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ABSTRACT

Results are obtained for 2-D hygroscopic diffusion into composite

laminates with free edges through the use of a second order finite

difference scheme. A computer program was developed for the transient

nonlinear coupled hygrothermal diffusion into finite width laminates

with varying surface conditions along two edges. The formulation

permits the diffusion coefficient to be a function of temperature,

moisture concentration, and fiber orientation. The moisture distribu-

tions thus obtained are necessary for analysis of the moisture induced

interlaminar stresses in the vicinity of free edges. It is shown that

large diffusion times tend to eliminate the significance of stacking

sequence, but gradients within and between layers are significant for

all diffusion times.
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INTRODUCTION

Problems associated with combined thermal and mositure effects in

polymeric matrix composite materials are currently receiving consider-

able attention on the part of the materials research community. The

experimental works of McKague et al [1] and Browning et al [2,3] have

shown that there is a degrading effect on the shear, compression and
	

....

transverse stress properties of resinous composites due to moisture

absorption. These degrading effects are primarily due to changes in

properties of the resinous matrix and the fiber-matrix interface.

McKague et al also presented rather extensive experimental reFults

showing that the rate of moisture absorption is temperature dependent

with the rate of absorption increasing with increasing temperature. It

was also shown in reference [3] that large moisture concentration

gradients may exist near the surfaces of composite laminates. These

gradients may be significant because of the possibility of large inter-

laminar stresses near the free edge of composite laminates.

Analytical treatments of moisture diffusion in composites have been

presented by several authors. Shen and Spring [4] considered one-

dimensional absorption and desorption of homogeneous materials and

composites, and Whitney [5] considered three-dimensional moisture

diffusion in laminated composites. The emphasis in both of the above

papers was on the total percent moisture weight gain as a function of

time. Whitney also presented moisture profiles for two-dimensional

diffusion into a laminate. These profiles were generated assumming the

diffusion coefficient was an averaginq of the laminates constituents.

Since edge effects were included through a correction factor and were
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not treated explicitly in either of these two later papers, the signi-

ficance of laminate stacking sequence wasn't readily assessable.

This paper presents numerical results for two-dimensional moisture

diffussion into a symmetric finite width composite laminate. The

results were obtained from a recently developed finite difference

computer capability, denoted HYDIP, and the associated graphics program

HYDIPG. This program was developed for the two-dimensional solution of

the transient nonlinear coupled hygrothermal diffusion into a symmetric

finite width composite laminate with varying surface conditions along

two edges. The moisture distributions thus obtained are necessary for

analysis of the interlaminar stresses which may be present in a com-

posite laminate with free edges since these interlaminar stresses often

initiate failure.

2. PROBLEM FORMULATION

The governing 3-D field equation for hygroscopic or thermal dif-

fusion into a body is given by

aaR	 a	 aR	 a	 DR	 DRTx (K
ax) + ay (Ky ay ) + az (Kz az ) - at	 (l

where Kx , K  and K  represent the diffusion coefficients in the x, y and

z directions, respectively, and R is the temperature or moisture con-

centration at a point in the body. Restricting the problem to that of a

finite width symmetric laminate wih no variation in the x direction,

figure (1), only a quarter laminate need be analyzed. The governing

field equation becomes:

Tay
	 ay ) + az (Kz az) _t	 (2)

1	 --	 --	 -- ,
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with symmetry boundary conditions

A = 0; aR I 	 = 0	 (3)
az 

z=0	 ay y=0

and variable surface conditions

	

R = R(z)1Y=b R = R(Y)lz=H'	 (4)

More specifically for the case of hygroscopic diffusion, the dif-

fusion coefficient D may be a function of temperature T(y,z), moisture

concentration M(y,z) and lamina fiber orientation e,

D = D(T(y,z), M (Y, z ), 0)•

The governing field equations, (2) - (4), can now be written as

a y aM + D a 2M + 
a
0z a  + D 2 2 _ aM	 (5)

ay ay	 y ay 	 az az	 z 3z2	 at

with symmetry boundary conditions

am )	
= 0; Lm j	 = 0	 (6)

ai z=0	 ay y=0

end variable surface conditions

M = M(z)ly=b' M = M(Y)fz=H'	 (7)

3. SOLUTION SCHEME

The solution of the diffusion equation (5) was performed by a

second order accurate variable step size finite difference scheme [6].

