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NOTATIONS 

a specified crack depth A 

C constant in Paris's equation for crack growth 

~ height of casing 

K stress intensity factor 

KC critical stress intensity factor 

KN stress intensity factor after N uses 

N number of uses of the motor case 

p Pressure 

k outer radius of the casing 
'0 

a surface crack depth 

a critical crack depth 
c 

aN crack depth after N uses 

c half the length of a surface crack 
o 

~l payload cost per pound 

C2 cost of total payload 

c 3 cost of articles and ,accessories at proof test 

c. component cost 
.1. 

c .. component cost 
, 1.1 
: c ... component cost 
, 1.1.1 
I 

c. component cost 
1.V 

total cost 

probability density function 

constant in Paris's equation 

initial case thickness 

p proof load factor 

t thickness of the case 

~N thickness of the case after N uses 

x random variable representing crack depth 

z standard normal variable 

'Y,TJ shape parameter 

At thickness decreased during grit blasting 

AK stress intensity range 

E ,A maximum initial crack depth, scale' parameter 
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a tninimum crack depth o 
~ shape parameter 

Y density of the material of the casing 

y yield stress 
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INTRODUCTION 

Structural components of a solid rocket motor case are considered to 

be! fracture critical whenever the game plan is to recover and reuse the 

mOltor case for a designated number of missions. Proof tests, conducted on 

the case between missions, are also significant to rendering the 

st.ructura1 components fracture critical. Proof load levels may 

significantly affect the design life of the structure. A fracture control 

plan is, therefore, necessary and is considered in the design of the 

case. 

In particular, this paper is concerned with the fracture control of 

the most critical membrane areas of the case. All discussions and 

methodologies presented in this paper can, however, be used whenever 

similar fracture critical structures of a reusable space vehicle system 

are designed. Some modification might be necessary ~n particular 

structures. Significant loads are applied to the motor C8se during flight 

and water recove~y operation of each mission. The applied stresses from 

all other events during the mission are assumed in this analysis to be not 

significant enough to result in cyclic or time dependent crack growth. If 

the test or analysis indicate the possibility of other critical loading 

events they can be included 1n the fracture control plan by extending the 

reported analysis. Before each mission, the case is also subjected a 

proof test. The loads' applied during the proof tests can result in 

significant amount of crack growth. Grit blasting is assumed to be used 

between each mission. This reduces the effective depth of cracks and the 

t~ickness of the membra,ne by a selected amount. While the effective depth 

of crack. is reduced, the refurbishment grit blasting operation has the 

effect of increasing the applied stresses. This necessitates a larger 

i~itial thickness of the membranes than that would be required otherwise. 

Tberefore, any design of the membrane of the case must arrive at an 

i~itial wall thickness t, the thickness t that will be decreased between 

each mission and the, proof load factor p. For example, a large value of 
;, ; 

initial wall thickness results in increased reliability, but results 1n 



the need for increased propellant, increased cost of operation and reduced 

pay load capability. On the other hand, a small initial wall thickness 

increases the probability of failure and the resulting loss of the reusable 

sp~ce vehicle system and the pay load. Therefore, there is a ·need for 

optimizing the initial wall thickness. Similar arguments can be presented 

to explain the need for selecting th~ other design variables such as6t and 

p by optimizing the desired objective function of cost and weight. 

In general, these design variables depend on the probability 

distribution for the initial flaw sizes present in the membrane, applied 

stresses during the use of the vehicle, crack growth characteristics of the 

material, fracture control plans, specified reliability bounds, weight and 

cost considerations. The paper describes a reliability-based procedure 

that can be used to select the design variables of a solid rocket motor 

case in a reusable space vehicle system by using probabilistic fracture 

mechanics and cost or weight considerations. 

Method of Approach 

It is assumed that careful nondest ruct ive lnspection (NDI) 

~echniques can detect initial cracks greater than the surface length of 2c o 
and depth of a with 100% success. Sometimes, it is assumed that 

o 
cracks corresponding to surface length 2c = 0.1 inch can be identified 100% 

~f the time. l If the corresponding maximum depth is 0.05 inch there is no 

possibility of existence any initial cracks of depth larger than 0.05 inch. 
1 
Such an initial crack depth distribution is assumed to be analytically 

~epresented by Johnson Sb digtribution. 2 Reasons for this assumption can 

be explained as follows. One of the requirements of any assumed 

distribution is that the minimum and maximum crack depths be bounded within 

finite limits. Depending on the thickness and the available techniques of 

non destructive inspect.ion techniques, there is a finite maximum depth of 

possible crack. It is not infinity as is provided by distributions such as 
I 

~ormal distribution, gamma or log-normal distributions. The minimum value 

of depth of crack can be assumed to be zero or a small number. Such a 

distribution can be obtained ac:.the transformation of the usual normal 

variate. One such transformation is th::;e following. 
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ln A + e - x 
x - e 

(1) 

In this equation, z is the standard normal variable and x is the variable 

of interest i.e., the crack depth. The four available parameters are Y , 
11,1 e, & A. The minimum and maximum crack depths fix € & A respectively. 

