
tin!11

/'.; -' '; 1S77 -^
: - RECEIVED

NASA STi FACILITY
^ INPUT BRANCH



1. Report No. ' '

NASA. CR-145209'
2. Government Accession No. 3. Recipient's Catalog No.

4. Title and Subtitle
A Finite Element Algorithm for Sound Propagation in
Axisymmetric- Ducts Containing Compressible Mean Flow

5. Report Date
June 1977

6. Performing Organization Code

7. Author(s)

A. L. Abrahamson

8. Performing Organization Report No.

50624

10. Work Unit No.

9. Performing Organization Name and Address

Wyle Laboratories
3200 Magruder Boulevard
Hampton, Virginia 23666

11. Contract or Grant No.

NAS1-12841. .

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, B.C. 20546

13. Type of Report and Period Covered

Contractor Report

14. Sponsoring Agency Code

15. Supplementary Notes

Final Report

16. Abstract

This report describes the development of an accurate mathematical model for
sound propagation in axisymmetric aircraft engine ducts with compressible mean
flow. The model is based on the usual perturbation of the basic fluid-mechanics
equations for small motions. Mean flow parameters are derived in the absence
of fluctuating quantities and are then substituted into the equations for the acoustic
quantities which were linearized by eliminating higher order terms. Mean swirl
is assumed to be zero from the restriction of axisymmetry.

A linear rectangular "serendipity" element is formulated from these equations
using a Galerkin procedure and assembled in a special purpose computer program
in which the matrix map for a rectangular mesh was specifically coded. Repre-
sentations of the fluctuating quantities, mean quantities and coordinate transfor-
mations are isoparametric. The global matrix is a block tridiagonal system of
which the blocks are themselves banded matrices. The global matrix is held in
packed form both in core and on secondary storage and is solved by foreward and
back substitution following an L-U decomposition with pivoting restricted
internally to the blocks. Results from the model were compared with results from
several alternative analyses and yielded satisfactory agreement. The method is
sufficiently fast to permit novel optimization studies on a variety of duct parameters.

17. Key Words (Suggested by Author(s))

Acoustic Finite Element
Duct Acoustics
Large Linear Systems

18. Distribution Statement

Unclassified - Unlimited

19. Security Classif. (of this report)

Unclassified

20. Security Classif. (of this page)

Unclassified

21. No. of Pages

^687

22. Price*

For sale by the National Technical Information Service, Springfield, Virginia 22151



TABLE OF CONTENTS

Page

Notations and Definitions v

1.0 INTRODUCTION 1

2. 0 DESCRIPTION OF MATHEMATICAL MODEL 4
2. 1 Problem Formulation 4
2. 2 Solution Strategy 9
2. 3 Element Derivation 16
2. 4 Algebraic Integration for Ducts of Constant

Cross-Sectional A.rea 22
2. 5 Numerical Integration for Arbitrary Axisymmetric Ducts . . 25
2. 6 Global Matrix Assembly, Packing Technique,

and Insertion of Boundary Conditions 27
2. 7 Solution of Matrix Equation 30

3.0 DESCRIPTION OF RESULTS 37
3. 1 Comparison of Model with Previous Analyses 37
3. 2 Illustrations of Potential of Current Model

in Duct Optimization 42
3.2.1 Quadratic Liner Variation 42
3. 2. 2 Optimization of a Convergent-Divergent Duct 42
3.2.3 Optimization with a Center Body 44
3. 3 Computing Time 48

4.0 CONCLUSIONS 50

REFERENCES 52

APPENDIX
1 Area Element Coordinate Transformation 55
2 Definition of Terms Used in Equations (46) through (49). . . 56
3 A.bscissae and Weight Coefficients of the Gaussian

Quadrature Formula 59
4 Listing of Subroutine FINDS 60
5 Termination Boundary Condition 61
6 Insertion of a Noise Source Boundary Condition 64
7 Insertion of an Admittance Boundary Condition 64

(Figure 7-1 Orientation of Acoustic Velocities and
Boundary Wall)

8 Linear Numerical Flux Integration 68

11

JJ-



LIST OF FIGURES AND TABLES

Figure Page

1 Typical Engine Duct 2
2 Serendipity Element 11
3 Rectangular Discretization in Plane 13
4 Matrix Map of the 2-D Rectangular Discretization

of Figure 3 14
5 Deformed Element 18
6 Logic Diagram for Evaluation of Integrals 28
7 Description of Block Tridiagonal Matrix Solution

with Memory Map 34
8 Comparison of A.coustic Attenuation vs. Mesh Density with

Exact Solution Computed from Work of Zorumski . . . . 38
9 Comparison of Pressure Variation with A.xial Distance

Derived from Morse's Analysis for a Conical Horn with
Results from the Current Model 41

10 A.dmittance Variation with Axial Coordinate
for Quadratic Liner 43

11 Plot Showing Envelopes of Pressure Amplitudes
•with Axial Distance at Selected Radial Stations 46

12 Constant Cross-Section Area Inlet Duct with Center Body . 47
13 Plot of Central Processor Time (CDC Cyber 175)

vs. Matrix Order 49

Table

I Comparison of Optimum Acoustic Liner Determinations . . 39
II Comparison of Duct Attenuations in Presence

of Plug Flow 39

111



ACKNOWLEDGEMENTS

The author would like to express his particular thanks to Mr. Laurence

Keefe for many useful conversations, assisting in development of some of

the equations, and in the preparation of the report. He would also like to

express his appreciation to Drs. William E.. Zorumski, Harold C. Lester

and members of the Acoustics Branch,. A.coustics and Noise Reduction Division,

NASA. Langley Research Center for useful comments and advice throughout

the course of the work.

IV

/I/



Notations and Definitions

( 1 Row, vector.
/ ' •>

1 | Column vector1., \ ,•

I J Matrix.

/ Y#I ) An asterisk as a variable superscript indicates complex
conjugate. -

t

( ) A bar over a variable indicates a imean flow quantity. ^

[ ] A tilda over a variable indicates a riondimensional quantity.

[ J A prime as a variable superscript indicates time dependence.

[ J An arrow over a variable indicates a vector.

^ y Indicates time average quantity.

List of Symbols

n , 0 f C G^ Scalar,'quantities defined by equation (50).

( "£ Wi ) Gaussian quadrature weights.

C. Speed of sound.

f^ Acoustic flux through source plane.

