section in the spectral range between 804 A and

0
2600 A was approximated by the rectangle III. The specific values of Q(v)

for the three rectangles are found to be a I (v) - 4.1 E-18, aII (v) - 8.2 E-18,

and QIII(v) - 2.1 E-18. The value of Y D is taken to be zero for rectangle I

and 0.125 for rectangle II.

4.2 Precursor Equations for the Photoabsorption Model

In accordance with the photoabsorption model assumed in the previous

subsection, quantities Q(v), A, YI and YD are taken to be constant within a

given frequency range. Thus, these quantities are assumed to have constant

(but different) values for rectangles I, II, and III in Fig. 4.1. It is

further assumed that the gas cap radiates as a gray body and the effective

emissivity of the gas cap is given by

E - q(0)/(Q Ts)
	

(4.1)

where q(0) is the radiative flux density from the Shock layer and T s is the

shock temperature.

The spectral radiative flux at the shock front is given by the relation

qv (0) - E 7 B1) (Ts)	 (4.2)

2



In this equation, Bv (Ts) represents the Planck function which is given by

Bv (T) = (2h/c 2 )(kT/h) 3 (v 3 /[exp (v) - 1]}
	

(4.3)

where v - by/kT .

It now remains to obtain the relation for AV in Eq. (3.13). By noting

that at the shock front H. - q v (0) and s - R
c , 

a rearrangement of

Eq. (3.13) gives

Av - qv (0) R2 exp(KVRc )
	

(4.4)

With the above information, final relations for the total perturbation

quantities now can be obtained. For spherically radiating case, the perturba-

tion quantities can be expressed by an equation of the form [11,12]

6f' A(v) Gj (C,n) dv	(4.5)

where ^ represents Vlz , pl , or p1 , and S represents the factor ahead

of the integral. The radial component of the velocity perturbation takes

this same form but G  is replaced by Hi . By employing the definition of

A(v) , and combining Eqs. (2 . 24) and (4.5) results in

SR  f m K.^[av + (bv/hv) ] exp (K,^It ) qv (0) G . dv	 (4.6)

Since av , by , and Kv are assumed to be constant over sections of the

wavelength range, Eq. (4.6) can be P.7spressed as

n

,y = 8R  [: K i eXp(
Ki 

Rc) G^( Ki Z. Kir) x

i=1

iai f v2i gv (0)dv + (b i /h) f V 2 [qv(0)/v]dv)	 (4.7)

vii	 vii

The two integrals in the above equation are evaluated by using Eqs. (4.2) and

=
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(4.3). The first one can be written as

J V 2 gv (0)dv = e Tr(2h/c2)(kTs 
A)4fv21 [v 3 /(ev - 1)1dv (4.8)

vii	 vii

By employing the definition of 	 a	 and denoting

Np (v) =f ' [vp/(ev - 1)]dv (4.9)

Eq. (4.8) can be expressed as

V 2 g
v (0)dv = (15 /Tr 4 ) e a Ts (N3 (v11 - N3(v2i)]f (4.10) 

vli

Similarly, the second integral in Eq.	 (4.7) can be expressed as

r v2i [
qv (0)/Vldv = (15/7 4 ) E a Ts (h/kT s )	 [N2 (v11 ) - N2(v2i)) (4.11)

vli

Substitution of Eqs.	 (4.10 and (4.11) into Eq.	 (4.7) gives the final relation

for	 W	 from which the perturbation quantities can be determined. 	 The

quantities	 ItTl , CH , CH2+	 have the form of Eq.	 (4.7) with the	 Ki which

appears ahead of the exp(K iRc) squared.

In order to write specific relations for the perturbation quantities,

it would be convenient to define

a1 =	 (15/7 4 )	 [ q (0)/ i ) (4.12a)

S2 -	 (15/Tr 4 )	 Y q (0) (4.12b)

S3 =	 (15/n 4 )
	

[q(0)/(P,,. ^')l (4.12c)

S4 =	
(15 /74)	 [ q (0) m1/(P„ V„)) (4.12d)

I(vi) = fvv21 {vp/[exp(v) - 1] dv (4.13)
li

B(ai,bi)	 a i I(vi) + (bi/kTs)	 I(vi) (4.14)
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For the spherically radiating case, the perturbation quantities now can

be expressed as

n

viz 
= 

-81 
R2	K  exp(Ki R c ) Gj	B(ai,b1)	 (4.15)

i=1
n

Vlr = 81 
R2	 Ki exp(Ki RC ) H	̂ B(ai,bi)	 (4.16)

i=1

PI = -(82/81 )VlZ	 (4.17)

P1 = -VIZ

	

	 (4.18)

n

H1 = 83 R2 F, Ki exp(Ki R^) G^(^.n) I(Vi) 	 (4.19)
i=1
n

RC	 YD

	

Ki exp(Ki Rc ) G^(^. n) I(Vi)	 (4.20)CH = 84 

n
CH2+ = 84 R2 

iE Y
Ii Ki exp(Ki Rc ) G^(^^n) I(Vi)	 (4.21)

T1 = T_ I pl - PI .. (2(10/180.17)(CH + + CH)) 	 (4.22)

For the plane radiating source, the perturbation quantities can be

written as

n
VIZ	 -281 F, Kii E3 (-y i ) B(a i ,b i )	 (4.23)

i=1
n

H1 283	E3(-Y	 (4.24)
i=1
n

CH = 284	YD E3 (-^ 1) 
(kTs ) -1 I(V2)	 (4.25)

i=1	 i
n

CH + = 284	YI E3 (-^
1) (kTs ) -1 I(Vi)	 (4.26)

2	 i=1	 i

The expressions for p l , P1 and T1 in this case are the same as for the

spherically radiating source but care should be taken in using the right

relations for VlZ , CH2+ and CH .

Depending on the order of optical thickness, either spherical or plane

radiating source relations are employed in actual calculations of the per-

turbation quantities.	 27
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5. DATA SOURCE AND SOLUTION PROCEDURE

Jupiter's atmospheric conditions, as obtained from reference [32],

are shown in Fig. 5.1 for different altitudes. The temperature of the atmo-

sphere (i.e., T.) is taken to be constant at 145°K and the enthalpy is given

by H. - 1.527 R T . The entry velocity range considered are between

28-45 km/sec. The valueof Rc = 25 cm was assumed for this study. The

number density of H2 can be computed by using the relation

NH2 = (7.2431172 x 1J22) (P00/T.)X12
	

(5.1)

where xH2 is the mole fraction of H2 and P., has units of N/m 2 .

Free stream and shock conditions used in this study are listed in

Table 5.1. Shock temperature and q(0)-values were calculated by employing

the computational procedure developed by Sutton [4] and Moss [9]. Since

viscous effects are pronounced primarily in the vicinity of the body, only

inviscid shock layer formulations were considered in calculating T s and

q(0). Further details on shock layer solutions and effects of shock precursor

heating on radiative flux to the body are given in a separate report [33].