The parameters can be called shape parameters and can be determined from 

percentiles of the observed data. 

The density function for the probabilistic model is written as 

follows 

11>0 

A>O 

a + e) 
o 

exp l-~ [Y 

(2) 

This empirical distribution is called Johnson Sbdistribution. It should 

be noted that it is possible to obtain other emp.irical distributions to 

represent the crack depths. 

,-~' ,t \ 
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This probability distribution for initial crack depth changes after 

each mission, each proof test and each time the material as removed from 

the wall thickness. The change in distribution after each mission and 

each proof test is due to the crack growth resulting from the applied 

stresses. This crack growth also depends on the present length of the 

crack, applied stress and the material that are responsible for the crack 

growth. In this analysis, the applied stresses and material properties are 

assumed to be known deterministically. If the initial crack length were 

also known deterministically the crack length after each use can be 
, . f. . , . 3 , . 4 

determ~ned rom equat~ons such as Par~s equat~on, Foreman s equat~on 

or CQllipriests equations5 Because initial crack lengths are not known 

deterministically, crack length after each use of the vehicle is again 

another probabllistic distribution that has to be estimated. 

The cumulative density function (CDF) for crack length after N uses 

is' denoted by F(aN). This represents the probability that aN::::A after N 

uses. Each use is defined as one flight, one proof test and a material 

removal. Crack growth due to time related effects such as stress 

corrosion have been neglected. 

If F(aN) is known, the probability distribution for the stress 

intensity factor ~ can be obtained from the knowledge of the applied 

stresses. The probability distribution F(KN) for 3tress intensity factor 

can be used to estimate the probability failure Pf which is the 

px;obability of stress intensity factor KN greater than or, equal to the 

ct;itical stress intensity factor during the projected design life of the 

s~ructure. The critical stress intensity factor is denoted by K, In 
: c 

tijis analysis, stresses and the material properties are assumed to be 

k~own deterministically. However, the applied stress changes after each 

u~e due to material removal. Therefore, the probability of failure can be 

e*pressed as the probability of aN;;::: ac . In this expression ac is the 

'critical crack depth that can be obtained from the critical stress 

i.tensity factor and the applied stress corresponding to that particular 
... --4.-::-
mission. This relationship between the stress intensity and the applied 

stress is discussed in the next section. 

4 



Stress Intensity Factor 

For the analysis of the stress intensity factor in the membrane, an 

infinite plate model with elliptical surface flaws that are oriented per

pendicular to the applied stress has been assumed. The relationship 

between the stress intensity factor, 

depth is given by1 

K .. 

where 

the applied tensile stress and crack 

(3) 

Q ~) - ~2 - 0.212 (~S (4) 

In this equation, cry is the yield stress and 0 is a function of the 

ratio of crack depth to crack length (a/c). Variation 02 with (a/c) is 

given in reference 1. 

Because the crack depth a is a random variable the stress intensity 

~actor K is also a random variable. In general, both crack depth a and 

~rack length 2c are random variables and there is a need for a joint 
I 

distribution for a and c. In this analysis, only the crack depth is 

considered as the random variable. It is also assumed that the 

probability distribution for crack depth a 1S known initially and is given 

by a Johnson Sb distribution2 . The density function for the distribution 

5 



is given 1n equation (1). This probability distribution for crack depth 

changes with use. The next step will be to determine the change and the 

new probability distribution after each flight and proof test. 

Probability Distributions for Crack Depth After Use 

The following symbols ar.e used to properly account for the changes 1n 

probability distributions. 

f(a ): 
o 

Probability density function for the 

initial crack depth 

F(a): Cumulative distribution function for 
o 

initial crack depth 

F(a ): Cumulative distribution function for op 
initial crack depth after the first proof test 

F(aN): Cumulative distribution function after 

N flights and (N+1) tests 

F(a
Np

): Cumulative distribution function after 

N flights and N proof tests. 

F(aN): Cumulative distribution function after 

material removal from the wall thickness. 

Then, using Paris's crack growth equatior?, 

da = C (6K)n 
dN (5) 

where C and n. are empirical cons tants. Alternately, the rate of crack 

h b d b . b ' . 4 11··' gr'owt can e assume to e g1ven y Foreman s equat10n or Co 1pr1est s 

equation5 , if they are found to represent' the situation more accurately. 