\r Acoustic flux through radiation plane.

j Frequency.

J. Acoustic Intensity.

±2. Z-cornPonent of acoustic intensity

I IJ Identity matrix.

»

L Index.

Jacobian rnatrix.

/



List of Symbols (con t' d) /

IT/ Determinant of Jacobian.

I j Index.

^ Number of variables per node.

rI Mach number on axial direction.

M Radial derivative of M [- X r }

ff\ Number of nodes in serial numbering direction.

IV Linear function for .s'erendipity element.

f Pressure (unperturbed equations)

\r Prandtl number.

P Pressure (acoustic variable)

G( Transformed constriction parameter.

0 Constriction parameter.

R0 Outer duct radius at 2 = O

P 7

r\e Reynolds 'hu^riber.

f Radial coordinate's. /./

V --/ '-'~ t!

1 Temperature.

t Time.

y Velocity vector.

f IA V \v) [2, f, &\ Velocity components (mean flow and unperturbed
equations) .

W- V Wy (^-^ f ~ > & ) Acoustic velocity components

Z Axial coordinate.
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I
List of Symbols (cont'd)

by equation (26). ~O>' 4
t '

Admittance.

[at,] [fl,{V7, f O f/U,] Defined in Appendix 2.

"^T Gas specific heat ratio.

£ Impedance of air (•= ^^j

W Local coordinate

M. Gauss abscissa point.

Q Circumferential coordinate.

K Gas thermal conductivity.
Q

f\ Wavelength.

t Local coordinate (axial direction)

v£ Gauss abscissa point.

I Density (unperturbed equations).

3 Density.

i Dimensionless viscous stress tensor.

<P Dimensionless dissipation function.

W Angular frequency.

Vll



1. 0 INTRODUCTION

The objective of the work described in this report was the development of a

finite element scheme applicable to the acoustics of aero-engine ducts. The

finite element method, which is widely used with considerable success in

structural mechanics, is currently finding applications in all areas of

continuum mechanics.

The application of finite element methods to acoustics is not new. A signifi-

cant amount of work has already been performed in determining the acoustic

modes of closed cavities and in determining the response of coupled acoustic-

structural systems (references 1-9). These analyses assumed simple acous-

tic systems in a uniform medium with no mean flow. Under these circum-

stances it was possible to formulate variational principles which were then

used as the basis for a finite element model. None of these assumptions

are valid within a modern- aircra/ft^engine such as shown,, in Figure 1. Here,
;

the noise generation mechanisms are complex, and vthe medium which trans-

mits the sound contains large gradients and moves with a considerable

velocity. Since no variational principal exists for acoustic fluctuations in

such a medium, an acoustic analysis must proceed directly from the

differential equations which describe compressible flow.

From a cursory examination of the physical size of fan engine ducts on

current aircraft, and from the knowledge that predominant fan tones exceed

ZOOOHz, it is clear that the principal difficulty in development of an acoustic.

model on existing computers is the sheer scale of the required model. In

structural mechanics after 20 years of experience, 10 000 degrees of

freedom still represent a large problem. At the outset, it is apparent that

the acoustic model will require upwards of 100 000 degrees of freedom.

This is not the only complication, because in structural mechanics as well
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Figure 1. Typical Engine Duct.



as in previous acoustic studies, global finite element matrices possess

desirable properties, being generally real, symmetric, and positive-

definite. The symmetric, positive=definite form results from the variational
A

formulation on which the finite element models are based. However, the

Galerkin variation of the method of weighted residuals used for the acoustic

element in this work produces matrices which are complex, non-Hermitian

and nonpositive-definite. Matrices of this type require special techniques

to avoid numerical errors in their solution. These techniques are less

plentiful than for symmetric positive-definite matrices and become difficult

to implement efficiently for large matrix orders.

This report describes a solution to the problems outlined above, describes

the development of a finite element model, and shows typical results

derived from this model.



2.0 DESCRIPTION OF MATHEMATICAL, MODEL.

2. 1 Problem Formulation

The purpose of this analysis is the calculation of sound propagation in

axisymmetric ducts containing compressible flow. The nondimensional

equations governing the motion of the fluid are:

Conservation of Momentum

f+(? .7 j t f ) = -9$ +_LV.£ (i)t /
Conservation of Mass

I
(2)l£ + v. ( f V) ** o

at

Conservation of Energy

i)tl± + V. Vh) -_L(_L
I at r/ RelTr

(3)

Equation of State

- f (4)

Equations (1) through (4) were made nondimensional for simplicity by using

an arbitrary characteristic length; the ambient values of temperature, density,

and speed of sound; and arbitrary characteristic values of viscosity and

thermal conductivity. These equations govern both the mean flow and imposed

acoustic motion within the duct.



While determination of the mean flow is necessary for solution of the acoustic

problem, the assumptions and techniques used to obtain the mean solution are

not part of this paper. Instead, it is assumed that the mean flow has already

been obtained and is in suitable form for inclusion in the acoustic problem.

At the same time, it is necessary to note that some terms in the equations

(those involving viscosity and heat conduction) which may be important in

deriving the mean flow solution are not of primary significance in deter-

mining the acoustic motion. Thus, while these terms might be retained

for solution of the mean flow problem, they are eliminated here at the outset

to simplify derivation of the equations describing the acoustic motion.

To begin this derivation, we write equation (1) in dimensional component

form in cylindrical coordinates (ignoring viscosity).

Axial Direction

at 9r r de dz ) dz

Radial Direction

3r (6)

Circumferential Direction

at ?r r 90 r 9z / r 3d (?)



