CONTROL SYSTEMS DEVELOPMENT DIVISION

INTERNAL NOTE 77-EG-16

(NASA-TM-74762) PERFORMANCE CHARACTERISTICS OF THREE-PHASE INDUCTION MOTORS (NASA) 40 p

PERFORMANCE CHARACTERISTICS OF THREE-PHASE INDUCTION MOTORS

MAY 1977

National Aeronautics and Space Administration
LYNDON B. JOHNSON SPACE CENTER
Houston, Texas
MAY 1977
CONTROL SYSTEMS DEVELOPMENT DIVISION
INTERNAL NOTE 77-EG-16

PERFORMANCE CHARACTERISTICS
OF THREE-PHASE INDUCTION MOTORS

Prepared by

Marion E. Wood

Approved by

Gary W. Johnson, Head
Equipment and Installation Section

Forrest E. Eastman, Chief
Power Distribution and Control Branch

Robert G. Chilton, Chief
Control Systems Development Division

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
LYNDON B. JOHNSON SPACE CENTER
Houston, Texas
May 1977
This report summarizes an investigation into the characteristics of three-phase, 400 Hz, induction motors of the general type used on aircraft and spacecraft. Results of laboratory tests conducted in the PDCL (Power Distribution and Control Laboratory) are presented and compared with results from a computer program developed by the PDCB (Power Distribution and Control Branch). Representative motors were both tested and simulated under nominal conditions as well as off-nominal conditions of temperature, frequency, voltage magnitude, and voltage balance. Good correlation was achieved between simulated and laboratory results. The primary purpose of the program was to verify the simulation accuracy of the computer program, which in turn will be used as an analytical tool to support the Shuttle Orbiter. Orbiter 102 and subsequent vehicles require approximately 250 motors of the general type described above. A good understanding of the characteristics of these motors is essential.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>ii</td>
</tr>
<tr>
<td>1.0 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>2.0 LABORATORY TEST PROGRAM</td>
<td>2</td>
</tr>
<tr>
<td>2.1 TEST ARTICLES</td>
<td>2</td>
</tr>
<tr>
<td>2.2 TEST SET-UP</td>
<td>2</td>
</tr>
<tr>
<td>2.3 EQUIVALENT CIRCUIT PARAMETERS</td>
<td>3</td>
</tr>
<tr>
<td>2.4 PERFORMANCE TESTS</td>
<td>4</td>
</tr>
<tr>
<td>2.4.1 Test Method</td>
<td>4</td>
</tr>
<tr>
<td>2.4.2 Effect of Input Voltage Variation (Figure 4)</td>
<td>5</td>
</tr>
<tr>
<td>2.4.3 Effect of Frequency Variation (Figure 5)</td>
<td>6</td>
</tr>
<tr>
<td>2.4.4 Effect of Phase Unbalance (Figure 6)</td>
<td>6</td>
</tr>
<tr>
<td>2.4.5 Effect of Temperature Variation (Figure 7)</td>
<td>8</td>
</tr>
<tr>
<td>2.4.6 Effect of Two-Phase Operation on Bus Voltage (Figures 8 & 9)</td>
<td>8</td>
</tr>
<tr>
<td>3.0 COMPUTER SIMULATION</td>
<td>10</td>
</tr>
<tr>
<td>3.1 BACKGROUND</td>
<td>10</td>
</tr>
<tr>
<td>3.2 USE</td>
<td>10</td>
</tr>
<tr>
<td>3.2.1 Advantages</td>
<td>10</td>
</tr>
<tr>
<td>3.2.2 Limitations</td>
<td>11</td>
</tr>
<tr>
<td>3.3 RESULTS</td>
<td>12</td>
</tr>
<tr>
<td>3.3.1 Original Parameters</td>
<td>12</td>
</tr>
<tr>
<td>3.3.2 Improved Parameters</td>
<td>12</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>3.3.3 Extreme Operating Conditions</td>
<td>13</td>
</tr>
<tr>
<td>4.0 CONCLUSIONS</td>
<td>14</td>
</tr>
<tr>
<td>5.0 REFERENCES</td>
<td>15</td>
</tr>
</tbody>
</table>
FIGURES