Before evaluating actual values of the perturbation quantities, it was

considered necessary to investigate the range of different intervening para-

meters of the governing equations. The values of the inverse mean free path

(i.e., Kv - a(v) NH2 ) and the product Kv Rc were calculated for the Jovian

entry conditions and these are shown in Fig. 5.2 for the three different

values of the photoabsorption cross section of Fig. 4.1. From this figure it

is evident that the product ( KV Rc) >> 1 in most cases of interest for the

Jovian entry. Thus, one could employ only the plane radiating source formula-

tions for determining the perturbation quantities in the precursor region.
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Table 5.1 Free-stream and shock conditions
for Jovian entry.

Free stream Vm, km/sec Ts , °K q(0) ', erg/cm, 2

38 16,610 1.35 E12
Z = 95, km

35 15,400 7.75 Ell
P.. = 1.29 E-3, kg/m3

32 14,080 3.52 E11

PCO 
= 673, N/m2

30 13,550 2.01 Ell

40 16,890 1.16 Ell
Z = 103

35 15,040 4.70 Ell
P. = 8.56 E-4

33 14,250 3.28 ,Ell
Pm = 448

30 12,810 1.142 Ell

45 18,227 1.09 E12
= 116

39.09 15,886 4.76 Ell
PC, = 4.65 E-4

35 14,480 2.18 Ell
P,,, = 244

30 12,480 4.87 E10

43.21 16,390 3.86 Ell
Z = 131

38 15,210 1.61 Ell
pCO = 2.32 E-4

35 13,880 8.72 E10
P,p = 122

30 12,030 1.90 E10

42 15,050 9.60 E10
Z = 150

40 14,520 6.96 E10
pm = 9.29 E-5

35 13,140	 ! 2.57 E10

P,o = 49
30 11,600	 f 6.20 E9

30
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t 	 .

Values of the intermediate functions a v and bV (defined by Eq. (2.24))

were calculated for the photoabsorption model at different altitudes. Since

T„ is taken to be constant, the values of functions (a v V.) and (bv V„)

were found to be constant for all altitudes. Another intermediate function,

A(v), is defined in Eqs. (3.14) and (4.5). For K  Rc >> 1 , the expression

for AM can be written as

A(v i) 	 (15/n°) q(0)
/KVi E3 (0) B(ai,b1	 (5.2)

•	 The values of A(vi) were calculated for the three spectral range of the

photoabsorption model and the results are illustrated in Fig. 5.3. For any

altitude, the value of this function increases with increasing entry velocity.

The set of Egs.(4.15)-(4.22) for spherically radiating source and

Eqs. (4.23)-(4.26) for plane radiating source can be solved numerically to

obtain the perturbation quantities. As mentioned earlier, for Jovian entry

conditions, it is necessary to solve only the set of equations belonging to

r	 the plane radiating source case.

For multicomponent systems, it is physically realistic (and a general

practice) to define the total enthalpy of the gas entering the shock layer

by the relation

HT	 Ho + V Z /=	 (5.3)

7	 In this equation, V represents the local fluid velocity, and H o is

t	 referred to as the absolute enthalpy and is equal to the sum of sensible
i

enthalpy and chemical energy at 0°K (34,35]. In terms of the perturbation

velocity, the local fluid velocity is given by

V = VOO (1 T 
V1z)	

(5.4)

For a multicomponent system, the expression for Ho is given by

Ho = E Ca :io	(5.5)
a	 rA

32



}

102

s	 SPECTRAL RANGE I

l03

vm
	 ALTITUDE, km = 95

N
w

vC
Ii

C

,(:F4

131

150

'10 g L
30 32	 34	 36	 38	 40

FREE-STREAM VELOCITY (V,), km/sec

-Ts:

Figure 5.3a. A(v) as a function of free-stream velocity for

spectral range I.

33



4 
1 1

7 1-

I,;'

30
	

32	 34	 36	 38	 40	 42

FREE-STREAM VELOCITY (V,,), km/sec

Figure 5.3b. AN) as a function of free-stream velocity for
spectral range II.

34



10.0

SPECTRAL RANGE III

1.0

ATTITUDE, km = 95
wrr

.r	 103

116

131--1

0.1

0.011,
30	 32	 34	 36	 38	 40	 ,a-

FREE-STREAM VELOCITY (V..), km/sec

Figure 5.3c. A(v) as a function of free-stream velocity for

spectral range III.

35



where	 ca	is the mass fraction of species 	 a .	 For any species	 a	 the

relation for	 Ho	is given by [34,35]
a

Ho	= RT[aI + (a2 /2)T + (a 3/3)T2 + (a4/4)T3
a

+ (a5/5)T" + a6 /T]	 (5.6)

where	 R	 is the universal gas constant (- 1.98726 cal/mole - °K)	 and

T	 is the local fluid temperature in °K.	 For different species, values of

constants	 al , a2 .... a6 are given in [35], and for species under present

investigation they are listed in Table 5.2.

It should be noted that values of 	 HT	can be calculated by considering

or neglecting the precursor effects.	 When precursor effects are considered,

then	 HT	is defined by

HT	 (HT) PE m (Ho ) PE + V
2 /2	 (5.7)

[

For the case with no precursor effects, 	 HT	is given by

`iT = ( L) NPE _ (Ho ) NPE + Vv/	 (5.8)

It should be emphasized h ere that, for the case with no precursor effects,

the temperature in Eq. (5.6) is the free-stream temperature 	 T., .

The per cent difference in the total enthalpy with and without the

precursor effects can be expressed by

% - PD	 `[(HT)PE	 (HT ) NPE ]/(HT ) NPE) " 100
	 (5.9)

It should be noted that an appropriate value of	 HT	is needed to determine

the conditions inside the bow shock by employing the Rankine-Hugoniot relations.
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Table 5.2. Temperature coefficients for thermodynamic functions for hydrogen species.

Substance Temperature
Interval, °K

Coefficients

al a2 a3 a4 a5 a6

1000 < T < 5000 3.0436897 6.1187110E-4 -7.3993551E-9 -2.0331907E-11 2.459379E-15 -8.5491002E2
H2

300 < T < 1000 2.8460849 4.1932116E-3 -9.6119332E-6 9.5122662E-9 -3.309342E-12 -9.6725372E2

1000 < T < 5000 3.3287156 2.5050678E-4 1.4224521E-7 -4.4590247E-11 3.733756E-15 1.7997470E5
H+
2 300 < T < 1000 2.817375 3.657610E-3 -7.9655480E-6 8.2634000E-9 -3.090228E-12 1.8002739135

1000 < T <-5000 2.500 0 0 0 0 2.5470497134
tI

300 < T< 1000 2.500 0 0 0 0 2.5470497134

wJ



6. PERTURBATION RESULTS

The flow perturbation quantities V lz , pl , CH , CH2 + , T1 , and HT1

were calculated numerically and the results are illustrated in Figs. 6.1 -

6.12. In Figs. 6.1 - 6.6, perturbation quantities are shown as a function of

distance from the shock for different altitudes and a constant entry velocity

of 35 km/sec. The first set of curves (Figs. 6.1a - 6.6a) are plotted against

the nondimensional distance z/R c , while the second set (Figs. 6.lb-6.6b) are

plotted as a function of the physical distance z from the shock. In Figs.

6.7 - 6.12, the perturbation quantities (just ahead of the bow shock) are

illustrated as a function of the free-stream velocities. Since P1 - -Vlz

separate results were not illustrated for the density perturbation. From these

figures it is evident that the magnitude of perturbation quantities, in general,

depend on the distance from the shock, altitude of entry, and entry speeds.

