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RMS MASSLESS ARM DYNAMICS CAPABILITY IN THE SVDS	 =

1. INTRODUCTION AND SUMMARY

This report presents the formulation and equations for the dynamics to simulate

the Remote Manipulator System (RMS) in the Space Vehicle Dynamics :?imulation

(SVDS). The equations presented are derived assuming the masses and inertias

of the RMS system are small relative to the mass and inertia of the orbiter

and payload, and can be neglected.	
3

Section 2 presents a Newtonian formulation of the rigid body equation of motion

of the Orbiter-RMS-Payload system. The massless arm assumption and the

resolved rate law (ref. 1) are used in these equations. The interact; ~on fc:-ces	
-	

3

and moments at the tip of the end effector resulting from the output torques at

each of the six jo±nt^_ are computed for the payload and the orbiter. These

forces are inputs to the ^ ?quations of motion of the orbiter and for the payloaO

The arm joint rates are computed from the translational and rotational veloci-

ties of the two bodies.

Section 3 contains a development of the equations required t ,̂ ) compute the arm

flexibility matrix, given the flexibility of each member. For this purpose,

t+ie arm has been divided into five beams. The first beam contains the longeron

and the portion of the arm up to the shoulder pitch joint. The seconl beam is

the upper arm, the third is the lower arm, the fourth is the wrist, and the

fifth beam is the hand. From the arm flexibility matrix, a joint flexibility

matrix is computed and used to compute six flexibility terms for inclusion in

each of the six servos to simulate arm flexibility.

Section 4 presents a set of formulas for the computation of static loads on

the arm members of the joints.

Section 5 contains a set of engineering flowcharts presenting the computations

required to implement the capabilities described in sections 2-4 into the

SVDS program.
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Appendix A, The RMS JacUbian Matrix, develops relationships between velocities

and forces in a chain of rigid bodies and relates these relationships to the

RMS Jacobian matrix.

Appendix B, Calculation of the Arm Flexibility Matrix, presents a set of

equations that can be used to compute the flexibility matrix for a chain of

beams, given the flexibility matrix for each beam.

Appendix C develops equations for the kinetic energy and the virtual work for

a chain of rigid bodies. These equations are used in conjunction with Lagrange's

equation to write the equations of motion of a chain of rigid bodies. The

masses and inertias of the inner bodies of the chain are assumed zero, and the

resulting equations are related to the massless arm equations presented in

section 2.

Because of the approximations made in the development of the equations of motion

in this report, some continents should be made about the method of verification

used, and some general comments about when the validity of these equations will

be questionable. The massless arm approach presented herein and subsequently

being incorporated into the SUDS program requires extensive checkout to deter-

mine its level of validity. The primary checkout procedure used is to compare

these results with cases run on the RMS Simulation (RMSS) program. The standard

types of checkout techniques for dynamics programs will be used; i.e., simple

cases that have closed form solutions, balance of energy and work, and

engineering approximatfon checks.

The limits of validity of the massless arm equations must be determined to a

certain extent by comparison with other programs. Some observation can be

made, however. The lighter the payload, the worse the approximation, and it

is felt that from a rigid body standpoint, about TOGO lb is the minimum payload

weight that should be simulated in the rigid body mode. The technique employed

here for the incorporation of longeron and arm flexibility allows the simulation

of the first six bending modes of the system. As the mass of the payload

decreases, the separation between the rigid body bending modes (characterized

2
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by end body motions) start to couple with the arm modes (characterized by

small motion of the And bodies). How good the approach presented herein is

can be determined by comparing the mode shapes and frequencies from a massless

arm vibration analysis with a distributed mass arm vibration analysis. From

a flexible arm standpoint, payloads of less than 10,000 lb would be suspect

at the present time.

3
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2. RIGID BODY EQUATIONS

This section presents the massless arm RMS rigid body equations of motion for

implementation into the SVDS program, using a Newtonian approach to the formula-

tion of the equations. Appendix C presents a Lagrangian approach to the Bevel-

.	 opment of the equations of motion of a chain of rigid bodies; a Newtonian

development for this type of system can be found in ref. 2. The assumption

that the arm is massless appears to be reasonable, based on a comparison of

the mass of the orbiter and the mass of a prospective payloads relative to the

mass of the RMS system itself. The orbiter weighs approximately 180,000 lb,

the payloads weigh between 20,000 and 65,000 lb, and the movable portions of

the arm weigh approximately 500 lb.

The following relationships can be written from reference 1.

{T} 
= [J]T jMej

F
e

W 

IVRI

(2-1)

If the arm is assumed to be massless, eq. (2-1) gives the output force and

moment acting on the payload caused by the torque motors. An equal and

opposite force and moment will act on the orbiter.

Using eqs. (2-1) and (2-2) and the massless arm assumption, the end effector

forces and moments can be written

Me = iJ] T-1 {T} 	(2-3)
F
e

The translational equations for body 1 (orbiter) can be written

2

---R = m [B1 ]({F l } - {Fe }) + {9 1 }	 (2-4)
dt	 1
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The rigid body rotational and translational equations of motion for the

second body are written

2

—77 = m ([ g2}{ F2 } + [B 1 ){ fe }) + {g2 }	 (2-8)

dt	 2

[A
2

1{1
2
 } + [w_2] [A2 ] {w2 } = {M2 } + [621 1 {Me} + tp.21 [6211 

{Fe }	 (2-9)

The relative rotational and translational velocity of the tip of the end

effector with respect to the orbiter are computed

{VR}	
[B11T 

Idt2
1
	 ll(dt	

+ [pl ]{^, 1 } - [B121[p2]{W2 }	 (2 - 10)

{ WR } _ [6121{w2} 	
fwl }
	 (2-11)

Using eq. (2-2), the arm joint rates can be computed as

{6} = [J] -1	 (2-12)
{VR}

j

t

5

The rotational equations for body 1 are 

The quaternion rates for body 1 are 

The body to inertial transformation is computed 

[81] = (1. + 2e1 [~) + 2 [!z1 2) 

The rigid body rotational and translational equations of motion for the 
second body are written 

(2-6) 

(2-7) 

(2-8) 

(2-9) 

The relative rotational and translational velocity of the tip of the end 
effector with respect to the orbiter are computed 

(VR) • [s/ (1::21_1 ::11) + [~1 ](w1) - [812J[2z](w2) 
{wR} • [B12]{w2} - {w1} 

Using eq. (2-2), the arm joint rates can be computed as 

5 

(2-10) 

(2-11 ) 

(2-12) 
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The following equations are used to compute the secoldary oody to inertial

transformation matrix and the body 1 to body 2 transformation matrix.

