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ABSTRACT

The state of the art of helicopter rotor impulsive noise is reviewed.

A triangulation technique for locating impulsive noise sources is developed

using once-per-rev index signals as time references. A computer program

(INSL) has been written implementing this technique. Applying triangula-

tion to the full-scale UH-1 noise data of NASA/Ames Research Center 40-

by 80-Foot Wind Tunnel, three different noise sources are found on the

rotor disk. The primary sources of thickness noise are in the second

quadrant and on the advancing side of rotor disk. Two aerodynamic

sources due to blade/vortex interaction are found in the first quadrant.
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LIST OF SYMBOLS

F

t

ao	 rotor coning angle

al	rotor longitudinal flapping coefficient
s

b	 rotor lateral flapping coefficient
is

C speed of sound in still air

Ceff
effective speed of sound

g length of shaft

R distance between source and observer

r radial distance of source from rotor hub

t observer time (t = ^ + R/C)

t1 time taken for sound traveling from source to observer

T time between acoustical signature and 	 = 0 index

TEM tunnel temperature

um free stream velocity

x,y,z source location (see Figure 1 for coordinate system)

xl,yl) zI observer location (see Figure 1)

oS angle of rotor shaft from vertical, positive shaft tilted
aft

aTpp angle of rotor tip path plane from horizontal, positive
tip path plane tilted aft

S rotor flapping angle with respect to rotor shaft plane

00 rotor flapping angle with respect to horizontal

source time

R rotor rotational velocity

azimuthal angle. 	 $ = 0 along the negative X— axis
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1. Introduction

One of the most serious problems in the development of a helicopter
a

transportation system for civilian or military requirements is the noise

generated by these vehicles due to aerodynamic mechanisms inherent in

their design. For a typical helicopter, aerodynamic noise is produced

by the main rotor, the tail rotor, and the engine. According to Cox1

(1973), the aerodynamic noise from main rotors can be classified into

two main categories: rotational (harmonic) noise and broadband noise.

The aerodynamic sources of rotational noise are mean lift and drag

force, harmonic force fluctuations, and blade thickness. The sources

of broadband noise are random force fluctuations, and wake self-noise.

A prominent and impulsive sound occurs when a helicopter operates in

certain conditions. This impulsive sound is usually called blade slap

or impulsive noise. Impulsive noise belongs to the rotational noise

category, but it is usually distinguished from rotational noise. When

impulsive noise occurs, it dominates all other noise sources.

At low tip speed, the mechanism of impulsive noise is blade-vortex

interaction. For high tip Mach numbers, the impulsive noise could be

due to one or a combination of the following mechanisms: (1) blade-
i

vortex interaction, (2) compressibility, and (3) thickness.

1.1 State of the Art on Rotor Impulsive Noise

Interactions of the blade with the vortex wake occur to varying

degree throughout the normal flight envelope of all helicopters. A

blade that passes close to a wake vortex filament experiences a rapid

J

1
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change in angle of attack. This causes a localized impulsive aerodynamic

x

	

	 loading which occurs periodically and results in sound radiation. It is

highly probable that stall and local transonic or supersonic flow occur

simultaneously in the blade-vortex interaction as indicated by Ham  (1974). 	 j '.

The primary parameters affecting blade-vortex interaction include strength

and size of the vortex filament, vertical spacing between the blade and

filament, and relative alignment of the filament with the blade.

Widnall3 (1971) has derived the expressions for the frequency

spectrum, directivity factor, total sound pressure level and waveform

of the noise radiated by blade-vortex interaction which occurs near the

middle portion of the blade. The aerodynamic modeling is limited to

subsonic flow and a two-dimensional blade. This model is suitable for

the type of blade-vortex interaction which most likely occurs for

tandom rotors. Later, Filotas 4 (1973) obtained similar results.

The blade-vortex interaction of the single rotor is most likely

to occur at blade tip region. In this case, the three-dimensional

aerodynamic model should be used. Chu and Widnall 5 (1974) developed

an unsteady three-dimensional lifting surface theory for the calcu-

lation of the unsteady airloads on the helicopter rotor blade due to

interaction with a vortex near the tip region. Currently, Widnall is

modifying this lifting surface theory to calculate the noise radiation

due to blade-vortex interaction at tip region.
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All rotors are influenced to some degree by effects of compressi-

bility, the degree being a function of the rotor tip speed, forward

speed, and airfoil characteristics. As the advancing blade of main

rotors enters the compressible flow region, the blade's outboard aero-

dynamic loading varies rapidly and results in intense sound radiation.

