General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.

- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.

- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.

- This document is paginated as submitted by the original source.

- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.
REMOTE SENSING OF GEOLOGIC MINERAL OCCURRENCES
FOR THE COLORADO MINERAL BELT USING LANDSAT DATA

(E77-10176) REMOTE SENSING OF GEOLOGIC
MINERAL OCCURRENCES FOR THE COLORADO MINERAL
BELT USING LANDSAT DATA Final Report, 1
Jul. 1975 - 30 Sep. 1976 (Colorado School of
Mines, Golden.) 161 p A08/MF A01 CSCL 08G G3/43 00176

NASA Contract NAS5-20955

INVESTIGATORS:
Robert H. Carpenter
David W. Trexler

Type III Report for Period 1 July 1975 - 30 September 1976

Prepared for
NASA/GODDARD SPACE FLIGHT CENTER
Greenbelt, Maryland 20771

REMOTE SENSING PROJECTS
DEPARTMENT OF GEOLOGY
COLORADO SCHOOL OF MINES • GOLDEN, COLORADO
Remote Sensing of Geologic Mineral Occurrences for the Colorado Mineral Belt using LANDSAT Data

Robert H. Carpenter and David W. Trexler

Colorado School of Mines
Golden, Colorado 80401

Type III

7/1/75 to 9/30/76

James C. Broderick
Landsat Technical Monitor
NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771

The object of this program was to determine the value of LANDSAT imagery as a practical and productive tool for mineral exploration along the Colorado Mineral Belt. An attempt was made to identify all large, active and/or abandoned mining districts on the imagery which initially were discovered by surface manifestations. A number of strong photolinements, circular features and color anomalies were identified. Some of these form a part of the structural and igneous-volcanic framework in which mineral deposits occur. No specific mineral deposits such as veins or porphyries were identified. Promising linear and concentric features were field checked at several locations. Some proved to be fault zones and calderas; others were strictly topographic features related to stream or glacial entrenchment. The Silverton Caldera region and the Idaho Springs-Central City district were chosen and studied as "case histories" to evaluate the application of LANDSAT imagery to mineral exploration. Evidence of specific mineralization related to ore deposits in these two areas were observed only on low level photography.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>2</td>
</tr>
<tr>
<td>DESCRIPTION OF THE COLORADO MINERAL BELT</td>
<td>4</td>
</tr>
<tr>
<td>LINEAR STUDY</td>
<td>8</td>
</tr>
<tr>
<td>THE SILVERTON CALDERA - A CASE HISTORY</td>
<td>21</td>
</tr>
<tr>
<td>THE IDAHO SPRINGS-CENTRAL CITY AREA - A CASE HISTORY</td>
<td>25</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>28</td>
</tr>
<tr>
<td>APPENDIX A (Tables I, II, III)</td>
<td></td>
</tr>
<tr>
<td>APPENDIX B</td>
<td></td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Plate</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Topolinears</td>
</tr>
<tr>
<td>2</td>
<td>Topolinears and mineral occurrences and mining districts</td>
</tr>
<tr>
<td>3</td>
<td>Structure of the Silverton Caldera and adjacent areas (Burbank, Plate 1, pp. 535)</td>
</tr>
<tr>
<td>4</td>
<td>Geologic sketch map of Central Colorado (Tweto & Sims, GSA Bull., Aug. 1964)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Figure</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Index map of the Colorado Mineral Belt (Tweto & Sims, GSA Bull., Aug. 1964)</td>
</tr>
<tr>
<td>2</td>
<td>Location of principal mountain ranges and the mineral belt (Tweto & Sims, GSA Bull., Aug. 1964)</td>
</tr>
<tr>
<td>3</td>
<td>Explanation of symbols used on Plates 1 & 2 and Figures 4 through 11</td>
</tr>
<tr>
<td>4</td>
<td>Mining districts: (1) Jamestown-Gold Hill, (2) Fig. 4 to 11</td>
</tr>
<tr>
<td>5</td>
<td>Mining districts: (4) Montezuma-Breckenridge, (5) Kokomo-Climax-Leadville</td>
</tr>
<tr>
<td>6</td>
<td>Mining districts: (6) Battle Mountain (Red Cliff-Gilman), (7) Homestake, (8) Independence</td>
</tr>
<tr>
<td>7</td>
<td>Mining districts: (9) Aspen-Ashcroft-Snowmass, (10) Marble, (11) Taylor River</td>
</tr>
<tr>
<td>9</td>
<td>Area south of Gunnison</td>
</tr>
<tr>
<td>10</td>
<td>Mining district: Creede</td>
</tr>
<tr>
<td>11</td>
<td>Mining districts: (19) Lake City-Ouray-Silverton-Telluride, (20) Rico</td>
</tr>
<tr>
<td>12</td>
<td>Calderas of the San Juan Volcanic Field (Stevens, pp. 938)</td>
</tr>
<tr>
<td>13</td>
<td>Vein systems of the Central City-Idaho Springs area (Lovering, pp. 223)</td>
</tr>
</tbody>
</table>
INTRODUCTION

A contract was signed between the National Aeronautical and Space Administration and the University of Utah on March 31, 1975, under which the University agreed to evaluate the application of LANDSAT imagery to mineral exploration in the Nevada-Utah Mineral Belt and the Colorado Mineral Belt. The Colorado School of Mines subsequently was granted a sub-contract to assume the responsibility of the Colorado Mineral Belt investigations. These studies were started July 1, 1975.

The specific objective of this study was to establish methods and criteria for using LANDSAT multi-spectral scanner imagery as a practical and productive tool for mineral exploration along the Colorado Mineral Belt.

The Colorado Mineral Belt includes a northeast-southwest zone of major Precambrian and Tertiary shearing and intrusive activity. It extends from the Jamestown mineral district on the northeast to the Rico district on the southwest, a distance of approximately 300 miles. It ranges from 20 to 50 miles in width and includes most of the mining districts of the State (see fig. 1).

