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Notations and Definitions

Row vector.

‘Matrix.

} Column v/ect'.or’.o

An asterisk as a variable superscript indicates complex
conjugate, .

A bar over a variable indicates a/'méan flow quantity.

A tilda over a variable indicates a nondimensional quantity.
A prime as a variable superscript indicates time dependence.
An arrow over a variable indicates a vector.

Indicates time average quantity.

List of Symbols

»

7
) C... Q Scalal'/’Quantities defined by equation (50).
4
; ) Gaussian quadrature weights.
Speed of sound.
Acoustic flux through source plane.
Acoustic flux through radiation plane.
Frequency.
7
Acoustic intensity.
Z-component of acoustic intensity
L
Identity/matrix.

Index.

Jacobian matrix.

”
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List of Symbols (c.‘ont'd’)}’

Determinant of Jacobian.

Index.

Number of variables per node.
Mach number on axial direction.
Radial derivative of M (= %L:- )

Number of nodes in serial numbering direction.

4

#

Linear function for/s'grendipity element.
Pressure (unperturbed equations)
Prandt1¢n‘umber.

Pressure (acoustic variable)
Transformed constriction parameter.

Constriction parameter.

Outer duct radius at Z = 0
Reynolds 3huﬁ1ber. ‘
Y
Radial coordinateés. /.’_
\,//”’/7 A //
Temperature.
Time.

Velocity vector.

W) {2, r, B) Velocity components (mean flow and unperturbed
equations) .

W) (Z) r, 9) Acoustic velocity components

Axial coordinate,.
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List of Symbols (cont'd)

oy, ,,(r Defined by equation (26).
P Admittance.

[«1 [p1,[7], [f1[m]  Defined in Appendix 2.
P 1 Gas specific heat ratio.

Impedance of air (= ?C)

Local coordinate

Gauss abscissa point.

[

Circumferential coordinate.
Gas thermal conductivity.
Wavelength.

Local coordinate (axial direction)

WD L D X DTN v~ ™

Gauss abscissa point.

e

Density (unperturbed equations).
Density.
Dimensionless viscous stress tensor.

Dimensionless dissipation function.

g, 9 R «

Angular frequency.



1.0 INTRODUCTION

The objective of the work described in this report was the development of a

¢

finite element scheme applicable to the aé\oustics of aero-engine ducts. The
finite element method, which is widely used with considerable success in
structural mechanics, is currently finding applications in all areas of

continuum mechanics.

The application of finite element methods to acoustics is not new. A signifi-
cant amount of work has already been performed in determining the acoustic
modes of closed cavities and in determining the response of coupled acoustic-
structural systems (references 1-9). These analyses assumed simple acous-
tic systems in a uniform medium with no mean flow. Under these circum-
stances it was possible to formulate variational principles which were then
used as the basis for a finite element model. None of these assumptions

are valid within a modeirn' aircrafteengine such as shown.in Figure 1. Here,
the noise generation mechanisms are complex, and the medium which trans-
mits the sound contains large gradients and moves with a considerable
velocity. Since no variational principal exists for acoustic fluctuations in
such a medium, an acoustic analysis must proceed directly from the

differential equations which describe compféssible flow.

From a cursory examination of the physical size of fan engine ducts on
current aircraft, and from the knowledge that predominant fan tones exceed
2000Hz, it is clear that the principal'aifﬁculty in development of an acoustic.
model on existing computers is the sheer scale of the required model. In
structural mechanics after 20 years of experience, 10 000 degrees of
freedom still represent a large problem. At the outset, it is apparent that

the acoustic model will require upwards of 100 000 degrees of freedom.

This is not the only complication, because in structural mechanics as well
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as in previous acoustic studies, global finite element matrices possess
desirable properties, being generally real, symmetric, and positive-
definite. -The symmetric, positive/idefinite form results from the variational
formulation on which the finite element models are based. However, the
Galerkin variation of the method of weighted residuals used for the acoustic
element in this work produces matrices which are complex, non-Hermitian
and nonpositive -definite. Matrices of this type require special techniques

to avoid numerical errors in their solution. These techniques are less
plentiful than for symmetric positive-definite matrices and become difficult

to implement efficiently for large matrix orders.

This report describes a solution to the problems outlined above, describes
the development of a finite element model, and shows typical results

derived from this model.

>l



2.0 DESCRIPTION OF MATHEMATICAL MODEL

2.1 Problem Formulation

The purpose of this analysis is the calculation of sound propagation in
axisymmetric ducts containing compressible flow. The nondimensional

equations governing the motion of the fluid are:

Conservation of Momentum

”P’(ﬁ-ﬁ-(V?)V} =—9F + 1 v.z (1)

at Re

Conservation of Mass

AP +v. (FV) = o g

ot

Conservation of Energy

'f(a_:i_:-bVFT) - (zr-:)(iE-f-V, {;F) =_I_{_I_\'7'.(K77‘f)+(7’-l)¢
ot 2t Re L P

Equation of State

'D’F'::?? | (4)

Equations (1) through (4) were made nondimensional for simplicity by using

an arbitrary characteristic length; the ambient values of temperature, density,
and speed of sound; and arbitrary characteristic values of viscosity and
thermal conductivity. These equations govern both the mean flow and imposed

acoustic motion within the duct.



While determination of the mean flow is necessary for solution of the acoustic
problem, the assumptions and techniques used to obtain the mean solution are
not part of this paper. Instead, it is assumed that the mean flow has already
been obtained anci is in suitable form for inclusion in the acoustic problem.
At the same time, it is necessary to note that some terms in the equations
(those involving viscosity and heat conduction) which may be important in
deriving the mean flow solution are not of primary significance in deter-
mining the acoustic motion. Thus, while these terms might be retained

for solution of the mean flow problem, they are eliminated here at the outset

to simplify derivation of the equations describing the acoustic motion.

To begin this derivation, we write equation (1) in dimensional component

form in cylindrical coordinates (ignoring viscosity).