Number	Page	Description
1 | 16 | TEST SET-UP
2 | 17 | EQUIVALENT CIRCUIT OF 3-PHASE IND. MOTOR (PER PHASE)
3 | 18 | TORQUE/SPEED CURVE FOR SAWYER MOTOR
4 | 19 | EFFECT OF INPUT VOLTAGE VARIATION
5 | 20 | EFFECT OF FREQUENCY VARIATION
6 | 21 | EFFECT OF PHASE UNBALANCE
7 | 22 | EFFECT OF TEMPERATURE VARIATION
8 | 23 | TWO PHASE OPERATION TEST SET-UP
9 | 24 | EFFECT OF 2-PHASE OPERATION ON BUS VOLTAGE
10 | 25 | EFFECT OF INPUT VOLTAGE VARIATION
11 | 26 | EFFECT OF FREQUENCY VARIATION
12 | 27 | EFFECT OF PHASE UNBALANCE
13 | 28 | EFFECT OF TEMPERATURE VARIATION
14 | 29 | EFFECT OF VOLTAGE VARIATION
15 | 30 | EFFECT OF FREQUENCY VARIATION
16 | 31 | EFFECT OF PHASE UNBALANCE
17 | 32 | EFFECT OF TEMPERATURE VARIATION
18 | 33 | COMPARISON BETWEEN LAB AND COMPUTER DATA
19 | 34 | STARTING AND BREAKDOWN TORQUE VERSUS TEMPERATURE
1.0 INTRODUCTION

The Space Shuttle Orbiter (OV-102 and subsequent vehicles) will have a complement of approximately 275 electric motors of various types and sizes. For most applications, the three-phase induction motor has been selected because of its availability, reliability, and relatively low cost. A thorough knowledge of the characteristics and limitations of this type motor is required to make sound technical judgments on its application.

This program consisted of two separate activities: (1) A laboratory test phase where several representative motors were tested on a dynamometer to obtain torque-speed curves under various nominal and off-nominal conditions, and (2) a computer simulation which predicts the performance of these same motors under similar conditions. Of interest is the performance of the motor under unbalanced voltage and phase conditions including loss of one phase and performance at each end of the temperature, frequency, and voltage limits. The motors for the test were selected to cover the speed and horsepower range of the majority of OV-102 motors. The laboratory portion of this task was accomplished by LEC (Lockheed Electronics Co.) under Contract NAS 9-12200 and is reported in reference 1.
2.0 LABORATORY TEST PROGRAM

2.1 TEST ARTICLES

<table>
<thead>
<tr>
<th>ITEM</th>
<th>PART NO.</th>
<th>MANUFACTURER</th>
<th>SPEED (HPS)</th>
<th>HORSEPOWER</th>
<th>NO. OF WIRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>42010309-11</td>
<td>Sawyer Ind. Inc.</td>
<td>10,700</td>
<td>0.12</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>FBT 3815-2</td>
<td>IMC Magnetics Inc.</td>
<td>5,250</td>
<td>0.50</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>FBT 2918-6</td>
<td>IMC Magnetics Inc.</td>
<td>7,000</td>
<td>0.25</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>FBT 2914-7</td>
<td>IMC Magnetics Inc.</td>
<td>10,500</td>
<td>0.25</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>FBT 2914-8</td>
<td>IMC Magnetics Inc.</td>
<td>7,000</td>
<td>0.125</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>FBT 2910-14</td>
<td>IMC Magnetics Inc.</td>
<td>10,500</td>
<td>0.125</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>1609</td>
<td>IMC Magnetics Inc.</td>
<td>10,500</td>
<td>0.015</td>
<td>3</td>
</tr>
</tbody>
</table>

2.2 TEST SET-UP

Figure 1 shows a typical set-up used throughout the test. The list of equipment is as follows:

