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PREFACE

This final report is submitted in fulfillment of NASA Contract

NAS 9-1^59^.	 Mr. Jared R. Woodfill of the Lyndon B. Johnson Space

Center in Houston, Texas was the contract technical monitor. 	 Messrs.

Philip G. Hasell, Jr. and Fred J. Thomson directed the program as co-

principal investigators at the Environmental Research Institute of

Michigan (ERIN). 	 The program was accomplished by ERIM's Infrared and

Optics Division headed by Mr. Richard R. Legault.

The principal investigators wish to acknowledge the help of the

following persons who made significant contributions in the development

of the system:

John E. Colwell Applications analysis, vegetation

Neil. V. Griffin Laser cooling equipment fabrication

William J. Juodawlkis	 Electronic equipment fabrication a^1d operation

Ernest L, Kraudelt Mechanical fabrication

Franlc J. Kriegler Signal handling design

Jimmie C. Ladd System integration and operation

Leo M. Larsen System design and performance

David R. Lyzenga Ap^,7.ications analysis, tooter

La^cren AS. Peterson Laser systems design and operation

Edgar A. ldork Mechanical design
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The original ob3ective of this program was to demonstrate that the

	

'F	 proper combination of acta.ve and passive mu1±•ispectral scanner data

could he processed to enhance remote sensi^^g capabilities for earth	 ,

	

^	 resources applications. The eventual program fe11 short of demonstrating

:y capabilities in applications analysis, but it did produce an airborne

12-channel, active and passive multispectral scanner system which was

successfully test f1o^m to produce illustrative imagery. Samples of

this imagery are shown in Figures 1 and 2.

Only one of the two active bands u^ere operative in the test flights

although both hands have operated satisfactorily in subsequent data

collection operations in support of other programs. Selected laser

illuminated scenes at 1.06 µm from the test flights are shown in

Figure 1. Selected wavelength bands of passive imagery which is

commonly registered with the active are shown in Figure 2. This imagery

is typical of the 11 bands of passive imagery recorded simultaneously

at visible and infrared wavelengths for this f1i^;ht.

This experimental airborne instrumentation system will remain at

IRIM after delivery to NASA. NASA's infant is to make this unique data

collection capability available to users who may want to explore the

value of active and passive data in their applications. ERIM's multi-

spectral daL-a processing and analysis capabilities can be used to evaluate

the data in various applications. blot only can the system produce im-

agery, but in one mode of laser operation it can also produce surface

reflectance as a function of surface penetration. This feature is use--

ful in laathymetry and to determine vegetative canopy character^.stics.

r`
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(c) Ann Arlmr, 1000 tt., Late Night on March 25
Surface Clear and Dr;^ (No Snow)

FIGURE 1. ACTIVE IMAGERY, I.OG ^^m WAVELENGTIf.
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1. 1

INTRODUCTION

This instrumentation development is the natural extension of the ^

passive multispectral scanner technology advanced by i;RIM ^,ri.th NASA ^

support during the late 1960's and early 1970's. 	 It follows the develop- '

ment trend at I;RIrT of military support of new ideas through the feasi-

bility demonstration phase followed by NASA support in adapting the new

technology to remote sensing applications. e^

, The feasibility of an airborne scanner simultaneously providing

active and passive imagery was first demonstrated lay )aRIM in the early ^

1970`s.	 Military support of the technology development follataed soon

thereafter; NASA's inte^"est commenced in 1974 with contract support of

the concept development far earth resources applications beginning at r

ERIM in June 1.975. 	 This initial 18-month developmental contract was
^

extended. to 22 months. 	 The results of program completion in April 1977

are reported herein.

An experimental. 12-channel, active and passive multispectral scan- 	 ^
t

ner was developed and successfully flown in ERIM's aircraft to produce

illustrat^:ve imagery. 	 The system coos designed to provide flexibility

in the selection of various toauelengths for the two active and ten pas-

.	 sive scanner .channels.	 The wavelength bands can be selected in the 	 ^^
^.

ultraviolet, visible and infrared portions of the electromagnetic

spectrum.

The initial system configuration provided one active band tunable

in the visible and one in the near infrarel (I.O^i um}. 	 The ten passive "'

bands are in the visible and infrared region between 0.4 and 14.0 ^^m.

The active illuminator in the visible is pulsed^providin;; a mode of

operation where the reflected radiation can be examined as a

function of surface penetration. 	 P.r the designed ogeratirtg altitude 	 -

of 1000 ft., the system provides a two or three dimensinral spatial

resolution of about 2 ft	 over a swath width of 2000 ft. 	 The scanner

^^A^ ^.va^ ^'
7 =	 i^nr^c^ ^^^^^^

...	 _. __ _.^.^.d__.____	 ^ --	 -	 -	 ^--
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data is radxometrically calibrated through reference to ^.ntegral sources	 -

	

'	 which are periodically compared wz.th laboratory standards.

The objective of the program was to demonstrate that an active 	 ,^

	

` I.	 capability can he added to a passive multispectral scanner and that the s

	;k	 combination will enhance the utility for earth resources applications.

	

^	 The active capability was added to the gassive scanner but the utility

	

^	 of the combined data was not demonstrated as part of this program. Zt
i

is anticipated that this utility will be demonstrated by E RTivT in the

i
use of the system equipment in support of other grogxams in the near

future. ^^^
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2. .

PROGRAM DISCUSSION

The program commenced with a design study to identify system perform-

ance :requirements for selected earth resources applications. The"se per-

formance requirements were translated into equipment design parameters

with some compromises made between desired performance and performance

obtainable with available equipment. The system was configured around

off-the-shelf components. No new developments were initiated other than

the integration of available components into an operating system. Once

the system was built, it was operated in ground and flight tests to demon-

strate its performance. This development is discussed in the following

sections.

2.1 APPLICATIONS REQUIR E ANTS

The advantages of and unique information obtainable from laser

illuminated (active) and solar illuminated (passive) data were determined

in an applica ions study conducted during the first three months of the

program. The sfudy objective was to more precisely identify those ap-

plications (broadly subdivided into vegetation and water applications)

which would benefit from information derived from active-passive data

and to identify the sensor spectral bands, radiometric precision, and

spatial resolution needed to achieve useful information, Once these

sensor specifications were determined, the capabilities of existizxg

lasers and scanner components were reviewed to determine available per-

formance. Then a compromise system, one which supported both vegetation

and water applications, was derived.

Throughout the design, we focused on defining the performance of

the act^.ve and passive bards crucial to the applications selected. This

in no way means that these are the only bands needed for tine applica--

tions -- other passive bands are requirecl s for example, tv map vegetation

types. The performance in the passive bands obtained from ERIM's M-7

multispectral scanner was judged adequate far these supporting functions.

T,. ^ .^.__^__	 ---- ....^--^-^,,.^^ .....

9
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Since the passive section of the active-passive scanner was nearly a

carbon copy of the M-7 design, little effort was spent assessing per-

formance requirements for the passive bands.

^`irst, promising vegetation and water applications were identified

for which active and passive data together provided new or much better

information than passive data alone. Since the list of potential ap-

plications in each axea was large, a subset of these applications was

selected for in depth study, using four criteria:

1. that there were a number of potential users for the information,

2. that the application was important to some set of potential

federal and state government or private users,

3. that the active-passive data, suitably processed, could provide

unique ox better quality information than could be provided

with other forms of remote sensing

G-. .that there was high probability of successfully obtaining the

information required using an active-passive scanner constructed

with current. technology.

Applying these criteria to the list of potential vegetation and water

applications resulted in selection of four vegetation and three water

applications-for in--depth study.

Then, using mathematical models, we calculated the required system

radiometric precision, spectral bands of operation, and spatial. resolu-

tion, using the information requirements for a particular application

and same typical flight altitudes, fields of view, and other sensor

parameters. Separate optimum active-passive systems far vegetation and

water applications were designed. Then a compromise system, consistent

with available laser performance and caeight, power, and cost limitations,

was designed.

a
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2.1.1 Vegetation Applications

Three of the four applications which were selected for study can be

explored with this system.

1. Determination of percent vegetation cover or leaf area index

at high values of these parameters as an indication of potential

crop yield (e.g., wheat)

2. Determination of structure of a vegetation canopy, as an aid to

better vegetation type mapping and crop condition assessment

3. Assessing conditions in two or Snore layers of a vegetation

canopy, as an z,id to disease or moisture stress detection

4. Topographic mapping (feasible, but not part of this system}.

For the first three applications, the utility of 1.06 um and 0.64 ^m

bands is apparent from Table 1 . Table 1 shocas the effects on canopy

reflectance as important parameters of the canopy are varied. Bath

active and passive 1.06 tsm and 0.64 um data are required to determine

the exact status of the canopy. The 1.06 ism energy penetrates the canopy

{because the leaves are transparent at this wavelength) and offers the

potential to map percentage cover and some canopy structural variations

within canopies. The 0.64 ism band is in a spectral region where chloro-

phyll absorbs stro:^gly. Plant diseases which result in destruction of

leaf or stem chlorophyll will be effectively assessed by processing data

collected in this spectral region. Imaging capability in these bands is

highly desirable.

Because we are assessing crop and natural vegetation areas with

considerable spatial structure (e.g., row crops or forest plantations)

it is desirable to have a spatial resolution coarser than the spatial

structure in the scene. For typical row crops, raw spacings are on the

order of 2-3 ft., hence, the spatial resolution should be coarser than

this. A nominal value of l0 feet was judged adequate. Because active

sensor radiometric precision actually improves as resolution is made

finer (thre ratio of laser power to solar power increases, thus improving

the signal to noise ratio), a sensor resolution of 2 feet (equivalent

ll

r	 '!
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TABLE Z. ADVANTAGES OF TLdO BAND IMAGING FOR AGRICULTURAL APPLICATIONS

'	 6 = 70°	 6 ^ 70°
s	 s

Active	 Passive	 Active	 Passive
1.06um	 1.06um	 O.b4um	 0.64um

- - + +

0 '+' O -

0 0 ^ 0

0 0	 ^	 +
i

+

^!	 % Cover Decrease
Y

Structure Change
is
^!	 Increase v/h
^:
fl
t:
ij
t

^	 Disease Lower Layer

,y

Disease Upper Layer
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to a 2 mrad instantaneous field of view at 1000 ft. altitude) was se-

lected. The selection was made as an engineering compromise between

fine resalution and precision of alignment of laser illuminating source

and receiver. The l0 ft. resolution would then be obtained by smoothing

the scanner data by averaging 25 pixels (5x5) of 2 ft. resolution data.

The required radiometric precision for each band depends on which

of the applications are considered. The required noise equivalent

reflectance {NF^F) for the active and passive bands is summarized in

Table Z. Not all applications require both active or passive bands.

Where data from an active hand are required, a number appears in Table 2;

where data from an active band are not needed, Table 2 is blank.

The pacing performance requirements for all four applications are en-

closed in boxes.

Thus an optimum system for vegetation applications would consist

of a red band {0.6^ um) and infrared (1.06 u m) imager with IO ft. linear

ground resolution and noise equivalent reflectances of 0.9% and 0.2;^

respectively at 1000 ft. altitude, through an atmosphere of 10 lcm hori-

zontal visibility. The corresponding perfarmance required of the

0.8-1.0 ^xm passive band is O.SS% noise equivalent reflectance.

2.1.2 Water Applications

From a list of candidate water applications, three were selected

for study using the criteria outlined earlier. The three applications

were:

1. improved water depth mapping using pulsed laser signals to

calibrate passive water depth mapping algorithms

2. assessment of the vertical distribution of sediment and of

water attenuation and scattering coefficients

3. measurement of lower concentrations of Rhodamine T+IT dye (a

common dye used to trace the movement of water masses) than

can be detected by visual or photographic techniques.

13
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TABLE 2. SUMMARY 0^' SCANNER ACTIVE CHANNEL
PERF'ORNIANCE REQUIREMENTS ---- VEGETATION APPLICATIONS

7.mplied Active Implied Passive

Required Information
Channel NElap Channel NE^p Ancillary

Application and Precision 1.06 ^m	 0.6^ um 0,$-1 um	 0.64 pm Condi.tians

Percent Cover Percent covet }2.5%(D), I.59%(D} 0.85%(D) 1000 f t, solar

Mapping ±5%(PI) at percent
3.1G^%{ri) 1.7 %(^i)

zenith angle 45°,
cover. = 63% IO km atmospheric

visibility, nadir
look, 10 f t reso-
lution.