First and second derivative central difference derivatives are employed

in the interior region of the laminate while only first derivative

^	 _ i
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forward difference derivatives are necessary along the s ymmetry boundary

conditions. P. complete presentation of the basic difference equations

used and she equivalent difference equation of equations (5) and (6) are

presented in Appendix A.

Applying equations (All) - (A13) at nodes throughout the laminate 	 t
I

yields a set of linear simultaneous equations of the form

0
[Ct3{Mt+1} = {pt}
	

(7)

where [Ct 3 is the coefficient matrix at time t, {Mt+l} are the unknown

moisture concentration at time t+l and {Pt } is the right hand side

vector which is a function of the moisture concentration at time t. It

should be realized that at t = 0 {P t=O } would be a function of the

initial moisture distribution. Equation (7) is then successively solved

over N time increments. Transient problems can similarly be s0 ved

by imposing transient surface conditions in an incremental fashion.

An iterative simultaneous equation solution scheme [63, though more

expensive to use for a single analysis, was chosen over an elimination

or decomposition algorithm. This scheme was selected due to the in-

cremental nature of the diffusion problem and because iterative schemes

become cost efficient when successive solutions change only slightly

from the previous results.

A Gauss-Siedel simultaneous equation solver was modified to ef-

ficiently solve equation (7) over N time intervals. This was primiarily

achieved by eliminating the storage of zero coefficients and the multi-

plication by zeros. The required storage locations and multiplications

of the modified Gauss-Siedel routine then become linear functions of

the number of unknowns. A more detailed discussion of this solution
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4. CASE STUDIES

As mentioned in the introduction, large gradients in mositure

concentration may exist near the free surfaces of a laminate. In this

study it will be assumed that these gradients are the result of the

laminate surface being subjected to an environment different from the

one associated with the moisture distribution initially existing in the

laminate. This condition could similarity be induced by thermal gradients

in the composite as well as a variety of combinations of thermal and

mositure distributions.

The initial studies investigated the effect of stacking sequence on

the moisture distribution within the boundary layer region, approxi-

irately two lamina thicknesses along the laminates free edge. Material

diffusion coefficients, [2], used in this study are shown in figure (2)

while the laminates investigated are: [90
21

02 1s , 190 1 03 1st 101902901st

[90 102 ,90] s , [0
21

902 ]s1 [O,±45,90]s, [90,±45,O]s.

Upon examination of the laminates studied it becomes obvious that

Primarily ON/90N combination laminates were considered. These laminates

were chosen because they produce the most dramatic results due to the

relative magnitude of the diffusion coefficients. Though the studies

were very selective, the program HYDIP will handle any number of layers

each at differen, fiber orientation and each having different material

properties.

The basic model was a four layer symmetric laminate with 510 nodes

on the model. Each layer, 0.005 in. thick and 1.0 in. wide, contains

four nodes through the thickness with an additional node on the upper

surface and 30 linearly spaced nodes across the width, Figure (1). The

laminate was assumed to be initially dry and at a temperature of 440°K.
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This temperature was chosen because the diffusion coefficient was much

larger than that at room temperature as seen in Figure (2). An applied

surface condition corresponding to 100 percent relative humidity was

uniformly distributed along both free surfaces.

The plotted results in figures (3-13) have uniformly spaced nodes

and are plotted with a slightly distu-ted aspect ratio to more readily

visualize pertinent trends. As previously mentioned these plots represent

a region of approximately two lamina thicknesses from the free edge.

