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A GENERALIZED ORTHOGONAL COORDINATE SYSTEM

FOR DESCRIBING FAMILIES OF AXISYMMETRIC

AND TWO-DIMENSIONAL BODIES

Peter A. Gnoffo
Langley Research Center

SUMMARY

A generalized curvilinear orthogonal coordinate system is presented which can be
used for approximating various axisymmetric and two-dimensional body shapes of interest
to aerodynamicists. Such body shapes include spheres, ellipses, spherically capped cones,
flat-faced cylinders with rounded corners, circular disks, and planetary probe vehicles.
In addition, a set of transformation equations is developed whereby a uniform velocity
field approaching a body at any angle of attack can be resolved in the transformed coordi-
nate system. The expressions for the metric coefficients in this coordinate system are
derived, and it is found that two of the metric coefficients are identically equal. The
Navier-Stokes equations are written in terms of a generalized orthogonal coordinate sys-
tem to show the resultant complexity of the governing equations. Also outlined is a solu-
tion procedure to obtain the flow field surrounding a planetary probe vehicle traveling
at 0° angle of attack at supersonic velocity through a perfect gas.

INTRODUCTION

The introduction of vector-processing computer systems has enhanced the feasibility
of solving the full Navier-Stokes equations for compressible flow over various body shapes.
However, the efficiency of vector processing is a function of how'well (or how simply) a
problem can be vectorized (ref. 1). In treating the flow over an axisymmetric body, it is
advantageous if the body and the surrounding flow field can be transformed into a simple
rectangular coordinate system. The vectorization is further simplified if the boundary
conditions are transformed to one boundary of a rectangle, and the free-stream conditions
are transformed to the opposite boundary of the rectangle.

In this paper an orthogonal coordinate system with these properties is presented for
analytic body shapes which approximate spherically capped cones, flat-faced cylinders with
rounded corners, circular disks, and planetary probe vehicles. The orthogonal coordinate
system will also handle exactly the transformation of bodies with circular or elliptical
cross sections.



SYMBOLS

An,B,C constants of transformation

h metric coefficient

H total enthalpy

^ length of body

Z characteristic cone length defined in equation (14)
\s

m slope

N integer

p pressure

r coordinate in transformed space

R radius of curvature

s arc length

t time

T temperature

u velocity along line of constant r

v velocity along line of constant 9

V total velocity

x,y,z coordinates in real space



Y „ maximum body radiusmax

a angle of attack

•y ratio of specific heats

6 coordinate in transformed space

6 „ value of 9 for maximum body radius
til 3.X

X second coefficient of viscosity

jit viscosity

p density

T. . shear stress along surface perpendicular to i-axis in direction parallel
to j-axis

$ coordinate in transformed space for axisymmetric case

i// reference angle for line of constant r in real space

w, .U>O .CL>Q velocities in generalized coordinates
L £t O

Subscripts:

b body

B base

c cone conditions

n nose



r pertaining to conditions along line of constant 9 and 0

s shock

9 pertaining to conditions along line of constant r and 0

$ pertaining to conditions along line of constant r and 9

°° free-stream conditions

DISCUSSION OF THE PROBLEM

The solution of the Navier-Stokes equations over a two-dimensional or axisym-
metric body presents many difficulties in the computational formulation of the problem.
One of the major factors which affects the complexity of the computational formulation is
the choice of a suitable coordinate system to be used as a basis for differencing the gov-
erning equations.

There are basically two options available in the selection of such a coordinate sys-
tem. The first option is simply to use either a rectangular coordinate system for a two-
dimensional body or a cylindrical coordinate system for an axisymmetric body. The
Navier-Stokes equations are in their simplest form (metric coefficients all equal to one)
in a rectangular coordinate system so there is no need to calculate or store metric coef-
ficients in a computer program. The Navier-Stokes equations written in a cylindrical
coordinate system are only slightly more complicated and include a metric coefficient
which varies as the distance from the axis of symmetry (ref. 2). However, there is no
guarantee in either system that the body of the problem will pass through node points of
the finite difference mesh used in the coordinate system (see fig. 1). Mesh points can be
chosen to lie on the body surface, but the problem becomes more complex because a large
amount of work is necessary in order to compute mesh points and boundary conditions for
each different body shape which needs to be examined. This specification of mesh points
will also force one to use differencing techniques based on unequal spacing at points close
to the body. On the other hand, if mesh points are not made to lie on the body, some type
of interpolation scheme has to be written into the program in order to compute boundary
conditions and property derivatives on the body surface. Another problem with the rec-
tangular and cylindrical coordinate systems is that there is no simple way of. concentrat-
ing mesh points near the surface of an arbitrary body. Such a concentration is desirable
because the viscous effects in a boundary layer lead to large gradients which will be inade-
quately defined by a coarse mesh.