^	 Campy Structure	 Vertical/horizontal 1..59%(D} 1.35;^(D) As above but sun
Determination projected leaf area 3	 {ri),1G^ 2	

^ {M)
., zenith angle of	 o^

ratio, ±0.25(d), 70° for passive	 r
±0.5 (T1) at H = 0.5, data	 ^
v/h = 2.5 0

Disease in Detect diffexence 0.9% As for percent	 z
Lower Layers between Corn Bl^.ght cover mapping.	 s

levels 0 and 3 (ri} a
a

Terrain or Terrain height +l m(Pi), ^ 0.2% As for percent	 u
Vegetation Height of vegetation cover mapping
Height ^-1 m or -^10% of height, with scene

whichever less (pq) reflectsnce = 0.3. z
N

D: desired

y
Q

Pi: mandatary
n

D

^^: Critical data for each application
2
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k

i

_' By contrast with the vegetation applications, bands in the 0.50-

^
s

0.55 um region are required for an active-passive system responsive to

water applications requirements. 	 The 0.50-0.55 um region is one of

maximum transparency of a wide range of water types.	 Because either

depth, sediment profile, or fluorescence information is required, a

pulsed system for obtaining the third-dimensional information (to

complement the two--dimensional information obtainable with passive

techniques) is most useful. 	 Because of the high electronic bandwidth

j
f1

necessary to temporally resolve pulsed laser returns on a nanosecond

time scale and the corresponding ,high peak pawer requirements of the

r
pulsed--laser system, it is impractical to simply pulse modulate

^, the lasers used for imaging. 	 Likewise, those laser's constructed far

pulse operation are capable of only sma11 amounts of output pawer in

.	 f the continuous wave (CW} mode. 	 The conclusion is that a separate

^^ pulsed laser system is required. 	 Such a laser system should have

3'` output in the 0.50--0.55 pm region and have a pulse width less than 9
'	 E[

'^ nanoseconds to permit mapping of 1 m thick concentrations of sediment

and a pulse width less than 5.4 nanoseconds co resolve O.b m water

€ depths.	 A peak power output of 15 kw is required to satisfy mast of

;^ the applications.	 High-speed signal processing and digitizing cir-

cuitry will be required to analyze the return pulse and to record
u

the digitized pulse samples on magnetic tape.

For ta'ater applications, a spacial resolution of about 10 feet

was judged adequate.	 The same considerations that applied to the

vegetation applications apply to water applications -- that active

scanner performance improves as the instantaneous field of view

(IFOO) decreases.	 Consequently, for the water applications, we will

operate with a 2 mrad iFOV for the pulsed laser system.	 This will

yield 2 ft linear resolution at a flight altitude of 1000 f t.

15
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j The information requirements and the corresponding laser pulse ^	 ^
^	 ,_(

} lengths, wavelengths of operation, and peak power levels are shown in
i

Table 3.	 As can be seen from Table 3, the peak power requirements for ^	 ;;^

some applications are extremely high. 	 A compromise was reached for ^^

water applications based vn the use of nitrogen-laser--pumped dye laser

.	 R with 15 kc>> of peak output power.	 This Laser was the most powerful pulsed

dye laser available from American sources at the time the design study ^^

was cdmpleted.	 Use of this laser resulted in the performance shown in _

Table 4.	 The compromise is primarily in the depth of penetration, but i

the performance obtained with the 15 kw peak power laser appears sans-

_ factory.

r
2.1.3	 Compromise System ^

p;
Because the vegetation applications require two imaging bands (near

infrared and red) and the water applications are best served with a pulsed

laser, three active channels are needed to optimally satisfy all applica-
_	

^

bons studied.	 Unfortunately, a three laser system, while feasible to
^

build, would cost mare than the contract could allow and would maximally

tax the electrical power capabilities of the BRIM aircraft. 	 Because ^	 .!

the contract could not be augmented to provide the third laser channel, ^	 .;

a decision was made to defer installation of the red band {0.64 um) `,	 `^

imaging capability and to provide a system with 1.06^tm imaging and

0.5--0.64 um tunable profiling capability. 	 Because the provision of

special electronic circuitry for the topographic mapping capability '`

also required additional contract funds which Caere not forthcoming,

thi.~• capability was deferred also.

The impact of the compromises is that it will be difficult to map

plant disease in lower canopy layers although the profiles, operating

at 0.64 gym, provide	 some non--imaging support for this application

The constructed system is, however, an experimental active-passive

scanner, and provisions were made far the addition of other lasers

16
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TABLE 3. SUAil^1ARY OF SCANNER ACTIVE BAND PERFORMANCE REQUIREMENTS ---- ZdATETt APPLICATIONS

Required Information Transmitted
Application and Precision idavelength of Operation (um) Pulse Width Laser Power

tidater Depth idater Depth -F 1 ft 0,51 - 0.58 um Z.7 nsec (D) 4.:^ x 10714
Mapping (D), ± 2 ft (M} to 5.4 nsec (A1)

26 m 3.n mean coastal '
^V̀ water

Sediment and Scattering coeffi-- 0.51 - 0.58 um 8.9	 nsec 1.5 x 104W
Optical cient of 1 m layers
Properties f lO% at 5 = 0.1-2, 0/m _

napping coastal water to
4 m depth

Rhodamine jdT Concentration of 0.54b um excitation 8.9	 nsec 2.15 x 104W
Dye Mapping Rhodamine [JT-F10% in 0.5G5 - O.b15 um receiver

i m thick water
column at 5 ^g/Q
concentration in mean
coastal water

D: desired

Di: mandatory

.^	 -	 _ -	 ^	 -	 ^	 _

4a
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TABLIa 4. OBTATI3ABLE VERSUS DLSTRED PERFORMANCE FOR WATER APPLTCATTOI^S

Application	 Desired Perfaxmance 	 Obtainable Perfoxmance^

Watex Depth dapping	 Water Depth ± 1 ft ,D), 	 Watex Depth ± 2 ft to
± 2 ft (Pi) for ^--=.ez depths	 to depths of 7 m
to 20 m

Sediment of .Optical 	 Scattering coefficient of	 Required gerfoxmance to
Properties Mapping	 1 m layers ^ ld°6 at S =	 ^ m depth

^	 0.1--2.OJm in ^naximutt ► coastal
water

Rhadamine Wt Dye	 Concentration of Rhodamir^e 	 Required performance achieved
Mapping

	

	 WT ± 1Ql in 1 m thick water 	 near water surface
column at 5pgjQ concentration
in mean coastal. water

* With 15 kw peak power nitrogen-le.ser-pumped dye laser

D: desired

li: mandatory

..	 _.	 ..	 ...	 ....	 ._,.. M _... ^., 	 r^_ . ^_	 .^	 -	 ,.._	 _. , .	 _	 ..	 .^^f- -
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or Capabilities with relat^.vely little effort. Thus, a red band imager

andfor topographic mapping capability can be added to the present system

at minimum additional cost.

2.2 SYSTEP4 DESIGN PERI'Q^iANCE

The AAk'g active/passive multispectral scanner is essentially an ex-

panded version of the X47 passive scanner [1] tahereby two laser transmitters

•	 and receivers have been added at a sacrifice of two of the four passive

detector positions. Qne addition provides active imagery at I.06 um and

the other provides a profiling mode of operation at a (recording) limited

rate of S pulses per second. Since the active data are to supplement the

passive data, all 12 channels must have common registration and spatial

resolution. Even the line trace profilometer must be correlatable with

specific pixels in the imagery.

The Piz aesign parameters which are common with the passive portion of

the AATE scanner: are listed in Table 5 with mare. detailed specifications

of the active/passive system shaven in Table b. Primary system operation

at IItIPi was to be a b0 scams/sec although. scanner operation at ZGO scans/sec

was to b^ a demonstrated capability, The higher scan rate provides Conti-

guous scanning at a V/H ^ 0.2 but the resulting scanner data exceed the

bandwidth capability of ERTri's airborne data recording equipment. 'Phis

data recording function is not part of the active/passive scanner develop-

ment. 'The scan lines are underlapped by 40% at 60 scans/sec, with a V/H ;

of 0.2, but this is tolerable for operational testing of the system and

for demonstrating system performance in selected applications.

System provisions far the profiling made were not completed due to

failure aft the pulsed dye laser vendor to deliver an operable transmitting

unit before contract completion. The transmit/receive optics, fast receiv-

ing detector, and pulse analyzing instrumentation however Crete provided.

The eventual system capability is dependent upon delivery of an alternate

dye laser unit.'

^A molectron dye laser has been incorporated in the scanner system, and
satisfactory profiling operation has been verified in more recent flight
operations.

l9
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TABhE S. M7 SCANNER PERFORMANCE CHARACTERI5TIC5

12 Spectral Bands ^ W, Vis. IR

90° External FOV L 45° from nadir

2 mrad riax. Spatial Resolution, 3 mrad Nominal

0.1° C Nominal. Thermal Resolution

1% Nominal Reflectance Resolution

5 Radiation Reference Ports

5 in: Diameter Collector Optics

60 or l00 scans/sec Scan Rate

DC to 90 KHz Electronic Bandwidth

Roll. Stabil2zed Imagery
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TABLE 6.	 AAFE SCANNER SPECIFICATION ACTIVE/PASSIVE EARTH
RESOT]RCES SYSTEM

Parameter Value

Laser Wavelength far Active 1.06 µm
Imagery

Laser [davelengths for 0.3$ to 0.64 um Tunable
Prolifometry

Center Tdavelengths for Passive 0.45 µm
Imagery 0.4$ um

0.50 µm
0.52 µm
0.54 um
0.57.µm
0.61 µm
0.65 um
0.75 µm
and 1.7 or 11.0

Field of View 900

Instantaneous FOV 2.0 mrad

Altitude 1000 ft	 (V/H = 0.2}

Ground Speed 20a ^t /sec

.scan Speed 100-scans per sec. in Mode 1
60 scans per sec. in Mode 2

Signal BandcJidth (Video 160 kHz in Mode 1
Amplifiers) . 45 kHz in-Mode 2

Type Tape Recording PI`S Digital (HOOT}

Dumber of Recorded Tape 12 Scanner Video
Channels 2 Auxxlliary

a

21
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The active/ assive AAFE scanner s stem was desi ned to have aP	 Y	 g

2 mrad spatial fesolution. 'this corresponds to a 2 mrad instan--

taneoug field-of--view for the passive receivers and a 2 mrad beam di-

veYgence for the laser transmitters. The laser receivers however were

designed to have a 3 mrad field-of-view to allow for alignment varia-

tions between the transmitter and receiver fields-of-view as a function

of scan angle.
^^7

Et was necessary to use two scanning mirrors, one to transmit and

another to receive the active radiation in order to {1) eliminate atmos-

pheric backscatter and (?) compensate for optical transmit time. At

1000 ft. altitude with a receiver area of lOD cm 2 , the ground return

is about 10-^ of the transmitted radiation, Backscattered radiation

from the atmosphere below the aircraf t, however, is on the order of

l0 7 that of the transmitted beam and optical components which are common

to both the transmit and receive beam, such as the single scan mirror,

would scatter even more radiation into the receiver to significantly

obscure the desired ground return. In addition, the finite travel time

(about 2 u sec at 1000 ft. altitude) of the laser radiation to the ground

and back requires a 0.75 mrad lead angle between transmitter and receiver

beams in the direction of scan at nadir. The increasing travel time

results in a gradual loss of .registration as the system scans off nadir.

These two problems are most easily remedied by the use of two physically

separated scan mirrors. Since the laser beam and receiver fie^:d-of view

intersect at a g y-eat distance from the scanner, l/A Z attenuation of the

scattered radiation makes it negligible. lead time: of the laser beam

with respect to the receiver beam can be accounted for by an off-set of

the two scan mirrors in the direction of mirror rotation (i.e., the laser

mirror leads thy. active receiver mirror). However, a new problem, paral-

lax, is introduced. With both scanning mirrors off--set slightly from

450 , instead of a stras.gh^ line scan on the ground, a slightly curved

parabo3.a will be followed.	 S^.nce the curvature of the parabolas is

^^

.,1,..,.

a
_	 ^

..	 ^	 '°.	 i

E^
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opposite for the laser beam versus the receiver beam, if they are well-

centered at nadir then thez.r centers will be misaligned as the angle devi-

ates from nadir. Since the effect. is small, zt has been compensated for by

using a receiver field of vier of 3 mrad while maintaining a laser beam

of 2 mrad. Thus, more than twice as much solar radiation i.s accepted by

the detector, but use of a high power laser and a narrow bandpass filter

at the detector keeps the solar background Lower than the laser return

by mare than an order of magnitude. An illustration of receiver/trans--

mitter tracking as a function of scan angle is Figure 3. Although the

receiver field-of-view is 3 mrad, the active resolution element is de-

fined by the 2 mrad laser beam and is consistent with the resolution

of the rest of the scanner system. For most application, this 2 mrad

{or 2 ft at 1000 ft) spot size on the ground is more than adequate,

and smoothing or averaging of the data is possible to further improve

the signal-to-noise ratio.