The first step in the program was a detailed literature search to establish a comprehensive bibliography of the Mineral Belt. References by mineral districts and by counties are given in Appendix A. This was accompanied by a study of LANDSAT multi-spectral scanner imagery, the scale of which is 1/1,000,000. No U-2 photography was available. Low level black and white photos of the Silverton Caldera area and the Idaho Springs-Central City district also were evaluated in conjunction with "case history" studies of these two areas.
Figure 2. Shape and extent of the Colorado mineral belt.
DESCRIPTION OF THE COLORADO MINERAL BELT

Introduction

The Colorado Mineral Belt is a tectonic zone which formed initially in Precambrian time and which was rejuvenated during the Laramide orogeny. Most all of the major metallic mineral deposits of Colorado occur within this zone. It extends diagonally across the State from Jamestown on the northeast to Rico on the southwest, a distance of over 300 miles. The width of the Belt varies from 20 to 50 miles (figs. 1 and 2).

Geologic Backdrop

Precambrian metamorphic rocks and granites constitute the country rocks in the northeast, central and locally in the southwest where the belt crosses the deeply eroded portion of the Front Range, the Sawatch Range and the San Juan uplift. Mesozoic sedimentary rocks occur in the Middle Park region between the Front and Sawatch Ranges, whereas Paleozoic and Mesozoic sediments with a thick cover of Tertiary volcanics predominate in the San Juan uplift (fig. 2).

Laramide and mid-Tertiary igneous activity consisting of dikes, sills, stocks and batholiths of intermediate to acidic composition occur along the Colorado Mineral Belt, reflecting mobilization of deeply buried crustal rocks in the root zone of the Belt.

In the central and northern part of the Mineral Belt tectonism is reflected by (a) a strong northeast arcuate trend in the Precambrian metamorphics and granites which probably formed when the crust was thin and somewhat mobile, by (b) northwest-trending faults including breccia reefs; they are parallel to the northwest-trending portions of the individual mountain arcs,
Figure 1. Location of principal mountain ranges and mineral belt in Colorado
by (c) north-northeast trending faults; these faults are essentially parallel to the Precambrian foliation trends, and by (d) east-northeast faults; they developed in the arcuate junctions where major foliation direction reversed trend very rapidly (Plate 4). These fault systems are believed to have developed as thrusts or high angle reverse faults in the Precambrian and were reactivated during the Laramide and Tertiary in part as strike slip faults resulting from east-west directed stresses (Plate 4). Low angle, northerly-trending thrust faults were active along the flanks of the Front Range and Sawatch Range as these arches developed during the early Tertiary.

In the southwestern part of the Mineral Belt deep-seated shearing related to failure within and along the flanks of the northwest-southeast trending Uncompahgre positive structural block appears to have been responsible for the mobilization of the crust and the subsequent expulsion of large volumes of intermediate to acidic volcanics and the emplacement of numerous underlying batholiths and stocks in the volcanic field. Failure over the crest of a number of the intrusives has resulted in the caldera features of this extensive volcanic pile which occupies approximately 25,000 km². There is a strong relationship in space and time during the Laramide and Tertiary between tectonic fabric along the Mineral Belt and igneous activity and mineralization. Deep rooted channelways are believed to have developed at the corners of wedge-shaped blocks in the northern part of the Mineral Belt (Plate 4). Molybdenum porphyry intrusions such as the Urad-Henderson are located at sharp changes in trend in the foliation of the Precambrian rocks and with associated faulting (Plate 4). Mineralization in the San Juan volcanic field is clearly associated with late stage failure within and between the caldera centers (Plate 3).
Two periods of mineralization are evident along the Colorado Mineral Belt: (a) precious and base metal vein and replacement deposits of Laramide age occur in the central and northeastern part of the Belt, (b) mid-Tertiary molybdenum porphyry deposits occur in the mid-portion of the Belt. The precious and base metal vein and breccia pipe mineralization in the San Juans also is mid-Tertiary in age.
LINEAR STUDY

Because the location of mineral occurrences along the entire length of the Colorado Mineral Belt is well documented an attempt was made by Dr. Trexler to relate visible linears to mineral deposits.

Procedure

Topolinears were plotted on LANDSAT transparencies using a Bausch & Lomb zoom stereoscope. Both LANDSAT 1 and 2 images of each scene which contained any part of the area of interest were annotated. Table I lists the frames used in this study. The photolinears were transferred from all images to photographic enlargements (1:500,000 approximate) with a transfer scope and from the enlargements to AMS 20 topographic maps. A composite overlay was made at 1:250,000 scale. This is shown in reduced form on Plate 1 (scale 1:500,000 approximate). The locations of mineral occurrences were then plotted on the overlay (Plate 2). These locations were taken from USGS Prof. Paper 138, Plate I.

Interpretation of Linears

With the exception of ring structures associated with the caldera of the San Juan Mountains, no apparent relation could be seen between the topolinears and mineral deposits.

The geologic significance of photolinears was studied using all available geologic maps in order to detect any relation between linears and mineral occurrences. Figure 3 is an explanation of symbols used on maps for identified topolinears.

Only 48, or about 0.05%, of the linears were identified from the Geologic Map of Colorado (scale 1:500,000). As would be expected, a much
Fig. 3. Explanation of symbols used on Plates 1 & 2, Fig. 4 - 11

- Faults and shear zones
- Joint control
- Dip control
- Foliation control
- Lithologic contact
- Dike or vein system
- Ring fracture of caldera
- Edge of volcanic flow
- Glaciated valley
- Unidentified topolinar
Figure 4. — Mining districts: (1) Jamestown-Gold Hill, (2) Caribou-Nederland, (3) Black Hawk-Central City-Idaho Springs — Georgetown.
Figure 5. — Mining districts: (4) Montezuma-Breckenridge, (5) Kokomo-Climax-Leadville.
Figure 6. - Mining districts: (6) Battle Mountain (Red Cliff-Gilman), (7) Homestake, (8) Independence.
Figure 7. — Mining districts: (9) Aspen-Ashcroft-Snowmass, (10) Marble, (11) Taylor River.
Figure 9. — Area south of Gunnison.
Figure 10. — Mining district: (18) Creede.
Figure 11. — Mining districts: (19) Lake City-Ouray-Silverton-Telluride, (20) Rico.
higher percentage of linears were identified from larger scaled maps. As for example about 50% of the linears within the coverage of USGS 1:24,000 quadrangle geologic maps could be identified (Table III).

