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SCATTERING IN DISCRETE RANDOM MEDIA
WITH IMPLICATIONS TO PROPAGATION THROUGH RAIN

Louis Joseph Ippolito, Jr.

ABSTRACT

An investigation of the multiple scattering effects on wave
propagation through a volume of discrete scatierers was ac-
complished. The mean field and intensity for a distribution
of scatterers was developed using a discrete random media
formulation, and second order series expansions for the
mean field and total intensity derived for one-dimensional
and three-dimensional configurations. The volume distribu-
tion results were shown to proceed directly from the one-
dimensional results,

The analyses demonstrated that either discrete or continuous
techniques may be employed for the mean field and intensity
expansions, as long as care is taken to insure non-overlapping
scatterers in the formulation,

The multiple scattering intensity expansion was compared to
the classical 'single scattering! intensity and the classical
result was found to represent only the first three terms in
the total intensity expansion., The Foldy approximation to
the mean field was applied to develop the coherent intensity,
and was found to exactly represent all coherent ferms of the
total intensity.

An incoherent intensity term, secular in L, in path length,
was found which was not accounted for in the Foldy approxi-
mation result or in the 'sizgle scattering' formulation.

The study has demonstrated the feasibility of using discrete
random media techniques for the determination of multipie
scattering effects in propagation through a volume of discrete
scatterers, and has provided some insight to the more gen-
eral problem of multiple scattering in a rain volume.
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SCATTERING IN DISCRETE RANDOM MEDIA
WITH IMPLICATIONS TO PROPAGATION THROUGH RAIN

CHAPTER 1

INTRODUCTION

The influence of rain on the propagation of electromagnetic radiation has long
been recognized as a potential problem for many applications in radio science
and engineering. Investigators, beginning in the early 1940's, noted that radar
echoes at cenfimeter wavelengths were modified during rain conditions. Radio
operators observed an increase in the level of noise and interference when rain
was present in the vicinity of the receiver.

A comprehensive siady by Ryde (1946) provided a theoretical basis for the meas-
urement and prediction of meteorological effects on radio waves, and much sub-
sequent work was based on bis early efforts.

The rain medium was recognized as a configuration of isolated dielectric spheres
which absorb and scatter incident energy in accordance with classical field
theory. The solution of the rain problera was based on studying the character-
istics of the single rain drop and applying a simple summation of intensity to de-
fermine the bulk effects of the rain volume on the propagating wave,

Gunn & East (1954) applied the theory developed by Gustav Mie (1908) for the
diffraction of an electromagnetic wave by a dielectric sphere and described the
scattering and absorption of rain by equivalent eross-sections for the spherical
raindrops. They found semi-empirical relationships betweea rainfall rate and
attenuation which could be described by a simple power law dependence.

Medhurst (1965) provided an extensive systematic analysis of rain attenuation

for a wide range of frequencies and rainfall rateg, and numerically calculated
attenuation coefficients from the Ryde formulation. He determined the Mie co-
efficients for spherical drops based on the msasured drop size distributions of
Laws & Parsons (1943). Medhurst compared his calculations to twelve sets of
measured data and found that the measured attenuation tended to exceed the maxi-
mum possible theoretical attenuation in most instances,

The advent of extensive microwave communications links in the late 1960's pro-
duced a large body of measured rain attenuation effects and siudies extending
irom 2 to well above 100 GHz. Improved compuier technology provided more
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refined calculations for microwave atienuation calculations from the classical
Mie theory, Setzer (1970), Chu & Hogg (1968), Satellite communications links
provided further information on rain atienuation at frequencies ahove 10 GHz.
Two recent survey articles, by Crane (1971) and Hogg & Chu (1975), provide an
extensive summary of the theory and measurements available on propagation
factors influencing wave propagation through rain,

The classical development of the theory of wave propagation through rain has
progressed as basically a 'deterministic! formulation, even though the phenomena
involved are random in nature. The intensity of the wave propagating through

the rain volume is assumed to decrease exponentially as it progresses through
the precipitation. The quantities which desecribe the rain structure, such as drop
size distribution, precipitation rate, refraective index, temperature, etc., are
usually assumed as averaged quantifies with deterministic characteristics.

Since the decrease in intensity, or attenuation, of the wave propagating through
the rain is determined as a simple summation of the power absorbed and scattered
by each isolated rain drop, multiple scattering effects between drops are not ac-
counted for directly. Because of this situation, the classical attenuaiion develop-
ment has oiften been termed the 'single scattering' approximation in the literature,
for example Van de Hulst (1957), Medhurst (1865), Ishimaru & Lin (1972), even
though no such explicit approximation appeaxs in the theory.

Some investigators have recognized the lack of multiple scattering considerations
in the classical formulation, but disagree on its relative importance. Medhurst
{p. 563) states that the neglect of multiple scattering effects along the path could
be one source of error in the disagreement bhetween his calculated values and
experimental measurements. Hogg & Chu (p. 1311) state that multiple scatiering
effects are implicitly accounted for in the classical formulation since the incident
wave at each layer in the rain volume takes into account attenuation by preceeding
layers, therefore the bulk of the multiple scatiering contributions are included.
Crane (p. 179) states that the classical attenuation calculations strictly apply
only to a nonscatiering medium, and that neither adequate measurements nor an
adequate theoretical treatment of multiple scattering effects have been made.

Setzer (1970) applied the equation of radiative transfer given by Chandrasekhar
(1960) and computed the first order Born scattering contribution for a line-of-
site propagation link with a very narrow angular field of view. He concludes
that, for a 150 mm/hr rainfall rate with a Laws & Parsons drop distribution, the
multiple scattering term is completely negligible at 30 GHz, and of minor sig-
nificance even at optical wavelengths.

Crane (1970), using the same radiative transfer technique, but apparently with-
out the assumption of a narrow field of view, presents curves (his Fig. ¢) which



show that multiple scattering in a Laws & Parsons rain will be important at
frequencies above 20 GHz for even moderate rain rates. The curves show, for
example, that at the 150 mm/hr rain rate and for 30 GHz, multiple scattering ef-
fects become significant at a path length of about 200 meters.

The subject of multiple scattering has been treated extensively in the study of
random media problems. In contrast with the 'deterministie' techniques em-~
ployed by classical rain attenuation methods, the study of random media re-
quires a 'statistical' approach and 'averaged' results are of interest. The study
of random media is approached by both continuous and discrete formulations.
Frisch (1968) provides a comprehensive survey of wave propagation in random
media for both the continuous and discrete scatterer cases. Major contribuiions
in the continuous random media area include those of Keller (1962, 1963),

, Rosenbaum (1969), Kupiec, et al. (1969), among many others.

A systematic procedure for the study of random media consisting of discrete
scaftterers was presented by Foldy (1945) and extended by Lax (1952), Bazer
(1959), Lin & Ishimaru (1971, 1974), and Twersky (1962-1967), among many
others.

The application of random media techniques to the rain scatter problem has not
been very extensive, however. Lin & Ishimaru (1971) consider multiple scatter-
ing effects on millimeter wave propagation in an isotropically scattering dis-
crete medium, In alater paper Ishimaru & Lin (1972), the case of a narrow
beam line-of-sight propagation path is assumed. Both studies present integral

- equations for the mean field and coherent intensity based on the Foldy approxi-

b mation formulation for forward scattering only, and solve equations after a

i number of simplifying assumptions which appear to reduce the problem to the

B classical 'single scattering! formulation. The relative contributions of multiple
scattering to the rain scatier attenuation are not discussed.

The objective of this dissertation is an investigation of multiple scattering in
propagation through a distribution of discrete point scatterers by a rigorous ap-
plication of random media techniques, Chapter 2 reviews the continnous and
discrete random media formulations important to the study. Chapter 8 establishes
. a treatment of propagation in one-dimensional media, with emphasis on the tech~
nigues applicable to the volume scatter problem, Chapter 4 extends the develop-
ment to a volume distribution of discrete point scatterers, and develops expan-
sion solutions for the mean ficld, coherent intensity, and incoherent intensity.
Chapter 5 presents the general conclusions of the study of discrete scatiering
in a random medium and discusses some implications of the resulis to the volume
rain seattering problem.,



CHAPTER 2

WAVE PROPAGATION AND SCATTERING IN RANDOM MEDIA

The subject of wave propagation in random media covers a vast range of topics
and techniques, all sharing a common factor of statistical solutions to problems
that are non-deterministic in nature. As an eleciromagnetic wave propagates
through a random medium, such as a turbulent atmosphere, fog, rain, ocean
surface, or rough terrain, the randomness of the medium becomes the source
of secondary waves, referred to as scaitered waves or 'scattering’.

The scatiering medium may be characterized in one of three ways; (2) 2 random
continnum, where the ra.ndpmness can be considersd a continuous function of
space and time, (b) discrete scatiering, where the medium consists of a random
distribution of discrete scatierers, and a knowledge of the characieristics of a
single scatterer is required, and (c) rough surface scattering, where a random
surface function, rather than a volume function, is used.

The study of rain scatiering effects on electromaguetic propagation involves
elements of both the random continuum and discrete seattering, This chapter
reviews the basic formulation necessary for the developments which follow in
Chapters 3 and 4. Most of the information in this chapter has been obtained
from the published literature, and adapted, where necessary, for the particular
notations and configurations of this study. The major references for the mate-
rial summarized in this chapter are Frisch (1968), Foldy (1945), Twersky
(1964), and Keller (1964).

2-1, CONTINUQUS RANDOM MEDIA TECHNIQUES

A medium which is considered continuously random in position and time can be
deseribed statistically by a dielectric constant, e , which is a random function
of position and time,

e = (rt) = n?( 1) (2-1)
where n? is the index of refraction, also a random function. We make the as-
sumption that the time variations of the medium are slow compared to the time
of wave propagation through the medium, which is a reasonable assumption for
the rain scatter channel. Under this condition

€ = () = n*(r) (2-2)

which implies that a propagating wave will maintain its frequency.

PLECEIVING PAGE BLANK NOT PILMED



,4 Consider Maxwell's equations for the medinm, in complex vector notation
i V x E(r) = iwu, H(r) | (2-3a)
V x H(s) = -iwe, €,(r) E(n) (2-3b)

where a time dependence of e™1*! js assumed. The electric field vector, for
example, is availabie from

e(r, t) = Re{E(r) e’i‘*’t} (2-4)

where Re denotes 'real part off, and E(r) is a vector with complex
components,

The vector wave equation for the medium is developed by combining Equations
(2-3a, b),

V x V x E@1) - wlue, e () E@r) =0 (2-5)
with
V * [e@)EM®] =0 (2-6)

Equation (2-5) reduces to

5 \Y er(r)
V2 E(r) + ko e,(r) Ex) -V « E(r)] =0 (2-7)

&,(r)

where

The last term in Equation (2-7) can be neglected if the variations in e over dis-

: tances comparabie to the wavelength of the incident radiation are very small. In
neglecting this term, polarization effects are also neglected since three uncoupled
scalar wave equations result.

The resulting vector wave equation is therefore

V2 E@) + k. e () E) = 0 (2-8)
or in terms of the refractive index
72 E(r) + ké n2(r) E@) = 0 (2-9)

6



Each component of the vector wave equation above, W(r) , satisfies the scalar
wave equation

72 ¥(r) + kz n2MT@E =0
or
(V2 + k2 n?(@)] ¥(@x) = 0 (2-10)

Consider a random medium imbedded is free space with a relative dielectric
constant close to 1. The refractive index then has the form

n2@E) =1+ eu( (2-11)

where the random function u(r) is defined by a mean (u(r)) and correlation
(u(r)a(r' )}, and e is a small quantity,

The wave equation then has the form

{v2 + K201 + e u(r)]}‘lf(r) =0
or

[V2 + K21 %) = ek ulr) () (2-12)
This equation can be converted to an integral equation by use of the Green's
function method. The solufion is assumed as the sum of an incident wave which
obeys Equation (2-10) and a scaitered wave. The associated boundary conditions
require that the scattered wave be composed of outgoing waves at infinity, and

that ¥(r) is continnous and vanishes at infinity. With these boundary conditions,
the wave equafion converts to

¥G) = ¥ @) - ek’ [ G, r') ua”) (') dr’ (2-13)

where G(r, t'}is the free space Green's function

_elk Ir - r'l
Ga, 1) = ———~ (2-14)
da |1 -1
which is a solution to the wave equation
(V% + k) G(r,r) = 8(r - 1) (2-15)



The incident wave ¥, (r) is a solution to the homogeneous wave equation
(V> + k)Y (1) =0 (2-16)

Most of the field analyses in this sfudy will begin with the integral form of the
wave equation discussed above.

Born Approximation

An approximate solution for the integral form of the wave equation for scattering
in random media is available by assuming the solution is of the form

¥(r) = i: " ¥ (1) (2-17)
n=20
The first iteration solution, for n =1, from Equation (2-13), is
V() = ¥ () - ekl [ Gl r)ul) ¥, (') dr' + OE?) (2-18)
where O(e?) indicates additional terms of order e2.

The second iteration assumes Equation (2-18) for a solution to Equation (2-15),
i.e.

W) = ¥ @) - ekZ [ G r') uGHT, ()
(2-19)
- ek2 [ GO',r'")ul”) ¥ (") de''] dr’ + O(e*)
or

W) = T 6) - ek’ [ G, r')u(’) ¥ (") dr’
(2-20)
+ e k2 [ G, 1) GG, 1) u(r') u@e”) ¥, ¢ dr’ dr” + O(e)

Additional terms of the Born series can be applied to obtain higher order ex-
pansions. For this study expansions to O(e?) will be utilized,

The expectation, or average, value of ¥(r) is available from Equation (2-20)
(T@) = ¥ ) - ekZ [ Glr,r') ') ¥, (") dr'

(2-20a)
+ €2 k2 [ Glr, ") GG’ ") Q) ue"N ¥ (") d' dr” + O(e®)

gy -



where {u(r')) and {u(r' ) u(r'")) are the first and second order statistics which ;
define the function u(r). i

2-2, DISCRETE RANDOM MEDIA TECHNIQUES

Consider a distribution of identical isotropic point scatierers in the presence of
an incident wave ¥, (r). The scaiterers are located at r;, The scattering prop-
erties of the individual scatferer are characterized by a scattering function, gj»
which is a deterministic function determined from the physical characteristics
of the individual scatterer. The distribution of the scatterers is given by the
distribution function £(r). We assume that g., #(r), and T, () are known., We
require the average of the wave function, (ﬂlj(r)) and other related quantities.

For a particular configuration of scatterers, the wave function at the point r
can be represented as (Foldy, 1945, p. 110)

Ve = 6 + ), g YO (2-21)
i

This equation represents the field as the sum of the incident wave and spherical
waves diverging from each of the scatterers. The external field acting on the
jth scatierer is then

() = V@) + gy V) G 1) (2-22)
jf
i'#j

Equations (2-21) and (2-22) represent the fundamental equations of multiple
scattering.

v s

The first order approximation to the solution of the above equations assumes
that the external field on the j' th scatterer, ‘I!(rj ), is the incident field at that
scatlerer, i.e,

\y(li') &= \Ifo(lti.) (2-23)

The field at r is again represented as the sum of the incident wave and spherical
waves diverging from each of the isotropic scatierers, i.e.

W) = o) + ) g Gl 1) UGy (2-25)
’ i
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where W(r,) is the external field acting on the j th scatterer, and G(r, rj) is the
Green's fitnction representing the spherical wave of the j th scatterer.

But now, in the first order approximation, () is the sum of the incident wave
at r, plus the sum of the fields produced by the other scatterers excited by the
incident wave, i.e.