Equation (2) becomes:

+ a af + V

Assuming that all dependent variables are the sum of two motions; one the

steady mean flow and the other a fluctuating acoustic motion, we write

? = f (r, 9 , 2 ) + j > ' l r t » , z , t )

f = J ( r t o , 2.) f f'(r, e, z, t)

U = U (r, e , 2) t u'(r, e, z, t) (9)

= V/(r, ̂ ,
Substituting equations (9) into equations (5) through (8), we derive two sets of

equations: the first by assuming that the primed quantities are zero, and the

second by using the full form of equation (9). Subtracting the first set from

the second, ignoring second-order terms in the primed quantities and assuming

mean swirl ( W ) to be zero, we get

8t ar dr

c>z
(10)



+ ( + j V J i V +
P r (n)

+ U Buf ( + ±_
dt I 9r r / dz J r T)&

(12)

7T r^ <*' T7 -v o' ' *\ ^P*U . 9 5 + V 0 5 + u 5 i - f V

(.13)
a z

The neglect of viscosity and heat conduction in the acoustic motion means

that it is an adiabatic process. When such is true, the energy equation and

equation of state may be manipulated to give (Ref. To," 1L)

K = r (14)

Here C, is the local speed of sound which is determined from the mean flow

by the relation

(15)



Assuming that C — C (f> Z.) » we may use equation (14) to eliminate j -from

equations (10) through (13). Taking a harmonic solution in t and O for

the fluctuating quanties

«Dt + W 0I ' N /
u', V, iv', /> J = ( w, i/, uv,

(16)

where (A) and |^7 are pure imaginary, the four equations governing the

linearized acoustic motion in a nonuniform axisymmetric duct become

5ca / 9r 9r \ I c ^ J d z dz S Bz
(17)

V /, -

'

X-££ = 0

(18)

(1^)

li*i£ *j2iK + x -»-- + - » - - . =
Pr r r / cal 3Z 9r r

(20)



2 .. 2 Solution Strategy

Solution of equations (17) through (20) is not possible algebraically except

with severely restrictive assumptions. The question is thus not whether to

use a numerical technique for their solution, but rather which numerical

technique to use.

Within each branch of applied science, partly from its historical develop-

ment and partly from rational grounds, there appears to exist a favorite

numerical method. Perhaps it is fortuitous that the rebirth of acoustics is

too recent to have allowed development of any such prejudice.

For example, a variety of numerical techniques are used in connection

with the problem of sound propagation in ducts. Mungur, in his work with
&'..&•: t l O ) • _ - / • - . .... (l-ty^
/ Plumblee/\ ' and .GladweH ,. .. used a fourth-order Runge-Kutta approach.

^ ?/§/" "\ '/3V' "Y
More recently, Baumeister, with Bittner. /t\ and with Rice. /jkused an

integral formulation to generate finite difference approximations to the

differential equations. A/moj&e indirect technique involving modal expansions
, , ~ , . (-14?; 4:&)was used by Zorumski : '•? . . .

Also fin this vein is the wave envelope tech-

nique of Nayfeh, Shaker, and Kaiser ' which reduces in the limit to the

method of multiple scales of the earlier work of Nayfeh and Telionis ,-r

Direct numerical solutions are subject to the problem of size. As pointed

out by Nayfeh, Shaker, and Kaiser ^\ for a negative Mach number

tending to unity in magnitude, and high frequency, the number of axial steps

required to resolve the quasi-sinusoidal spatial variation of the fluctuating

parameters becomes very large.

No study has yet been conducted, however, to accurately determine the

limits of direct numerical solutions using currently available computers.



This work began with the objective of determining these limits, using care-

fully determined storage and matrix manipulation algorithms in conjunction

with a straightforward discretization scheme.

Due to the promising results obtained by finite=element algorithms in other

fields of continuum mechanics and from initially promising applications to

acoustics, finite elements were the medium chosen for this study.

The great majority of development of the finite=element method has taken

place within the context of structural mechanics. Concerning the relative

advantage of various types of elements, it is informative to note the
/ s*".

comments of a specialist in this field: Zienkiewicz (Ref. 18,^ page 104) who

states that, "The question may well be asked as to whether any economic or

other advantage is gained by increasing the complexity of an element. The

answer.here is not any easy one, although it can be stated as a general rule

that as the order of an element increases so the total number of unknowns

in a problem can be reduced for a given accuracy of representation.

Economic advantage requires, however, a reduction of total computations

and data preparation effort and this does not follow automatically for a

reduced ^ number of total variables as, though equation solving times may be

reduced, the time required for element formulation increases. In general,

the optimum element may have to be determined from case to case. "

In the light of these comments and for the sake of simplicity, a linear

rectangular element from Zienkiewicz's Serendipity family (Ref. 18,page 107)
/\

was chosen as the basis for the analysis. Figure 2, contains a description

of the nodal numbering system for the element, and shows orientation of

local ( Y \ , €)coordinates and global ( r, 2.) coordinates. (Since we assumed

a harmonic angular ( 0 ) dependence by equation (16), only a two-dimensional

discretization is required.)



r
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\

Figure 2. Serendipity Element.
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A uniform discretization mesh for a duct of constant cross-sectional area

is shown in Figure 3(a). The matrix map generated for this discretization

by a nodal numbering system such as that shown in the figure may be

developed as follows. Within each of the linear elements, interactions

among nodal variables will only occur between those variables at the corners

of the rectangle. Thus in element (2, 4), four sets of linear equations will

link the four sets of nodal variables located at nodes 14, 15, 24, and 25.

Consider the equation set representing variables at node 25. On assembly

of the global matrix, this set will contain contributions from four adjacent

elements namely (2, 4), (2, 5), (3, 4), (3, 5). That is, in the global matrix

the variables at node 25 will be linked explicitly with variables at nodes 14,

15, 16, 24, 25, 26, 34, 35, 36. All other coefficients in the submatrix

representing the equation set for variables at node 25 will be zero. For the

case of " £ " parameters per node, the matrix map generated by linear

elements and the rectangular discretization numbered as shown in Figure

3(a), is given in Figure 4.

The principal generalized characteristics evident from the map shown in

Figure 4 may be summarized as follows:

• Global matrix consists of three diagonal bands.

• Width of each band is "3 £ ".

• Global matrix is block tridiagonal.

• Major blocks are themselves block tridiagonal.

• Order of major blocks is " nS " where " n " is equal to the

number of nodes per row in the serial numbering direction.

• Order of minor blocks is " £ ".

Although the characteristics of a matrix conforming to a generalized map

such as that described above are extremely convenient for minimizing

storage requirements, and computational effort during assembly and
12



(a) Uniform Rectangular

4l| 42 43]
A

Element)
> —

Number J
Node Number

"
21

(4,1)
32

(3,1)
22

(2,1)
12

-(1,1)

/I

(4,2)
23

(3,2)
23

(2,2)
13

(1,2)

44 47
(4,3)

(13) (MM 0.5)1 (1.6)

17

48

38
(3,7)

28
(2,7)

18
0,7)

49
(4,8)

39
(3,8)

29
(2,8)

0-8)

19

50
(4,9)

40
(3,9)

30
(2,9)

20

(1 ,9)
10

(b) Nonuniform Rectangular

t

(c) Nonuniform Rectangular Mapped by a Coordinate Transformation

1

Figure 3. Rectangular Discretization in a Plane.
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solution, consider whether much practical importance arises from this fact.