Figures 6.1 - 6.6 show that at a fixed entry velocity, the perturbation

effects are greater for lower altitudes and at locations just ahead of Lhe

shock. This, however, would be expected because the number densities of parti-

cipating species are greater at lower altitudes and at these altitudes most

radiative energy from the shock gets absorbed in the immediate vicinity of the

shock front. At higher altitudes, perturbation effects are significant to a

larger distance from the shock front. This is because, at these altitudes, the

number densities of participating species are small and radiation effects are

felt farther into the free-stream.

Specific results presented in Figs. 6.1b - 6.6b indicate that use of the

small perturbation theory is justified in determining the velocity, density,

mass fraction and total enthalpy variations. These variations are small because

at high entry speeds, the gas has not had enough time for expanding.
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For example, just ahead of the shock, the value of (V/V.) is 0.9992 for

Z = 95 km and is equal to 0.99975 for Z = 150 km. Similarly, HT, =

6.8 x 10-3 for Z = 95 km and HT1 = 2.4 x 10- 3 for Z	 150 km (i.e.,

i
	 0.68% increase in total enthalpy at 95 km and 0.24% increase at 150 km). The

static pressure and temperature variations, however, cannot be considered small

This is because for Z = 95 km, p l = 2 and Tl = 300°K, and for Z = 150 km,

pl = 0.64 and T1 = 94°K . For these variations, therefore, one could ques-

tion the validity of the small perturbation theory.

For diftirent altitudes of entry, perturbation results (just ahead of the

shock) are illustrated in Figs. 6.7 - 6.12 as a function of entry velocities.

The resul-,-; are shown only for the range of entry velocities for which free-

stream and shock conditions are available (see Table 5.1). These results again

indicate that the perturbation effects are greater for lower altitudes. As

would be expected, for any specific altitude, the effects are larger for higher

entry velocities. This is a direct consequence of greater radiative energy

transfer from the shock to the free-stream at high entry speeds. For the most

part, variations in the velocity, mass fractions, and total enthalpy again are

seen to be small. For example, for an entry body at an altitude of 95 km,

the total enthalpy of the gas (HT1) entering the shock wave is increased from

about 0.68% at V	 35 km/sec to 1% at V = 38 km/sec. For Z = 150 km,

however, HT1 increases from 0.24% at 35 km/sec to 0.66% at 42 km/sec. The

variations in the static pressure and temperature, in some cases, are seen to

be several times greater than the ambient values. These large variations,

however, occur for conditions where dissociation is high and the validity of

the entire theory is questionable [11,12]. This point is discussed further in

the next section.
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The results of absolute enthalpy (as defined by Eqs. (5.5) and (5.7)) are

plotted in Fig. 6.13 as a function of free-stream velocities. The trend of

results of this figure are essentially the same as for specific total enthalpy

perturbation results shown in Fig. 6.12.	 This again illustrates that the

increase in enthalpy due to precursor absorption are greater for lower alti-

tudes and higher entry velocities.

The per cent difference in total enthalpy of the gas (with and without

precursor effects) entering the shock wave is illustrated in Fig. 6.14 for

different altitudes. The results indicate that the maximum increase in total

enthalpy is about 1.6% for Z - 95 km and entry speeds of 38 km/sec. For other

entry conditions, the changes are seen to be smaller.

A few conclusions can be drawn from the results presented in this section.

Within the limitations of the small perturbation technique used in this study,

the results indicate that variations in velocity, density, species concentra-

tion, and enthalpy are small as compared to perturbations in pressure and temp-

erature. Precursor effects, in general, are greater for lower altitudes and

higher entry velocities. At higher altitudes, however, precursor effects are

felt farther in the free-stream. At any particular altitude, the effects

increase with increasing entry velocities. Specific results indicate `hat for

Jovian entry velocities lower than 28 km/sec and altitudes of entry higher than

95 km, the precursor effects definitely can be neglected. For other entry con-

ditions, the extent of flow perturbations and its influence on the entire flow

field ahead of the entry body should be investigated.
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7. ALTERNATE APPROACH: THIN-LAYER APPROXIMATION

Another approach to investigate the precursor effects will be to apply

the concept of thin shock layer theory (usually applied to hypersonic shock

layer flows [36,371) to the precursor region flow field. For this purpose,

a curvilinear orthogonal coordinate system, shown in Fig. 7.1, is selected.

In thin figure s is the distance (measured from the stagnation point)

along a reference surface (body or shock) and n the distance along the

normal to this surface. For convenience, the reference surface is taken to

be the outer edge of the shock layer.

The differential equations for a hypersonic plane or axisymmetric flow

can be written in the present coordinate system as [36]

(a/as)(purj ) + (a/an)(pvXrj ) - 0	 (7.1a)

p[u(su/as) + Xv(su/an) - Kuv] + (3p/Ds)	 0	 (7.1b)

p[u(av/as) + Xv(av/an) + Ku 2] 
+ X(ap/an) = 0	 (7.1c)

p[(u/X)(aH/as) + v(aH/an)] + (Xr j ) -1 [(a/an)(Xrj gR)]	 0	 (7.1d)

p [ (u/X) (aca/as) + v(aCaOn) - K,Y - 0	 (7.1e)

where K - K(s) - 1/Rs , X - 1 + Kn , and j - o for plane flows and

1 for axisymmetric flows.

If the precursor region is assumed thin, then one can make the approxi-

mations that (n/Rs) << 1 , a/as << a/an , and r j is not a function of n .

In this case X - 1 , and Eqs. (7.1) reduce to
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Figure 7.1. Curvilinear orthogonal coordinate systems for
thin-laver approximation.
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(a/an)(pv) = 0

pv(au/an)	 0

pv(av/an) + (ap/an) = 0

pv(3H/an) + (aqR/an) = 0

pv(aCa/an) - Ka 0

Direct integration of these results in

PV P
OO VW

P.	 (u U.)
=0

p.v00 (v-va)+(p-p.)	 0

P. v. (H H.) +qR=0

Q

Pm Y. (ac a/an) - Ka 0

s

where it has been assumed that qR = o .

In present application to the hydrogen-helium atmosphere, Eq. (7.3e)

will be written for atomic hydrogen and hydrogen ions: . In Eq. (1.3d), H

represents the total enthalpy and is given by the relation

H = HT = h + (u 2 + v 2 ) / 2

(7.2a)

(7.2b)

(7.2c)

(7.2d)

(7.2e)

(7.3a)

(7.3b)

(7.3c)

(7.3d)

(7.3e)

(7.4)
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where

	

	
:.y

h - 1.527 RT + [(5/4):T + I/2]C +
2

+ [(3/4)RT + D]C H	(7.5)

Note that Eq. (7.5) is slightly different than the relation for perturba-

tion enthalpy given by Eq. (2.17).

For a diffuse nonreflecting shock front, the expression for one-dimen-

sional spectral radiative flux and its spatial derivative is given by [24,38]

TV

gRV (TV ) = 2 
E  ebv(Ts) 

E3(TV) + 
230	 ebv(t) 

E2 (T V - t)dt	 (7.6)

T

-dgRv/dTV = 2 EV 
ebV (T

s ) E2 (TV ) - 2 ebV (T) + 2fo V 
ebV 

(t) E
1 (

T -t)dt	 (7.7)

where

TJ -f n 
K  dn'	 (7.8)

0

ebv (T) - n BV (T) - 7r(2h/c 2 ) I V 3 /[exp(h /kT) - 1]}	 (7.9)

It should be noted that these equations do not account for any radiation

from the free-stream. As before, if the number density of H 2 is assumed

constant, then in the above equations KV becomes independent of position.