@) = W) + ) gy Gy ) ¥ G0) (2-26)

- J -
i'*ij

where G(r;, r.,)is the field produced at K from the scatierer at T, excited by
the incident wave W, (r]-,).

Substituting Equation (2-26) into Equation (2-25)

TE) = Y@ + 3 g G T+ D g Gl 1) W)
j i
j#i

or

’
T(r) = Ty @) + Z g G, 1) Wo(x) + Z ): g & G, 1) Glry, 1) ¥ (1)
J i ¥ (2-27)
where the prime in the summation indicates j #j'. Equation (2-27) represents
the fundamental equation for the evaluation of multiple scattering by discrete

isotropic scatterers, and will be the starting point for the discrete formulation
expansion solutions in this study.

Foldy Approximation

The direect method of solution for the discrete multiple scattering field, repre-
sented by Equation (2-27), consists of solving the set of simultaneous linear
equations for the ‘lf(rj ), given by Equafion (2-26), and substituting these into
Equation (2-27) to find ¥(y) as a function of position and the parameters of the
scafterers. This is not a feasible method. The problem is even more severe
when (W(r)) is desired. In that case, integrations must be carried out over all
the simultaneous equations o obtain ¢(¥(r)),

This problem was studied by Foldy (1945), and resulted in the development of a

procedure for determining the mean field integral equation by applying an ap-
propriate approximation for the external field acting on each scatterer. This

10



important development has been used extensively to study multiple scaitering
effects, and serves as the basis for most present treatments of discrete scatter-

ing problems, Twersky (1964), Ishimaru & Lin (1972), Lax (1951), Bazer (1959),
among others.

The detailed development of the Foldy approximation will be applied in this study
for the one~dimensional case, Section 3-3, and for the volume scattering case,
Section 4-2. The Foldy approximation expansion for (¥(r)) and {(¥(r))|? will be
compared with divectly evaluated expansions for the slab and volume scatter
cases, and the limits of applicabilify to the rain scatter channel evaluated.

11
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CHAPTER 38

PROPAGATION IN ONE-DIMENSIONAL MEDIA

As a prelude to the direct evaluation of multiple scattering in a volume of scat-
terers, we begin by first establishing a rigorous {reatment of the problem of the
multiple scatiering of waves by distributions of point scatterers. In the next
chapter, similar techniques will be applied and extended to the three-dimensional
volume scatter problem.

A one-dimensional slab of Poisson disfributed point scatierers will be considered,
and expansions of the mean field and intensity will be developed, ufilizing con-
tinuous and discrete techniques. The particular areas of interest to be investi-
gated include, (a) the relative advantages of discrete versus continuous tech-
niques for point scatiterer problems, (b) the applicability and range of validity

of the Foldy approximation in the mean and intensity expansions, (c) the deter-
mination of a "'weighting factor' for the point scatierer which represents a di-
electric finite seatterer in the limit as its width approaches zero, and, finally,

{d) the implications of the one-dimensional results and their applicability to the
solution of the rain scatter problem.

Many of the techniques and methods of evaluation established in this chapter will
be found to be direcily applicable, with some extensions, to the three-dimensional
volume scattering problem, hence the resulis here will provide a useful gunide in
the method of analysis for this study.

3-1. POISSON IMPULSE REPRESENTATION FOR DISCRETE SCATTERERS

The point scatterer will be utilized in this study to represent a physical scatterer,
thus it is important, at least in the mathematical sense, for its properties to
reagonably represent the characteristic properties of the scatterer. It will be
useful in the statistical evaluation of the moments of a configuration of point
scatterers to consider the scatterers as g uniform distribution of Poisson im-
pulses, with an appropriate 'weighting factor' which represents the physical
drop characterisiics, such as radius and dielectric constant. In this way the
point scatterer formalism is maintained for ease of mathematical evaluation,
yet the physical properties of the scatterer are maintained and available for
practical interpretation of the results obtained. We begin by considering a
single point scatterer and developing the 'weighting factor' which represents a
dielectric scatierer within specified bounds of size and dielectric constant.

AN,
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(a) Single Delia-Function Scatterer

Consider a single impulse scatterer located at x; in free space, as in Figure
3-1(a), on the x axis, with an incident wave propagating from the negative x
direction of

Ty(x) = elkx 3-1)

where an e71®t time dependence is assumed. The field ¥ (x) obeys the reduced
one-dimensional wave equation

d2
— W(x) + k2 n2(x) T(x) = 0 (3-2)
dx?
o K
X
{a)
/
k 2 K 7 K
7 /
b = L 7
[ A ; T
7 7
% B vy
- |/ —— :‘;
7 7
2 7
< . 33— X
0 L
(b}

Figure 3-1. One-dimensional Scatierer Configurations
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where n(x) is the index of refraction and k is the free space wave number. The

scatterer at x; results in

n’(x) = 1 + o 8(x)

(3-3)

where §(x;) is the Dirac delta function and ¢ is a complex 'weighting factor', to

be determined later, The wave equation is therefore

d2
o T(x) + [k? + k20 8(x)] ¥(x) = 0
X"

or

d2
_ k2:| ¥(x) = k20 8(x;)
dx?

The shove eguation converts info the integral equation
¥(x) = ¥,(x) - k?0 [ Gy(x,x") &' - x;) ¥(x') dx’
where G (%, x') is the free space Green's function, i.e.
oiklx - x'l
Go(x’ x’) =
2ik
The delta function evaluates the integral at x' = x;
eiklx - %54l

T(x) = ¥;(x) - klo ———— ¥(x
x) (%) A~ (x;)

At x =%
Tewr ko
T(x) = & - — W(x,)
2i
or
kal™} .
U(x;) = |1 +— ¥
2i
15
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(3-5)

(3-6)

3-7)

(3-8)
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Substitute ¥(x,) back into Equation 3-7)

ik|x - x;|
o e ikx;
T(x) = ‘I’i(x) - -2- ——l::—_ e (3-9)
1 ag
1+ —
2i
For x > X,
ko .
W(x) = Uix) - ———0 elf*
ko
2|1+ —
2i
oY
1 "
W(x) = - elkx (3-10)
a
1-1i—
2

The term in brackets is seen {o be the transmission coefficient Ty, of the delta
function seatterer, i.e.

Ty = G-11)

ko
1-i —

(b) Evaluation of Weighting Factor from Transmission Coefficient

In this section the transmission coefficient for a slab of random media will be
compared with the delta function transmission coefficient and a weighting facior,
o, developed.

The transmission coefficient, T, for a dielectric slab of width L was developed
in Appendix A, Equation (A-12)

- 4k KelKL
(k + K)Z -(k _K)Z eiZKL

(3-12)

where K is the propagation constant in the slab and k is the free space value (see
Fig. 3-1(b) for the slab configuration). Let e, be the complex relative dielectric
constant of the slab, then

K = kve, (3-13)

16




We impose the following conditions on ¢, and L:

(1) e, is > 1, but
(2) L is small, such that (3-14)
(3) kv/e; L € 1,ie KL < 1.

Expanding the denominator terms in T

1 2
& + K)? = k2(1 ++,) = ke (1 +———-)
2 2 \/6—2
1 2
k- K)? = kK2(1 -ve, ) =ke, [l -
( ) Ve, 2 e
From condition (1) above
13\ 2
(1+—-——-) =] +—
V€, €,
and
12’“1 2
sz) - \/E;

From condition (3)

ekl = 1 + iky/e, L
and

el2KL ~ 1 + {2kv/E, L

Therefore, under the above conditions, T will be

4x2/e, (1 +ikve, L)

k* e, ‘:(1 + é)- (1 - \/%)(1 +12k+/e, Lil

T

1t

17




o LB T At e v = R e 1

or

. 4(1 +ik+/e, L)
4+(1-ve;)i2kve, L

(3-15)

With conditions (1) and (3) employed above, T reduces to

4
4-i2ke, L

and finally

1
T=m——m (3-16)
k62 L
i-i
2

Comparing this result with Tg, Eguation (3-11)

1 1

d (3-17)
ko k €, L
1-1— 1-1
2 2
we see that
o= e, L (3-18)

Thus, with the weighting factor ¢, L, a delta function scatterer can represent a
physical dieleciric scatterer of dielectric constant ¢, and width L, under the
limiting condition

ke, L < 1 (3-19)
With k replaced by 2x/A, this condition requires that

27 L 1
<€

<1 (3-20)
€y

which is seen {o be the Rayleigh scattering criteria, i.e, the size of the scatierer
must be much smaller than the incident wavelength.

18



{c} Mean Field ~ Continuous Formulation

In this section we consider the propagation of a plane wave incident on a slab of
random medium, where the medium is described by a continuous function of
position and time. This description, where the medium can he considered a
"random continuum, " differs from the discrete scatterer description, which will
be developed in the next section.

Figure 3-2 shows the configuration under consideration; a slab of width L, with
complex refractive index n(x), and a plane wave incident from the negative x
direction. The refractive index of the slab can, in general, be a random funcii>n
of position and time, n(x, t), but we assume that the time fluctuations of the me-
dium are slow compared to the time of wave propagation, therefore the refractive
index can be considered a function of position only.

The scalar field ¥(x) satisfies the reduced one-dimensional wave equation

d? :
— ¥(x) + 2 n*x)¥(x) = 0 (3-21)
dX2

We assume n? (g) in the slab is

n:(x) =1 +eux) 0<x<L (3-22)

ni{x) =1 ng(x) ni{x)=1

elkX

—— ¥,
0 L

Figure 3-2, Plane Wave Incident on a One-dimensional Slab
of Random Medium
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.

where u(x} is a random function of x, defined by a mean (u(x)), and correlation
(u(x) u(x}). Let the function u(x) be a Poisson impulse process of the form

N
ux) = JZ:I o 8(x - xj)
Then the mean and correlation are (Papoulis, 1965)
{ux)? = oA
(u(x) ux’) = a®2? + o?A 8(x - x)

where A = N/L, the uniform number density.

The wave equation is then

dv?

d2
— + K| T(x) = k% e u) ¥(x)

(3-222)

(3-23)

(3-24)

(3-25)

The above wave equation and its associated boundary conditions convert into the

integral equation

L kix -x
T(x) = ¥ (x) - k? € f — u(x") T(x") dx’
. 2k

(3-26)

where ¥, (x) is the incident wave, a solution to the homogeneous wave equation

d2
—_— 2 =
[dxz + k| ¥(x) = 0

To obtain the Born expansion solution, let ¥(x) be of the form

Tx) = 9, ¥, (x)

n=90

The first term of the expansion gives

2ik

) L oiklx - x| o
T(x) = elfX - ke f ———— uxy KX gx' + O(e?)
0

20
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Substitute ¥ (x) from Equation 3-29) into the integral of Eguation (3-26)

. L iklx - x| !
W(x) = elf* - K2 ¢ ——— u(x")} e
2ik

4]

L eilc]x'-x"l o
-k*e f —— uxM kX dx”| dx’ + O(e?)
o 2ik

or

- L oiklx - x| o,
T(x) = gikx _ K2 Ef —_— ux") eikx dx’
o 2ik

(3-30)

L giklx - | L oiklx' - %" .
+ k* 2 f —— u(x") f —— u(x") elkx dx" dx' + O(e3)
o 2ik . 2ik

Combining the exponent terms

) L Gik(lx -zl +x")
Tx) = elX —x2 ¢ f u(x") dx’
o 2ik
(3-31)
L L Gik(x -x'I+ & - x"[+x")
+ k% €2 f f u(x ) ux"y dx' dx” + O(e?)
o Jo ~4k?

Equation (3-31) gives ¥{x) to O(e?).

Additional terms of the Born series can be applied to obtain higher order ex-
pansions, i.e Equation (3-31) is substituted back into the integral of Rquation
(38-26), etc., to obtain ¥(x) to O(e3). For this study ¥(x) to O(e?) will be
utilized, Taking the average of Equaiion (3-31), we have

L Gik(ix - x'| +x")

(T(x)) = elk¥ - k2 ¢ f {u(x")) dx'
- . 21k
(3-32)
L L Gik(x -x'T+ &' - x"]+x")
+ k* g2 f f (u(x") u(x’)) dx' dx"
o Yo ~4k?
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Substitute in the mean and correlation of u(x) from Equations (3-23) and (3-24)

2i

k2 62 L % ' [ " "
- ” 0.2 }\2 f f eik(lx -x|+lx -x |+ x ) dx' dx” (3_33)
(4] 0

L L
+ 7\,[ f elk(ix - x" r X" =x"1+x") 5(x" — x") dx’ dX;J
o] 0

The delta function in the third integral evaluates the integral at x' =x", i.e. the
third integral term is

L
(T()) = ok - -}ff o f elk(lx - %'+ %) gy
o

k2 e

L
a2\ f elk(lx = x'I + %) gy’ (3-34)
o

The resulting mean field is therefore

: k L. oyt
(T(x)y = elk® - _e oA f elk(lx = x'i + %) gy
2 o

4

L L
+ A2 f f eik(ix - 1+ -x"+x") dx’ dx']
o “o

The above equation expresses the mean field inside and outside the slab, to
0(52), and was derived using the classical Born expansion fechnigue for an as-
sumed continuous random medium. :

k?' 62 L , ,
- 02[7\ f eik(lx - 21+ %) gy (3-35)
(s ]

(d) Mean Field - Digscrete Formulation

‘We consider here the same one-dimensional siab probieni treated in Seetion {c),
under the assumption that the random medium consists of a uniform distribution
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of N discrete scatterers whose position X; is defined by the Poisson impulse
process

N
o El Bx - %) 0<x<L (3-36)
J=

where ¢ is a complex weighting function defined by the characteristics of the
scatterer,

We proceed to find the solution for the field ¥(x) for any value of x. The field
satisfies the reduced homogeneous wave equation outside the slab

[dz k{l\lf() 0 x <0 (3-37)
— X} = -
dx2 ° x> L

and
W, (x) = elkX (3-38)

In the slah, the wave equation for the field is

d?. N
- T(x) + k2 I} +a ]Z:l S(x - ;5)] T(x) = 0 (3-39)
or
d? N
[E,{E + k2| (%) = %20 j; B(x - %)) ¥(x) (3-40)

The above wave equation and its associated boundary conditions convert to the
integral equation

N L eiklx-x'l
Y(x) = ¥ - k2 —_— 5% - x) W) dx' 3-41
(x) o(X) c'j; fo - (& ~x) ¥x)dx (3-41)

The delta function asvaluates the integral at x' = %,

ke N, .
Uix) = F.(x) +1— ik - xjl gr(x.) (3-42)
Wi 3 ¢
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This equation represents the field at x as the su.n_ricof the incident field in the ab-
sence of the scatterers, and waves of the form e - xil with an external excit-
ing field \I!(xj) eminating from each scatterer.

The external field at the jth scatterer is the sum of the incident wave at X; plus
the sum of the fields produced by the other N-1 scafterers, i.e.