For 

da 
dN 

example, Co11ipriest's equation can be written as follows: 

= exp r n 1n K c - 1n6Ko tanh -1 ) 1n6 K - ~ (lnKe (l-R) + 1n61(0)} 

L 2 t ~ (In Kc (l-R) - lnL\Ko 
(6) 

+ 1n 
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i'; 
\' 

where Paris's constants are used. By integrating either of the selected 

equations (5) or (6) crack depth after N+l uses can be det"!rmined iif the 

crack depth after N uses and N proof tests are known deterministically, 

i.e. , 

~+l = a 
N+l 

(7) 

Similarly, crack depth after the proof test can be determined from 

equation (5) or(6) if the crack depth before proof test is known 

deterministically, i.e., 

= (8) 

These functions represented by equations (7) or (8) can be determined 

analytically or in the form of quadratures from equation (5) or (6). From 

equation (7), aN+l can be obtained for every known value of aNP ' 

Similarly, aNP can be obtained for every known value of aN from equation 

(8). However, both aNP and aN are random variables in t. ~ present 

analysis. In this case, equation (7) can be used to obtain the 

probability distribution for aN+1 if the probability distribution for aNP 
is known by using the principle of transformation of random variables. It 
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should be noted that all equations similar to (7) or (8) involving crack 

depths are increasing functions. This property is useful in transforming 

the random varia~les. 

For example, the probability density function for aN+I can be written 

as follows 

(9a) 

similarly 

(9b) 

Equations (7) and (8) can be written for every value of N from zero 

to the projected number of uses. 

Details of obtaining these equations for the membrane of the solid 

rocket motor case, with the expression for stress intensity given by 

equation (2) and Paras' equations for crack growth, is discussed in the 

Appendix I. 

The next step is to obtain a tool for change of probability 

distribution due to the material removal from the wall thickness. 

MateriaJ. Removal and the 

Change of Probability Distribution 

Due to material removal after each use, the effective crack depth ~s 

reduced by a t Thus, new crack de~~h is 

8 



( 10) 

It is assumed that bot is a constant. Thus, by using the principles of 

transformation of random variables2 , the probability density function for 

aN can be written as follows. 

(11) 

In this equation, p (an) represents the density ruTIc·tion for aN and f 

represents the functional form of the probability density function for aN' 

Probability of Failure 

By following the method discussed in the prece d .ing two sections 

probability density function for crack depth can be obtained after every 

fl ight, proof tes t and material removal. From the density function, 

cumulative probabilities can be obtained by integration. Integration 

after the transformation of variables as discussed in equations (9), (10), 

and (11) needs the determination of appropriate limits of integration 

consistent with the transformation of variables. This is also discussed 

in the Appendix I. If F(a
N

) represents the cumulative density function 

after N flights & N proof tests the probability of failure is given by the 

probability of a > a The quanity of acN corresponds to K and the 

applied stress at ;he ~~h use. c 

9 



It is to be noted that the probability of failure changes with 

different selections of the initial wall thickness t, increased loading 
I 

due to proof test, the material relllvved ~t and the number of designated 

number of missions. The increased loading due to proof tests is denoted 

by a factor p. A cost function or a weight function can be formulated from 

t~is knowledge of probability of failure and other related unit-cost or 

we,ight. Such a cost or weight function depends on t, p, and number of 

missions N. It is possible to select these design variables by minimizing 

th~ cost or weight function subject to appropriate realiability bounds. 

Th~ effect of nondestructive inspection (NDI) is indirectly related to 

initial flaw distribution. Additional NDI effects such as the rejection 

of structures are not considered in the analysis. However, they can be 

included as units related to the probability of failure. A numerical 

example is illustrated in the next section to illustrate the developments 

of the paper. 

Numerical Example 

For the numerical example, it is assumed that the Johnson Sb 

distribution for the initial crack depth is such that the minimum crack 

depth is zero and the maximum crack depth is 0.1 inch. 

for crack growth is assumed with 

C· = 0.847 x 10-18 

n ~ 3.0 

Paris's :,equation 
i,l 
\' 

:1 
1,\ 

l II 
'i !f 

The variation of 02 with (a/c) as shown in figure 1 is approximated by a 

quadratic relation. 

The primary objective of reusing the solid rocket motor case is to 

reduce the cost of operation of the reusable space vehicle system in which 

it, is used. However, as the number of uses is increased, the probability 

of: failure increases because of the propagation of the crack depth. On 

th~otherhand, smaller number of uses increases reliability and also the 

cost is distributed over a smaller number of uses. This means the casing 

has to be replaced after a fewer number of uses. 

10 



A larger initial thickness would increase the weight of the casing 

and costs more in terms of payload. But the probability failure is less 

if the thickness is more. The proof test factor p. and the material 

erosion ~t are kept constant in this example. However, they also can be 

iraried and their effect on total cost can be considered in the most 

general case. The total cost function cT' therefore, comprises the 

following component costs. 

1) 

ii) 

iii) 

iv) 

Initial cos~ of the caaing, c i ' 

Expected cost of flight failure cii ' 