In reference 3, Moretti describes a polar coordinate system (fig. 2) which is more
realistic for describing two-dimensional and axisymmetric body shapes. This transformed
coordinate system is generally nonorthogonal but does have the advantage of being able to
map most arbitrary bodies onto a rectangle. Also mesh points can be concentrated near
the body.

The second option available in the selection of a coordinate system is to choose a
system based on the body itself. Within this option, two subgroups can be defined: an
orthogonal body-oriented coordinate system and a natural coordinate system. Often an
orthogonal body-oriented coordinate system can be used to describe bodies composed of
combinations of spheres, cones, and other analytic body shapes. In this coordinate sys-
tem, the coordinates of a point are determined by s (the distance along a body surface
measured from the axis of symmetry) and n (the distance along a line which is normal
to the body at s). A body-oriented coordinate system can be used, for example, to
describe a spherically capped cone with a hemispherical afterbody joined smoothly at the
corners (fig. 3(a)). The major problem with this system in this case is that four different
sets of metric coefficients would have to be calculated, one set for each analytic section
of the body. The body curvature, and consequently, one of the metric coefficients and the
derivative with respect to s of another metric coefficient would not be continuous func-
tions of s. The matching of flow properties at the boundaries of these various analytic
sections and the formulation of the differencing procedure at these boundaries would add
to the complexity of the problem. Also, in a body-oriented coordinate system, any dis-
continuity in slope on the body makes it impossible to describe a large section of the flow
field. This situation would occur, for example, in attempting to describe the base flow
for a sphere-cone configuration (fig. 3(b)). The body-oriented coordinate system would
also break down when a concavity occurs in the body since the concavity leads to multiple
specifications of some area in front of the concavity (see fig. 3(c)).

In a natural coordinate system, the body surface itself forms a boundary of a trans-
formed computational space. Some obvious examples of this approach are a spherical
coordinate system to describe flow over a sphere, a cylindrical coordinate system to
describe flow over a cylinder, and a parabolic coordinate system to describe flow over a
body with a parabolic cross section (fig. 4 and ref. 4). Metric coefficients for all of these
coordinate systems are simple to calculate. Moreover, there is little difficulty in con-
centrating mesh points near the body because the computational mesh system is composed
of lines parallel to the body which can be concentrated as close to the body as desired.

One very interesting natural coordinate system which is generally nonorthogonal is
the "rock transformation" (ref. 5). Transformation functions are generated such that all
boundaries of a problem are coincident with coordinate lines. The transformation of the
governing equations results in a complex system of partial differential equations with



simple boundary conditions. Other interesting coordinate systems and coordinate trans-
formations are outlined by Roache in reference 6.

In this paper, a more general natural orthogonal coordinate system is presented
which can be used to approximate many different axisymmetric and two-dimensional body
shapes. An example of this new coordinate system, shown in figure 5, transforms the
area surrounding the body in real space into a rectangular computational grid. In this
grid a finite length of one coordinate axis is the transformed body. As will be shown, the
coordinate system is able to uniquely describe the area surrounding bodies with concavi-
ties. As might be expected, the expressions for the metric coefficients become more
complicated; however, it turns out that two of the metrics are equal to each other. It can
also be noted that for some of the bodies which can be described by this method a body-
oriented coordinate system can be used to describe the area surrounding the analytic body.
However, it is the development of the natural coordinate system that will be discussed in
the following sections because that system can be used to describe the region surrounding
all of the bodies presented in this paper.

