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HOT CORROSION RESISTANCE OF NICKEL-

CHROMIUM-ALUMINUM ALLOYS

by Gilbert J. Santoro and Charles A. Barrett

National Aeronautics and Space Administration

Lewis Research Center

Cleveland, Ohio 44135

ABSTRACT

The hot corrosion resistance of nickel-chromium-aluminum alloys

,00	 was examined by cyclically oxidizing sodium sulfate-coated specimens

W

	

	 in still air at 9000 , 10000 , and 11000 C. The compositions tested were

within the ternary region: Ni; Ni-50 at. % Cr; and Ni -50 at, % Al. At

each temperature the corrosion data were statistically fitted to a third

order regression equation as a function of chromium and aluminum

contents. From these equations corrosion isopleths were prepared.
t	 j

Compositional regions with the best hot corrosion resistance were
1

identified.
f

j
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HOT CORROSION RESISTANCE OF NICKEL-

CHROMIUM-ALUMINUM ALLOYS

by Gilbert J. Santoro and Charles A. Barrett

National Aeronautics and Space Administration

'	 Lewis Research Center

Cleveland, Ohio 44135

[	 SUMMARY

Alloys in the nickel-chromium-aluminum system were cyclically j

hot corroded at 900 0 , 10000 , and 11000 C for 100 hours._ The data

W were statistically treated to obtain corrosion isopleths at each tem-

perature as a function of composition. The results were compared

with previous work on the oxidation of these same alloys. Compo-

sitions with simultaneously good oxidation and hot corrosion resist
1

ante were found to be centered at about Ni-33 at. % Al and Ni-30

at % Cr-20 at.% Al.	
j

Alloys melted in zirconia crucibles and not annealed have signifi-

cantly greater hot corrosion resistance at 11000 C than alloys melted

in alumina crucibles and annealed. At lower temperatures differences

in the preparation of the alloys did not significantly affect their hot

corrosion resistance.
`	

INTRODUCTION	
j

In recent years many promising compositions have been identified

`	 in the nickel-chromium-aluminum (Ni-Cr-Al) system for use in appli-

cation requiring a high degree of high-temperature corrosion resistance.

E	 Such applications have included coatings for many types of alloys (ref. 1)

I
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and as the matrices for oxide dispersion-strengthened alloys (ref. 2).

Recently a program was initiated at NASA-Lewis to determine the

optimum compositions wi&, the best balance of cyclic oxidation and

hot corrosion resistance, tensile properties, ductility, and strategic

element content. In pursuit of this objective an investigation was com-

pleted (ref. 3) wherein nickel-rich alloys in the Ni-Cr-Al system were

evaluated for their cyclic oxidation resistance in still air at 11000 and

12000 C. A first approximation oxidation attack parameter was derived

which was related to the Cr and Al content by a multiple linear regres-

sion analysis. The resultant equations were translated into contour

diagrams showing regions with minimum oxidation attack. This paper

is the 2nd step in the overall program. The same alloys as were used

in reference 3, were examined in this study for their hot corrosion

resistance by cyclically oxidizing sodium sulfate (Na2SO4) coated

specimens in still air at 900 0 , 10000, and 11000 C. The compositions

tested we. •e within the ternary region: N; Ni-50Cr and Ni-50A1 (all

compositions are given in atomic percent in this paper). A limited

number of alloys were coated with Na2SO 4 containing 10 weight percent

sodium chloride (NaCl) in order to determine the effect of NaC1 on the

corrosion process. The extent of the corrosion was determined by the

specimen's net weight change, the maximum depth of attack, and by

the weight of its spalls. ` The maximum depth of attack data, being the

least ambiguous measure of the corrosion, were related to Cr and Al

content at each temperature by a multiple linear regression analysis.

The resultant third order regression equations were translated into
}
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corrosion isopleths which indicated compositional regions of minimum

attack. The corrosion contours from this study were compared to

those from reference 3 for oxidation resistance and regions of simul-

taneously good oxidation and hot corrosion resistance were identified.

1	 MATERIALS

All of the alloys specifically prepared for this program were vacuum
I

melted in zircoma (ZrO2  crucibles and cast in zirconia shell molds.

The zirconium (Zr) pickup of up to 0.6 weight percent was detected.