The expression for total radiative flux is given by

qR (n) _Jo

 00  q

RV (TV )dv	 (7.10)

For a gray shock front, a combination of Eqs. (7.6) and (7.10) results in

qR(0) - Ea Ts , which (as would be expected) is the same as q(o) defined

in Eq. (4.1).

If emission from the cold gas in front of the shock is neglected, then

for a gray shock front, one can write
e
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qR (n) - 2 E 
fo. 

ebv (Ts) E3 (TV)dv - 2J
OO 

qV (0) E3(TV)dv
	

(7.11)

-dqR/dn - 2 E 
food 

KV ebV (Ts ) E
2 ( TV)dv = 2f- KV qV (0) E2(TV)dv
	

(7.12)

where qV (o) is defined by Eq. (4.2).

The general expression for the total radiative flux is obtained by

combining Eqs. (7.6) and (7.10) as

qR (n) - 2f' ' { qV (0) E3 ( KVn) + irKV f n BV (T) E2 [ KV (n - n') l dn', dv (7.13)

where KV is assumed to be independent of position. For the spectral model

considered in section 4, Eq. (7.13) can be written as

n

qR (n) - 2n	 C(15/Tr') q(0) E3 ( K in)
fvv2i 

[v 3 /(ev - 1)]dv
i=1 `	 li

+ Ki fn E2 [Ki (n - n') I V
21 B

V (T)dv dn''
li

(7.14)

where v - by/k Ts . The final form of the energy equation now can be

obtained through a combination of Eqs. (7.3d, 7.4, 7.5, and 7.14).

Either by following the information given in Eqs. (2.18, 2.19, and 3.1)

or from Ref. [19], the expression for concentration of the species a in

Eq. (7.3e) can be written as

P" %(aca/an) - -ml f 00 
[(ag

RV
/ an) /hv]dv	 (7.15)

The appropriate expression for (ag RV/an) , in this case, is given by

Eq. (7.12). Thus, Eq. (7.15) can be expressed as

dCa/dn - (2m1 /h;.00 v00)fo"O [KV	 qV (0) E2 ( KVn) /Vldv	 (7.16)

By noting that KV - NH2 Q(v) and following the procedure of section 4 ,
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the relations for individual species are found to be

n

	

CH	-2 S4	
YD E3 (T 1 )(kT s ) -1 I(vi)

Jul	 i

n
CH + _ -2 a4 E Y I E3 (Ti ) (kTs ) ,-I I(vi)

	

2	 Jul	 i

(7.17)

(7.18)

where S4 , I(v i 2 ), and Ti are defined by Eqs. (4.12d, 4.13, and 7.8)

•	 respectively. It should be noted that Eqs. (7.17) and (7.18) are exactly

the same as Eqs. (4.25) and (4.26).

By employing the governing equations presented in this section and the

spectral information of section 4, numerical results were obtained for

velocity, pressure and temperature variations for different values of n

at s = o . Specific results for an altitude of Z = 116 km are compared

in Figs. 7.2-7.4 with corresponding results of the small perturbation theory.

As indicated earlier, the equations for species concentration in this case

are found to be exactly the same as for the small perturbation case. For

the range of parameters considered, the results for velocity, pressure and

temperature obtained by the two procedures are seen to be in excellent .agree-

ment. It is obvious from these results that either approach could be utilized

in the investigation of the precursor region flow field. It was noted in

section 5 that for the Jupiter's entry conditions, the general governing

equations of the small perturbation theory reduced to the case of simple

plane source. As such, use of this method to Jupiter's entry case is restricted

to one-dimensional analyses. The advantage of thin layer approximation pro-

cedure is that it is physically more convincing and it can be extended easily

to three-dimensional and axisymmetric cases. Furthermore, in more realistic

situations, the thin layer approximation can be relaxed and the analysis can

be extended easily to general cases.
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8. CONCLUSIONS

Governing equations have been presented for investigating the

precursor region flow by employing the small perturbation theory of

classical aerodynamics and thin-layer approximations of hypersonic flows.

In small perturbation method, the perturbation velocity potential is

found to be governed by the wave equation with a driving term due to radi-

ation absorpt ; on, ionization and dissociation. The thin layer approxima-

tion reduces the general hypersonic flow equations to simpler forms for

which solutions are obtained by employing an iterative procedure.

By employing appropriate thermodynamic and spectral data for the

hydrogen-helium atmosphere, variations in precursor region flow quantities

were calculated by the two entirely different methods. For Jovian entry

conditions, one-dimensional results obtained by the two methods were

found to be in good agreement for the range of parameters considered. The

results, in general, indicate that for certain combinations of entry speeds

and altitudes of entry, the precursor effects cannot be ignored while

analyzing flows around Jovian entry bodies. Specifically, it is seen that

at an altitude of 95 km, the precursor effects are important for entry

velocities greater than 35 km/sec.

The usefulness of the thin-layer approximation in analyzing the pre-

cursor region flow is demonstrated. The main advantage of this method is

that it is physically more convincing and its use can be extended easily

to axisymmetric and three-dimensional cases. It is suggested that precursor

region flow phenomena be investigated in general without making assumption

of the thin layer approximation. It might even be advisable to modify the

radiation model for the precursor region absorption. The extent of pre-

cursor effects on the entire shock layer flow phenomena should be investi-

gated thoroughly. It might even be essential to include two-dimensional
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model for radiative flux and a detailed spectral model for radiation

absorption and emission.
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APPENDIX Al

EXPLANATION OF SYMBOLS USED IN THE COMPUTER PROGRAM "PERC"

A0, Al

Y

Exponential integral constants
A2, A3

B0, B1
Exponential integral constants

B2, B3

CH Mass fraction of	 H

CHE Mass fraction of	 He

CHH Mass fraction of	 H2

CH2 Mass fraction of H2+

DEN Perturbation density

DEN2 Free-stream density, g/cm3

ETH Sum of sensible and chemical enthalpy of mixture gas, cal/g

ETHP1 Sum of sensible and chemical enthalpy of	 H2 ,	 cal/g

ETHP2 Sum of sensible and chemical enthalpy of	 H2+,	 cal/g

ETHP3 Sum of sensible and chemical enthalpy of	 H,	 cal/g

ETHP4 Sum of sensible and chemical enthalpy of	 He ,	 cal/g

EX Exponential integral

GARM Specific heat ratio

GD Dissociation energy, erg/mole

GI Ionization energy, erg/mole

GMARC Mach number

GNH2 Number density of	 H..,	 molecule/cm3

P Boltzmann constant, erg/°K

PRE Perturbation pressure
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PRI	 Free-stream pressure, dyne/cm3

