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" RMS MASSLESS ARM DYNAMICS CAPABILITY IN THE SVDS
1. INTRODUCTION AND SUMMARY

This report presents the formulation and equations for the dynamics to simulate
the Remote Manipulator System (RMS) in the Space Vehicle Dynamics Simulation
(SVDS). The equations presented are derived assuming the masses anc inertias
of the RMS system are small relative to the mass and inertia of the orbiter

and payload, and can be neglected.

Section 2 presents a Newtonian formulation of the rigid body equaiion of motion
of the Orbiter-RMS-Payload system. The massless arm assumption and the
resnlved rate law (ref. 1) are used in these equaiions. The interaciion furces
and moments at the tip of the end effector resulting from the output torques at
each of the six joints are computed for the payload and the orbiter. These
forces are inputs to tne vquations of motion of the orbiter and for the payload
The arm joint rates are computed frum the translational and rotational veloci-
ties of the two bodies.

Section 3 contains a development of the equations required tu compute the arm
flexibility matrix, given the flexibility of =ach member. For this purpose,
tiie arm has been divided into five beams. The first beam cotains the longeron
and the portion of the arm up to the shoulder pitch joint. The second beam is
the upper arm, the third is the lower arm, the fourth is the wrisi, and the
fifth beam is the han¢. From the arm flexibility matrix, a joint flexibility
matrix is computed and used to compute six flexibility terms for inclusion in
each of the six servos to simulate arm flexibility.

Section 4 presents a set of formulas for the computation of static loads on
the arm members of the joints.

Section 5 contains a set of engineering flowcharts presenting the computations
required to implement the capabilities described in sections 2-4 into the
SVDS program,



Appendix A, The RMS Jacobian Matrix, devélops relationships between velocities
and forces in a chain of rigid bedies and relates these relationships te the
RMS Jacobian matrix.

Appendix B, Caléulation of the Arm Flexibility Matrix, presents a set of
equations that can be used to compute the flexibility matrix for a chain of
beams, given the flexibility matrix for each beam.

Appendix C develops equations for the kinetic energy and the virtual work for

a chain of rigid bodies. These equations are used in conjunction with Lagrange's
. equation to write the equations of metien of a chain of rigid bodies. The

masses and inertias of the inner bedies of the chain are assumed zero, and the
resulting equations are related to the massless arm equations presented in
section 2.

Because of the approximations made in the development of the equations of motion
in this repert, some conments should be made about the methed of verification
used, and some general comments about when the validity of these equations will
be questieonable. The massless arm approach presented herein and subsequently
being incerporated into the SVDS program requires extensive checkout to deter-
mine its level of validity. The primary checkout procedure used is to compare
these results with cases run on the RMS Simulation (RMSS) program. The standard
types of checkeut technigues for dynamics programs wiil be used; i.e., simple
cases that have clesed foerm solutions, balance of energy and work, and
engineering approximation checks.

The limits of vaiﬁdity of the massless arm equations must be determined to a
certain extent by comparison with other programs. Some observation ¢an be

made, however. The lighter the payload, the worse the approximation, and it

is felt that from a rigid body standpoint, about 1000 1b is the minimum paylead
weight that should be simulated in the rigid body mede. The technique employed
hera for the incorporation of lengeron and arm flexibility allows the simulation
of the first six bending modes of the system. As the mass of the payload
decreases, the separation between the rigid body bending modes (characterized




by end body motions) start to couple with the arm modes (characterized by
small motion of the end bodies). How good the approach presented herein is
c2n be determined by comparing the mode shapes and frequencies from a massless
arm vibration analysis with a distributed mass arm vibration analysis. From

a flexible arm standpoint, payloads of less than 10,000 1b would be suspect

at the preseni time.



2, RIGID BODY EQUATIONS

This section presents the massless arm RMS rigid body equations of motion for
implementation into the SVDS program, using a Newtonian approach to the formula-
tion of the equations. Appendix C presents a Lagrangian approach to the devel-
opment of the equations of motion of a chain of rigid bodies; a Newtonian
development for this type of system can be found in ref. 2. The assumption

that the arm is massless appears to be reasonable, based on a comparison of

the mass of the orbiter and the mass of a prospective payloads relative to the
mass of the RMS system itself. The orbiter weighs approximately 180,000 1b,

the payloads weigh between 20,000 and 65,000 1b, and the movable portiovus of

the arm weigh approximately 500 1b.