Axial Direction

f?..“;+Vﬂ+_V!?_’4_+“§_K) - — 2P (5
ot or r 06 lz oz

Radial Direction

ot or EY] 2z or

f(ﬂ+v§y+zav-ﬂ‘+uav) - - 3P
v 06 r z r (6)

Circumferential Direction

A+ VEW + 2w 4 Vi, uz._v_{) =-_1 2P
ot 2r r 26 r 2z r o (7

o
}



Equation (2) becomes:

ar-;-uaf-fvaf-l-W?F +P3U~+3V+_I_9V)+FV=
-5? 32 3" 22 or r 0P r

(8)

Assuming that all dependent variables are the sum of two motions; one the

steady mean flow and the other a fluctuating acoustic motion, we write

P = Plroe,2) +/>’(r,e,z,t)

F(r.e,z) +§°(r,e,2,t)

H(r,a,z) + u(r,6,z,t) (9)

< X ™
N

= V(r, 6,2z) + v(r,e, z,t)

W=WI(r6,2) + wir,e,z,t)

Substituting equations (9) into equations (5) through (8), we derive two sets of
equations: the first by assuming that the primed quantities are zero, and the
second by using the full form of equation (9). Subtracting the first set from

the second, ignoring second-order terms in the primed quantities and assuming

mean swirl (W) to be zero, we get

$ 2w 4+ (Sv
2t

<|

| —]
Y
~ =i
w |
%=

&1
D)
=1
+
|
<
(B
s
N
4
W
w‘
i
o

+ (fu'-r

|’

w
N
V)
N
v
N

(10)



Tvie V)V + TV av |
(11)

v+ oV

ot or r
+(Sw+SU)V +FHav +3F =0
z 9z or

5
(12)

38"+ W 28" + Vas' + w28 + vas
t z r Z r
+ (2w +2v 4 1 2w 4 v
A or r 6 r o
"‘fi(a_—’/l + 2V *Z) = 0 (13)
pA r r '

The neglect of viscosity and heat conduction in the acoustic motion means
When such is true, the energy equation and

that it is an adiabatic process.
equation of state may be manipulated to give (Ref. 10,  11) -,

' 4 ’ 2
}: = S c
(14)
Here € is the local speed of sound which is determined from the mean flow

by the relation

\k
)

C = (.)/__Tr?.

5



’,
Assuming that ¢ = € (r, 2), we may use equation (14) to eliminate 3 from
equations (10) through (13). Taking a harmonic solution in + and © for

the fluctuating quanties

., . wt +mo
(u,v,w,k):(u,mw,}:)e

. (16)
where U) and M are pure imaginary, the four equations governing the

linearized acoustic motion in a nonuniform axisymmetric duct become

|

.Qu+[V+_t;V)aH+Vau+(u+ H)Q_E_-;-uau.,. zt

(17)

0v+(v+._t_2)iz+v_l+(u+_a)ﬁ+u..z +.i__a.é = 0
Sex/ oar or $c*/ oz 9z § or .
(18)
u)W+V(.a_"‘.’+_'..W)+uM+J=-"-,5=0 )
ror z $r
Qb+ I'Z(al’-zf’ac) + V(é}’-zl’ac) + udf
c* ¢*\dz ¢ 2z c*loar ¢ or 2z

+v£+'§(au+an/+mw+ v)+f’(97+97+7 0
: or dz  or r r c\az or r
(20)
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2.2 Solution Strategy

Solution of equations (17) through (20) is not possible algebraically except
with severely restrictive assumptions. The question is thus not whether to
use a numerical technique for their solution, but rather which numerical

technique to use.

Within each branch of applied science, partly from its historical develop-
ment and partly from rational grounds, there appears to exist a favorite
numerical method. Perhaps it is fortuitous that the rebirth of acoustics is

too recent to have allowed development of any such prejudice.

For example, a variety of numerical techniques are used in connection

/with the pr/%lem of sound propagation in ducts. . Mungur, in his work with
[l s £ . ] Pt A '} :
/ Plufnblee(./%o) and/\.GladWe-H- g

N

“used a fou‘rth-order Runge-Kutta approach.

A ~ i
136 3)- B3 13).
More recently, Baumeister, with Bittn(gr/\( 121,\ and with Riéez(‘laf,\ used an .
7 .

integral formulation to generate finite difference approximations to the

differential equations. xf%moc],:.e indirect technique involving modal expansions

was used by Zorumski (14, - (5{)~
< Also{{,in this vein is the wave envelope tech-
I'6)
nique of Nayfeh, Shaker, and Kaiser ‘ which reduces in the limit to the

(17).

‘C
.

method of multiple scales of the earlier work of Nayfeh and Telionis

(o,

Direct numerical solutions are subj?&t to the problem of size. As pointed
1
out by Nayfeh, Shaker, and Kaiser ( 62/\ for a negative Mach number

)

tending to unity in magnitude, and high frequency, the number of axial steps

\,,)

required to resolve the quasi-sinusoidal spatial variation of the fluctuating

parameters becomes very large.

No study has yet been conducted, however, to accurately determine the

limits of direct numerical solutions using currently available computers.



This work began with the objective of determining these limits, using care-
fully determined storage and matrix manipulation algorithms in conjunction

with a straightforward discretization scheme.

Due to the promising results obtained by finitecelement algorithms in other
fields of continuum mechanics and from initially promising applications to

acoustics, finite elements were the medium chosen for this study.

The great majority of development of the finiterelement method has taken
place within the context of structural mechanics. Concerning the relative
advantage of various types of elements, it is informative to note the
comments of a specialist in this field: Zienkiewicz (Ref.ié?"bage 104) who
states that, '""The question may well be asked as to whether any economic or
other advantage is gained by increasing the complexity of an element. The
answer here is not any easy one, although it can be stated as a general rule
that as the order of an element increases so the total number of unknowns
in a problem can be reduced for a given accuracy of representation.
Economic advantage requires, however, a reduction of total computations
and data preparation effort and this does not follow automatically for a
reduced " number of total variables as, though equation solving times may be
reduced, the time required for element formulation increases. In general,

the optimum element may have to be determined from case to case."

In the light of these comments and for the sake of simplicity, a linear
rectangular element from Zienkiewicz's Serendipity family (Ref.}lé‘;page 107)
was chosen as the basis for the analysis. Figure 2, contains a de\scription

of the nodal numbering system for the element, and shows orientation of
local ('l, E)coordinates and global (rr, 2) coordinates. (Since we assumed

a harmonic angular ( ® ) dependence by equation (16), only a two-dimensional

discretization is required.)

A0
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A uniform discretization mesh for a duct of constant cross-sectional area

is shown in Figure 3(a). The matrix map generated for this discretization
by a nodal numbering system such as that shown in the figure may be
developed as follows. Within each of the linear elements, interactions
among nodal variables will only occur between those variables at the corﬁers
of the rectangle. Thus in element (2, 4), four sets of linear equations will
link the four sets of nodal variables located at nodes 14, 15, 24, and 25.
Consider the equation set representing variables at node 25. On assembly
of the global matrix, this set will contain contributions from four adjacent
elements namely (2, 4), (2, 5), (3, 4), (3, 5). Thatis, in the global matrix
the variables at node 25 will be linked explicitly with variables at nodes 14,
15, 16, 24, 25, 26, 34, 35, 36. All other coefficients in the submatrix
representing the equation set for variables at node 25 will be zero. For the
case of " " parameters per node, the matrix map generated by linear
elements and the rectangular discretization numbered as shown in Figure

3(a), is given in Figure 4.