The key to the usefulness of the active and passive scanner data in

various applications is the signal-to--noise performance. The passive

band performance will not be discussed here since this system will dupli-

cate the M7 design which has demonstrated adequate performance over the

past five years of operation. The P17 performance is documented in Refer-

ence [1]. The design equivalent reflectance performance of the active

scanner bands is presented in Table 7 clang with a listing of parameters

used in the calculations. For the 1.06 dam imaging channel, the received

laser radiation is roughly an order of magnitude greater than for the

solar radiation. In Section 2.3 where system performance is discussed,

the fact that the solar radiation is indeed-approximately an order of

magnitude weaker than the laser return is verified.

The expected no^.se equivalent reflectance values are we11 within

the mandatory requirements established in the applications discussion

in Section 2.1. As mentioned in Section Z.1, far most applications, a

further improvement in signal-to--nv^.se can be achieved in processing the

23
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Laser	 ^	 Receiver

	

Beam	 ^	 FOV

I!
I----3,r ^ ---^
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S ft	 ,^^^ t}0.31	 4 ft	 _450
-^ L 0.$

1^ 1

-2^'{^----I

t	 I	 1
l!1

Operating altitude	 1000 ft
Laser beam	 2 mrad
Receiver field °f view	 3 mrad
'Total scan field	 ±45°
Maximum range (at 45°}	 1414 ft
Misalignment at 45°	 0.414 mrad
Scan mirror separation	 2 tt

FIGURE 3. TRANSMITTER RECENER MISALIGNI^3ENT WITH SCAI3 ANGLE

2^
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TABLE 7. P]~R^'ORI^tANCE COAiPUTATI0N5

,^

rn
^_

ldorlc Statement Final

Ima er Profiler Tmager Profiler

1 ,Laser lJavelength,	 um 1.064 0. S4 1.064 0.52^^^

PL %Laser Power, watts (peak) 30 15,000 30 1$,000zC^

^ Pulse tididth,	 sec Ctd 4E-9 Ctd 4.5E-9^^

^ t Transmitter Efficiency O. b1 0.68 O.bl 0.68

ec Coupling Efficiency 0.95 0.95 0.95 0.95

e r Receiver Efficiency 0.22 0.3.1 0.22 0.31
N
"'	 B t ^I'ransmitter Beam Divergence, rad 0.002 0.002 0.002 0.002

Br %Receiver Beam Divergence, rad 0.003 0.003 0.003 0.003

p' ^^Scene Reflectance, stet l 0.26/n 0.05/n 0.2b/^r 0.05/^r

Ar ^Callecting Area, cm2 1.06.4 1D6.4 106.4 10b.4

r Sr_an Rate, rev/sec 100 100 60^^^ 60^^

0 Scan Angle, deg. from nadir D 0 0 0

e_7 Sec 
0

Atmosph. Trans. 0.9287 0.8985 0.9287 0.8985



TABZE 7.	 PERFORriANCE COrFPUTATi0N5 (Continued)

Work Statement Final

Ima er Profiler Imager Profiler

Aircraft Vel., cm/sec 6046 6096 6096 609E
ft/sec zoo 200 20o zoo

Aircraft Alt., cm 30,480 30,480 30,480 30,480
ft laoo laoe looa loon

Solar Spectral Irradiance, 0.055 0.14 0.055 0.14
2	 -1

watts cm	 um

5o1ar Elevation, deg. 45° 45° 450 45°

Path Radiance, 1.13E-^+ b.39E-4 1.13E-4 6.39E-4
2	 1	

^'watts cm	 dam	 ster

Band Pass filter Width, nm 2.5 1.2 5.5^^ 6.7^*

Detector Sensitivity, amp/watt 0.25 0.053 0.25 0.053

Gain ti 100 1.1E+5 ti 100 1.1E+5

-1/2
Noise Equiv. Power, watts hz 1E--13 --- 1E-13 ---

Noise Factor 3.98 1.284 3.98 1.284

Charge on Electron, coulombs 1.6E-19 1.6E-19 1.6E--19 1.6E-19

L^J

^
^_
^

V

H

EAs

N ZPa^

0^

R
a

G

NEP

F

e

tZ

N
a

0

n
Z

L1
A
Z

* Key Parameters

.F3^ Parameter Changes -- See Text {Section 2.4.3)

f
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f^TABLE 7. PERFORMANCE COMPUTATIONS (Continued)

^Jork 5taten:enC Final

Ima er Profiler Ima er Profiler

id Detector Dark Current, amps 0 2E-11 fl 2E-lI

PR ^^Received Laser Power vn Detector, 3.1E-8 '•.4E-6 3.1E-8 5.3E-6^^^
watts

P S Solar Power vn Detector, taatts I.fiE-9 7.3E-Zfl 3.5E-9 4.1E-9^^

bf %^Informati.vn Bandwidth, hz 157,1flfl 275E+6 94,000=^%^ 175E+6

is Signal Current, amps 7.8E-9 2.3^-7 7.8E-9 2.8E-7^*

in No^.se Current, amps 4.2E-11 4.1E--9 4.2E-11 4.5E-9%^^

N
^	 is/in Signal--to-Noise Ratio (power} 14 8 l4 9

NEAP ^kNoise Equivalent Reflectance, % 0.14 0.09 0.14 0.08
(does nat include noise modula-
tion an the laser beam}

Slater Penetration, feet -- --- 24
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SABLE 7. PERFORMANCE COMPUTATIONS ( Coni;a.nu^d)

PLp'^ te cs rAr cos 3 9 
c--2T sec 8

gR ^'	 H2

PS = ^Jte rAr6^ (p ' Ens cosh e z sec A + LP)

is = RaPR

in = jRaNEP26f + 2eF {Ra (P$ ^- PL) + ia } 
^f]^.^2

L	 ^r

q^ = z^a^ezz ^ ^^

lip ` i
NE^p =	

n
is
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data. For instance, in agricultural investigations a pixel. element no

smaller than 10 ft x ZO ft is preferred for smoothing over rota crops and

individual plants. Therefore, at 1000 ft altitude and 2 ft (2 mrad)

resolution, data from this system can be averaged over 5 x 5 elements

to provide a factor of 5 improvement in noise equivalent reflectance

over that shown in the `Table.

The predicted surface penetration and reflectance resolution of the

pulsed Laser system will. a11aw the reflected return from bath vegetation

canopies and water depths up to 24 f t to be recorded far computer analysis

of reflectance variations caithin the penetrated surface. Further, this

penetration pixel is registered with pixels in imagery at other wave-

lengths, bath active and passive.

The range resolution for surface penetration is expected to be about

1. S ft in water. 'The resolution is very dependent upon the relative

• amplitude and sharpness of adjacent returns as we11 as the sharpness of

the transmitted pulse. The transmitted pulse cai11 be about 4.5 ft long

in air and 3 ft in water. The range or absolute altitude determination

resulting from the time measurement between the transmitted and received

pulses will be accurate to about l0 ft for a flight altitude of 1000 ft.

Again, the resolution of this measurement is very dependent upon the

characteristics of the reflected pulse.

2,3 SY5TEti TEST PERFURPfANCE

Wf►en the active/passive multispectral scanner was completely assembled,

bench tested in the laboratory, ,and installed and checked out in the

aircraft., it was ready for its airborne performance tests. Immediately

preceding its first airborne test, the aircraft and scanner were posi-

tioned 1000 ft from a target range in order to operate the entire

system and assure registration betraeen all channels and verify the

expected signal levels and resolution. (See Appendix A for bench test

results.)

r.
^e
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figure 4 depicts the target range. A 4 x 8 foot black painted

wooden panel was covered at its base with a 4 x 4 foot Yahite painted

wooden panel. At the tap of the black panel was mounted a 2 x 2 foot.	 '^

piece of flame-sprayed aluminum (Lambertian, diffuse reflector; €.	 ^

p' ti 1.0/^r steradian 
1
}. The scanner in the aircraft was able to scan

vertically through the target scene by use of a folding mirror mounted 	 s
to the scanner frame. When oriented at 45 o this mirror would provide a

scene'at the scanner nadir (angles off 4^5 o could provide off--nadir 	 ,,

scenes).

Preliminary alignment of the scanner was achieved by removing

t^-.e passive infrared detector and dichroic mirror, and replacing it

with a prealigned {during laboratory tests) cross hair, diffusing plate

and image magnifier. This foresight allowed visual alignment of the

scanner system to an accuracy of about 2 mrad.

It is emphasized that these ground tests at a 1000 foot range were

essential to assure registration between the various receiver channels.

Since the mirror separation on the scanner is 2 feet between centers,

alignment may not easily and accurately be achieved in the laboratory

(unless a long focal length 30 inch diameter parabolic reflector is a-

vailable). The laser receivers at one end of the scanner must be aligned

to both the transmitted laser beams and the passive receivers at the other

end of +she scanner. This was mast readily achieved by groviding a target

at 1000 ft range under static conditions except for scanning.

All optical components in the scanner system Caere prealigned in the

laboratory using several precision machined surfaces located throughout

the scanner structuze. This prealignment provided an alignment accuracy

of a f ew mrad between the two separate ends of the scanner system. The

complexity and sensitivity of the spectrometer alignment dictated it

not be touched once it was aligned on the collimator bench. fine

alignment of the scanner system, therefore, revolved around the spectro-

meter and proceeded as follows:

30
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1. Obtain boresight of target -- static.

2. Move 45o mirror and/or target so that optirpum spectrometer

output is obtained --- dynamic.

3. Adjust IR detector to obtain registration with spectrometer.

4. Remove filter from active detectors) and adjust aperture

position to obtain near registration with spectrometer (passive

receiver should. lead active receiver by 2 sec or 0.75 mrad^ at

laao ft) .

5. Replace f^.lter and adjust laser beam steering mirrors for maxi-

mum detector output and best target resolution.

Figure 5 shows A-scan oscilloscope traces of the target scene when

scanning is done through the target panels top to bottom, from left to

right on the trace are:

Z. sky

2, flame sprayed aluminum, 2 z^

3. black panel, 2 ft

4, white panel, 4 ft

5. snow covered hill

6. snow covered foreground.

Detector labels are;

PMP -- PhotoMultiplier tube for reception of ^'ulsed laser return.

{This detector caas used passively in the broad visible

region since the pulsed dye laser caas not functional).

PPiS -- Selected PhotoMultiplier tube on ^ectrometer for reception

of passive solar return.

LS -- General Electric user ^e SiAPD with l.Ob4 um filter far

reception of c^a laser return..

Traces (a) and (b) show registration between the passive receiver and the

active receiver end of the scanner. Traces (c) and (d) shaca registration

* Scan i^iirror: 6Q scans/sec = l2J ^ red/see = 0.12 r mrad/sec

32
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(a) t "^!P

(b} PMS

,

w

Laser O[f ^-®^^+^ ^^^

^^^ ^ ^ ^^^
®^^^^®

^^^ ^ ^^:

PhiP - Pht Tube, pulse channel
PhIS - Ph'I Tube, spectrometer channel
LE -Laser Eye, active receiver

1. Sky	 4. 4 ft white panel
2. 2 ft F.S. Al	 5. Snow covered hill
3. Black panel	 6. Snow covered foreground

FIGURE ^. LINE SCANS OF TARGET SCENES WITH CALIBRATION PANELS

v	 w
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between the two active receivers and Trace (e) shows the T.aser Rye out--

put when the Nd:YAG laser was blockrad and solar ill.um^.natian of the snow 	 '
	 r

covered hi11 provided a passive signal. Tt should be noted that the 	 ^

panels and hill taste facing west and Y^rere well illuminated by a clear- 	 j

sky, afternoon. (about 2:00 p.m.) sur►, Traces (f) and (g} show the-same
scene with the 4 ft white panel. xemaved. Tn all traces, the 2 ft (2 mxad)
flame-sprayed aluminum and 2 fr_ bl:^ck panel. are well resolved in both

active and pass^.ve channels. All detectors can be seen to be in regis-

tration, in the "dxxectian of flight" {north) and in registration to within

a single resolution element in the direction of scan, 	 ,

It is emphasized that the ground tests are to provide only fine

adjustment for the various transmitter and receiver beams to optimize 	 ,

the signal levels and assure mutual registration. Since the active and

passive receiver telescopes were aligned i.n the laboratory using the

machined reference surfaces, they wire secured in position and no pro-

vision is (vr should be) made for further operational adjustment. Only

a small. amount of fine adjustment of the detectors (and/or apertures)

:i.n the focal planes can be tolerated. During the ground tests, the active

and passive receivers were in close enough registration that fuxthex fine

adjustment was not-necessary. Only the IR detector {which had been re-

moved to accomvdate the boresight optics) required fine adjustment, and

the path of the Nd:YAG laser had to be changed by about 2 mrad in order

to get the optimum signal return.