The following relationships can be written from reference 1.

T "e
{t} = [J] (2-1)
Fe
. wR
[J) {6} = (2-2)
VR

If the arm is assumed to be massless, eq. (2-1) gives the output force and
moment acting on the payload caused by the torque motors. An equal and
opposite force and moment will act on the orbiter.

Using eqs. (2-1) and (2-2) and the massless arm assumption, the end effector
forces and moments can be written

Me T-]
= (J]' {1} (2-3)
Fe
The translational equations for body 1 (orbiter) can bé written
R
;T = W[BII({F]} - {Ft'.‘}) + {g]} (2-4)
t



The rotational equations for body 1 are
(A 1{6) + [wy] [0 ) {wy} = (M} = (M} = [py){F,} (2-5)

The quaternion rates for body 1 are

. = 7 (2'5)
{ez} {w]}Eﬁ] {ez}
The body to inertial transformation is computed
B,] = (T, + 2e,le,] + 2[e,]%) (2-7)
1 < 1'=2 =2

The rigid body rotational and translational equations of motion for the
second body are written

2
d“R
20 _ 1 -
{——gdt :- —m2 (IBZHFZ} + [le{Fe}) + {92} (2-8)

[ 0g} + [up) Mp){wp} = My} + [B, 1 (M} + [py) [B){Fe}  (2-9)

The relative rotational and translational velocity of the tip of the end
effector with respect to the orbiter are computed

dR
{VR (B, ({ % |at s) + lgql{w }) - [B 2][22]{w (2-10)

{wR} = [812”&2} - {m]} (2-11)

Using eq. (2-2), the arm joint rates can be computed as

{“R}
8} = ! (2-12)
(vg)



The following equations are used to compute the secondary oody to inertial
transformation matrix and the body 1 to body 2 transforma‘’.ion matrix.

T
[B,) = [B,118,,) = [B,][B,,] (2-13)

[Byy] = [Tpgd [T (86)1[T5(8)1 1T, (0, + 8, + 8,)1(T5(8:)1(T 51 (2-14)

Eqs. (2-3) through (2-14) form a complete set of rigid body equations of
motion for the Orbiter-RMS-Payload system, assuming that the arm is massless.

Definition of Symbols

{1} 6x1 matrix of the torques output from the joiit servos

{J] 6x6 Jacobian mairix

{Me} 3x1 matrix of the components of the end effector moment vector in
the orbiter body system

{Fe} 3x1 matrix of t.he components of the end effector force vector in

the orbiter body system

{R]} 3x1 matrix of the components of the orbiter position vector in the
inertial system

m, Mass of the orbiter

[81] 3x3 transformation matrix from the orbiter body system to the
inertial system

{F]} 3x1 matrix of the external forces on the orbiter in the orbiter
body system

{91} 3x1 matrix of the components of the gravitational acceleration
vector on the orbiter, in the inertial system

(4] 3x3 inertia matrix of the orbiter

{w]} 3x1 matrix of the components of the orbiter angular velocity

vector {n the orbiter body system

My} 3x]1 matrix of the moments of the external forces about the center
of mass (CM) of the orbiter



{py} 3x1 matrix of the position vector from the CM of the orbiter to the
tip of the end effector in the orbiter body system

e, Scalar part of orbiter quaternion

{ez} 3x1 matrix of the vector part of the orbiter quaternion

{Rz} Position vector to CM of payload in the inertial system

m, Mass of the payload

[82] 3x3 transformation matrix from the payload body system to the

inertial system

(821] 3x3 transformation matrix from the orbiter system to the payload
body system

[812] 3x3 transformation matrix from the payload body system to the
erbiter body system

{p,} 3x1 position vector from the payload CM to the tip of the end
effector in the payload body system

{VR} 3x1 matrix of tha relative translational velocity of the tip of
the end effector in the orbiter body system

{wg} 3x1 matrix of the relative angular velocity of the tip of the end
effector in the orbiter body system

{8} 6x] matrix of the joint rates

[TLB] 3x3 transformation matrix from the orbiter body system to the
longeron system

[TPE] 3x3 transformation matrix from the end effector system to the
payload body system



3. ARM FLEXIBILITY

This section presents the development of a technique for computing the terms
needed to simulated massless arm flexibility, by computing the arm
flexibility matrix and then generating the joint flexibility matrix. Joint
flexibility terms are gen2rated from the joint flexibility matrix and will
be used in the joint servo model to simulate arm flexibility in the massless
arm RMS simulat ‘~n in SVDS. The computation of the arm flexibility matrix
is discussed in Appendix B.