[B2l	 [B1 I[B12 1	 [BI][B211	
(2-13)

[B211
	 (T ][T1[T1(8^^)] [T3 ( ®5 )] [T2 (82 + e3 + 84 )] IT 3(6'!)][TLB)	 (2-14)

Eqs. (2-3) through (2-14) form a complete set of rigid ^Ay equations of

motion for the Orbiter-RMS-Payload system, assuming that the arm is massless.

Definition of Symbols

{ T }	 6X1 matrix of the torques output from the joist servos

[J)	 6x6 Jacobian matrix

{Me}	 30 matrix of the components of the end effector moment vector in
the orbiter body system

{Fe }	 3x1 matrix of the components of the end effector force vector in

the orbiter body system

{R1 }	 3x1 matrix of the components of the orbiter position vector in the

inertial system

m,	 Mass of the orbiter

[B i )	 3x3 transformation matrix from the orbiter body system to the

inertial system

{F l }	 34 matrix of the external forces on the orbiter in the orbiter

body system

.	 {gl}	 3X1 matrix of the components of the gravitational acceleration

vector on the orbiter, in the inertial system.

[^ )	 3X3 inertia matrix of the orbiter

{mil }	 3X1 matrix of the components of the orbiter angular velocity

vector in the orbiter body system

{Ml }	 3x1 matrix of the moments of the external forces about the center

of mass (CM) of the orbiter

6

The following equations are used to compute the seco1dary oody to inertial 
transformation matrix and the body 1 to body 2 transforma~ion matrix. 
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Eqs. (2-3) through (2-14) form a complete set of rigid J1xSy equations of 
motion for the Orbiter-RMS-Payload system, assuming that the arm is massless. 

Definition of Symbols 

{-r} 6xl matrix of the torques output from the joi,t servos 

(J] 6x6 Jacobian ~~irix 

{Me} 3xl matrix of thf: components of the end effector moment vector in 
the orbiter body system 

{F e} 3xl matrix of the components of the end effector force 'vector in 
the orbi ter bo,iy system 

{R, } 3xl matrix of thp. components of the orbiter position v~ctor in the 
inertial system 

m, Mass of the o~biter 
I 

[B, ] 3x3 transformation matrix from the orbiter body system to the 
inertial system 

{F, } 3x' matrix of the external forces on the orbiter in the orbiter 
body system 

{g, } 3xl matrix of the components of the gravitational acceleration 
vector on the orbiter, in the inertial system 

('i ] 3x3 inertia matrix of the orbi ter 

{w, } 3xl matrix of the components of the orbiter angular velocity 
vector in the orbiter body system 

~, } 3x1 matrix of the moments of the external forces about the center 
of mass (eM) of the orbiter 
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{pl}	 3X1 matrix of the position vector from the CM of the orbiter to the

tip of the end effector in the orbiter body system

e l 	Scalar part of orbiter quaternion

{e2 }	 3x1 matrix of the vector part of the orbiter quaternion

{R2 }	 Position vector to CM of payload in the inertial system

m2 	Mass of the payload

(B2 1	 30 transformation matrix from the payload body system to the

inertial system

[621 1	 30 transformation matrix from the orbiter system to the payload

body system

[612 1	 30 transformation matrix from the payload body system to the

orbiter body system

02 }	 3x1 position vector from the payload CM to the tip of the end

effector in the payload body system

{V 
R}3x1 matrix of tha relative translational velocity of the tip of

the end effector in the orbiter body system

{wR }	 3x1 matrix of the relative angular velocity of the tip of the end

effector in the orbiter body system

{g}	 6x1 matrix of the joint rates

[T
LB

1	 3x3 transformation matrix from the orbiter body system to the

longeron system

[TPE 1	 34 transformation matrix from the end effector system to the

payload body system

-

7

{Pl} 3xl matrix of the position vector from the CM of the orbiter to the 
tip of the end effector in the orbiter body system 

el Scalar part of orbiter quatern10n 

{e2} 3xl matrix of the vector part of the orbiter quaternion 

{R2} Position vector to CM of payload in the inertial system 

m2 Mass of the payload 

[82] 3x3 transformation matrix from the payload body system to the 
inertial system 

[821 ] 3x3 transformation matrix from the orbiter system to the payload 
body system 

[812] 3x3 transformation matrix from the payload body system to the 
orbiter body system 

{P2} 3xl position vector from the payload CM to the tip of the end 
effector in the payload body system 

{VR} 3xl matrix of tha relative translational velocity of the tip of 
the end effector in the orbiter body system 

{wR} 3xl matrix of the relative angular velocity of the tip of the end 
effector in the orbiter body system 

{e} 6xl matrix of the joint rates 

[TlB] 3x3 transformation matrix from the orbiter body system to the 
longeron system 

[TpE] 3x3 transformation matrix from the end effector system to the 
payload body system 

7 
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3. ARM FLEXIBILITY

This section presents the development of a technique for computing the terms

•	 needed to simulated massless arm flexibility, by computing the arm

flexibility matrix and then generating the joint flexibility matrix. Joint

flexibility terms are gen,^rated from the joint flexibility matrix and will

be used in the joint servo model to simulate arm flexibility in the massless

arm RMS simulat'nn in SVDS. The computation of the arm flexibility matrix

is discussed in Appendix B.

Two modes of arm flexibility simulation can be used, passive and active arm

flexibility. In the passive arm case, the joints are considered locked and

the neutral arm angles are used with current arm angles to compute joints

torque from elastic rotations at the joints. In the active case, flexibility

terms are generated and used in the joint servo model.

From Appendix B, the flexibility matrix relates end effector elastic displace-

ments and rotations to forces and moments applied at the tip of the end

effector.

Using eqs. (2-1) and (2-2), the joint flexibility matrix is developed.

[Y] R 	 _ {de }	 (3-1)	 r

[J] T {Pe } _ -{T 
F
}	 (3-2)

[JI {68} = {de }	 (3-3)

Substituting eqs. (3-2) and (3-3) into eq. (3-1), the following formulas

result.

1

-[J]-1[Y][J]T {T F}= {68}	 (3-4)

-[YJI{TF} - {de}	 (3-5)

where [YJ I is the joint flexibility matrix.

8
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From Appendix a, the flexibility matrix relates end effector elastic displace
ments and rotations to forces and moments applied at the tip of the end 
effector. 

Using eqs. (2-1) and (2-2), the joint flexibility matrix is developed. 

[y){P e} = {oe} 

[J] T{Pe} = -{TF} 

(J]{O€l} = fOe} 

~ubstituting eqs. (3-2) and (3-3) into eq. (3-1), the f~llowing formulas 
result. 

-1 
_[J]-l[y][J)T {IF} = {oe} 

-[YJ]{TF} • foe} 

where [YJ) is the j~int flexibility matrix. 
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(3-1) 

(3-2) 

(3-3) 

(3-4) 

(3-5) 



For the passive case, the joint torques resulting from arm flexibility are

computed from eq. (3-5) as

For the active case, the joint flexibility matrix is used to generate

flexibility terms to use in the joint servo model. Presented below is a

technique that can be used to generate these terms.