QO	 Radiative heat flue at shock front, erg/cm3-sec

RCAP	 Shock radius, cm

ROE	 Absorption cross section, cm 

T	 Absorption coefficient, cm i

TF1	 Perturbation temperature, °K

TF111	 Temperature, °K

TH	 Planck's constant, erg-sec

TO	 Free-stream temperature, °K

TS	 Temperature at shock, °K

U	 Universal gas constant, erg/mole-°K

V	 Frequency, sec-1

VINF	 Free-stream velocity, cm/sec

VZ	 Perturbation velocity component normal to the shock surface

W1	 Molecular weight, g/molecule

Z	 Distance from the shock
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APPENDIX A2

EXPLANATION OF SYMBOLS USED IN THE COMPUTER PROGRAM "THIN"

A0, Al
Exponential integral constants

A2, A3

ARF	 Absorption coefficient, cm 1

B0, B1
Exponential integral constants

B2, B3

CH	 Mass fraction of H

CHE Mass fraction of 	 He

CHH Mass fraction of 	 H2

CH2 Mass fraction of	 H2+

CK Boltzmann constant, erg/°K

DEN DENSITY, g/cm3

DENI Free-stream density, g/cm3

DH Planck's constant, erg-sec

E1,	 E2,	 E3 Exponential integrals of order 1, 2, and 3

ETH, ETVI

ETH2, ETH3 Defined in Appendix Al

ETH4

GR Euler's constant

MH Mole fraction of 	 H

MHE Mole fraction of 	 He

MHH Mole fraction of 	 HI)

MH2 Mole fraction of 	 H2+

NA Number density of	 H2 ,
	

molecule/cm3
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I

NA1 Number density of	 H2+,	 molecule/cm3

P Pressure, dyne/cm2

PH Sensible enthalpy, erg/g

PHT Total sensible enthalpy, erg/g

PREI Free-stream pressure

QO Radiative heat flux at shock front, erg/cm3-sec

QR Radiative heat flux at any field point, erg/cm 2-sec

ROH Absorption cross section, cm 

S Nondimensional coordinate measured along the shock surface

T Temperature, °K

TS Shock temperature, °K

U Velocity component tangent to the shock surface, cm/sec

UI Free-stream velocity component tangent to the shock surface,
cm/sec

V Velocity component normal to the shock surface, cm/sec

VELO Free-stream velocity, cm/sec

VF Frequency, sec -1

VI Free-stream velocity component normal to the shock surface,
cm/ sec

Y Coordinate measured normal to the shock surface, cm

YD Photodissociation yield

YI Photoionization yield

Z Altitude, km

ZETA Shock angle
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APPENDIX B1

PROGRAM "PERC" - TO COMPUTE PRECURSOR EFFECTS

USING PERTURBATION METHOD

PROGRAM PERC (INPUT. C)JTPUT. T ".^ =-5=INPUT. TAPE6=OUTPUT)

OIMENSICN 9ATA(4)9 n(4)9 AA(4). A9(4)9 AC(4)9 AO(4)• P2(4•?).P?(4.

12)	 V(4•?). V1(4.2)• PCI ^(4) • oCII(4) • C,0(4) 4 X1(41. Tn(4). T)(4).

^T(4)•	 r( H 1 )• V1(4). Y')(4)• PC)E(4). A/(4). `.31(41. C1(4).r1(4)• C:^(
•	 14`•^1(4)•;7? (4) •7 (4)9.11F(4 •li=(A1•1((.i)• 1 H(4)•.9 (4) •A1r)(41•17X l q.^)•

1 S lim (6)•1ERR(8	 1 (4).Z) (I())
REAL VHH.VH2•MH^-::•.'H

EXT_RNAL FKI FX2
Z1 (1)=^'.Cf`1
7_1 (2 )=0.002
Z1 (3 )=C.Cn-.;;
Z1 (4 )=0.01
Z1(5)=0.02
Z1 (5)-0.05
Z1 (7)=G.I

-7i(8)=^1.2
Z1 (0)=C.S
Z111"7) = I .O
(J=8.3143E7
TH=696256F_-27
GARM=1.433

R0E(1 )=4.1E-18
R07(2 )=6.:E-18
RCE(3)=2.1E-18
OC 4 K=1927
PEAO (5.15) CEN2. VINF. TS * PR1. On

I= FOPYAT (5E11.2)
GNP+?= 7• P43 2 1 2xPR i / 1 4E. * 1 0 . ^* 16* ^ . F39
T 	 )=PCE(1 )*G-. H2
T / •l ) =::Z OE l ? 1 * ^NH2

T .,)=ROE(3)*GNH2
?CAP=25•
AC=n.26777343
A1=8.63476-'8925
A2= I H•:",54^16973
A3=6.:1-733?37401
c^^)=3•-35846922h
E^1 =2i •^799653G_

82=25963295614
%'3=9.5733221454
D ' .) H 	 1=1.1

7_=Z1 ((% 1 )*?G.* (-i	 1

77 1F (nt3.5(Z).LF.I.:=,^_~) :,C T
r7C 1 1 N = 1 •.3

B-i



X=-Z*T(N)
IF (X.LT•Io) GO TO 13

E(1)=FXP(-X)*(A(;+41*X+A2*X**2+A3*X**3+X**4)/(X*(Rn+P1 *X+92*X**?+1?
1*X**3+X**4))

EX(N•1)=E(1)
GO TO 14

13 E(1)=-0.5772 1 5664-ALOG(X)+X-X** 2•/4•+X**3e/18• -X**4./96.+x**5./6' 0
1.-X**6./43X.+X**7./35?_y0.-X**+^./32255'%. +X**99/32_F,59?^.-x**1 ^./352
PA8^709

14 DO 28 I=196

EcI +1)=(= xac-x)-X*ECi))/I
EX(N9I+1)=E(I+1 )

28 CON- I NUE
11 CONTINUE

GO TO ^O1
555 EX(1.2)=1•

Ex(2.2)=1•

EX(3.2)=1 •
EX(193) =To -='
EX(2.3)=0.5

X(3.3)=0.5
501 GMARC=VINF/(70.*(145.**0.5)*1009)

P=1.395E-16

v(1.1)=5.02E+15
V(1.2)=8.70E+IS

V(2.?)=590?_F+15
V(3.1)=1.15E+15
V(3.2)=3.75E+19

V 1 ( 1 . 1) =V (1 . i) *6.f^2SE^E-27/ (1 .3t3O5 F -1 h*TS )
V 1 (1 .2) =V (1 .?) *6.6256E-27/ (1 .3Ei^,5F-1 E^*T ^ )
Vi(2.1)=V(291)*6.6256E-27/(1938n5F-15*TS)

V : t 2 .2) _^^ t 2. 2) *6. r_255E-27/ (1 .3c ^5E-1 F^* TS ?
V1(3•:)=Vt3.1)*6.6256E-27/(1.J8n5E-16*TS)
VI(3.2)=V(3.2)*6.6256E-27/(1.3605E-16*TS)
X1=^9

X2=kn
x-I=n.
X4=n•
X5=0
X6=^
x7=f'^

xe =o
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i .. . -	 .-....y

X9=",%
XIC=C

DO 500 N=1.3
EPS =0.001
CALL ROMBS (VI (No I).V1 (N•?).FX1.-IpS.SLJ f0 (N),IERR( I\l ) )
CALL ROMBS (VI(N•1)•V1(N•2)•'^X2•En5•SU^•(N+^).1ERR(N+3))