GENERAL TRANSFORMATION

The transformation from the (0,r,$) domain to the (x,y,z) domain for an axisym-
metric coordinate system is written as

x(0,r,0) = (-B sinh r + C cosh r) cos 9 -
N

n=2

nr cos(n0)

N
(B cosh r - C sinh r) sin 9 + /

n=2
Anenr sin(n0) COS (j) )

N

(B cosh r - C sinh r) sin 9 + / A
n=2

enr sin(n0) sin <p

(1)

where N is a positive integer >2 and An, B, and C are arbitrary constants. A two-
dimensional transformation to the xy-plane is obtained by setting 0 = 0.

Lines of constant r are perpendicular to lines of constant 9 in the xy-plane.
This relationship can be proved by showing that the slope mn of lines of constant r is

u
equal to the negative inverse of the slope
intersect; that is,

of lines of constant 9 where such lines



N
9y_\ (B cosh r - C sinh r) cos 8 + / nA enr cos(n0)
on 1 I—I n

!^I= D±2 (2)
**\ N
90'r (B sinh r - C cosh r) sin 0 + ") nAnenr sin(n0)

n=2

N
3y\ (B sinh r - C cosh r) sin 0 + /> nAnenr sin(n0)

8y\ ^_^= . ^
9x/n 3x\ N

0 (-B cosh r + C sinh r) cos 0 - / ^n6"1" cos(n0)
n=2

By inspection it is seen that mr = —.
me

Lines of constant r are transformed to circles in the xy-plane in the limit as
r approaches negative infinity. This transformation can be verified by observing cer-
tain properties of the transformation. Terms involving the factor enr. will vanish
as r approaches negative infinity. Also note that -sinh r approaches cosh r as
r approaches negative infinity. Therefore, for large negative r, equations (1) can be
written approximately as

x(0,r) » QB + C) cosh r) cos 0

(r « 0) (4)
y(0,r) * ((B + C) cosh r] sin 0

Equations (4), which are valid approximations to the transformation for large nega-
tive r, are the equation of a circle in the xy-plane with a radius equal to (B + C) cosh r.
Also note that lines of constant 0 become straight lines with slope mr equal to tan 0
in the region where equations (4) are valid.

The line segment r = 0, 0 ^ Q < 2-n is transformed into a two-dimensional body
in the xy-plane and becomes one boundary of the computational space in the 0r-plane. An
axisymmetric body is defined by mapping the line segment r = 0, 0 g 0 ^ TJ to the
xy-plane and rotating the image around the x-axis Zir rad. Thus,



Two dimensions

IN

xb = C cos d - } An cos(n0)

IN

= B sin # + / An sin(n0)

N

I
n=2

N

I
n=2

(0 g 9 < 2n) (5)

Axisymmetric

x, = C cos 6 - / An cos(n0)
N

I
n=2

N

I
n=2

IN

B sin 9 + / An sin(n0) cos

N

B sin 9 + / An sin(n0)
n=2

sin 0

0 ^ 0 ^ 77

0 g < 2?r
(6)

The lines 0 = 0 and 6 = 2n will therefore form two more boundaries of the com-
putational space for a two-dimensional problem while the 8 = 0-plane, d = w-plane and
the 0 = 0-plane, <p = 27r-plane are the boundaries in computational space for an axi-
symmetric body. The final boundary of computational space is specified as r = r^. The
magnitude of r^ must be chosen large enough so that approximate boundary conditions
can be applied.

It should be noted also that this transformation can be written as a conformal map-
ping for two dimensions. By setting w = x(0,r) + iy(0,r), E = (B + C)/2, and
AI = (B - C)/2 and by simplifying the result, one obtains

N

w = Eelz - Y A e'1L n
-mz

n=l



where

z = 9 + ir

and

The problem which now remains is to pick the constants A , B, and C to
describe the body of interest.