. . kg N . _ .
W) = & 41— 3 Ml (3-43)
2 =1
i#j

iklx. - x
where e ! !

is the field produced at x; from the scaiterer at x; excited by
the incident wave e

ikx

Substituting 1If(xj) from Equation (3-43) into Equation (3-42),

; kO &N ikix - x| ikx, ko &\ ilx. o
T(x) = olkx 4§ z e1k|x x4l E’ﬂ«:xj 4 — Z e1kli x4l T(x)
j=1 2 1=1
I

or

i ko o ik(lx = x;1 + x;) Kot &' ik(lx = x50+ Ix; - x4l + x9)
W(x) = elkX 4+ — Z ¢ A - Z Z i M B LS
j=1 4 j=11=1 (3-44)

where the ' denotes 1 # j.
It is of interest at this point to compare this result with a Born expansion solu-
tion of ¥(x), Equation (3-42), Assume
hd .
V) = P, ot T (3-45)
n=20

The first term of the expansion, from Equation (3-42), gives

. ko & ikix - x ikxe
=

24



Substituting ¥(x) from Equation (3-46) into the summation term in Equation
(8-42)

. ke SN ikix - x| ikx kO o ikixs - xil i
T(x) = ik + i _2_ Z B:lklx xﬂ\}ﬁc}tJ +i ? Z elkh{] X]lelkx{] + 0@%)
=1 1=1 (3-47)

or

. kO Mo ciefly - vl 4 v
T(x) = elk* ¢+ ] — E el - %l + )
2 T
i=1
(3-48)

2 .2 .
k g 1k(lX-le+ |xj"x-1|+x1) + 0(0.3)

S
Ly €

Comparing Equation (3-48) with Equation (3-44), the results are seen to be iden-
tical, except for the prime in the summation of Equation (3-44), i.e. 1#j. Thus
the Born expansion represents the discrete scatterer field if 1 #j, i.e. if the
scatterers are not allowed fo overlap, The significance of this point will be dis-
cussed in more detail later in this section.

Proceeding to the average of Equation (3-44), we have

ko

N
; ) ik(ix - x;| + 1)
(Tx)) = elkX +§ — E ¢ P
2

i=1

kz 2<XN: i, eik(lx—le+[xj—x1|+x1>
i= :1

The evaluation of the mean texrms ahove is accomplished in Appendix B, Section
(2). ¥From Equation (B-9)

N, - Loy T4 %
Z R xj> = f e"1k(lx -x[+x) dx’ (3-50)
0

i=1

(3-49)
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and from Eguation (B-18),

N ON
5 z:’elk<|x—le+|xj-xlu+xl> ]

j=11=1
(3-60)
L L 3 ' r " 1"
Azf f e‘lk(lx~~7‘:l+lx -X I+x)dx’dx"
o Yo
where
N
A=—
L
The resulting mean field is then
; k L ,
{(FT(x)) = elkx 4 iad A eik(lx -x'| 4 x") 4x’
2 0
(3-61)

kz 0'2 L L [} [} " e
- sz f eik(]x--xl%-ix -X |+x)dx'dx"
4 (8] 4]

Equation (3-61) represents the mean field for a set of uniformly distributed non-
overlapping point seatierers whose position {s described by the Poisson impulse
process of Equation (3-36). o

Comparing the discrete formulation result above with the mean derived from the
continuous random medium formulation, Equation (3-385) with € = 1, the results
are seen to be identical except for one term which appears in the continuous
result,

k2 g2

4

—

L
A f elk(lz - x'1+x" dx’
o]

This term is produced for the condition where the N scatierers are allowed to
overlap, i.e. when x’' = x", which is allowed in the continuous formulation. The
term is produced from the delta function term in the correlation for u(z), Equa-
tion (3-24), and results in the third integral of Equation (3~33), which is evaluated
by the delta function at x' = x"', Equation (3-34).
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Note also that the Born expansion for the discrete formulation, Equation (3-48), ’
allows overlapping scatterers and would also produce the term above,

The comparison of the continuous and discrete formulations has brought out a
very important factor relating to the condition of overlapping scatterers, For
application to the physical rain scatter channel, the overlapping scatterer is not
acceptable, and the inclusion of the overlapping scatterer texm in the mean field
expansion would lead to incorrect results,

Therefore, if the continuous formulation is used, the correlation functlon for
u(x) must be modified to

(u(x) u(x’)) = o2 A2 (3-62)

which can be shown, (Papoulis, 1965, p. 285), to represent the Poisson process
with non-overlapping intervals. The continuous formulation mean field would
then be identical to Equation (3-61), the discrete result,

One final point, regarding the discrete formulation utilizing the Born expansion:
since overlapping scatterers are not allowed, the Born result Equation (3-48)
must be modified with a prime in the double summation to produce the desired
field,

In summary, as long as care is taken in the formulation of the solution to insure
non-overlapping scatterers, either discrete or continuous techniques can be used
for the development of the mean field and its associated parameters.

3-2, SERIES EXPANSION SOLUTIONS FOR THE ONE-DIMENSIONAL SLAB

The mean field was developed in Section 3-1(d), Equation (3~61), for a slab of
width L consisting of N uniformly distributed non-overlapping point scatterers
whose position is described by the Poisson impulse process of Equation (3-36).
In this section we proceed to evaluate expansions to O(¢?) for the mean field

(¥ (%)), coherent intensity (¥ (x)) (¥*(x)), and total intensity (¥ (x) ¥*(x)), for
the region z > L,

(a) Mean Field

Consider the integral form of the mean field, Equation (3-61), We desire a
solution for x > L, therefore with x > x;, %3
(\x—le-!-xj)=x-xj+xj=x
(IX"'XjI“’IX]-"'Xll'f‘xl:K‘!'IXj“XII'l'Xl-Xj
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Then

. ke . L

((x)) = elkx 4 j = p eikx f dx’'
2 0
(3-63)
k2 0'2 L L ' " " I
_ A2 oikx f f eik(lx -x"I+x" -x) gx' dx"
4 0 0

Note that

L
f dx' = L
(o]

The double integral is evaluated as I, in Appendix C, Equation {C~5)

- ko . k? g2 L 12 1 k2L L
{(I(x)) = elkX 4§ E A Leikx — " A2 exkxl:__ + _ _

2 4k? 4K? 2ik

or

) ko k2 g2 12 1 glk2L L
() = e*X[1 + i — AL - N[ — = —— - — ] | (3-64)
2 4 2ik

(b) Coherent Intensify

The complex conjugate of the mean, from Equation (3-64) above, is

) ko k2 (0.2 ) 1.2 1 e-ikz L L
(T#(x)) = e"kX|] - § — AL - [ — + —— - + — | (3-65)
2 4 2 4k? 4K? 2ik;

The coherent intensity is found as

Ty (T T2 ko K il ?\Z(Lz 1o L)
I (x)) (TR = P2 =1+i— - — + - — - —
G €00y = 10 2 4 2 ad a2k
ko k2(02)=i= (LZ 1 e-ik2L L )
-i— AL - 2|l —+— - + —
2 2 4k? 4k2 2ik
k2 gg*
+ A2 12 + 0@®)
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or

k? g o*

k
|<II'(X))12 =1 + i; ?\L(O' - 0-*) +

1{2 02 L2 1 e1k21.. L
- 2(— —_ - - ——) (3-66)
4 2 4x? 4k 2ik
k2 (0.2)* LZ 1 e—lkZ L L
- 2(—- F—_ - + —)
4 2 4k 4k? 2ik

(c) Total Intensity

The total intensity, (¥(x) ¥*(x)), is developed from the discrete formulation
for ¥(x), Equation (3-44), Taking the complex conjugate

ko N ~ik(lx - x| + x:1)
>

i'=1
(3-67)
. kz("z)* ZN: z’ ikl = Xy1] + [y - xg7] + %)
=1 I =1
Then
ko oo o= k(X - X1+ x3)
TETHx) = 1+1— ek 5 e 3
2 i=
151
kK202 R R k(I - %l F % - %y F X))
- omikx z Z e (I e L
4 j=11=1
kao¥* . N ~ik(lx - Xst| + %:0)
- i P T (3-68)
st
i'=1

2 2 N . N .
+k oo Z e1k(|x-xji+xj) E e—-1k(|x—xjv|+le)

s i=1

2.2 N N
k (0' )* ei Z Z —lk(b@ ....xjr] + lxjr -XI'I+X]') * 0(03)
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The expectation value of Equation (3-68) is

(TER)TH) = 1+ § — e-lkx Z (b - x; i+x3>

j=1

4 N .
iy ko* oikx Z e—1]'c(|x - x4l +x;)
2

i=1

2 2 N N R
- i <>: DU s R "!)> (3-69)
=1
k?.(O.Z):r ) N N -ik .
_ oikx ik(lx - x;! + %5 - %1 + x4}
, <Z Z

o o* E Z k(i -3yl + xj - 1%~ xjl - )>

j=1j'=1

The mean functions above are evaluated in Appendix B, Equation (B-9) for the
first two terms, Equation (B-18) for the next two terms, and Equation (B-17)
for the last term, Applying these results

ko s L s ' '
FEWG0) = (EWD? = 1+ i heln f Sik(lx - X1+ x) g
O

3 L
- 1% A eikx f e-ik(lx — x| + %) ax’

kZ 0.2 L L P ' t "
TG e‘ikx.[ f k(X =x [+ " =~ x"+ x") gyr gpr
o Yo

2 (3-70)
24, L L
_k (: " 2 eikxf f ertk(x = X1+ ' = x"1+x") go7 gy
u]

2 g og* L oL
Koo {7\2 f f elk(lx ~x"1+ x" = |x - x"| - x") dx’ dx”
4 o Yo
L
+ }\f olk(Ix - %1+ x" =[x -x"] = x") dx’
o .
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where A = N/L. Solving the integrals in Equation (3-70), and recalling that

x>, x>x"

we get
ko ko#
(T3 = 1 +i??\L—i-—2 AL

k2 02 L L e ' e ot ' ' "
" A2 @(R -x"1+x"-%) gx' dx
4 0 Q

22k L L
~ k (O' ) 7\2 f f e_ik(lx'_x"! + X” —X') dx; dX"
4 o Yo

(3-71)

2 i 2 i
k“oo ?\2L2+k oo
4

+ AL

The first double integral is evaluated in Appendix C, Equation (C-5)
LZ 1 eiZkL L
L =(-——+-——————_-> (3-72)

The second integral is the complex conjugate of I, above, evaluated in Appendix

C, Equation (C-7)
12 1 e—i2kL L
L ={—+— - + — (3-73)
2 (2 4k2  4x? 2ik>

Therefore
k 12 g2 Lz 1 eleL L
@2y =1 + i—ALe - 0%) - 7\2(—-1-_- R __)
2 4 2 4k?  4k?  2ik
) (3-74)
k2(g2)* _[L1? 1 g2kl 1\ K2oo* k? o o*
- 2| —+— - + — | A2 12 + AL
4 2 4k? Ak? 2ik 4
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or
k k% o o*
TGPy = 1 + i;: AL(oc - o%) + AL
k? o2 +(0?)* o2 + (02)*
+ — A2 [(a ¢t » ——— |12 - ——— (3-75)
. 4 2 4K?
P 2 2 2 2
) £ — *
o ke, O e, O @) L}
4k2 4%2 2ik
With
o= 0.+ iori
g - g = i2Ui
g2 + (02)* = 2(0? - crf)
o gt = o'f + 0i2
o - (@*)* = ido, o

Thus Equation (3~74) is further reduced to

K k2 (62 -62) 20.0.
¥y =1 - k?\LO'i-l-: NCA )L +_Z?\2|:20§L2 e S e 2 S

2k? k
(3~76)
(62 -¢?) o, 0;
-+ ——2?—-* cos2k L + e sin2k L

The above result is the total intensity in the region x > L for the slab of width
L. For L =0, (|¥(x)]?) =1, as expected. We further note that for o = i o
(pure complex)

k? k2 a?
() =1 -kALo; +— Ao L + — 7\2[20? L2 + — (1 - cos2k L)
4 4 2k2

(3-77)
And for ¢ = o, (real)

k2 k? o?
(T = 1 +—4~;\a§L+—4—7@ -2—}:3 (1 - cos2kL) (3-78)
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If the total intensity expansion, Equation (3-74), is compared with the coherent
intensity expansion, Equation (3-66), zll terms are the same except for

A
b

I
1
3

k2 go*

4

+ AL

which is present in the total intensity expression., This term represents the
; first term in the incoherent intensity expansion, i.e.
: k? o o*

Lo (T2 - (EE)HP = . AL + 0@®) (3-79)

ho and is seen to be of O(g2L).

‘ 3-3. APPLICATION OF THE FOLDY APPROXIMATION TO THE ONE-
e DIMENSIONAT, SLAB

The problem of multiple scattering of particles by a random distribution, treated
2 by Foldy ( 1945), resulted in the development of a procedure for determining the
mean field integral equation by applying an appropriate approximation for the ex-
ternal field acting on each scatterer, This important technique, later utilized

f by Lax (1951), Twersky (1964, 1967), Ishimaru & Lin (1972), and others, is

P reviewed in Section 2-2,

The Foldy approximation is applied here to the one-dimensional slab problem,
the mean field (¥(x)) developed, and the resulting expansions compared to the
expansions previously obtained,

Consider the one-dimensional wave equation for the slab of width L, consisting
of a uniform distribution of N scatterers, given by Equation (3-40)

d2 N
l:&—f + kz} Tr(x) = —k2 a gl 5(}{ - Xj)‘I"(X) (3-80)

AL P 1A

The above wave equation plus the associated boundary conditions produce the
integral equation

_ N L oiklx - x|
w(x) = efkx _ g2 ¢ Z f — 5’ - X;) I(x") dx' (3-81)
j i 1 o 21k

33




Take the average of Equation (3-81)

Q

) N L oiklx -x'|
(E(x)) = ekx - k2 Z f o m—— (P(x"} 5(x —xj-))dx' (3-82)
1 Yo 2ik
The mean of {(¥(x') 6(x' - xj)) is
P (X - xj)) = I\If(x') 6(x' ~ xj) f(xl, Xos- xN)dx1 dx, ...dxy (3-83)

where
f(x)5 %ps - - Xy) = f(xp)
is the joint probability density function of the e

With the xj statistically independent

]

f(xl,xg, c s X)) f(xl) f(xz) e E(xy)

N (3-84)
= [[ =0
k=1
Equation (3-83) is therefore
N
r(x"y 6(x' ~ xj)) = fll"(x') o(x’ - xj) H f(x) ) dxy (3-85)
k=1
The product term can be expressed as
N N
[T fogdx = fxpax, [ fog dxg (3-86)
k=1 k=1
k+#j

Therefore, from Equation (3-85)

N
(TN - xj)) = f\If(x') n f(xy) dxy S(x' - X;) f(xj)dxj (3-87)
k=1

k+#j
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Note that

(T(x) 1" = f j f H f(xy) dxy

k qEJ (3-88)

n

the field at x’ averaged over all
possible configurations of the
other N-1 scatterers.

Then, from Equation (3-82)

iklx - x'
{(¥(x)) = eikx _ 24 f : [j‘(‘lf(x Y Ix"y8 - x])f(x +) dx} dx’
i=1

(3-89)

The integral over x; is evaluated at the delta function, i.e.
f(‘I'(X') |x'y8(x" - x;) £x;) dxy = (B(x} [ XY £(x) (3-90)

Thus, from Equation (3-89)

) N L Gkix -x]
(TE) = X - k20 Z f T B 11" f(x) dx’ (3-91)
ji=i1 Yo

There are no j dependent terms in the integral, therefore the summation eval-
uates the integral N times,

L Aiklx -x]
(T(x) = % ~ k2o N f —— (¥(x") | x') f{x) dx’ (3-92)
, 2k

The rigorous solution of this equation requires solving the set of simultaneous
linear algebraic equations for each scatterer and then performing the integrations
to obtain (¥(x"} | x'), (see Eq. 3-88). This procedure is not feasible,

The approximation introduced by Foldy consists of replacing (¥(x') | '), the

field at the jth scatterer averaged over all possible configurations of the other
N-1 scatterers, with (¥(x")), the average field at the jth scatterer position,

35



TR Ghels,

when that scatterer is not present. As Foldy nofes, these averages differ only
by a term of the order 1/N, thus if N is large, the approximation is reasonable.