The principal generalized characteristics evident from the map shown in

Figure 4 may be summarized as follows:

° Global matrix consists of three diagonal bands.
e Width of each band is "3 ¢ ".
° Global matrix is block tridiagonal.

° Major blocks are themselves block tridiagonal.

e Order of major blocks is '""nf" where " n " is equal to the
number of nodes per row in the serial numbering direction.

° Order of minor blocks is " £ .

Although the characteristics of a matrix conforming to a generalized map
such as that described above are extremely convenient for minimizing

storage requirements, and computational effort during assembly and
12

-
/ <
B [



(a) Uniform Rectangular '

41 22 48 70 50
r (4,1 4,7) {4,8 |{4,9
3 32 38 39 20
(3,1 3.7) | 3.8 [(3.9
21 22 28 — 29 30
(2,1) (2,7) |(2.8) ](2.9)

‘ n 12 18 9 20
Elementy | 0.7 0.8 0.9 |
Number =

Node Number/ 2 3 4 3 ¢ 7 8 ? 0
——- 7,
(b) Nonuniform Rectangular
r f
e 7,

(c) Nonuniform Rectangular Mapped by a Coordinate Transformation

1

Figure 3. Rectangular Discretization in a Plane.
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solution, consider Whethé:}; much practical importance arises frorh this fact.
The uniform rectangular discretization scheme from which this matrix was
generated is hardly applicable to realistic problems. As shown in Figures

3(b) and 3(c), however, the identical matrix map is also generated by a
nonuniform rectangular discretization, as well as by arbitrary two-dimensional

mappings of the discretization "grid: provided no fold-over occurs.

Solution of equations (17) through (20) may be greatly facilitated by limiting
the analysis to use of this discretization scheme. The specific map for this
scheme may thus be incorporated implicitly into the computer program which
enables us to disregard the general but somewhat ponderous sparse matrix
pointer technology. All computation and storage is thus performed implicitly
only with nonzero values. In addition, this discretization scheme yields a
block tridiagonal matrix of block tridiagonal matrices. Special numerical
techniques, which are discussed later (section 2.8), exist for solution of

matrix equations involving tridiagonal matrices.

N—



2.3 Element Derivation

Consider the region of space enclosed by the element shown in Figure 2.
Suppose that within this region the acoustic variables U-.V,W,f’ as well as

the mean fluid parameters g , U V c of equations (17) through (20)

? ’
are defined by relations of the following type
u,

u
U= (N,N, N, M)y = (M)iu]

w,

(21)

where W,, U, ,U,, ll,r are the values of "' 4 "' at the four node points at the

numbered corners of the element.

Define a set of local coordinates (7 , ) within the region such that the coordi-
nate of the nodes (Zi R fi) are given by (-1, -1), (+1, -1), (+1, +1), (-1, +1)
for i = 1 through 4 respectively. The Ni's of equation(21) for the linear

Serendipity element are then defined by

N, = ('*ffe)('ﬁ*ftze) (22)

A
i

lfor-the undeformed element shown in Figure 2, the transformation from local

to global coordinates is simply

7 - (I"‘ﬁ:)
b (23)
(Z"Zc)

g a

where (¥, , Z,) are the global coordinates of the center of the element.

il

Howe ver, as illustrated in Figure 3, we require to map this simple shape to

conform to complicated boundaries so that it then appears as shown in

i 16



Figure 5. Suppose then, that instead of equation (23) we have the transfor-

mation -
n

r= {N,N,, Ny, N {1 = (N)§r}

[z, (24)
Z=(NttNa:N31 Nb)*ii; = (N){Z}

bzb

Note that in comparing these relationships with those of equation (21) two

conditions are satisfied:

. The same points (viz. the node points) define the geometry
and the finite element analysis points.
. The shape functions (viz. the Ni's) defining the global

coordinates and the variables within the element are the same.
Thus, the mapped elements are isoparametric.

In order to transform equations (17) through (20) into the local coordinate

and in the local

or 0z

system, we need to derive expressions for

system

@
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37 - 3'2 31 2r
o N or 2z N
Tf_ s 2‘}_4 dz
vy | | (23)
— J‘J or |
= [ N
z

where [I] is the Jacobian Matrix.

We may thus define the matrix

(<) 2 (N)

(2) B £ () | | (26)

i
Y
4
1

Suppose equations (21), (24) and (26) are substituted into equations (17)
through (20). Using the Galerkin version of the rﬁethod of weighted
residuals, we wish to integrate over the element.weighting each equation

in turn by each of the Ni's to obtain the following four matrix equations in
the nodal variables. It is convenient in integrating these equations to do so
in the local, rather than in the global, coordinate system because this
greatly simplifies the process due to the convenient limits of integration.
Effectively, integration is then over the simple shape of Figure 2, rather
than the complicated, distorted shape of Figure 5. In order to perform this
operation, it is necessary to determine an expression for an element of area

(dA) in the local system. It is shown in Appendix 1, that ""dA' is given by

719
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dA=IIlo(rlo(§ (27)

—

where )T’ is the determinant of the Jacobian matrix. Equations (17)

through (20) thus become:

- & Y Y
- SJ[(N) $ri {N}([ﬂ+(¢z)iu}] (N) + MiVi(2) + (N){u.}("‘z)3

- [(o "" “'

. @A), oy [[(xr){a}(w{Vh(~>i'bl}(az)ilf}](~)

. (M1 §F [m{e]®
o fu}
- + (vtz):}) {f:,}} |71 dp dfdo = o (28)"
iP}

2+l +|
| J (~)ir}{~?((4,)i7}(~) y[9+ €A ]+ eV} o)
o—

I =l

s
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ivi -
+ (Jr)}) {:;} 7] 0(7 alf de =0 (29)
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1di (30)
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2.4 Algebraic Integration for Ducts of Constant Cross-Sectional Area

If we assume that we are dealing only with ducts of constant cross-section

and that

] the mean flow is incompressible,
° there is no mean flow in the radial directio;i,

] the mean axial flow has no gradient in the axial direction.