Arndt and Borgman6 (1970) indicated that the drag divergence and thick-

ness effect are responsible for uoise radiation, when the rotor is

operating at high advancing tip Mach numbers.

Lyon  (1971) demonstrates that when an airfoil of finite thickness

changes its forward speed relative to the fluid in an unsteady manner

(as does a rotating blade in a forward flight), impulsive noise is

generated even though the flow speed is less than sonic everywhere

(but a high tip Mach number). Lyon, Mark, and Pyle 8 (1971) conducted

a theoretical study on the rotor tip sound radiation due to lift and

thickness effects. A computational algorithm was developed for the

synthesis of tip shapes that cause minimum thickness radiation in

specific frequency bands.

Ffowcs Williams and Hawkings 9 (1969) extended the fundamental

aerodynamic sound theories of Lighthi.1110 (1952) and Curl 
11, 

(1955)

to include the effect of a surface in arbitrary motion. The Kirchhoff

description of a homogeneous sound field in terms of surface boundary

conditions was generalized to include arbitrary motion. The surface

is replaced by a discontinuity in the flow field, around which the

motion of the fluid medium is assumed to be known. From the equations
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of generalized mass and momentum, a wave equation is obtained which

includes Lighthill's equation 10 (1952) as a special case. Ffowcs

Williams and Hawkings then proceed to solve this equation in several

equivalent forms by a four-dimensional generalized function approach

(time being taken as the fourth dimension). Their formulation laid

the framework of study the sound field of a surface moving at high

speed.

Farassat, Pegg, and Hilton 12 (1975) studied the thickness noise

of helicopter rotors at high tip speed. Based on Ffowcs Williams and

Hawkings' formulation  (1969) and a collapsing sphere method, they

solved the wave equation and obtained a solution, which is not restricted

to either the compactness or the far-field assumption, for the sound

pressure in terms of blade thickness distribution. The thickness

noise was found to be directional with peak pressure in the rotor

plane towards the forward direction.

The earliest experimental data on the acoustic signature due to

blade-vortex interaction was obtained by Riedel and Schairer13 (1970)

and Surrendriah14 (1970). Widnall, Chu, and Lee 15 (1971) measured the

noise radiation due to the interaction of a blade with a straight

vortex in an open jet wind tunnel and the results compared favorably

with theoretical predictions. Bauch and Schlegel 
16 

(1971) measured

the impulsive noise in flight, and related it to blade-vorte-.r inter-

action, when the helicopter is in hovering mode. Widnall, Lee, and

Bauer 
17 (1972) studied the forward flight effect on helicopter rotor

e

1	 a^'

lit
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impulsive noise using a model rotor system in an anechoic wind tunnel.

Both waveform and spectrum changes due to forward flight effect were

studied. Charles 18 (1975) measured helicopter impulsive noise in

partial-power descent using a microphone array mounted external to the

vehicle. He indicated that shock formation and stall may be responsible

for intense slap noise. Schmitz and Boawell19 (1976) developed an

in-flight station-keeping technique to collect acoustic data. The

in-flight data agree reasonably well with 1/7-scale model data measured

in a wind tunne1 20 , To study the effects of blade tip shapes and per-

formance conditions over a wide range, full scale experiments were

conducted in the 40- by 80-Foot Wind Tunnel at NASA/Ames Research

Center. Although these noise data were taken in a hard-walled wind

tunnel, they are useful for studying impulsive noise mechanisms and

accessing the effects of design changes. The effects of reflections

are minimized because the large size of the wind tunnel results in a

large delay of the reflections. Thus, the impulsive acoustical signals

are not overlapped by reflections. This makes it possible to identify

and separate the impulsive signals and their reflections.