Two modes of arm flexibility simulation can be used, passive and active arm
flexibility. In the passive arm case, the joints are considered locked and
the neutral arm angles are used with current arm angles to compute joints
torque from elastic rotations at the joints. In the active case, flexibility
terms are generated and used in the joint servo model.

From Appendix B, the flexibility matrix relates end effector elastic displace-
ments and rotations to forces and moments applied at the tip of the end

effector.

Using eqs. (2-1) and (2-2), the joint flexibility matrix is developed.

[Y1{P,} = {8,) (3-1)

TP} = ~(z) (3-2)
e F

[91(88) = {8,) (3-3)

Substituting eqs. (3-2) and (3-3) into eq. (3-1), the v91lowing formulas
result.

-1 17!
-7 T ) = (86 (3-4)

-[YJ]{TF} = {80} (3-5)
where (YJ] is the joint flexibility matrix.

8



For the passive case, the joint torques resulting from arm flexibility are
computed from eq. (3-5) as

(x} = ~lyy)" 68) (3-6)

For the active case, the joint flexibility matrix is used to generate
flexibility terms to use in the joint servo model. Presented below is a
technique that can be used to generate these terms.

Let [y%i] be a 5x5 matrix derived from lYJl by deleting the ith column and

the ith row.

T
Let {y%}} be a 1x5 matrix derived from [y,] by taking the ith row and

removing the ith element.

The flexibility term for the ith torque motor can be computed as

1

T -
e 2.7 22 21
Y§ = vy - DYggd Drggd (v (3-7)



4. STATIC LOADS IN THE ARM

In this section, a set of equations to compute the static loads in the arm at
each joint are presented. These loads are called static loads because they
ignore the inertia of the arm links. Since the dynamics formulated in this
report are based on a massless arm this type of loads model is completely
consistent with the dynamics. The equations presented in Appendix A of this
report are completely applicable, in particular, equation (A-20) can be used.
Noting that che end effector forces and moment are computed for the rigid
body dynamics these quantities can be used to form the {Pn} in eq. (A-20).
The following set of equations result.

M} = [Tygl (=M} = ({rgcd - trpgh) x {F 1)

{V]} = -[TZBJ{FE}

My} = [T (Mg} + ({rgg} = {ryp}) x (F )

0!
v} = [T3B]{Fe}

{M3} = [T3B](-{Me} - ({rGB} - {r3B}) x {Fe})

{VB} = '[T?j!{Fe}
My} = [Tl (M) + (irgg) = {rygh) x {F,))
(g} = [TglF )

{Ms} = [T4B]('{Me} - ({rGB} - {r48}) x {Fe})

[Tegl (Mg} + ({rgg} = (rygh) x {F,})
(V) = [Tggl{F,}

10



M} = [Tgpl (-M} = ({rep} = {rggl) x {F 1)

{V7} = -[TSB]{Fe}
Mg} = [Tl (M} + ({rgg} = {rggh) x {F })
V) = [Tggl(F }

Mg} = -[Tggl (M)
Vo) = ~[Tggl{F,}

where

{M]}.{Vl} are the moment and force acting on the shoulder in the shoulder
yaw coordinate system

{Mz},{vz} are the moment and force acting at the shoulder on the upper arm
in the upper arm coordinate system

{M3},{V3} are the moment and force acting at the elbow on the upper arm in
the upper arm coordinate system

{M4},{V4} are the moment and force acting at the elbow on the lower arm in
the lTower arm coordinate system

{MS},{VS} are the moment and force acting at the wrist pitch joint on the
lower arm in the lower arm coordinate system

{MG},{VG} are the moment and force acting on the wrist at the wrist pitch
joint in the wrist system ‘

{M7},{V7} are the moment and force acting on the wrist at the wrist yaw
Jjoint in the wrist system

{MS},{VB} are the moment and force acting on the hand at the wrist yaw joint
in the hand system

{Mg}g{vg} are the moment and force acting on the hand at the end effector
in the hand system

1



5. SVDS ROUTINES

This section presents engineering flowcharts of the routines required to inter-
face the massless arm dynamics described in the preceding sections with SVDS.
Flowcharts also are presented for the static loads computations in section 4.