DETERMINATION OF BODY SHAPE

At first it appears that it might be possible to determine from equations (5) the con-
stants An, B, and C for any body shape by using a Fourier transformation. However,
once the constants for y(0) have been specified, all but one of the constants for x(9)
are also specified. Therefore, it should not be expected that any arbitrary body shape can
be produced by some systematic approach to determining the constants in equations (5).
Also, once the body shape and the computational space are completely defined, the metric
coefficients will have to be calculated. The calculation of these metrics (to be described
later) becomes extremely tedious if N is large. Therefore, the approach taken in
this section is to see the kind of body shapes that result by defining a small number of
constants. \

}

Families of Ellipses

For all An = 0 the transformation from the 0r-plane to the xy-plane results in
families of ellipses. For B = C the transformation results in a circle of radius B
(fig. 6(a)). For B / C the transformation results in an ellipse (fig. 6(b)) of eccen-
tricity e, where e is defined by the following equation (ref. 7):

(7)

Families of Triangular Shapes

Families of triangular shapes occur when AQ / 0 and A >, = Q- The radius of
curvature on the body can be written as follows (ref. 7):



R =
d 9 99x 9^y 9y 9 x

°0 ao2 90 afl2
C7u OC7

(8)

The radius of curvature becomes infinite when the denominator of the last expres-
sion in equation (8) equals zero and the numerator is finite. For B = C = 1 and
Ag = 1/4, one can substitute into equation (8) to find that an infinite radius of curvature
occurs for 0 = 0 , 2?r/3, and 4?r/3 (fig. 7(a)). For A2 > 1/4 or A2 < 1/4 the body-
shape change appears as is shown in figure 7. Care must be taken in that if Ag is too
large the body contour will intersect itself (fig. 7(c)). This condition is unacceptable for
defining a real body shape in the xy-plane.

Also, in this three parameter system where AQ, B, and C are free parameters,
there is the option of specifying three independent geometric conditions for a particular
body type, and then it is possible to solve for A%, B, and C. This approach was taken
to define the bodies in figure 8 by specifying a nose radius of curvature Rn at 9 = n,
an infinite radius of curvature at 9 = 0, and a maximum body radius Y .

Families of Rectangular Shapes

Families of rectangular shapes occur when A, = 0, Ao / 0, and A „ = 0. If
equations (5) are substituted into equation (8), then for B = C = 1 an infinite radius of
curvature exists at 0 = 0, it/2, n, and 3?7/2 for Ao = 1/9. The resulting body shape
(fig. 9) approximates the cross section of a flat-faced cylinder with rounded corners. As
with the triangular shapes, three independent geometric conditions can be specified in
order to solve for Ag, B, and C. By specifying an infinite radius of curvature at
0 = 0, a total body length L, and a maximum body radius Y ' the body shapes in fig-

U lYlclX
ure 10 were constructed. Note that the body outlined in figure 10(b) can be used to
approximate the cross section of a flat, circular disk.

Families of (N+l)-Sided Shapes

For B = C = 1 and A^ = —- with all other An equal to zero, a family of

(N + l)-sided shapes is produced. This can be shown as follows. Let

x, (0) = cos 0 - -=- cos(N0)
D N2

yh(0) = sin 0 + -^ sin(N0)
D Z

(9)

10



Substituting the above expression into equation (8) yields

->2
I-sin 0 +

I
R =

1 i2 r i±= sin(N0) •+ cos 6 + ̂  cos(N0)

-sin 8 + — sin(N0) -sin 0 - sin(N0) - cos 0 + ^ cos(N0) -cos 0 + cos(N0)

The denominator of equation (10) represented by D reduces to

D= (1 - = ) < ! - cos((Nfl)0)} (11)

If Q - then the denominator becomes
N + 1

D = (l - -^(l - cos(2k77)"] = 0 ' (12)1-

for k equal to 0 or an integer. Thus for N = 3 points of zero curvature (infinite

radius of curvature) occur at Q - - for k = 0, 1, 2, and 3. For N = 4 points of zero

2k77curvature are produced when 9 - — -, and for N = 5 they are produced when 9 = —%-.
5 D

Figures 11 and 12 show the resulting transformation into the xy-plane and demonstrate
these conditions for N = 4 and N = 5.