1.2 Acoustical Triangulation

High speed rotor impulsive noise can be due to blade-vortex inter-

action, compressibility effects or thickness effects. Depending on the

rotor operating conditions, any or all of these noise mechanisms can

generate impulsive noise. The impulsive noise generated by different

i

P

r^
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mechanisms has different characteristics, including directivity and

dependence upon rotor performance. Because of different noise direc-

tivity, the impulsive noise observed at different locatt, pns may come

from different source locations. The knowledge of the source location

on the rotor disc can help us to identify and understand the noise

mechanism. Consequently, design changes can be made to reduce rotor

noise.

Charles 
18 

(1975) developed a triangulation technique to locate

noise sources using a microphone array mounted external to a helicopter.

At least four microphone measurements are required if no assumption

on source location is made. Four microphone measurements give three

independent equations in terms of source location (x,y,z). Each equation

is obtained by the difference of arrival time of an acoustical pulse as

measured by the microphones. If the noise source was assumed to be on

rotor disc (a reasonable assumption), at least three microphone measure-

ments were required. Two equations in terms of (r,^) were then obtained

to locate the noise source, where r and 0 are the radial and azimuthal

location respectively.

There are some disadvantages of the microphone array methods:

(i) the three (or two) equations are obtained by the difference of

arrival time between microphones, and this time difference is usually

very small. A small error on microphone locations can cause a large

error in time difference, and therefore source location; (ii) four

i
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(or three) microphones must measure the acoustic radiation from the

•	 same source. There are several sources on the rotor disc which can

generate impulsive noise, and the impulsive noise is usually quite

directional. The microphones must then be arranged so close to each

other that they measure the same source. Physically, the noise source

location is determined by the intersection of three surfaces. Each

surface is determined by source-to-microphone time. When the micro-

phones are close to each other, the intersection is shallow. Conse-

qunetly, a small error on source-to-microphone time will result in a

large error in source location; and (iii) the above two disadvantages

are problems of accuracy only. Conceptually, very carefully measure-

ments can improve the accuracy, although there may be some difficulties

in practice. However, the most severe disadvantage of the microphone

array is its incapability of determining the source location of thick-

ness noise which is dominant in the acoustical field in front of a high

speed rotor. Unlike the impulsive noise due to blade-vortex interaction

or compressibility effect (drag divergence), thickness noise is the

result of accumulated acoustic waves which are generated from different

portions of rotor but reach a microphone at the same time. The thick-

ness noise measured at different locations are generated from different

regions on the disc. The method of the microphone array only works

when each microphone is measuring the acoustical signatures coming

from the same source. Therefore, the microphone array cannot be

applied to thickness noise..

I

1 i
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To avoid the disadvantages mentioned above, a triangulation meth,„'

of using a 1/rev "blip” was developed. The 1/rev "blip" serves as a

timing mark. It is generated when a rotor blade is at a specified

azimuth (usually directly downstream). The time for an acoustical

pulse to reach a microphone is measured relative to the 1/rev "blip."

The rotor blade azimuthal location where an acoustical wave is gen-

erated can then be determined relative to the 1/rev blip. Two micro-

phones (with the assumption of source being on rotor disc) are all,we

need. Each microphone determines a source line on rotor disc, and the

intersection of two source lines is the source location. For thickness

noise, only one microphone is required. This microphone will determine

a source line on which the noise source lies. Physically, this source

line is the intersecting loci of the rotor blade and a "collapsing

sphere" which is determined by S - t + r/c = 0, where 4, t are source

time and observer time, respectively. r is the distance between source

and observer, and c is the speed of sound. Acoustical waves, which are

generated along the source "line at different times due to blade thick-

ness effect, will reach the observer at the same time.

The triangulation technique presented in this report was developed

for rotor noise measured in the wind tunnel. The effects of tunnel air

speed and temperature are taken into account. Both rotor shaft tilt and

blade flapping are included in the mathematical formulation. A computer

program has been written for numerical calculation. The triangulation

technique is applied herein to rotor noise data measured in the 40- by

80-Foot Wind Tunnel, NASA Ames Research Center.
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2. Impulsive Noise Triangulation Techniques

2.1 Formulation of Triangulation Equation

Figure 1 shows the coordinate system used in the development of

triangulation technique. X-axis is pointing upstream direction of wind

tunnel. Y-axis is pointing rotor advancing side. Z-axis is pointing

vertically down. The rotor hub is at point A. Points S and P are

source location and microphone location, respectively. The source S

is assumed to be on the rotor blade.