Expected cost of proof test failure 

eost due to multiple usage, c .• 
~v 

c ... and 
~~~ 

The initial cost c. is 
1 

given by the product of the weight of the casing 

and the cost per pound of the system, i.e., 

where R ~ outer radius of the casing 
0; 

t = thickness of the casing at the 
N th 

N cycle 

H= height of the casing 

y= density of the material 

c
1
= payload cost per pound 

(12) 

The expected cost of flight failure is the product of the probability of 

flight failure and the entire payload cost, i.e. 

cii = P
N 

• c 2 (13) 

11 



where P
N 

is the probability of failure at the Nth flight; c
2 

is the total 

cost of the payload. Similarly the cost of proof test failure is 

(14) 

th ¥here Pnp is the probability of failure at the N proof test and c3 is 

cost of articles and accessories oJ proof test. Finally, the cost due to 
, 

multiple usage is given as follows': 

c. 
~v 

/ 

0.3 
= c 3 (N) (15) 

Thus, substituting all the components, the total cost function c
T 

1S given 

by the following equation 

(16) 

h f 11 . . 1 1 dl ,6 . l' . (16) Teo oW1ng numer1ca va ues are use 1n eva uat1ng equat10n . 

-y = 0.3 lbs/cubic inch 

H = 816 inches 

It = 72.5 inches 0 
Cl = $1624 per lbs. 

C2 = $250 x 106 

C3 = $2xl06 

Results 

The initial thickness to is varied from 0.535 inch to 0.435 inch in steps 

of 0.005 inch. Also, 1% of the initial thickness is eroded after each flight. 

The total cost functiCln is calculated for various initial thicknesses and 

use cycles by means of a digital computer. Figure 2 illustrates the 

12 



~ariation of the cost function with t and N. o 
If is obvious that as the 

number of uses increases, the minimum occurs at a higher initial 

thickness. For example, for 18 missions the minimum cost occurs at an 

initial thickness of 0.48 inch. The initial thickness to give minimum 

cost for 20 mission cycles increases to 0.497 inch, for 22 missions the 

thickness required is 0.512 inch. 

Figure 3 delineates the variation of reliability with initial 

thickness, after 20 missions cycles. The reliability corresponding to the 

minimum cost for 20 uses is 99.3%. If this reliability is not ade

quate, then a higher initial thickness should be used even though the 

total cost will be higher than the minimum. 

General Procedure 

Based on the preceding example, a general procedure can be delineated 

in the fo:Uowing steps. 

1. Obtain the parameters of the Johnson Sb distribution2 for 

the initial flaw size. 

2. Obtain the stress in the membrane from the known geometry of 

the case and wall thicknes.s. 

PR 
0 u = P t 

In the equation p is the proof stress factor. During flight, 

p is replaced by a value of 1. Pressure P is the MEOP pressure 

on the case and R is the radius of the case. 
0 

3. Obtain the new CDF and density function for the crack depth after 

the proof test. 

13 
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4. Obtain the new CDF for the crack depth during the flight 

following the proof test. 

5. Estimate the probability of failure. 

6. Compute the cost function parameters. 

7. Obtain the new CDF after the material removal. 

8. Repeat steps 2 to 7 for the new thickness and the next 

mission until the total number of missions are complete. 

9. Change t and N and repeat the calculations as necessary. 

10. Select the design variables for the minimum value of the 

objective function subject to reliability constraints. 