Immediately fallowing the ground tests the system was flog in the

ERIN DC3C aircraft at 1600 on 19 Aiarch 1977. The thermal detector

(9--11..4 gym) was used in khe IR channel, and 9 channels of the spectrometer

were used to compxise the passive system. The Nd:YAG laser was opera--

tional and the 1.06 p active receiver provided the active imagery. Since

the pulsed ^:aser was net included i.n the system, the active pulse re-

ceiver_was operated passively without an optical filter, Datatrere taken

over the Willow Run Airport Ramp for four separate passes at altitudes

34
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of 950, 1000, and .1050 ft. Both active (1.06um) and passive data were

taken. On the fourth pass, the laser was turned off and the 1.06 ^m
r`

active channel (maser lye} tras used passively at an altitude of 1000 ft.

Selected samples of the imagery appear in figures land 2.

Close examination of the active 1.06 ^m imagery showed a good sig--

nal-to-noise ratio (see figure 1). This was substantiated by examining

the active 1.06 um imagery when the laser was blocked. In order to use

this^Channel to examine the solar leakage through the 1.064 gym, 55^

bandpass interference filter, it t+ras necessary to increase the amplif ier

gain by a factor of 10. The resulting passive imagery, although much

noisier than the active imaget.-y, taas still fairly good. This points out

that the signal level of the laser return is adequate and that the active

imagery has very good signal-to--noise perfor;nance. It also points out

that the solar leakage at low sun angle in the daytime active imagery

• is less than one-tenth of the Laser return signal when using a spectral

filter t^rith a S5 ^ bandpass (in agreement with the calculations shotm in

in Table 7; Compare P R and PS).

The uniformity of the active imagery denotes good laser o}^era_^.ion.

Previ.aus experience with Nd:YAG laser imaging systems have shown gross

non-uniformities in the imagery presumably due to low frequency amplitude
i

fluctuations in the laser output. Although the amplitude noise of the	 ^

CLC laser used on the active/passive multispectral scanner varies ap-

preciably from day to day, it is not adversely affected by the severe

thermal and mechanical perturbations found in an aircraft environment.

The active imagery in this program tress quite uniform and neither the

presence of low or high frequency noise is evident. The day to day o=

slow variations in transmitted laser power are accounted for in calibres--

tians provisions.

Nighttime data was taken using the same scanner configuration o.^

25 l+iarch 2977 at midnight. Active and passive (thermal) imagery of

the airport ramp was taken for two passes, one at 1000 ft and the other
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at 2000 ft. This imagery, along with imagery o,= downtown Ann Arbo- at

1000 ft, also appears in Figures^l an3 2. The active imagery for both

day and nighttime operation are identical in appearance except fox' the

partial. snots cover an the former case.

The 2000 ft data is particularly interesting since the system was

designed for and aligned for a 10U0 ft altitude. The alignment and

amplifier gains for both runs were the same. The imagery is quite good

at both altitudes even though the signal level taould be expected to be

down by a factor of about 3 due to parallax at 2000 ft and down by a

factor of 4 due tv 1/R 2 attenuation. Resolution is, of course, still

2 mrad which corresponds to 4 f t on the ground at 2000 f t.

The night flight was not preceded by ground alignment checks, but

it was preceded by three hours of flight time in which thermal imagery

was taken. Analysis of that data showed that the tY^:ermal detector was

operating with an NEST of 0.1° F. Figure 2c shows the airport ramp

thermal imagery at 1000 f t altitude with an ambient ground temperature

of 28°^'.

The passive imagery presented in Figure 2 provides unobscured

coverage of almost the entire 90 degree field-of-view of the scanner

system. The active imagery in Figure 1, however, covers only about

^0 degrees of scanner field-of--view. This is presumably due to loss of

signal as a result pf misregistration bettaeen the physically separated

laser transmitter and the active receiver as the scan deviates signif i-

cantly from nadir. Zn addition, minor optical misalignments and delays

in the recording circuitry produced a skewness to the imagery. noth.oF

these discrepancies should be easily corrected.. In summary, the aperati.an

of the system and the quality of the resulting imagery was quite sans--

factory for init_i.a1 flight bests.

2. ^ SYSTIIti EQt3IPMNNT D^SCRI:PTION
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A:^chough various system configurations with diff erir^g capabilities

were proposed for construction at the close of the design study, aiil.y a
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minimal capability, basic system was authorized. The fT.^nctions of this

basic system are illustrated in the block diagram of Fzg,ure b. Blocks 1

through 10 represent an existing passive scanner design to which active

channels were added. ^.'he equipment of Block 1 was extensively modified

to incorporate the changes. Otherwise, the new system was formed by

adding to the old passive system equipment which was duplicated in the

new system. The complete operable airborne system included acme BRIM

equipment in support of that developed for NASA. These system support

functions are noted on the block diagram. The major . system functions

are described in the following sections.

2.4.1 Optical -Mechanical Scanner Configuration

The configuration of the Active/Passive Scanner was conceived as

a modification and expansion of the already proven M7 ^iultispectral

Scanner design. An optical schematic of the active/Passive Scanner is

sho^,m in Figure 7. Essentially the scan mirror motor drives a single

faceted mirror at each e^!d of the motor ` s double ended shaft. A fixed

folding mirror posi.tianed immediately in front of one scan mirror i.s

used to direct two laser beams onto the r.^spective scan mirror. The

other scan mirror is used to receive the laser signals after they have

been reflected back to the scanner by surface objects. The two scan

mirrors have been separated by a distance of 24 inches in order to pre-

clude a retry return of a laser signal by near f^.eld atmospheric parti-

culates. The two scan mirrors are slightly canted (1 mrad each} so that

each mirror views a common abject at an optimum range of 1000 ft while

it is also torsionally - displaced (I mrad) so that compensation is achieved

far time of transmission of each laser beam Aver a distance equal to

double the range. The scan mirror drive is speed controlled .using a

motor-generator tachometer loop. For use in ERIli aircraf t, the speed

is nominally maintained at 3600 rpm. The system is, howevFr, capable

of operation to a maximum speed of 6000. rpm.
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Two detector units are utilized to sense incoming passive radiation.

These include a multichannel spectrometer and an infrared detector nom-

inally filtered for operation in the 1.5 to 1.8 1^m atmospheric window.

The spectrometer, using a glass prism and photomultiplier detectors,

can be configured to sense radiation in as many as 12 discrete wavebands

in the range of 0.4 to 1.0 um. The infrared detector (s) can be conf figured

tv cover any of a number of spectral bands in the range of 1.1 to 3.3.5 um.

Two detectors at the opposite end of the scanner are utilized for

receiving the retry reflected laser signals (Table 8). A phvtomultiplier

is used to sense a return signal at laser wavelengths less than O.bB um

while a silicon avalanche photodiode is used for wavelengths greater

than 0.75 gym. Each detector is operated in conjunction with a narrow

bandpass filter inserted in a collimated portion of the incident beam

immediately ahead of each detectox.

The entire assembly is rigidly designed to avoid deleterious dis-

tortions of any optical assembly. The entire unit shaven in Figure S

measures 98 inches long and weighs 7S0 pounds.

2.4.2 Passive Iletectars and Calibration

The passive detector units which are part of the scanner assembly

are a multichannel prism spectrometer and a f filtered infrared detector.

Photomultipliers with S20 or S1 photocathodes are the detector elements

in the spectrometer. An InSb ar HgCdTe detector flake coaled to liquid

nitrogen temperature is the element for the separate infrared detector.

A coaled filter, nominally selected for the 1.5-1.8 um band, is used

with the 3:nSb detector for optimum signal-to-noise performance. An un-

cooled external filter is used with the HgCdTe detector for selected

thermal bands between 3.5 and 13.5 ^^m.

While a choice of passive bands are available through spectrometer

adjustments and detector filter selections, the intial configuration

of the system provides the following:
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violet 0.445 + 0.035 µm

blue 0.475 + 0.015 µm

blue green 0.500 + 0.020 µm

green 0.520 + 0.020 µm

green yellow 0.545 + 0.025 µm

yellow 0.575 + 0.025 µm

orange 0.610 + 0.030 µm

'red 0.60 + 0.040 u:?

infrared 0.805 + 0.135 µm

infrared. 1.65 + 0.15 or 10.20 + 1.20 um.

Far radiometric calibration of each passive band, once each lane

scan the detector views common, radiation reference sources. 	 These sources

consist of a dark level, a point source calibration lamp and three full

aperture, black body plates. The lamp brightness and the temperature

' of two of the plates are controlled by the equipment operator to approxi-

mate surface signals. The third plate is at ambient temperature. These

integral sources are compared periodically with standards in the labora-

tory so that they provide known and acceptable calibration accuracy of

the system at the instrument aperture. 	 '

The time history of a detector signal output. during a line scan is

shoran in Figure 9. This trace as shown as the analog output of the de-

tector with considerable dead time as the scanning aperture moves across

different objects or radiation sources. This video signal may be recorded

directly an tape in this analog form or it can be stored and sampled an

digital form far more efficient tape recording.

2.4.3 Active 'transmitters and Receivers

Imager -- CW Nd:YAG Laser Transmitter

A commercially available Nd:XAG laser unit was modified for airborne

operation and was used in the near iR active channel of the scanner.
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TABLE 8. ACTIVE RECEIVER PARAMETERS

A. Celestron Telescoge (Collector Optics)

Type	 Schmidt --- Cassegrain

Clear Aperture	 5 inch diameter

Secondary Obstruction	 2 ^.nch diameter

Focal Length	 50 inches

Speed	 f/10

B. General Electric Laser Eye (Model 104)

Type	 Silicon Avalanche Photodiode

Bandwidth	 0.1 Hz -- 1 Pfiiz

Responsivity @ 1.06 u	 25 A/W

iVEP/^	 4 x 10
-4 W gz-1/2

Output Impedance	 < 2000 ohms

Diameter	 0.125 inches

Input Power	 12.2 .f 0.2 vdc; ^ I50 ma

^.vala^^che Gain	 100

Avalanche Voltage	 2200 volts

C. RCA 8645 Photomultiglier Tube

Type	 10-stage

Photocathode	 5-20 multialkali

Aiaximum Voltage	 1800 vdc

Maximum Aver2ge Anode Current 	 0.1 ma

Sensitivity (maximum)	 0.064 a/w

Gain	 0.11 x 106

Anode Dark Current	 3 na

Anode Pulse Risetime 	 ^ 2 nsec
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TABLE $. ACTIVls RECEIVER PARAMETERS (Continued)

D. Filter 5electi.on

Central Wavelength	 Min. Peak _T ransmittance	 ]3andw3.dth

0.5174 }gym 66% 0.0067 um

0.5260 Um 84% 0.0084 um

0.5380 ^m 62% 0.0102 um

0,5464 um b1% 0.0108 ^m

0,6328 Um 60% 0.0].00 um

•	 O.b514 um 64l 0.013.4 um

1.06G4 um 50% 0.0055 um

^d

i
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Side View

FIGURE 8. PHOTOGRAPHS OF ACTIVE/PASSIVE MULTISPECTRAL SCANNER
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This Nd:YAG laser provides continuous wave (CW) radiation at L.064 um

for two-dimensional active imagery of the ground scene. The laser pa-

rameters and a schematic of the Laser assembly are shown in Figure 10.

The laser is comprised of a krypton arc lamp pumped Nd:YAG crystal

designed for continuous high power operation. The laser is designed far

operation in the TEMD1^ or donut mode although TRAiGQ operation may be

obtained by insertion of a Limiting aperture within the laser resonant

cavity, or multimode high average power operation may be obtained by

shortening the Laser cavity. The laser cavity is formed by two flat

mirrors, one which is nearly 10^% reflecting and one which is 90% re-

flecting, the latter being the output or coupling mirror. Maximum stable

Laser output is attained by critically aligning the laser resonating mir-

rors with the laser rod axis for the optimum (not necessarily maximum}

lamp current.

The high pressure AC krypton Tamp Lies parallel to the Nd:YAG laser

rod within an elliptical cavity to provide uniform optical pumping of

the Laser red. Deionized water flowing aver the laser rod and arc lamps

farms the primary cooling system. Thermal energy is transferred from

the primary* cooling system to a secondary system of either tap water

for labaratory use or an external cooling unit for flifht operation.

Since commercially available Nd:YAG Lasers are designed for tap water

cooling and b0 Hz operation, the laser system was modified far airborne

cooling {radiator heat exchanger and refrigeration unit.) and G00 Hz

operation. Silicon controlled rectifier (SCR) switching is conventionally

used for current regulation in most Nd:YAG laser systems aid can lead

to radio frequency interference {RFT) problems. An alternative regula-

tion scheme using a transistor passbank does not have the electrical

spiking found with SCRs. An argon laser power supply utilizing transis-

tor current regulation was used to drive the Nd:YAG Laser arc Tamps and

was provided as a special order by the laser manufacturer.
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Beam	 Nd:YAG Rod
Expander	 10^,T
_	

--^H IR

Krypton Arc Lamp

-	 ---- ] .4 m —	 .