Three basic routines are required to interface this capability. RMSFM computes
the venicle interaction forces and moments and the arm joint rates; RMSFLX
computes the joint flexibility terms for input to the joint servo model; and
RMLOAD computes the static loads on the arm members at the joints.

12



SUBROUTINE RMSFM

Subroutine RMSFM is called from the Math Model Driver (MMD) each pass of the
integration and computes forces and moments on each body resulting from torque

motor outputs. The joint angle rates are computed based on the translational
and angular velocities of each of the bodies.

< START ’

Y

COMPUTE_END EFFECTOR FORCES AND MOMENTS FROM
TORQUE MOTOR QUTPUTS

M} -1
. T
[{Fe}] = (J] {r}
e
Y

COMPUTE INTERACTION FORCES AND MOMENTS ON THE
ORBITER AND PAYLOAD

TFpqt = ~(F)

My} = =M} - 1p,1(F 3

(Fp) = [8,q1(F,}

(Mg} = [Byy M3 + [py) (Fp,)

COMPUTE RELATIVE VELOCITY AND RELATIVE
ROTATIONAL VELOCITY OF END EFFECTOR

{wp} = 1By,) {wy} = {wy}
. e T(1%R2 3““1})
(VR} = By} (la't-' - ld—i‘.— + [g]](w]}

- 18y,] (py] ()}

i
COMPUTE JOINT RATES i

{wy } !
By = R ] .
(Vg)

re—

‘ RETURN ’

13




SUBROUTINE RMSFLX

Subroutine RMSFLX is- called from the MMD at some integer multiple of the
integration step size, just in front of the torque motor model. This routine
computes flexibility terms for input to the torque motor model.

START

COMPUTE END EFFECTOR MASSLESS ARM FLEXIBILITY MATRIX

o r
1, (0] g1 01 ||y ol | gl @ g
(YEI .
1=l R b
trygl T f {100 (Tggdf{na] trgd [ | 101 (Tyg)] 101 Ly

where

=
—-—
[~
[~}
|
[~ 3
<
o
[ ~]
[ -]

i ! | iy i

COMPUTE JOINT FLEXIBILITY MATRIX
-1

byy) = @ g !

1

COMPUTE FLEXBILITY TERMS FOR TORQUE MOTOR MODEL TO SIMULATE
MASSLESS ARM FLEXIBILITY

e 21,7 ..22,-1, 21 S21 e
Y; ¢ Y.HJ - {Yi } [Y‘i\]] {YiJ} i=1, 6

where

[Yfgl is the 5x5 matrix derived from [y,] by deleting the ith
row and column
1
{st} is the 5x1 matrix derived from [yJ] by taking the ith

column and deleting the ith element

}

RETURN

14



START

COMPUTE END EFFECTOR MASSLESS ARM FLEXIBILITY MATRIX

s [ 1y @] [ @ [ty wip]frg @ ] ey
(Yel -
trgst | | 100 g2 ivi ek || tor g ffon 1
Lig) 'L J L 101 [TggdJ{Inya] Drppd || 101 [Ty u

where
i
mw 9o 0 o 0o 0 0 0 o0

i f i
e lo v of mpefo o vl -0 v o

1
0 0 v 0 v O 0 0 v

'

COMPUTE JOINT FLEXIBILITY MATRIX
-1

tyyd = 017 ygd 1

Y

COMPUTE FLEXBILITY TERMS FOR TORQUE MOTOR MODEL TO SIMULATE
MASSLESS ARM FLEXIBILITY

e _ 21,7, 22,-1, 21 f21 wee
Yy T YHJ - {Y'i } [Y1J] {YiJ} i=1, »6

where
[Y?S] is the 5x5 matrix derived from {yJ] by deleting the ith

row and column

T
{yﬂ} s the 5xI matrix derived from [y,] by taking the ith
column and deleting the ith element

RETURN




SUBROUTINE RMLOAD

Subroutine RMLOAD computes the static forces and moments acting on the arm
members at the joints and should be called in the output loop at some
integer multiple of the integration step size.