<table>
<thead>
<tr>
<th>ITEM</th>
<th>DESCRIPTION</th>
<th>MANUFACTURER</th>
<th>MODEL NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wattmeter</td>
<td>Sensitive Research</td>
<td>U21398</td>
</tr>
<tr>
<td>2</td>
<td>Wattmeter</td>
<td>Grumman Aircraft Eng. Corp.</td>
<td>203-1</td>
</tr>
<tr>
<td>3</td>
<td>Wattmeter</td>
<td>Grumman Aircraft Eng. Corp.</td>
<td>203-1</td>
</tr>
<tr>
<td>4</td>
<td>Voltmeter</td>
<td>Weston</td>
<td>433</td>
</tr>
<tr>
<td>5</td>
<td>Ammeter</td>
<td>Weston</td>
<td>904</td>
</tr>
<tr>
<td>6</td>
<td>Ammeter</td>
<td>Weston</td>
<td>904</td>
</tr>
<tr>
<td>7</td>
<td>Ammeter</td>
<td>Weston</td>
<td>904</td>
</tr>
<tr>
<td>8</td>
<td>Current Sensor</td>
<td>American Aerospace Controls</td>
<td>1002-50-400</td>
</tr>
<tr>
<td>9</td>
<td>Watt Transducer</td>
<td>Scientific Columbus</td>
<td>XL34-2K5A2</td>
</tr>
</tbody>
</table>
2.3 EQUIVALENT CIRCUIT PARAMETERS

This portion of the test program was used to measure parameters of each motor for input to the computer program. The equivalent circuit of an induction motor is shown in figure 2. The analytical model used by the computer to simulate the motor is the electrical equivalent of the motor; therefore, values of the circuit parameters are essential. Most textbooks on a.c. machinery describe the methods used to obtain these parameters from "no-load" and "blocked rotor" tests. This is described very thoroughly in reference 3. The LEC report (reference 1) includes a table listing these parameters for all the motors under test. Results from only one motor will be presented in this report and this motor will be used as an example throughout the report:

Mfg. - Sawyer Industries, Model No. 42010304-11, 200 volts, 0.12 horsepower, 3-phase, 4-wire.

\[R_1 = 10.02 \text{ ohms}, \quad R_2 = 17.54 \text{ ohms}, \quad X_1 = X_2 = 16.7 \text{ ohms}, \]
\[X_m = 196 \text{ ohms}, \quad R_m = 0 \text{ (assumed)}. \]

The values for winding resistance presented in LEC report were obtained at room temperature. The resistance values presented above have been extrapolated to a 0°C reference for compatibility.
with the computer program. It should be pointed out that the accuracy of the computer program can only be as good as the accuracy of these parameters. Several assumptions are used in obtaining them from "no-load" and "blocked rotor" tests. Also several different methods are recognized to calculate the values and separate out the motor losses. Good laboratory test techniques are also critical in arriving at accurate values. One of the purposes of this investigation is to compare results between the laboratory test data and the computer simulation and to use this to refine the assumptions and techniques. Such variations will be discussed as they are made later in the report.

2.4 PERFORMANCE TESTS

2.4.1 Test Method

These tests were conducted with a set-up as shown in figure 1. The objective of the test is to measure motor performance at various torque loads ranging from stall (or starting) to no load. The points of greatest interest will be the stall torque, breakdown torque, and full load (or normal running) torque. These are shown for reference in figure 3 which is a torque speed curve for the Sawyer motor under nominal conditions. Nominal conditions for this motor are assumed to be as follows: balanced input voltage of 120 volts per phase with a phase angle of 120° between phases; 95°F winding temperature, and 400 Hz input frequency. Tests were also conducted at off-nominal conditions. Curves for these various conditions are shown in figures 4 through 7.
2.4.2 Effect of Input Voltage Variation (Figure 4)

Rockwell/Space Division specification (MH 0004-002), "Electrical Design Requirements for Electrical Equipment Utilized on the Space Shuttle Vehicle," permits a voltage swing of ±6.1% from nominal. If a linear relationship between input voltage and starting torque is assumed and these are expressed in terms of percent change from nominal, every change in input voltage of 1% will result in a change in starting torque of approximately 2%. This would indicate torque is roughly proportional to the square of the input voltage. Whereas this is not strictly true, it is a good rule-of-thumb method to estimate motor torques for small variations in input voltage. This also applies to full load torque and breakdown torque. In the case of the Shuttle Orbiter with a potential ±6.1% voltage swing, we can expect a torque variation on the motors, due to voltage variation alone, of approximately 12%. A point of clarification is needed at this point regarding the output of the motor at a given load (assume full load torque shown on figure 3). An induction motor operating in its stable operating region (i.e., to the right of the knee of the curve) will automatically compensate for torque changes by changing speed (or slip). By the same token, that same motor, when subjected to a lower voltage, will automatically adjust to the load at a reduced speed provided the load torque is not greater than the breakdown torque at the lower voltage. There is a practical limit on how far one can go in operating at a reduced voltage. This becomes a problem when the torque required by the load stays fixed as speed decreases. A simplified explanation of this follows: As the motor slows down (slip increases) to meet the torque demand, motor current increases. This results in increased I^2R losses in the stator and rotor and consequently
increased heating. The end result is a decrease in efficiency and potential failure. This is not a problem if adequate design margins are provided for.