The flapping angle 0 with respeut to rotor shaft plane (plane

normal to rotor shaft) is

0 = a0 - a1S cos W - b1S sin $
	

(1)

where
a0 is the coning angle

a1S is the longitudinal flapping (cos) coefficient

bls is the lateral flapping (sin) coefficient

^ = 0 along the negative X-axis

The angle 0 0 between horizontal plane and blade is

00 = S - as cos	 (2)

Substituting eq (1) into eq (2), we have

SO = ao - (a1S + a
S) cos	 - blS sin W	 (3)

•	 = a0 - aTPP cos - b1S sin

i

I;.
1

rr?
ya
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From Figure 1(a), we have

OS = OA + AS

f
Oa = (-g sin a 5 , 0, -g cos ay)

AS = (-r cos $ cos 60 , r sin y cos 00 , -r sin SO)

Therefore,

OS = (-g sin a  - r cos	 cos 00 , r sin cos 00,

-g cos a5 - r sin SO)	 (4)

where (r,^) is the source location.

r is the radial distance from rotor hub

g is the length of shaft from tilt pivot

point to rotor hub

We also have

OS = (x. Y, z )	 (5)	 j
t

Combining eq (4) and eq (5), we have

x = -g sin aS - r cos *Cos SO
I

Y = r sin	 cos 60	 (6)	
i

z = -g cos a  - r sin 0

3

3

Ij:

r^
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The component of tunnel velocity U. in the direction of sound

propagation SP is

Um	SP/ I SP I = U (x1 - x)/I SP I	 (7)

The effective sound speed (Ceff) in the direction of SP is, therefore,

Ceff - C - U^ (x1 - x)/ISPI	 (8)

The time t1 taken by the acoustical wave travelling from source S

to observer P is

t1 = ISP I /Ceff	 (9)

The time T between the = 0 index and the acoustical waves arriving

at microphone P is

T = I + tl	 (10)

where S2 is the rotor rotational speed.

Substituting eq (8) and eq (9) into eq (10), we have

T = +	 SP12	 (11)
f

C 
I SP I + Um (x - xl)

Since

3a
I

I SP I 2 = (x - x1) 2 + (y - y1) 2 + (z - z1) 2 ,

L	 ''.

n   
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Substituting eq (6) into the above equation, we have

SP 2 = r2 + 2r A(*) + E
	

(12)

where

A(^) = (-y 1 sin * + g sin a  cos 4j + x  cos ^) cos 00

+ (g cos as + z1) sin S O	 (12a)

E = x12 + y12 + z12 + g (g + 2x1 sin a  + 2z 1 cos aS)

(12b)

Using eq (6), we have

x - xl =r B(^) +F
	

(13)

where

(13a)

(13b)

B(^) = -cos 00 cos

F = -g sin a s - x 

substituting eq (12) and eq (13) into eq (11) we have

T = i +	
r2+2r A (y) +E

w	 C j r2 + 2r A (^) + E] ;, + Um [F + rB(^)]

The speed of sound can be approximated by

C = 331.6 - .6073 X (TEM), C in m/sec, TEM in 0 
or

C = 1052 + 1.143 X (TEM), C in ft/sec, TM in of

where TEM is the tunnel temperature.

(14)

(15)

;g

^d

C
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Equation (14) is the equation used in triangulation.

T can be obtained from one microphone measurement.

Coordinate (x1, yl , zl) is the microphone location, 
a1S , b1S' aS' g'

TIM, and n all can be measured.

Equation (14) is a function of (r, ^). Two simultaneous equations

are required to solve source location (r, *). In other words, each micro-

phone measurement establishes an equation (14), which represents a line

on the rotor disc. This line is the intersection loci of a "collapsing

sphere" (not a real sphere because of tunnel wind effect) and the blade

as mentioned before. For thickness noise sources, this line represents

the source region. For noise due to blade-vortex interaction or compres-

sibility effects, the intersection point (region) of two such lines is

the source location.