A computer program has been written to carry out these steps.(see Appendix 

r1). 
Conclusions and Recommendations 

This paper has demonstrated that the reliability analysis based on 

probabilistic fracture mechanics can be used to optimize the selection of 

the design variables of a solid rocket motoL' case. In particular, basic 

design variables such as the thickness and projected design life as well 

as: the fracture control variables such as the proof factor and material 

erosion can be included in the analysis. Accuracy in estimation of the 

initial flaw size distribution is reflected in the assessment of the risks 

involved in the design. By knowing the risks involved in the design, 

weight and cost can be reduced from those obtained by the conventional 

deterministic analysis and use of arbitrary safety margins. 

This report is only a first step in the development of procedures 

based probabilistic fracture mechanics. Additional work that is 

necessary can be listed as follows: 

14 



1. A more accurate analysis can be obtained by considering the 

joint distribution for the crack depth and crack length 

along the surface. 

2. Accurate methods of estimation of the probability distribution 

for the initial flaw size distribution should be developed. 

3. In particular, effects of water impact and time dependent 

crack growth, stress corrosion, should be considered. This 

is particularly important if the missions are spaced over 

years. 

4. Uncertainties in external loads and material properties 

should be considered. 

5. Accuracy of the different models for crack growth (in the 

point of view of probabilistic fracture mechanics) should 

be evaluated. 

6. Alternate fracture control plans and more accurate stress 

intensity measures based on cyUndrical geometry can be 

considered. 

7. dost of NDI efforts in relation to the cost that will be 

incurred by additional safety factor should be evaluated 

in the point of view of improved reliability. 

8. Thermal effects should be considered. 

15 



References 

1. Kapp, J. R., "Fracture Control Plan for Space Shuttle Solid Rocket 

Motor Case," TWR 10689 Preliminary Report 1975. 

2. Hahn, H., and Shapiro, "Statistical liQdels In Engineering" John 

Wiley and Sons, Inc., New York p. 198, 1967 

3. Paris, P. C., and Erdogen, F., itA Critical Analysis of Crack 

Propagation"Laws," Journal of Basic Engineering Trans ASME Series 

D No. 85, p. 528 1963 

4. Foreman, R. G., Kearney, V. E., Engle, R. M., "Numerical Analysis 

of Crack Propagation In Cyclic Loaded Structures," Journal of 

~ Engineering Trans ASME Series D, 88, p. 459, 1967. 

5. Creager, M., "MSFC Crack Growth Analysis Computer Program" NASA 

CR - 143923, 1975. 

6. Thomas, J. M., and Hanagud, S. "Reliability-Based Econometrics 

of Aerospace Structural Systems" NASA TN D-7646, June, 1974. 

16 



APPENDIX I 

This appendix describes estimation of the new CDF of crack depth after use 

from a knowledge of the old CDF and probability density before use. 

Crack Growth Rate 

The rate at which the crack depth increases is given by Paris's 

equation as follows. 

For subsequent convenience in algebra, the value of n ~s taken to be 3.0. 
By substituting for c and n, 

~ fc dN = 0.847 L4 

!z 3 

lc +: a + c (2-) 211 Xl 0 - i 8 5 2 - rc c 

(Al) 

Simplifying this further, 

a 

1
1.5 

(~) 
c 

(A2) 

where 

17 



Separating the variables a and N in ::' it follows that 

1 dN .,.-
c6 

(A3) 

(A4) 