2.4.3 Effect of Frequency Variation (Figure 5)

The effect of frequency changes on motor torque is not as straightforward as voltage. Figure 5 shows that starting torque and breakdown torque decrease with increasing frequency, whereas this is not apparent at the full load torque. This can partially be explained as follows: The motor is heavily inductive at the low speeds making the impedance very nearly proportional to frequency. Torque, which is proportional to current is therefore lower at the high frequency. At the high speed end the inductive effect is not nearly as dominate and the higher inherent speed of the motor causes the curve to shift in favor of the high frequency. Specification MF 0004-007 (reference 4) specifies a tolerance of ±7 Hz (1.75%) on frequency for the Orbiter. Input power at the upper limit of this frequency range would result in a reduction in starting torque of only 3%.

2.4.4 Effect of Phase Unbalance (Figure 6)

Balanced operation is defined as follows: Each of the three phase voltages are equal in magnitude and are shifted in phase by 120° from each other. Tests were conducted with one of the three phases shifted 10° from its nominal position making it 110° from one phase and 130° from the other. Results shown on figure 6 indicate negligible effect on torque, particularly when one considers that the phase unbalance on the Orbiter will be held to less than 2°. Two-phase operation is shown plotted on this same figure since this can be considered an extreme
condition of phase unbalance. This deserves some discussion since it could exist on Orbiter in the event of a loss of one phase or failure of a motor winding. The following set of conditions is assumed:

1. The motor is 4-wire with neutral connected. (Note: If neutral is not connected, the motor will have zero starting torque under 2-phase conditions.)

2. The lost phase is electrically disconnected from the rest of the system (if the lost phase is still connected to other loads on the failed bus, the motor will generate an EMF for those loads resulting in a different motor performance characteristic).

3. Two hypothetical types of loads are assumed for the motor. Curves for these loads are shown dotted in figure 6. Curve A represents a centrifugal blower (or fan) and curve B represents a reciprocating compressor. Both loads are selected to present a rated load on the motor which is 23 oz-inches.

The intersection of the load line with the torque-speed curve is the steady state operating point. These are labeled 1, 2, and 3 on the figure. The centrifugal blower (curve A) represents a very easy load for a motor since it requires an extremely low starting torque. With this type load, the motor would start under 2-phase conditions and would run at approximately 10,350 RPM (operating point 3). With the reciprocating type load (curve B), the motor would not start with two phases since the load torque is higher than the starting torque of the motor. The motor would also run slower with the reciprocating load (approximately 9,850 RPM). Another question one might ask concerning the motor performance under 2-phase conditions is
whether or not the motor would fail. One way to approach this question is to take a look at the amount of power loss dissipated by the motor under the various conditions. The motor, operating under balanced 3-phase conditions, driving either of these loads dissipates approximately 50 watts. The same motor, operating under 2-phase conditions, dissipates from 100 to 130 watts depending on the type load. Obviously this motor will run hot under these conditions and possibly fail. Therefore, motors which are required to operate under 2-phase conditions, such as on Orbiter, must be appropriately derated.

2.4.5 Effect of Temperature Variation (Figure 7)

The effect of temperature on motor torque is shown in figure 7. Curves for three temperature values are shown. Unfortunately, the limited temperature range of the laboratory data does not tell the entire story of temperature effect on starting torque. Over the temperature range shown on these curves, the starting torque increases with decreasing temperature. This does not hold true as the temperature is decreased to zero degrees F. and below. This will be discussed later and computer predicted results will show the temperature effect down to -200°F.