2.2 Numerical Procedures

For numeri^al calculations, eq (14) can be reduced to a fourth

order algebraic equation in r with coefficients in terms of $ and other

measurable parameters.

r4 + A3 (*)r
3 + A2 ($)r

2 + A1 (^)r + Ao( 10 = o
	

(16)

where

Ao(!) = LE - (T - 1) U. F1 2 - E (T - _t)2 C2

Al ($) = 212A - (Tl - ^ Um B] jE - (T - ^) Um F]

-2A (T - n)2 C2



For each given ^, the four roots of r can be obtained by solving

eg (16). Only real roots whose magnitude is within the span of blade

are physically possible. Repeating for different ^, the source line

can be established.

Figure 2 shows a block diagram of the computational algorithm.

A standard library subroutine was used in solving for the roots of

eq (16). Variable step size of ^ is used to save computation time.

The computer program (named INSL), which is written for a CDC 7600,

is developed for the calculation of impulsive noise source and docu-

mented separately.

2.3 Sensitivity to Experimental Errors

The uncertainty of source location due to the fluctuation of rotor

RPM and tunnel speed and other measurement errors are studied by perturbing

the inputs to the computer program INSL. A typical rotor noise time

history with its corresponding 1/rev blip is shown in Figure 3. The

microphone is located straight ahead of the rotor with coordinates in

meters (20.90, 0, -2.46). The noise source location changes due to

perturbations on microphone location (x,y,z) are shown in Figure 4.

0.15m perturbations in three directions are made. The source lines

are almost coincident for the 0.15m change in y or z direction. It

i`

i
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is relatively sensitive in x (i.e., streamwise) direction as shown in

Figure 4. Figure 5 shows the effect of time (T) between 1/rev and micro-

phone measurement. Time (T) is increased by .0010 sec. and aecreased by

.0020 sec. These correspond to the typical 0.003 sec. width of the

acoustical pulse (see Figure 3). The error of .0010 sec. in T can

also be translated into 2 0 error in 1/rev blip for a rotor of 330 rpm.

Typical tunnel data have a much smaller error. Figure 6 shows the

effects of errors in shaft angle, tip path plane, rotor rpm, tunnel

speed and temperature. One-degree errors in shaft angle and tip path

plane do not significantly change the calculated source location. The

effects of 2% variations in rotor rpm and tunnel speed are as shown.

Source location is effected more by rotor rpm than tunnel speed. The

temperature also affects the calculated source location because the

speed of sound changes with temperature. The increase of 15 0F on

tunnel temperature has less effect than the 2% increase in rotor rpm.

Based on the above study, we can list the parameters in the order

of sensitivity as time (T) between 1/rev and acoustical pulse, rotor

rpm, tunnel temperature, and tunnel speed. The tip path plane angle

and shaft angle are least sensitive. The apparent source location is

much more sensitive to streamwise position of the microphone than to

lateral or vertical positions. Thus, for ordinary rotor tests, the

experimental errors induce rather small amounts of error in noise source

location.

9
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3. Applications to Full Scale Noise Data

The triangulation technique developed in Chapter 2 will now be

used to find the helicopter rotor impulsive noise source locations,

based on the full scale data previously mentioned. Based on infor-
	 r

mation of the source locations and rotor performance conditions, the

impulsive noise mechanisms are then discussed.

3.1 Rotor Noise Data Taken by NASA/Ames

A complete set of full scale helicopter noise data were obtained

by the rotor group at the Large-Scale Aerodynamics Branch, NASA Ames

Research Center. A two-bladed UH-1 rotor of 48-Foot diameter was used

in the experiment. It is a teetering rotor system with cyclic pitch,

collective pitch and shaft tilt. Four sets of blades were tested, each

set having a different tip shape. Tip shapes include thin tip, vortex

diffuser tip, single swept tip and double swept tip. Detailed con-

figurations are shown in Figure 7. The basic chord of each blade is

.5334m. It should be noted that thickness distributions in the tip

regions vary for the different planforms.

Six B&K microphones (five 'inch and one 1-inch) with noise cones

were used in the measurements. The microphone locations are shown in

Figure 8, and the coordinates of the microphones are listed in Table 1.

The microphone data and 1/rev azimuth blip index were recorded

simultaneously on a 14-track Ampex 1300A analog magnetic tape recorder.