Therefore, with
T xY = (T (3-93)

the mean field, from Equation (3-92), will be

_ L oiklx - x|
(I(x)) = XX - K2 g N f —_— (T(x")) f(x") dx’ (3-94)
o 2ik
In addition, if the X are uniformly distributed,
1
fx') = — (3-93)
L
Therefore
. L Giklx - x]
(Fe(x) = elkX _ 1252 f — (T(x")) dx’ (3-96)
o 2ik

where A = N/L.,

The above integral equation represents the mean field for the slab under the
Foldy approximation to the external field acting on each scatterer,

() Series Expansion For the Mean Field and Coherent Infensity

The Foldy Approximation to the mean field (¥ (x)), Equation (3-96), with the
addition of the boundary conditions of the slab, represents the solution to a
wave equation of the form

d2
I:‘::I—x—z- - kz] (‘I’F(X)> = "'kz oA <‘PF(X)>

or

d2
[~— + k2(1 + ah)] (T(x) =0 (3-97)
dx?
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A solution to Equation (3-97) is
(T (x)) = ekl + 0 A% x

or

(T (x)) = efk* (3-98)
where

K=k(1+oA\* (3-99)
Thus, under the Foldy approximation for the mean field, the siab of discrete
scatterers can be represented as a continuous medium with an 'effective' prop-
agation constant K, given above, The mean field for x > L is then available
from the transmission coefficient T, see Figure 3-3,

(Wp(x)y = Telk®*-L) x>L (3-100)

The mean field and coherent intensity (¥ (x)) (¥} (x)) can now be developed
from the expansion solution for T to O(a?).

The transmission coefficient for a slab of width L. and propagation constant K
was derived in Appendix A, Equation (A-12),

4k KelKL
re (k+K)? - (k - K)? el2KL (3-101)
« K ﬁ k
(W (x)> = eikx 2 (W (x)) = T aikx -1}

y —_—

g

y

- X

O
r~

K = k{1 +0oA}%

Figure 3-3. Foldy Approximation Representation for the Mean Field
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Expanding K to O(0?), (recall that ¢ may be complex),
; o (oN)?

K=k(I1+o\)% =k|l + Pl + 0(0%) (3-102)

Then
LoA o (0A)?
oKL = kL e‘k 2 L e"‘k B

, ) oA (oN)? {(aN)?
elKLzelkLI'i“ﬂ{‘—z—L—kz 2 L?]X[l—ik 3 +--0(U4)

1]
aQ,
-~
[and
1
+
=
ICI
-
I
[ ¢ ]
)
S
p—
N
3% ]
t
~
2
-
[8
Lt

and

_ T oA)? (o0)?
f2KL = oi2kL} | 4 koA L - k2 ¢ 2) L{| [1 - ik —:3—- L---O(o“):l

_ (3-104)
. (oA)? (oN)?
= el2kL[] 4 koA L - K2 12 - ik L
| 2 4
Applying these expansions, we find
(295
(1<+K)2=k2(4+207\— .
2
k - K)Z eiZKL = k2|i(0?\) :I eiZkL
4
. GN)?  (oN)?
(k + K)2 - (k - K)Z e12KL = k2|:4_ + 26\ - __).. - eleL
4 4
. . oA oA (GN)? (oh)? (oA)?
4k K &KL =4kzelkLI} +ik—L+—2—+ik : L - k? e L2 - .
2
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The transmission coefficient is then

8 : 2 2 2

b . AL A A A A

4K2 elkL{} + (ik— L+ -—-)0 + (ik—-— L -k — 12 - v—)az
2 2 3 3 3

} T = (3-105)
; A )

} A—kz 1 + —)O' + (0 — - — eleL) 02

b 2 16 16

: This is of the form

f

P XL [1 + Ao + Bo?]

[1 + ao + bo?]
P where the A, B, 2, and b are the coefficients in Equation (3-105).

Expanding the denominator

1 - ag - bo? + a2 + O(0?)

[1 + ao + bo?]"1

1 - ag + (a% - b)o?
Therefore
T = ¢kL[1 + Ag + Bo?] {1 - ao + (a2 - b)o?]

= KLl + (A - 2)o + (a - b - aA + B)o?]

. .7\0 o) o)?
=elk{1+ik——1,-( ) —ik(h) L
2 16 8

2 2
- K2 o) 12 + S‘% eizkl.]
8 i

. Rearranging ferms

The resulting mean field is therefore

(W (x)) = T eik(x - L)
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or

" ko k2g2 f12 1 ef2kL
(Wp(x)) = |1 + 1 — AL - R — +— - — - —}| 3-107)
2 4 2ik

A comparison of the above result with the discrete solution expansion for the
mean field, Fquation (3-64), shows that the Foldy approximation represents the
mean field exactly to O(¢?), i.e.

(T (X)) = (T(x)) to O(c?) (3-108)

The coherent intensity (T (x)) (Ff(x)) is found from Equation (3-107) and its
complex conjugate, and the result will be identical to Equation (3-66), the dis-
crete solution expansion,

The Foldy approximation therefore represents the coherent intensity exactly to
O(a?), i.e.

KT GO = KEEDIZ to Oo?) (3-109)

The fotal intensity expansion (¥ (x) ¥ (x)), however, will not agree with the
discrete solufion expansion for (¥(x) ¥#(x)) fo 0(02). The Foldy approximation
does nof account for the incoherent intensity term

k? ¢ g%

4

+

which is present in the discrete solution expansion, Equation (3-76).

The implications of the Foldy approximation results developed here are dis-
cussed in the following section.

3-4, SUMMARY OF ONE-DIMENSIONAL MEDIA RESULTS

The one-dimensional study of a slab of discrete scatterers presented in this
chapter has prcduced a number of useful techniques and results which are ap-
plicable to the volume scatter rain channel. They are summarized briefly below:

(a) the Poisson distributed point scatterer, with an appropriate 'weighting
function', can represent a distribution of discrete finite scatterers ~
the weighting function provides the physical characteristics of the
scatterer for practical interpretation of results obtained,
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{(b) either discrete or continuous technigues may be employed for the de-
velopment of the mean field and intensity expansions, as long as care
is taken in the formulation to insure non-overlapping scatterers.

(e) series expansion of the mean field to O(0?) produces secular terms in
L for both O(g) and O(¢?) - the slab width limitation for series expan~
sion requires that

2

kloin

L <

(d) the Foldy approximation expansion for the mean field agrees exactly,
to O(o?), with the discrete Born series expansion. The Foldy approxi-
mation can be used to represent the coherent intensity, however it is
not applicable to the total intensity, where an incoherent intensity term
of O(0?) was found which is not accounted for in the Foldy expansion.
The Foldy approximation has the same slab width limitation as given
above,

(e} an incoherent intensity term of O(c?) was found, which is secular in L,
and which may be significant in the volume scatter case for certain
wavelength/scatterer size ranges.

The applicability of the one-dimensional results to the volume rain scatter case

will be observed as the volume configuration solution is developed in the next
chapter, '
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CHAPTER 4

PROPAGATION THROUGH A VOLUME DISTRIBUTION
OF DISCRETE SCATTERERS

A study of the multiple scattering of waves propagating through a volume of dis-
crete scatterers is developed in this chapter. The scope of the study will he
directed at determining a suitable representation applicable to the rain scatier
channel and evaluating the statistical parameters of the field by discrete random
media techniques, some of which were employed in the previous chapter for the
one-dimensional case,

The scattering volume is described by a wniform distribution of point scatterers
whose position is described by a Poisson impulse process, The scattering char-
acteristies of a single scatterer are represented, as in the one-dimensional case,
by an appropriate 'weighting factor', Integral equations are developed for the
mean field and intensity; the results are solved by Fourier transform techniques;
and expansions for the far field are derived. The Foldy approximation to the
mean field is applied and limitations on its range of validity determined,

4-1, POINT SOURCE INCIDENT ON A VOLUME OF DISCRETE SCATTERERS

We begin the development of the volume scattering study by defining the model
used to describe the scattering medium. An isotropic spherical wave is assumed
incident on a volume V of point scatterers whose position is determined by a
Poisson impulse process, The isotropic incident wave was chosen because of its
generality and ease of extension fo ofher types of incident radiation such as the
plane wave and beam wave.

Consider the incident wave source point at I,, int an orthogonal coordinate system
whose origin is located within the scatterine volume V, as described in Figure
4-1. The medium consists of N isotropic voiat scatterers randomly distributed
in the volume V, with r, the position veclor of each scatterer (a random vari-
able), defined by the Poisson impulse process

N
u(r) = :): a8(r -r,) (4-1)

n=1

where ¢ is the complex weighting factor determined from the physical character-
istics of a single scaiterer,

PRECEDING PAGE ELANK Not FILMED,
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Figure 4-1. Coordinate Notation for Volume Distribution of
Discrete Scatterers

The resultant field at the receiver point, ¥(r), is desired. The field ¥{(r) obeys
the reduced wave equation

(V2 + kK2 n2m)] ¥@) =0 (4-2)

where n(r) is the refractive index and k is the free space propagation constant,
k = 2n/A. An e”™W!{ime dependence is assumed.

For the configuration defined above, the wave equation will be
N
VPrkPl+o D 8k - rnil (r,1,) = 0 (4-3)
n=1
The above wave equation and its associated boundary conditions convert to the
integral equation
N
¥(r,1,) = G 0r1,) - ko Z f G(r, ') 8(" ~ 1} Y, 1) dr’ (4-4)
n=1vv
where G(r, t') is the free space Green's function
pikir - t'i
G(r,¢) = ——— (4-5)

Azly - 1’|

44

A e s LA as L e s e 3L e



e~ W SR B

A e T R AT T

R R L LA LA T AT S A T

e T

e s

and G, (r,r,) is the incident spherical wave at r, i.e.

eiklr - 1ol

G,,ry) =—— (4-6)
darir - 1|

The delta function evaluates the integral at ' = £,
N
¥, 1) = Gy, 7g) - KXo D Glrr,) ¥lr, 1) 4-7)
n=1
This equation represents the field at r as the sum of the incident wave in the
absence of scatterers, and spherical waves, G(r, 1), with an external field

¥(r,, r,) eminating from each of the N scatterers,

The external field at the nth seatterer is the sum of the incident wave at r, plus
the sum of the fields produced by all the other N-1 scatterers, i.e.

N
U(r,,5,) = Gy, 1) - k%o Z Glxy, 1g) Glry 1) (4-8)
P=1L
p#n

where G(r,, r,) is the spherical wave produced at r, from the scatterer at r,
excited by the incident wave G(rp s Tg)e

Substituting ¥(r , 1,) from Equation (4-8) into Equation (4-7)

N £ N
Ui, 1,) = Gyltrg) - K20 3. Glr,5) |Gy, 1p) - K20 D Glrp1o) Glig. 1)
n=1 pF1
p¥#n

or

N
W(r,1,) = Gyl rg) — k2o D Glrx,) Gylry, 1)

n=i
(4-9)
N N
+kta? 3 57 G, x,) Gl r) Glryary)
n=1p=1

where the prime in the p summation indicates "except for p =n," i,e. p#n.
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This result represents the fundamental multiple scattering equation for the field
at r produced by a configuration of N Poisson distributed scatterers at r, in the
volume V exeited by a point source at r,,

It can be shown that the resulting field, Equation (4~9), is also obtained by a
Born expansion solution to ¥(r, r,) where

oa

) = 9, o ¥(r, 7,) (4-10)

i=o0
and the expansion is carried out to O(¢?). This result was demonstrated for the
one~dimensional case in Section 3-3(d); the procedure is similar for the three-
dimensional case and need not be repeated here.
Proceeding to the average of Equation (4-9)

N
{(¥(r, ro)) = Gy, . ) - k2o Z Gl(r, rn) Go(rn, r(>

n=1
(4-11)

N N
Ttk (D Z’ G(r, 1) G(xp, 1) G(rn,rp>

n=1p=1

The averaged summaticn terms above were developed in Appendix B, From
Equation (B~25)

N
Z G(r, 1) G, Gy ro> =p f G(r, 1) G, (r,, ry) dr, 4-12)
v

n=1i

and from Equation (B-33)

N N :
< > Z' G, 1) Glrp, 1) G(rn,rp> = p? f f Gr, 1) Glrp, 1) Gty 1) dry, dr
n=1p=1 v

(4-13)

where

p=— (4-14)
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The mean field from Eguation (4-11) is therefore

(I(r,5,)) = Gylr, 1) - k%gp f Glr, ) G(«, 1) dr'
v
(4-15)

+ k% g2 p? f f G(r, v') G@', ') G(x", r,) dr’ dr”
v

(a) Mean Field Expansion by Application of Transverse Fourier Transforms

The solution of the mean field integrals in Equation (4~15) are now considered
for the case of a slab volume of widfh L in the direction of propagation z, and
extending to #oo in the x and y dimensions., The volume integrals can then be
transformed into one-dimensional integrals in z by application of the two-
dimensional Fourier transform in the transverse x ~ y plane,

With
¥ = xa, + vay, + za,
and
k = k,a, + kyay + k,a,
let
r, = Xa, + yay (4-16a)
and
ki = kya, + kyay (4-16b)
The transverse Fourier transform pair for a function f(r) is then
Tz k) = f f (et Ty, (4-17a)

i i »
fr) = — f f T kyet Fdk, (4-17b)

(2m)?
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where;
dk; = dkxdk},,drt = dxdy
and
ko= kx by = koo
For the Green's fimction

—elklr - r'l
G, 1) = —
Al - ¢'|

the transform pair is of the form

8 - 2.k = f f Gr - rye e ) g (4-182)

i N e (ret
G - 1) = f [ G - 2, ke T ax (4-18b)

(2m)y?

The Green's function G(r, ') is a solution to the wave equation
v? + k%) Glr,r') = 8(r - 1) (4-19)

If Equation (4-19) is multiplied by elkt " and integrated over dr; to o0, the in-
verse transform of G(r, r') is found to be (Tyras, 1969, p, 113}
E:ikz jz -2'|
Gz - z',k) = ——— (4-20)
5 2ik,

where
k, =K - Ik |2 (4-21)
Utilizing the formulations of Equations (4-18) and (4-20), the Green's functions

in(¥(r, r,) , Equation (4-15), can be represented by their inverse Fourier
transforms, i.e.
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1kzlz Zol
(T, 1)) = —— ff gt " (7o) g
1 Jalt - ik » (r - 1)
o] E ff S
ﬂ‘zlz o (’ )
gt Tl ai |
2r)? .[ f ]
ik, |z - 2'| ,
[ [
(2w)? 2ik,
lk |Z -Z I k: (.- u)
1 °(x -r ;
(21r)2 f f 21k’ t 4
lk IZ _Z | op tt iy
@ )2 f f it (T dk%] dr' dr”
T

The integral terra over dr’ in Equation (4-22) can be rearranged as

h _—1{20‘0(27;)*@L .[{ ff — At ff lk:k,' k"]

(4-22)

(4-23)
ke G-r) 4K G- r°)]}drr
With
dr' = dr} dz’
the integral in Equation (4-23) over dr' is
f Gl = vk e wg] in' e (e -k g
(4-24)

ei[kt er-kier,] f l:ffe-ir' o (kg - ky) dr{! dz'

49



N i g AP 8 -8y Ry s Sttt D T AT AR 1o st ae e L W5 s e

W

From the delta function definition

U™ ik (x-x"
5(x - x') = — x
(= (2m) j.-m ’ T

we find that

1 —ir o (k, - k%)
6k, - k) = —— t= %t g
Gy = ko) (27)? ffe g

Therefore the bracketed integral term in Equation (4-24) is seen to be

f f R g = o0k, - K

Therefore I1 is

ik, |z -zl ikll|z' -z_|
e z e z 0

I, = k*op ; f - —
(2n) 2k, 2ik,
ke r=kiorol s -k i, dk! a2

The delta function evaluates one of the k, integrals at k, = k;, i.e.