Let [Y?
2
] be a 5x5 matrix derived from [YJ ] by deleting the ith column and

the ith row.

T
Let {r^} be a 1x5 matrix derived from [YJ ] by taking the ith row and

removing the ith element.

The flexibility term for the ith torque motor can be computed as

T	 1

Ye - YiiJ - {Y^
J } [YiJ J {YiJ}21

	
(3-7)

4

9

For the passive case, the joint torques resulting from arm flexibility are 

computed from eq. (3-5) as 

For the active case, the joint flexibility matrix is used to generate 

flexibil)ty terms to use in the jOint servo model. Presented below is a 

technique that can be used to generate these terms. 

(3-6) 

Let [Y~~l be a 5x5 matrix deri~ed from [YJl by deleting the ith column and 

the ith row. 

T 
Let {Y~J} be a lx5 matrix deriv~d from [YJl by taking the ith row and 

removing the 1th element. 

The flexibility term for the ith torque motor can be computed as 

21 T 22 -1 21 
Y~ = Yi1J - {YiJ} [Y1J] {YiJ} (3-7) 

9 
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4. STATIC LOADS IN THE ARM

In this section, a set of equations to compute the static loads in the arm at

each Joint are presented. These loads are called static loads because they

ignore the inertia of the arm links. Since the dynamics formulated in this

report are based on a massless arm this type of loads model is completely

consistent with the dynamics. The equations presented in Appendix A of this

report are completely applicable, in particular, equation (A-20) can be used.

Noting that the end effector forces and moment are computed for the rigid

body dynamics these quantities can be used to form the {P n } in eq. (A-20).

The following set of equations result.

{M1 }	 IT2B
](-{Me }	

({r;al - jr26}) x {Fe})

{V l } 	 -(T2Bj{Fe}

{M2 } = IT38]({Me} + 
({r6B }	 {r26}) x {Fe})

{V2 } = IT3BJ{Fe}

{M3 } = IT3B J(-{Me }	 ({r 6B
}	 {r3e}) x {Fe})

{V3 } = -IT,-?{Fe}

{M4 } = IT4BI({Me 1 + (:r6B } - {r3B}) x {Fe})

{V4 } : IT48J {Fe}

{M5}	 IT46](-{Mel	 ({r6B' - {r4B}) x {Fe})

{V 5 } = -IT 48]{Fe}

{M6 } = IT5BJ({Me } + ({r6B } - {rr4B}) x {Fe})

{V6 } = IT58J{Fe}

•

10

4. STATIC LOADS IN THE ARM 

In th1s sect10n. a set of equations to compute the static loads in the arm at 
each jo1nt ar~ presented. These loads are called static loads because they 
ignore the inertia of the arm links. Since the dynamics formulated in this 
report are b~sed on a massless arm this type of loads model is completely 
consistent with the dynamics. The equations presented in Appendix A of this 
report are completely applicable. in particular, equation (A-20) can be us~d. 
Noting that ,he end effector forces and moment are computed for the rigid 
body dynamics these quantities can be used to form the {Pn} in eq. (A-20). 
The following set of equations result. 

{Hl } = (T2B](-{He} - ({rGa} - trZB}) x {Fe}) 

{Vl } = -~T2Bj{Fe} 

{H2} = [T3B]({He} + ({r6B} - (r2B}) x (Fe}) 

{V2} = [T3S]{Fe} 

{H3} = [T3s)(-{He} - ({r6B} - {r3S}) x {Fe}) 

{V3} = -[T~: ~{Fe} 

{M4} = [T4S] ({He i + (~r6S} - {r3S}) x (Fe}) 

{V4} • [T4S]{Fe} 

{HS} = [T4S] (-{He} - ({r6S ) - {r4S}) x {Fe}) 

{Vs} = -[T4B){Fe} 

{H6} = [TSS] ({Me} + ({r6B } - {r4S }) x {Fe}) 

{V6} = [TSS]{Fe} 

10 
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{M7}	 [T5B](-{Me}
	 ({ r6B} - 

{r5B}) x {Fe})

{V7 } = -[T5B ] IF e}

{M8} = [T6B] ( {Me } + ({r6B }	 {r5B}) x {Fe})

{V8 } = [T6B ]IF e}

{M9} = -[T6B] {Me}

{ V9 } = -[T6B ] IF e}

where

{Ml },{V l }	 are the moment and force acting on the shoulder in the shoulder

yaw coordinate system

{M2 },{V2 } are the moment and force acting at the shoulder on the upper arm

in the upper arm coordinate system

{M3},{V3} are the moment and force acting at the elbow on the upper arm in

the upper arm coordinate system

{M4 },{V4 } are the moment and force acting at the elbow on the lower arm in

the lower arm coordinate system

{M5},{V 
5

} are the moment and force acting at the wrist pitch joint on the

lower arm in the lower arm coordinate system

{M6 },{V6 } are the moment and force acting on the wrist at the wrist pitch

joint in the wrist system

{M7 },{V7 } are the moment and force acting on the wrist at the wrist yaw

joint in the wrist system

{M3},{V8} are the moment and force acting on the hand at the wrist yaw joint

in the hand system

{M9 },{V 9 } are the moment and force acting on the hand at the end effector

in the hand system

11

z

where 

{M7} = [T5S] (-{Me} - ({r6B} - {rSB}) x {Fe}) 

{V7} = -[Tss]{Fe} 

{Ma} = [T6B] ({Me} + ({r6S} - {rss}) x {Fe}) 

{Va} = [T6S]{Fe} 

{Mg} = -[T6S){Me} 

{Vg} = -[T6S) {Fe} 

{Ml},{Vl } are the moment and force acting on the shoulder in the shoulder 
yaw coordinate system 

{M2},{V2} are the moment and force acting at the shoulder on the upper arm 
in the upper arm coordinate system 

{M3},{V3} are the moment and force acting at the elbow on the upper arm in 
the upper arm coordinate system 

{M4},{V4} are the moment and force acting at the elbow on the lower arm in 
the lower arm coordinate system 

{MS}'{VS} are the moment and force acting at the wrist pitch joint on the 
lower arm in the lower arm coordinate system 

{M6},{VS} are the moment and force acting on the wrist at the wrist pitch 
joint in the wrist system 

{M7},{V7} are the moment and force acting on the wrist at the wrist yaw 
joint in the wrist system 

{Mg},{Va} are the moment and force acting on the hand at the wrist yaw joint 
in the hand system 

{M9}~{V9} are the moment and force acting on the hand at the end effector 
in the hand system 

11 
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5. SVDS ROUTINES

This section presents engineering flowcharts of the routines required to inter-

face the massless arm dynamics described in the preceding sections with SVDS.

Flowcharts also are presented for the static loads computations in section 4.