Because large-scale geologic map coverage is limited, field checking was conducted in a number of areas of mineral occurrence in order to identify as many linears as possible and to see if these linears had any direct relation to mineral deposits. Figures 4 to 11 are large scale maps (1:250,000) of the mineral districts with both identified and unidentified linears shown. A brief discussion follows.

Figure 4 of the northern end of the mineral belt shows a high percentage of identified linears. Most of these are north-northeast and northwest Precambrian fractures. Northeast to east early Tertiary fractures were also identified. The northeast and east vein system at Central City and Idaho Springs (Fig. 14) were not detected, nor were the early Tertiary igneous stocks. Also the vein system could not be detected on 1:60,000 airphotos.

Figure 5; the mineralization at the Montezuma district (4) is associated with an early Tertiary stock which could not be detected. The east-west linear coincides with a known fault and parallels a strong set of east-west joints. The Kokomo, Climax, and Leadville districts (5) are along the trend of the Mosquito fault. The numerous sills, dikes, and stocks, which could not be detected, control the localization of ore minerals in Upper Paleozoic sediments.

Figure 6; the mineralization at Red Cliff and Gilman (6) is associated with sills and dikes in Paleozoic sediments (Fig. 13). A northeast joint trend was identified. Mineralization in the Homestake area (7) is associated with a northeast trending set of strong shear zones and parallel joints.
(Fig. 13). These were also identified. A shear zone associated with mineralization at Independence Pass (8) was not identified.

Figure 7; a few north trending faults were the only linears annotated in the vicinity of Aspen and Ashcroft (9). The Treasure Mountain uplift (Early Tertiary) near Marble (10) was annotated as a conspicuous curvilinear. Mineralization along the upper Taylor River (11) seems to be related to a conspicuous northeast trending set of joints.

Figure 8; mineralization at Winfield (12), Cottonwood Pass (13), and St. Elmo (16) is associated with conspicuous north to north-northeast sets of joints. At Pitkin and Ohio City (15) joint sets and a fault were identified with northwest and northeast trends. On the southwest side of the Garfield and Monarch districts (17) the dominant trend of foliation and jointing is northeast.

Figure 9; the northern part of this area is an old erosional surface cut in Precambrian rocks on which can be detected numerous joint sets except on some stream divides where low dipping Mesozoic sediments and Tertiary volcanics cap the older rocks. The curvilinear in the southeast corner is the Cochetopa caldera. The other curvilinears may also represent older ring structures associated with caldera.

Figure 10; the curvilinear south of the town of Creede is the Creede caldera. Mineralization, however, is to the north at (18) where no topolinears were noted.

Figure 11; two of the annotated curvilinears are known caldera structures. These are the Silverton caldera (central) and the Lake City caldera (northeast corner). Mineralization is dominantly along northeast and northwest veins with some east-west veins south of Telluride (Fig. 12). These vein systems were not detected.
Conclusions

The only detectable linears that can have a bearing on ore deposits and can be detected on LANDSAT imagery are those structural features which are capable of geomorphic expression such as faults, joints, and some contacts. Surficial features produced by volcanism and glacial erosion and deposition were also visible. Vein systems in general are not reflected in the topography because of their relative strong resistance.
THE SILVERTON CALDERA - A CASE HISTORY

Introduction

The San Juan Mountains which include the Silverton caldera, are located in the southwestern part of the Colorado Mineral Belt. They constitute a great, composite volcanic field covering an area 100 miles by 150 miles in which 18 calderas are known or are postulated (fig. 12). The volcanic rocks of this field consist of early stratovolcanos overlain by ash flow eruptions and pyroclastics. Calderas were superimposed as individual magmas moved upward toward the surface from an underlying regional batholith. This intrusive is identified by a sharp gravity low. The formation of the San Juan volcanic field extended in time from 35 m.y. to 20 m.y., but most of the volcanism occurred prior to 26 m.y.

Volcanic Sequence

A thickness of more than a mile of volcanic rocks rest on a basement of Precambrian, Paleozoic and Mesozoic rocks. These volcanics consist of lava flows, breccias, tuff-breccias, tuffs and welded ash-flow tuffs which average rhyo-dacite - quartz latite in composition, but range from andesitic basalt to rhyolite. There are many feeder dikes and sills and irregularly shaped porphyry intrusives within the volcanic pile.

Structural Fabric of the Region

The dominant structural pattern of the San Juan Mountains includes circular caldera centers and inter-connecting graben. These are indicated on intermediate level photography of 1/80,000 scale. In addition, both radial and concentric faulting form a strong structural fabric within and outward from each caldera center.
Figure 1.—Calderas in the San Juan volcanic field (patterned) in relation to Bouguer gravity field.
Silverton Caldera

The Silverton caldera, located on the western side of the San Juan volcanic field, serves as one of two case histories for this study. It is about 10 miles in diameter and is situated within the western half of the San Juan volcanic depression which is about 15 miles wide and 30 miles long (Plate 3). The volcanic and basement rocks of this caldera are broken by systems of radial and concentric fractures, and the rocks within and adjacent to the caldera are broken, tilted and irregularly faulted. This widespread rock failure developed access for hydrothermal solutions which permeated the fault systems to cause profound rock alteration and selective mineralization in the area.

Widespread propylitic rock alteration occurred throughout the Silverton caldera region during the late stages of volcanism as a result of fluids and gases moving outward from the underlying magma chamber and mixing with meteoric waters. The near surface rocks were altered to chlorite, calcite and clays, whereas deeper epidote, albite, and chlorite are the predominant alteration minerals. As a consequence, the rocks of the Silverton caldera region have been well bleached to white, tan and light gray with superimposed iron oxide staining in specific mineralized centers to brown, yellow, orange and red. The latter are readily identifiable on low level color photography.

Strong, late alteration by sulfur enriched fluids also developed around the periphery of the Silverton caldera, along local faulted blocks and related pipe-like bodies of breccia and intrusive rocks. This type of alteration also has been effective near some of the channelways through which these sulfur-enriched fluids passed. The adjacent rocks have been strongly leached or silicified and kaolinized and permeated with both sulphates and sulfides. They are well bleached and subsequently stained by surface oxida-
tion of pyrite. This sulfotaric alteration usually is restricted in nature and can be identified, in some instances, on low level photography.