Equations (17) through (20) now become

ku + M'v-l-Ma“-t--é-}i = 0

9z 92 (32)
Vv 1 dp
v =
k+Maz+£ar 0 (33)
kw + M g-gf + Zp =0 (34)
. 35
kpomdb v ef 5t g Llmm}ao
where _
U
M=‘;“ _ (36)
M=+ 24 )
c
£ = ?c (38)
From equation (23), we have that
r= 47+
(39)

Z = a’f + Zc
whernce it follows that

dr 447 o
dz = a olg

\V
A%



Supposing a linear dependence for- M within each element,

M= M, + M'(r-r.)
= M, + M’b7

. We may integrate over the element using the Galerkin procedure as in
section 2.3 (note that now Ij’ , the determinant of the Jacobian, is unity)
~faffy
’ ’ .
(bp+r) N,;[ku e vMs (M Mhy) Bu 4 1 a_k_] d§ dp do < o
[ 3
a Bf Eo af

0=t =t (41)
—ar
(by+7:) N,;[kv + (MctMby) v« _:_gg] 4§ dyde = o
. « 9§ b 3§ .
o-1= (42)7
“afl ¢ | ;
(57“2) N,;[kw-r (M +mby) dw + m P ] olf 017 de =o
J. | o | ag 2(‘2”;)
o= (43) ;
- ari |

(by + ) Ne[k[u- (M.+ M) 3 + E(__'_?_b_ﬁ b1, (v+mw))]
| o o¢ a2t bog  (bger) |
~ wo-l-l

. 4§ "‘Z do = 0 (4.

where (i = 1 to 4) yielding a total of sixteen equations. Writing u,_v.,‘u/ and /:

in terms of the nodal coordinates as in equation (21)

w= (n) {u} w=(N) {w}
v=(w~) fv} p=I(N)ip}

> 23

(45)



equations (41) through (44) may readily be integrated.

Before performing these integrations, however, let us consider how
conditions at the element boundaries may affect the integration. If
equations (32) through (35) contained second-order terms it would be
necessary to integrate these by parts to-reduce them to first order since
second-order terms require continuity of first-order terms over a
boundary (Ref. 18, page 42). However, using a linear element with a
linear system of equations has advantages in this respect since we only
need to satisfy the requirement of continuity of the variables themselves
across boundaries. Also, along the outer boundary, it is sufficient to
constrain the appropriate variables to conform to the boundary conditions

without the necessity of evaluating the specific boundary integral.

Equations (41) through (44) become

- )

ful
(k[<]+ [8], M1, o, % [+7) i

I

(46).

il
Q

-

- fu} L
, ivi -
(o, k[d+[g], o, LLA) 3‘{; wn

£u}

(o, o, k[4+[#, =[s]) g,:;

T ful o
(5[7], £[[f‘]*[5]] , me[£] ) k [] + [,3]) z‘"}} =0 (49
; 18

where [.,(,] , [F] , [7] , [{] and [/J.] are defined in appendix 2,

24:2 47/

7

)
o

it
N
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2.5 Numerical Integratioiz for Arbitrary Axisymmetric Ducts

Numerical integration of equations (28) through (31) by a standard inte-
gration formula is a trivial procedure in concept. However, because of the
necessity to integrate a large number of elements in this manner, consider

the equations more carefully and optimize the process.

Since none of the variables is an explicit function of "' @', the integration

with respect to " @ ' results simply in a multiplicative constant of 2

which may be ignored.

It may be seen that many coefficients of the matrix equations are multiplied

by scalar quantities. These are defined below:

A= (M ir} B = (v){3}
¢ = (N){V} p = (v){u}
= (){V1 (#2){V?
(<) {1} = ()i}
I = («){5] () {c}

k= (v){<} () {83
M= (£}

where the quantities A through () are functions of f and 7 -

!

-
"

(50)

i

b

9

[}

2 0~ =
|

Substituting in equations (28) to (31) we get

” fut)
ANY | [w +H] (N) + C.(‘{'r) + 3(“2) ’ G"(N) ) ¢ )—é—'ﬂ&%ﬂ] ) *(Azﬂ) ;':’}}

< u’iJ
! T dyd§ =0 (51)
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o[ £, B0 €100 e e alen), o, Lffeeszdn e i
4] U
- . IJ-I AY df = 0 (52) o
Y- fv}
JJn{w}(o , 0, [u7+ %](N) +eldr) + .‘Dl’(z)) m (N)) vl
N ip}
» . jT) AZ(!? =0 (53)/”'"

=

JJ" fN}(Q(NH 8(cs) , [I +-%—](N)+ 8(«r), mB(N),
- R _ [{w}
!1[[H+E+%_+u7- _K?_-_['.DMnLJJ(N)-r C(d-.-?] [i{:/}l LTIJzAf:é

“K*
{pt (54) <

The Gaussian quadrature procedure that is used employs unevenly spaced

==
:

abscissa points (7,;)§i,). The corresponding weights to be applied at these
Iz CF*IC )
points (H,;) HL) If we choose the same number of poinl:sb\.(7 "'a') in each.

. V4
direction, then ‘Zi = f‘-‘ and H,'- '="PHL . Thus,
1 1

.I=”f(§"z)”‘f°‘2 i

-1 =t

- . .n H: Hj JC(EJ ) 7¢) (55) )



(18)

Tables of abscissae and weights for different values of n_ are given in

G
and are reproduced in Appendix 3.

The logic diagram for evaluation of equations (51) through (54) using

r .
equation (55) is shown in Figure 6. It may be seen that it is possible to
retain several potentially time-consuming steps outside the innermost loops

of the quadrature process.

2.6 Global Matrix Assembly, Packing Technique, and Insertion of
Boundary Conditions

Assembly of a global matrix equation, that is, a matrix equation represent-
ing the entire system, from a set of finite element matrix equations is basic
procedure in the finite element technique, e. g., reference 18, page 13,

and is not described in detail. From Figure 3(a), it may be seen, however,
that there is a one-to-one correspondence between the global serial number-
ing system of nodes and the element numbering system together with its
local node numbering as shown in Figure 2. Appropriate shifting of rows
and columns are all that is required to add the local element matrix directly

into the global matrix.

This procedure is somewhat complicated by the fact that when a global
matrix possesses.a mapras that shown-in. Figure;4,eit.is undesirable™

to store anything but the three diagonal bands of nonzero coefficients. The
most convenient way to '"pack'' a matrix of this form is shown to the right
of the full or expanded matrix in Figure 4, where the diagonal bands are
arranged in vertical columns. The algorithm to yield a column number in
the packed matrix from a row and column number in the expanded matrix is

listed in Appendix 4.