Each mold consisted of a tree of ten 2.5 by 5.1- by 0.25- centimeter

coupons, each with its own riser. For each coupon used the risers

were removed and analyzed by atomic absorption for chromium and

aluminum. The composition of these alloys are given in table I, cast-

ing 1-11.

Most of the supplement alloys used in this study were obtained

from a previous program (ref. 4) and had been melted in alumina

(Al 203) crucibles and cast into 1.9 cm diameter cyclindrical ZrO2

molds. These castings had been annealed 24 hours at 1200 0 C in quartz

tubes which had been evacuated and backfilled with argon and sealed.

Their compositions are given in table I, castings 15-27. Another sup-

plemental alloy was arc-meted in a copper mold (casting 13 of table I).

-

	

	 Finally the commerical alloy, IN-671, was also tested as its compo-

sition is essentially Ni-50.9Cr, see table I.

All the specimens used in this investigation were glass-bead blast-

ed, ultrasonically cleaned in alcohol, and weighed prior to testing.

Metallographic examination of the as -cast materials revealed four

general types of structures. Figure 1(a) is a single-phase structure
^	 s
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typical of y-nickel solid solution, of y' (Ni 3A1), and of	 (NiAI).

:Figure I(b) shows the y, y' structure found in most nickel-base super-

alloys. Figure 1(c) represents the -y', 0 structure and finally fig--
r

ure 1(d) consists of a blocky structure of y' and 0 with small particles

of chromium solid solution (aCr) in the P. Table I lists the as-cast

phases of the alloys tested in this study and figure 2 is a phase diagram

of the region of interest (ref. 5).

PROCEDURES

Test Procedures

Prior to testing sample dimensions were measured and in partic-

ular the thickness was measured to a precision of f1 micrometer. Prior 1
a

to exposure in the furnace, samples were coated with 1 mg/cm of

Na2SO4, or in some cases 1 mg/cm2 of the mixture Na2 SO4 + 10 weight

percent NaCl. Application of the salt coating was accomplished by heat-

ing a weighed sample on a hot plate set at about 200 0 C and spraying one

side with a saturated solution of salt using an airbrush. The sample

i
was then cooled and weighed to check for the correct amount of salt

deposition. The ,same procedure was used to coat the other side of the

specimen. The samples were then ready for the cyclic specimen fur-

nace which has been described in detail in reference 6. Samples were
{

thermally cycled to allow one hour at temperature and a minimum of

40 minutes cooling in static air. A typical temperature profile is shown

in figure 3. Su. ,in ples reached the highest test temperature in less than
{

2 minutes after insertion into the furnace and cooled to ambient temper-

ature in less than 20 minutes after removal from the furnace. Samples

F	 ;
0of each alloy were exposed for 100 cycles at 900, 10000 , and 11000 C.
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Weight change was determined at regular intervals throughout the test.

At the conclusion of the furnace testing the accumulated spall for each
". h

sample was weighed and examined by x-ray diffractimt. Each corroded

sample was also examined by x-ray diffraction and by metallography.

The thickness of the alloy visibly unaffected by the corrosion attack

was measured on metallographically prepared cross-sections with a

microscope cathetometer at a magnification of 100X. The original

thickness minus the above measurement all divided by two then is de-

fined here as the maximum depth of penetration of the corrosion attack.

Statistical Procedures

A digital computer program, NEWRAP, reference 7 was used to
a

perform the regression analyses. A two independent variable polynomi-

al model was apriori judged as suitable for this data. The dependent

variable was the maximum depth of corrosion, D, and the two inde-

pendent variables were C and A, the atomic percent concentrations

r

	

	 of chromium and aluminum respectively in the alloy. The approach

was to begin with a first order polynomial and to go to higher order

equations if necessary. The decision as to which order polynomial

provided the best fit was judged from the fraction of total variation

(total sum of squares) accounted for by a particular regression equation

and how reasonable were the predictions of this equation at locations
E

	

	 away from the data points. This fraction of the total variation explained

by the regression equation is called the coefficient of ,determination,
t

R.

p	 Nonsignificant terms were deleted from the model by the back-
l
k. rejection -technique where the critical significance level is supplied
E
,
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as input: The strategy used here for a given order equation was to

minimize the standard error of estimate and still predict reasonable

values over the composition range.