DC Krypton arc lump 3.5 Kte
(l60 vdc, 22 amps (max)}

Elliptical pump cavity
Water cooled flooded cavity ideionized watery

Donut Gausian Multi-
TEM01 , TEM00 Mode

Power output	 30 W 10 W 50 Vl'
Beam diameter	 2 mm l mm 4 mm
Beam Divergence (tu!1 angle) 	 2 mr 1 mr 9 mr

FIGURE 10. Ncl: YAG LASER SYSTEM - CVl' OPERATIO`^
(Schematic and Performance)
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'	 The lowest order T)1ri00 or Gaussian mode of the Nd:YAC Laser can be

	

^^	 obtained with an intro-cavity aperture to provide a laser beam about 	 F

	

{	 1.0 mm in diameter with a diffraction limited divergence of about 1 mrad.

	

r	 The power output is about 10 watts in this law order made and the beam

	

^j	 is spatially stable whit amplitude fluctuations at a minimum. Increas-

ing the aperture size allows T^r101,^ or donut made operation with a cor-

responding increase in output power to about 30 watts but at the expense

' of greater beam size, greater divergence and greater amplitude fluctua-

flans and spatial noise.	 Removal of the aperture and shortening of

the laser cavity produces multi--mode 	 eration faith output power in ex--

cess of 50 watts, abeam size of several millimeters and a divergence of

several mrad.	 Spatial noise is significant in this configuration

due. to the blinking on and off of the various transverse modes as they 33
compete with one another.

In order to maximize the signal-to-noise {S/N) ratio of the active

imagery, it is desirable to have as great a laser output power as possi--
i

b1e ttiithout introducing excess Laser noise. 	 Quantitative noise values of

the various laser modes are not available, but it is felt that the TEl1Q1;^

or donut mode provides the optimum output potaer and noise values for

'! the active system. 	 In applications requiring greater range, the laser

+^
can be operated in the high power multimode configuration.	 Similarly if '

an application dictates uniform {Gaussian) beamshape and can tolerate
_

lower laser power, the Nd: yAG laser can be operated in the TII^f00 mode.

` A laser is essentially an optically resonant cavity with tolerances ',^

which are an the order of a wavelength of Light. 	 In order to maintain ^
ij

the laser output in a particular laser mode with a minimum of amplitude

noise, the Laser must be free of high amplitude mechanical. perturbations.
^'

In an aircraft, this necessitates isolation of the entire scanner from

E

the aircraft vibration and also requires a well balanced vibration-free ^

scanner mirror and drive. 	 This is particularly important far Nd:YAG
^

^ Lasers where acoustics and thermal perturbations can set up relaxation
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t oscillations in the laser rod.	 These oscillations are high amplitude	 ^

and are on the order of ZQ^ Hz, weal within the information bandwidth 	 ^`
I

of the scanner s}stem.

' This particular Nd:YAG laser was built by Control Laser Corp. of 	 ^	 ^
E

_ Or'_ando, Florida. 	 It consists of a 4 x 75 mm Nd:YAG red with 0.b percent
i

doping, and concave end faces having a ^ m radius of curvature.	 The	 j

system was designed specifically for. long laser cavity, donut mode opera-- 	 ^

lion{ although Gaussian or multimode operation is also easily achieved.

The delivered unit employed flat dielectric coated mirrors separated by

. 1.5 meters to form the optical cavity. 	 'The laser head was located at

the center of the cavity, and an aperture near the high reflectivity

mirror was used for mode control. 	 Dust covers between mirrors and laser

head were provided to protect the optical surfaces from dust and damage. 	 -, J

Cooling of the high potaer, high pressure arc lamps and laser rod 1
-	 was achieved by passing water over these components. 	 Since the electrodes	 ^

are in direct contact faith the water, it must be deionized to prevent

current flow and resulting pitting of the gold coated elliptical pump 	 -	 j

cavity.	 A cond _.^tivity between 2 and 0.2 umhv/cm (4.5 to 5 P151	 cm)	 A

was maintained at all Ci_mes during the operation of the laser. 	 Flaws

between 3 and 4 gallons per minute were used and a water tempera-

ture of 95° was maintained.	 Heat was removed from this cooling water	 `'

through heat exchangers. 	 These heat exchangers were coupled into secondary

coolant Loops which included a large radiator in the aircraft slipstream

and a refrigeration unit in the aircraft.

Good stable donut made operation was difficult to achieve using the

^ delivered configuration.	 The donut mode was extremely sensitive to drive

fcurrent and would often break up into multimode operation. 	 In addition,

relaxation oscillations were present and would completely dominate the

$ laser output if an electric motor ar power drill was placed in contact

{`	 ^,. with the optical bench.	 This was corrected by going to a slightly

'^
shorter (1.4 m) aid slightly asymmetric cavity such that no relaxation

^
49

4 ^

I^r . '  .. c.

' 	 -	
...



a

s

_ ^	 ___......_ . _	 _	 f	 _	 ;

^^f ^
FORMERLY WILLOW RUN LAEIgRATOAlES. THE uNIVER5ITY OF MICHIGAN

^€
f

1

oscillations could be found in the output and the donut mode could be 	 '

^	 maintained indefinitely._ {
	 1	 '

Alignment of the Nd:YAG laser was achieved with a Helve laser mounted

to the Nd:YAG laser optical rail. The Helve beam was also used to follow 	 ^

^	 the ath thrau h the scanner s stem and to ravideI	 P	 g	 Y	 P	 Preliminary system
i

alignment.
1

The 6x beam expander was used to increase the beam size of the in-

E	 tense laser output and therefore reduce its paver density. This reduces

the chances of damage to the mirror surfaces and reduces thermal heating

'f	 effects which can warp the mirror. In addition, 1^,a1 fluctuations in

the reflectivity of the scan mirror surface are averaged when a large

portion of the scan mirror is used.

I

	

	 s

Imager -- SiAPD P.e^ eiva_r

The heart of the imaging laser receiver is the silicon avalanche

photodiode detector which gives the best signal to noise (S/N) ratio for

this spectral region (1.06 pm), signal level, and electronic bandwidth

(90 and 160 kHz). The unit is made by General Electric and is designated

Laser Eye {I^fadel 104). This detector assembly shares, via dichroic

beam splitter, the aperture of the active receiver collector optics with

the profiler detector assembly. Each of these detector assemblies in-

clude narrow spectral band optical filters which minimize solar illumina-

tion of the scene. Solar radiation represents optical "noise" in the

active imagery which is calibrated in terms of scene reflectance. These

sgectrally narrow optical filters require collimation of the radiation

imposed upon them. Therefore, the active receivers include collimating

and focusing lenses as caell as the optical filters and radiation

detectors.

^^	 The conventional narrow band (55 ^.) interference filtering of the

j^	 1.06 dam detector provides an adequate laser -to-solar signal ratio

^^	 of about 9 at the detector. The detector converts the radiation signal
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to electron flow or current which is multiplied by an avalanche phenor.^ena

which is similar to that in a photomultiplier tube. This signal current

is amplified for tape recording by conventional operational amplifiers.

Once each Line scan {during the internal scan view), a portion of the

laser transmitted radiation is directed into the receiver using a 0.2%

beam sampler and a fiber optic bundle (Fig, 7). This monitoring of laser

transmitted power is required for reflectance calibration. Further dis-

cussion of reflectance calibration provisions for the active bands i.s

presented in Appendix B.

' Profiler ---- Pulsed Ike Laser Transmitter 	 ,

A commercially available nitrogen laser pumped dye laser was to be

t=^^ as the active profiler transmitter far providing surface penetration

data in various applications. The high peak power and tunable wavelength

output of pulsed dye lasers taas attractive and the short pulse duration

of the nitrogen laser pumped system led to that choice. The Laser Energy

Inc. Model 337 dye laser t,=as chosen on the basis of sham {less than

4 nsec), high peak power (15 kw) laser pulses and 400 kz prime power

capability. Laser Energy Inc., however, was unable (in a period of one

year) to provide a useable laser even at reduced spec ificatians (5 nsec,

10 kw). The profiler was, therefore, not functional in the active/pas-^

sive multispectral scanner during acceptance testing of this system.

An alternate system, the Molectron Spectroscan 10, was purchased at ERIM

expense but did not arrive until after completion of the contract period.

jdork is progressing under a Navy contract to incorporate this new

nitrogen laser pumped dye laser into the active/passive scanner system.

The Molectron nitrogen laser pumped dye laser system is basically

the same as the Laser Energy Inc. system. Bath employ nitrogen lasers

which optically pump dye laser cavities and the dye laser outputs are

similar in peak power, beam size and divergence. The principle difference

lies in the pumping geometries of the two systems. Table 9 tabulates

the specified parameters of the proposed system (Laser Energy) and the

system presently being used ;Molectron).
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TABLE 9. NITROGEN LASER P^'ED DYE LASERS

NTTRDGEN LASER

Laser Ener^y^	 Molectron

Wavelength 0.3371	 m 0.3371	 m

Discharge Longitudinal Transverse

N^ Gas Sealed glowing (vacuum pump;
gas bottle)

Beam Quality Collimated Divergent
Size 3 mm {diameter) l.5 x 25 mm
Divergence 3 mrad 1.6 x l4 mrad

Pulse Width 9 nsec 9 nsec

Dye Laser

Laser Energy* Molectron

Wavelength 0.36--0.74	 m 0.36-0.74	 m

Optical Pumr Longitudinal Transverse

Tuning Fri.sm Grating

Linewidth 3 nm 0.3 nm

Pulse Width 4 nsec 4.5 nsec

Beam biameter 1 mm 0.6 mm

Beam Divergence 1 mrad 4 mrad

Maximum Peak Power 15 kw 20 kw

Total Weight 100 1bs

Total Size 37 x I5 x 9 in.

Power Requirement ll5 vac, 8A

Price $9 K $l3 K

^ Company failed to provide a workable system.
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The scanner performance computations presented in Section 2 reflect

minor changes in performance as a consequence of the different pulsed

laser system (see Table 7). As may be seen from Figure 11, the Mvlectron

laser output may be enhanced by going to wavelengths less than 0.54 pm.

Although coastal water transmission is maximum at about 0.54 gym, only a

small decrease in transmission is encountered by going to slightly shatter

wavelengths. At 0.52 pm, caster transmission has deteriorated by only

a few percent while laser peals pocaer output of the Malecttvn Laser has

gene from l0 kw to about 18 kw. This latter power level results in a

slightly increased laser return signal over that presented in the work

statement, and a corresponding decrease in the noise equivalent reflec-

tance value. It should be noted that the active visible wavelength

receiver has a broader bandwidth optical filter than was presented in

the contract work statement, allowing a factor of 5 more background

solar radiation tv be incident on the detector.

The ins trument, of course, is quite flexible with wavelength

tunab^.l^.ty throughout the visible spectrum. In addition, the nitrogen

laser may be used by itself to obtain h^.gher peak powers of about

50 lcca at 0.3371 um in the near W far passible fluorescence experiments.

The nitrogen/dye laser unit pulses on command fram a trigger guise

indexed into the ground scan of scanner imagery data channels. The

pulse may be ^.ndexed anywhere xn the scanner external field of view

but cannot be repeated more often than once each 12 scan lines. This

rate restriction results from the store and sample rates of the

reteivet pulse analyzer.
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Aspheric
Lens

Transverse Discharge
Pulsed N2 -Laser

Grating

L^^^

Dye 8^R
Cell

t ^^1

Dye Laser

FIGURE 11(a). SCHEMATIC OF MOLECTRON SPECTROSCAN 10 NITROGEN LASER
PUMPED DYE LASER

dyes purchased by
E RIM
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500

20
15	

^	 Coumarin	 20

10	 i	 495	
Rl^6G	

15

^	 RhS+CVP	 10 ^

5	 ^
^	 ^	

5 ^

F	 ;	 ^
W 2
	

I	 2 .^
f	 m

^	 I	 ^
^i	 I

400 420 440 460 480 500 520 540 560 580 600 620 640 660

WAVELENGTH (nm)

FIGURE 11(i^). TUNABLE OUTPUT OF THE MOLECTRON SPECTROSCAN 10,
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Profiler --- High Speed Photomultxplier Tube

In order to operate the scanner in its profiling mode for obtaining

height or depth information, the sI2ort (tens of nanoseconds) dye laser

pulse returns must be temporally resolved by the receiver. The fast

response, low noise and high gain of a photomultiplier tube mane it an

ideal choice as the pulse detector. Several different Pi^i tubes were

considered, and the RCA 8645 with an S -20 surface and a rise time of

Tess than 2 nsec coos chosen. Although several other PM tubes possessed

faster response time and/or greater quantum efficiency, they Caere all

experimental tubes of questionable reliability. The RCA 8645 was chosen

based upon extensive past experience with this detector, its rugged

packaging, good shielding, good availability and low cost. Table 8 lists

the specifications and operating parameters of this device.