The tape speed was 30 ips, and the center frequency (FM) was 108 kHz.

1.

}
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The frequency response is up to 20 kHz. The acoustical data were

also digitally processed and filtered for the frequency passband of

75 Hz to 500 Hz. The digital filtering makes use of Chebyshev filters

to obtain phase free and distortionless data. Figure 9 shows the com-

parison of raw and filtered rotor acoustical time history. The impul-

sive noise waveform of the filtered data is the same as that of the

raw data (for triangulation purposes), but the filtered wave form is

morn readily identified. The bandpass filtering process eliminated

tunnel background noise and the low frequency rotational noise due to

mean thrust and drag at the low frequency end, as well as rotor broad-

band noise and some tunnel noise at the high frequency end.

3.2 Noise Source Locations and Noise Mechanisms

The following operating conditions are under study:

CT/o a .08, V = .3, Mt 90 = •95, 0 = 34.56 rad/sec and

U. = 74.59 m/sec.

The acoustical time histories as measured by different microphones

are shown in Figures 10 through 13. The microphone numbers are those

referred to in Figure 8. The measurements of mic 1 and mic 5 have not

been shown because they are similar to those of mic 2 shown in Figure 11.

The data of thin tip, single swept tip, double swept tip, and vortex

diffuser tip rotors are presented in each figure. The general wave-

forms are characterized by two pulses per revolution. The arrow on

each figure indicates the acoustical pulse which is generated by the

i;

i
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advancing blade. The small pulses between two large pulses are believed

to be the reflections from wind tunnel surfaces or other unrelated

noise. Due to the large distance between rotor and surrounding sur-

faces, the incident pulses can be identified readily. The 1/rev blips

which are generated at $ = 0 are shown in each figure.

Note that the acoustical pulse as measured at mic 3 is a negative

pulse, followed by a sharp increasing of acoustical pressure. The

waveforms are similar for different blade tips. The occuring time is

independent of tip shapes. These saw tooth—like waveforms were also

observed in the in—flight experiment 19 . In contrast to these results,

positive pulses are measured by Microphones 2, 4, and 6. The waveforms

of these positive pulses are quite different for different sets of

blades, in addition to the different occuring times. Based on these

observations, one may suspect that the acoustical sources measured by

mic 3 are different from those by mics 2, 4 and 6. The waveform measured

at mic 2 are very similar to that at mic 6, although with different

amplitude. This indicates mic 2 and mic 6 may be measuring the acoustical

pulse generated from one source. The detail waveform of mic 4 measure-

ment is different from those of mics 2 and 6, but with the same general

characteristics. These indicate that mic 4 measures the same mechanism

as in mics 2 and 6, but at different locations. The triangulation

results support these observations.

r.
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Figure 14 shows the results of the triangulation calculations.

Six curves are shown, corresponding to the peaks of the acoustical

pulses measured by six microphones. Each one, therefore, corresponds

to a possible acoustical source line.

The source lines of mic 1, 3 and 5 are located in the second

quadrant. The impulsive noise measured at mics 1, 3 and 5 are believed

to be thickness noise. The reasons are: (1) the pressure pulse is

negative; (2) the source lines are located in the second quadrant;

(3) the source lines do not intersect each other; (4) the amplitude of

pulse is independent of CT/a. Thickness noise is due to the accumula-

tion of acoustical pressures which are generated from different portions

of rotor disc but reach the observer at the same time. This is purely

an acoustic effect. They will not intersect each other. Another

possibility for source lines not crossing each other is where different

microphones measure different sources. Since the microphones are so

close to each other, it is virtually impossible to have aerodynamic

sources of such a narrow acoustical, directivity. Thus, these pulses

are probably thickness noise. Thickness noise is highly dependent on

local Mach number. Only the outer portion of the blade (typically 25%)

are generating significant thickness noise as indicated in ref. (21).

Since the acoustical pulses have a finite width, their corres-

ponding sources are actually regions instead of lines. Figure 15 shows

the source regions of thickness noise. The source regions of mic 1 and

mic 3 are in the second quadrant. The source region of mic 5 is on the

advancing side of the rotor disk.

r

J

^ f



23

The source lines of mic 2 and mic 6 in Figure 14 intersect each

other at ^ - 540 . This indicates an aerodynamic source at this region.