Mineralization in the Silverton caldera area is of two types: (a) vein systems and (b) chimney or breccia pipe deposits. The former occur in extensive systems of open fissures and along major faults and splits. The latter are found in solfateric centers along the margins of the Silverton caldera. The ore occurs as shoots within the veins and as a matrix of the breccias within the chimneys. Some of the major veins can be identified on low and intermediate photographs.

Application of Imagery

The overall features of the Silverton caldera are identifiable on LANDSAT imagery. Semi-detailed caldera features and associated fault systems are evident on intermediate level photography. Individual faults are apparent on low level photography, some of which are known to be mineralized, but mineralization itself and hydrothermal alteration halos related to mineralization are not recognizable.
IDAHO SPRINGS - CENTRAL CITY AREA

Introduction

The Idaho Springs-Central City area in the northern part of the Colorado Mineral Belt is the second case history selected for this project. This area lies about 30 miles west of Denver along the southern edge of the Mineral Belt on the east slope of the Front Range. It has yielded an estimated 170 million dollars worth of gold, silver, base metals, and uranium since 1859.

Geologic Summary

Precambrian crystalline rocks, constituting the core of the Front Range are the host rocks of the Idaho Springs-Central City area. They consist of an interlayered and generally conformable succession of gneissic, granitic and pegmatitic suites derived initially from a sedimentary sequence. Nine different types of porphyritic intrusive rocks of Early Tertiary age cut across the Precambrian rocks including leucocratic granodiorite porphyry, quartz monzonite porphyry, and bostonite porphyries.

The gneissic rocks were folded during Precambrian time to develop broad north-northeast trending major folds which form the fundamental fabric of the area. They plunge gently to the northeast and southwest. Some contain siliceous breccias. A late Precambrian deformation formed northwest and north-northeast faults. Locally they form a closely spaced network particularly in the Central City district. Near the end of the Early Eocene igneous activity a third system of faults developed. Three main trends predominate: northeast, east-northeast, and east (fig. 13).

The ore base metal deposits of the area consist of veins and stockworks resulting from "filling of open spaces along faults and highly fractured zones."
Fig. 13

EXPLANATION

- Gold telluride veins
- Silver-lead veins
- Pyritic gold veins
- Eagarite fluorite veins
- Chalcopyrite veins
- Strong faults
 (Chiefly belonging to the
 basement reef period of folding)
- Pre-Cambrian shear zone

MAP, SHOWING THE ZONAL ARRANGEMENT OF THE ORES OF THE CENTRAL CITY—IDAHo SPRINGS MINING DISTRICT
The veins range from 1 to 3 feet in width and vary from well-defined, single fissures to complex, mineralized fractured zones. An extensively shattered, pipe-like body in the Central City district consisting of closely spaced, mineralized fractures, has been mined for its high gold content. This stockwork appears to have been formed by explosive activity.

Hydrothermal alteration adjacent to the veins is strong, but restricted to approximately the width of the vein on either side of the structure. Sericitization lies in an inner zone whereas propylitization has developed in an outer zone and grades outward into fresh rock. The hydrothermal fluids responsible for both the alteration of the wall rocks and the mineralization of the veins are believed to have been generated from an underlying magma body. Shallow intrusives, faulting, alteration and mineralization appear to be hood zone phenomena above the proposed magma body.

Application of Photography (Remote Sensing Technology)

Neither intermediate nor low level photography are effective in locating new veins or stockworks in the Idaho Springs-Central City area because of lack of surface expression and heavy vegetation and overburden.
CONCLUSIONS

1. LANDSAT imagery can cover large areas quickly and inexpensively, and there are some surface features in any given region that are general indicators of possible mineralization.

2. Lineament analysis of the less known geologic portions of the Colorado Mineral Belt on LANDSAT, intermediate and low level photography in conjunction with remote sensing techniques and ground geologic mapping may point to additional mineral target areas.

3. Orbital photography by itself is not considered adequate to fulfill exploration needs. It is useful in reducing the size of an exploration area, but like other remote sensing techniques, it is an applicable tool only when used in conjunction with detailed field work.

4. Linear structures are extractable from LANDSAT imagery.

5. Areas where orbital photography would be most useful in the search for mineral deposits include desert mountains or snow-free alpine mountains.

6. Areas extensively covered by soil, vegetation, clouds, or snow, no matter how favorable, are incapable of being evaluated.
EXPLANATION

Upper Tertiary intrusive rocks
Not including dikes shown by lines

Tertiary volcanic formations
Including Tseleevo Conglomerate
where present at base

Upper Cretaceous and lower
Tertiary intrusive rocks

Paleozoic and Mesozoic
sedimentary rocks undifferentiated

Precambrian rocks
Including antiformity, metamorphic,
and intrusive rocks; not shown