The uniform rectangular discretization scheme from which this matrix was

generated is hardly applicable to realistic problems. As shown in Figures

3(b) and 3(c), however, the identical matrix map is also generated by a

nonuniform rectangular discretization, as well as by arbitrary two-dimensional

mappings of the discretization grid^ provided no fold-over occurs.

Solution of equations (17) through (20) may be greatly facilitated by limiting

the analysis to use of this discretization scheme. The specific map for this

scheme may thus be incorporated implicitly into the computer program which

enables us to disregard the general but some what ponderous sparse matrix

pointer technology. All computation and storage is thus performed implicitly

only with nonzero values. In addition, this discretization scheme yields a

block tridiagonal matrix of block tridiagonal matrices. Special numerical

techniques, which are discussed later (section 2.8), exist for solution of

matrix equations involving tridiagonal matrices.



2. 3 Element Derivation

Consider the region of space enclosed by the element shown in Figure 2.

Suppose that within this region the acoustic variables & t V,v/ , l> as well as

the mean fluid parameters J f W. , Vf C of equations (17) through (20)

are defined by relations of the following type

(21)
M. =* = MM

where W, t Ua ; U3 , U^ are the values of " (4 " at the four node points at the

numbered corners of the element.

Define a set of local coordinates (W , v ) within the region such that the coordi-

nate of the nodes ( «4 / t£) are given by (-1, -1), ( + 1, -1), ( + 1, +1), (-1, +1)

for i = 1 through 4 respectively. The N. ' s of equation(21) for the linear

Serendipity element are then defined by

(22)

For the undeformed element shown in Figure 2, the transformation from local

to global coordinates is simply

1 =

(23)

a.
where ( Tc t Ze) are the global coordinates of the center of the element.

However, as illustrated in Figure 3, we require to map this simple shape to

conform to complicated boundaries so that it then appears as shown in

16



Figure 5. Suppose then, that instead of equation (23) we have the transfor-

mation
r,

(24)

%
2A

Note that in comparing these relationships with those of equation (21) two

conditions are satisfied:

• The same points (viz. the node points) define the geometry

and the finite element analysis points.

• The shape functions (viz. the N. 's ) defining the global

coordinates and the variables within the element are the same.

Thus, the mapped elements are isoparametric.

In order to transform equations (17) through (20) into the local coordinate
B dsystem, we need to derive expressions for , and ——-

system

in the local

9 r

3r

17



TJ=+1

-TJ=+1

-TJ=-1

Figure 5. Deformed Element.

/ '
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9

9r

9r Hi

(25)

where is the Jacobian Matrix.

We may thus define the matrix

w
M (26)

. w"

Suppose equations (21), (24) and (26) are substituted into equations (17)

through (20). Using the Galerkin version of the method of weighted

residuals, we wish to integrate over the elemenf;,weighting each equation

in turn by each of the N. 's to obtain the following four matrix equations in

the nodal variables. It is convenient in integrating these equations to do so

in the local, rather than in the global, coordinate system because this

greatly simplifies the process due to the convenient limits of integration.

Effectively, integration is then over the simple shape of Figure 2, rather

than the complicated, distorted shape of Figure 5. In order to perform this

operation, it is necessary to determine an expression for an element of area

(dA) in the local system. It is shown in Appendix 1, that "dA" is given by

n



(27)

where | J { is the determinant of the Jacobian matrix. Equations (17)

through (20) thus become:

>"-J <

J U V
0 -I -

ii = O (28)

(• s) £ •~nV}]

.(HJ

(29)

20"
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2.4 Algebraic Integration for Ducts of Constant Cross-Sectional Area

If we assume that we are dealing only with ducts of constant cross-section

and that

• the mean flow is incompressible,

• there is no mean flow in the radial direction,

• the mean axial flow has no gradient in the axial direction.

Equations (17) through (20) how become

* + « + M ft + ju
9z £ ?z (32)

(34)

(35)
" 71 " "I "07 T aF T -F-V "•r """/] = *

where

M ^
M * — __ (36)

M/ i 9M-
M = T 77- (37)
f ss J C (38)

From equation (23), we have that

(39)

whence it follows that

fir - i eky
* (40)

eHz -s* Q- d ?

22



Supposing, a linear dependence for M within each element,

M = Mc + M'(r-re)

We may integrate over the element using the Galerkin procedure as in

section 2.3 (note that now / J / , the determinant of the Jacobian, is unity)

0 J 0
r.0-1-

ss 0

(41)

<i j o

> r p

\i w «

where (i = 1 to 4) yielding a total of sixteen equations. Writing U j V j W / and jy

in terms of the nodal coordinates as in equation (21)

u= (N) iw.} v= (tl)
(4!5>



equations (41) through (44) may readily be integrated.

Before performing these integrations, however, let us consider how

conditions at the element boundaries may affect the integration. If

equations (32) through (35) contained second-order terms it would be

necessary to integrate these by parts to reduce them to f irs t order since

second-order terms require continuity of first-order terms over a

boundary (Ref. 18, page 42). However, using a linear element with a

linear system of equations has advantages in this respect since we only

need to satisfy the requirement of continuity of the variables themselves

across boundaries. Also, along the outer boundary, it is sufficient to

constrain the appropriate variables to conform to the boundary conditions

without the necessity of evaluating the specific boundary integral.

Equations (41) through (44) become

where

(o ,

( 0 , 0 ,

tf] , o ,

'M
lv\

UHJ
K = o

HJ
£u}
M

=* 0

- 0

(v)

WJ
= o

(46)

(47)

(48)

(49)

f [&] , JV7 , \&~\ and /*M7 are defined in appendix 2 .



2. 5 Numerical Integration for Arbitrary Axi symmetric Ducts

Numerical integration of equations (28) through (31) by a standard inte-

gration formula is a trivial procedure in concept. However, because of the

necessity to integrate a large number of elements in this manner, consider

the equations more carefully and optimize the process.

Since none of the variables is an explicit function of " Q ", the integration

with respect to " 6 " results simply in a multiplicative constant of 2

which may be ignored.