Along the outer boundaries of the discretised region, two kinds of boundary

27



Specify Number of Gaussian Quadrature Points ag

Store table of absacissa (ni, ;j) and weights (Hi' H‘j)
L(N. B, only one table is necessary since n = ;i and

Specify circumferential harmonic number "M"

Evaluate matrices (N), B_aﬂ- (N), ?bé (N) for each

Gauss point

Loop on (I, J)'th element

Call subroutine to give global coordinates of
nodes of this element

Call subroutine to give nodal values of aerodynamic
variables, i.e. {ps}, {c}. {\71_}, {Vz}
|

Set local element matrix (16 x 16) to zero

Loop on Gaussian points in r-direction (= 1 to nG)

Loop on Gaussian points in z-direction (= 1-to nG)

—
3z 3r 3z 3dr

Evaliate =5, 5 T
U238 38 am an
Jacobian Matrix for this Gauss Point

the elements of the

Compute Determinant and Invert Jacobian Matrix

Evaluate (ar) and (a.z)

I

Compute scalar quantities "A" through "C" for
this Gauss Point

Compute the common rnultiplicative constant

=Aax|J|xH xH,
im0

|

Compute contributions to each coefficient of local
element matrix from this Guassian integration point.
Add in contributions.

Cycle back for next Gauss point

Add local element matrix into global matrix

_ 1

Cycle back for next element

Figure 6,

Logic Diagram for Evaluation of Integrals,
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conditions may exist, noise source or admittance. The boundary condition
at the radiation plane may be forced to conform to an admittance boundary

condition as shown in Appendix 5.

Provision is made for insertion of the two kinds of boundary condition into
the assembled global matrix equation by imposing relations on the nodal

variables along each boundary.

The noise source boundary condition consists simply of setting all nodal

pressure coordinates equal to a specified constant valde (implying by equation

(16) a specified harmonic amplitude). For example, see Appendix 6.

The admittance boundary condition involves specifying a linear relation-
ship between nodal pressure coordinates along the boundary and the

normal component of acoustic velocity. For example, see Appendix 7.

The examples in appendices 6 and 7 assume that, providing the global

matrix is stored in packed form, it may be held entirely within direct access
memory. This is not the case however, because by definition (see section 2. 2)
we will be dealing with extremely large problems employing over one hundred

thousand degrees of freedom.

During assembly of the global matrix, however, it is unnecessary to have

the entire matrix in direct access memory. Figures 3a and 4 show that contri-
butions to the equations for variables at global node number 25 (for example)
may only come from elements (2, 4), (2, 5), (3, 4), and (3, 5). Thus, itis
only necessary to hold variables corresponding to two element rows (or three
nodal rows) in direct access storage at any particular time. This is also the
case for application of boundary conditions, since in Appendix 7, equation (1),

rd
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for example, Xk ) Xa , and Xm are all variables attributable to a single
node and thus all lie within the diagonal submatrix. . Suppose that their equiva-
lents are specifically attributable to node 25 in Figure 4. The only rows and
columns affected by application of the boundary conditions thus lie within the
bounds of those attributable to node 25. Thus, if matrix block rows from
number 11 to number 30 are in direct access memory, the boundary condition
may be applied to these only with the result being identical to an application

to the entire matrix.

2.7 . Solution of Matrix Equation

The matrices generated by the Galerkin formulation of sections 2.4 and 2.5

are in general unsymmetric and nonpositive definite in addition to being

complex. Due to the discretization scheme described in section 2.2, they are

block tridiagonal.

The LU-decomposition of a block tridiagonal matrix is readily obtainable

(Ref. 19, pages 166 and 173). The LU-decomposition takes the form

S - -

[0.,] [C'l] [I] P') [CJ
[b,][a]][c.] [B.] [1] [<.][e.]

\

[}

N

[o ] bod o] 8.0 Fo ]
[o,]]a.] [RIE] )

hop -J ot

(56)

NG
N\



where [IJ is the identity matrix and where the two matrices on the right-
hand side of the equation are the lower D.]and upper [U] triangular factors,

respectively. The component matrices of [/_] and [U.] are given by direct
substitution as

U[’(l] = [a"]

.657)
- [pk] = [LA] [otk-,l] k=2,n ((:58);
[l = [y - [ad Lo, ] ke 2, n (59)
The system of equations
[A] {x} = {F} (60
now becomes,
[2] [u]{x} = {F}
(61)
which decomposes into two triangular systems
LIy} = iF} (62)
and
[ul {x} = {y} (63)

which may be solved in turn in the usual manner by forward and backward
substitution using the relations

3¥/
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iy} = 53
{Y“} {f:5 - [ B:] g)""}‘ v=2,n (65)
YA PN A (66)

_ X = [<] 'I( {)"} - [C"] {X,;+,}) C=n-i, 1 (67)

The process described in equations (56) through (67) may be used to solve

i

i

the global matrix equation whose derivation and assembly is described in
this report. We described in section 2. 6 however, that assembly of the
global matrix equation may be carried out efficiently by keeping only three

nodal rows of coefficients in direct access memory at any one time.

In terms of the required size of direct access memory, three nodal rows of
coefficients reduces to nine packed blocks and three block vectors (e. g., see
Figure 4). The respective orders of these matrix elements are; - |
packed blocks mﬂ X 3,?

block vectors m[ x 1

where M

number nodes in serial numbering direction

- number of parameters at a node{.‘;
NS TR S A R by en 7 o " 2
T‘ﬁThu,')S‘{ the total storage requirement for assembly is(27m£ + 3m Z) .

For solution of the matrix equation, however, an efficient minimum require-

ment is three packed blocks, three block vectors, and one expanded block,
.. 2 ! 2p2

giving a total storage of (‘im ¢ + 3m¢ + 9m [ ). The necessity for the

storage-consuming expanded block is clear from equation (58) where it may

be seen that [Pk] is a full matrix for all (k = 2,n ) .

QR
0
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Careful inspection of equations (57) through (67) shows that a number of
specialized matrix handling algorithms need to be used in order to limit the
requirement on the number of expanded blocks to one. These include the
following:

° Transposition of either a packed or expanded matrix, and
superimposing the transposed matrix upon the original storage
area.

° Multiplication of an expanded matrix by a packed matrix, and
superimposing the result over the storage area of the original
expanded matrix,

° Addition and subtraction of expanded and packed matrices, and
superimposing the result over the storage area of the original
expanded matrix.

] Multiplication of a packed matrix by a vector without expanding

the packed matrix.

Once the necessity for these algorithms is recognized, however, their
preparation is trivial. Their use in the implementation of equations (57)
through (67) together with a map of direct access storage requirements is
shown in Figure’7:,/ f
A A

o i //
2.8 Acoustic Attenuation

The principal final result of an analysis of sound propagation in an engine

duct is a value for its acoustic attenuation.

Clearly from equation (16), any evaluation of the total attenuation for sources
emitting sound over a broad frequency band, and with an arbitrary spatial
distribution of amplitude and phase over the source plane will need to be
carried out over the entire double Fourier transform implicit in this relation-

ship. This implies practically that a value of « has to be specified for
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each time harmonic¢;~and a value of M for each-angular harmonic.

