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SHOCK TUBE MEASUREMENTS OF
THE OPTICAL ABSORPTION OF TRIATOMIC CARBON, C3

Jdim J. Jones
SUMMARY

The spectral absorption of C3 has been measured in a shock tube using
a test gas mixture of acetylene diluted with argon. The absorption of a
pulsed xenon light Source was measured by means of eight photomultiplier
channels to a spectrograph and an accompanying drum camera. The postshock
test gas temperature and pressure were varied over the range 3300-4300 K and
0.36 to 2.13 atmospheres, respectively.

The results showed appreciable absorption from C3 for the wavelength
range 300 to 540 nanometers. The computed electronic oscillator strength
varied from 0.12 to 0.06 as a function of temperature. Uncertainties in the
thermodynamic functions for C3, which are needed to compute number density,
are believed to be the principal problem in determining the true value of the
oscillator strength.



INTRODUCTION

Entry into the atmospheres of the outer planets is accompanied by large
radiative heating of the probe forebody. To some degree, this thermal
radiation is blocked {absorbed) by the cooler gases being evolved from the
ablative heat shield. TFor example, reference 1 shows that the ablation gases
emitted from a phenolic carbon heat shield absorb about half the incident
radiant energy for an entry into the atmosphere of the planet Jupiter.
Although the calculation method used in reference 1 is the best available
estimate of the absorption effects of the ablator gases, its accuracy is
hampered by the limited knowledge of the absorption properties of the various
gas species present. Under the assumption of thermochemical equilibrium,
the calculations predict that a significant fraction of the ablator gas will
be composed ¢f such molecules as C3, C4, C5, CoH, and C3H, for which little
or no information is available as to spectral absorption properties.

The present study examines the absorption of triatomic carbon C3 in
the spectral range 260 to 560 nanometers. Reference 1 indicates that C3 s
the dominant species near the ablator wall, with a mole fraction exceeding
0.5 for some cases. Thus, an accurate determination of its spectral absorp-
tion cross section wiil greatly benefit the radiant transfer calculations.

The most prominent spectral feature of C3 1is a continuum-band system
in the vicinity of 400 nanometers. Frequently referred to as the 4050 R
Bands {ref. 2), and first observed in cometary spectra, this line group
has been shown (ref. 3) to be due to a ground-state connected electronic
transition in the €3 molecule. Only a few lines are observed at
cryogenic temperatures {e.g.,refs. 4-7), but at elevated temperature, a
strong apparent continuum dominates this spectral region (ref. 2). This
apparent continuum was shown by Brewer and Engelke (ref. 8) to be due
to the same bound states as the observed lines and, therefore, not a true
continuum but a "pseudocontinuum” of very closely spaced rotational Tines
of the electronic transition. Reference 8 includes an absorption measure-
ment in saturated carbon vapor at a temperature of 3200 K. In reference 9,
these data were converted to spectral cross section using the estimate of
C3 number density given in reference 8. This appears to be the only
quantitative data on C3 absorption at high ternerature that is available
in the open literature.

In the present study, the species C3 was produced by shock heating a
CoHz - argon test gas mixture in a shock tube. The calculated temperature
behind the incident shock wave, based on shock velocity measurements, ranged
from about 3300 to 4300 K. The postshock pressure varied from 0.36 to
2.13 atmospheres. The postshock test gas was viewed in absorption using
a high-pressure xenon pulsed 1ight source. The number density was calculated
using the measured shock velocity and assuming thermochemical equilibrium.
From the measured absorption and calculated number density, the spectral
absorption cross secticn was calculated for the spectral range 260 to 560
nanometers. The present paper presents the basic data, while analysis of
the significance of the data will be left to subsequent publications.

U —
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SYMBOLS
coefficients in curve fit of absorption cross section
versus temperature (eq. (8))
velocity of light
film density
film exposure
charge of an electron

time-dependent emission of the test gas as measured by a
spectrograph channel photomultiplier tube

time-dependent absorption defined by equation (1)

absorption parameter corrected for gas emission, as defined
by equation (2)

electronic oscillator strength
unattenuated Tight intensity

light intensity after passing through test gas with path
length s

extinction coefficient at wavelength A or wave number w
hass of electron

number density

pressure

time-dependent photomultiplier signal

optical path Tength through test gas

temperature

test gas temperature behind incident shock wave

time

incident shock wave velocity

distance aleng shock tube measured from diaphragm
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y slope of linear portion of film sensitivity curve
(eq. (3))
AHfEQB heat of formation at one atmosphere pressure and 298 K
A wavelength
W wave number
Subscripts:
0 prerun condition for light signal
1 condition before shock arrivail
2 condition behind incident shock

EXPERIMENTAL APPARATUS
Shock Tube

The shock tube used in the present investigation is the same facility
described in reference 10. It is an all stainless steel tube 15.2 cm in
internal diameter with a driven tube approximately 15.4 meters long. The
electric arc electrode assembly was removed from the driver ciiamber and a
driver extension section was added to make a driver chamber Tength of
2.44 meters. The boundary layer splitter plate assembly in the test section
was not used, since in the present study, the postshock flow Mach numbers
were Tess than 2 and preliminary tests indicated the splitter plate
assembly sometimes choked the flow. Thus, the test section windows were
mounted flush with the tube walls.