Approximation to Spherically Capped Cones

A good approximation to spherically capped conical bodies can be obtained by
including one extra parameter An into the family of triangular shapes described in a
previous section. Thus,

= C cos 6 - A cos(30) - A cos(20)

(13)
yb(0) = B sin 0 + AS sin(30) + A2 sin(20)

The constants A,, A,, B, and C are determined by simultaneously solving the
equations specifying basic geometric parameters of a spherically capped cone, namely,

> and Rr> (fig- 13)- The base of the sphere cone at 0 = 0 is specified as* n

11



having zero curvature. The radius of curvature of the nose Rn at 9 = n is specified.

The value of 9 for the maximum body radius is determined by setting —(B^^} = 0.max d0 \ mdx/
The distance along the symmetry line I defined by the equation

is determined from the sphere-cone parameters by

r{, o j *-. nsin (7,,

The maximum radius of the body Y is set equal to the base radius of the equivalent
IT13-X

sphere cone. These equations can now be written as

C - 9A, - 4A0 = 0 (16)
t O L*

t-B - 3A, +2A 9 ) 2

* - - - — =RnC - 9A~ + 4A9O £

3 A 3 c o s ( 3 0 max) + 2 A 2 c o s ( 2 0 ma X ) + B c o s 0 max = 0

-A3 cos(30max) - A2 cos(20max) + C cos 0max - A3 + A2 + C = l

A3 sin(30max) + A2 sin(20max) + B sin 0 = Y max

. Equations (16) to (20) can be solved numerically using Newton's method to obtain A2,
An, B, C, and 9 . Specifications of various spherically capped cones and the equiva-

lent transformed bodies appear in figures 14 to 18. True sphere cones are plotted over
these bodies to demonstrate the agreement of the analytic approximation to the true body
shape. For a ratio of nose radius to base radius equal to 1/2, fairly good agreement is
obtained in the cone-angle range from 55° to 60°. The approximation becomes less accu-
rate as the cone angle decreases. The forebodies of the analytic bodies for these low cone
angles approximate hyperbolas better than sphere cones. A hyperbola of equivalent nose
radius and asymptotic angle is plotted in figure 18. It is again cautioned that completely
arbitrary specification must be avoided. For example, specifications for very wide angle
bodies with small ratio of nose radius to base radius will result in bodies which loop

12



around and intersect themselves (fig. 19). Once a specific sphere-cone configuration is

picked and the parameters A,,, A2, B, and C are obtained, the transformed body

should be plotted to determine whether or not agreement to the desired shape is
satisfactory.

It should be noted that lines of constant r are concentrated near the body surface
and lines of constant 9 are concentrated in regions of sharp curvature. (See, for
example, fig. 20.) This natural concentration of nodal points near the body surface should
prove advantageous when solving the flow-field equations around the body using differ-
encing techniques because the largest gradients in the flow-field variables typically occur
near the body and at the corners of the body where severe expansion phenomena occur.

^ xPlanetary Probe Vehicles

A commonly considered configuration for planetary probe vehicles is a spherically
capped conical forebody with a hemispherical afterbody. The forebody and the afterbody
are blended together through a rounded curve at the shoulder as in figure 21. This con-
figuration can be approximated by including one additional term A* to the sphere-cone
approximation terms. Thus,

cos(40) - A^ cos(3#) - A, cos(20) + C cos 9

| (21)

sin(30) + A9 sin(29) + B sin 9

As with the sphere-cone approximation, the constants in equations (21) can be deter-
mined by specifying the basic geometric parameters of a planetary probe vehicle. It is
possible to solve for A2, A3, A4, B, and C by defining a nose radius of curvature
Rn, a base radius of curvature RB, a vehicle length fy, a maximum body radius Ymax,
and the length from the nose to the location of the maximum body radius on the sym-
metry line lc. To specify Ymax it is also necessary to determine 9max such that

y(0max) = Ymax and ^(emax) = °- These specifications result in the following

equations:

-(B + 4Ad + 3A, +2A 9 ) 2

-^ ^— = Rn (22)
(-C + 16A4 + 9A3 + 4A2) B

f-B + 4A, - 3A, +2A 9 ) 2

A .i 3 *L.= n (23)
(C + 16A 4 -9A 3 + 4A 2 )

13



2C - 2A3 = l^ (24)

A4 sin(40max) + A3 sin(30max) + A2 sin(20max) + B sin 0max = Ymax

4A4 cos40max) + 3A3 cos30 + 2A cos20 + B cos 0 = 0 (26)