Three basic routines are required to interface this capability. RMSFM computes

the venicle interaction forces and moments and the arm joint rates; RMSFLX

computes the Joint flexibility terms for input to the joint servo model; and

RMLOAD computes the static loads on the am members at the joints.

5. SVDS ROUTINES 

This section presents engineering flowcharts of the routines required to inter
face the massless arm dynamics described in the preceding sections with SVDS. 
Flowcharts also are presented for the static loads computations in section 4. 

Three basic routines are required to interface this capability. RMSFM computes 
t~e venicle interaction forces and moments and the arm joint rates; RMSFLX 
computes the joint flexibility terms for input to the Joint servo model; and 
RMLOAD computes the static loads on the arm members at the joints. 

12 
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COMPUTE JOINT RATES

({^'o I

0 

.

SUBROUTINE RMSFM

Subroutine RMSFM is called from the Math Model Driver (MMD) each pass of the

integration and computes forces and moments on each body resulting from torque

'	 motor outputs. The joint angle rates are computed based on the translational

and angular velocities of each of the bodies.

START

E	 COMPUTE END EFFECTOR FORCES AND MOMENTS FROM
TORQUE MOTOR OUTPUTS

C(

{M }l1

{Fe}J 	[J]T	 {r}e

COMPUTE INTERACTION FORTES AND MOMENTS ON THE
ORBITER TNND PAYLOAD
{F	 -{F

-{Fe

{MRl} = -{M
e } - [pl] {Fe}

{F	 [B
_ [B21]

{Fe}

{MR2} = [B21
]{Me} 

+ [p2]{FR2}

COMPUTE RELATIVE VELOCITY AND RELATIVE
ROTATIONAL VELOCITY OF END EFFECTOR

{wR} = 18121 {w2} - {^,l }

	

fjdR
	 dR

	

{v R
)= [B 11 pt	 ^dtl 	

+ [pl]{wl}

1	 - fR_ _1 (0_1 fw-1

.-

SUBROUTINE RMSFM 

Subroutine RMSFM is called from the Math Model Driver (MMD) each pass of the 
integration and computes forces and moments on each body resulting from torque 
motor outputs. The joint angle rates are computed oased on the translational 
and angular velocities of each of the bodies. 

C START 

COMPUTE END EFFECTOR FORCES AND MOMENTS FROM 
TORQUE MOTOR OUTPUTS 
FM }l -1 
~F:~ : [J]T {T} 

I COMPUTE INTERACTION FORCES AND MOMENTS ON THE ' 
ORBITER AND PAYLOAD 
{FR1 } = -{Fe} 
{HR1 } : -{Me} - (£1 1{Fe} 
{FRZl = [BZ1 ]{Fe} 
{MRZ} = [BZ1 ]{Me} + (£Z]{FRZ} 

COMPUTE RELATIVE VELOCITY AND RELATIVE 
ROTATIONAL vELOCITY OF END EFFECTOR 
{~} = [B,Z]{wZ} - {w,} 

T(ldRzl jdR11) 
{VR} = [B1 J ~dt i - Idt f + (£1 ]{w1 } 

- [B 12 )[P.2]{wZ} 

RETURN 

13 
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SUBROUTINE RMSFLX

Subroutine RMSFLX is-called from the WD at some integer multiple of the

integration step size, just in front of the torque motor model. This routine

computes flexibility terms for input to the torque motor model.

START

rJ t0] IT 	 IO]	 (Y1,] t712) (Ti BI toj	 rtJ (risJ
IYE] •

	

i•i	
('!'i5] rig

	

101 ITBi I (Y121 T 12	 22 f0] tT1B) 101 J

where

Y1 1 	0	 0	 0	 o	 o	 0	 0	 0

(yl l j	 0	 y22 ' 0	 (Y121 • 0	 0	 Y26	 (Y221	 0 Y55	 0

	

00 Y33	
0 Y3S 0	 0 0 Y'6

COMPUTE JOINT FLEXIBILITY MATRIX

[YJ1 = 1j1_ I [YE1 [ 
J] T- 1

COMPUTE FLEXBILITY TERMS FOR TORQUE MOTOR MODEL TO SIMULATE

MASSLESS ARM FLEXIBILITY

	

YT = YiiJ 	 {Y21 ] T [Y2J] -1 {Y2^}	 11 ..... 6

where

[Yij] is the 5X5 matrix derived from [YJ ] by deleting the ith

row and column

{Yi
T

j] 	
is the 5X l matrix derived from [YJ ] by taking the ith

column and deleting the ith element

RETURN

14

SUBROUTINE RMSFlX 

Subroutine RMSFlX is- called from the HMO at some integer multiple of the 
integration step size. just in front of the torque motor model. This routine 
computes flexibility terms for input to the torque motor model. 

START 

COMPUTE END EFFECTOR MASSLESS ARM FLEXIBILITY~TRTX 

where 
-1 -
Yn 0 0 

[ 0 l~J IYhl.~ 
0 

,;] t t . 0 (Y~zl· 0 : 
i 

(Yll1 • 0 Yzz 
Yss 

t 0 0 0 Y33 o Y35 ... -;;;, 

t ---
COMPUTE JOINT FLEXIBILITY MATRIX 

[YJl = [Jl-1 [yE}[J1 T -1 

• COMPUTE FLEXBILlTY TERMS FOR TOMUE MOTOR MODEL TO SIMULATE 
MASSLESS ARM FLEXIBILITY 

e 21 T 22 -1 21 
Yi = Tii - {Vi } [YiJ1 {YiJ} 1=1.···.6 

J 
where 
[Y~~l is the SxS matrix derived from [YJl by deleting the ith 

row and column 
21 T {Y1J} is the Sxl matrix derived from [YJ l by taking the ith 

column and deleting the 1th element 

RETURN 
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START

^m .

. S
rTj 101

(YE' -

(Ta i l	 (0) tY111	 IY12 1 ITiBI	
IOl	 rI, IriSI

1.1	
t-ri 5) Q. 101	 ITai l TtY1 21	 tY22 1 103	 (Ti B )	 to]	

rJ

where

Y1 1	0	 0 0	 0	 0 0	 0	 0

tY111 -	 0	 Y22'	
0 IY1Z1	 - 0	 0	

Y26
IY221 -	 0	

Y55	
0

0	 0	 Y33 0	 Y35	 0 0	 0	 Y60

COMPUTE JOINT FLEXIBILITY MATRIX

[Y J = [j1 -1
 
[Y" ] [j) 

T- 1

COMPUTE FLEXBILITY TERMS FOR

Ye - Yii - {Yi 1 } T [Yi^l
-1 {Y2l I
	 i=19-96

J
ij

_	 where

[ iJY 
I is the 5X5 matrix derived from [YJ l by deleting the ith

row and column

T{iJY } is the 5X1 matrix derived from [yJ l by taking the ith

column and deleting the ith element

t	 =

`-	 RETURN

- - W.