Contact

Principal features, dikes, veins, and
minor faults

Major faults
Dosked where approximately located.
Includes unrevealed faults

From: U.S.G.S. P.P. 535
(Plate 1)
Table I. LANDSAT Imagery Used

<table>
<thead>
<tr>
<th>Northern Front Range area</th>
<th>Aspen-Gunnison area</th>
</tr>
</thead>
<tbody>
<tr>
<td>LANDSAT - 1</td>
<td>LANDSAT - 1</td>
</tr>
<tr>
<td>1172-17135</td>
<td>1551-17161</td>
</tr>
<tr>
<td>1190-17140</td>
<td>1515-17171</td>
</tr>
<tr>
<td>1550-17100</td>
<td>1407-17190</td>
</tr>
<tr>
<td>LANDSAT - 2</td>
<td></td>
</tr>
<tr>
<td>2186-17015</td>
<td>1461-17174</td>
</tr>
<tr>
<td>2168-17022</td>
<td>1299-17203</td>
</tr>
<tr>
<td></td>
<td>LANDSAT - 2</td>
</tr>
<tr>
<td></td>
<td>2259-17070</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Southern Front Range area</th>
<th>San Juan Mountains area</th>
</tr>
</thead>
<tbody>
<tr>
<td>LANDSAT - 1</td>
<td>LANDSAT - 1</td>
</tr>
<tr>
<td>1172-17141</td>
<td>1551-17163</td>
</tr>
<tr>
<td>1190-17143</td>
<td>1191-17204</td>
</tr>
<tr>
<td>1153-17143</td>
<td>1461-17181</td>
</tr>
<tr>
<td>LANDSAT - 2</td>
<td></td>
</tr>
<tr>
<td>2186-17022</td>
<td>1425-17190</td>
</tr>
<tr>
<td>2276-17011</td>
<td>1299-17205</td>
</tr>
<tr>
<td></td>
<td>LANDSAT - 2</td>
</tr>
<tr>
<td></td>
<td>2259-17073</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>San Luis Valley area</th>
<th>Grand Junction area</th>
</tr>
</thead>
<tbody>
<tr>
<td>LANDSAT - 1</td>
<td>LANDSAT - 1</td>
</tr>
<tr>
<td>1550-17105</td>
<td>1516-17225</td>
</tr>
<tr>
<td>1172-17144</td>
<td>1156-17260</td>
</tr>
<tr>
<td>LANDSAT - 2</td>
<td></td>
</tr>
<tr>
<td>2276-17013</td>
<td>1462-17233</td>
</tr>
<tr>
<td>2186-17024</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LANDSAT - 2</td>
</tr>
<tr>
<td></td>
<td>2260-17124</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>North Park area</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LANDSAT - 1</td>
<td></td>
</tr>
<tr>
<td>1515-17165</td>
<td></td>
</tr>
<tr>
<td>1551-17154</td>
<td></td>
</tr>
<tr>
<td>1191-17195</td>
<td></td>
</tr>
<tr>
<td>1461-17172</td>
<td></td>
</tr>
<tr>
<td>1299-17200</td>
<td></td>
</tr>
<tr>
<td>LANDSAT - 2</td>
<td></td>
</tr>
<tr>
<td>2187-17074</td>
<td></td>
</tr>
</tbody>
</table>
Table II. Key to Mining Districts

(1) Jamestown-Gold Hill
(2) Caribou-Nederland
(3) Black Hawk-Central City-Idaho Springs-Georgetown
(4) Montezuma-Breckenridge
(5) Kokomo-Climax-Leadville
(6) Battle Mountain (Red Cliff, Gilman)
(7) Homestake
(8) Independence
(9) Aspen-Ashcroft-Snowmass
(10) Marble
(11) Taylor River
(12) Winfield
(13) Cottonwood
(14) Tincup
(15) Pitkin-Ohio City
(16) St. Elmo-Chalk Creek
(17) Garfield-Monarch
(18) Creede
(19) Lake City-Ouray-Silverton-Telluride
(20) Rico
Table III. Geologic maps used in the identification of topolinears

<table>
<thead>
<tr>
<th>USGS GQ Series</th>
<th>USGS MF Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>152 Ouray</td>
<td>176 Gray Head</td>
</tr>
<tr>
<td>267 Central City</td>
<td>760 Leadville</td>
</tr>
<tr>
<td>291 Ironton</td>
<td>761 Montrose</td>
</tr>
<tr>
<td>443 Berthoud Pass</td>
<td></td>
</tr>
<tr>
<td>504 Telluride</td>
<td></td>
</tr>
<tr>
<td>512 Marble</td>
<td></td>
</tr>
<tr>
<td>536 Dolores Peak</td>
<td></td>
</tr>
<tr>
<td>578 Oh-Be-Joyful</td>
<td></td>
</tr>
<tr>
<td>631 Bristol Head</td>
<td></td>
</tr>
<tr>
<td>788 Maroon Bells</td>
<td></td>
</tr>
<tr>
<td>797 Rico</td>
<td></td>
</tr>
<tr>
<td>833 Nederland</td>
<td></td>
</tr>
<tr>
<td>853 Snowmass Mountain</td>
<td></td>
</tr>
<tr>
<td>863 Hayden Peak</td>
<td></td>
</tr>
<tr>
<td>932 Highland Peak</td>
<td></td>
</tr>
<tr>
<td>933 Aspen</td>
<td></td>
</tr>
<tr>
<td>978 Tungsten</td>
<td></td>
</tr>
<tr>
<td>1004 Ruedi</td>
<td></td>
</tr>
<tr>
<td>1011 Wetterhorn</td>
<td></td>
</tr>
<tr>
<td>1052 Spar City</td>
<td></td>
</tr>
<tr>
<td>1053 Creede</td>
<td></td>
</tr>
<tr>
<td>1177 Rudolph Hill</td>
<td></td>
</tr>
<tr>
<td>1178 Powderhorn</td>
<td></td>
</tr>
<tr>
<td>1248 Black Hawk</td>
<td></td>
</tr>
<tr>
<td>1277 Ward</td>
<td></td>
</tr>
<tr>
<td>1287 Houston Gulch</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX B
SELECTED REFERENCES ON COLORADO'S MINERALIZED BELT

TABLE OF CONTENTS

PART I -- Selected References on Colorado Mineral Resources

PART II -- Selected References by County

Boulder
Chaffee
Clear Creek
Delta
Dolores
Douglas
Eagle
Fremont
Garfield
Gilpin
Grand
Gunnison
Hinsdale
Jackson
Jefferson
Lake
La Plata
Larimer
Mineral
Montrose
Ouray
Park
Pitkin
Routt
Saguache
San Juan
San Miguel
Summit
Teller
PART III -- Selected References by Mineral District

Alma
Aspen
Blue River
Bonanza
Breckenridge
Brush Creek
Calumet
Caribou
Cebolla
Central City
Central Jameston
Climax
Cochetopa
Creede
Cripple Creek
Crystal Mountain
Empire
Eureka
Freeland-Lamertine
Georgetown
Gold Brick
Gold Hill
Gilman
Horse Shoe
Idledale
Irwin
Kokomo
Lake Como
La Plata
Lawson-Dumont
Leadville
Magnolia
Marshall Pass
Mineral Point
Monarch
Montezuma
PART III — Selected References by Mineral District
- Continued -

North Gate
Ouray
Placerville
Platoro-Summitville
Poughkeepsie
Powderhorn
Quartz Creek
Red Cliff
Red Mountain
Rico
Silverton
Slick Rock
Sneffels
Summitville
Tarryall
Telluride
Ten Mile
Tin Cup
Tomichi
Tungsten
Twin Lakes
Uncompahgre
Uravan
Ward
Weston Pass
White Pine
PART I

SELECTED REFERENCES ON COLORADO MINERAL RESOURCES
SELECTED REFERENCES ON COLORADO MINERAL RESOURCES

Colorado Metal Mining Fund Board, 1960, Tungsten mines of Colorado: Colorado Metal Mining Fund Board, 78 p.