'NR I TE (5 . 32 ) SUW (N) • 4t;'•^ ( n l +3 )
;?? FC? Rh+.1T!3X.*P?=*.^1'%.3. ?X.#n ?=*• -1^.'3)

TO=145.
GHC= 1 .527*U*TO
w1=3.280E-24
G1=14.868E12
GD=4.5E12/29
YI (1)=1 •C
YI (2)=0.875
YI(3)=000
YD (1 ) =0•
YD(2)=09125

YD(3)=1.0
AI (N)=GNH2*PC; (N)/(DFN2*VINF*G-1
F3I(N)=-((-,NH2*9Z0E(N)*a'1)/(^EN2*VINE*GHO)*((GI-0.89*U*Tn)*YI ( N!	 (2.*
1GD-1.89*U*T0)*Y0(N))/2.
c2=15/(3.1'#1=9**4)*CO
D(N) =EX (N•3)*(AI(N)*^-Uv(N +8I(N)/(n*TS)*SU*A(N+3))/T ( NI )
DI

C3(N;= YI(`J)*EX (N• ) *SUM (P;+) ) /(PaTS)
D11(N)=O2*D(N)
X1=D(N)+X1
X2=01(N)+X2
X3= X3+D2(N)
X4=X4 +03(N)

5')n CONT INOE
8AT =29/ (0.72 7*GAR'•)* GMARC**2- 1 . )
VZ=-02#6AT*X1

PRE=?_.*GAPM*C2*Xl
DEN=-VZ
GHT=2•/(DEN2*VI%F**3)*(;2*X2

CH2=1 •*'JJ1 *c.* .7 *X4 /(^/IN FM- n,rN2)
CH= 2•*'^'i *yJ *X3 /( VINE#GEN?.)
Q=C..
VR=r,•

i^l^' TF1=145•*(PRE-C^tN-(Cr 2}C^)#2:;."'./10(:•17)
.Hw=._.801-Crc-Cw
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CHE=C•1981
T'=1111=TF1+145.

PT=T-1II1*1.98725
IF (TF111I.GT.100C % •) GO TO 999
IF (TF1111•GT•3 i,C•) GO TO 998
ETHPP=rH2*((TF1111-1^C.)/?CG•*(1232•>+?ri83'^=>.)/?_.
ET H P ) =CHH* t ( T  1 1 1 1 - 1 nC .) /P'70. * ( 1 266 .8) -1 ?F,4
ETHP3=CH*((TF1111-10C•)/2C0.*(966•)+G1134•)
ET-4P4=CHE*((TFI111-100.)/2CC.*(x84.4)-984.4)/4.

GO TO 1001
998 ETHDI=CHH*RT*(2.8460849 +4. 1932116E-3*TF1111/2•-9*6119332E-6*TFIIII

1**2/3•-9.5152.974F-9*TF111I**3/4.+';.?097492P-12*TF1111* *4 /F•-o.F7?5

2 ?7?E2/TF1lI1)/2•
E T F,P2= CH2*RT*(2.81737,+3.6 ^751E-"^*TF1 111/2.-7.9^^^4PF-^,*TF1 1 1 1**?/
13.+9.26140E-9*TFIIII**3/4•-3.09C228E-12*TFI111**4/5.+l.ROC273EF/TF
21111)/2•

GO TO 1 CO .
999 ETHCDI= CHH*n'T* (3.0436H97+5.118711-F-4wTF 1111/2.-7o7P93^FIF-q*7=1111

1**2/'?•-2•C3'1`?!'7^-11*TFI111*-^3/u.+?•45^3^4i=-1^*TF1111**4/5•-H.s49

?IO.,P`2/TF1111)/c•
_T-P?=CH2*RT*(3.?20715+2.50=+G67E-3*TF1111/2•+1.4224520E-7*TFIIII**
12/3•-4.459024E-11*TF1111**3/µ•+3.=33756E-15*TFI111**4/5.+1.7997470

2E5/Tw'1111)12.
ETHP3=CH*RT* (?•5+?•54704'?7E4/TFl 1 1 I )
FTi-+P4 =CH = *RT* (2 •F-7.457 74FP/TF I I I l ) /4 •

1 ^^1 ETH=-THP1 +_THP2+=THP7+ETHD4
ETH,K=ETH*4. 184*llCC.3
WRIT =- (6+16)VINF, DEN29TE

16 FORMAT (//4X•*VINF=*•EI1.19 4X• *!^FN =*.Fl l •3.3X•*TS=*•Ei l .4)
%IPITF(6.52)

92 FJPvAT(SX•*R*•1^)X•*Z** EX•*`lZ*• 8Y9*PFF*q 8Xv 4 0E`:*q RX• *T^*• HX•*C
IH?+ , 7X•*CH*• 7X•*CHT*, 9X9*ET-i *)

WRITE (6.37)R•Z.•VZ.PRE•CEN* TF1•CH2•CH•GHT•FTHK,Z1(141)

37 FORMAT (; 2;K•cFl O•^.9E2 1 .? )
5c T^ ^Q8
Z= 7+. I

r;'n T n 7 7

1~8, CONTINUE
4 CONTINUE
38 STOP

FNf^
F ;,CTlnN c kI (vy

hETJRN
FN
F !NCTICN FX2(X)

!7N-)
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APPENDIX B2

PROGRAM "THIN" - TO COMPUTE PRECURSOR EFFECTS

USING THIN-LAYER APPROXIMATION

n

S

PROGRAM THIN (INPUT•OUTPUT.TAPES=INPUT•TAPE6=OUToUT)
COMMON ARF(3)•SUM(12)9 II.T(50)•TS9 Y I(3)9Y0(3)• NA•ROH(3)•IERR(1?)
19VF(392)• DH•CK•C•'<•7C•Y.S9E3(3)•J•VELOI•DFNI
DIMENSION v(5C).V(5C)•P(50)•PHT(50).PHC50).CH2c5(')•:Hc50).DFNCS^)
REAL NA*N:39NA1 9'H29'•'HH9%IH9VHE
CO 21 ^1 = 1 920
REAC (5.1) Y959TS•PREI•ZTa•Z•0U•VELOI•DENI

1 FORMAT (4F8.292F9.39E10.3•F8.09-10.3)

VEL^I=—VELO1
ZTA=7TA*3.1415926535/(2.*90.)

ROH(?)=4.1E-19

ROH(R)=9.2F-19
ROH(3)=2.1E-18
DH=6.6256E-27

CK=1.38C54E-16

C=3.LE10
VF(i.1)=8.7E15
VF(2.•2)=3.75E15
VF(39I)=3.75;19
VF(3.2)=1.15E15

VF(1.2)=5.02E15

VF(2.1)=5902;15
V(=VELOI*SIN(ZTA)
UI=VFLOI*COStZTA•
V(1)=VI
U(1)=UI
P(1)=PREI

DENI(1)=DENI
CH2(1)=0.
CH(I)=0.
A=14.8E12

D=4.9E12/2.

Yi (1 )=1.0
Yi(2)=0.875

YI (0)=70
Yp( i)=C.('.
Yid(?)='•1?5

( m
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YD(3)=1.
R=89341 3E7
PHT(1)=(VELOI**2)/2.+1.5 ?7*R*145•

PH(1) = 1 • '-'7*14';**Q
T(1)=145.