START

COMPUTE FORCES AND MOMENTS AT THE JOINTS ON THE ARM MEMBERS

) = [Tygl(-(M} - ({rggh = (rpgh) x (F })
(V) = ~[T,g)(F )

(M3} = [Tyl (M} + ({rgg) - (rpp}) x (F,1)

(V,} = [Tyl (F )

(M3} = [Tyl (<M} = ({rgg} - (rypd) x {F )
{Vg} = (T3l (F )

Mg} = (Tl (M} + ({rggl - (rygh) x (F,})

e} = Mgl (F,)

Mgh = [Tygl (-} - ((rgg) = (rgg)) x (F,})
(Vg} = -[Tygl(F )

(M) = [Tggl (M} + ((rgg} - (rgg}) = {F 1)

(Vg} = (Tggl(F,}

(M)} = [Tgp) (-1} - ({rgg} = {rgg)) x {F,1)
W} = (Tl (F,)

(Mg} = (Tgl((M,} + (reg} - {rggh) = (F))

(Vg) = (Tl (F,}

(Mg} = -(Tggl (M}

(Vg) = ~[Tgg)(F )

b -

RETURN

15



APPENDIX A
THE RMS JACOBIAN MATRIX

The purpose of this appendix is to develop some kinematical relationships that
deal with the computation of translational and rotational velocities in a

chain of rigid bodies. These same kinematical relationships appear in relating
forces and moments in the chain of bodies. As seen in reference 1, for a
system of six joint degrees of freedom 1ike the RMS, the so-called Jacobian
matrix becomes an invertible transformation relating configuration space
velocity and force quantities to task space velocity and force quantities.
These same kinematical relationships appear in the computation of the combined
flexibility matrix for the system of rigid bodies.

Suppose that we have a chain of rigid bodies with one degree of rotational
freedom at each joint. (For more than one degree of freedom at a joint, a
null vector can be assumed for the next position vector, thus putting both
rotations at the same point). From figure A-1 we can write the following

relationship

Figure A-1

V=V tugxry

A-1



where Vo and ;0 are the translational and rotational velocities of body zero
(the first body of the chain). A recursive relationship can be written for
the velocities of the ith body at joint 1 in terms of the velocities in body
i-1atthei -1 joint.

Vi=Vist “1-1 X i

wy = gy * 85U (A-2)

Substituting eq. (A-2) into itself, we arrive at a relationship for V1 and ;i
in terms of VO’ ‘-‘"0' and the joint rates up to the ith body.

i-]
i; LR
and @ = 5 +Z;Ujéj )
J.

From eqs. (A-3) and (A-4) we can write

=

poes  Svny - —1—~

- -
o L o fg
R
o ry
Y -EE:fral LIV
L | §=0 JL
Joa o w El
) 1 1
il o b %
-}E:?3 Ty Txly b ol off,
3= p 32 A ;
°n]  (A-5)

A-2



If we define

6x6
6x6 B -
I [0)
Ly = ! 145 (A-6)
j-1
-
Dy L
| k=1 _
6x6
I
u‘ 0 LN N ]
6nx6 |0 0 eee
[y = |0 Ez (A-8)
0 0 Uy
. 0
- 8
wy . .
v} = and {6} = |6, (A-9)
v, :
%]
Then eq. (A-5) can be written
= l oncr eee 8 -
(Vi) = Mg J(Vgh + LIy 14 [y 1es T 0] e+ O WIE)  (A-10)

If we also define

6x6n
[S1J = [[L11]

[in]-""L [0]+++(0)) (A-11)

then we can write eq. (A-10) as

A-3



Wyh =t HVgh + I5) (V1 {8 (A-12)

For the RMS configuration we have seen that the relative velocity between the
orbiter and the payload can be written (ref. 1) as

{Vp} = 191{8} (A-13)

Relating eq. (A-13) to eq. (A-12), we see that
(1 = [Sg1MU] (A-14)

We have also seen that we can write the output forces and moments from the
arm as

M
) = 17 e| (A-15)
F)

We will now take a closer look at the force mument kinematic relationships.
Consider figure A-2.