Since the (u7,m) harmonics are orthogonal, acoustic intensities computed

from them independently have simply to be summed to produce total intensity.

The choice of an expression for acoustic energy is not immediately clear.
For irrotational, uniform-entropy flow (in the Z-direction), Cantrell and

21
Hart(zo) , and Morfey( ) have shown that

<Iz>' = -:—;_-Real fnu*-o—Mz,b*u +M{ pE + uu* Ec) (68)

S

where I is the axial intensity, and * denotes complex conjugate. The above
z
expressions are accurate to second order in fluctuating quantities. However,

both Cantrell and Hart, and Morfey obtained their expressions from the time-

(22)

averaged energy equation. Eversman used, as his starting point, the
exact energy equation for a nonviscous, nonheat-conducting flow and obtained

for the axial intensity:
<I,> = -‘—i-(ku.*'l' F‘u) + .g fc(uu*a- I/V*+ Wu/*) +_}_7_£* (69)
{c

where V' - radial component of acoustic velocity

W' - tangential component of acoustic velocity
Both results were programmed, with somewhat more consistent answers
being obtained from the second expression. (In some instances, use of either
expression results in a net increase in flux at the radiation plane over the

flux at the source plane.)
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In order to obtain axial acoustic flux over source F and radiation F
s T
planes, a simple linear integration scheme described in Appendix 8 was

used. Duct attenuation is thus given by

-10 Iogl _E

& (70)



3.0 DESCRIPTION OF RESULTS

3.1 Comparison of Model with Previous Analyses

Comparison of the model with previous work is complicated by the fact that
these comparisons cahn only be achieved using a small proportion of the
model's total capability. These comparisons do have the advantage, however,
of providing some confidence in the convergence characteristics and overall

accuracy of the model.

A uniform cylindrical duct of unit radial and axial dimensions with an outer
wall impedance of 5c is shown in Figure 8. Duct attenuation was calculated
at a wavenumber of unity in the absence of mean flow at a circumferential
harmonic number of zero for a series of element assemblies. ' The solutions
obtained from the model may be seen to converge on a suliton for the same

1
problem computed from the work of Zorumski‘»( 5).

In order to verify the model's accuracy over a wide range of parameters,

and to evaluate its feasibility for optimization studies, two optimization
schemes were programmed. The first was a two-variable optimization

to determine real and imaginary parts of a uniform liner admittance yield-
ing maximum acoustic attenuation. This optimization was performed at

two frequencies and the results are compared in Table I with those derived
by Lester and Posey (23) and Quinn (24). The results from the three
analyses are substantially the same. A six-variable optimization for a
three-section liner was then carried out with no sighificantly different results

from those of Quinn. These results, together with those of Quinn, are also

given in Table I.

The optimization scheme used in the two determinations above was the
Davidon Fletcher Powell technique adapted to numerical gradient compu-

tations. The fact that reasonable agreement with previous analyses was
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TABLE T

Comparison of Optimum Acoustic Liner Determinations

Duct radius = lm Duct length = 2m c = 344m/sec
Circumferential wavenumber = 1, no flow
Liner Admittance (x 1/pc) ] Duct Attenuation (dB)
HZ iﬁ:f;:its Le s1:er(2 ) Quinn(24) fr?:ll;resrilts Le ster(23) Quinn(24)
UNIFORM LINER
548, 2 .234 .42i] .21+ .45i] .25+ .38i 4.7 4.5 4.7
344. 4 .28+ .58i} .27+ .55i| .29+ .56i 7.3 7.2 7.7
[THREE-SECTION LINER |
548.2 0+ .40i . 003+ .49i
.16+ .57 .31+ .46i 6.2 7.1
.60+ . 59i 714 . 674 |
TABLE II

Comparison of Duct Attenuations in Presence of Plug Flow

Duct radius = 1m Duct length = 2m c = 344.4m/sec
- Circumferential Liner Duct
Hz Mach No. Wavenumber | Admittance . Attenuation (dB)
(x1/pc) '
Currer.lt Zorumski
Analysis
54.8 -.1 0 1.46+ 1. 31i - 20.5 ‘ 21.2
54,8 +.1 0 " 1.0+ 0i 10,6 10.3
274.1 ! 1 1.0+ 0i 14.2 16.1
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obtained is encouraging because evidently a sufficiently low '""function
noise'' was present in spite of a moderately coarse analysis of 12 x 30

elements.

A conical horn was selected to verify the program for nonuniform geometry.
A solution based on a small angle approximation at low frequencies is given
in Morse(zs). This solution assumes a spherical wave emanating from an
equivalent point source at the produced apex of the cone. The amplitude

of the pressure is thus inversely proportional to the distance from this
hypothetical source. Figure/:é/.‘ ‘shows the pressure variation with axial
distance along a radius from the hypothetical source selected arbitrarily

at 12.9° to the axis. Results from the current model (shown by a solid

line) show little deviation from results produced by Morse's analysis

(open circles).

A limited amount of published data is available for ducts containing flow
that is suitable for comparison with the current model. In the absence

(15)

of an alternative comparison, Zorumski's analysis was used. This
comparison is less than ideal in two ways. The current analysis is a
shear-flow model, that is, the mean flow is required to go to zero at

duct walls whereas Zorumski's is a plug-flow model. Further, the current

model has a p°'c termination impedance, whereas the version of Zorumski's

model used, had a zero-reflection termination boundary condition.

Reasonable comparison is demonstrated from the results presentedl in
Table II. For these analyses, plug flow was simulated as closely as
possible in the current model by a very small shear layer. Several
combinations of frequency, Mach number, circumferential harmonic
wavenumber, and liner admittance are shown in Table II. No significant

deviations were observed in computed duct attenuation.
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3.2 Illustrations of Potential of Current Model in Duct Optimization

The current model presents the opportunity to explore novel concepts in
aero-engine duct design for optimum acoustic characteristics. This
section contains illustrations of three such concepts and describes their

relative success.

3.2.1 Quadratic Liner Variation

As an alternative to a sectioned liner, a uniformly varying liner 4g
suggested. To compare directly with the three-section liner whose
results are given in Table I, a quadratic liner variation was programmed.
As a viable alternative in optimization studies to a three-section liner, a
quadratic liner poss'esses the same number of variables. Its admittance

B is given by

B(z) = a + a,z + a,2

where the a's are complex.

For the duct similar to that described in Table I, -optimization coefficients

/ {/ /
yielding an admittance function given mcf‘iéuref%O,"fvi/s derived. Duct
attenuation was 5.9 dB which compares closely with/\the value of 6.2 dB 7

obtained for the three-section liner described in Table I.