1 f kzlz - z'| eikzlz' - 2gl

I, =%k20p
! (2m)? 21k, 2k,
ei[kt cr-kier,] dkt dz'
or
; ik, (lz - z'1+ 12" - z4])
I, =%k%op f :
: 27 -4k2

elkt b (f“ro) dkt dZ'

o0

(4-25)

(4-26)

(4-27)

(4-28)

(4-29)
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The integral term over dr’ dr" in Equation (4-22) can be rearranged as

i ff Jkzlz - z'| ff e’ik'zlz' -z"|
——d —— dk
(2m)8 2ik, i 2ik;, .
eiklrlzrr - Z I
f f B glie 1ok vol (4-30)

f [jf e_ir' . (kt_'k"t) dr.;:]dZ' f [:ff (k' k{') dl‘;:] dz"

The bracketed terms above over dr and dr” are seen, from Equation (4-26), to
be delta functions in (k; - ki) and (kt kt) Therefore

Ik Iz - 2’| ik'zlz' -2 ik)l2" -z,
I, = k*o?p f [ f €

Z

I, = k* g2 p?

RILYS r-ki o]

3 - 1) 804 - ) di di’ di! de’ dz”
The delta functions evaluate two of the dk; integral pairs, at k; = I, and at
k! =ki. Firstat k'=k

R |z - 2'| ik;lz' A I A A |

2
f f f 2ik, 2k, (4-32)

8k, - k}) dk, dk; dz’ dz"

Ik4

(27r)2

ei[kt vr-kier,l

then at ki = k,

i eikz(lz-Z’I+ lz’ = 2"+ 12" = z,1)
(2m)? f f -8ik;

ikt L (r"‘ro) dkt dz; dZ"

= k4 0.2 pZ

(4-33)
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The results of Equations (4-29) and (4~33) can now be applied to Equation (4-22)
to get the mean field

1k lz -24)
(W, 1)) = et (-0 e
1k z-2 1+ 02" -z, . . e o
f f B X T I 0
(27r)2 -4k2
ik, (lz-2'|+ Iz -2"|+ 2" -2, 1)
1 el z e i . -
+k* o2 p? ff et (1 1-")clkt dz' dz"
(2my? -8ik3
where

k, = k% - k2 (4-35)

C-* .lder the second term integral over dk, dz' in Equation (4-34)

xk (lz - 2'| + iz’ - 24 )

+oo
f f d, et " (= Fo) f ® dz'  (4-36)

We select the origin, in rectangular coordinates, at the leading edge of the slab
of width L, as in Figure 4-2. Then z < z' < z, and the integral over z' above
will be

L eikz(z -Z5) L eikz{z -z4)
f —_—dz = e— (4-37)
o

Therefore

eikz(z -24)

(4-38)
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Figure 4-2, Volume Slab in Rectangular Coordinates

Consider the third term integral over dk, dz' dz" in Equation (4-34)

j-eikz(lz -2+ 2" -2 12" -2 )

o Cot0) g a2 @z (4-39)
-8ik?

Iy

With z, < z', 2" < g,
(lz-2'|+ 112 -2'"1 4+ 2" - Z,) = (z - z5) + (I2' = z"| - 2" + 2")

and

o0 1k (Z -23) "
=f fdkteikt-(r—r f f dz' dz" 1kz\|z-zi z'+2")
-0 -Slkz

(4-40)

The double integral over dz’' dz" in Equation (4-40) is evaluated in Appendix C,
Equation (C-2). The resulis are given by Equation (C-5), Then

iK2(2=20) [ 12 L 1 a2t iky » (r-1,)
IB = s 2 + 013 4 * 4 e ) dkt
2ik -8k2  i8k>  16k; 16k; 4-41)

2
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Finally, the resulting integrals I, and I, from Equations (4-38) and (4-41) are
substituted back into Equation (4-34) to give

1 eikz(z -Z,)
(T(r, 1)) = —— ff {*————- I
(2m)? 2ik,
(4-42)

ik, 2L '
12 L 1 ez ; .
+k402p2( St - 4):\}5‘% (r-1o) 4 dk,
-8k; i8k;  16k; 16k;

From Equation (4-18b) the term in brackets { } above is seen to be the in-
verse Fourier transform of (¥(r, 1)}, i.e. (T(z - -z, k). Let

op
e=——; € = (4-43)
2
Then

~ Bikz(z - ZO) k2 k4
(¥(z -z, k)= ————— [ 1 -— Le - — L2 ¢
2ik, ik, 2k2

4 4 4 .
+£- Le? ——I-ii g2 +-1— —k— ¢ o2k
2ik3 4\k, 4\k,
Fguations (4~42) and (4-44) represent the expansion solutions for the Fourier
transform pair of the mean field of a semi~infinite slab of width L, to O(e?). We

now proceed to develop an asymptotic expression for (¥(r, r,)) for large r, i.e.
with the receiver in the far field of the incident and scaitered waves.

(4-44)

{b) Faxr Field Solution for the Mean Field

Consider the integral expression for (¥(r, r,)) developed to 0(0?) in Equation
(4-42), We re-express the equation as

Bk, ) okt " R0 g (4-45)

where
gikz(2 - 20) L Kkto? 2 L 1 e
Bk, = ———— |1 -k¥ep — + p2{-—+ - +
2ik 2ik, k2 8 i8k, l6kZ  16k2
(4-46)
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and

ky = V&? - k>, dk, = dk, dk

The field quantities are now represented by angular displacement parameters,

as defined by Figure 4-3. From Figure 4-3a
{x ~ x,) = Rcosf
(v - vo) = Rsin 8
and from Figure 4-3b
k, =k, cos¢
ky = k, sin ¢
dk, dk, = Kk dk; d¢

Feo +eo o0 +1r
f dx f dy = f k; dk, f do
—c0 -0 0 =

koo (e - 1) = K (x - %) + Ky - ¥,)

k; cos¢ Rcosf + Kk, sin¢ Rsin 6

Note also that

Therefore

Il

ll

Rk,[cos¢ cos& + singsinf]

Rk, cos(p - 8)

The integral over dk; in Equation (4-45), called I, is then

-] 1 i
I=f ktdktf dq&B(kt)elR ki cos (9 ~8)
0 -7
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Figure 4-3, Angular Displacement Representation for
Field Quantities
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With k, =\/k? - ki, B(k,) is re-expressed as

AVE? -k (2-2,) K2 oplL
B(k,) = 1+i —0———
2ivk? - k? 24/k2 - 12

k% o2 p? 12 L -

2t Vk2 - k2 (4-52)
-\ 8 s/iE-i2 16(*-K?)

+

Equation (4-51) is rearranged as

o0 +7 .
I= f k, Blk,) l: f ol R Kycos(9-6) d% dk, (4-53)
u] -1

The term in brackets is of the form of the zero-th order Bessel function
(Abramowitz, 1964),

1 " .
I,(2) = _.f el z cosf dg
T/o

or

Y S
Iz = — f elzcosfyp (4-54)
rJ

Let

cos(p - 6) = cosB, B =¢ -0,ds = dp (4-55) 2
The integral limits are

p=4r =>f=7-0

p=-r=>f=-1-0

Since the integrand is an even, periodic function
T T-0 +m
f d¢ — f dg — f dp
-1 -7 -0 -7

o7
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Therefore the term in brackets of I, Equation (4~53), is

I-fﬁ eiR ktcos(d}—ﬂ)dqb =f+1r eiR ktcosﬁdﬁ
| Ja - (4-56)

= (21) I,k R)

and

.= 2 f k; B(k,) J,(k; R) dk, (4-57)
0

Substituting I above back into Equation (4-45)

1 =]
Tl xg)) = — f K, B(k,) Jo(k; R) dk; (4-58)
4 [+]

This integral can be converted to one extending from - to +eo by expressing the
Bessel function in terms of Hankel functions (Tyras, 1969)

1
= 1 2
@ == [H (@) + HP @) (4-59)
H{)(z e ™) = "™ H{D(2) (4-60)
Therefore «.
r
3 R -_l H (2)
okt R) = — [HGD Gk R) + HEP (i R)] (4-61)
and
HP (g, Rei™) = -H{D (K, R) (4-62)

Since k R is real, the I-Igz)(ktR e-iT) term is equivalent to the Hg‘ )(ktR) term
along the ne‘gative real axis, 0 t0 —=. Therefore, from Equation (4-58)

i [t
(plrr)) =~ f ky B(c,) HS' (k; R) dk, (4-63)
T -0

o2
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The integral of Equation (4-63) is evaluated asympiotically in Appendix D for
large r by; (2) expressing the Hankel function in ifs asymptotic approximation,
(b} employing appropriate coordinate transformations, (¢) evaluation of saddle
points, and (d) determination of a steepest descent (constant phase) path of
integration,

Application of the results of Appendix D, Equation (D-36), to Equation (4-63)
gives the far field expansion for the mean field,

(F(r)) = —
dizr

eikr [‘1 kopL k%og?p?l2 ko2 p? L
+ i - i
2 cos & 8 cos? o 8 cos® o
(4-64)

2 .2 2 .2 ‘ i
- o’ + ¢ ei2kL cos a:| i
16cos* @ 16 cos? o

where « is the angle between the +z axis and the receiver point r, as seen in
Figure 4-3.

The far field expansion contains one first order term, and secular terms in L
and L% A comparison of the far field expansion above with the one-dimensional
result, Equation (3-64), shows that the terms are similar, and with a =0, the
forward scatter direction, the terms are identical in form. Note also that for
L=190,

elkr

(E@) = — (4-65)
dimr

which is the far field incident wave approximation,

-

{c) Total Intensify Expansion

The total intensity
(i¥(r, ) 2y = (¥r, ry) ¥, 1)) (4-66)

is now evaluated, to Q(0?), for the integral field representation developed in
Section 4~1, From Equation (4-9)

N
T, t,) = G, 1,) - kK* 0 Z Gr, 1) Gy 5y, 1)

n=1

N N
P
+ k4 g2 Z Z G, ) G(rp, o) G(rn, rp)
n=1p=1
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the complex conjugate is found

.

N
Pr#(r, ro) = G, 1) - k2 g Z G*(r, r,) Gg(rn,ro)
n=1
(4-67)
NN,
TN D D GEr 1) Gy, 1) GH(ry, 1)
n=1p=]

The product is

N
Wi, 1,) Wi, 1)) = G, GE -~ K20 GE )~ Glr, 1) Gylrg, 1)
n=it

N N
4
+k* 02 Gt D , z " Gr, r,) Glry, x,) G(ry» 1,)
n=1p=t

N
- k* 6% G, Z G*(r, 1) G¥(r,, 1) (4-68)

n=1

N N
’
+KHOD*G, D D G 1y) Gy, 1) ¥y, 1)
n=1p=1

N N
+ kKt oo* Z Glr, 1)) Gy (ry, 1) Z G*(r, 1) G35 1)
n=1 n =1

Taking the expectation value of Equation (4-68)
1

@m)2ir -y

N
- k% 6 G < 3 Gl ry) Golry, r°)> (4-69)
n=1

(T, 1) e, 1)) = (G, 1)) =

N N
+ k* 02 G¥ <Z Z'G(r,rnyc(r ,ro)G(rn,rpk
/

n=1p=t
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N
- k2 0*G, (D G, rn)Gg(rn,ro>

n=i
N N »
N (4-69)
+ k4(02)* Go nz=:1 pgl G*(r, rn) G"‘(h‘p , ro) G*(rn, rp> (Cont.)
N N
+ k% o g* < > Gx) Gyl ry) Y, G ry) Gi ,ro>
n=1i p=1

The expectation values of the summation terms were evaluated in Appendix B,
The first and third (single) summations are found from Equation (B-25), the
second and fourth (double) summations from Equation (B-33), and the last (un-
primed) summation from Equation (B-31). The resulting total intensity is then

1

i, 1 )2y = ———
e = e

-kto G p f G(r, r') G, (', ry) dr’
v
- k2 o* G, pf G¥(r,r") G, 1) dr’
v
+ k* 02 G p? f f G(r, 1) GG, 1,) G(', ') dr” dr”
v
(4-70)
+ it (o?)* G, p? f f G#(r, ") G*(r", 1,) G*(', r'") dr’ dr”
v

+ k% g o* Ez f f G(r, ) G, (", r,) GHr, t') G, 1) dr’ dr”’
v

+p f Glr, ') G, (', 1) G¥(r, 1) GE(', 1) erl
v
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The solution of Equation (4-70) is accomplished by application of the transverse
Fourier transform to each term, as was done for (¥(r, ry)) in Section 4-1(a).
With each Green's function replaced by its transform from Equation (4-18h)

i ~ . N .
G, 1) = f f S -2, k)™ ) e

(2n)?

and evaluated, a solution of the form of Equation (4-42) is obtained. A compari~
son of Equation (4-70) with Equation (4-15) shows that the first two single integral
terms for the infensity are identical in form fo the single integral term for the
mean, and the first two double integral terms are likewise the same as the double
integral mean term. Thus the results of the mean field integral evaluations can
be directly applied to solve the first five terms of Equation (4-70). Since the far
field solution is desirved for this study, the explicit development of the intensity
expansion for the far field will be considered,

Before solving for the far field total intensity, however, the coherent intensity
will be developed and compared with the results given above, and the last inte-
gral in Equation (4-70) will be seen fo represent an incoherent intensity term.

(d) Coherent Intensity

The coherent intensity
(¥, 1 D2 = (U, 1)) (T (r, 1)) (4-71)

is found from Equation (4-15)

(¥(r, 1)) = G,(r, 1) - kg ,of G, r'Y G(t', r,) dr’
v

+ k% g2 p? f f G(r,r) G@t', r'") GG, 1) dr’ dr”
v
Taking the complex conjugate

(I, 1,)) = GE(r, 1) - k2 g*p [ G*(r, r') G¥(r, 1) dr’
v
(4-72)

+ k¥(o?)* pzf fG*(r, ') G*(', 1) G*(", 1) dr’ dr”
A’
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The coherent intensity is the product

KB 1, D1P = (U, 1)) (TG, 1)) = Gy GE - k2 UpGﬁf G(r,1') GG, 1) dr’
v

X2 o¥p G, f G*(r, t) G*{(r', 5} dr’
v
+ k* g2 p? G* f f G(r, ) G', r') GG, 1)) dr’ dr” (4-73)
v

+ k4 (02)* p2 G, f f G¥(r, r') G*(r', r") G¥(x", x ) dr" ar"

v

43 ]

+ k* o o* p? f f G(r, ') GG, 1) G*(x, 1) G*¢", 1) dr’ dr”
A"

Comparison of this result with Equation (4-70) for the total intensity shows that
all terms are identical except for theé last term in the total intensity, which is
not present in the coherent expansion. Therefore, to O(g?)

¥, 1)1 = K@ ) + k* oot p f G(r, ") G, (r', ry) G*(xr, 1) G*(', 1) dr'
v (4-74)
The last term of Equation (4-74) is of interest, since it represents an incoherent
intensity term, I;,. . in the total intensity expansion. I; . will be evaluated in

the next section by asymptotic expansion for large r.