It is possible to significantly increase the R 2 of a regression

w	 equation by including other factors that might account for a significant

added fraction of the variability. This is accomplished by the addition

of a dummy variable, Z, and setting it either to 0 or 1. Thus in ref -

ence 3 the alloys were divided into two groups - those melted in zirconia

crucibles and not annealed, Z 1, and those that were melted in alu-

mina crucibles and annealed, Z = 0. The addition of the dummy vari-

able significantly raised the R2 and lowered the standard error of

estimate. From this result it was inferred that zirconia impurity

affected the oxidation resistance. The dummy variable approach was

included in this study for each of the three temperature regression runs.

In corrosion studies of this type the dependent variable (in this case

the maximum depth of attack, D) usually has the same relative error

over a wide range of values. This situation requires the dependent vari-

able to be transformed to the logarithm of the variable. The process

is termed homogenizing the error variance.

RESULTS

Measure of Corrosion	
i

The extent of corrosion was measured by the net specific weight

change, the accumulated weight of spall and the maximum depth of

attack. In general all three measures gave consistent results. Samples

which changed little in weight usually spalled only slightly and had rela-

tively little depth of attack. The reverse statement is also generally

F,
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true. Figure 4(a) to (c), contains the weight change data from 900 0 to

11000 C of a random selection of the alloys tested. The values in

parenthesis following the alloy designations are the maximum depth of

attack in micrometers and the values in brackets are the specific accu-

mulated spall weight in milligrams per centimeter squared. The data

can be classified into three categories:

(1) Alloys with relatively little weight change.

'(2) Alloys with substantial weight gains.

(3) Alloys with substantial weight losses.

A complete _set of the corrosion data is presented in tabular form

in table II where the temperature dependence for each alloy is readily

discernable. Thus at 9000 C only alloy 17 spalled (and then but slightly)

while many samples spaded at 11000 C. Comparing the last two col-

umns of table II, specific net weight change and specific weight of accu-

mulated spall, a negative weight change in the former column ought to

be accompanied by a nearly equal weight of spall in the latter column.

A fair comparison is observed in this respect for most of the alloys 	 1

r

with the notable exception of alloys 22 and 23. For these two alloys

there is a large net weight loss but no detectable spall. Since a spall

shield surrounded the specimens when they were cooling, a large 1
fraction of the spall should have been collected even if the specimens

spalled exposively. Thus it must be assumed these two specimens had

spalled either at temperature or while being raised out of the furnace.4

F X-ray Diffraction And Metaiiography1...
After the furnace exposure both the retained and the spalled oxides

E	 were identified by x-ray diffraction. These oxide phases are listed in

i
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table III. With but few exceptions all specimens formed multi-oxide

phases. Figure 5(a) to (c), is a graphical presentation of the x-ray

diffraction data. For the purpose of this figure the spalled and retain-

ed oxide data were combined. The figure illustrates two major points.

The presence of chromium in the alloy decreases the aluminum content

needed for Al2 03 formation in the scale. An explanation of `his result

is given reference 8. The other poiat is that with increased tempera-

ture more aluminum is required in the alloy for Al 2O 3 formation. The

opposite behavior occurs In straight oxidation because of the increased

diffusivity of the aluminum ion with temperature. But under the hot

corrosion conditions of this study the spalling increased wifh tempera-

ture and overshadowed this effect. Thus at higher temperatures a

greater aluminum content in an alloy is necessary to maintain a suffi-

cient level to compensate for that lost due to the increased spalling.

The modes of attack during hot corrosion are described in table III

by listing three major morphological aspects frequently observed in

corroded alloys and by identifying which ones are applicable to each of

the alloys tested. The three modes are: (1) oxide penetration, often

along grain boundaries; (2) formation of a depleted _zone immediately

beneath the scale; and (3) internal corrosion products and/or void

formation. Examples of these corrosion modes are presented in fig-

ure 6(a) and (b).

Sodium Chloride Effect

4
Table IV summarizes the data concerning the effect of adding NaCl

to the Na2SO4 on, the hot corrosion of a limited number of alloys. At

9000 C the effect is quite apparent. The NaCl caused the scale to _spall
,
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and thereby accelerated the attack. Also NiO was a prominent p]

in the spall of all specimens indicating a depletion in their surf ac

concentration of aluminum and chromium. This result agrees w;

literature reports indicating sodium chloride vapors can disrupt

protective scale of alloys, reference 9 and 10.