It may be seen that many coefficients of the matrix equations are multiplied

by scalar quantities. These are defined below:

F =
(50)

' Wtf? L =

= Ml'} <? -

M - Wf 'J
where the quantities /•) through G^ are functions of J and /7 «

Substituting in equations (28) to (31) we get

r> f

.... .- _ _ .. (si)
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"I I

I /

V J^l-»

IM

/J/

w
J

(52');.>

* 8

\ f \ (53)

(54t

The Gaussian quadrature procedure that is used employs unevenly spaced

abscissa points ( yt^HJ- The corresponding weights to be applied at these
/u I/ ' \ £— '- tj}

points ^/t,- nt-y. If we choose the same number of points .( f7g) in each

direction, then V\\ •=. £^ and f/,; =>./!(,... . Thus,

I -

t = / j = /
(5.5) j
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Tables of abscissae and weights for different values of n are given in

and are reproduced in Appendix 3.

The logic diagram for evaluation of equations (51) through (54) using
/'

equation (55) is shown in Figure 6. It may be seen that it is possible to

retain several potentially time-consuming steps outside the innermost loops

of the quadrature process.

2. 6 Global Matrix Assembly, Packing Technique, and Insertion of
Boundary Conditions

Assembly of a global matrix equation, that is, a matrix equation represent-

ing the entire system, from a set of finite element matrix equations is basic

procedure in the finite element technique, e. g. , reference 18, page 13,

and is not described in detail. From Figure 3(a), it may be seen, however,

that there is a one-to-one correspondence between the global serial number-

ing system of nodes and the element numbering system together with its

local node numbering as shown in Figure 2. Appropriate shifting of rows

and columns are all that is required to add the local element matrix directly

into the global matrix.

This procedure is somewhat complicated by the fact that when a global

matrix possesses.a map~as that'showh'i'n. Figur'ej^yeifeis undesirable'"

to store anything but the three diagonal bands of nonzero coefficients. The

most convenient way to "pack" a matrix of this form is shown to the right

of the full or expanded matrix in Figure 4, where the diagonal bands are

arranged in vertical columns. The algorithm to yield a column number in

the packed matrix from a row and column number in the expanded matrix is

listed in Appendix 4.

Along the outer boundaries of the discretised region, two kinds of boundary
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A

Specify Number of Gaussian Quadrature Points n

LStore table of abscissa (n^ 5.) and weights (Hj, H') T

(N. B. only one table is necessary since r\^ = ?4 and _)
ic Specify circumferential harmonic number "M"

I
Evaluate matrices (N), -^- (N), ~ (N) for each

oTl d£
_GaUBB point

Loop on (I, J)'th element

Call subroutine to give global coordinates of
nodes of this element

Call subroutine to give nodal values of aerodynamic

variables, i...{p5}.{c}.{vr},{vj

Set local element matrix (16 x 16) to zero

A

\

/

^
/

\

^

Loop on Gaussian points in r-direction (= 1 to n )

1
Loop on Gaussian points in z-direction (= 1 'to n )

1
Evaluate 2i ^-, ^.

0? d? on
Jacobian Matrix for

-— the elements of

this Gauss Point

Compute Determinant and Invert Jacobian 1^

Evaluate (a ) and {a )

Compute scalar quantities "A" through "C
this Gauss Point

Compute the common multiplicative coi
= A x \J\ x H. xH.

Compute contributions to each coefficient of lo
element matrix from this Guassian integration
Add in contributions.

1
Cycle back for next Gauss point

Add local element matrix into global matrix

Cycle back Cor next element

Figure 6. Logic Diagram for Evaluation of Integrals.
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conditions may exist, noise source or admittance. The boundary condition

at the radiation plane may be forced to conform to an admittance boundary

condition as shown in Appendix 5.

Provision is made for insertion of the two kinds of boundary condition into

the assembled global matrix equation by imposing relations on the nodal

variables along each boundary.

The noise source boundary condition consists simply of setting all nodal

pressure coordinates equal to a specified constant value (implying by equation

(16) a specified harmonic amplitude). For example, see Appendix 6.

The admittance boundary condition involves specifying a linear relation-

ship between nodal pressure coordinates along the boundary and the

normal component of acoustic velocity. For example, see Appendix 7.

The examples in appendices 6 and 7 assume that, providing the global

matrix is stored in packed form, it may be held entirely within direct access

memory. This is not the case however, because by definition (see section 2. 2)

we will be dealing with extremely large problems employing over one hundred

thousand degrees of freedom.

During assembly of the global matrix, however, it is unnecessary to have

the entire matrix in direct access memory. Figures 3a and 4 show that contri-

butions to the equations for variables at global node number 25 (for example)

may only come from elements (2, 4), (2, 5), (3, 4), and (3, 5). Thus, it is

only necessary to hold variables corresponding to two element rows (or three

nodal rows) in direct access storage at any particular time. This is also the

case for application of boundary conditions, since in Appendix 7, equation (1),



for example, Xfc > X^ , and m are all variables attributable to a single

node and thus all lie within the diagonal submatrix. . Suppose that their equiva-

lents are specifically attributable to node 25 in Figure 4. The only rows and

columns affected by application of the boundary conditions thus lie within the

bounds of those attributable to node 25. Thus, if matrix block rows from

number 1 1 to number 30 are in direct access memory, the boundary condition

may be applied to these only with the result being identical to an application

to the entire matrix.

2. 7 Solution of Matrix Equation

The matrices generated by the Galerkin formulation of sections 2.4 and 2. 5

are in general unsymmetric and nonpositive definite in addition to being

complex. Due to the discretization scheme described in section 2. 2, they are

block tridiagonal.

The LU-decomposition of a block tridiagonal matrix is readily obtainable

(Ref. 19, pages 166 and 173). The LU-decomposition takes the form

f «J fcj

ruw
fftJW

JWM

MM

W

<56')V
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where [Tj is the identity matrix and where the two matrices on the right-

hand side of the equation are the lower /i Jand upper /IAJ triangular factors,

respectively. The component matrices of £/. J and {(X.J are given by direct

substitution as

- fail

- 2,
The system of equations

<60»

now becomes,

(61)

which decomposes into two triangular systems

(62)

and

fu] {x} - {y} (63)
which may be solved in turn in the usual manner by forward and backward

substitution using the relations



= ft ] < 64-, ,

,66,

The process described in equations (56) through (67) may be used to solve

the global matrix equation whose derivation and assembly is described in

this report. We described in section 2. 6 however, that assembly of the

global matrix equation may be carried out efficiently by keeping only three

nodal rows of coefficients in direct access memory at any one time.