Helium was used as the driver gas for all runs. After preliminary
evacuation, helium was injected into the driver chamber until the diaphragm
ruptured. Diaphragms were stainless steel with the conventional grooves
machined in a cross pattern to cause the diaphragm to open in the usual
four-petal configuration.

The driven_chamber was initially evacuated to a pressure of approxi-
mately 0.03 N/m2 using a diffusion pump and l1iquid-nitrogen cooled trap.
The test gas was injected into the chamber approximately 3 to 5 minutes
prior to the run. The increase in_chamber pressure due to outgassing and
leakage was approxim%te1y 0.07 N/m2 per minute. Since the initial test gas
pressure was 700 N/m= or greater, the ratio of air and water vapor to test
gas was believed to be 6 x 10-% or less for all runs.



Optical Instrumentation

A schematic drawing of the optical arrangement and shock tube is shown
in figure 1. The 1ight source was a high pressure xenon lamp which was
pulsed by the discharge of a capacitor-inductor transmission line to produce
a nearly constant light intensity for about 1 millisecond. This pulse was
initiated by the passage of the shock wave at a station upstream of the test
section, so that the Tight pulse was initiated 200 to 300 microseconds prior
to the arr1va1 of the shock wave at the window Tocation. Quartz lenses
were used to form an image of the lamp on a small orifice 1.8 mm in diameter
and then to form a collimated beam using the image at the orifice as the
apparent source. Another lens focused this beam on the spectrograph
entrance s1it. Field stops 1 cm in diameter were used at the window loca-
tions and along the collimated beam path to reduce stray 1ight and define
the geometry of the optical path.

The spectrograph used was a Czerny -Turner mount with a nominal aperture
of ¥/6.3. Internal masks were used to insure the spectrograph was filled
with Tight. These masks limited the spectrograph to approximately f/8.

The spectrograph was modified by inserting a front-surface mirror into the
beam from the camera mirror to the focal plane. This mirrur reflected
approximately 80 percent of the Tight into a rotating-mirror camera which
had been adapted to the spectrograph. The remaining 20 percent of the Tight
passed over the top of the mirror and fell on the focal plane. A group of
eight Tight pipes was mounted with their entrance faces at the focal plane.
Each Tight pipe led to a photomultiplier tube. When used in the ultraviolet,
the entrance faces of the Tight pipes were coated with sodium salicyclate.
The effective width of the light pipes ranged from 1.1 to 1.9 mm. There-
fore, the effective band pass was 4.3 to 7.7 nanometers and 2.1 to 3.8
nanometers for the two gratings used in the investigations. The gratings
used were a 300 line/mm grating blazed at 500 nanometers and a 600 line/mm
grating blazed at 300 nm. The approximate values of linear dispersion at
the focal plane were 41.0 and 20.2 nanometers/cm, respectively.

The photomultipliers were used with load resistors that 1imited output
current to less than 1 milliamp. The linearity of each photomultiplier
tube was checked using neutral density filters. An example of the Tinearity
check is shown on figure 2 for one channel. On each channel, ballast
capacitors paralleled each of the Tast two resistors of the dynode chain
S0 gsdto maintain nearly constant dynode voltages for extended signal
periods,

The drum camera was a commercially manufactured device which was
modified to adapt to the spectrograph. It used an air driven turbine to
turn the drum 318 = 5 revolutions/sec. The length of film (internal circum-
ference of the drum) was 31.88 cm and, therefore,the film speed was 10.1 *
0.1 cm/millisecond. Since the effective slit height at the film was approxi-
mately 1.5 millimeters, the time resolution on the film was no better than
15 microseconds.



Velocity-Pressure Instrumentation

The distances from the primary diaphragm to the centers of the instru-
mentation ports are shown in table I. A thin-film resistance thermometer
was installed in station 1 to detect the passage of the shock wave. The
output signal from this gage was used to initiate both the system of time-
interval meters which measured the shock transit times and the time-delay
generators which triggered the oscilloscopes.

The remaining instrumentation ports had either thin-film gages, light
pipes leading to photomultipliers, or quartz pressure transducers mounted
as indicated in table I. The thin-film gages were used because they gave
Tow-noise, rapid-rising signals which were easily amplified for use as
trigger signals. The photomultipliers merely gave a qualitative indication
of the approximate test time. The pressure transducers showed the steadiness
of the test gas slug. Exampies of the oscillograms from a photomultipiier
and a pressure transducer are shown in figure 3.

The shock velocity was determined from the measurements of time-interval
meters. The amplified signal from the instrumentation mounted at each station
was used to stop a time-interval meter. The start gate for all the time
interval meters was provided by the station 1 thin-film gage. An example of
the calculated average velocity between successive stations is shown in
figure 4. The shock attenuation was typically about 18 m/sec/m. The
velocity which was used to reduce the data was the average velocity from
station 7 to station i2. This interval was selected to be indicative of the
average speed of the shock which processed the test gas, and a sufficiently
long time period to minimize the error in measuring the transit time of the
shock wave,

Test Gas

The test gas was purchased already mixed, and certified by the supplier
to be 2.99-percent CpH2, 97.0l-percent argon by volume. Twice during the
test program, a sample of the test gas was analyzed by gas chromatograph to
insure the mixture remained uniform. A few runs were made as a check using
a 1.97-percent C2H2, 98.03-percent argon mixture.