3.2.2 Optimization of a Convergent-Divergent Duct

In addition to acoustic-liner parémeters, the physical shape of the duct
itself may be optimized for maximum acoustic attenuation. ‘Suppo~$e, for
example, a constriction defined by a cosine function is imposed on the outer

;

-~ wall, - The duct radius is given:by

] .

R = {1 -q(l - cos ZTTz)} Ro
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where ¢ is the constriction parameter and R is the duct radius at z = 0.
v

Suppose further that we decide to place a lower limit on the constriction

size such that cross-sectional area at the throat should be no less than

one-half the cross-sectional area at the source plane. Thus q should be

in the range
0<q<- 15
This may be _achieved by the transformation
q=.075(1 + cos Q)

A three-variable optimization was carried out with the real and imaginary
parts of a uniform admittance as variables in addition to the duct constric-

tion parameter Q defined above.

The admittance was found to converge rapidly to the same optimum value
which was previously determined for a similar duct with no constriction
at the same frequency, and circumferential harmonic number. The
constriction parameter, as might be expected, converged to the limiting

value of
q=.15

While this exercise may seem somewhat trivial, it serves to demonstrate

the possibilities of duct optimization using the model.

3.2.3 Optimization with a Center Body

The shear layer produced, as the mean flow velocity~goes to ze ro-’ o the— -

- . 4 s . el o L
walls of an aero-engine inlet duct, causes.acoustic. enérgy to be-réfrattdd
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towards the duct axis is well known. This effect was verified using the

model and is depicted graphically in Figure 11.°

An unfortunate consequence of this effect is the decreased effectiveness
of acoustic liners placed on the outer duct walls. To use an acoustically

lined centerbody, %‘such as that shown in Figure 12, shaped so ,as' to

Yo -~

minimize its own refra(;.‘ti(')nf gh;;acitelli:sf’iigst,, ,.wouici:;gi;ﬁ:ea.r rpry‘ofita‘ble.
A three-variable optimization was carried out on a duct of this type using
a cosine centerbody function similar to the function described in the pre-
vious section for a constriction. The outer duct wall was uniform
(radius = 1 m), and the maximum radius of the centerbody was allowed
to vary between zero and . 6 of the outer wall radius. Duct length was

2 m, The other two variables in the optimization were the real and
imaginary parté of the liner admittance on the centerbody and the outer

wall.

A mean flow model based on streamlines, calculated on the assumption
of incompressible flow, was used. Free stream velocity at the source
plane was Mach .2, with a one-half sine rolloff profile. In the absence
of better information, this profile was assumed to have a constant normal-

ized shape which was independent of axial station.

At a frequency of 548. 2 Hz, the centerbody radius increased to an optimum
at its maximum constrained value of . 6 m. The corresponding liner ad-
mittance, yielding an optimum duct attenuation of 25.8 dB, was

(.62 + .38i).

This attenuation appears remarkably large when compared with the corres-
ponding values in Table I. A part:ial explanation, however, is undoubtably
that the dimension between the centerbody and outer duct wall is of the

same order as the wavelength of the first mode.
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Figure 12, Constant Cross-Sectional Area
Inlet Duct with Center Body.
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3.3 Computing Time

The finite element model described in this report was specifically designed
to operate making most efficient use of computational resources. Thus,
perhaps the most important result of the study is the degree to which

this objective is fulfilled.

Figure 13 shows typical central processor times that were achieved
from the different variations of the model. We may draw the following
conclusions from the results:
® For a particular matrix bandwidth, central processor time
is roughly proportional to the matrix order.
® Numerical integration increases total computing time by roughly
a factor of 1.3 over the algebraic form.
In comparison with NASTRAN (NASA Structural Analysis), the general
purpose structural finite element program, the current model shows a

speed improvement for similar matrices of approximately a factor of 12.
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4.0 CONCLUSIONS

The objective of this work was to develop a finite element scheme for

the acoustics of aero-engine ducts. The principal difficulty of a direct
numerical solution is containing the problem within existing computers

and attaining a solution in a reasonable amount of computing time. The
mathematical formulation, logical flow sequences, matrix manipulation
techniques and a solution scheme to attain the stated objective are described

in this report.

Testing and verifying the model is corhplicated by the fact that available
alternative analyses possess only a small portion of its total capability.
With this restriction in mind, testing of the model was carried out in such

a manner in order to compare results with several alternative analyses.
Results of the testing program are satisfactory with the model showing good

convergence characteristics over a wide range of conditions.

Specific parameters such as spatial acoustic pressure variations and duct
attenuation were compared with alternative analyses. General trends such

as refraction of acoustic energy by a mean flow shear layer were verified.

An aspect of the model likely to yield interesting information on acoustic
design of aero-engine ducts is its ability to be used in conjuction with
optimization studies where parameters such as duct shape, size and

shape of centerbodies, and multisection or continuous acoustic liners may

be varied. Illustrations of the use of the model in this context were presented

together with results showing expected and unexpected trends.
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Testing of the model in the presence of compressible mean flow has not
yet been accomplished. This capability is present in the model but requires

linking with a separate analysis to provide mean flow data.
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Appendix 1

Area Element Coordinate Transformation

e

Suppose a vector R is given in the global (z , r) system as
- A N
R= 2L+ r|
- ey -
A
dR = OR dz , IR dr = Cdz + Jdr
oz or

An element of area in the (Z P r) system is given by

(T dz) x (fo‘r) = oz dr
Within the (f ‘Z) coordinate system Z=Z ( g 7) rF= r’( f , lZ)
AR = aR BZotg __E?__AZ-:-?R)I’J?-{- R Bralz

. 32. 83 2 3 or 2§ r BZ

Component of JE in f -direction is (‘\ 3; ; ]g?) f
I\ ar,

Component of O(E in 7 -direction is [L 7 9 )0{7

An element of area olH in the {g Z) system is given by

dA = (L92+j9§')4l§ % (Lgfl v :;)47

’zz ar
= R dfdy = |T] 4§ d
R CYR et e A !
T
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. AEEendiXQZ

Definition of terms us/’e&:iin:equavtions (46) th/i'o/ugh'/(49) :

P
[+] = r.[r] + 4[F]

[p] = _M_fr.:[rq -m] +t[m1-[c-1]] + MY [c[{u}-[a;} + z[m -[KJ]]

BRI -[e]]}

l
[§] = [nr]

i[rc[[f] -[p]] + l[[J'] -[1] ’["’]]]

o

[ -

® |~

™

=

-
1}







2-3

=nl §=: | | |
J by = 5§ i) [ +1en)