At 11000 C the effect of the NaCl is not so evident. NiO was

sistently a predominent phase of the spall of specimens with NaC

their coating but was not always detected in the spalls of specim(

corroded in the absence of NaCl. However at 11000 C the preset

of NaCl did not seem to be consistently detrimental to the crroq

resistance of the alloys.

DISCUSSION

How a material corrodes depends not only upon its composition

but also upon the testing parameters used. Since there are many hot

corrosion, testing procedures in use today (ref. 11) it would be very

difficult to directly compare the corrosion results obtained here with

those of other laboraL'ories. Of course the ultimate test procedure

would be to test the material in actual application, e. g. in a gas tur-

bine engine. This procedure is not practical for use with all candidate

materials and a number of screening type tests are required so that

only a few "best" candidates are chosen for the actual application

test. The procedure used in this investigation must be considered as

a screening type test. Its value lies in the identification of those

"best" compositions for further testing. 	
]

Based upon the data collected in this study, a mutiple linear re-

gression analysis was used to identify the "best" compositions in the
i
A

-	 1	 t
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Ni-rich end of the Ni-Cr-Al system. The procedure used was discussed

earlier. The maximum depth of attack data, being the least ambiguous

measure of the corrosion, were chosen to relate corrosion to the Cr

and Al content of the alloys at each temperature. A summary of the

statistical data appears in table V(a) to (c), and is called the analysis

of variance table (ANOVA). Included are the final regression equations.

The third order, two independent variables regression equations were

translated by a computer program into corrosion isopleths. Figure 7(a)

to (c), are the resultant contours at 900°, 1000 0 , and 11000 C respec-

tively. Although the contours are related to the logarithm of the maxi-

mum depth of attack in micrometers, log D, the values listed in fig-

ure 7 within the contours are D directly. At 900 0 C a large minimum

attack area exists at the higher chromium, higher aluminum composi-

tions. At 10000 C this area decreases in size. At 1100 0 C two small

areas of minimum attack exists at the edges of the diagram, one center-

ed at about Ni-30Cr-2OAl and the other centered at Ni-33A.1. These two

areas overlap areas of minimum oxidation attack observed in reference 3' 	 i

and shown here in figure 8.

One effect of increasing temperature is to increase the rate of cor-

rosion which in turn provides a better separation of the corrosion re-

sistance of the alloys. But a surprising feature of figure 7 is that alloys

with very low aluminum content corroded more at 1000 0 C than they did

at 11000 C Since the vapor pressure of Na2SO4 at 11000 C is moderate,
tt	 10-1 Nm_2 (1.0 -6 atm.) reference 12, the decrease in corrosion at 1100 0 C,
ii for these low aluminum containing alloys cannot be attributed entirely to

..., ,
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the loss of Na 2SO4 via vaporization. * The entire Na 2SO4 coating can

be lost, however, by the spalling of the outer portion of the scale.

Having lost their Na 2 SO4 coatings the alloys could then heal themselves

and further corrosion would be by pure oxidation and at a much lower

rate. Figure 7(c) then could represent the recovery ability of those hot

corroded alloys that spalled. And most of the alloys at 11000 C did

spall. Since the best hot corrosion resistant compositions in figure 7(c)

overlap the best oxidation resistant compositions in figure 8, it can be

generalized that for these alloys the ones with the best oxidation re-

sistance have the best hot corrosion recovery ability. In gas turbines

the exposure to hot corrosion conditions is thought to be intermittent

(ref. 10), Thus the ability of material to recover from an hot corrosion

attack could be an important factor in the life of that material when used

in gas turbine engines.

106^.

As was done in reference 3 a dummy variable was used to determine

if a significant variation could be ascribed to differences in the prep-

aration of the alloys. One set of alloys came from a previous program

(ref. 4) and were melted in Al203 crucibles and annealed. The alloys

Fred J. Kohl (NASA-Lewis) extrapolated his 9000 C rate data

from slowly flowing oxygen and calculated a rate of vaporization of

 2	 - 1
3.5X10

_2
 mg/cm hr. for 11000 C. This value would represent an

upper limit as the tests in this paper were conducted in. still air.