Moisture distribution isoclines are numbered on each plot. Iso-

clines labeled 6 represent fully saturated conditions while those

labeled 1 represents moisture concentrations of 1/6 th the saturated

values.

5. RESULTS AND CONCLUSIONS

The effect of stacking sequence is most noticable after a short

interval, on the order of 2-3 minutes, in a region near the free edge,

as shown in Figures (3, 5, 8). This phenomena was typical of all

laminates studied but will be shorin using selected laminates. Transverse

diffusion (z direction) reduces cr eliminates the effect of stacking

sequence for diffusion times greater than five minutes. This was

indicative of all studies performed, especially in the outer region (see

Figures (4, 7, 9, 11, 13) of the lamiante, but to a lesser extent in

the inner region.

Large transverse gradients in moisture concentrations occurred

within the outer layers with significant "corner" and "longitudinal"

gradients in the adjacent and center most layer in all laminates studied,

(Figure 3-13). Moisture diffusion was more uniform, i.e., smaller

irregularities, with laminates having tower diffusion rates in the outer
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most layer. This is readily seen by comparing the time history contours

of the [0,±45,90] s .and [90,A5,0] s laminates as shown in Figures (10-

13).

In conclusion, the stacking sequence was significant for very small

diffusion times and in a region near the free edge. However, large

diffusion times tended to eliminate the significance of stacking se-

quence due to the high transverse diffusion rates and aspect ratio of

the composite laminate. Moisture concentration gradients within and

between layers were significant for all diffusion times. From these

results it is expected that large moisture gradients could produce large

interlaminar stresses and greatly effect free edge delamination.
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APPENDIX A

The finite difference derivatives were developed from a second

order polynomial with unequal nodal spacing. The coefficients of the

second order polynomial, (Al),

y = a2x2 + a l x + 
a 
	 (Al)

can be determined by knowing the magnitude of y at three discrete

points, xo , Alt x2 . Substituting these values of x and y into the

polynomial, the a i 's can be determined through the matrix equation

(A2).

1	 0	 0	 ao	 Yo

1	 h	 h2	 al = Y l	 (A2)

1 h(l+a) h2(1+a)2 a2,Y2

where

h=xl - xo

a = ( x2 - x l )1(x l - xo)

The first derivative at x = x  in terms of h, a, yo , yl , and Y2 is;

	

D(y	
Yo ( a+2 )	 Y 1 ( 1+a )	 Y2

+	 A3

	

o )	
h +a	 --^a — - ha +a	 )
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2	 _ 2	 1 _ yo + yl
D (yo )	 h2	 l+a	 a

_ T_
+a	

(A5)

Substituting equations (M) and (A5) into (5) yields;

1	 - ai,J Dy j -1,',t 
+ (1 - 

aj,J )	 + Dyi+1,',t
+	 D	 +

h2	
1	 aj

,J	 ai,J	 yi,J,t	
a; , J 

1	
ai,J =-

*
--a.	 M.

 Mi-1,',t+l + (1 - a;,J) M•
	 + Mi+1,J,t+1

1 + 
a^,J^	 a

i,J	 i ,J,t+1	 a;
,J 1 + ai ,J

-B	 D	 (1 - s. ) D	 D

+	 1	 ^'^ Z i -1,t +	 i j	 Z i ,J ,t +	 Z i ,J+1,t
k2	 1 + si ,J 	 s i,J	 ^i,J 1 + ai,J

i.J

-si,' Mi,' 	
(1 - ^)
	 Mi,'+1,t+1	 1*	 +	 -a	 +

,l + s; ,j	 ^ 	 ^,J,t l	 s i,J 1 + aJ,
+ D	 *	 2	

M
i-1, t+1 _ Mi,Jlt+ 1 + Mi+ll•lt+1

yi,J,t	
'

 h2 	1 + ai,J 	 a ij	 aili(I + ai,J

+ D	
t	

2	
Mi,.-1,t+1_ M i, • ,t+ 1 +	 Mi,j 1,t+1

zi ,J,t k2	 1 + s i,J	 4i ,J	 sit ; si•1

1	 _
2r ^M i,j,t+1	 Mi,J,t^	 (A6)

with boundary conditions obtained by substituting equation (A3) into

(4). This yields;