START 

COMPUTE END EFFECTOR MASSLESS ARM FLEXIBILITY MATRIX 

where 
~j 

v11 

, 1 ) 
'Yll • 0 

0 ... 

- -0 0 ~ 

0 0 0 

1 . 1 
0 0 1 (v~Z) • Y22 0 (Y1Z) • Y26 

0 
1 0 1 

0 Y33 Y35 
';;' ... -

COMPUTE JOINT FLEXIBILITY MATRIX 
-1 

[YJ] = [J] -1 lYE] [J] T 

.-
0 0 

0 1 
Y55 

0 0 ... 

-0 

0 

1 
Y60 --

COMPUTE FLEXBILITY TERMS FOR TORQUE MOTOR MODEL TO SIMULATE 
MASSLESS ARM FLEXIBILITY 

e 21 T 22 -1 21 Yi = Yii - {Yi } [YiJ] {Y1J} 1=1,···,6 
J 

where 
[Y~~] is the 5x5 matrix derived from [YJ] by deleting the ith 

row and column 

{Y~~l is the 5x1 matrix derived from [y Jl by taking the ith 
column and deleting the ith element 

RETURN 
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SUBROUTINE RMLOAD

Subroutine RMLOAD computes the static forces and moments acting on the arm

members at the joints and should be called in the output loop at some

integer multiple of the integration step size.

START

COMPUTE FORCES AND MOMENTS AT THE JOINTS ON THE ARM MEMBERS

(M1 ) - IT28](-(Me) - ((r6,} - (r28 )) x (Fe))

IVI I - -(T28](Fe)

(M2} n (T38](I%) + (f r68 ) - (r28)) x (Fe))

(Y2) - IT38]IF6)

(M3] - IT38)(-(Me} - ((r68) - (r38)) x (Fe})

(V3} - -IT 38 ]IF a)

(M4) - (Ti8]((%1 + (( r68) - (r38}) x (Fe))

(Y4) - IT4B](Fe)

(M5) - IT 4B](-(%)	 ((r6,) - (r48 )) x (Fe))

(Y5)- -IT 48 )IFe}

IM6) - IT 581((%) + ((r6B ) - Ir48)) x (Fe))

(Y6) - (T5B)(Fe)

Imp - IT5B1t-(Me) - (fr68) - (r58)) x (Fe))

IV 7 ) n -(r58](Fe)

(M8)- IT681{(Me) + ((r68) - (r58)) x (Fe))

(V8] - IT68)(Fel
(M9)- -IT 68 1(me )

(Y9) n -IT 69I(Fa)

RETURN

.e Aw
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SUBROUTINE RMLOAD 

Subroutine RMLOAD computes the static forces and moments acting on the ann 
members at the joints and should be called in the output loop at some 
integer multiple of the integration step size. 

COMPUTE FORCES AND MOMENTS AT THE JOINTS ON THE ARM MEMBERS 

{M
1
} • [TZB)(-(H.} - ({r6B) - (rZB )) )( (F,}) 

{VI} • -ITzB]{F,} 

{Hz} • [TllJ({M,} + ({ril ) - (rZB}) II (Fe}) 

{Vz} • [T311{F,} 

{Hl } • ITlSI(-{M,} - ({riB) - (rlS}) • (F,}) 

(V3) • -(TlS](F,} 

{M
4

} • {T4BI«(H,} + ({riB) - (r31}) II {Fe}) 

{V4} • (T4BI{F,} 

{"'5} • [T4B1HM,} - ((riB) - (r4S}) .. (F.}) 

{V5} • -(T4BI{F.) 

{Hi} • [TSBI«(".} + «(r'B) - (rCB}) )( (F,}) 

{Vi} • (TsB){F.) 

eM,} • {TS8J(-{".} - ({r6B ) - (rSS}) JC (F,}) 

(V7} • -(TSBI(F.) 

(Ha) • (T6BI«".) + «(riB) • (rSBI) )( (F,l) 

{Va} • (T,s/{F.} 

(Mg) • - (T laJ{".) 

{V,} • -(T'BI{F,} 

( RETURN) 

15 
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APPENDIX A

THE RMS JACOBIAN MATRIX

The put -pose of this appendix is to develop some kinematical relationships that

deal with the computation of translational and rotational velocities in a

chain of rigid bodies. These same kinematical relationships appear in relating

forces and moments in the chain of bodies. As seen in reference 1, for a

system of six joint degrees of freedom like the RMS, the so-called Jacobian

matrix becomes an invertible transformation relating configuration space

velocity and force quantities to task space velocity and force quantities.

These same kinematical relationships appear in the computation of the combined

flexibility matrix for the system of rigid bodies.

Suppose that we have a chain of rigid bodies with one degree of rotational

freedom at each joint. (For more than one degree of freedom at a joint, a

null vector can be assumed for the next position vector, thus putting both

rotations at the same point). From figure A-1 we can write the following

relationship

173

^ a

Figure A-1

^1 =PO+woxrO
r	 •
ml
 = WO + 61ul

(A-1)

A-1

APPENDIX A 

THE RMS JACOBIAN MATRIX 

The pUt'pose of this appendix is to develop some kinematical relationships that 
deal with the computation of translational and rotational velocities in a 
chain of rigid bodies. These same kinematical relationships appear in relating 
forces and moments in the chain of bodies. As seen in reference 1, for a 
system of six joint degrees of freedom like th~ RMS, the so-called Jacobian 
matrix becomes an inv~rtible transformation relating configuration space 
velocity and force quantities to task space velocity and force quantities. 
These same kinematical relationships appear in the computation of the combined 
flexibility matrix for the system of rigid bodies. 

Suppose that we have a chain of rigid bodies with one degree of rotational 
freedom at each joint. (For more than one degree of freedom at a jOint, a 
null vector can be assumed for the next position vector, thus putting both 
rotations at the same point). From figure A-l we can write the following 
relationship 

---...--

Figure A-l 

Vl = Vo + Wo x rO 

w1 = Wo + alu1 

A-l 

.-~~~' 
I(" .. 

/ --_ .. 

(A-l) 
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.

where V  and w0 are the translational and rotational velocities of body zero
(the first body of the chain). A recursive relationship can be written for

the velocities of the ith body at joint i in terms of the velocities in body

i - 1 at the i - 1 joint.

Vi = Vi-1 
+ 
Wi -1 x ri-1

wi = 
wi -1 + @iui	

(A-2)

Substituting eq. (A-2) into itself, we arrive at a relationship for Vi and wi

in terms of V0 , w0 , and the Joint rates up to the ith body.