In terms of the required size of direct access memory, three nodal rows of

coefficients reduces to nine packed blocks and three block vectors (e. g. , see

Figure 4). The respective orders of these matrix elements are:

packed blocks #j i % 3-^

block vectors Yf\i X 1

where Tf\ = number nodes in serial numbering direction

£ - number of parameters at a node''.;
Si*'-:f/.- t..t i • < • > . > • • - • > e,.- / - . . . ^ ' , .3 ,
^Thus., the total storage requirement for assembly isf 2,7/W.c + 3/7? & J ,

For solution of the matrix equation, however, an efficient minimum require-

ment is three packed blocks, three block vectors, and one expanded block,

giving a total storage of ( ^ A W t •+• 3m« + 3 m i /.The necessity for the

storage-consuming expanded block is clear from equation (58) where it may

be seen that [fifr] is a full matrix for all ( k - 1t ft ) •
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Careful inspection of equations (57) through (67) shows that a number of

specialized matrix handling algorithms need to be used in order to limit the

requirement on the number of expanded blocks to one. These include the

following:

• Transposition of either a packed or expanded matrix, and

superimposing the transposed matrix upon the original storage

area.

• Multiplication of an expanded matrix by a packed matrix, and

superimposing the result over the storage area of the original

expanded matrix.

• Addition and subtraction of expanded and packed matrices, and

superimposing the result over the storage area of the original

expanded matrix.

• Multiplication of a packed matrix by a vector without expanding

the packed matrix.

Once the necessity for these algorithms is recognized, however, their

preparation is trivial. Their use in the implementation of equations (57)

through (67) together with a map of direct access storage requirements is
/ ' ̂

shown in Figure>7,
A

°» '
2.8 Acoustic Attenuation

The principal final result of an analysis of sound propagation in an engine

duct is a value for its acoustic attenuation;

Clearly from equation (16), any evaluation of the total attenuation for sources

emitting sound over a broad frequency band, and with an arbitrary spatial

distribution of amplitude and phase over the source plane will need to be

carried out over the entire double Fourier transform implicit in this relation-

ship. This implies practically that a value of t*7 has to be specified for

- 33
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each time harmuonicYx~and a value" of ffl for each'-angular ha'rmonic.

Since the ( l f f r l ) harmonics are orthogonal, acoustic intensities computed

from them independently have simply to be summed to produce total intensity.

The choice of an expression for acoustic energy is not immediately clear.

For irrotational, uniform -entropy flow (in the Z -direction), Cantrell and

Hart , and Morfey have shown that

RJ (68)

where I is the axial intensity, and * denotes complex conjugate. The above
z

expressions are accurate to second order in fluctuating quantities. However,

both Cantrell and Hart, and Morfey obtained their expressions from the time-
(22)

averaged energy equation. Eversman used, as his starting point, the

exact energy equation for a nonviscous, nonheat-conducting flow and obtained

for the axial intensity:

(69) .<

T*

where }/ - radial component of acoustic velocity

W - tangential component of acoustic velocity

Both results were programmed, with somewhat more consistent answers

being obtained from the second expression. (In some instances, use of either

expression results in a net increase in flux at the radiation plane over the

flux at the source plane.)
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In order to obtain axial acoustic flux over source F and radiation F
s r

planes, a simple linear integration scheme described in Appendix 8 was

used. Duct attenuation is thus given by

(70)
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3.0 DESCRIPTION OF RESULTS

3. 1 Comparison of Model with Previous Analyses

Comparison of the model with previous work is complicated by the fact that

these comparisons can only be achieved using a small proportion of the

model's total capability. These comparisons do have the advantage, however,

of providing some confidence in the convergence characteristics and overall

accuracy of the model.

A uniform cylindrical duct of unit radial and axial dimensions with an outer

wall impedance of pc is shown in Figure 8. Duct attenuation was calculated

at a wavenumber of unity in the absence of mean flow at a circumferential

harmonic number of zero for a series of element assemblies. The solutions

obtained from the model may be seen to converge on a suliton for the same

problem computed from the work of Zorumski

In order to verify the model's accuracy over a wide range of parameters,

and to evaluate its feasibility for optimization studies, two optimization

schemes were programmed. The first was a two-variable optimization

to determine real and imaginary parts of a uniform liner admittance yield-

ing maximum acoustic attenuation. This optimization •was performed at

two frequencies and the results are compared in Table I with those derived

by Lester and Posey and Quinn . The results from the three

analyses are substantially the same. A six-variable optimization for a

three-section liner was then carried out with no significantly different results

from those of Quinn. These results, together with those of Quinn, are also

given in Table I.

The optimization scheme used in the two determinations above was the

Davidon Fletcher Powell technique adapted to numerical gradient compu-

tations. The fact that reasonable agreement with previous analyses was
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TABLE I

Comparison of Optimum Acoustic Liner Determinations

Duct radius = 1m Duct length = 2m c = 344m/ sec
Circumferential wavenumber = 1, no flow

Hz

548.2

344.4

548.2

Liner Admittance ( x 1/pc )
Current
Analysis

. 23+ .42i

. 28+ . 58i

0+ .401

. 16+ . 57i

.60+ . 59i

Lester (23> Quinn<24>

Duct Attenuation ,(dB)
Current

Analysis

UNIFORM LINER

.21+ .451

.27+ .55i

.25+ .38i

.29+ .561

4.7

7. 3

| THREE -SECTION LINER

.003+ .491

.31+ .461

.71+ . 67i

6 .2

Lester'23'

4. 5

7.2

Quinn(24)

4.7

7.7

7. 1

TABLE II

Comparison of Duct Attenuations in Presence of Plug Flow

Duct radius = 1m Duct length = 2m c = 344.4m/sec

Hz

54. 8

54.8

274. 1

Mach No.

-. 1

+ . 1

+ . 1

Circumferential
Wavenumber

0

0

1

Liner
Admittance

( x 1/pc )

1.46+ 1. 311

1.0+ Oi

1.0+ Oi

Duct
Attenuation (dB)

Current
Analysis

20. 5

10.6

14.2

Zorumski

21.2

10. 3

16.1
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obtained is encouraging because evidently a sufficiently low "function

noise" was present in spite of a moderately coarse analysis of 12 x 30

elements.

A conical horn was selected to verify the program for nonuniform geometry.