2.4.6 Effect of Two-Phase Operation on Bus Voltage (Figures 8 & 9)

The above discussion on the effect of phase unbalance assumed that the deenergized phase was electrically disconnected from its respective power bus. It was pointed out that if this deenergized phase were still connected to the bus and if other loads to the bus were also connected, the back EMF of the motor winding would be impressed on those loads. These loads in turn
would draw current from the motor and affect motor performance. In effect the motor would be operating as a two-phase motor driving a mechanical load and also as a single-phase transformer powering an electrical load. This poses some interesting questions regarding the performance of the power distribution system as well as the motor itself. One test was conducted to show these effects. The test set-up is shown schematically in figure 8. As would be expected, a voltage is present on the deenergized bus due to magnetic coupling between the motor windings. This voltage is shown in figure 9 as a function of bus load in volt-amps (VA). The middle curve is most realistic since the motor has a mechanical load and the neutral is connected. The mechanical load represents less than 50% of its three-phase rating; however, this is probably a realistic situation for Orbiter motors. Under this condition then, we see approximately 91 volts on an open circuited bus and it falls rapidly to approximately 45 volts if the bus is loaded with a 240 VA load (60 ohms).

The top curve shows motor dissipation as a function of bus load. The dotted line shows the approximate dissipation of this motor under rated conditions. Anything above this will heat the motor above its rating. Notice that with no mechanical load on the motor at all, a 210 VA load will cause the motor to operate above its rated level. With a 10 oz-inch load on the motor, it will operate satisfactorily with two phases provided the bus load is less than 70 VA.

This data should not be considered in absolute terms since it is valid for only one motor and does not take into account operating environments, special mounting, design margins of safety, reactive loads, etc. It is valid only to show relative...
effects on bus voltage and motor performance with varying bus loads. Additional testing is needed in this area to look at different size motors and different bus loading.

3.0 COMPUTER SIMULATION

3.1 BACKGROUND

Shuttle Orbiter 102 and subsequent vehicles require approximately 250 three-phase, 400 Hz induction motors. These motors represent a significant load on the a.c. inverters. An understanding of the performance characteristics as well as the effect on the a.c. system of this type motor is essential. For this reason, a limited computer model was developed in the summer of 1975. Dr. N. A. Demerdash of VPI (Virginia Polytechnic Institute) developed themodel under the NASA/ASEE Fellowship Program. Basically it computes performance of the motor in terms of torque, horsepower, efficiency, etc., using Thevenin's equivalent circuit methods and symmetrical component transformation techniques. This model is described in detail in reference 2.

3.2 USE

3.2.1 Advantages

The computer model has three basic advantages. First, it can be used to gain information on motor characteristics when the motor itself is not available for test, provided equivalent circuit parameters of the motor can be obtained. These parameters can usually be obtained from the motor manufacturer. Second, a laboratory program to test a motor under several operating conditions is time consuming and requires a large
variety of test equipment. The computer can simulate these various conditions and obtain results in a fraction of the time. Third, the computer can easily apply destructive excitation and/or operating conditions with no fear of destroying expensive components. Worse case combinations which are difficult to realize in the laboratory can also be examined.

3.2.2 Limitations

The computer model has several limitations on accuracy and operating modes. Some of the more significant of these are discussed below:

1. The equivalent circuit is only an approximation of the actual.

2. The equivalent circuit parameters are obtained at only two points on the torque/speed curve (i.e., no load and stall).

3. Judgment factors are needed to determine whether or not skin effect in stator slots must be considered.

4. The program does not take into account nonsinusoidal input voltages.

5. Rule-of-thumb approximations are made in determining and separating out the various losses for input to the computer. These include core losses, copper losses, friction and windage losses, and stray load losses.

Even with the above limitations, good correlation between computer and laboratory results can be achieved. As was stated earlier, one of the purposes of this program was to identify the discrepancies and to use the information to refine both the computer model and laboratory test techniques. This is an area
where future work is anticipated. In some cases where absolute values are required, it may be necessary to conduct laboratory tests. In other cases where a general trend is of interest, the computer model should suffice.