Integrating both sides between state 0) and state (2) the following 

equation is obtained 

In order to evaluate the integral on the right hand side, it is 

necessary to expand the numerator of the integrant binomially. 

(AS) 

found 

Now consider the numerator of the integrand with Cs = 1. Neglecting 
3 terms of higher order than (a/c) , it follows that 

18 



L~.tting 

and 

Then, it follows that 

1 
p = - 1.5 c

2 1 c 

2 
{l + c 2 (~) + c 3 (~) } = 

Substituting in the integral the following result is obtained 

19 

(A6) 

(A7) 

(AS) 

(A9) 

(A10) 



N 1 
[- 0\ 

P 
[N] 2=_ (a)-O.s + 0.; (a)O.s 

Nl c 6 

P
2 (a)1.s 

+ 1.5 a
2 

P
2 a2 •s] (All) 

+ 1.5 a
1 

Solution of alas a function of a2 

Substituting the limits of integration in A(ll) 

(Al2) 

Rearranging and neglecting terms of order higher than three, it reduces to 

the following equation 

where 

.! 
20 

(4P 2 - .§P
2
) 

1 3 

(Al3) 

(Al4) 



-1.0 2 
q = S P P - S P (SP1 + c 1 ) 

"3 1 2 "5 3 
(A1S) 

and 

(A16) 

Now, the three roots of this cubic equation, (al)i are given as follows 

(1) 
a

1 =A+B - 1 
3 

(2) A+B A - B V-3 1 a
1 = + 3 z z 

(A17) 

(3) A+B ~ V-3 P a
l = - -z z 3 

where 

A =~ _ ~ + ~ ~2 - 3 
+~ 

27 
(A1S) 

~. ~ 2 -3 B= -..Q2 - E4 +~ 
27 

1 (3 2. b 1 (2 3 27 ) a = '3 q - p ), = _ P - qpq + 'Y 
27 
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CDF of .~2 is then 

Transformation 

Probability density of a2 is given by 

J:: f (a
2

) da
2 a 2 

f (a
l
) 

a
l 

Il (a
2

) 
1 

={ f 
a

l 
.. '0 

(a
l

) 

where F (a l ) is the CDF of Johnson SB distribution2 . 
a l ' 

(A19) 

da 
1 

(A20) 

(A2l) 

Now, it is needed to obtain a l as a function of a
2

, No. of cycles etc. 

This can be done by solving the polynomial equation obtained previously in 

terms of a l and treating a2 , Nl and N2 as constants. The infinite degree 

polynomial equation is truncated at the 3rd degree for convenience. 

Of the three roots only one will be the real root because of the 

physical nature of the problem; ;- 'y a
l 
(a2) 

Then by substituting in the expressi~n for the CDF of a2 

(A22) 

22 
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Substituting the values for point (i), 

Substituting the values for point (ii) 

1.0 + c 2 (0.5) + c
3 (.0.25) 

2c -'-c =20 or 2' 3 . 

Substituting the values for point (iii) 

1.0+ c2 + c
3 = 2.5 

or 1.5 

Solving equations (2) and (3) simultaneously 

and 

Thus the chosen parabolic fit is as follows 

2 
~2 a a 
" = 1.0 + 0.5 ~ +-2 

c 

24 

= 1.5 (A27) 

(A2B) 

(A29) 

(A30) 

(A3l) 

(A32) 

(A33) 



llimi.ts ai 1:l!:~gr.ar.ion .f·nr :.be CD? i3-: a~ .. 
~ 

the initial fla,.~ 3. has a .Jc~svn s.. cist:ri::mt:icc!'1-. 
L ~ 

A15>O. there is a Iuncti,ona.l relatioIl.ship bet..,een me init:ial f1a ... size a
1 

and the .subseq.uen.t fla~ .. ' .si·ze c2 ~·~ter 1~ cycles.. ?:iis re:la'~ions!'li? renccrs 

.8
2 

a rando:n variable because ,a
1 

is a rand,o~ yariaYle o:s' :::'ypo::.nes:'s. 

from the functional relations'hi? oet;.,·een 3
1 

and ":t. '7hus. if tne 10'i.·er 

limit of a 1 is zero, it follows froUltne funccional relationshi=, bet.\o'een 

a
1 

and a
Z 

that the lower limit of 3
2 

is also zero. Next, if the upper 

limit of 3 1 is ai" the corresponding upper limit for a
2 

can be obtained by 

solving the cubic relation between a1 and a
2

, as a function of the number 
Z of cycles N = NZ - Nl" 

25 
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1:\:1 
co 