() Incoherent Intensity

The incoherent intensity, from Equation (4-74), is

= 14 1 ' f " " .
fpe = K" oo*p f Glr,r') GG, 1) G*(r, 1) G*(r"', ry ) dr (4-75)
v

with v’ ="\,
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We proceed to solve L, . by application of the transverse Fourier transform to
Equation (4-75), as was accomplished in Sectica 4-1(a) for the mean field, Re-
placing each Green's function in Equation (4-75) by its inverse Fourier trans-
form, Equation (4-18b)

Y oo*p o
Ling = (21r)8 f 1Bz - 2, k)™ O a,
O’ - 2,k el @ T g (4-76)

Gz - z", k{") gt (- )dk;'

ik"l.rfl..r
7o, K " ()

The inverse functions are replaced by their one~dimensional equivalent solu-
tions, from Equation (4-20)

dk{“] drl

. ! sy ! 1] . 2] r rer
ik |z ~ 2 ik,lz -z -ik, |z ~2 —-1k z -2,
k4UU*p fe zl |ez| ole z! I zI !

fne = 2ik 2ik!

2m® .

-Zﬂ{" _2iklﬂ (4—77)

Z Z Z

ei[kt N CESIESVENCES I ED WIET I ED MNP |!

dr' dk, dk; dk’ di"

The k, exponential can be expressed as

e-ir' (k¢ -k} e—ir" o (ki - kY ei[(kt + k) e r-(ki+ k") » 1l (4-78)
Since r' =¢"
fe'“' . [(kt'rkt) (k +k )] dl't = (211.)2 a[a{t + k{') _ (k{ + k;:“)]
(4-79)
Therefore
K 6o% p ei[kZ[z ~2' |+ ke’ - 2ol -k 1z - 2] - k"2’ - 2, 1]
Iil‘lc = 4 f (NI
(2m) 16k, k, k; k; (4-80)

0, + K] o 1 (4 17") < 1]

5k, - k) 8( - k") dk, dk; dk;' dk;" dz’
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The delta functions evaluate the k; integrals atk, = k| and ki'= k"

_ k4 O-O.:I:p
@m*

Iinc

f E=i[kz(z -~z k2 -z~ k) lz -2 -k |2" - 2, 1]
16k; k;* (4-81)

dk, dk;’ dz’

Sl +K) < (6 -x,)]

Withzo<z.’ <z

k* g o* ol f eikz(z ~Zo) _ikz = ~20) ei[(kt + k;') s (x-ry)l
(2m)*

L, = dk, dk;' dz’

2, 012
16 k2 k. (4-82)

. ik, (z - z,) -ik”(z-—-z )
_ k*oca*tp [e? ° z ° ik + k) (F-15)] dk. dk'’ - dz’
]inc (211_)4 16 kz ,,2 e kt t

Evaluating the integral over dz’

0
(4-83)

k* o g* p L f Blkz(z - 2Z,) e-lkz(z = Z4) l[(k k"

I = t/ (l' L) )] dk d "
inc (211')4 16 k;_ 1%"2 &_84)
Rearranging terms
k,(z ~ _ﬂ{ -
_ Kooy ”&z” - “ ki o (- 7o) gy
Line = 16(27)* L dkt k;g dk;
(4-85)

The two integrals in Equation (4-85) are seen fo be transverse Fourier trans-
forms of conjugate functions, i.e. (see Eq. 4-17b)

ik,(z-2,)
f ket Ot e = omy? i - 1) (4-862)
K
and
-k {z-2z5)
f ——— T ) g o a2 pr - 1) (4-86b)
i °
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Therefore, from Equation (4-85)

¥oorpL .
Iinc = T f(r - ro) f¥(r - ru) (4-87)
Since
f(r - ro) f*(r - ro) = |f(r - rQ)I2
Then
k*ootpL >
Iinc = 'T |f(1‘ - l‘o)l (4—88)

The function f(r - 1,) is now evaluated in the far field by the method of stationary
phase. With

1k 2z -
fe - 1) =—— ff '(""’ﬂ)dkt (4-89)
2y

The above integral is seen o be identical to the integral in Equation (4-45), with
eikz(z -24)

B(k,) = (4-90)

2
Z

which was evaluated in the far field in Section 4-1(b), and Appendix D,
The method is applied here to f(r - r,), with only the major steps listed. From
Equation (D-4)

3
-] = oo

e 4 ¥ VK ikyR 4-91

fe - ) = —8 -y ky Blky)e dk; (4-91)

where k; and R are as defined in Figure 4-3. With

kt = ksinW
k, = kcosW
Vk; =V/KsinW
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eiktR = kR sin W = oikrsin W sin &
ikr sin W sin

Bl) = k2 cos®> W

dk; = kcos WdW
Therefore
4T
fr - ry) = 2 f\/_'\/a“_welkr ot e k cos W dW

V8 R 2 cos? W

(4-92)

/— _]_ f\/si_nweikr cos (W - )
dW
873k R cos W

The SDP determined in Appendix D is applicable for the above integral also, and
the asymptotic representation given by Equation (D-27) can be applied. With

TW) =k, W, = o [3"@)I =
+/sin o
f(W,) =
cos &

Therefore, from Equation (D-27), for large r

1 - 2r v/sino ik + i
fir - v} = —_— — e
8n* kR rk cosa

(4-93)
eikr
) 2rkrco o
and
Ifr - rg)1? = [47% k2 ? cos? o] ™! (4-94)

Then, from Equation (4-88)

k*oo*pL

L =
e 6472 k2 2 cos? &
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with

co* (crf + 052)
2002 1 2 (4-95)
k (or +Ui)pL

1.
e 647212 cos?

{fy Far Field Solution for Total Intensity

The total intensity (|¥(r, r,}|?) was found, to O(c?), in Section (d) as, Equation
(4-74)

(1T, 1) 12y = T, o)) (T, £ ) + Lo

where I, . is the incoherent intensity term given by Equation (4-75) and by
Equation (4-85) for large r.

The far field approximation for the total intensify can now be developed from the

far field expangion to the mean field, Equation (4-64). The complex conjugate
of Equation (4-64) is

(F¥r))y =~

e-—ikr ko*pL K2 (0.2 ¥ p2 12 k(oz ) '02 L
1 -1 - + | ——
1T

i
2 cos o 8 cos® o 8 cos® o
(4-96)

23k A2 2y p2
- (0")*p + @)p e-i2kL cos a:|
16cos* @ 16 cos* «

The coherent intensity, to O(o?) is then

[ _kopL k*a?2p?Ll? ko?p’L o2 p?
1 —

() () = ——— - -
16 w2 12 2 cos 8 cos? & 8cos® @ 16cost
2 .2 A
+ __U_p_. ei?.kL cos e _ E{_U_QE.
16 cos® @ 2 cos &

k2 oo pZ 1.2 kZ(UZ ):t: pZ 12 k(al Y p2 L
- i o—

+ i
4 cos? o 8 cos? o 8 cos? &
2y o2 Ik p2
- @) + R g~i2KL cos e
16 cos? « 16 cos? a
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Or

k(U o¥)p L
21'2 2 cos o

(T T*@)) =

k2 p2 L2 0.2 +(02 )* k(U?' _(0.2 a.) 2 L
t— (a o¥* - )— i el (4-97)

2

4 cos? o 8 cos® o

2 2y f2 2
_ (0° + (@)} p + p (062 ei?kL cos@ 4 (g2y# g-i2KL cos a):l

16 cos* « 16 cos* o

BRearranging terms

e W) = —— [1 kojpl X of o LF
( T *(r = -
) 16 w2 1

Cos & 2 cos? o

ko.0: 02 L p?a, o
+ ) N § + Ir-1

> 2 sin (2 k L cos o) (4-98)
2 cosc o 16 cos™ o

@ -} p*  p*a} o)
- r 1 + P I41 cos (2 k L cos @)

8 cos* & 8 cost o

The addition of the far field result for I, ., from Equation (4-95), results in the
total intensity far field expansion

ko, pL Kol +oX)pL
(1¥(@? = [1 - — 2
6wt r? oS & 4 cos? @
Kgtp2l? ko o p?l o 0 p°
+——1 + —Ld + 41 sin(2kLcosa)
2 cos? @ 2 cos? & 16 cos* o (4-99)
(@? - ¢?) p? (0% -02) p?
-t ! + L1 cos (2k L cosm)
8 cos? o 8 cos* w

For o = 0, i.e. the f~rward scattering dirvection, Equation (4-93) gives

() |2 L2 k2 p(o® +o2)L] kplo. oL
<l (r)|)={1-kpo'-L+k2p20i2—+[ plo; i) + p” 0. gy
1%, @)1 ‘ 2 4 2

o, 0; p* © - o})p? (4-100)
sin(2k L) - -—T—- (1 ~cos2kL)

.l-
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where the term in brackets [ ] is the incoherent intensity term.

The far field total intensity expansion contains one first order term, and secular
terms in L and L2, A comparison of Equation (4-100) and Equation (3-76), the
one~-dimensional result, shows that all terms of the expansion are identical in
form.

Also, for I = 0,

6 w2 1t

(TE? =
1
which is seen from Equation (4-65) to be the far field intensity of the incident
wave,

The applicability of the Foldy approximation {o the volume scattering case will
now be investigated.

4-2, TFOLDY APPROXIMATION FOR A VOLUME OF DISCRETE
SCATTERERS

The Foldy approximation to the external field acting on a volume of discrete
scatterers is applied here to the volume slab configuration described in the pre-
vious section. The mean field (¥ (r, 1,)) is developed, and the resuliing ex-
pansions compared to the mean and intensity expansions derived in the previous
section, The development is similar to the one-dimensional slab case presented
in Bection 3-3.

Consider the wave equation for the spherical wave incident{ on a volume of dis-
crete scatterers, as described in Figure 4-1, and by Equation (4-3)

N
{vz + sz +to Y 8- rnil}llf(r,ro) =0 (4-101)
n=i

The wave equation and its associated houndary condifions convert to the integral
eguation

f G(r, t') 8(r=ry,) w(r', 1) dr’ (4-102)
17V

F(r, xy) = G, 1,) - k? o

* M-
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where

_eiklr - 15l
G.(r,rx,) =
orro drlr ~r,|
and
_oiklr - r'|
G(r, 1) =
dair —-1'|

The average of Equation (4-102) is

N
(I(r, 1)) = Gylr,ry) ~ k2o Z f G(r, ) (5 ~ 1) @', r,)) dr’ (4-103)
n=17v
The mean of §(r' ~ 1)) ¥(r', r ) is

%

(3(r' ~ 1) ¥(, ) = fﬁ(r’ - 1) T(r',r,) f(r;,r,,...1y)dr,,dr,,

. .dry
(4-104}
where
£, 1y, ...1y) = ft,)
is the joint probability function of the r .
With the r, statistically independent
N
£y bys o5y = £ ) . fag) = [ ) (4-105)
p=1
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Therefore Equation (4-104}) is

N
(8@ - 1) T@', 1)) = f 80 - 1) ¥('x,) [| fay)dr,  (4-106)

p=1
The product term can be expressed as
N N
[T fepdr, = f@)dr, ] fa,)dr, (4-107)
p=1i p=1
p¥Fn

Therefore Equation (4-106) is

N
(¥’ ry) 80" - 1,00 = ff .. f‘l’(r’,r ) ﬂ f(rp)drp 8" - ) fx ) dry
p=1

p#n (4-108)

Note that

N
ff f\lf(r',ro) ]—[ f(rp) drp = (IIr(r',ro)[r') (4-109)

p=1
PFn

which is the field at ' averaged over all possible configurations of the other
N-1 scatterers., Therefore, from Equation (4-108)

(T@',r,) 6G" - 1)) = f(‘l'(r', r)ir) 6G" - 1) fr,) dr, (4-110)

’

The integral is evaluated by the delta function at ' =r, i.e.
(@', 1)) 8" - r ) = (E(@,r ) I’ fr') (4-111)
Therefore from Equation (4-103)
N

(I, o)) = G,r,1,) - kK% @ E f G(r, ¥") (T @', 1) ir') f(r) dr’  (4-112)
n=1"%v

72



There are no n dependent terms in the integral, so the integral is evaluated N
times by the summation

(¥(r,r)) = G (1) - k2o N f G(r, r) (P @', 1 ) ) fe"y dr’ (4-113
\

The approximation introduced by Foldy consists of replacing (¥(r', ry) It'y, the
field at the nth scatierer averaged over all possible configurations of the other
N-1 scatterers, with (¥(@’, r,)}, the average field at the nth scatterer position,
when that scatterer is not present. These averages differ only by a term of the
order 1/N, thus for large N, the approximation is reasonable.
Therefore with

TG, 1)’y = (TQ, 1)) (4-114)
the mean field, from Equation (4-113) will be

(@, 1) = Gylr, 1) - k2 ¢ Nf G(r, r') (¥ @', r ) £r") dr’

v

Also, since the scatterers are uniformly distributed in V,

1
") = — (4-115)
\
Thexefore
(Tplr,r,)) = Gylr,r,) - K2 ap f G(r, ") (B, 5, 1) dr (4-116)
v
where
_ N
Ty

The above integral equation represents the mean field for the volume V of dis-
crete scatterers under the Foldy approximation to the external field acting on
each scatierer.
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(a) Mean Field Expansion

The Foldy approximation integral equation for the mean field (V. (r, 1)), Equa-
tion (4-116), with the addition of the boundary conditions of the scattering volume,
is seen to represent a wave equation for (¥ (r, r,)) of the form

(V2 + K21 (TR, 1)) = k% 0 p (TL (1)) (4-117)

or
(V2 + k21 + 0 p)] (Tp(r, 1)) = 0 (4-118)
The above equation defines an 'effective' propagation constant, K', for which the

mean wave propagates in the scattering medium. The mean wave, with an in-
cident spherical wave, is thus represented in the slal as

_eiK'ir—rol
(Fp(r, 1)) =————— (4-119)
47r|r—rol
where
K' = k(1 + op)* (4-120)
Expanding K' to O(c?)
o op)?
K,___kE+_q_(p)J
2 8
or
ap (op)?
K=k+k—- . (4-121)

The results thus far are seen to parallel directly with the ope-dimensional case,
with K as given in Equation (3-102), and A replaced by p.

Under the Foldy approximation for the mean field, the volume slab of discrete
scatterers can be replaced by a 'confinuous' medium with an effective propagation
constant K', as displayed in Figure 4-4. The field expansion for (Pr(r, )} in
Region I, z > L, is desired.
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Figure 4-4, Foldy Approximation Representation for Mean Field
of a Volume Slab of Discrete Scalterers.

The solution for (¥ (r, r;)) is reduced to a one-dimensional evaluation by con-
sidering the transverse Fourier transform in each region, i.e.

eikzlz -24] )
Fye k) = ————+T e <0 (4-122a)
1K,
@ kn = AP +BTFP o< <L (4-122b)

Ty k) = Te 2 2> L (4-122¢)
where
K, = (4-1232)

Vi - k2
K, =vK? -kl (4-123b)
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The boundary conditions at z = 0 and z = L are

Fp=Fp .,z=0 (4-124a)
Fp=Fp ,z=L (4-124b)
a ~ a o
-a_z (11!1> = -a_;. (11!11) , 27 0 (4‘1240)
& ~ 0 ~
P (¥ = gz—(‘lfm), z=1L (4-1244d)

The resulting equations from the boundary conditions are

-k, 2z,
e
A+B-T-= (4-125a)
2ik,
Aefzl 4 peiFel |t o g (4-125b)
e—ikzz0
AK, - BK, + 'k, = > (4-125c)
1
Ak, et - g e Loy h = g (4-125d)
For ease of notation, as before, Equation (4-43), let
op  , _(op)®
e=—. ¢ = (4-126)
2 4
Then
&.2
K’=k+ke-k—2— (4-127)
and
K, =vK? -k =42 + 2ek? - K
2 (4-128)
=vkI +2ek? =k, /1+ 2e(—)
kz
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Expanding the square root term to Q(e?)