3.3 RESULTS

3.3.1 Original Parameters

Motor performance characteristics were obtained for the same operating conditions previously described for the laboratory test to show the degree of correlation between laboratory and computer results. Curves are shown in figures 10 through 13. In comparing these curves with the laboratory results, it is apparent that the computer consistently shows a higher stall torque and a lower full load torque than actual. The discrepancies are significant enough that an explanation and, if possible, some refinement in the computer program or test technique is needed.

3.3.2 Improved Parameters

The laboratory data consistently shows a drooping torque characteristic as the stall point is approached. This is due to heating of the rotor and stator which is significant at low speeds. A variation in test methods could correct this problem; however, for the purpose of this report, the drooping characteristic is neglected. Future laboratory test procedures will be revised.

Textbooks on the subject of test methods to obtain equivalent circuit parameters differ in their approach to obtaining these parameters. In view of the discrepancy between computer and
laboratory results, it was decided to repeat this test using a different approach. Short circuit tests were conducted using a reduced frequency as well as reduced voltage. This more nearly simulates the actual conditions in the rotor during operation. Reactance parameters, using the revised test, were approximately 10% higher than before. Rotor resistance showed a decrease of approximately 20%. A second set of performance characteristics were obtained using the revised parameters. These results are shown in figures 14 through 17. A comparison between these curves and the laboratory data shows good correlation especially at starting and rated loads, which are the points of interest.

As an example, a comparison of the data at nominal conditions (400 Hz, 120 volts balanced, 95°F) is as follows:

<table>
<thead>
<tr>
<th>Operating Parameter</th>
<th>Lab. Data</th>
<th>Computer Data</th>
<th>Percent Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting Torque (oz.in.)</td>
<td>35.0</td>
<td>33.6</td>
<td>4.0%</td>
</tr>
<tr>
<td>Full Load Speed @ 23 oz-in (RPM)</td>
<td>10,800</td>
<td>10,600</td>
<td>1.9%</td>
</tr>
</tbody>
</table>

Also for comparison purposes, figure 18 shows curves at nominal conditions obtained by the three different methods—laboratory, computer data with original parameters, and computer data with revised parameters.

5.3.3 Extreme Operating Conditions

The degree of correlation achieved using the revised parameters permits a good confidence level in the computer results. With this then, we can look at extreme and possibly destructive conditions and predict motor performance. Since the number of
extreme conditions is unlimited and for the most part of no interest insofar as Orbiter is concerned, only one such condition will be examined. Temperature seems to be the most logical since some of the Orbiter motors will experience a wide range of operating temperatures. Figure 17 shows torque speed curves for several temperatures ranging from -200°F to 250°F. Of particular interest is the changing shape of the curve as temperature is decreased. The low temperature curve has a shape very similar to a NEMA Design "A" which is characterized by normal starting torque, low slip, and high efficiency. At high temperatures the curve is similar to a NEMA Design "D" which is characterized by high starting torque, high slip, and low operating efficiency. This type characteristic is usually achieved by using higher resistant materials in the rotor. Figure 19 shows how starting and breakdown torques vary with temperature. This curve should be of interest to an applications engineer who has to select a motor for use where a large variation in operating temperature is anticipated.

4.0 CONCLUSIONS

The performance characteristics of most interest to an applications engineer using induction motors are speed, torque, and the input electrical parameters and how these vary with operating conditions. This report described the effect of several off-nominal operating conditions such as could be encountered on the Shuttle Orbiter. The data shows that frequency and phase unbalance have a very minimal effect on motor performance. For example, at the upper limit of the frequency tolerance, the starting torque is only 3% below nominal. The effect of the maximum phase unbalance is even smaller. Voltage and temperature variations have a significant effect on motor performance however, particularly on starting torque. For
example, a voltage variation of ±6%, which could be encountered on Orbiter, affects starting torque approximately ±12%. Temperature variations can affect starting torque by as much as 50%.

The data acquired during the laboratory portion of this program was also useful in verifying the accuracy of the computer program. As a result, some refinements in the methods used to acquire input data for the computer were developed. The computer-predicted results, for nominal operating conditions, were found to be within ±4% of actual test results. This is considered satisfactory where trends rather than absolute values are required.