-A4 cos(40max) - A3 cos30 - A c o s 2 0 + C cos

+ A4 - A3 + A2 + C = lc (27)

Equations (22) to (27) can be solved using Newton's method to obtain A4, A3, A2,
B. C. and 6m-v. Values for R,,, Rn, Y^ . L , and l were determined from fig-

UlctA o 1A IIlcLA U t ^.

ure 21 and then used to calculate the constants in equations (21). .The approximating ana-
lytic body shape was then plotted and it appears in figure 22. Note that the afterbody in
this figure is a better approximation to a blunt, spherically capped cone than to a hemi-
sphere. This condition can be improved by specifying a much larger radius of curvature
for the base than the true Rg of the actual vehicle. Also, the forebody cone angle and
the nose radius-of-curvature specification for the analytic body were readjusted to agree
more closely with the real body. The resulting analytic body shape (fig. 23) has an after-
body which looks like a hyperbola and which more closely approximates the shape of the
real configuration as shown in figure 24.

METRIC COEFFICIENTS

The metric coefficients of an orthogonal curvilinear coordinate system are of the
nature of scale factors which give the ratios of differential distances to the differentials
of the coordinate parameters (ref. 8). The equations which are used to define the metric
coefficients can be derived in the following manner. Consider the orthogonal transforma-
tion as defined in equations (1) for axisymmetric bodies. Let a 0-curve be defined in space
as a line of constant r and constant 0 in equations (1). If "r is the position vector of
a point P in space, then a tangent vector to the 0-curve is given by

(28)

d~fwhere sfl is the arc length along the 8 -curve. The vector - is a unit vector tangent
9S0

to the 0-curve which is redefined as 1JL (see fig. 25). Equation (28) -can now be rewritten
as

14



(29)

ds,
where hfl = —- is the length of 0. Therefore the relation for hfl can be written as

ds, 9r
30

(30)

The geometric relationship between 8, ufi, and h- on the 9 -curve is shown in
figure 25. The final expression for hfl, along with hr and h, which can be obtained
in a similar manner, becomes

N

(B sinh r - C cosh r) sin 0 + / nAn6*^ sin(nfl)
n=2

N

(B cosh r - C sinh r) cos 0 + ) nAne cos(n0)
n=2

,nr (31)

0 0 0

+ (?I\ + (
8r 8r

jN

(_B cosh r + C sinh r) cos 0 - Y nAn e
nr cos(n0)

n

n=*

IN

(B sinh r - C cosh r) sin 0 + / nAnenr sin(n0)
N

Z
n=2

(32)

(B cosh r - C sinh r) sin 0 + "> Anenr sin(n0)
N

I
n=2

(33)

2 2We note that hQ = h in equations (31) and (32). The metric coefficients are all
positive in a right-handed coordinate system so long as TL is in the same direction

— _» "
as 0, and "ur is in the same direction as R. Therefore, it can be written that

15



(34)

TRANSFORMATION OF UNIFORM VELOCITY FIELD

Note that in figure 20 the direction of increasing r is towards the body and the
direction of increasing B is counterclockwise around the body. The velocity compo-
nent u is directed along lines of constant r in the direction of increasing 9. The
velocity component v is directed along lines of constant 8 in the direction of
increasing r. Let a uniform velocity field of magnitude VTO approach a body in the
xy-plane at angle of attack a. All angles are measured in standard trigonometric
fashion from 9 = 0 in a counterclockwise direction. Let »// be defined as the angle of
the vector tangent to a line of constant r in the direction of increasing 9. In figure 26
it is clear that

u = V cos (i// - a) = V (cos i// cos a + sin i// sin a)

v = -V sin (i// - a) = -V (sin if/ cos a - cos i// sin a)
(35)

It is now necessary to determine cos i// and sin i// as a function of r and 9.