V i = V0 r^ +	 8^u^ x r2:  (A-3)+ w0 x
J=

J =1 k=J

i

and wi = w0 +
;mj

J

(A-4)

From eqs.	 (A-3) and (A-4) we can write

Wi	
^^ 101 WO

i-1

V i	 [	 l rIi VO
=0

ul ^ u2 ^
w 	•••0

^	 i
@
.1+ ...

@2

r 
x ul -	 rj

_
x	 u2	 i i	 i

J=1 i J=2

@n	 (A-5)

A-2

where Vo and Wo are the translational and rotational velocities of body zero 
(the first body of the chain). A recursive relationship can be written for 
the velocities of the ith body at jOint i in terms of the velocities 1n body 
i - 1 at the i - 1 joint. 

{A-2} 

Substituting eq. {A-2} into itself, we arrive at a relationship for Vi and w1 
in terms of Vo' wo' and the joint rates up to the ith body. 

(A-3) 

and (A-4) 

From eqs. (A-3) and (A-4) we can write 

r I [OJ -
wi .~ Wo 

= 
i -1 - -~ [rj] Fi. Vo Vi ;J 

j=O 

r u1 
- • 
u2 

ui ···0 61 
+ ••• • 

[H i-l 92 
-~rj - -~rjxU2 0 0 x u1 • • 
j .. l j=2 • 

• 
9 (A-5) n 

A-2 



If we define
6x6

6x6
rij 101

I L 1 #j (A-6)

J-1

_	 ^ - ^ (rk ] rI

k-i

6x6

[Li i 
I (A-7)

u	 0

6nx6 0	 0

[U] 0	 u2 (A-8)

0	 0 u 
n

L
0

-i
gl

and { 6} 5 2
(A-9)

en

Then eq.	 (A-5) can be written

{v	 (LO j{V
0	+
	 [IL 1	 I	 IL2i

... 91, 101 ... [0]1JU16) (A-10)
i	 i

If we also define

6x6n
I	 JIL	 ...I	 ILis 

i	 1	 2 
1 r̂ ij to] ... (oil

then we can write eq.	 (A-10) as

A-3

If we define 
6><6 

6><6 rl [0] 
~ 

flU] = 1 J'j 
j-l 

(A-6) 

-L [~] r
l 
~ 

k=l 

6><6 
[lii] = r!J (A-7) 

- 0 ul ••• 

6nx6 0 0 ••• 

[U] = 0 -u2 
••• (A-8) 

-0 0 un 

• 0 • • 

{Vi) • ~~ 
61 

• • and {e} = e2 
• • • 

(A-9) 

• 
en 

Then eq. (A-5) can be written 

If we also define 

6><6n 
[Si] :I IIll J [L2 J ... rL [0]··· (0)] 

i i 
(A-11) 

then we can write eq. (A-10) as 

A-3 



(V i } - NO
i IR

0} + [S i I fu) (6)	 (A-12)

For the RMS configuration we have seen that the relative velocity between the

orbiter and the payload can be written (ref. 1) as

	

(VR } = [j]f6}	 (A-13)

Relating eq. (A-13) to eq. (A-12), we see that

	

[J] = [S611u)	 (A-14)

We have also seen that we can write the output forces and moments from the

arm as

l

	

(T} = [j)T I Me	
(A -15)

^e

We will now take a closer look at the force moment kinematic relationships.

Consider figure A-2.

+	 Nt

Ft

Figure A-2

A-4

(A-12) 

For the RMS configuration we have seen that the relative velocity between the 
orbiter and the payload can be written (ref. 1) as 

Relating eq. (A-13) to eq. (A-12). we see that 

[J] = [S61 (U] 

{A-13} 

(A-14) 

We have also seen that we can write the output forces and moments from the 
ann as 

(A-15 ) 

We will now take a closer look at the force moment kinematic relationships. 
Consider figure A-2. 

Figure A-2 

A-4 
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If we consider this chain to be in static equilibrium, then we can write

F i = Fn	(A-16)

n

and	 Mi = Mn + 1: ri X Fn	 (A-17)

• Jai

We can write eqs. (A-16) and (A-17) as

n

M i	 I^ + E [CJ 
Mn

	

Jai
	

(A-18)

F 1	 0	 1	 Fn

Defining	
Mi

{ P i } 	 (A-19)

F 

and using definitions from above, we can write eq. (A-18) as

{ P i } = [L1n+11T{Pn}	 (A-20)

We have not discussed the fact that the various vectors given are in dif-

ferent coordinate systems that change relative to each other as the bodies

move and the angles change. We will now write these transformations between

the coordinate systems fixed in each of the proving bodies. For simplicity

without loss in generality, it will be assumed that all of the body fixed

coordinate systems are aligned when all the angles are zero.

We will now adopt the following notation: [B i3 1 denotes the transformation

from the coordinate system fixed in body 3 to the coordinates system fixed

in body i. We will also note that

[B i i-1 1 " (rIj - sin 8i 
[ui 1 + (i - cos O i ) [u1 1

2 j
	(A-21)
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• 

If we consider this chain to be in statir. equilibrium, then we can write 

and 

We can write eqs. 

Defining 

n 

Mi :II Wn + L ri x tn 
j=i 

(A-16) and (A-17) as 

n 

Hi I~ · L [r.j~ M n 
j=i 

F; 0 ~ J Fn 

[Pll .~~ 
and using definitions from above, we can write eq. (A-1S) as 

{Pi} = [Lin+1]T{Pn} 

(A-16) 

(A-17 ) 

(A-18) 

(A-19) 

We have not discussed the fact that the various vectors given are in dif
ferent coordinate systems that change relative to each other as the bodies 
move and the angles change. We will now write these transformations between 
the coordinate systems fixed in each of the moving bodies. For simplicity 
without loss i~ generality, it will be assumed that all of the body fixed 
coordinate systems are aligned when all the angles are zero. 

We will now adopt the following notation: [81j] denotes the transformation 
from the coordinate system fixed in body j to the coordinates system fixed 
1n body i. We will also note that 

[B; 1-1] = (r'IJ - s1n 6i [!!.i] + (1 - cos 61 H!!.;] 2) (A-21) 

A-5 



and that

(B i j) _ [Bi i-1 1 [B i-1 1 -21^..[BJ+2 j+1 1 [Bj+l j 1 i > 3	 (A-22)

We will assume that the matrices defined in the first part of this appendix

are written such that everything is transformed to the 0 system unless other-

wise specified.

A-6

and that 

(A-22) 

We will assume that the matrices defined in the first part of this appendix 
are written such that everything is transformed to the 0 system unless other
wise specified. 

A-6 



APPENDIX B

CALCULATION OF THE iRM FLEXIBILITY MATRIX

The purpose of this appendix is to present a set of formulas for computing

the arm flexibility matrix or the flexibility matrix for a chain of bodies.