Heyl, A. V., 1964, Oxidized zinc deposits of the United States, including parts on Colorado, U.S.G.S. Bulletin 1135-C.

Jones, O. M. 1914, Bibliography of Colorado geology and mining with subject index from the earliest exploration to 1912, Colorado Geol. Survey Bull. 7.

PART II

SELECTED REFERENCES BY COUNTY
SELECTED REFERENCES ON BOULDER COUNTY MINERAL RESOURCES

SELECTED REFERENCES ON CHAFFEE COUNTY MINERAL RESOURCES

SELECTED REFERENCES ON CLEAR CREEK COUNTY MINERAL RESOURCES

--------- 1959, Geology and ore deposits of the Chicago Creek area, Clear Creek County, Colorado: U. S. Geol. Survey Prof. Paper 319, 92 p., 13 pls.

Tooker, E. W., 1963, Altered wallrocks in the central part of the front range mineral belt, Gilpin and Clear Creek Counties, Colorado, USGS Prof. Paper 434.

SELECTED REFERENCES ON DELTA COUNTY MINERAL RESOURCES

SELECTED REFERENCES ON DOLORES COUNTY MINERAL RESOURCES

Coffin, R. C., 1921, Radium, uranium, and vanadium deposits of southwestern Colorado: Colorado Geol. Survey Bull. 16, 231 p., 3 pls.

Finley, E. A., 1951, Geology of the Dove Creek Area, Dolores and Montezuma Counties, Colorado, USGS Oil and Gas Investigations Map, OM-120.

SELECTED REFERENCES ON DOUGLAS COUNTY MINERAL RESOURCES

SELECTED REFERENCES ON EAGLE COUNTY MINERAL RESOURCES

SELECTED REFERENCES ON FREMONT COUNTY MINERAL RESOURCES

SELECTED REFERENCES ON GARFIELD COUNTY MINERAL RESOURCES

George, R. D., 1921, Oil shales of Colorado: Colorado Geol. Survey Bull. 25, 78 p., 2 pls.

SELECTED REFERENCES ON GILPIN COUNTY MINERAL RESOURCES

SELECTED REFERENCES ON GRAND COUNTY MINERAL RESOURCES

SELECTED REFERENCES ON GUNNISON COUNTY MINERAL RESOURCES

SELECTED REFERENCES ON HINSDALE COUNTY MINERAL RESOURCES

SELECTED REFERENCES ON JACKSON COUNTY MINERAL RESOURCES

SELECTED REFERENCES ON JEFFERSON COUNTY MINERAL RESOURCES

Adams, J. W., 1956, Wall rock control of certain pitchblende deposits in Golden Gate Canyon, Jefferson County, Colorado, USGS Bulletin 1030-G.

———, 1957, Uranium deposits in Golden Gate Canyon and Ralston Creek area of Jefferson County, Colorado, Mines Mag., vol. 47, no. 3.

Woodmansee, W. C., 1959, Geology and ore deposits of the Schwartzwalder Uranium Mine, Ralston Creek area, Jefferson County.
SELECTED REFERENCES ON LAKE COUNTY MINERAL RESOURCES

SELECTED REFERENCES ON LA PLATA COUNTY MINERAL RESOURCES

Barnes, H., et al., Geology and fuel resources of the Red Mesa area, La Plata and Montezuma Counties, Colorado, USGS Oil and Gas Invest. Map OM-149.

Cross, W., et al., 1899, La Plata Folio, USGS Geologic Folio 60.

SELECTED REFERENCES ON LARimer COUNTY MINERAL RESOURCES

Van Zandt, P. C., 1928, Colorado Portland Cement Company new dry process plant --
Boettcher, Colo., plant proof that a dry plant can be built to have all
the advantages of the wet-process plant: Rock Products, v. 31, no. 13,
p. 42-59.

Worcester, P. G., 1919, Molybdenum deposits of Colorado, with general notes on
the molybdenum industry: Colorado Geol. Survey Bull. 14, 131 p., 2 pls.

Wyant, D. G., 1951, Treasure Hill area, Larimer County, Colorado, USGS Tem.
Report 9B.
SELECTED REFERENCES ON MINERAL COUNTY MINERAL RESOURCES

SELECTED REFERENCES ON MONTROSE COUNTY MINERAL RESOURCES

Coffin, R. C., 1921, Radium, uranium, and vanadium deposits of southwestern Colorado: Colorado Geol. Survey Bull. 16, 231 p., 3 pls.

SELECTED REFERENCES ON OURAY COUNTY MINERAL RESOURCES

Cross, W., et al., 1907, Ouray Folio, USGS Geologic Folio 153.

Kelly, V. C., 1946, Stages and epochs of mineralization in the San Juan Mountains, Colorado, as shown by the Dunmore Mine, Ouray County, Colorado, Economic Geology, vol. 41, no. 2.

King, W. H., and Allsman, P. T., 1950, Reconnaissance of metal mining in the San Juan Region, Ouray, San Juan and San Miguel Counties, Colorado, USBM Information Circ. 7554.

SELECTED REFERENCES ON PARK COUNTY MINERAL RESOURCES

SELECTED REFERENCES ON PITKIN COUNTY MINERAL RESOURCES

SELECTED REFERENCES ON ROUTT COUNTY MINERAL RESOURCES

SELECTED REFERENCES ON SAGUACHE COUNTY MINERAL RESOURCES

SELECTED REFERENCES ON SAN JUAN COUNTY MINERAL RESOURCES

Atwood, W. W. and Mather, K. F., 1932, Physiography and quaternary geology of the San Juan Mtns., USGS Prof. Paper 166.

Bastin, E. S., 1923, Silver enrichment in the San Juan Mountains, Colorado, USGS Bull. 735-D.

Bejnar, W., 1949, Lithologic control of ore deposits in the San Juan Mtns., Colorado, Compass, vol. 26, no. 2.