The differentials dx and dy along a line of constant r can be determined from
equations (1) in the xy-plane and are

dx =

dy =

i>
(B sinh r - C cosh r) sin 9 + y nAnenr sin(n0)

IN
(B cosh r - C sinh r) cos 9 + \ nAnenr cos(n0)

N

I
n=2

N

I
n=2

(36)

From figure 27 and equations (32), (34), and (36), it can be shown that

16



COS I / /=

sin i/ =

dx

IN

(B sinh r - C cosh r) sin Q + / n^n
eTlT sin(n0)

N

Z
n=2

IN

(B cosh r - C sinh r) cos 9 + / nAnenr cos(n0)
N

I
n=2

(37)

TRANSFORMATION OF FLOW EQUATIONS

AND BOUNDARY CONDITIONS

An example of the procedure used in applying the generalized orthogonal coordinate
system can now be presented. Consider the problem of calculating the flow.field sur-
rounding the axisymmetric body described in figure 23 as this body moves through the
atmosphere at hypersonic speed.

The body shape defined in figure 23 was generated with the following parameters
substituted into equations (22) to (27):

RB = 3.55

Rn=1.10 a _ c;o<-
C ~

= 3.55

Equations (22) to (27) were then solved using a Newton-Raphson iteration scheme
to obtain

A4 = 0.068805390

A3 = -0.071121784

A2 = -0.047149036

B = 2.286877227

C = 1.703878216
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These constants completely specify the coordinate system which appears in fig-
ure 23, and are also substituted into equations (31) to (33) to obtain the metric coefficients.

In order to simplify the presentation here, it is assumed that the body is at 0° angle
of attack to the incoming flow and that the fluid behaves as a perfect gas everywhere.
Furthermore, it will be assumed that there is no radiative energy transfer nor any inter-
nal heat generation in the flow field.

By starting with the governing equations written for a general curvilinear orthogonal
coordinate system (refs. 2 and 9), the following equations can be obtained:

Continuity

Xj-momentum

8
—- Il1llr)

llof-'w1 1 Ilr)ll<3 IP f Uty-l - '11atl-i -s o ij ax, 2 3\r K i 11- T

n
)J -- T2l

ah., ah1

>-momentum

a
+— X^l^ - T12)

9hi 9ho
=0 (40)
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Energy

9x2
q2)J =

where

= 2 / j — — _ ^ _ _ / h
Vh2 9X2 hlh2 9xl/ hlh2h3\9Xl

= 0 • (41)

Equation of state

1 / 0 r>\~l

(42)
y

\
h9h,w1) +-£_fh1h,a)9U (43)2 3 U 1 1 3 2j

T99 = 2/j(,— —2- + —L —2\ + _A_/^_/h9h,w1) + -^-/h^h,^ ] (44)

o , , / •"• J z J I A / d /v, v, ,, \ d /K v, , \\ MK^T33 = 2^ nr^- + r-^^ri + ̂ ^^'—^h^i)+— (hih^n (45)
,

+ — +
hlh2h3\9Xl

__ .. ^ d ; z\ JL o L\ MRxTi? T?i = ^ ; r~ +r~"s—k~ ^46)12 21 U. 8Xl\h21 h2ax2 lh1

_ M 9
li = "^A^
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In equations (38) to (47), the x, coordinate is defined as 9 and the x, coordi-
nate as r.

The metric coefficients can now be calculated from equations (31) to (33) and sub-
stituted into the governing differential equations with

hx = he = h (48)

h = ' h = h (49)

9X2

(51)

(52)

w1 = u (53)

w2 = v (54)

(Derivatives with respect to <p are equal to 0 since this is an axisymmetric flow.)

In figure 23 the stagnation streamline for 0° angle of attack coincides with the lines
of constant 0 for 0 = 0 and 0 = n. For 0 = 0 or 0 = TT, it can be seen from equa-

3h , ,
tions (31) to (33) that h , = 0, —2. = 0, and — = 0 on the stagnation line. The limiting

T 3r 80
form of the governing equations on the stagnation streamline can now be obtained by
differentiating equations (38) to (41) with respect to 0. Thus, for 0 = 0 or 0 = n,

Continuity

3 f2~l 3 r -i a a—aa— h p + 2—fhpu] + —[hpv] + hpv——,—— = 0
3tL J 3 0 L J dr^J M 3tU

'(55)

30 '
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9- momentum

u = 0

r-momentum

32h ,
&.