Roth the active profiler and the active imager use the same Celestron

Schmidt - Cassegrain receiver telescope (see Figure 7 and Table 8). A

"cold mirror" whose reflectance is greater than 90% in the visible spec-

trum (0,42-0.67 ism) and whose transmittance is greater than 85% in the

near IR (0.75-2.5 ism) is used to direct the profiler radiation (visible}

to the photomultiplier tube and yet allow the active imaging radiation

(1.06 >am) to pass through to the Laser Rye Si APD detector. Immediately

following the "cold" mirror and located near the telescope focal plane

are respective adjustable apertures of 0.15 ^.nch diameter which provide an

instantaneous field of view of 3 mrad. The radiation is then collimated

by a 4-inch focal length lens (6 inch lens for 1.06 pm channel) in order

to accommodate a narrow spectral bandpass interference filter (and other

filters such as a polarizer, if desired). The radiation is then reimaged

onto the detector using a 4-inch focal. length Lens.

It should be noted that the broad electrical bandwidth (l7S AiHz)

required to provide a temporal resolution of 2 nsec, limits the system

sensitivity appreciably. Since noise current is proportional to the
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square root of the electrical bandwidth, a strong signal level is re-

to produce an adequate signal-to--noise xatio. T[izs dictates laser

transmitter power levels in the kilowatt range. In this system, the

transient digitizer in the pulse receiver electronics limits the pulse

(or sampling) rate to once each 12 scan lines (or 5 per sec at 60 scans/

sec).

Laser Safety Considerations

Calculations have been made using the American National Standard

Institute (ANSI 2136.7.-^l976) maximum permissible exposure (rIP>i) levels

to laser radiation. The results show the minimum operating ranges which

can be used safely without danger to unprotected observers. The calcula-

tions are based on the performance numbers expected from the active sys-

tem and do not allow for atmospheric lensing, beam focusing or other

abnormalities which can occur.

Performance numbers used are given in, the list below.

i

Resolution (a)

Scan Awe11 Time (-r)

Non-Scan Ihre7.l Time (rl)
^ 1000 ft. alt.

Piaximum Pk Power

A/C Velocity (V}

1.06 um	 0.4--0.7 um

2 x 10 3 mrad 2 x 10
-3
 mrad

5.3 nsec	 4.5 nsec

0.01 sec	 4.5 nsec

20 W
	

10^ Td

200 f t/sec
	

200 ft/sec
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Assuming direct intrabeam viewing,

MPE @ I.06 um = 5 x 10
-b
 J/cm2 for ^ < IO-5 sec

= 9 X 3/4 x 10
-3 

.^/crr ' for ^ ^ 5 x 10
-g 

sec

PIPE @ 0.4 - 0.7 um = 5 x IO-7 3/cmz for ^ ^ 1.8 x IO-5 sec

= l.$ r 3/^ x IO-$ J/cmz for T > 1.8 x 10
-g
 sec

NOTE: Al:^ of the above MPE t s are for maximum night aperture of 7 mm
which is the worst case Zeve1.

The exposure level can be determined by the following expression

Exposure = PPK ^

^- (aR) 2

from which the minimum operating range can be determined by inserting

the MPE to give

4	
I/z

R	
- ^PPK^

mzn - a2 MPE

Substitutions in the range equation gives minimum safe operation ranges

for both wavelengths with scanner mirror operating and stationary.

1/2
4 20(5.3 x 10-^)

	

^in (I.06}scan =	
rr	

-6	 _6 = 25.9 m
(4x10 )(5x10 }

4 20 x IO 
z

1./2

	

R^in (1.06}non-scan = 	 ^ _6	 314	 -3 = 148 m
(4 x la ) E9) (rt	 ) (1Q 3

i

i
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1/z
^ (144 )(4.5 x 10-9)

Rnin (Q.4-0.7)scan = r	 -6	 -^ = 54 m
(4xla )(5x10 )

These results indicate that a minimum aircraft altitude for equipment

to be energized of say 50^ ft must be specified as "standard operating

procedure," At this altitude a range safety factor of at least three

is achieved even when the scanner is not rotating.

2.4.4 Signal Handling and Recording

The analog signals from the scanner detectors are amplified in a

series of preamplifiers at the scanner and postamplifiers at the operator

console to bring the levels up to 3 volts for display and recording.

The operator has manual control of the amplification. He monitors the

12 scanner data channels in analog form, 3 channels at a time on an

oscilloscope. ^n the oscilloscope, time is displayed along the x--axis

and signal amplitude as a y-axis deflection. The operator can view the

scanner signals in analog form as bath inputs and outputs to and from the

tape machine. Therefore, satisfactory tape recording of the signals

can be verified at the time of recording.

Ta obtain the best quality of signal recording and tv use the mag-

netic tape most efficiently, the analog signals are digitized and re-

arranged in time before recording. $ach video data channel is recorded

on a separate tape channel in an $-bit high density digital tape (HDDT)

format. 'i'hus, 256 discrete signal levels are recorded. The data for-

mat is a copy of the one established by nendix for their M 2S multispectral

scannt ._astern. Zt provides for the recording of reference data along

with the scanner video. The computer processing centers at ERIM, Bendix

and NASA/3SC can retrieve the data directly in this format.

Special signal handling provisions were necessary to record all of

the desired information in the active scanner channel using pulse trans-

missions. The desired information taas contained in the total time history

5$
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of the signal amplitude, including both the transmitted pulse and its

reflected return as illustrated in figure 12. The time period TH is

convertible to the aircraft absolute altitude and the range of the

optical transmission. Increments of the time period T B represent the
	

r d

depth of surface penetration. The signal amplitude during the time

period Tg represents the reflectance at a particular depth when it is

compared with the amplitude of the transmitted pulse.

'A commercial electronic unit called a transient digitizer (Model

7912) by its manufacturer, Tektronix, provides the necessary signal

handling functions. It functions as a very high speed storage oscillo--

scope with a capab ility to digitize the acquired waveform and store it

in a semiconductor memory. The stored waveform is then read into two

channels of the HDDT tape recording. Since the readout is 512 x-y

locations (10--bit data}, it must be reformatted before it can be recorded
Y

on the 8--bit tracks for normal scanner video. T<vo 8-bit tracks are
	

1

required for total information recording and, because of the digitization

and readout time required, the pulse history can be recorded only once

each l2 scan lines at 60 scans per second.

The transient digitizer was modified to provide a coarse time scale

for time period (TH) representing the optical rangy and a fine time scale

for period {T$} representing the depth of surface penetration. Thus,

range to the surface can be determined to a resolutiol of about 10 ft and

surface penetration to about 1 ft. The amplitude of the transmitted
	

kl

pulse is not directly represented in the stored pulse history because of

its large amplitude compared to the reflected signal. However, it is

registered in the proper position far time measurement and its recorded

amplitude is indicative of the transmitted power.

2.4.5 System Installation in Aircraft

The syGtem teas installed in );Rlri's DC3C aircraft for flight test

before delivery and far flight operations after delivery. I;RIPi's air-

craft had been previously modified to provide two large instrument wells
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(each 2 ft wide x 6 ft long) through the floor near the rear of the

aircraft and a 30 KVA 400 Hz turbine driven electrical power unit for

airborne testing of developmental instrumentation systems.

The active/passive scanner assembly fills the starboard side in-

strument well as shown in Figure l3 which is a view of the scanner as-

sembly looking aft. The l.0fi pm cw laser transmitter is shown in the

center of the picture with the receiving detector at the top right cen-

ter of the picture. The second laser transmitter (which is not part

of the scanner assembly as shown) would mount on the shelf to the right

of the picture in parallel with the other laser unit. Figure 14 is a

view (looking aft in the aircraft) of the scanner assembly and its sup-

porting electronics in three floor to ceiling racks. Two additional

racks forward in the aircraft contain laser cooling equipment and the

magnetic tape machine.

Figure 15 is a view looking faxward in the aircraft showing one

equipment operator taking a laser power output reading in the foreground

while another makes a video gain adjustment at the operator electronic

display and control panel. Note that bath operators are wearing protec-

tive eye goggles and sound attenuating earphones. These protections are

required when the lasers are aper.ated because of the possibilities of

stray laser radiation and the high noise level of the laser cooling

equipment in the aarcraft. The motion of the laser beam from either

scanning or aircraft motion preclude an earthbound observer from eye

damage from the laser during flight.

The scannex' assembly is installed an the aircraft with a scan plane

tilt 7° aft of nadir to reduce specular surface reflection in the active

band signals. The scan is at a constant angular rate from Left to right

across the aircraft ground track. The unobscured lateral scan field of

view is 900.

The complete active/passive, multaspectral scanner system weighs

242b lbs and requires 16 KVA of electrical power. A breakdown of system

height by major dssembly is presented in Table 1Q.
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IrIGURE T3. ACTIVE/PA55IVE r1ULTISPECTRAL SCANTIER ASSEI`ii3L1 IN bC3C AIRCRAFT
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TABLE 10. ACTIVE/PASSIVE SCANAFER SYSTEM WEIGHT

Rack l	 340 Zbs

PC 500 Tape Machine

	

`.	 Chiller

	

_'	 Coolant

Rack 2	 380 lbs

r '	 Laser Cooler
Distilled Tdater
Heat Exchanges

Rack 3	 142 lbs

'	 Laser Control Panel
Oscilloscope {485)
Power Supply

Rack 4	 285 lbs	
S

Electronic Controls	 u

Camera Controls
Monitor Oscilloscope {7904)
Pulse Analyzer {605)
	 ,.

Digitizer {R7912)
Digital Record Unit	 ^:

Rack 5	 236 Ibs	
..^^I

Digital Voltmeter
	 t

Digital Counter
Video Postamplifiers
Electronic Controls
Monitor Oscilloscope (RM565)
Scanner Control Unit
Equalizers
High Voltage Power Supp^.y
Law Voltages Fower Supplies

Scanner Assembly	 781 Ibs

Scanning Mirror Unit
Collector Optics
Spectrometer
IR Detector
Active Receivers
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Scanner Assembly (Continued)

Active Transmitters
Video Preamplifiers
Radiation Calibration Sources

Miscellaneous
	 x,02 lbs

Scan Motor Control
Power Ampl^.fier far Black Bodies
Cables
Plumbing

TABLE 10. ACTIVE/PA55ZVE SCANNER SYSTEM WEIGHT (Continued)

TOTAL
	

2+26 lbs	 r
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3.

cor^TRACT P^R^o^rsArrc^ s^sARY

This contract was initiated in June 1975 as an 18 month program with

half a million dollar funding. The funding has remained the same but the 	 _; i

contract completion has slipped four months because of delays in contract

task accomplishment.

3.I PROGRAM STATUS

The program originally consisted of six major tasks. The sixth task 	 ,^

was dropped as a requirement when cost overruns occurred in the completion

of the first five. The taslcs are 'listed as follows:

1. System Analysis	 '
9̂

2. System Design

3. Equipment f'abricatian and Procurement

4. Equipment Assembly and Test	 '!

S. System Installation and flight Test

6. Data Collection and Analysis.

At the close of the contract effort, an airborne system, configured

as designed except for the absence of the pulse laser unit, was success-^

fully test flown in ERIM's aircraft. The purchased pulse laser unit which

had been physically integrated into the system was returned to the menu-- 	 '
^!

facturer prior to the flight test because of unacceptable performance 	 V

during ground tests. This item was subsequently deleted as a deliverable	 ;'

part of the system,	 ^

The elimination of data collection and analysis as part of this con-

tract effort has reduced the performance evaluation to a minimal effort. 	 !^
i

It is anticipated that other contracts will supply an acceptable pulse 	 j
1

laser unit and will use the system capabilities to evaluate the potential 	 ;

of combined active and passive multispectral data in various applications. 	 ^
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i

4

E	 3.2 DFLIVERABLF ITIItiIS
^^

Except for the performance evaluation reports associated with the

^	 deleted analysis task, all original contract items were delivered as
6
^	 planned. The delivered contract items are listed as (allows:
I
^	 1. Monthly Progress Reports

2. Monthly Financial Reports

3. Program Plan

4. Program Review at .ISC

f	
5. Resign Study Report

6. Resign Review at ERIM

E	 7. Operating and Maintenance Instructions

I	 8. ActivelPassive Multispectral Scanner System
i

9. Final Report,

The Scanner System as delivered is a complete operational system

except for the pulse laser unit, laser cooling provisions and data re-
k

cording on magnetic tape. These capabilities are provided by ERIM in

program sharing when the system is operated by ERIM in its aircraft.
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APPENAIX A

COLLIMATOR BENCH TESTS

' Throughout the assembly of the active/passive multispectral scanner,

as each optical component was added to the system it was aligned with re-

spect L-o numerous prec^.sion machined surfaces in the scanner frame. This

.	 was achieved. using an autocollimation telescope and a Helve laser. The

overall alignment accuracy was on the order of a mrad or two, Once the com-

ponents were in place and aligned as well as possible, the entire scan-

ner was placed upon a collimator bench for alignment, resolution and

.	 registration tests. Since the active-transmit/passive-receive scan rnir-

^	 ror and the active-receive scan. mirror were separated by 24 inches at

^	 their centers, the collimator had to be used separately for each end of

:^^ the scanner. Registration for the total system must therefore be left

far the 1000 ft ramp tests.