The noise mechanism is due to blade-vortex interaction. Referring to

Figure 16, the geometry of a rotor rigid wake indicates the advancing

blade intersects with preceding vortex near ^ = 58°. This is very close

to the result of triangulation, considering the crude rigid wake model.

The source line of mic 4 extends from = 24
0
 to $ 35°. Figure 16

shows the blade interacts with its own vortex of one revolution old, at

$ = 45°. This discrepancy between triangulation and rigid wake geometry

is believed due to wake.distortion. Recently, a Laser Velocimeter (LV)

measurement of rotor wake 
22 

has been done in WASA Ames Research Center.

Results show the tip vortex geometry is very close to rigid wake before

the influence of next blade. However, the vortex wake is distorted

considerably by the passing blade. Rigid wake geometry is no longer

valid. The triangulation does indicate a large distortion of vortex

wake.

The details of the noise production by the source at = 35° and

540 are quite different, although both are due to blade--vortex

interaction. The one at ^ = 35 0 is of two-dimensional type interaction,

because it can be modeled as a wing of infinite span translating through

the still air and interacting with an infinite vortex filament 3,15

The magnitude and spanwise distribution of the blade loading is steady

(frozen). The effective traveling Mach Number (Me) of the blade does

not exceed one, but the convective Mach Number (Mc) of the loading

,r
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through the fluid can be greater than one. Derived in reference (3),

Mc = lie/sin A where A is the angle between blade and vortex filament.

The convective Mach number Mc can be easily greater than one when A

is small. The basic mechanism for the generation of impulsive is due

to the convection of a frozen force distribution through the air with

a supersonic Mach number. A large portion of the bl^ate s pan is involved

in the noise generation.

The noise source at = 54 0 is due to a three dimensional phenom-

enon which occurs near the blade tip. The, blade Mach number (Me) is

high, but the interaction angle is also quite large so that the loading

convection is subsonic. It is not an efficient noise generator for a

"steady" loading convecting at a subsonic speed. Since the blade—

vortex interaction begins at the tip region, both the lift magnitude

and its spanwise distribution vary significantly with time. It is

this "unsteadiness" which generates the impulsive noise.

^i
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4.	 Conclusions

Based on full scale rotor noise data measured at NASA Ames Research

Center, triangulation results show there exist at least three different

noise sources. The sources of thickness noise which are purely due to

acoustical effects are found to be located in the second quadrant and

advancing side of rotor disk. Two aerodynamic sources are found in the

first quadrant. One is due to a blade interacting with the vortex of

the preceding blade. The other source is due to a blade interacting

with its own vortex from the previous revolution.

The triangulation technique developed in this program is very

useful in locating the impulsive noise source and consequently under-

standing noise mechanisms. This technique is rather insensitive to

experimental errors of standard rotor tests. It gives accurate results

and can be used for studying thickness noise. A once-per-rev blip is

used as a time reference. This is different from other triangulation

techniques which use the time difference between microphones.

The next step would be to develop an on-line triangulation _ncluding

acoustical data acquisition, processing and analysis. This can be done

by -utilizing the existing DAS data system at NASA Ames Research Center.

The on-line triangulation has several advantages. Any acoustical

effects due to the change of rotor design or operating conditions can

be discovered while the experiments are taking place. Any change of

test plans can be decided quickly, based on these results. Flow measure-

ments, such as with an IV can then be restricted `o the known source

r'
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region. A lot of manpower, tunnel time and cost can thus be saved

by implementing an online triangulation technique such as described

above.

f
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Table 1	 The Coordinates of Microphones
(refer'to Figure 1 for coordinate
system)

Mic No. X Y 2

(See Figure 8) (ft)	 ,(m) (ft) (m) (ft) (m)

1 68.24	 20:80 -20 6.096 8.06 2.457

2 6.99	 2.131 5 1.524 1.25 .3810

3 68.58	 20.90 0 0 8.07 2.460

4 -13.84	 -4.215 10.92 3.328 -1.08 .3292

5 68.83	 20.98 20 6.096 8.08 2.463

6 12.41	 3.783 12.83 3.911 +7 2.134
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