By flexibility matrix is meant the matrix that relates the forces applied

to the end of a cantilevered chain of bodies to the resulting static-elastic

displacement.	 For a given cantilevered body (fig. B-1), we can write

6x1	 6x1

{F}	 -{a}

F

'	 M

Figure B-1

Suppose the body depicted in figure B-1 is the ith body in a chain; if we

apply a load to the end of the chain of bodies, we car compute the load at

'	 the ith joint in terms of the end load. 	 Assuming Fn • U. from eq. (A-20) we

have the load at the ith hinge as

{P } =	 L	 T{P }	 B-2
i	 [

	
in ]	n	 {	 )

B-1

APPENDIX B 

CALCULATION OF THE ,'1RM FLEXIBILITY fttl\TRIX 

The purpose of this appendix is to present a set of formulas for co.nputing 
the arm flexibility matrix or the flexibility matrix for a chain of bodies. 
By flexibility matrix is meant the matrix that relates the forces applied 
to the end of a cantilevered chain of bodies to the resulting staticMelastic 
displacement. For a g1ven cantilevered body (fig. B-1), we can write 

6xl 6xl 

~~~ fMJ'J = F OlP~ 
lin t{otl 

~-"-=:''::;;' == 

Figure B-1 

(B-1) 

Suppose the body depicted in figure B-1 is the ith body in a chaini if we 
apply a load to the end of the chain of bodies, we car compute the load at 
the ith joint in terms of the end load. Assuming rn • ~, from eq. (A-20) we 
have the load at the ith hinge as 

(B-2) 
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The elastic deflection at the ith Joint can be written as

	

{6 i } = [Y i ){ P i } - [yi ][L in ] T {Pn }	
(B-3)

The resulting deflection at the end of the beam from an elastic deflection at

the ith Joint assuming small angular deflection is

{an} - 
[Lin

){di } = [Linl[Yil[Lin)T {P n }	 (B-4)

The total deflection at the end of the beam can now be written as the sum of

the deflections expressed in eq. (B-4).

n	 n

	{6n} F, 	 -	 [Linl[YO [L
in IT{Pn}	 [Y]{

Pn }	 (B-5)

	i=1	 i=1

So we see that

n

[Y] -	 [Lin] [ Y i ] K in ] T	 (B-6)

i=l

We will assume that the [y i ] matrices in the equations above are sparse

matrices. Looking at figure B-2 we will assume that the [y i ] matrices have

the following form

Y^l 0 0 0 0 0

0 y22 0 0 0 y26

0
Y33 0 Y35 0

I Yi I 	-
0 0 0 0 0 0
0 0

Y53
0

Y55
0

0 y62 0 0 0 y66

(B-7)

B-2

The elastic deflection at the ith joint can be wr1tten as 

T {1S1} = [Y1]{Pi } = [Yi)[L1n] {Pn} (8-3) 

The resu1t1ng def1ect10n at the end of the beam from an elastic deflection at 
the ith j01nt assuming small angular deflect10n is 

(8-4) 

The total deflection at the end of the beam can now be written as the sum of 
the deflections expressed in eq. (8-4). 

n n 

{lSn} = L {o~} = L [L1n][Yi][Lin] T{Pn} = [y]{Pn} (8-5) 

So we see that 

1=1 1=1 

n 
[Y) = L [Lin) [Y1] [Lin] T 

1 =1 

(8-6) 

We will assume that the [Y1) matrices "jr, the equations above are sparse 
matrices. Looking at figure 8·2 we will assume that the [Yi] matrices h~ve 
the following form 

; 
0 0 0 0 0 Yll 

0 
i 

0 0 0 
; 

Y22 Y26 
"I 0 

; 
0 i 0 w Y33 Y35 

[Yi] .. (B-7) 
0 0 0 0 0 0 

0 0 1 0 1 0 YS3 YSS 
0 

i 
0 0 0 

1 
Y62 Y66 

B-2 
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M_Figure B-2

It is noted that [y i d is symmetric so there are only seven independent non-

zero values in [y i ]. All the elements of eq. (B-7) are positive numbers

except for y26 
and y62 ,

 which are negative.
AS

B-3
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"l}---------.------- -, 
-_________ ~___i ~ K, 

,", 

Figure 8-2 

It is noted that [y.] is symmetric so there are only seven independent non-
1 

zero values i~ [Yi] •. All the elements of eq. (8-7) are positive numbers 
except for Y~6 and Y~2t which are negative. 

8-3 
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APPENDIX C

tAGRANGIAN APPROACH TO THE RIGID BODY EQUATIONS OF MOTION

FOR A CHAIN OF RIGID BODIES

The Rigid Body equations of motion for a chain of bodies will be developed in

this appendix, using the relationships developed in Appendix A. After

writing these equations in rather general terms, we will assume that we have

six joints and that all of the inner bodies are massless so that the approx-

imations made in assuming that the arm is massless can be noted.

We will now look at the kinetic energy of the ith body in a chain of rigid

bodies (fig. C-1).

Figure C-1

T i = 2 V, CM i V-1M +
 ^fi	Ai c^i (C-1)

C-1
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LAGRANGIAN APPROACH TO THE RIGID BODY EQUATIONS OF MOTION 
FOR A CHAIN OF RIGID BODIES 

The Rigid Body equations of motion for a chain of bodies will be developed in 
this appendix, using the relationships developed in Appendix A. After 
writing these equations in rather general terms, we will assume that we have 
six joints and that all of the inner bodies are massless so that the approx
imations made in assuming that the arm is massless can be noted. 

We will now look at the kinetic energy of the fth body in a chain of rigid 
bodies (fig. C-1). 

Figure C-l 

(C-l) 
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The kinetic energy of the ith body written in terms of the velocities at the

ith Joint is

V; = ViM - W; x ai	 (C-2)

or	 V—;CM=V;+
Wi 

x
	 -ai xW;	 (C-3)

Substituting eq. (C-3) into eq. (C-1)

-	
W. T [A; ] - m;

	

[di]2
   	 -m; [d ] w;

Ti = 2 _	 _	 = 1-[V.}T[A;]{Vi} 	 (C-4)
V;	 m;
	

mi ri, y;

From eq. (C-4) we can write the kinetic energy of the entire chain of rigid