King, W. H., and Allsman, P. T., 1950, Reconnaissance of metal mining in the San Juan region, Ouray, San Juna, and San Miguel Counties, Colorado, USBM Information Cir. 7554.

Larsen, E. S., and Cross, W., 1956, Geology and petrology of the San Juan region, southwestern Colorado, USGS Prof. Paper 258.

SELECTED REFERENCES ON SAN MIGUEL COUNTY MINERAL RESOURCES

Coffin, R. C., 1921, Radium, uranium, and vanadium deposits of southwestern Colorado: Colorado Geol. Survey Bull. 16, 231 p., 3 pls.

King, W. H., and Allsman, P. T., 1950, Reconnaissance of metal mining in the San Juan region, Ouray, San Juan and San Miguel Counties, Colorado, USBM Infomation Circ. 7554.

SELECTED REFERENCES ON SUMMIT COUNTY MINERAL RESOURCES

SELECTED REFERENCES ON TELLER COUNTY MINERAL RESOURCES

PART III

SELECTED REFERENCES BY MINERAL DISTRICT
ALMA DISTRICT

Behre, C. H., Jr., 1953, Geology and ore deposits of the western slope of the Mosquito Range, USGS Prof. Paper 235.

Guiteras, J. R., 1940, Mining and milling in the Alma District, Colorado, USBM IC 7101.

———, 1935, Relations of hydrothermal alternation of porphyries to ore deposition in the Alma District, Colorado, Economic Geology, vol. 30, no. 5.

ASPEN DISTRICT

BLUE RIVER DISTRICT

Singewald, Q. D., 1951, Geology and ore deposits of the upper Blue River area, Summit County, Colorado, USGS Bull. 970.
BONANZA DISTRICT

Burbank, W. S., 1932, Geology and ore deposits of the Bonanza mining district, USGS Prof. Paper 169.

BRECKENRIDGE DISTRICT

Lovering, J. S., 1934, Geology and ore deposits of the Breckenridge mining district, Colorado, USGS Prof. paper 176.
BRUSH CREEK DISTRICT

Gabelman, J. W., 1950, Geology of the Fulford and Brush Creek mining districts, Eagle County, Colorado, Mining Yearbook (Colo. Mining Assoc.).
CALUMET DISTRICT

_______, et al., 1936, Contact ore deposition at the Calumet iron mine, Colorado, Economic Geology, vol. 31, no. 8.
CARIBOU DISTRICT

King, R. U., 1952, Vein deposits of uranium at the Caribou mine, Boulder Co., Colorado, USGS Tem-13A.

_______, 1957, Geology and uranium deposits of the Caribou area, Boulder County, Colorado, USGS Bull. n030-N.

Ridland, G. C., 1949, Development and geology at the Caribou mine, Mining Yearbook (Colorado Mining Assoc.).

CEBOLLA DISTRICT

Berkenkome, R. D., and Hazen, S. W., Jr., 1963, Statistical analysis of diamond drilling sample data from the Cebolla Creek titaniferous iron deposits, Gunnison County, Colorado, USBM Report Invest. 5679.

CENTRAL CITY DISTRICT

Geology of the Wood and East Calhoun Mines, Central City district, Gilpin Co., Colorado, 1957, USGS Bulletin 1032-C.

King, R. U., 1951, Investigations in the Wood Mine, Colorado, USGS TEM-102 A.

Pitchblende deposits of the Central City district and the adjoining areas, Gilpin and Clear Creek Counties, 1956, International Conference on peaceful uses of atomic energy, vol. 6.

____, 1956, Paragenesis and structure of pitchblende-bearing veins, Central City district, Gilpin Co., Colorado, Economic Geol. vol. 51, no. 8.

CENTRAL–JAMESTOWN DISTRICT

Phair, George and Kiyoko, O., 1951, Hydrothermal uranothorite in fluorite breccias from the Blue Jay Mine, Jamestown, Boulder County, Colorado, USGS TE Investigation Report 144.
CLIMAX DISTRICT

———, 1955, Hydrothermal alteration at the Climax molybdenum deposit, Mining Eng., vol. 7, no. 1.

Wallace, S. R., et al., 1968, Multiple intrusion and mineralization at Climax, Colorado, Ore Deposits in the United States, AIME.
COCHETOPA DISTRICT

CREEDE DISTRICT

Larsen, E. S., 1923, Geology and ore deposits of the Creede district, Colorado, USGS Bulletin 718.

Larsen, E. S., 1929, Recent mining developments in the Creede district, Colorado, USGS Bulletin 811.

Steven, T. A., 1965, Geology and structural controls of ore deposition in the Creede district, San Juan Mts., Colorado, USGS Prof. Paper 487.
CRIPPLE CREEK DISTRICT

Beebe, A. H., and Johnson, C. H., Mining methods and costs at the Cresson mine, Cripple Creek, Colorado, USBM Info. Circ. 6806, 1934.

Lindgren, W. and Ransome, F. L., Geology and gold deposits of the Cripple Creek district, Colo., USGS Prof. Paper 54, 1906.

Loughlin, G. F., Ore at deep levels in the Cripple Creek district, Colo., AIME Tr., v. 75, 1927.

Loughlin, G. F., Cripple Creek today, geology of ore deposits, Eng and Min. J. 136(8), Aug., 1935.

———, Paragenic study of hypogene gold and silver telluride ores of Cripple Creek, Colorado, Pan Amer. Geol., vo. 74, 1940.

Rickard, T. A., The Telluride ores of Cripple Creek and Kalgoorlie, AIME Tr., v. 30, 1900.
CRYSTAL MOUNTAIN DISTRICT

EMPIRE DISTRICT

EUREKA DISTRICT

Young, Wm. E., 1966, Manganese occurrences in the Eureka–Animas Forks areas of the San Juan Mountains, San Juan County, Colorado, USBM Info. Circ. 8303.
FREELAND-LAMARTINE DISTRICT

Harrison, J. E., and Wells, J. D., 1956, Geology and ore deposits of the Freeland-Lamartine district, Clear Creek County, Colorado USGS Bull. 1032-B.
GEORGETOWN DISTRICT

GILMAN DISTRICT

Radbaugh, R. E., Geology and ore occurrence (Gilman), Min. Eng., v. 5, no. 12, 1953.
GOLD BRICK DISTRICT

GOLD HILL DISTRICT

Goddard, E. N., Nickel deposit near Gold Hill, Boulder County, Colorado, also T. S. Lovering, USGS Bull. 931-0, 1942.