2C D7 111 I=1.49
11=1
NA=(7.2431122E_22*---.A9)*P(1)/(T(1)*Ir.)
NA1=NA*1.^E-6
A^<F(I)=RCH(1)*N4I
ARF(2)= R0H(2)*NA1
ARF(3)=R0H(3) *NA1

CEN(I+1)=CENI*VI/V(1)
V(1+1)=(CENI*(VI**2)-P(I)+P(1))/(DENI*VI)
(j( 1+1 )=uI
CALL CRACIA(Y•S.;R)
PHTI=1952-'*P*145.+(VELOI**2)/2.

PHT(I+1)=(DcNI*VI*PHT!- ,I4) /(OFNI*VI)

PH(t +1)=PHT(1+1)-(V(1+1)**'+U(1+1)**2)/2•
T(t+I)=(PH(I+1)-(r+•/4•*R*TfI)+A/2•)*C ►N2(I)-(3•/4.*(=*T(I)+D)*CH(I))
1/(1.527*R)
CALL PCH2(PCHt•PCHD)
`'E?=1.
CH (I+1 )=N ;3*0 H`,'

CH2(I+1)=N':5*=CHI
°(I+I )=DEN( 1+1 )*R*T ( I+1	 1+1 )+C^-+( I+1)) )
IF (AHS((V(I+1)—V(I))/V(1))•^^•.,•.^)) vu ^^ ^y
I= (AE ì( (T(I+1) - T(I)) /T(i))•(;T.^..'lI) GC TO 5`)
IF (A6F) (P( I + I )—D(I ) )iP	 TC ^3
1- (Ac3s (P-+( 1+I )-Q"(: ))	 T.r.c1 ? -„ TC. °C;

IF (ACS( (PHT(I+1 )—PHT(I))/;)-T( I ) ). T.v.0 1 ) rte:) T,)
IF (ABSI(CH(1+1;-CH(I))/CH(I)).G T .0•01) GO TC 5Q
I = (aeS((::H, ? I+1 )-CHZ(I I)/CH2(1))•GT	 I, TO =C)

IF	 T•`•-;.'';1	 ;C	 TO
GO T:^ 1
(; T')	 1 1 1

1 1 1 CONT I N"j F-
WPITF (6911) Soy

11 FOPmAT (4X.*5=*•F1: • 3•X•*'.'riF•hX.'^Y=+^•F1J•3•X•*C'1ia)

A;41TF (6 . 12) Z•VELO! •(;
12 FCPvAT (GX• QTT1T._ '%F= ' •.= I .3.4X• #`3 EL'';CIT{ IVF=*•=I^•'. '^'/_, t^ .%^X•

CHE=,.181
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ADO=CHM/2.+CH2(I+1)/2•+CH(I+1)+CHE/4•
MHH=(CHH/2.)/A00
MH2=(CH2 (I+1)/2.)/ADD
MH=(CM(1+1))/ADD
MHE=(CHE/4)/ADD
RT=1.98726*T(I+1)
IF (T(I+1).GT•10009) GO TO 999
IF (T(1+1).GT.300•) GO TO 998
TF1111=T(1+1)
ETHP2=MH2*((TFI111-100.)/20C.*(1232•)+3E83la5•)
ETHPI=MHH*((TF1111-100•)/200•*(1264.8)-1264.8)
ETHP3=MH*((TF1111-100•)/200.*(966.)+51134.)
ETHP4=MHE*((TF1111-1CC•)/200.*(984.4)-984.4)
GO TO 1001

998 ETHPI =MHH*RT *(2*846(:849+4. 1932,)16E-3*T(I+1)/2.-9.6119332E-6*T(I+1)
1**2/3•-9.5122974E-9*T(1+1)**3/4•+3.309C492E-12*T(1+1)**4/F.-9.6725
2372E2/T(1+1))
ETHP2=MH2*RT*c2.817375+3.65761E-3*T(I+1)/2.-7.965548E-6*T(1+1)**?/
13.+8.26140E-9*T(1+1)**3/4.-3.09C?_28E-12*T(1+1)**4/5.+1.8UO273E5/T(
2I+1))
GO TO 1000

999 ETHPI=MHH*RT*(3•C436897+6.11671)OE-4*T(I+1)/2•-7.3993551E-9*T(I+1)
i **2/3•-2.0331907E-11*T(1+1)**3 /4• +2.459:3791E-1F^*T(I+1)* *4/Fo -Ro549
21002E2/T(I+1))
ETHP2=MH2*RT*(3.328715+2.505067E-3*T(I+1)/?*+1.4224520E-7*T(I+l)**
12/3•-4.459024E-11*T(1+1)**3/4.+3.733756E-15*T(I+1)**4/ 5.+1.7997470
2E5/T(I+1))

1000 ETHP3=MH*RT*(2.5^2.5470497E4/T(I+1))
ETHP4=MHE*RT*(2.5-7.45374F2/T(I+1))

1001 ETH=(ETHPI+ETHP2+ETHP3+ETHP4)*49!64*10000•/2.314
WRITE (6928) ETH

28 FORMAT (4X•*ENTHOPY (AHS0L)=*• Ell•4./)
WRITE (6913)

13 FORMAT(3X•*V*•11X•*U*•12X9*T*•IOX.*P*.1^X.*DEN*.OX•*H*.IC;X**HT*.11

1X•*CH*910X•*CH2*)
WRITE (6.14) V(I+1)*U(I+1).T(1+1)•P(1+1)•OFN(I+1).PH(I+I).PHT(1+1)
1•CH(I+i)•CH2 ( I+1).OR•I

14 FORMAT (X•E10.4.2X.E903.2X.2X9E9.3.2X9E9.3.2X9EIno3o2xoE1^.392X•E1
10.3.2X • E10.392X . E10.3.3X•Ell*3.3X . F3.19///)
IF (Y*GT•O.5) GO TO 19
Y=Y+0.1
GO TO 20

15 Y=Y+C*4
IF (Y•GT.2•) SO TO 21
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GO TO 20
21 CONTINUE

STOP

ENn
SUBROUTINE ORADIA(Y.S•OR)
COMMON ARF(3)*SUM( 12)*I* T(50)*TS*YI(3)*YD(3)*NA.ROM(3)*IERR(12)*VF

1 ( 3*2)*DM*CK•C*Ki*00*YY*SS*f-J(J)
COMMON /FFF/ Z
DIMENSION E2(3)*ARY(3)*_j(3)•V1(3•?)
EXTERNAL FX1*FX2•FX3

F1=6.256E-27/(1*3805E-16*TS)
V1(1*1)=VF(1*1)*F1

V1(I*2)=VF(1*2)*F1

V1 (2*1)=VF(2*1)*F1
VI(2*2)=VF(2*2)*Fl

V1 (3*1)=VF(3*1)*F1
VI(3*2)=VF(3*2)*F1	 0
EPS=0.002

DO 5 17, K=1  . 3
K1=K
CALL ROMBS (VF(K*2)•VF(K•l).PX1*Eo5 *Sl1ff(K)91EPP(K))
IF (IERR (K)*E^)*U) GO TO 30
PRINT 31*K*IERR(K)