A solution based on a small angle approximation at low frequencies is given

in Morse . This solution assumes a spherical wave emanating from an

equivalent point source at the produced apex of the cone. The amplitude

of the pressure is thus inversely proportional to the distance from this

hypothetical source. Figure/9 .-vshows the pressure variation with axial

distance along a radius from the hypothetical source selected arbitrarily

at 12. 9 to the axis. Results from the current model (shown by a solid

line) show little deviation from results produced by Morse's analysis

(open circles).

A limited amount of published data is available for ducts containing flow

that is suitable for comparison with the current model. In the absence

of an alternative comparison, Zorumski's analysis was used. This

comparison is less than ideal in two ways. The current analysis is a

shear-flow model, that is, the mean flow is required to go to zero at

duct walls whereas Zorumski's is a plug-flow model. Further, the current

model has a p"c termination impedance, whereas the version of Zorumski's

model used, had a zero-reflection termination boundary condition.

Reasonable comparison is demonstrated from the results presented in

Table II. For these analyses, plug flow was simulated as closely as

possible in the current model by a very small shear layer. Several

combinations of frequency, Mach number, circumferential harmonic

wavenumber, and liner admittance are shown in Table II. No significant

deviations were observed in computed duct attenuation.
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3.2 Illustrations of Potentialjaf^Current Model in Duct Optimization

The current model presents the opportunity to explore novel concepts in

aero-engine duct design for optimum acoustic characteristics. This

section contains illustrations of three such concepts and describes their

relative success.

3. 2. 1 Quadratic Liner Variation

As an alternative to a sectioned liner, a uniformly varying liner 4s

suggested. To compare directly with the three-section liner •whose

results are given in Table I, a quadratic liner variation was programmed.

As a viable alternative in optimization studies to a three-section liner, a

quadratic liner possesses the same number of variables. Its admittance

3 is given by

2
B(z) = a + a z + a z

O J. C*

where the a's are complex.

For the duct similar to that described in Table I, optimization coefficients

yielding an admittance function given in JTigure-10 was derived. Duct
A -t!i\c

attenuation was 5.9 dB which compares closely with the value of '6.2 dB

obtained for the three-section liner described in Table I.

3. 2. 2 Optimization of a Convergent-Divergent Duct

In addition to acoustic-liner parameters, the physical shape of the duct

itself may be optimized for maximum acoustic attenuation. Suppose, for

example, a. constrictipn defined by a cosine function is imposed on the outer

wall, The duct radius is:given;by

R = jl - q(l - cos 2TTz)| R



Attenuation = 5 . 9 dB
Duct Radius = 1m
Duct Length = 2m

Frequency = 548. 2 Hz
c = 344. 4m/sec

Circumferential
Wavenumber = 0

0.5 1.0 1.5
AXIAL DISTANCE

2.0

Figure 10. Admittance Variation with Axial
Distance for Quadratic Liner.
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where o. is the constriction parameter and R is the duct radius at z = 0.
o

Suppose further that we decide to place a lower limit on the constriction

size such that cross-sectional area at the throat should be no less than

one-half the cross-sectional area at the source plane. Thus q should be

in the range

0 < q < • 15

This may be achieved by the transformation

q = . 075(1 + cos Q)

A three-variable optimization was carried out with the real and imaginary

parts of a uniform admittance as variables in addition to the duct constric-

tion parameter Q defined above.

The admittance was found to converge rapidly to the same optimum value

which was previously determined for a similar duct with no constriction

at the same frequency, and circumferential harmonic number. The

constriction parameter, as might be expected, converged to the limiting

value of

q = . 15

While this exercise may seem somewhat trivial, it serves to demonstrate

the possibilities of duct optimization using the model.

3, 2. 3 Optimization with a Center Body

The shear layer produced, as the mean flow velocity.rgoes to zero- rori?

walls of an aero-engine inlet duct, causes-acous'.ti'c energy t-o be--
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towards the duct axis is well known. This effect was verified using the

model and is depicted graphically in Figure 117

An unfortunate consequence of this effect is the decreased effectiveness

of acoustic liners placed on the outer duct walls. To use an acoustically

lined centerbody,j'such as that.shown in Figure 12, shaped so as' to

minimize its o.wn refraction character is ties, ..w.ould:,app:ea.r profitable.& = . . . . . .

A three-variable optimization was carried out on a duct of this type using

a cosine centerbody function similar to the function described in the pre-

vious section for a constriction. The outer duct wall was uniform

(radius = 1 m), and the maximum radius of the centerbody was allowed

to vary between zero and . 6 of the outer wall radius. Duct length was

2 m. The other two variables in the optimization were the real and

imaginary parts of the liner admittance on the centerbody and the outer

wall.

A mean flow model based on streamlines, calculated on the assumption

of incompressible flow, was used. Free stream velocity at the source

plane was Mach . 2, with a one-half sine rolloff profile. In the absence

of better information, this profile was assumed to have a constant normal-

ized shape which was independent of axial station.

At a frequency of 548. 2 Hz, the centerbody radius increased to an optimum

at its maximum constrained value of . 6 m. The corresponding liner ad-

mittance, yielding an optimum duct attenuation of 25.8 dB, was

(.62 + .381).

This attenuation appears remarkably large when compared with the corres-

ponding values in Table I. A partial explanation, however, is undoubtably

that the dimension between the centerbody and outer duct wall is of the

same order as the wavelength of the first mode.
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Source
Plane

2m

Hard Wall

Hard Wall
Frequency = 548.2 Hz

Radiation
Plane
Impedance = pc

*&. ~= 0

•M = -.4

—Duct Axis

= 0

Figure 11. Plot Showing Envelopes of Pressure Amplitudes
with Axial Distance at Selected Radial Stations.
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Figure 12. Constant Cross-Sectional Area
Inlet Duct with Center Body.
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3. 3 Computing Time

The finite element model described in this report was specifically designed

to operate making most efficient use of computational resources. Thus,

perhaps the most important result of the study is the degree to which

this objective is fulfilled.

Figure 13 shows typical central processor times that were achieved

from the different variations of the model. We may draw the following

conclusions from the results:

• For a particular matrix bandwidth, central processor time

is roughly proportional to the matrix order.

• Numerical integration increases total computing time by roughly

a factor of 1.3 over the algebraic form.

In comparison with NASTRAN (NASA Structural Analysis), the general

purpose structural finite element program, the current model shows a

speed improvement for similar matrices of approximately a factor of 12.