[ Ky 17k
k, 1 + (——) € - —(—~) e2 (4-1292)
k, 2\k,

gk, (4-129b)

X,

where g is the term in brackets of Equation (4-129a).

The expansion for the exponentials in K/ is

o e () 1)
eﬂch:e:kz[I +(kz € 7 \% e~ L

(4-130a)

; k? 1k
= elkzL l1+i—el - = ez(ksz + iL)

k, 2k,

= p elkzL {4-130b)

and

-iK L _ L, -k L

e = pte (4-131)

where p is the term in brackets, Equation (4-130a), and p* denotes its com-
plex conjugate,

The expansions of X, !N ab , and ¥z are applied to the four simultaneous
equations, Equations (4-125) to give

E’—ikzzc|
A+B-T= -~ (4-1322)
pA + pre kel g T =g (4-132b)
ﬁ-ikzzo
gA - gB + T = e (4-132¢)
epA - gpte Xl B LT =0 (4-132d)

The solution for the transmission coefficient T was developed by a Cramer's
reduction of the determinent for the four simultaneous equations, Equations
(4-132).
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The result, in series form to O(e*), was found, and the resulting field (‘?m(z,kt))
from Equation (4-122c) is available. The inverse transform of the field, in
Region III, from Equation (4-122c) and the T expansion is

ik z

Te

eikz(z = zo) k2 1 k4
——— |1 +i— Le -i—— Lég? (4-133)
2ik, k, 2 k3

¥y (2 k)

1

+

1 k* 1/k\? 17kV
S 5 0 B ) R Y
2 k2 4\k, 4\k,

A comparison of the ahove result with the discrete solution expansion for the
mean field inverse Fourier transform, Equation (4-44), shows the two expans-
ions to be exacily equivalent. Thus the Foldy approximation expansion to the
mean field for the volume scatter case has been shown, as in the one-dimensional
case, to represent the mean field exactly, i.e.

(Ppr, 1)) = (¥(r, 1)) to 0(c?) (4-134)

The far field expansion for the mean developed in Section 4-1 (b), Equation (4~64),
is therefore also applicable to the Foldy expansion result,

(b) Intensity

The results of the previous section have shown that the mean field (¥(r, ro)) can
be represented, to O(c?) by (¥p (@, 1,)), thus the coherent intensity (¥(r, r,)
(U*(r, ry)) will likewise be represented by the Foldy approximation, to O(s2).

While the Foldy approximation represents the coherent intensity, it does not,
however, account for the incoherent intensity term, found in the far field ex-
pansion, Equation (4-95), as

K2 (62 +o¥)p L

line 64 w2 2 cos? a

which is present in the total intensity far field expansion, Equation (4-98).

The Foldy approximation to the mean field is therefore found to be 2 useful tech-
nigue in the representation of the mean field and coherent intensity by consider-
ing the volume slab of discrete scatterers as a coniinuous random medium with
an 'effective’ propagation constant. However, the Foldy approximation does not
represent the total intensity, where an incoherent intensity term of O(¢?) was
found which was not accounted for in the Foldy expansion.
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CHAPTER 6

IMPLICATIONS OF DISCRETE SCATTERING RESULTS
TO MULTIPLE SCATTERING IN RAIN

The two previous chapters have investigated the intensity of a wave propagating
through a distribution of discrete scatterers by application of random media
techniques, In this chapter, the study concludes with a discussion of some im-
plications of the results obtained to the rain scatter channel.

First, some general comments can be made on the mean field and intensity ex-
pansions. The analyses of Chapter 3 have demonstrated that either discrete or
continuous techniques may be employed for the development of the mean field
and intensity expansions, as long as care is taken in the formulations to insure
non-overlapping scatterers, The resulting expansions for the mean field were
shown to be equivalent to a first order Born series expansion solution, and the
limit of convergence for the expansions is equivalent to the Born expansion
limit.

The mean field and intensity expansions for a distribution of discrete scatterers,
developed in Chapters 3 and 4, have shown that the volume distribution results
proceed directly from the one-dimensional distribution findings., The similarity
of the volume scattering results to the one~-dimensional case was not unexpected,
however the term by ferm agreement, even to the incoherent intensity term, in-
dicates that a one-dimensional evaluation could provide useful quantative as well
as gualitative predictions of multiple scattering effects in rain scattering,

Next, the applicability of the isotropic scatierer assumption to the rain scatter
problem is discussed. The volume distribution resulis of Chapter 4 were ob-
tained for isotropic point scatterers, and extension to the rain scatter case is
dependent on the validity of this assumption for the case of a distribution of di-
electric spheres. The induced or scattered field produced by a dielectric sphere
in the presence of an incident electric field can be shown by a direct solution of
spherical wave functions of the incident and induced waves to be a vector field
with components which depend on the angle of observation to the sphere (Stratton,
p. 566). Hence the spherical rain drop cannot, in general, be considered as an
'isotropic scatterer'.

if, however, the discussion of the rain seatterer is limited to the Rayleigh scat-
tering region and to the forward direction only, the scatiered field can be shown
to bé a secalar function of the incident field (Stratton, p. 435), and the results of
Chapter 4 can be considered,
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Thus, the question of how the multiple scattering results developed in this study
relate to the classical 'single scattering' method can be considered by comparing
expansions of both methods in the forward scattering direction, where angular
dependence is not a factor,

A summary of the classical technique used to determine rain attenuation is pre-
sented in Appendix E. The second order series expansion for the classical
'single scattering' intensity of a wave propagating through rain is given in Equa-
tion (E-14), When this expansion is compared with the forward direction (& =

Q) multiple scattering expansion given by Equation (4-100), the 'single scattering'
formulation is seen to be similar in form to the first three terms of the multiple
scattering expansion, All other terms, including the incoherent intensity term,
are not included.

It is also of interest to note that the Foldy approximation expansion was found
to represent all terms of the coherent intensity (Section 4-2b), thus the Foldy
approximation appears to be more representative of the total intensity than is
the classical 'single scattering' formulation.

It must be emphasized czain that these observations are made for the forward
scattering direction only, and the complete vector scatter solution may prociuce
additional factors which are not evident in the scalar results discussed here,

In conclusion, the study has demonstrated the feasibility of using discrete random
media techniques for the determination of multiple scattering effects in propa-
gation through a volume of discrete scatterers, and has provided some insight
into the more general problem of multiple scattering in a volume of rain.
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APPENDIX A

TRANSMISSION COEFFICIENT FOR A ONE-DIMENSIONAL
RANDOM MEDIUM SLAB

Consider a slab of width, L, with a propagation constant K, with an incident wave
¥, (%) as shown in Figure A-1. In regions I and III the propagation constant is k,
and transmission coefficients T, A, B, and T, as shown in the figure, are
assumed.

The field in region I is

\pl(x) = olkX 4+ pe-ikx (A-1)
In region II
\I’II(X) = Aeikx + Be—ikx (A—Z)
k K k
#
/]
/1
y
Wolx) = eikx A y T
— — ] —_—
r B y
—_— —— y
y
4 £ B X
0 L
Region Region Region

| I tH

Figure A-1, One-Dimensional Sleb Configuration
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In region III

\I’II] (X) = Teik(x-—- L)

The boundary conditions atx =O and x = I, require that

‘IJI(O) = ‘1’11(0)
Y@ = Yy (L)
—a-‘If Q) = 0 ¥, (O
ox 1) = ax I )

0 d
E‘I’u (L) = B;‘I'm (L)

From the boundary condition equations
1+ =A+B
AeiKL 4 Be-iKL = T
ik - ikI' = KA - {KB
iKAelKL - iKBe-iKL = jkT
Rearranging terms
A+B-T-=1

AeiKL 4 Be-iKL = T

Il
=

KA - KB + kI’

KAeiXL - KBe-iKL = kT

Muitiply Equation (A-4) by k, and add to Equation {A-6)

(k + K)A +(k - K)B = 2k

(A-3)

(A-4)
(A-5)

(A-6)

(A-T)



Therefore

2%k  k-K
k+K k+K

A B

Multiply Equation (A-5} by k, and subtract Equation (A-T7)
{k - K)AelKL + (k + K) Be-ikL = Q

Therefore

k+K .
= - -i2KL g
AT kS
Equate Equations (A-8) and (A-9)
2k(k-K)

B = .
(k-K)? - (k+K)2 g-i2KL

Substitute B into Equation (A-9) to find A

A= “2(K + k) ke—iEKL
(k-K)? - (k+K)? el2KL

(A-8)

(A-9)

(A-10)

(A-11)

Finally, substitute Equations (A-~10) and (A-11) into Equation (A-5) to find T, the

desired transmission coefficient

B ~4kKeiKL
(k-K)? - (k +K)? g"i2KL

To express T as a positive function, multiply by -ei2KL /-ei2KL | o

_ 4kKelKL
(k + K)Z - (k- K)2 eiZKL

(A-12)
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APPENDIX B

EVALUATION OF MEAN FUNCTIONS FOR ONE-DIMENSIONAL
AND VOLUME DISTRIBUTIONS OF DISCRETE SCATTERERS

In the development of the mean fields and intensities produced by a distribution
of point scatterers, the evaluation of means for a series of random functions are
required. This Appendix develops the means for these functions, for the one~
dimensional case, Section (a), and the volume distribution, Section (b),

(a) One-Dimensional Distribution of Scatterers

Consider h(xz;), a function of the random variable set x;. The mean value of
h(x;) is:

(h(x)) = fh(xi) % %g5 0 - o X ) Ay, dxy, L dXy (B-1)

where f(x), X;,... xy) is the joint probability density function of the x,. If
the x; are statistically independent and uniformly distributed along O to L,

f(xy, X5, .. Xy) = f(xp) f(xp) ... fxy)
11 1 f1\V (B-2)
TLL L \L
Consider the function
N
> hoxy) (B-3)
nal

From above

N
2. h(xn>
n=1

N
f[z h(xn):l f(X1» X3y X3, - .- Xy ) A% dx, .. dxy
n=1

(B-4)
N ‘
(—]'1_‘) f[h(xl)+h(X2)+. . .+h(XN)] dxi dx2 . .dXN

I

B-1



Fach term of the series is of the form

N
f h(x;) dx; f f f [T (B-5)
j=1

jFEi

There are N of these terms, therefore

N 1\ N
<Z h(xn> = (f) N f h(x;) dx; f f AT e @8
n=1 j=1

i#i

Since

L L L N
f f ﬂ dx; = IN-1 (B-7)
o o 0o j=

j#Fi

Therefore

(B-8)

Let A = N/L, the uniform number density then

N L
3 hxp)) = A f h(x;) dx; (B~9)
n=1 o

Consider now a function h(x;, x;) of two random variables of the set x;,

(h{x|,Xa) = f h(xy,Xp) f(%,Xp,. .. Xy) dxq dxp ... dXy

1\N
(f) fh(xl ,Xz) dxl dXz .o dXN

B-2

(B-10)

n



Similarly

N
(h(x.l ,X2) +h(X3,K4)) = ('IIT) f [h(xl ,Xz) + h(X3,X4)1 dxl dX2 . dXN (B'—l 1)

N 1\N N N )
<Z Z h(xj’xl)> =('"I:> f[z Z h(xj,xlﬂ dxdx, . .. dxy
j=1 l=1 j=1 ]:1
1\W N
=—=) IN § h(x, %) dx; dx, (B-12)
G Srowsos [ f 11

m # j

N
+ (N2 - N) fh(xj,xl)dxjdx] fff [T ey
m=1
1

m # j,

i.e,, the first term is for N terms where j =1, second term is for N2-N terms
where j # 1.

Since

L L L N
f f e n dx, = LN-1 (B-13)
0 0 o m=1

m #j

and

L L L N
f f f [T dxy = N2 (B-14)
o 0o 0o m=1
1

m = j,



Therefore

N N 1 N
= [ N-—
<Z=3 2, h"‘i”‘l)> _(L) E‘(L D [ ey
=1 1=1
+ (N2 - N)(LN-2) f f h(x;, %)) dx; dxﬂ

{(B-15)
_ N
=1 ) ey
-N
ffh(xj,xl) dxj dxl
For large N
N -N N
TRRETE (B-16)
Therefore
N N
(5 3y =0 [ [ vy
j=11=1
(B-17)

+ ]\f h(xj,xj)dxj
o]

The first integral results from the N2-N terms of the series where j # 1, while
the second integral results from the N terms where j =1, i.e., where the
scatterers are allowed to overlap.



For the case where scatterers are not allowed to overlap, only the first integral

is present, i.e.,

N N 7 L AL
2 Z h{x;,xy) = A2 f j- h(xj, Xq) dxj dx, (B-18)
j=11=1 o Jo

where the prime ' denotes j ¥ L.

(b) Volume Distribution of Scatterers

In this section, the same summed averages as above are derived for the volume
distribution case. The development is nearly identical, and only major results

are presented.

Consider, h{ R, ), a function of the random variable set R . With the R,
statistically independent and uniformly distributed in the volume V,

f(l'l,l'z, e rN) = f(l.'l) f(l'z) . e f(I'N)

and

i
f(t‘i) = "\7

Then the mean value of (R} is evaluated as

(h(R] )) = f h(l‘l ) f(l’l) f(l‘:,_) [P f(rN) drl drz ..

v

1 N
v h(r; ) dr; dr, ... dry

and

1 N
(h(Rl) + h(RZ)) = (V) f [h(ri) + h(rz)] drl dl'z .

A

(B-19)
(B-19a)
dry
(B-20)
. d.I'N
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M=
=2
:::’U

\/
1

I

N
(%j-) [f (h(r;)dry] dr, drg ... dry
+ j‘ [h(l‘z) dl'z] dl'l dl'3 cas drN o :|

Each term of the series is of the form

N
fh(ri)dri fff [T e
j=1

j#Fi
There are N of these terms, therefore
N L\N N
3 nRy Y = (V) N jh(ri)dri fj/ ﬂ dr;
n=1 j=1
j#i
Since

N
ff... l_[ dr]-=VN'1
i=1

jFi

N
hR) » =
n=]

Therefore

<)z

f h(ry) dry
v

N
(%I-) f[h(rl) + h(r,) + ... + hiry)] dry dr,..

. dl'N

(B-21)

(B-22)

(B-28)



Let the number density be p i.e.,
p=— (B-24)

then

N
> h(Rn)> =p f h(r,) dr, (B-25)
n= v

Congider now a function h(R,, R,) of two random variables of the setR ,

R, R = j.h(r1 2 T) plry) Blry ) .. plry) dry dry oo dry

1 N
(—‘7) fh(rl ¥y ) dry drgy ... dry

(B-25)

L

Similarly

1\N .
(h(R,,R,) + h(R;, R, ) = (}') f[h(Rl, R,) + h(R,,R,)] dr, dr, ...dry
(B-27)

The sum is therefore

1N
= [ 2
"(v) (N2 - N) | htry, 1) dy, dr, fj f]=1 5
j#Fn,p
+le1(rn,rn)dr ff f
j=1

{B-28)
j#a



The first integral consists of the (I\T2 ~ N) terms where n # p, the second
integral the N terms where n=p,

Since
N
e = yN-2
.[ f jD, dg =V (B-29)
j#n,p
and
N
= yN-1
fff[‘[ dr. =V (B-30)
1=1
j¥Fn
Therefore
N N
2o 9. hRLR)) = psz h(r,, £p) dr, drp
n=t p=1} v
+po [ hir,, ry) dry (B-31)
v
where, for large N
N?-N , Nt _ 2 (B-32)
V2 VZ

Tor the case where the scatterers are not allowed to overlap, i.e. j #1, only
the first integral is present, 1.e.,

N N /
2. > h(Rn,Rp> = p? f f h(ry, 1p) dry dr, (B-33)
v

n=] p=1

where the ' indicates n # p.
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APPENDIX C

SOLUTION OF DOUBLE INTEGRAILS REQUIRED
FOR FIELD SOLUTIONS
Two integrals which occur in the analysis of the mean field and coherent intensity

of a slab of width I will be evaluated here.