30 CALL BOMBS (VI(K*2)*VI( K* ))*FX2*tPS *SU74(K+3)*ltkk(K +3))
IF (IERR(K+3) * EG * J) GO TO 40
K3=K+3
PRTNT 31* K3* IEOR(K+3)

40 A=0.0001
Z=Y+0.0001
B=Y
IF (9*EG90 * ) GO TO 32
CALL BOMBS ( A * B *FX3 *EPS * Sl.,'M (K+6) * I ERR (K+6) )
IF (IERR(K+6) * EG.J) GO TC Gig
K6=K+6
PRINT 31* K6*IERR(K+6)

31 FORMAT ( *K= **I2**(ERR=**I3)
GO TO 50

32 SUM(K+6) =0*
50 CONTINUE

C)R1=0
n0 100 K=1 *1
GRsn*5772
ARY(K)=ARF(K)*Y

IF (Y*LT*C*0101) GC TO 33
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GO TO 20
21 CONTINUE

STOP

ENn
SUBROUTINE ORADIA(Y.S•OR)
COMMON ARF(3)*SUM( 12)*I* T(50)*TS*YI(3)*YD(3)*NA.ROM(3)*IERR(12)*VF

1 ( 3*2)*DM*CK•C*Ki*00*YY*SS*f-J(J)
COMMON /FFF/ Z
DIMENSION E2(3)*ARY(3)*_j(3)•V1(3•?)
EXTERNAL FX1*FX2•FX3

F1=6.256E-27/(1*3805E-16*TS)
V1(1*1)=VF(1*1)*F1

V1(I*2)=VF(1*2)*F1

V1 (2*1)=VF(2*1)*F1
VI(2*2)=VF(2*2)*Fl

V1 (3*1)=VF(3*1)*F1
VI(3*2)=VF(3*2)*F1	 0
EPS=0.002

DO 5 17, K=1  . 3
K1=K
CALL ROMBS (VF(K*2)•VF(K•l).PX1*Eo5 *Sl1ff(K)91EPP(K))
IF (IERR (K)*E^)*U) GO TO 30
PRINT 31*K*IERR(K)

30 CALL BOMBS (VI(K*2)*VI( K* ))*FX2*tPS *SU74(K+3)*ltkk(K +3))
IF (IERR(K+3) * EG * J) GO TO 40
K3=K+3
PRTNT 31* K3* IEOR(K+3)

40 A=0.0001
Z=Y+0.0001
B=Y
IF (9*EG90 * ) GO TO 32
CALL BOMBS ( A * B *FX3 *EPS * Sl.,'M (K+6) * I ERR (K+6) )
IF (IERR(K+6) * EG.J) GO TC Gig
K6=K+6
PRINT 31* K6*IERR(K+6)

31 FORMAT ( *K= **I2**(ERR=**I3)
GO TO 50

32 SUM(K+6) =0*
50 CONTINUE

C)R1=0
n0 100 K=1 *1
GRsn*5772
ARY(K)=ARF(K)*Y

IF (Y*LT*C*0101) GC TO 33
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AO=0.26777343
Al=8.6347608925
A2=18.0590169730
I'3=8.5733287401
80;3.958469228
81=21.09965308
82=25.63295614
83=9.5733223454
IF (ARY (K).LT.1.) GO TO 200
X=ARY(K)
E1(K)=EXP(-X)*(AO+A1*X+A2*X**2+A3*X* *J+)<**4) / (x*(bJ+t$1*X+be *x**2+d
13*X**3+X**4))
GO TO 220

200 X=ARY (K )
E1 (K)=-0.57721566-ALOG(X)+X-X**C./4 * 'O'A *J./1tl.-x**400'Vb.*x**t./bUU
1.-x**6./4320.+x* i*7. /35280•-X**8./322560.+X**9./3265920.-X**10./362
288000.

2231 E2(K)=(EXP(-X)-X*EI(K))
E3(K) =(EXP(-X)- X-IF2(K)
GO TO 35

3'1 E2(K)ml.
E3 (K )=0.5

35
	

OR2=29* ARF(K)*DH/(C**?_.)*SUM(K+6)
OR4=E3 (K) *SUS► (K+3) * 1 5. *UO/ ( 3.141 59**5 )
OR1=0R2+OR4+OR1

100 CONTINUE
0R=0R1*2.*3.14159
RETURN
END
FUNCTION FX1(X)
COMMON ARF(3)•SUM( 12)• I•T(50)•TS•YI(3)•YD(3)•NA•ROH(3),IFR^(12)•VF
1(392)90H.CK.C.K•00
FX1 =X**3*EXP( -(DH*X/(CSC*TfI))))
RETURN
END
FUNCTION FX2(X)
COMMON ARF(3)•SUM(12)9I.T(5C)9T69YI(3),YD (3).NA.RCH(3)•IE6k(12).VF

1 (3.2) v0HsCK+C+K.00
OAT=5•6697E-5
FX2=X*x3/(EXP(X)-1.)
RETURN
END
FUNCTION FX3 ( X )

CO M MON ARF( ?)•SOM(12).1•T(50)•fS.YI(3)•YD(3)•NA• F Cr+(3)41	 •VF
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(3.2)•DH9CK9C9K9O0
COMMON /FFF/ Z
FX3=(1•+(9577-1•+ALOG(AQF(K)*(Z—X)))*(ARF(:<)* (Z—X))—(ARF(K)*(Z—X

)) **2/29+(ARF(K)*(Z—X))**3/129) *`3UM(K)
RETURN
END
SUBROUTINE PCH2 (PCHI.PCHO)
COMMON AWF( 3)•SUM( Ie)•1.1('-3u). 0 : •v y I( j)•YUtJ)•NAo04Um%j)•1--kkt1G)•V ►'
(392).DH.CK.C•K.O:j•Y.S.E3(3).J1•VFLOI.CEN1
DI MENSION V1(3.2 )9CH1(3)9CH2(31
EXTERNAL FX4
F1=6.256E—E7•(1•3605F-16*TS)
V1(I$I)=VF(1.1)*Fl
Vl(1.2)=VF(1•2)*FI
V1(291)=VF(2.1)*Fl
Vl (2.2)=VF(2.2)*Fl
Vi(3.1)=VF(3.1)*F1
Vl(3.2)=VF(3.2)*=1
EPS=0.001
DO 59 J=1.3
JI=J
CALL BOMBS (V1(J92)•V1(J•1)• FX4• EPS• SUM(J+9)9:EPR(J+9)
CHI (J)=YI (J)*E3	 (J+9)/(	 )
CH2(J)=YD(J)*E3(J 	 1.33n^E_-1h* T )

59 CONTINUE
PDHI=CHI(i)+CH)(2)+CHI(3)
PDHD=CH2 (I )+CH2 (2 )+C612 (3)
X1=GC*159*2•*3.23E-24/(DENI*VEL31*3.14159**4)*(-1•)
PCHI=PDHI*Xi
PCHO=PJHD*X1
RETURN
END
FUNCTION FX4(X)
COMMON ARF (3)•SUM(12).I.T(50).TS.YI(3)•YD(z).vu•KCH(?),I=Rt-^(12)•VF
(3.2)•0 H 9CKoC9K.O oy9SoE3(3)9J
FX4=X **2/ (EXP(X)— I )
RETURN
END
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