LCJ i 7z NGM §=-c

wHére for example, - Rtj is the (LJJ)'th component f the 4 x4 matrix [AJ ’
P "/ - - . G ¥ ‘,/‘ ‘o " /j
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Appendix 3
Abscissae and Weight Coefficients of the

rd

Gaussian Quadrature Formula

{

00 dx

0-57735

0-77459
0-00000

0-86113
0-33998

0-90617
0°53846
0°00000

0-93246
0-66120
0-23861

0-94910
0-74153
0-40584
0.00000

0-96028
0-79666
0.52553
0-18343

0-96816

0-83603

0-61337
0-.32425
0.00000

0-97390
0-86506
0-67940

0-43339

0-14887

Z H JC(“J

J=!
+a

02691

66692
00000

63115
10435

98459
93101
00000

95142
93864
91860

79123
11855
51513
00000

98564
64774
24099
46424

02395
11073
14327
34234
00000

65285
33666
95682
53941
43389

4

n = 2
n =3
n =4
n =5
n =656
n =7
n = 8
n =9
n = 10

o O OO [eNeNeNel o O

C OO0 OO

©C O O OO

+ 00000

- 55555
- 88888

+ 34785
* 65214

+23692
©47862
-56888

+17132
-36076
-46791

- 12948
-27970
-38183
-41795

-10122
-22238
+31370
-36268

-08127
-18064
+26061
-31234
+33023

-06667
- 14945
-21908
-26926
+29552

00000

55555
88888

48451
51548

68850
87604
88888

44923
15730
39345

49661
53914
00505
91836

85362
10344
66458
37833

43883
81606
06964
70770
93550

13443
13491
63625
67193
42247



Appendix 4

Listing of Subroutinhe PINDS
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Appendix 5

Termination Boundary Condition

va—

Assume that in the radiation plane u varies slowly over an element and

that a plane wave solution holds, i.e.,

~ikz

 _ikz
k = o € (2)
where k = 2T = P9) (3)

a c+ U

The axial momentum equation (equation (6) was

S’oou+(fv+>"V)gu . TVs EI

+(§u+f'll) IU
z

Ql"\"‘ *vl

+ SUA +
22

— S

0
assuming that U

Ll od v, 2_‘1 = 0 , this reduces to
or oz
Siowu+SUow + 2 = o o
2z oz
Substituting (1) and (2) into (4) gives
fu.o(ﬂ—hu)"/’o/!
using(3) 0 = e p— = — —
e P $(0-kl) T (c+U-U)
: - | ’ -
fec (5y

Equation (5) is an admittance condition, and is the approximate boundary

condition applied at the radiation plane.



Appendix 6

Insertion of a Noise Source Boundary Condition

> Al . . 4
Consider the following system of equatiofs:. .

e

'187 §x} = {87 | A1

16, Qy X, + Q3 X, .- +AQpXp -- + apXp = b,
Aoy X) + Qa2 Xy - + QpXp -- t+ QpXp = ba

. (2)

Apy X + Opy X - T AppXp -~ + Apy Xy = élz

Apy X, + Qpy X, .o + QphXp -- T Qun Xn = by

Inserting the boundary condition

Xk = P | T13)

i

(;gi,ves
Ay X, ¥ Ay X; - + O Kp -+ AQpXy = 6'..“’&[5
A X + Ay Xy - + O Xp - 4+ Qp Xn = by - .zk/’

'
'

O-X + 0.Xy3 .- + |.Xp - + 0. Xa= p

A Xn 1 A1 Xy -- T 0. Xk - 1 AanXn = 6 "ank[b

" b4



!, Appendix 7
7-1
I Insertion of an A;drpittance,Boundary Condition

B I
-

Consider the:/following system of equations‘:’,’A - T

[a]ix} = {8}

s
Ay Ki+ Qa Xy oo +QpXp oo +AyXy . + CimXm - +0,,X, = b,
Aoy Xy + Oy Xa . T QpXp (. +QpXy - + 0 X - - +,X, = b,

\

Oy Xy + Apy Xy .. +O0ppXk - T OpXp oo + Ay Xm - +App Xn = b

oy X + QpaXa - FAp Xp - +AfXL -~ + AfmXm -~ +Oyp Xp = by

Ay Xy + Apy X2 - ‘fakak -- +App Xy -- A Xom - - +a’mnxn=6m

t
Ony Xi +Qpy Xy -- *“hkxk -~ tAre Xg -- +&pmAm .. +amnxn=5n

(1)
The boundary condition F: Va , where lB is the wall admittance and V,

is the normal component of the acoustic velocity, may be rewritten as

V= ¢ p + o u
B

Where ¢ = C oS (9)
C, = tan(a) (3)

and O is the angle between the wall and the Z-axis (see Figure Tgt,f ).

Suppose Xh =Y Xl = V X = k

4.
| then

65, (4)



Figure 7-1 Orientation of Acoustic Velocities and Boundary Wall.
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7]

g. S omEr PN i ; .
Substituting (4) in (1) gives 7.3

Ay Xy + Apa Xy o+ (Qp+Caap) Xp -t 0-Xp - - +( QU +C Q) Xpp =+ CinXp = 4,
Oay Xy + Q33 Xao - +(Beh + Co@lay) Xy - -+ 0-X¢ - - + (Cam+C1%ap) Xpme o+ Can Xa =6,
)

Gp, X, + 8, X, -- +(0.“+C,_au)xk-. +0.-X¢ --*(“AM*C:“M)X --"'aﬁnxn:‘k

0. X; + 0. Xg .. —CaXp --+Xp -- - Xy - +0.X%,=0
Oy Xy + Qs Xy o F (O + €y Om) Xy = 40X - -+ (U #C, Apg) Kpe . + A Xa= b,

Qpy X, + OnyXy - +(0nk +C20n0) Xp-- +0.X¢ - +(Bam +C,2n0) Xpm-- 10y Xo=by

Clearly, we may have chosen to eliminate either W or ’2 instead of V

in the process above. The choice of which parameter to eliminate depends on

the numerical values of €, and C.z . If in equations (3), for example, e

tended towards i , unreliable results will be obtained from equations (5).
2



Appendix 8

Linear Numerical Flux Integration

In order to complete acoustic flux it is necessary to evaluate the intensity
distribution over a plane. This may be done numerically in the following

manner (assuming (r',_-.- r',) is small) :

N
|
4+
o-
1
H

N
1
N
|
H
N

We want to evaluate
rZ.

M

F= |I(r).anr dr

Ny

R

[

(@r+b) . amrdr

b |

Il

27T( ar® érz)
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