Thus sodium sulfate (or perhaps more correctly its reacted products)

ought to be present throughout most of the 100 hours duration of these

tests.
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prepared specifically for this program were melted in zirconia cru-

cibles and were not annealed. No significant preparation effect could

be detected for the 9000 C data, i. e= , there was not a significant rise

in R2 or lowering of the standard error of estimate. Only a small

effect could be detected for the 10000 C data. But at 1100 0 C a marked

difference was detected. The statistical data and the regression equat-

ions are listed in table V(d). Figure 9(a) and (b) are the resultant corro-

sion isopleths. Figure 9(a), where the dummy variable was set to zero,

applies to alloys melted in Al20 3 crucibles and annealed. Figure 9(b),

where the dummy variable was set to one, applies to alloys melted in

ZrO2 crucibles and not annealed. Analogous to the oxidation of these

alloys (ref. 3) the latter preparation of the alloys provided superior

corrosion resistance. Thus either trace amounts of ZrO 2 and/or the

absence of annealing has a significant beneficial effect on the hot corro

sion resistance of NJI-Cr-Al alloys,

SUMMARY OF RESULTS

Alloys in the nickel-chromium-aluminum system, were cyclically 	 x

hot corroded at 9000 , 1000°, and 11000 C for 100 hours. The data

were statistically treated to obtain corrosion isopleths at each tempera-
1

ture as a function composition. The hot corrosion results were compared 	
a

with previous work on the oxidation of these same alloys. The results 	 a

of this work are summarized as follows:
F 1. Compositions with simultaneously good oxidation and hot corro-

sion resistance were found to be centered at about Ni-33A.1 and Ni-30Cr-

2 0A1.
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2. Alloys melted in zirconia crucibles and not annealed had signi-

ficantly greater hot corrosion resistance at 1100 0 C than alloys melted

in alumina crucibles and annealed. At lower- tempe -atures differences

j	 in the preparation of the alloys did not significantly affect their hot

corrosion resistance.

3. At low temperatures, the, presence of NaCl in the Na2SO4 caused

the scales of the samples to spall aid thereby to increase their rate of

corrosion.
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7 15.81 5.77 Y
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9 9.73 17.18 Y, r/
10 19.87 -
11 38.70

a13 - 41.78
' b15 0.78 24.50

i
b16 2.86 22.60
b17 9.9b 15.73
o2u 2.60 47.60
b2l 10.3u 3 .10

y b22 2.80 7.10
b^3 1.20 8.90 y

b27 Remelted and cast nickel-200 (99.6%) 	 f
0_671 50.90	 q (•39Ti-.230 ) (	 ^`^ x

(a) Are melted ingots in copper molds.
(b) Melted in Al203 cruciblesand annealed.
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(c) Commerical alloy, nominal composition.
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Table II. - continued

Alloy Temperature Maximum depth Specific weight Specific weight
00 of attack, uM change, mg/cm2 of accumulated

spall, mg/cm2l

^3 900 94 6 0
1000 150 20 0
1100 373 -267 0

27 900 55 18 0
(Ni-200) 1000

.r.
r	 W 205 10 3

IN-671 900 68 2 0
1000 98 -1 1
1100 139 1 1

TABLE III. - OXID% PHASES AZ MODE OF MICR03'PRUCTURA1 ATTACK

Alloy Temp. Oxide Phases* Mode of Attack
oC ined scale Spalled scale Oxide Depleted Internal

penetration zone corrosion,
or voids

1 900 spinel, Cr203, Al203 no spall, detected no no no
1000 Cr203 Al203, spinal, Or 03 no yes no
llUO Cr2031 spinel NiO, Al20 31 spinel no yes yes

2a 9W Cr203, Al203 no spall detected no no no
1000 ------ NiO, spinel no yes no
1.100 Al203, Cr203 spinel, Al203 no yes no

2b 1000 spinel, Al2O 3, Cr203(?) spinel, Al203 no no no
1100 a203, spinel, Cr203 spinel, Al203 no yes yes

3 900 NiO, Al203-1 Cr203 no spalls detected no yes no
1000 NiO NiO, spinel no yes no
1100 NiO, spinel NiO, spinel yes yes yes

4 900 Al203 , Cr203 no spalls detected no yes no
1000 Cr203 NiO, spinel yes - yes yes
3-100 spinel, Cr203 NiO, spinel, Cr203 yes yes yes

5a 900 Cr203, Al203 no spalls detected no no no
1000 ------ Al2031 spinel no yes' no
1100 Al2031 spinel Al203, spinel no yes yes	 -

5b 900 Al203 no spalls detected no no no
1000 Al2031 spinel no spalls detected no no no
1100 Al2031 spinel- Al203, spinel, Cr203 yes yes no