M1, (s l, + 2) + M2,J (1 + 
a
1,J ) _	 M3,'	 = 0	 (A7)

+ sl ,J	 s1 ,J	 s1 ,J 1 + s1,J

r

....
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along z = 0 where i - 1, and

-M(a 	 + 2) + M
	

(1 + ai,l) -
	

M  
3	 = 0	 (M)

i1 + ail	 ,2	 ail	 ail 1 +

along y = 0 where j = 1.

The coefficients used in equations (M) - (M) are defined as; 	 ^.

M
ij
	 = moisture concentration at the i,j th node.

h 	 horizontal step size, (in the y direction)

k 	 step size, (in the z direction)

D	 diffusion coefficient in the y direction at node i,j
yi 

,j ,t
determined from moisture and temperature data at time t.

D 
	 = D(T,M,Y,Z,O) = D22 cos2 0 + D11 sin  0.
i,J,t

D11' D
22 = longitudinal and transverse differsion constants relative

to the principal material coordinates.

Dz 	= diffusion constant in the z direction at the i,j th node

> >J t
determined from moisture and temperature data at time t.

In general Dz = D22.

ai,j	 = ratio of distance between i-1, j-i and i, j-i+l, j codes.

ratio of distance between i, y-1-i, j and i, j-i, j+1

nodes.

T	 = time increment

x	 ^



APPENDIX B

The unmodified Gauss Siedel simultaneous equation algorithm

to solve equation (7) is of the form

{MK+I} = {D} - [B]{MK}
	

(Bl)

where

D i
 = Pi/Ci,i

B i,j
	Ci,j/Ci,i for i # j

Bi,i = 0, with i,j = 1,2,... number of unknowns (NNUM)

and {MK } is continuously updated from the computed results of {M K+1}.

This algorithm, as posed, requires storage on the order of

(NNUM) 2 and multiplications equal to (NNUM) 3 , per convergence iteration.

Upon formulating the diffusion problem in conjunction with the Gauss

Siedel solution scheme there are, at most, four non-zero 
Bi,j 

coef-

ficients per row. The number of non-zero coefficients is a function

of the order of the difference equation and its order of accuracy.

By eliminating the large number of zero coefficients in [B] and their

multiplications the computer resources used to solve this problem

would be greatly reduced. This was accomplished by developing only

the non-zero [B] coefficients along with a series of pointer vectors

relating them to the appropriate guess solution in vector {MK},

As coded in HYDIP coefficient storage, including pointer vectors, is

25



26

9*(NNUM) locations while multiplications per convergence iteration

equals 4*(NNUM).

Table (B1) presents a comparison of required computer resources

to solve the diffusion problem using the modified Gauss Siedel, un-

modified Gauss Siedel and a non-banded or blocked out of core

Gaussian elimination algorithms. As seen from the table, the re-

quired computer resources varies linearly with respect to the number

of unknowns for the modified Gauss Siedel algorithm while the other

methods are quadratic or cubic functions of the number of unknowns.

Table B1. Storage and Computation Comparison of Three Solution
Algorithms.

Number of
Unknowns

Number of Mult.
and Divisions

Number of Storage
Locations

Modified
Gauss Siedel

100 400* 900

500 2000* 4500

1000 4000* 9000

Gauss Siedel

100 1 x 106* 10000

500 1.25 x 108* 2.5 x 105

1000 1.0 x 109* 1.0 x 106

Gaussian
Elimination

100 2 x 105 10000

500 1.42 x	 106 2.5 x 105

1000 8.9 x 107 1.0 x 106

* for the Gauss Siedel and the modified Gauss Siedel routines this
represents the number of multiplications per convergence
iteration.

L
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