HORSESHOE DISTRICT

IDLEDALE DISTRICT

IRWIN DISTRICT

KOKOMO DISTRICT

LAKE COMO

LA PLATA DISTRICT

Eckel, E. B., and others, Geology and ore deposits of the La Plata district, Colorado, USGS Prof. Pap. 219, 1949.

Galbraith, F. W., Ore minerals of the La Plata Mtns., Colorado compared with other Telluride districts, Econ. Geo., v. 36, 1941.
LAWSON-DUMONT DISTRICT

LEADVILLE DISTRICT

Chapman, E. P., 1939, Newly recognized features of mineral paragenesis at Leadville, Colorado, AIME, Mining Tech., vol. 3, no. 5.

Ebbly, N. E., Jr., 1949, Examination, mapping, and sampling of mine shafts and underground workings, Leadville, Lake County, Colorado, USBM Report Invest. 4518.

Emmons, S. F., 1927, Geology and ore deposits of the Leadville mining district, Colorado, USGS Prof. Paper 148.

Hedges, J. H., 1940, Possibilities of manganese production at Leadville, Colorado, USBM Infor. Circ. 7125.

________, 1926, Guides to ore in the Leadville mining district, Colorado, USGS Bulletin 779.

________, and Behre, C. H., 1934, Zoning of ore deposits in and adjoining the Leadville district, Colorado, Economic Geology, vol. 29, no. 3.

MAGNOLIA DISTRICT

———, Telluride-tungsten mineralization of the Magnolia mining district, Colorado, Econ. Geo. 34(4), 1939.
MARSHALL PASS DISTRICT

Malan, R.C., 1959, Geology and uranium deposits of the Marshall Pass District, Gunnison, Saguache, and Chaffee Counties, Colorado, address at Colorado Mining Assoc., Denver, Colorado.
MINERAL POINT DISTRICT

Hazen, S. W., Jr., 1949, Lead-zinc in the Poughkeepsie district, part of the upper Uncompahgre and Mineral Point districts, Ouray and San Juan Counties, Colo., USGS Report Invest. 4508.
MONARCH DISTRICT

______, 1913, Geology and ore deposits of the Monarch and Tomichi districts, Colorado, Colorado Geol. Sur., no. 4.

Hazen, S. W., Jr., 1956, Exploration for lead and zinc at the Madonna mine, Monarch mining district, Chaffee County, Colorado, USBM Report Invest. 5218.
MONTEZUMA DISTRICT

NORTHGATE DISTRICT

OURAY DISTRICT

Moehlman, R. S., Ore deposition south of Ouray, Colorado, Part II, Econ. Geo. 31(4,5), 1936.
PLACERVILLE DISTRICT

Hatt, John C., Petrology of two clastic dikes from the Placerville district, Colo., Am. J. Sci. 242(4), April, 1944.

PLATORD--SUMMITVILLE DISTRICT

POUGHKEEPSIE DISTRICT

Hazen, S. W., Jr., 1949, Pb-Zn in Poughkeepsie district and part of the upper Uncompahgre and Mineral Point districts, Ouray and San Juan Counties, Colorado, USBM Report Invest. 4508.
POWDERHORN DISTRICT

Olson, J. C., and Wallace, S. R., 1956, Thorium and rare earth minerals in the Powderhorn district, Gunnison County, Colorado, USGS Bull. 1027-0.
QUARTZ CREEK DISTRICT

Staatz, M. H., and Trites, A. F., 1957, Geology of the Quartz Creek pegmatite district, Gunnison County, Colorado, USGS Prof. Paper 265.
RED CLIFF DISTRICT

Means, R., Geology and ore deposits of Red Cliff, Colo., Econ. Geo., v. 10, 1915.
RED MOUNTAIN DISTRICT

RICO DISTRICT

SILVERTON DISTRICT

Cross, W.; et al., Silverton folio, Geological Folio 120, 1905.

SLICK ROCK DISTRICT

SNEFFELS DISTRICT

SUMMITVILLE DISTRICT

Steven, Thomas A., Geology and ore deposits of the Summitville district, San Juan Mtns., Colo., USGS Prof. Pap. 343, 1960.
TARRYALL DISTRICT

TELLURIDE DISTRICT

TEN MILE DISTRICT

TINCUP DISTRICT

TOMICHI DISTRICT

Crawford, R. D., 1913, Geology and ore deposits of the Monarch and Tomichi districts, Colo., Colo. Geol. Sur. 4.
TUNGSTEN DISTRICT

Lovering, T. S., and Tweto, O., 1953, Geology and ore deposits of the Boulder County Tungsten district, Colorado, USGS Prof. Paper 245.
TWIN LAKES DISTRICT

UNCOMPAHGRE DISTRICT

Burbank, W. S., 1940, Structural control of ore deposition in the Uncompahgre district, Ouray County, Colorado, USGS Bull. 906-E.

Hazen, S. W., Jr., 1949, Lead-zinc-silver in the Poughkeepsie district and part of the upper Uncompahgre and Mineral Point district, Ouray and San Juan Counties, Colorado, USBM Report Invest. 4508.

URAVAN DISTRICT

WARD DISTRICT

Walker, Stanley M., Ore Deposition in the Columbia and Dew Drop vein systems, Ward district, Boulder County, Colorado, Engineers Bull. (Colo. Soc. Eng.) 10(6,7), 1935.
WES~ON PASS DISTRICT

WHITEPINE DISTRICT

Map showing areas covered by Bibliographies on Geology, published by the Colorado School of Mines.

1—Area covered by present bibliography, July 3, No. 4, 1928
3—Southwestern Colorado, C. S. M. Circular Information, Sept. 1924
5—Northeastern Colorado, C. S. M. Circular Information, Jan. 1925
6—Southeastern Colorado, C. S. M. Circular Information, Aug. 1925

COLORADO SCHOOL OF MINES QUARTERLY

COLORADO SCHOOL OF MINES QUARTERLY