body as

n

T =2

	

	 {V;}T[A;I{V;}	 (C-5)

i=0

Using eq. (A-12) in eq. (C-5) we can write

n

T = 
1 E 

(
{VO}T[LO ] T + { 6}T [U] T IS;I T [A;I [LO I{VO } + [S;I[UI{g}

i=0

n	 n

	

T 2: [LO I T [Ai I [LO ]	 Fa [LO 1 T [Ai l [S i l [U)	 {V 
0
}

l NO	 J=O	
i	 i	 i =0	

i

2	 n	 n

[U]TIS;IT[A;I [LO ]	 L [U]T[S,]T[A,I [S 1 ] [U] {e}

i=0	 i	 i=0	 J L J

(C-6)

C-2

The kinetic energy of the ith body written in terms of the velocities at the 
ith joint is 

(C-2) 

or (C-3) 

(C-4) 

From eq. (C-4) we can write the kinetic energy of the entire chain of rigid 
body as 

Using eq. (A-12) in eq. (C-5) we can write 

C-2 

n I: [U] T [S1] T [Al ] [Sl] [U] {e} 

i=O 

(C-5) 

(C-6) 
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From eq. (C-6) we can write

T = 2 {q}T [A]{q}	 (C-7)

where	 {v }
0

{q} =	 (C-8)	 ^.

and in general [A] is a function of the q.'s.

This completes writing expressions for the kinetic energy of the system. As

we are dealing with rigid bodies, we will assume that the strain energy of the

system is zero. To complete the ingredients for Lagrange equations, we must

formulate the virtual work of the system to define the generalized forces,

the virtual work due to the torque motors at the joints can be written

6W  = {68}T {T} = 6t{ 6} { T }	 (C-9)

The virtual work of the external forces and moments applied to the ith body

can be written as

n	 T M i	n	 T(Fli
SW =	 {dRi} _ = 6tE {Y i } 1

l_
	 (C-10)

	

i=0	 Fi	 i=0

Using eq. (A-12) in eq. (C-10) we have

Ff.i
6W = 6Wd + 6WC = {68} T

{T} + 6t 

n
^ (jVO}T [LO ] T + {6}T[U]T[Si]T

i=0	 i	 Fi

n	 Frin	 J ffi )
= {6R0 }TE [LOi ] T	 + {G8}T { T } + E [U]T[Si]T1)_ t(	 (C-ll )

i =0	 i	 i=0	 Fi

C-3

From eq. {C-6) we can write 

(C-7) 

where 

(C-8) 

and in general (A] is a function of the qi's. 

This completes writing expressions for the kinetic energy of the system. As 
we are dealing with rigid bodies, we will assume that the strain energy of the 
system is zero. To complete the ingredients for Lagrange equations, we must 
formulate the virtual work of the system to define the generalized forces, 
the virtual work due to the torque motors at the joints can be written 

(C-9) 

The virtual work of the external forces and moments applied to the ith body 
can be written as 

(C-10) 

USing eq. (A-12) in eq. (C-10) we have 

5W' 6WJ + 6WC' {66}T{T} + 6tt~VO}T[LO]T + {Ii}T[U]T[SI 1T) {:;j 
i =0 1 F 1 

(C-ll ) 
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or	 n	 Ri

[L01ITIT,
i-0 

6W = {aq}T - - - - - - - - - - - -	 (C-12)

n

{ T } + E [U]T[Si
IT

i=0	 Fi

and since	 SW = {dq }T{Q}	 (C-13)

where {Q} are the generalized forces, we have completed the development of the

terms needed.

Substituting eq. (C-5) into Lagrange ' s equations we have

^([Al{q}) - a
_ a	 ({q}T[Al{q}) _ {Q}	 (C-14)

or	 {0}T

6+n	 {0}T

[Al {q} +	 q^ raq 1 {q} - {q} T [a-q	 {q} _ {Q}	 (C-15)
J-7	 L JJ	 ` J

{q}T[

Tq6+—n]J
8A

L 
or	 [Al{q} + [g}{q} _ {Q}	 (C-16)

C-4

or 

(C-12) 

and since (C-13) 

where {Q} are the generalized forces, we have completed the development of the 
terms needed. 

Substituting eq. (C-5) into lagrange's equations we have 

or 

or 

• • • 

• • • 

{Q}T[.1L] L aq6+n 

[A]{q} + [B){q} • {Q} 

C-4 

(C-14) 

(C-15) 

(C-16) 



where
{p}T

6+n	

{O}T

.-	 C JJ
 I	 {i,TraA I	

(C-17)

 1J-7

-	 {q}T aA

aq6+nC

Let us now go back to eq. (C-5) and assume that

[Ai ] = 0	 i = 1,---,5	 n = 6

then	 T = 2 {VO }T [AOJ{VO} + 2 {V6 } T [A6]{V6 }	 (C-18)

Also

{V0} T [A01 + [LO 6 1 T [A6 1 [LO 6 l	 [LO 6 ] [A6] [S6] [U]	 {1-0}

T =2
{8}	 [U]T[S61T[A6] [LO

6 

l	 [U]T[S61T[A6l [S6] [U] {6}

(C-19)

Now from eq. (A-14) we see that

{V0}T [AO] + [LO 1 
[A6][L0 ] [Lp ][A6][J] {V O}

T=
1	 6	 6	 6

2

{6}	
[J]T[A6l [L0 ]	 [J]T[A6] [J ]	{8}

6

As we have seen for the arm, [J] is an invertible transformation (except for

singularity points). So eq. (C-18) is a valid form of kinetic energy with a

valid set of 12 generalized coordinates. If we assume that the external

C-5

Wes,

a

r:-M

I

where 
{O}T 

• • • 

6+n {O}T 

[8] = tt qj[;~j] - {q}T~aA j (C-l7) aq7 

• · • 

{(HT~2L.] aq6+n 

Let us now go back to eq. (C-5) and assume that 

i = 1,···,5 n = 6 

then (C-18) 

Also 

(C-19) 

As we have seen for the arm, [J] is an invertible transformation (except for 
singularity points). So eq. (C-18) is a valid form of kinetic energy with a 
valid set of 12 generalized coordinates. If we assume that the external 

C-5 
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E

forces and moments on the interior bodies are zero, then we need only to deter-

mine the form to the contributions to the generalized forces from the torque

motors.

6W  = {6e}T {T} = 6t {6}T {T}	 (C-20)

also	 [Jl{g} = {V R} = {V 6 }	 [Lon]{V0 }	 (C-21)

or	 {6} = [ Jl -1 06 } - [J]-1 [Lon l{V0 }	 (C-22)

6W  
= 6t({V6}T[J]-1 T _ {V0}T[Lon]T[Jl-1T ) { T}

= {6R6 }T [J]
-1T { T} - { 6R 0 ) T [Lon ] T [Jl

-1T 
{T}	 (C-23)

C-6

3

forces and moments on the interior bodies are zero, then we need only to deter
mine the form to the contributions to the generalized forces from the torque 
motors. 

also 

or 

~WJ = {~e}T{T} = ~t{e}T{T} 

[J]{e} = {VR} = {V6} - fLon]{VO} 

{S} = fJJ- l {V6} - fJ]-l(LonJ{Vo} 

T T 
~WJ = ~t({V6}T(J]-1 - {Vo}TCLonJT(JJ-1 ){T} 

= {~R6}T(J]-lT{T} _ {ORo}TCLonJTCJJ-1T{T} 

C-6 

(C-20) 

(C-21) 

(C-22) 

(C-23) 
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