/p
n/ 33

30

Energy

-fh2pHl +2-^-
9tL ^J ae

+ q

82h

30

where on the stagnation line

T12 = T21 =

(56)

(57)

(58)

(59)

T,, = Z f j . \ - — + —
ih 30 h2 3r

30 3r

30

(60)
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(61)

(62)

The boundary conditions on the body are

No slip

u(0) = 0

v(0) = 0

Adiabatic wall

f>> • °
The boundary conditions at 0 = 0 (the afterbody stagnation line) and 0 = n (the

forebody stagnation line) are

u(r) = 0

^(r) = 0
30

(r) = 0
30

= 0
30

3H (

30
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Outflow boundary conditions must be applied at r = r^. The manner in which the
boundary conditions can be specified or approximated is a question which must be exam-
ined. However, it should be noted that due to the exponential stretching of the mesh as
the magnitude of r increases, nominal values of rTO can move the outflow boundary
far away from the body. For example, if some approximate outflow boundary conditions
can be calculated .at a distance of 100 body lengths downstream, then r^ can be calcu-
lated for this problem using equations (4) as r^ = -5.181.

It is also possible to map the outflow boundary to infinity and retain orthogonality
by using an additional coordinate transformation. For example, the coordinate
transformation

r = a In TJ

will map

-oo < r < 0 to 0 <?7 g 1

where a is an arbitrary constant.

An explicit time-dependent scheme with appropriate initial conditions can now be
used to program the governing equations in the rectangular domain of figure 23. (The
details of any particular solution technique and the computational problems associated
with it are not the subject of this paper.) The equations can then be integrated forward
in time until a steady state is reached and a final flow-field solution is obtained.

CONCLUDING REMARKS

A transformation procedure has been presented which has the capability of making
analytic approximations to axisymmetric and two-dimensional body shapes of interest to
aerodynamicists. The transformation from a rectangular domain in the 6>r-plane results
in an orthogonal coordinate system in the xy-plane which surrounds the specified body
shape. Configurations which can be modeled by this procedure include spheres, axi-
symmetric ellipses, spherically capped cones, flaWaced cylinders with rounded corners,
circular disks, and planetary probe-vehicle shapes. Good approximations to spherically
capped cones are obtained for bodies having a ratio of nose radius to base radius of 1/2
and cone angles varying from 55 to 60 .

This transformation procedure should be well adapted to vector-processing com-
puter systems because the body boundary conditions can be easily calculated along one

23



boundary of a computational plane. Also there is no need to divide the computational
plane into a forebody flow region and an afterbody flow region.

Langley Research Center
National Aeronautics and Space Administration
Hampton, VA 23665
February 16, 1977 .
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Figure 1.- Rectangular .coordinate system over two-dimensional body.
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y - 7 T - 0

rs(0)-rb(0)
Shock

Body

Figure 2.- Polar transformation for blunt-body calculations.
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(a) Spherically capped cone with hemisphere afterbody.

Area not described by
coordinate system.

y-»
(b) Spherically capped cone.

Coordinates of A
(s.-.yJ

Coordinates of B

(c) Body with concavity.

Figure 3.- Body-oriented coordinate system.
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(a) C = 1.

Figure 6.- Family of ellipses for B = 1.
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(b) A2 = 0.5.

Figure 7.- Continued.
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(c) A2 = 0.1.

Figure 7.- Continued.
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r - 0

r - 0

(d) A2 = 0.75.

Figure 7.- Concluded,
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Figure 11.- Family of pentagonal shapes for N = 4.
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0 -7T

Figure 12.- Family of hexagonal shapes for N = 5.
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max

Figure 13.- Geometry of spherically capped cone.
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ar-60°

max 2.375
Ib0.5
Rn-1.1875

RB - 2.25

Figure 21.- Planetary probe vehicle.
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Ymax'2-375

Rn-1.1875
RB - 2.25

0C-60°

I, - 3.5

Analytic Approximation

- Planetary Probe Vehicle

Figure 22.- Planetary probe-vehicle approximation.
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Analytic Approximation

Planetary Probe Vehicle

Figure 24.- Adjusted planetary probe-vehicle approximation.
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