^`	 The collimator bench consists of a Tungsten-Halogen lamp khich il-i

laminates a piece of diffuse reflecting flame-sprayed aluminum. Placed

in front of the aluminum is a target consisting of an aperture or a series

of three rectangular holes. These rectangular holes or bars allow meas-

x	 urement of the modulation transfer function or spatial resolution of the
t
r	 scanner receivers. In order to simulate the far-field, the aperture ox

,`	 3-bar targets are placed near the focus of a 100 inch focal length parab-

,,	 olaid. Accordingly, each inch of target which can be resolved corresponds

to a mrad of resolution for the scanner receiver.

a
As mentioned above, ttie scanner system was designed to grovide 2 mrad

resolution in all channels. The instantaneous field-of-view (IFOV) of

each of the passive receivers is therefore 2 mrad and the laser trans-

mitter beam is 2 mrad in angular extent. Although the total IFOV of the

active receivers is greater than 2 mrad its effective IFOV or effective

!	 resolution is established by the laser beam size, i.e., 2 mrad.

Figure A-1 shows the results of the resolution tests performed on

the collimator bench using 2 inch bars (holes) separated by Z inch bars
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(a} Pliotomultiplier Tube
in Spectrometer

1

(c) Photamultiplier Tube,
Pulse Receiver

(d} Silicon Avalanche
Photadiode, Active
Imaging Receiver
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(b) HgCdTe Thermal
Detector (9 - llum)
in IR Channel
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FIGURE A-1. RESOLUTION DETERMIIv'ATION USING A 2 mrad 3-FiAR TARGET IN THE FAR-
FIELD OF A IOD inch COLLIMATOR.
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of flat-black painted aluminum to comprise a 2 mrad target. Resolution

of {a) the spectrometer is nearly 2 mrad while that of (b) the thermal

detector is clearly 2 mrad. The passive resolution of the active

receivers can be seen in (c) and {d) to be greater than ^ mrad, but

certainly less than the design of 3 mrad.' This latter observation

makes alignment of the active transmitters and receivers more critical

but helps to reduce solar bacicground slightly.

The bench collimator was als^^ used to assure registration between

the passive spectrometer, the IR receivers, and the active laser trans-

mitter, all located on one end of the scanner. Figure A-2 (a) and l'b)

show goad registration between the IR receiver channel and the spectro-

meter receiver channels. In (a) a HgCdTe thermal detector (9--11 um)

is used in the IR channel and in (b) an InAs near-IR detector (1.4-

1,8 pm) is used. In Figure A-2(c), the Quartz--Iodide lamp has been

turned off, and the Nd:YAG laser transmitter is operating to illuminate

the flame-sprayed aluminum behind the 3-bar target. The well resolved

signal which appears in the figure indicates good overlap of the transmit

and receive beams, both in time and in space.
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FIGURE A-2. REGISTRATION DETERMINATION L'SING THE 100 inch COLLIMATOR BENCH.
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APPENpLY B

REFLECTANCE GALISRATION OP ACTTVE SCANNERS

B.1 CALIBRATION SCHEMES FOR ACTIVE IMAGERY

Three internal calibration schemes for the active scanner bands

were examined during the system development. The merits of the

techniques considered for incorporation in the system are discussed

herein.

Method 1: Monitor Laser Output Continuously

Tn this method a small fraction of the laser output is fed directly

to a suitable calibration detector whose output i.s amplified and

recorded in parallel with the receiver output of reflected radiation.

During post- flight processing the calibration channel record is used to

remove affects of variations in laser output. the great advantage of

this scheme is that it monitors laser output throughout each scan. Its

disadvantages are that it does not monitor receiver efficiency and, even

as a monitor of transmitter output, it would be difficult and expensive

to prevent drif is in gain of the calibration channel.. Such drifts could

occur due to changes in the beam dividing optics, detection responsivity,

or electronic gain and would be interpreted as the reciprocal change in

output of the laser. However such changes would occur quite slowly.

Thus, this calibration scheme could provide a simple means of monitoring

changes in laser output at high frequencies, particularly at frequencies

higher than onca per scan. As a result such a scheme would be

camglementary to one which can only follow changes at or below the scan

rate.

Mathad 2: Monitor Transmitter Ca Receiver Path Once Per Scan

In this method an optical system accepts the laser beam reflected

from its scan mirror during the inactive part of the scan cycle and

73
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relays it to the receiver scan mirror. 'typically the power reaching the

receiver from a ground scene is on the order of 10 $ times less than that

emitted by the receiver. In. prirc.iple it would be possible to fix the

attenuation of the relay optical path to this value to give an absolute

end-to--end calibration. However, the difficulty of making an independent

determination of the gain of the relay optics involved indicates that

this is not practical. As a secondary calibration system, however, it

would only be necessary to ensure relay gain stability at an appropriate

level.

Method 3: Airect Monitor of Modulated Transmitter

Tt would be gossible to modulate the small fraction of the laser

output fed directly to the receiver so that the data signals and

calibration signals could be separated during processing. However, the

modulation frequency would have to be more than twice the signal data

rate to avoid ambiguity. E^.aborate and relatively expensive means such

as an E--0 modulation would be required and additional complexity would

be introduced irita the receiver recording and/or processing. Igo further

consideration was given to this scheme because of its complexity.

8.1.1 Implementation of the Calibration Schemes

As an active scanner measures appar.:at^ reflectance rather than

apparent radiance it would, in principle, be possible to use an internal

reflectance standard to provide an absolute calibration without the use

of. external primary standards. However, the dynamic range in power at

the receiver is 1Q-10 to 10-$ of the transmitted power. 'thus an absolute

internal reflectance calibration scheme would require a known optical

* "apparent" in the sense that the actual reflectance is modified by
absorption emission and scattering in the atmospheric path.
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attenuation of this order of magnitude. Measuring the transmission of

an optical system accurately is very difficult unless the system

contains only. flat surfaces and is. free from scattering.. On the v.ther

hand providing internal secondary calibration schemes to be standardized

against external reflectance standards i.s vary straightforward. Little

attention has therefore been paid to absolute internal calibration

schemes, Thus the two primary requirements for the schemes to be

considered are that they cover^appragriate dynamic ranges with adequate

signal-tv-na;ise and that they show high stability throughout the period

between external calibrations.

Method I a Continuous Monitor of Laser Out ut

Since very high powers are available at the transmitter a very simple

calibration path optical system will suffice (except when modulation is

required, see below). Tn fact calculations show that for a ZOw Nd:YAG

laser, a silicon diode could collect enough of the radiation scattered

from one of the fixed folding mirrors to give more than adequate signal-

to-noise without the use of special diverting optics.

However, if the laser is operating cw the radiation reaching the

monitoring detector should be modulated to provide a zero reference

level. This could be done at high frequency using an AO or ED modulator,

bcct a fairly elaborate optical system would be required to obtain the

narrow collimated beam such devices require. Alternatively a mechanical

chopper could be used which blanked the - beam once or twice per scan

cycle (say 90° before and/or after nadir). This chopper would have to

be synchronized with the scan, so again a relatively elaborate system

is called for.

In any case a recorder channel. would be required for each laser

output monitor. However the data processing involved would be very

s^.mple.
i	 75
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Fortunately high frequency (>i00 Hz) variations of the cw laser

used in the system are sufficiently low that there is na need to intro-
,;

duce continuous monitoring of laser output.

Method Z: Periodic Monitor of Laser OutUut

The concept envisaged is illustrated in figure B - 1. The path

between transmitter and receiver is completed by the two. 45° mirrors

shown which face each other and which face the scan mirrors at some

point during the scan dead time. 'The transmitter beam is expanded to

filly the receiver aperture and, at the same time, is attenuated by two

ground glass plates. The first plate is somewhat larger than the

transmitter beam diameter d and second. somewhat Larger than the receiver

diameter D. They are separated by a distance Q which can be varied by

moving one of the plates. Suppose that the plates have diffuse trans--

mittances T 1 and rz Str-1 respectively. Csy diffuse transmittance we

mean that if an irradiance E falls on one side, a radiance 'tE appears at

the other. For an ideal diffusing screen with no lasses '^ = 2,^. Real

screens may haver less or greater than this depending an whether more

or less than half of the radiation is backscattered and also on the

polar diagram of the scattering effect.]

Then if power ^ t falls on the first screen, the second screen sees

an intensity r l ^ t at the first screen giving an irradiance at the second
T ^1

screen of —^. The radiance at the second side of the second screen is

then r^ r^ ^t/QZ and the power entering the receiver ogtics becomes

^ = TZ r 2 ^ t ^ DZa2/Q2

where a is the IFOV of the receiver.
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Thus the gain of the calibration optics is

G = ^/fit = 4 r 1 ^ 2 b2a2/Q2

Using expected values for the parameters as follows:

T^ = 1/2

T Z = 1/2

A = 12.5 cm

a = 0.002 rad

G = 30 5j^2

Thus to obtain the gain of 1C
-8
 indicated by the earlier discussion

we must have

10-5 = ^10-8

Q2

or k = IO

= 32 cm (12.6 in.)

This is in fact a convenient distance as the separation of the two

scan mirrors is to be about 1$ in. The attenuation can be reduced by

reducing !L, and increased by inserting neutral density filters or further

ground glass plates, In fact the obvious procedure is to set Q = 18 cm

initially with adjustment to 10 to 32 cm allocaing change in gain of

or lj 10 but setting the initial overall gain to the approximate

magnitude required by e:^perimenting with the Fabrication procedures for

the ground glass plates and passably by introducing a neutral density

filter iF further attenuation is required.

78
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This system would introduce a calibration signal into the receiver

during the scan dead time to track slaw variations in transmitter output

	

Y ;	 and receiver sensitivity. Thus it will be a straightforward matter to 	 -' ) -;.

use the calibration signals in post-flight processing to correct the data
f

for changes in transmitter output and receiver sensitivity. However,

calibration signals, having been reduced to the level of the scene

signals, will be relatively noisy. But, the duration of the calibrate 	 ^>

signals can be made equal to many resolution elements by ensuring that

the first screen is somewhat larger than the diameter of the transmitter

beam. 'Thus the effective signal to noise can be increased by smoothing

either by gating the amplifier bandwidth to a smaller value during the

	

',	 calibrate period or by smoothing during processing.

}

An alternate concept of this technique is to use a flher optic r_o

direct a portion of the laser signal through attenuating filters into

the receiver during the scan internal view.	 j

B.i.2 Procedure far External Calibration
'A

It is necessary to calibrate the active scanner for each altitude

at which the scanner is to be operated and over the range of scan angles

of interest. Figure B-2 illustrates a straightforward way in which
4

this can be done on a horizontal. or near horizontal test range. "'_e

range must be able to accommodate the maximum values of h/cos a of

interest.

In Figure B--2 the test target (of known reflectance properties} is

shown angled to simulate the g:^ometry of the airborne situation completely.

This implies that a specific definition of reflectance and the bidirec-

tional reflectance of the test targets be kno*an for a11. angles of

incidence of interest.

r	 F	 ^g
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B.1.3 Calibration Accuracy Obtainable

A transfer optical system can track changes in efficiency of

transmitter and receiver but not changes in internal geometry. 'thus the

sources of calibration error will be: 	 r

1. Uncertainty in reflectance of standard reflectance panels.	 ,f

2. Electrical noise on calibration signal.

3. Instability of transmission of transfer optics.

^. Instability in scanner geometry.

Reflectance of Standard Target

'The accuracy with which the bidircetional reflec'snces of the

standard panels used is on the order of 3% of the indicated reflectance.

Noise on Calibration Signal

If the duration of the calibration signals is made abnut 5° of scan,

the calibrate signal covers about 25 reselms. Thus when averaged over

this angle the calibration signal should have a noise Level 25 less than

the data signals. 'Thus when added to the data signal noise during the

calibration processing, the effect caill be to increase the noise by 1125.