···,,~·r;:~'1;""..n_:-;:C"'·)~~N~' _"''''\"O''~.; '''-'f«=i>-~....-..n< ... "_,-.~c".."",, '-,~'''''''..-''-'w ...... _·_~_'< .... ____ >\~...;:~=~:::r:M.::-=::!:~_ ... ~~~ 

,M MAIN 

C 
C 
C 
C 

100' 

(' 
\,I 

102 

74171.t CPT=1 FT"-J -.i:+-?; ? ,. I 1 (! I i.J - • 

PROGFAM MAIN .-( lNPUf. OUTPUT, TIIP::5=INP\JT·,-lt.-?-:.6=utJTPl)T) .... . 
•••••••••••••••••••• + ••••••••••••••••• ~ ••••••••••••••••••••••••••••• ~.~ ••• 

THIS PROGRAM CALCULA i::S TH::: F.-=LIABILIT'f OF TH~' S=-;'1 CA::::r:-~G &'1 7tL ':'Jr: JF 
EACH PROOF T£51 AND US~ CY~L~ ~IV~~ TH~ I~:~IAL F~tw OIsr~I5UT~C~ ~J' 
VARIOUS I~ITIAL T~IC<~~SS~~ AN~ L~UNCH ~U~E·~S. 
DIMEf·,SION F(3D t !) ,'((.30,1) ,lZ1 C:) 
COMPLEX A~,8E,A1HAT 
~EAD(S,·'ALAMOA,~ATA.GAMA 
£PS=G.O 
W~ITE(6.10n) ALAMDA,~ATA,G:MA.~pS 
ENCFILE6 
FORMAT UH1, /, 5X, IO?ARA Me T=: RSO F TH~ J3Hr~SOlJ S BOIS TZ: I:3l!: ION tot:- f 

11LAMBDA ='".F04.1,2X,"-;:.ATA ='",FS.2.2-X,"GAMA :;",F'S-,2.2X-,"·PSIlON = .. , 
IFS.2' 

DG 5000 1=1,21 
AKP=1.05 
'"AKP" IS TH~ FROOF-T~Si FAGrO~ 
W~ITE(6,102'AKF . 
FORMAT(lH1,/,5X,1O PROOF - TEST FACTOR =",F15.3' 
STHIK=O.486·(1~-(I-l1)/100.) 

-:-WRIT£(6,·103) STHIK -- ...... ---...... -'--"- -. 
103 'FORMATf/,5X," INITIAL THICKN~SS OF 5~M C4S~ =",Fl0.J) 

00 4000 N=1,25 
C '"~" IS TH~ NU"2E~ OF TH~ CYCLE CONS!~TI~G CF O~~ P~JO~-T~ST a~D ONh US\. 

. DO 3GHJ L=1,2 
. IFU: .• EQ.U WRITt=.(Q,104) N . 

~-~--r"~' 

IF(L.EQ.2' W~IT~(t),105) N. 
104 FORMAT(I//,5X,"PROOF TEST NUMB~R ='",113' 

-· .. H)·5·· -FtlRfo',A T (-SX ,.!'4.·AU~CH NU-MBt.K O.f- SR.~l-GA Sf.: ='.!.I 7) -" -------- .. ------ .-.. ----.-->-; ·c .......................... -......................... of. '" 4' ... If ;,j. .If. If .... ............. If "" •. <\< .... If ..................... If. "''' ... ~ it I 
C THIS S~CTION CALCULATES TH~ THICK~~SS AT THi END OF :ACH CYCL~. I 

. T HI K = S T H I K - ( ( ( S T H I K/1 0 0 • t· ( N -1) ) ) 
.. - ·WfU-TE (0.,106-) THIK, ., . . - . _. ~ - - _.. '1 

·106 FOR~AT(5X,"THICKNES5 OF S~M CASE=",F1S.4) I C •••••••• If ...................................... ¥ ...................... ~ ......... M •• +. 
C THIS SECTION CALCULATES THf APPLIED STRESS (SIGMO) 

108 
C' 
C 

- SIGKP.:AKP. ... 95-0.7·72.5/THIK 
ACR=«(935CO/SIGMP)4'·Z.O)/Cl.Z·3.143) 
IF (L.EQ.2) SlG~P=SIGM?/AKP . . '.' 00 
WRITE(6,108)SIGMP ~~ 
FORMAT(-5)(,"P~COF-STRl;,SS =".FZ6.U· . " - - . .~.~ 
.................................................. ~ ........................ + •• 4.4~· ~ 

THIS St CTI ON CONSIDeRS T~:' CUR Ie AP?~GX :~A T I ON. Ei~ 
C=O.L ~ 

. C1=1. O--'I:J-
C2=O.5 ~~ 
C3=1.0 § ~ 
C~=(SQRT(1.2·3.1~7')·srGMP e 

·C 6 = 0 • 847. ( C 4" .. 3 • 0 , ~:":01 
C6=1.0E-18·C6 ~ 
Pl=1.5·C2/C . 
P2=«1.5·C3'+(1.5·0.25·C2·C2~'/(C .. C) I 
D3=((1.~.D.5.C2.C3)-{O.Of25..,.CC2 •• 3.0'»/(.~ •• 3 •. tH -I 

A2=ACK 
Zl=2.C·P3·(A2··2.3'/~.O 
Z2=2.0·P2·CAZ··1.5)/3.0 
Z3=2.0·Pl·CSQ'TCAZ» 

I 

'> 



~:;:~~ ~1~' -WfI4!S4tliMWllf~:;:_ .. _"":, ~ 

c,., 
o 

112 

Z4=-~2.~/SQRT~~2))-(C6·N) 
C7=Zl+Z2+Z3+Z4 . 
Zl=(~.O·Pl·Pl)-(8.0·?2/3.0) 
ZZ=(8.0·Pl·PZI3.0)-(d.O·P3/5.0) 
P=Z1/Z2 
Zl=-«S.O·Dl)+(C7·G7" 
Q=ZI/Z2 
~=4.0/Z2 
AeAR=C(3.04Q)_(P+P»/3.~ 
Zl=2.0·CP··3.0) 
Z2=-9·P·Q 
Z3=27"'~ 
8=(Z1+Z2+Z3)/27.0 . 
Zl=CP+B/~.O'+CCABA~/3.G'··3.0) 
FO~MAT(I," OISCR,::MIN_NJ ;:;QLJA,,-~ :: ... .;15.:,) 
AA=CC-B/2.0)+CSQRTCCMPLXCll.0.0») 
88=CC-B/2.0)-CSQ~T(CMPtXCZ1,O.G») 
Ql=~EAL(AA} 
QZ=AIMAGCAA) 
RR=CSQRTCCQ1··2.0)+CQ2··2.0»))··(1.0/J.O) 

--_. ·-THET=A TA N (a21 Q 1) 
AR1=RR+COSCTH£T/3.0) 
All=RR+SINCTH~T/3.0) 
AR2=~R·COS«T~~T+C2.+~.1~7»/3.0) 