6a 900 Al263 no spalls detected no no no
lUUO ------ Al203, spinel no slight no
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TABLE III, - continued

Alloy Tamp. Oxide Phases* Mode of Attack
C

Retained scale Spalled scale Oxide Depleted Internal
penetration zone corrosion

or voids

16 900 NiU, spinel, Al 203 NiO no no no

j 1000 Nio, spinel, Al203 NiO m no no
1'100 NiO, spinel, Al203 NiO, Al203 yes yes yes

17 900 NiO, spinel NiO no yes no
1000 Nio, spinel, Al 2031 NiO no yes yes

!	 W Cr203
1100 NiO, Spinel, Al2031 NiO yes yes yes

Cr203

20 900 Al203 no spalls detected no no no
1000 Al20 NiU, Al2031 spinel some yes no
1100 Al2031 spinel NiO, spinel(?) yes yes no

21 900 Al20 no spalls detected no no no
1000 Al2031, 	 spinel no spalls detected yes yes no
1100 Al2031

 Cr203 , spinel Al203, NiO yes yes no	 9

22 900 NiO no spalls detected no no no
1WO NiO NiO no no no
11OU Ni0 NiO, spinel no no no

23 900 NiO no spalls detected no no no
1000 NiO no spalls detected no Rio no
1100 NiO, spinel(?) NiO, spinel do no no

Listed in order of decreasing line intensities, 	 (?) Insufficient 1:Lies for positive
identification.

TABLE III. - continued

Alloy Temp., Oxide Phases- Mode of Attack
cC Oxide iDepleted Internal

Retained scale Spalled scale penetration zone corrosion
or voids

27 900 NiO No spalls detected no no no
(Ni-200) 1000 NiO NiO no no no

1100 NiO NiO no no no

IN-671_ 900 Cr203 No spalls detected no yes
1000 Cr203 Cr203 no yes yes

` f 1100
i

Cr2031 spinel(?) Cr203 no yes yes

Listed in order of decreasing line intensities.	 (?)' Insufficient lines for positive
identification.

I

i



TABLE IV. - EFFECT OF SODIUM CHLORIDE (NaG^ / .,.. —.	 —,,n....

A. Amount of Corrosion

Alloy 9000C 110000

Na2SO4 Na SOS^ +
10 w2, 4,aCl

Na2SO4 Na 301,+
10 w^o NaCl

MDAa Sb QWc MDA S QW INIDA S A W IVA S QW

1 3 0 0 19 2 -2 140 10 -7 232 36 -31

2a 2 0 0 21 4 1 0 68 5 -14 46 18 -21

3 30 0 4 28 2 8 254 73 -61 295 59 -49

4 22 0 0 29 10 -2 362 25 -18 326 37 -27

5a 0 0 0 9 <1 -1 65 5 -10 65 9 -18

9 18 0 0 16 < 1 3 187 70 -58 247 87 -73

(a)	 MDA Maximum depth of attack, AM.
I

(b)	 S Specific weight of accumulated spall, mg/cm?

j
(c) „QW Specific weiCat change, mg/cm2.

TABIZ IV. - continued

B.	 Oxide Phases in the Scale"- 900°C

Alloy Na2SO4 Na2SO4 + 10 w/o NaCl

k

Retained Scale Spalled Scale Retained Scale Spalled Scale

t	 1 spinal, Cr2031 none detected spinel,Al203, NiO, spinal,

t

Al203 Cr203, NiO Cr203

2a Cr203, Al203 none detected Al20,1 spinal, NiU, spinel
Ni0, Cr203(?) l

3 NiO, Al2031 none detected NiO, spinel, NiO, spinel
Cr203 2031 Or203 Cr203(?)

4 Al2031 Cr203 none detected NiO, spinel, NiO, spinel
Cr203

1
 Al203 s

5a Cr203, Al203 none detected NiO, spinel, NiU, spinel
Al203 44

9 Al2031 spinel none detected NiO, spinel,

Al203

NiO, spinel

Listed in order of decreasing line intensities.
a

(?)	 Insufficient lines for positive identification.