This is insignificant compared with other sources of uncertainty.

Stability of Transfer Optics

'The geometric stability of the transfer optics depends on the

separation of the diffusinf; plates. As this can easily be held to

^^	 1 part ii; IODD (D.01D" in 1D") or better, no significant problem should

arise ire. However, degradation due to contamination uL the optical

surfaces could be a significant problem. It therefore is desirable to

^	 cover the entrance and exit ports of t^+e transfer optics with glass

plates which can be replaced or cleaned readily. The rest of. the path

,'	 should be sealed as far as this is practicable. In this eaay it shnuld

be possible to maintain adequate stability of this sub-system.
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Stability of Scanner Geometry

The structure of the scanner is solid and that the various mirror

mounts are rugged. Unfortunately, with the resources available it is

impossible to do more than estimate the geometric changes which might

occur under the vibration and thermal environments the system will

experience.

The specifications for the scan mirror assembly require that the

angle between the scan mirrors be stable to 0.1 mr at operating speeces.

If we assume that the structural stability of the rest of the system

is comparable we arrive at an r.m.s. error in alignment between transmitted

and received beams of D.14 mrad. This is approximately 5% of the nominal

IFOV of 3 mrad.

Overall Accuracy

As indicated^in the preceding subsections, the two significant

factors determining calibration. accuracy are the accuracy with which the

reflectivities of the external calibration panels are known and effects

associated with the mechanical stability of the scanner. The effects

are on the order of 3 and 5% respectively though the second figure is

quite uncertain. The root of the sum of the squares of the two figures

is about b% which is thus the best estimate we can give for the overall

uncertainty of the calibration scheme. However, it is recommended that

the system be recalibrated an the test range as frequently as practicable.

In this way, a good indication of the mechanical stability of the

instrument will be obtained and the effects of any instabilities present

on calibration accuracy determined.

$2
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^	 B.2 CALIBRATION aF THE DEPTH SENSOR	 -

	

The depth sensor is a pulsed, tunable laser radar system, operable 	 ?
r

at 0.53 nm and 0.64 nm. The return from it is examined for pulse 	 ^!

	

. ^	 dispersion (i.e., pulse spreading) ds a means of determining both the

	

!	 range of depths from which returns are received, and the effective bulk
i

scattering coefficients of the medium from which returns are obtained.

Accurate altitude information i.s needed to obtain absolute reflectance

	

'	 from.either this sensor or the active imaging sensor; the time delay
1

	

,`	 between the transmitted pulse and ttte first return from the hulk 	 j

scattering will give accurate information concerning air-craft altitude.

It is the purpose of this section 'to describe the calibration needed Ear

this sensor in order to maximize the accuracy of the information obtained

on depth, altitude, and bulk reflectance properties.

B.2.1 Expected Returns

We currently envision tha return obtained from this system, as seen

in the photamultiplier tube current, to consist of an irregularly shaped

pulse made up of the sum of the returns from the various layers in the

partially transparent medium under study. Figure 8-3 shows an example

of such a return. The returned signal is the integral of the cantri-^

butions from each layer. Each contribution appears at the detector at

the time after pulse transmittal corresponding to the round trip time

for that layer.

An examination of the integral involved shows that individual portions

of the return can be unambiguously assigned to layers only if the pulse

duration is shorter than twice the time required far a pulse to traverse

one layer. Therefore, if we lesire a. depth resolution of one foot in

water we need a pulse shorter than twice the tune it takes Light to

travel one foot in water, lJe need a pulse shorter than 'L.7 nsee.

i ^ !	 t3 3
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FIGURE B-3. EXPECTED RETURN FROM iIEPTH SENSOR
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B.2.2 Ixpected System Design	 F.

The pulsed laser is expected to have a pulse width of approximately 	 ^•

6 rtsec and a peals power of about l5 Kw. Thus the expect to attain range 	 1-

resolution of about two feet in water. 	 ^

We expect that the output energy of this laser will vary by about

`.	 ^	 3% from pulse to pulse, and individual measurements of pulse energy will

	

3	 be needed to maximize the accuracy of bulls reflectance measurements,

Tt is assumed that the effective duration of every pulse will be the same,

This will simplify the monitni • ing of laser output required, During

testing the uniformity of pulse duration will be measured to determine

the validity of this assumption.

We expect that this laser will operate in the TTJMO^ made so that the

output pattern, or beam profile, frnm the laser will be uniform from

pulse to pulse. It is also expected that the polarization state of this

• system will be uniform, so that polarization effects in this sensor will

be minimal.

In order to perform the tasks required of the sensor, the system

will be designed substantially as shoran in Figure B-4. The nadir-sensor

	

^	 will trigger the laser and open a gate to enable bath a Laser pulse

energy measurement circuit and a counter to retard the time between

transmitted and received pulse (for altitude measurement). A fiber optic

coupling will be used to couple a very small fraction ('L 10 -7 ) of the

laser output to the primary PMT detector. One of the attenuating members

in this beam will be adjustable to allota a suitable sampling level to be

	

^	 obtained at the detester.

The extent and frequency with which the attenuator :n the laser

sampling beam will need adjustment ran only be determined by experience,

If the amplitude of the returns frum the various scenes under study is

substantially variable, it will probably be necessary, in order to obtain

proper triggering of the counter, to vary the gain of the PrfT system and
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the amplitude of the transmitted beam as sampled by the PMT. This will

require at least a relative calibration of this attenuator if the FMT is

to be used as a primary power meter. On the other hand, if the amplitude

of the return is constant or if the PMT electronics can be made to trigger

reliably over a large dynamic range, then the attenuator will not need

frequent adjustment.

B.2.3 Radiometric Calibration Required

The voltage output of this sensor can be described as:

2
V(t) = h^ ^ p ` •f l {h, alignment, t}	 (1}

where g = path absorption

h = path length {altitude}

^ = transmitter power

p` = scene reflectance

Here f f is a responsivity. Since this device will look only at nadir,

the scan angle dependency does not appear. Buk the overall responsivity

of the system does depend on the alignment achieved between transmitter

and receiver optics and haw this alignment, and the resulting integral

of the beam profile of the laser and the sensikivity contour of the 	 •^

receiver, change caith altitude. Along-kern dependence in kris function

is also included to accounk for long-term calibration drift. In

equation (1}, khe assumption that variations in lsser power do pat affr.;.k

the beam profile allows a factor ^ to be taken our of khe irteg^^al.

p' in ^quakion {1) signifies the effective bidirectional reflectance

from the bulk medium in this case. Tor khe case where khe pulse duration

of the laser is much less than the de pth resolution required (translaked

to twice khe travel. time) khe effective p' can be wrikken

P	 {t} ^ 1^dt 
z 2 (t)ks (t) C	

(2)eff	 $	 n(t)	 2
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where k i.s the bulk bidirectional reflectance of the medium. in units of
s

srrlcmrl , n is the index of refraction of the medium and T is the rrans-

mittance from the upper surface of the medium. The time dependence

sa^gnifies that the apparent bidirectional reflectance is a u function of
k

time in the return and determines the value of the product rk fn at that
s

time (or distance into the medium). The velocity of light i; c. Note

that the integral of the power in the pulse is now required r.lther than

"^	 the instantaneous power. Substitution of this quantity into f.quation {1}

yields

2	 rz(t)k (t)
V(t) - g2 l $dt^	 s	 e f x (h, alignment, t)	 (3)

h `	 n(t)	 2

I:
Note that the time dependence in f l is on a much longer time scale than

the duration of the return sa that variations in f l need not be accounted

;:	 for in any given return.

is

'	 For every pulse, a return will also be obtained from the laser pulse

measurement channel, A single output value, Vh , is to be obtained

proportional to the integrated laser power.

^^	 V.b ^ f 2 (t)ANAF (t)	 $dt	 {^)

Here f is the responsibity integral for this channel, which is assumed
2

susceptible only to long-term drift (alignment of the fiber optic

coupling system is to be cae11 faxed}, A f, is the attenuation of the fiber

optic coupling system, also susceptible to long Lerm drift due to

contamination. AN is the attenuation of the ad3ustable neutral density

filter.Time drift in this quantity car be Iumped into that of AF.

Values for the product Tkfn can be obtained from the output by

substituting the integral ^^dt from Equation (4) into Equation (3) as

follows:

t
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z(t)k(t) - y(t) hZ 2	 ANAF(t)f2(t)

n{t)	 Vh g2 c f l (h, alignment, t) 	 {S)

The quantities h2 and g2 , and c are expected to be determined by other

means, so that it is the purpose of calibration to determine the quantity

{t)fz(t}
f l (h, alignment, t)

This quantity can be determined fnr any one time, attenuator setting

altitude, and alignment by calibration using the same ground range cles-

cribed in the preceding section (see Figure B-2). This calibration can

be performed with the scanner stationary and the laser triggered from a

x.00 Hz signal generator.

During such a calibration, the return will consist of a reflection

from the calibration panel of known bidirectional. reflectance, p'; at
c

knorm distance hc . p^ will be chosen to reproduce the signal levels to

be expected from the typical water returns. Presumably the atmospheric

transmittance, gc can be determined with sufficient accuracy also. The

voltage output will be

2
g

Vc {t) = 2 ^(t)p^ f l (h, alignment, t) 	 (6)
h
c

The corresponding output from the laser pulse measurement channel will

again be given by Equation {4), so that the required calibration quantity

N-^'	 c p7	f t {h, alignment, t)	 Vc(t)dt	 h
c

Note that the calibration requ^.res an integral of the voltage output from

the calibration return. Although the temporal response of the electronics

associated with the return will not bs sufficient to resolve the pulse

width, we assume that the electronics comprise a linear system so that

time integrals are preserved.
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At the time of calibration, data can be collected at various settin

of the attenuator, ^; calibration is thus preserved as A^ is varied.

^Zf it is passible to assume that drifts in the responsivity of the

receiver with - time do not affect either the sensitivity contours of the

photomultiplier, or the characteristics of receiver components other than

the photomultiplier, then much of the time variation in the combined

calibration quantity will vanish ("cancel out") of the calibration

quantity, brif is of this type in the PMT and its associated electronics

will. indeed be the primary cause of long-term drift. Thus the need far

recalibration will be determined more by possible contamination of the

optics rather than by variations in PMT response with tune. As with the

other active channel, protection of the optics from contamination by dirt

and dust is important in maintaining the calibration of the system. It

is estimated that relative radiometric errors will keep the accuracy of

the aver-all reflectance calibration to the order of 1Q% (excluding

alti^ude effects).

B.2..4 Time Calibration Required

In order to reduce any of the received signals to reflectance values,

an accurate altitude far the aircraft is required. 'Phis can be obtained

from the time delay between transmitted and received pulse. The counting

circuit shown in Figure B-G is reset and enabled by a pulse from the

lasrvr triggering circuit, started by the leading edge of the pulse from

the laser sampler and stopped by the leading edge of the return pulse.

Signal--to--noise ratios wi11 need to be as high as possible to allow

unambiguous triggering of this clock by the returns,

Adequate time accuracy for this counter can be easily obtained by

the use of a crystal controlled clock. However, because of the short

pulse durations and time accuracies required, as high a clock rate as

possible will be required. If we use a clock frequency as high as 125

MHz, we will obtain altitude accuracy no better than one clock bit, or
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eight feet.	 This is adequate for reduction of the radiometric data to ,.^

reflectance since it represents an error in range-squared of 1.6%, which

is significantly better than one can expect for the radiometric errors. ^	 -

Compared to 1.6%, the error in the clock frequency itself is expected to ^ ^

r
be negligible..

The other time variable of importance is the time axis of the return

^ display.	 Commercially available hardware is used for this taste with '

specifications adequate to allow relative tame identification of the

contents of the return. 	 Tliis requires accuracy sufficient to measure

I 1 nsec in the duration of the return (say 30 nsec. 	 This places an

^4
k

accuracy requirement of only 3% on^tlte rate of sweep.	 taut in order for

sequential returns to appear at predictable, non-varying positions on -	 `^

j the screen, the delay between the pulse transmittal and the start of the a^

display sweep must be uniform from pulse to pulse within ^ nsec. 	 [de need

to obtain delays of the order of 2 nsec which are accurate and uniform
' !

r	 ^ to within 1 nsec.	 This may prove to be a difficult requare_ment Co meet.

B.2.5	 Conr.lusions Regarding Calibration of the Depth Sensor

We have described a calibration technique for the depth ^Eieasuring

i sensor which will allow the examination of the disl:zrsinn in the return ^	
"^

from a pulsed optical radar. to be used to infer scattering coefficient t

as a function of depth to an accu^:acy of about t^,ra feet. 	 to addition

the device is capable of measuring the range t.^ the upper surface.

generaCing the return to within an accuracy of about eight feet. ,^^
L
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