5.0 REFERENCES

FIGURE 1. TEST SET-UP
OUTPUT POWER \(P_o = \left(I_2^2 \right) \left(R_2' \frac{1-S}{S} \right) \) - (FRICTION AND STRAY LOAD LOSS) WATTS

FIGURE 2. EQUIVALENT CIRCUIT OF 3-PHASE IND. MOTOR (PER PHASE)
Figure 4
EFFECT OF INPUT VOLTAGE VARIATION
Figure 5
EFFECT OF FREQUENCY VARIATION

BALANCED VOLTAGE
V = 120 V, 1 N
T = 68°F
Figure 6

Effect of Phase Unbalance

\[F = 400 \text{ Hz} \]
\[V = 120 \text{ V}, \phi \cdot N \]
\[T = 95^\circ \text{F} \]

Balanced Operation

One Phase Shifted 10° from Nominal

Two-Phase Operation

Graph

- X-axis: RPM x 1000
- Y-axis: Torque (oz-inches)

Key points marked on the graph.
FIGURE 7
EFFECT OF TEMPERATURE VARIATION

ORIGINAL PAGE IS OF POOR QUALITY

BALANCED VOLTAGE
F: 400 Hz
V: 120 V, φ-N

50°F
95°F
150°F

TORQUE (lb.-in. x 1,000)

KPM x 1,000
RATED DISSIPATION

- MOTOR LOADED (10 OZ_IN), NEUTRAL CONNECTED
- MOTOR UNLOADED, NEUTRAL CONNECTED
- MOTOR UNLOADED, NEUTRAL DISCONNECTED

FIGURE 9. EFFECT OF 2-PHASE OPERATION ON BUS VOLTAGE
Figure 1.2
Effect of Input Voltage Variation

For 400 Hz
T = 95°F
Balanced Voltages

Torque (oz. inches)

RPM x 1000
Figure 11
Effect of Frequency

Original page is of poor quality.

Balanced Voltages
V = 120 V, S-N
T = 90°/i
FIGURE 12.

EFFECT OF PHASE UNBALANCE

\[F = 400 \text{ Hz} \]
\[V = 12 \text{ V}, \Phi - N \]
\[T = 95^\circ \text{F} \]

Graph Details:
- **Axes:** Torque (oz-inches) vs. RPM x 1000
- **Labels:**
 - 2-phase operation
 - Balanced voltages
 - One phase shifted 10° from nominal
Figure 13

Effect of Temperature Variation

Balance Voltages
- $F = 400 \text{ Hz}$
- $V = 120 \text{ V}, \phi \text{-N}$

Axes:
- Torque (Oz-Inches)
- RPM x 1000

Graph Description:
- The graph shows the variation of torque with RPM at different temperatures.
- The data points indicate a decrease in torque as RPM increases, with different curves representing varying temperature conditions.

Note:
- Original page is of poor quality.
Figure 14

Effect of Voltage Variation

** Balked Values**

- Voltage: 135 V
- Frequency: 400 Hz
- Temperature: 95°F

Graph Details

- Torque (oz.-inches) vs. RPM (x 1000)

Legend

- 135 V
- 140 V
- 95 V
FIGURE 15

EFFECT OF FREQUENCY VARIATION

BALANCED VOLTAGE
V = 120V, Φ-N
T = 95°F
Figure 10
Effect of phase unbalance

Original page is of poor quality.

F = 400 Hz
V = 120 V, 60 Hz
T = 75°F

Torque (oz-inches)

RPM x 1000
Figure 17

Effect of Temperature Variation

Original page is in poor quality

Resistance Value: 777
F: 400 Hz
V: 120 V, 1:1

Torque (in inches)

RPM x 1000
Figure 18

Comparison between Lab and Computer Data

- $F = 400 \text{ HP}$
- $T = 95 \degree \text{ F}$
- $V = 120 \text{ Volts}$, $\phi \cdot N$,
 - Balanced

Legend

- Δ - Laboratory Data
- \times - Computer Data - Original Parameters
- \circ - Computer Data - Revised Parameters
Figure 19
Starting and Breakdown Torque Versus Temperature

Original Page is on Poor Quality

Breakdown Torque

Starting Torque

Torque (oz. inches)

Winding Temp. (°F)

-200 -100 0 100 200 250