I

j-

7



TABLE IV. - continued

C. Oxide Phases in the Scale* - 110000

•oo

}
o,

W

Alloy Na2SO4 Na2SO4 + lU w/o NaCl

Retained Scale Spalled Scale Retained Scale *led Scale

I Or203, spine. MO, Al20 3 , spinel, NiO, NiO, spinel
spinel Cr203, Al203

2a Al203, Cr203 spinel, Cr203 NiO, spinel, Nio, spinel
Al203-'

3 NiO, spinel NiO, spinel spinel, NiO, NiO, spinel
Al203, Cr203

4 spinel, Cr203 NiO, spinel, spinel, NiO, NiO, spinel
Cr203 Cr203, Al 203

5a Al2031 spinel Al2031 spinel spinel, Al203 , NiO, Cr203,
iQiO, Cr?03 spinel

9 Al203, Cr203 NiO, spinel NiO, spinel, NiO, spinel
Al203, Cr203

.rte

# Listed in order of decreasing line intensities.

(?) Insufficient lines for positive identification.

i

TABLE V. - AIIAhtSIS Or VARIANCE
i
i

i
A. Data at 90000

Source Sums of squares Degrees of
freedom

Meau squares Calculated F value

Regression 31.126461 4 7.7816153 78.80((conrpared to
F(4,19,0.95)zZ 5.81;

Residual 1.876195 19 .0987471

Total 33.uO2656 23

R2 = SSO(REG)/SS@(TOT)	 .943150

Standard error of estimate _ .314241
I	

.i
log D 1.e1689 + 9.11839x10- 2A - 5.26785x10-3A2 - 5.65473x10'3CA + 6.4526C1a0'5A3

f
D - maxunum depth of corrosion, ull,
C - at. % chromium
A = at. % aluminum

L
s

a

f	 -	 w



Source Sums of squares Degrees of Mean squares Calculated F value
freedom

Regression 2.067594 5 .4175188 9.97((compared to
F(5,.14,0.95).;,-4.63)

Residual .586315 14 -041b796

Total 2.673909 19

J

R2 = SSQ( WG)/SSQ(TUT) = .(60727

r	 Standard error of estunate = .204645

log D 2.20239 + 8.16814x1b- 20 - 1.695ULuclU -3C 2 --2.1U706x1U -LIA2 - 9.28978x1U'3CA	 ?

+ 2.18724x10'4CA2

1

D = maximum deptn of corrosion, uM

C - at. % chromium

A = at. % aluminum

I

s
TABLE V. - continued

C. Data at 11UOOC

TABLE V. - continued

B. Data at IUUOoC

Source Sums of squares Degrees of
freedom

Mean squares Calculated F value

Regression 1.097560 5 .2195120 10.09((compared to
F(5,17,U.95)— 4.59)

Residual- .369896 17 .0217586.

Total 1.467456 22

R2 = SSQ(REG)/SSQ(TOT) = .747934

Standard error of estimate .147508

log J 2.17186 + .14339UA 9.52439xiO-3A2 - 3.05352xio-30A + 1.47265xio-4A3

+ 1.14503x,0 -4CA2

D = maximum depth of corrosion, uM

C _ at. % chromium

A at. I aluminum

1



^x

TABLE V. - continued

11 _ lfla+a a+ ? 1 nnOtl.. ari +h rinuimv vari a h I a

Source Sums of squares Degrees of
freedom

Mean squares Calculated F value

Regression 1.230196 8 .1537745 9.07((compared to

F(6,14,0.95) :Z- 3.23))
Residual .237260 14 .0169471

Total 1 .467456 22

00

oI

W

R2 = SSQ(REG)/6SQ(TOT) _ .838319

Standard error of estimate _ .130181

log D = 2.29753 + 2.41902x10-20 + 0.101384A - 5.34642x10'402 7.20686xiO-JA2

1. 42766x1.0- 3CA + 1,14005x10-4A3 + 6.o1G86lx1.0 -5CA2 0 .363850Z

D = maximum depth of corrosion, uM
C = at. % chromzum
A - at. ;b aluml.num
Z.= duruiy variable: Z = 0, meltecu in Al 203 crucible and annealed.

Z 1, melted in Zr02 crucible and not annealed.



f
•i.

7

^ •J

T t	 ^

ORIGINAL PAGE IS
OF POOR QUAI,ITY

	(a) Ni-15.81 Cr-5.77 Al; y phase.	 * Ni-973 Cr-17.18 At; y + 	 phase.

Figure 1. Representative microstructures in the Ni-Cr-AI system.
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Figure 6. - Hot corroded Ni-D-AI alloys at 1100° C showing typical corrosion morphologies.
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