Consider the first integral,
L L [ t 113 n
I =f f elk(lx —x'|+ 8" ="+ x7 - %) g1 g5 (C-1)
0 v

forx > L, x> ¥, x", see Figure C-la

L L
I = f f eik(lx - x"| + %" ~x7) gyr gy (C-2)
0 [

The integral is evaluated in two regions, I and II, as shown in Figure C-1b. L
Region I, x' > x" and (Ix’ - x| +x" - x') = 0 and the integral limits are

L x'
f dx’ f dx" (C-3)
[s] 0

In Region II, x' > ¥’ and (Ix' - x"| +x" - x") = 2x"" - 2x" and the integration

limits are
L L
f dx’ f dx"’ (C-4)
o x'
L L "
II =f dx'|x' + e—ikzx'f gik2x dx"
0 X'

Therefore:

Cc-1

AN - M L



Region
1

Region

(b)

Figure C-1, Regions of Evaluation for Double Integrals
One-dimensional Slab

C-2

Y



Continuing the evaluation

it

i L  gikar _ gikax’

!'E Il = f dx’ x’ + e—lkZX ———————

g o 2ik

f L L eik2L g-ik2L _ 1

= f x' dx' + j. - dx'

o o 2k

* L?. eik2L L ) , 1 L
. = — ot f ek2% gy’ - — f dx’
2 2k J, 2ik J
12 eik2L [e-ikzL _ 1] L
= — 4 - —
2 2ik -2ik 2ik
d 1.2 i eikZL L
! [[ =— 4 —— - —— = — (C-5)
, 1 9 4k 4k 2ik
The second integral to be evaluated
L L [} ¢ 11 r
1, = f f goil(lx - x'1+ |57 -7+ X7 - %) g’ dx" (C-6)
[s] 0

is seen to be the complex conjugate of I;. The evaluation therefore follows
directly from Equation (C-5).

: 12 1 etik2L L
i 2 o9 4 4k 2k
iy
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APPENDIX D

ASYMPTOTIC EVALUATION OF MEAN FIELD INTEGRAL
Consider the integral given by Equation (4-63),

1
L= f k, Bk,) H{P (k, R) dk, (D-1)

and the required radiaticn condition
Imvk* -kZ >0 (D-2)

To evaluate for large r, we apply the asymptotic approximation for large argu-
ments for Hf,l)(ktR) (Abramowitz #9. 2. 3)

2 i -
HY% R) ~ / o (ke R =% ) (D-3)
Tk, R

-m < arglk; R) < 2«

with

therefore, Equation (D-1)is

e_i% oo
1 ='—-—"'_8.1T___..3 Rf:m @B(kt) €

ik; R dkt (D-4)

where
k = VAo -1
or

k, = /X - k& (D-5)

The square root function k, is a multi-valued function of k;, and its properties
are investigated in a fwo plane "Reimann sheet" diagram for k;, shown in Fig-
ure D-1(a). The top sheet, characterized by Im k, > 0, is the proper sheet,
where the radiation condition is maintained; the boitom sheet, where Im k, < 0,



Im ¥k, Im &,

P +k . +k
. — Re k Re ky
-k —k
TOP BOTTOM
Im k, >0 Im ky <O

Two Sheeted k; Surface
(a}

W;
P
T3 + Ta B, By
I
-7 T 0 ki T W,
2 2
B2 Ba Ta Y T
w - plane
(b)

Figure D-1. Riemann Surface for k; and Mapping of k, Sheets
into the W-Plane



is an improper sheet. In order to cross from one sheet of the Rieman surface
to another, the cuf, called a branch cut, must be crossed.

e,
e T

In the complex k; planes, the sheets will have branch cuts along Im k; =0, and
i branch points at k, = zk (k real).

The path of integration P is shown on the top sheef of Figure D~1(a) where an
infinitesimal amount of loss has been introduced (I k > 0), which resultsina
slight displacement of the branch points at zk. The four quadrants of the two
k; sheets have been labeled Tis o v o Ty Byy o oo By

To eliminate the branch points, we introduce a new complex variable, W =
W, +1 W;, and define a W-plane by the transformation

I = ksinW (D-6)
| = k(sin W, cosh W; + icos W, sinh W;) (D-8)
‘ and also
k2 = k% ~ kZ = k% cos®> W (D-9)
k, = kcosW (D-10)

where the + root is chosen fo allow k, = k when k; = 0. The k; plane is thus
b mapped into the W-plane as shown in Figure D-1(b). k, =k sin W is single
t valued, and the path of integration P proceeds as shown, with each sector of the
W-plane representing the various quadrants of the k,~plane as labled.

We replace the displacement (z ~ z,) with its angular equivalent, (see Fig. 4-3),

(z-2))=rcosa (D-11)
and
R =rsina (D-12)
Therefore, Equation (D-4) in the W-plane can be developed

kcosW




VE, = VEsm W

ik.R . . . . .
gt = e1kR sin W = gikrsin W sin @

dk, = kcos WdW
And, from Equation (4¢-52)
B(kt) = eikr cos W cos o [ 1 + ar L
, 2ikcosW  4cos? W
(D-13)
k o2 .02 ( L2 L 1 __eiZLI{ cos W )}
- ——_—— - — -1 -
2 cos® W 8 8kcosW  16k2 cos? W
or
B(kt) = T(cos W) eikr cCOsSW cosa (D-14)

where T(cos W) is the bracketed term [ ] in Equation (D-13). Therefore,
Equation (D-4) is

s
7 +o0
e . s .
[ =—— \/E /sin W T(cos W) e1kr cos W cos & oikr sin W sin « k cos W dW
ERVCESE W ( (D-15 )
Let
F(W) = ~/sin W T(cos W) cos W {D-16)
Then
I ¥ _ it f (
= e ikr(cos W cos @ + sin W sin &)
1 3 a3 R 5 F(W)e dw
(D-17)
K3 - E :
L = e 4/- F(W) gikr cos(W - @) qw
8 R 5

The above integral can be evaluated for larye r asymptotically by deforming the
integration path P into a path of steepest descent, SDP, through the saddle
points.

D-4



To determine the SDP, we need to examine the phase characteristics of the ex-
ponent in Eguation (D-17), since the sicepest descent path is a constant phase
path in the neighborhood of the saddle points. Recall that, (see Fig. 4-3)

Il =/t - x 2 + (y - yg)? + (2 - z,)? (D-18)
and
. T m
r=|rje!®, - — <o <— (D-19)
2 2

The exponent of Equation (D~19) is then

ik Izl [ei(W - ) 4 -i(W - )]
2

Il

ikr cos(W - o)

Itl ¢ g W, - - i W, -
” _[el(“’r““’: @) MW T iW a)]

= -7
5 (D-20)
e w. i(w. - iy, -
- i [i[e Wi JW,-a) W (W - 0)]
and
I w, -w,
Relikr cos(W - @)] =k — [eVi - V] sinW, - o) (D-21)
Il . W,
Tmfikr cos(W ~ o] = k — [Vt = V1] cosW, - @) (D-22)

As seen on the W-plane plot, the integration path begins at W; = +°° and ends at
W;=-eo. We require that the integrand of I,, (Eq. (D-17)) decays at these end
points, i.e.,

Re[ikr cos(W - a)] = 0 as Wi - koo
From Equation (D-21), this is found to require

K kil
W > o <a<=as W e (D-23a)




w w
W, > -—<a<—as W > o (D-23b)
2 2

Since -n/2 < a < /2, the above conditions are seen to be met and the integrand
will decay at the end points of the path defined on the W-plane plot, since the
path remains within the allowable region.

The steepest descent path, SDP, is a constanf{ phase path, i.e.,
Im[ikr cos(W - «)] = constant as W, = deo (D-24)

From Equation (D-22), this recquires that

T
W -« ——2-, as W. = +eo (D-25a)

7
W, =« +-E, as Wi ~ —oa (D-25Db)

We see that the ends of the path lie within the allowable regions of the W-plane
since - 1/2 < « < 7/2 by its definition (Fig. 4-3). Thus the path P can be de-
formed into SDP, and the integral can be evaluated asymptotically. Figure D-2
shows the Py where a small amount of loss @ - +i¢ has been introduced to
move the poles at iWP to allow P to be deformed into Py, without introducing

a singularity.

The method outlined by Felson and Marcuvitz 1973 (Chapter 4) will be used to

develop the first order approximation for I, (Eq. (D-17)). Felson and Marcuvitz

(Eq. (4.2a), (1b)) show that an SDP integral of the form

Q) = f f(z) 292 g (D-26)
f;SD

can be asymptotically represented by

2 ing +iE
(@) ~ [ fag)e o

{D-27)
213" @)

as {2 o where zg is a first order saddle point, (real) and

Q(z) = iQ(2), Greal

D-6
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Figure D-2. Path of Steepest Descent, Pgp, for Integral I,
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For Eguation (D-17), & =r
qW) = ik cos(W ~ @) (D-28)
aW) = k cos(W - ) (D-29)

The saddle point, Wy, is found at agW)y=0

q'(W) = -ik sin(W ~ @)
(D-30)
Ws =g
Therefore
qwg) =k (D-31)
~p .
qa (W) = ~ksin(W - o)
(D-32)
T'Wg) =0
Q"W = *k cos(W - @)
~ (D-33)
q'Wg) = &
f(W) = F(W) = +/sin W T(cos W) cos W
1 opl ko2 p? 12
(W) =+/sinee | — + + i P
2ik  4cosa 16 cos? o (D-34)
2 .2 2 .2 2 .2
+0pL+i o p ] o p eiszmsrx
16 cos® o 32kcos? o 32kcost &

The asymptotic representation for I,, Equation (D-27) is then found from Equa-
tion (D-17) with the above substituiions:

[ ® Lz [in ke i X
I = TS e '3 F\/sﬁlaT(cosa) e ta -(D-35)
87 R 1k

where the + sign for the i 7/4 term is selected to provide zero argument at r = 0,
and T{(cos @) is the bracketed term [ ] in Equation (D-34). Recalling that

D-8



R = r sin «, the above equation redueces to

+1i

L = 2 3
2 cos ¢ 8 cos” o 8 cos® o

elkr kopl k2a2p?12 ko? p?2 L
1 1+ i - i

dimr

7 2 2 2
_ o F + ok ai2kL cosa
16cos* ¢ 16 cost &

D-9

(D-36)
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APPENDIX E

SUMMARY OF CLASSICAL METHODS IN RAIN
ATTENUATION AT MILLIMETER WAVELENGTHS

We begin the development of the rain attenuation discussion hy briefly reviewing
the classical techniques used to predict rain effects on electromagnetic propa-
gation. Most previous studies of rain attenuation, including the often referenced
works of Gunn and East (1954), Medhurst (1965), Setzer (1970), Hogg (1968, 1969),
Oguchi (1960, 1964), and Hogg and Chu (1975), among many others, have used the
so-called 'single seattering' approximation either directly or through the assump-
tions made in their analyses.

While the method does not rigorously postulate single scattering or specifically
exclude multiple scattering effects, the assumed exponential decay for the wave
intensity, the use of cross—sections based on forward scattering only, and the
assumption of independent drop statistics with superposition of intensity, all
lead to a model which does not account directly for multiple scattering,

The classical 'single scattering' formulation assumes an exponential decay for
the intensity of the wave as it propagates through a rain volume. Let ¥(r) be
the wave propagated through the rain, and U, (r) the wave in the absence of rain,
The intensity of the wave is then of the form

|‘I’(1‘)12 - e_thL

(E-1
I (1)1? )

where p is the drop density, the number of drops per unit volume; @, is the
attenuation cross section of a single spherical drop, defined below; and L is
the path length.

The attenuation cross section of the single spherical raindrop is defined as

_ Total power extracted from the incident wave (watts)

Q =

Incident power density (watts/m2)

where the units of @, are m?,

E-1

.":i/-'" }



The eross section of a spherical drop can be expressed in terms of the Mie co-
efficients a,, and b, (Stratton, p. 569)

Q =% 3 (2n + DRela, + by] (E-2)
n=1

where the a, and by are complex functions with arguments dependent on drop
radius, wavelength, and m, the complex refractive index of the water drop. @
is temperafure dependent through m, which varies by as much as a factor of
100% over the temperature range of 0 to 40°C (Ray, 1972).

For a distribution of drops with varying radii,

oQt = f Qi (a)n(a)da (E-3)

where n(a)da is the number of drops per unit volume with radii between a and
a + da, and the integration is over the range of drop radii.

The drop size distribution, n(a), has been determined by direct observation to
be approximately proportional to the rainfall rate, R, by an exponential relation
of the form (Laws and Parsons, 1943; Marshall and Palmer, 1948)

n(a) = n(o)e-®ar™2! (E-4)

where n(O) and @ are constants determined from fits of measured distributions,

The resulting intensity for the case of a distribution of drop sizes, at the wave-
length A, for a rainfall rate R is then, from Equation (E-1)

@ 2 _ -1 foua N ata ) da

E-5
| g () 12 (E-5)

If the rainfall rate varies along the path L, the path variable must also be
integrated, i.e.

lvwe _ - S ax fdaQy@@, 2y nfa, RG]

E-6
g, (1) 12 (5-9)

KRE.1 9%,
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The intensity ratio above is usually expressed as a dB ratio, referred to as the -
tattenuation' of the wave. From Equation (E-6) :

il

10 log [e_./;L dx fda Qt(a,h)n[a,R(x)]]
10

. L
4.343 f dx f Qy(a, M) nla, R(x)] da
4]

The classical or 'gingle scattering' formulation for rain induced attenuation was
shown to be of the form

A(dB)
(E-7)

I

[ \Ir(r) |2 Pl

s
g () 2
where the fotal cross section, in terms of the Mie coefficients, is
2w -
Q == D (2n + )Relay + by]
K2 0T
Consider the region where 27a << A, i,e., the Rayleigh scattering region,
where the drop size is much smaller than the incident wavelength. The Mie
coefficient expansions then converge very rapidly, and only the first two co~ :
efficients need be considered. As developed by Stratton (1941, p, 571}, 3
i 2wa\ s
a; = :lg-(m2 -1 (—'}\—) (E-8)
5 2. m? -1 21ra3+1_m4—1 2ma\’ (B0
B ! — 1 — i
' 3 m2 +2 \ A 15 m2 +2 \ A

When the ratio of radius to wavelength is so small that (27a /A\)® can be neglected
with respect to (27a /A)3, only by is significent. Then the eross section will be

21 Pk 2 m2 -1
= = = _ — 3 -
Q =5 3Re(0) = 3[3 (ka) Im( - )] (E-10)

E-3



|

where
o 2
A
Therefore
2 -1
Q; = kédma3 Im (22 " 2) (E-11a)
= kp; (E~11b)
where
m? - 1
. = dgad Im E-12
g (mz " 2) (E-12)
The intensgity ratio is then
2
[E(r) | - e"kpﬁiL (E~13)

g (r) |2

With |k pB; L | <1, which corresponds to attenuation values of 4.343dB or less,
the exponential can be expressed in series form, i.e.,

2 2523212
e P [1 _ kol + P L ocrepL1?) (E-14)
g @) 12 2