Figure A-2

A-4



If we consider this chain to be in static equilibrium, then we can write

F,=F (A-16)
n

and B o=N + Z}-’i xF (A-17)
3=

We can write eqs. (A-16) and (A-17) as

n
ﬁ} Lt :E:: h;jq Mn
=1

(A-18)
Fy 0 1 J -Fn
Defining Fﬁ
P} =|_ (A-19)
F
i
and using definitions from above, we can write eq. (A-18) as
_ T
{Pi} = [Lin+1] {Pn} (A'zo)

We have not discussed the fact that the various vectors given are in dif-
ferent coordinate systems that change felative to each other as the bodies
move and the angles change. We will now write these transformations between
the coordinate systems fixed in each of the moving bodies. For simplicity
without loss in generality, it will be assumed that all of the body fixed
coordinate systems are aligned when all the angles are zero.

We will now adopt the following notation: [8131 denotes the transformation
from the coordinate system fixed in body j to the coordinates system fixed
in body 1. We will also note that

By 430 = ("L, - sin oy [w) + (1 - cos 6,)1u1%) (A-21)

A-5



and that
Bygd = By 118y qpd = (Byyp gl Byyy 5] 123 (A-22)

We will assume that the matrices defined in the first part of this appendix
are written such that everything is transformed to the 0 system unless other-
wise specified.

A-6



APPENDIX B
CALCULATION OF THE .*RM FLEXIBILITY MATRIX

The purpose of this appendix is to present a set of formulas for computing
the arm flexibility matrix or the flexibility matrix for a chain of bodies.
By flexibility matrix is meant the matrix that relates the forces applied

to the end of a cantilevered chain of bodies to the resulting static-elastic
displacement. For a given cantilevered body (fig. B-1), we can write

6x1 6x1

6x6 [(M}1  [(sy}
[y] = (B-1)
{F} -{8}

bl

/.

§®é&£§7}b‘0¢§
|
"

Figure B-1

Suppose the body depicted in figure B-1 is the ith body in a chain; if we
apply a load to the end of the chain of bodies, we car compute the load at

the ith joint in terms of the end load. Assuming F; = 0, from eq. (A-20) we
have the load at the ith hinge as

< T
(Py} = [Ly1 (P) (8-2)

B-1



The elastic deflection at the ith joint can be written as

Y - - T -
(6,} = Iy;1{Py} = [y, iLy )T (P ) (8-3)

The resulting deflection at the end of the beam from an elastic deflection at
the ith joint assuming small angular deflection is

iy, _ ny, _ T

The total deflection at the end of the beam can now be written as the sum of
the deflections expressed in eq. (B-4).

n n
(8,3 = D160 = Dot vy it TP = P (8-5)
i=1 i=]
So we see that

n
.
(1 = D ML 1y Ik, (8-6)
i=1

We will assume that the [71] matrices i the equations above are sparse
matrices. Looking at figure B-2 we will assume that the [Yi] matrices have
the following form

i
v, 0 0 0 0 o
i i
0 v 0 0 0 vy
i i
c 0 y‘ 0 v 0
33 35
[y:) = (B-7)
L O 0 0 0 0 O
i i
0 0 vg3 0 vg5 ?
0 yéz 0 0 0 vy
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Figure B-2

It is noted that [yi] is symmetric so there are only seven independent non-
zero values ip [Yil' 'AII the elements of eq. (B-7) are positive numbers

except for Y;G and YgZ’ which are negative.
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APPENDIX C

LAGRANGIAN APPROACH TO THE RIGID BODY EQUATIONS OF MOTION
FOR A CHAIN OF RIGID BODIES

The Rigid Body equations of motion for a chain of bodies will be developed in
this appendix, using the relationships developed in Appendix A. After
writing these equations in rather general terms, we will assume that we have
six joints and that all of the inner bodies are massless so that the approx-
imations made in assuming that the arm is massless can be noted.

We will now look at the kinetic energy of the ith body in a chain of rigid
bodies (fig. C-1).