48



o
W

o
W

v£>
o

B

4t !
si-
O

o
o';

Ij •«-*

o h
0) ,<

i8 5
Po

U
U

0)

bO
••-i
fe

O
o
o
o
©

o
o
o

o
o
o

o
o

49.



4.0 CONCLUSIONS

The objective of this work was to develop a finite element scheme for

the acoustics of aero-engine ducts. The principal difficulty of a direct

numerical solution is containing the problem within existing computers

and attaining a solution in a reasonable amount of computing time. The

mathematical formulation, logical flow sequences, matrix manipulation

techniques and a solution scheme to attain the stated objective are described

in this report.

Testing and verifying the model is complicated by the fact that available

alternative analyses possess only a small portion of its total capability.

With this restriction in mind, testing of the model was carried out in such

a manner in order to compare results with several alternative analyses.

Results of the testing program are satisfactory with the model showing good

convergence characteristics over a wide range of conditions.

Specific parameters such as spatial acoustic pressure variations and duct

attenuation were compared with alternative analyses. General trends such

as refraction of acoustic energy by a mean flow shear layer were verified.

An aspect of the model likely to yield interesting information on acoustic

design of aero-engine ducts is its ability to be used in conduction with

optimization studies where parameters such as duct shape, size and

shape of centerbodies, and multisection or continuous acoustic liners may

be varied. Illustrations of the use of the model in this context were presented

together with results shewing expected and unexpected trends.
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Testing of the model in the presence of compressible mean flow has not

yet been accomplished. This capability is present in the model but requires

linking with a separate analysis to provide mean flow data.
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Appendix 1

Area Element Coordinate Transformation

Bz.

Suppose a vector f{ is given in the global £z r) system as

3? A A
R = 2 c + r]

+ JL* ^r = f «12 + J/r
9r

An element of area in the (^/ f I system is given by

( c - t z ) x (

Within the (j; /I ) coordinate system ^^ 21 ( f , ^) ,

i T* -f I A, . o> Z. * O~n \ I S
Component of Cl K in y -direction is ( t .73? "*" J }t ) J

Component of it R in /^ -direction is I

An element of area d n in the ( X , ^ / system is given by

. [ t i z + J J r U f x f « l 2 . * J i C
( • ^ P O ^ J I ^ • • • *v«..

3| ^f / I •

Jz

X.55



Appendix" 2

Definition of terms us'ecf-in-equations (46) through (49)

,2-1

W = r<

[fl -J^.
0.

= -if'-.frfj -w]

2rid:/

-* -I

lit

-»-
*l

W
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2-3
= /

-I

where for example, Rtj is the ( Lt j^'th componenfof the 4 x 4 matrix J[Aj
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Appendix

Abscissae and Weight Coefficients of the Gaussian Quadrature Formula
.1

-I
±a

0-57735 02691

0-77459 66692
0-00000 00000

0-86113 63115
0-33998 10435

0-90617 98459
0-53846 93101
0-00000 00000

0-93246 95142
0-66120 93864
0-23861 91860

0-94910 79123
0-74153 11855
0-40584 51513
0-00000 00000

0-96028 98564
0-79666 64774
0-52553 24099
0-18343 46424

0-96816 02395
0-83603 11073
0-61337 14327
0-32425 34234
0-00000 00000

0-97390 65285
0-86506 33666
0-67940 95682
0-43339 53941
0-14887 43389

n = 2

n = 3

n = 4

n = 5

n = 6

n = 7

n = 8

n = 9

n = 10

H

1-00000 00000

0-55555 55555
0-88888 88888

0-34785 48451
0-65214 51548

0-23692 68850
0-47862 87604
0-56888 88888

0- 17132 44923
0-36076 15730
0-46791 39345

0- 12948 49661
0-27970 53914
0-38183 00505
0-41795 91836

0-10122 85362
0-22238 10344
0-31370 66458
0-36268 37833

0-08127 43883
0-18064 81606
0-26061 06964
0-31234 70770
0-33023 93550

0-06667 13443
0-14945 13491
0-21908 63625
0-26926 67193
0-29552 42247
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Appendix 4

Listing of Subroutine FINDS

60



«•»
cc
4
0,

z
•t

i-H
z:
«,

sr
x:
•s

OL.
—t

ĈD
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Appendix 5

Termination Boundary Condition

Assume that in the radiation plane [/ varies slowly over an element and

that a plane wave solution holds, i. e. ,

• L
\> =» fa « . (2)

where _
/) c + U

The axial momentum equation (equation (6) was

9r

_
assuming that 9(X , I/ , 0U- = ^ , this reduces to

Substituting (1) and (2) into (4) gives

us in U, - k

Equation (5) is an admittance condition, and is the approximate boundary

condition applied at the radiation plane.
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Appendix 6

Insertion of a Noise Source Boundary Condition

' >•,-- *^~
Consider the following system of equations:.

.e. a,, X,

-Inserting the boundary condition

ogives

-lt X, -f

-f

0. X, + 0 . Xa
t
I

x^ t «^x,.

«•/* X,, = 4,

= />
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/ Appendix 7

Insertion of an Admittance.Boundary Condition

Consider the, follow ing system of equations:

LJ e.-

tt/l X,

ax/X,

«»/
X,

The boundary condition Sr ~-(-L, where B is the wall admittance and

is the normal component of the acoustic velocity, may be rewritten as

V = C, f> + C^ 14. ^

where ' ~ ^os (&)

(I)

and 6 is the angle between the wall and the 7,-axis (see Figure 7"<{).

Suppose XjL a H. X« = V X« =

then
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Figure 7-1 Orientation of Acoustic Velocities and Boundary Wall.
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<;. /• -"7 '-;- '". ^ ex.- ()•
"Substituting (4) i n ( l ) gives 7_3

Clearly, we may have chosen to eliminate either (A or P instead of V

in the process above. The choice of which parameter to eliminate depends on

the numerical values of C, and C^ . If in equations (3), for example, 0

tended towards JL , unreliable results will be obtained from equations (5).
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Appendix 8

Linear Numerical Flux Integration

In order to complete acoustic flux it is necessary to evaluate the intensity-

distribution over a plane. This may be done numerically in the following

manner (assuming ( f^ - ft ) is smallj :

ar t I - I",

ex - Z, - 1.3.

= r, -

We want to evaluate

•. A-trr cr