·AI2=RR+SIN( CTHCf·.·(2.+.J-.1-4-1l' 13.~-)- - - ... -
ARJ=RR·COSC(THET+C~.·3.1~7)/3.0) 
AI3=RR·SINCCTHET+(4.+3.147»/3.0) 
Ql=REALC(8) 

... ---. ~-Q2=AH1AG(-8B}-· 
RR=(SO~T«Ql~·2.Q)+(Q2+·2.0»)+·(1.0/3.0) 
THET:JHAN (02/Q1) 
8Rl=RR·COS(TH~T/3.0) 

.. _.- -.-----." -8 I 1= R R" S ItH THE: T 13 • {) ) . 
8R2=RR~COSC(TH£T+(2.·3.147»/3.0) 
BI2=RR·SIN«THET+(2.~3.147})/3.0) 
BR3=RR·COSC(THET+C4.·3.1~7»/3.0) 

--BI3=PR·SIN(CTHET~C~.·3.1~7»/3.0) 
AIHAT=AR1+8Rl-CP/3.0) 

- -_ .. --.- -. --'.'. --------- . ~ ~ 
~ 

-~~ 

-i-~ 
. S~I .---- -- ---' i C'l 

. t!i. 

fa 

, 

C 
C 

AA=R~Al(A1HAT) . 
••••••• ~ •• + •••••••• + ••••••• + ••• + ••• +.+ •••••• ~~.~ •••• 4.4.+~+.+ •••••• +¥ ••• ~4 

11,+ 

C 
C 

T-HIS S:='CTION CCNSIOE~S TH:: ;)UAO~A T~C ~?p""aXI;'1A iIO;-.J. 
Zl=(4.0·P1·P1)-(B.O+D2/3.0) 
Z2=-«(S.O·Pl)+(C7·C7) 
P=Z2/Z1 
Q-=4. 01 Z1 
Al=(-P+SQRT«P·P)-(~.O+Q»)/2.& 
WRIT£(&,114)Al 
FORMATCSX"'UFF~~ LIMIT OF !'.1 = .... 2 .... 0) 
A1HA1=A1 
IF CA1HA1.G~.AlAMOA) Y(Nl.1)=1.J 

I 

IF (AIHA1.GE. .AlAMOA) GO TO 300~ 
.•• •••• ~ ........... • :t-....... :t-•••• d. .... -fo •• "' ...... 'It •••••••• I/- ."''''' •••• "" ... 4..""+-......... ""~ 
-THI-S Sr.-CHON CALCuLA T~~ TH~ ~::'LIA81LLTV . . _...!. 

Nl=l~ 
00 3000 K=2.Nl 
Al=AlHA1·CK-l'/FLJ4T(~1-1) 
Zl=EATA·AlAMOA/SQ~T(~.J+3.1~7) 

__ ._ . .1 



~ -

ZZ=1.0/(Al+(AlAMOA-Al.) 
Z4=EATA·ALOG(Al/CALAMCA-Al') 
Z3=EXF(-«GAMA+Z~)··Z.O)/Z.D) 
F(k,U=Zl·Z2·Z3 

3000 CONTINUE 
FU,1)=O.O 
CALL INTG~L(1,~1HA1,F,Y,Nl' 

3 0 0 :; W R I T'E ( 6, 11 6 , Y ( " 1 , 1) 
11o"-"FORKA-T (SX ,·,p-ROBA-B h.I T Y OF NO F to I i.tJ~-:; =",-=.1~.5) -.. 

ZZl(l'=1.-Y(Nl.1. 
3010 CONTINUE .' . -C •••••••••••••••••••••• ~ ••• + ••• + ••••••••••• ¥+ •••••••••••••••••••••••••••••• 

. ..c -l'-HIS- SECTIOtf- CA-L-GU:..ATES THf TOTALeO·S·T- FUNe TION.~· -~2'-'-__ " ••. ~~~ •. ,~.: .• -~-.-~=~.-.. -.;,. 

118 
4000 
5000 
999 

Cll=(1.0/FLOAT(N»·O.30 
Cl=1621., 
C2=250.!::+E 
C3=2.(}.E+6 
WT=3.143·Bl&.+O.3+(145.·THIK,-(THIK·THIK» . 
CTOT=(Wr·Cl,+(ZZl(Z)·CZ)+(ZZl(!)·C3)+(C3+Cl1) 
WRITf{6,118)CTOT .. 

--FORMAT (SX. 11.. ................. ·.......TOT Ai. :-CJ S T FtJNC T I~~·!.,F-1'3 .. !}-,"- .---- --_.-
CONTINUE 
CONTINUE 
STOP 

·END 

~ 
~ 
Ii 
~j 

. 
r 

~ 



R 

I 
~ 

I 
i 
1 
i 
I 
. ! 
!: 
1 
r; 

IN~ INTGRL. 7/.t/7'"- OPT=l 

SU8~OUTINt:. INTGR:l. (~,r,Fl-Y-t-N)-' - '. . 
DIMENSION A(3Q,30),B(30,.sO),C(30,30) ,F(30,1) ,Yi30,1) 
H=T/(720."(N-l" 

20 . 

25 

}O 

40 
35 

50 

00 20 I=l,N 
00 -20 J=l.N-- ,- ..... --- ... - .. --.--.-.----...... -., 
80,J)=0.0 
A(I,J)=O.O 
CO~TINU:: 
00 2~ K=l.N 
00 24 .J=1,K 
BCK,.J)=1.0 
CONTINUE: 
A·(Z,1)=251. 
A(2.2)=6 .. 6. 
A(2,3)=-264. 
A-(2,4)=106. 
A(2,S)=-19. 
ACN,N-4)=-19. 
ACN,N-3)=106. 
ACN,N-2)=-264 • 
A (N~N-1) =646. 
ACN,N)=251. 
ACN-l,N-4)=11. 
ACN-l.N-3)=-74. 
A(N-l,N-2)=456. -
A (N-1, N-U =346. 
A ( N.-l t. N) =-19 • 
.J=N-2 
00 25 I=~,J 
A (I, 1-2) =-1'3.' 
A C I, I-l) =346 •. 
A (I. I) =456. 
A C h·I+1) =-'ll.;.. 
A (I. 1+2) =11. 
CONTINUE 
00 ·30 r=l.N 

-DO 30 J=l-,N- - .-.. -.----..... - ~"'--
CCI!.J)=a.o 
00 JO K=1,N 
C(I~J)=C(I,J'+(B(I,K» .. (ACK,J) .. H) 
CONTINUE 
00 35 I=l.N 
Y ( I , 1 ) ='0 • 0 
DO 40 .J=l,N 
Y·(·l, 1) =Y CI , U + (-(--e.-tI,-JU· U:(.) .. 1) )l-
CONTINUE . 
IF (M.EQ.l) GO TO 45 
M=M-l 
00 6 S K = 1 ,11 -
DO 50 l=l.N 
F(l,l) =y (li'!) 
bo 5~ r=1,N 
V (·1,1 , =O .. D···· . 
DO 60 J=1.,N 
YCI.1)=VCI,1'+(CeI,.J)·FeJ,1» 
CONTINUE 
CONTINUE· 

INE. INTGRL. OPT=1 

~5· oo·eo I=hN· 
~a V(I,l)=ABS(Y(I.l» 

RETURN 
END 
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