Figure C-1

View R

+
=
-_—

i My (c-1)




The kinetic energy of the ith body written in terms of the velocities at the
ith joint is

- M -
vi 'v? -wi Ka.,‘ (0'2)
or v‘i3"‘=v,+;.xa‘=v-a’xai . (C-3)

Substituting eq. (C-3) into eq. (C-1)

T 2 —
(gl = mldgd™ 3 mldiey

ro e
m; I V1

v, m. [d]

From eq. (C-4) we can write the kinetic energy of the entire chain of rigid
body as

n

1

EZO{V SUISIA: (c-5)
":

Using eq. (A-12) in eq. (C-5) we can write
n
_1 Ty T4 i TrnTre 1T .
=3 ({vo} Ly )"+ @IS, ){A,.J([Loilfvo} + [Si][U]{e})
=0 |

- gu—

T T
T > CRUBICY > :[Loi’ (A s 101 | [evg)
[ 01 i=0 i=0

n
T T Tee T .
PIURRLINIS ZO wiTis,1 a1 is,1 1| | €8)
- 4 A

(c-6)



From eq. (C-6) we can write

T =3 @ ANG) (c-7)

where {VO}
{ar=1. (c-8)

{8}

and in general [A] is a function of the qi's.

This completes writing expressions for the kinetic energy of the system. As
we are dealing with rigid bodies, we will assume that the strain energy of the
system is zero. To complete the ingredients for Lagrange equations, we must
formulate the virtual work of the system to define the generalized forces,

the virtual work due to the torque motors at the joints can be written

oWy = {8031 {1} = 6t{d}H) (c-9)

The virtual work of the external forces and moments applied to the ith body
can be written as

M
F

n '} n sﬁﬁ
GNe = § {GRi}T;_ } = Gtz {Vi }Tl?.} (c-10)
= i= 1

i
Fi}

n {Fﬁ} ; n . T‘ﬂ}}
T T . J /
{8R,} Ly ] + {36 ({T} + U1 [S:1)_ ) (C-11)
’ 1-20 o Ar) 1-20 Tl

i

Using eq. (A-12) in eq. (C-10) we have

=

n
T T T aaTrnTre 4T
B = oMy + oM = (68} (T} + 6t ({vo} ORIRSUHUNCR ){

i=0

"
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or

and since

oW = {GQ}T

SW =

n
BEDY uuT[sixT{
| i=0

{6917 {Q}

ﬁi}
F,

1

(c-12)

(C-13)

where {Q} are the generalized forces, we have completed the development of the

terms needed.

Substituting eq. (C-5) into Lagrange's equations we have

or

or

UMY - shy (@& = (@

. 6+n
mia +( > qj[ggg] (@) -
57 |

0y7

0y

i

(A]{q} + [(B1{4} = {Q}

C-4

+. TI3A
(4} [?qy]

aq6+n]

{q} = {Q}

(c-14)

(c-15)

(C-16)



where -
[ o7
64n )
= A _ | arTI2AL .
(8] = qu[aqj] @ [a«;,] (c-17)
=7
Tl 2A
(& ---]

Let us now go back to eq. (C-5) and assume that
[Ai] =0 i=1,002,5 n==6

1y T 1T )
then T =5 {Vo} [AgI{Vp} + 5 Vgl [A1{Vg} (C-18)
Also
v + o T, 1 L TIA IS V[V
: 0 0 05 6 05 05 6" "6 0
i (8} wiTsaTiaa. 1 wiTsaT sl 18
6 (Al lLo g [Ag) IS¢

(c-19)

Now from eq. (A-14) we see that

T T
oh |[tAg) + I 1 IAGI g 1 [t 1 [AGI 91 |¥g)

r=1
1, WITIAIIL ] SHIRIOREG!

As we have seen for the arm, [J] is an invertible transformation (except for
So eq. (C-18) is a valid form of kinetic energy with a

singularity points).
If we assume that the external

valid set of 12 generalized coordinates.




forces and moments on the interior bodies are zero, then we need only to deter-
mine the form to the contributions to the generalized forces from the torque
motors.

oMy = (8037 (x) = (8} (x) (c-20)
also 116} = (Vp} = {Vg} - [L  1{V,) (c-21)
or 3 = 7wk - i v (c-22)
T T
i Tipp-] T (Teop-1
Sy = St((Ve} 1917 - Vgd 1L 11117 ) e
= {6R }T[JJ“T{ } - (8RITIL JT[JJ']T{ } (C-23)
6 T 1%eT thon !
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