Test Procedure

As gentioned previously, the driven chamber was evacuated to about
0.03 N/m© prior to each run. The driver chamber was evacuated to about

1.5 N/m2 using a mechanical pump only. It was found that if the lamp had
not been fired for several hours, it was necessary to fire it several times
in order to insure reproducible light pulses. When the lamp had been fired
sufficiently to insure good repeatability, a prerun shot was recorded from
the eight photomultipliers connected to the spectrograph 1ight pipes. These
records were regarded as the unabsorbed intensity as a function of time for
each channel. The capacitor bank which fired the lamp was charged to

355 volts, as read on a digital voitmeter, for the prerun record.
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After injecting the test gas into the driven tube, the lamp supply
capacitors were charged to approximately 365 volts. Since the charge
slowly leaked off the capacitors, the succeeding run operation steps were
paced in an attempt to synchronize the diaphragm rupture with a capacitor
voltmeter reading of 355 volts. This result was accomplished within 2 volts
for nearly all runs.

Following each run, the windows were cleaned since postrun lamp firings
showed the intensity was reduced by 10 percent or so due to deposits on
the windows. The entire shock tube interior was cleaned periodically
(approximately every 20 runs) using trichloroethane as a solvent.

DATA REDUCTION PROCEDURES
Spectrograph Channels

A sample record from a spectrograph channel is shown in figure 5,
Figure 5(a) shows the prerun record of the light pulse and figure 5(b) shows
the oscillogram taken during the run. The arrival of the shock wave is
clearly indicated by the sudden drop in photomultiplier signal leval.

Figure 5(c) shows the record after being digitized, along with the prerun
record for the same channel. Figure 5(d) presents the fraction of light
absorbed

Splt) - S(t)
Solt)
where S(t) and S,(t) are the time-varying values of the photomultiplier

signal for the run and prerun, respectively. For these traces, time equal
to zero corresponds to the start of the Tight pulse.

F(t) = (1)

The parameter F(t) was plotted for each channel of each run using a
programable calculator with the digitized oscillograms as input data.
Typically, the value of F(t) increased moderately with time after shock
passage, most likely because of the growing wall boundary layer. Many runs
showed the parameter F(t) took 40 microseconds or so to reach a plateau
value, suggesting the chémical relaxation rate took approximately this long
to adjust to the postshock condition. The value of the parameter F(t)
was read after it first reached a plateau and this value was used in
determining the absorption coefficient for the present data.

The Tight received into the spectrograph included the emistvion from the
gas as well as the (partially absorbed) emission from the lamp. In order
to determine the contribution from gas emission, runs were made with the
lamp turned off. For some runs, a 1ight chopper was employed so that the
absorption and emission could be determined on the same run. The field
stops in the Tight path attempted to insure that the volume of gas contribut-
ing to the emission was essentially the same as that for which the
absorption was determined.



The emitted 1ight was expressed as a fraction of the prerun lamp
signal S, and this quantity was used to correct the absorpt1on parameter
F(t). Denoting the corrected absorption as F'(t) and the emission as e(t)

Fl(t) - Sot - é:t:; - E(t)) - F(t) 4 S{Zt(‘{:,t') (2)

For most run conditions, the emission term was immeasurably small. For the

. elt
highest temperature runs, the emission term grew as large as 'g“%g% = 0.1

and represented a correction to the value of F(t) of the order of
30 percent. A few runs were made in pure argon test gas to insure that the
emission and absorption from the carrier were negliigible.

Drum Camera Film

A sample of the fiim obtained from the drum camera is shown in
figure 6(a). The prominent features of the absorption are an apparent
continuum and a few bands. All the bands that were observed over the entire
wavelength range of the study belong either to C2 or the Violet System of
CN. This latter system is so strong that only a small contamination of air
in the test gas mixture causes it to appear.

Figure 6(b) shows a microdensitometer tracing of the film for the same
run as that of figure 6{(a). Two traces are shown, one taken at a time
just before shock arrival and the other taken about 100 microseconds after
shock arrival. The difference between the traces is a measure of the
absorption.

The film yields so much more spectral detail than the Tight pipe
channels that an attempt was made to use the densitometer traces quantita-
tively. The following procedure discusses how this was done. It must be
emphasized, however, that very 1ittle confidence can be attached to the
quant1tat1ve film density results, because of the many pitfalls associated
with using film guantitatively, and the approx1mate procedure used in the
present study.

Twice during the investigation, sensitometer samples were made on film
sampies and these were developed in the same manner as the test films. The
sensitometer samples were then run on the microdensitometer and a plot of
the films' specular density versus the logarithm of the exposure was
constructed as shown in figure 7. The Tinear portion of this curve showed
a slope of approximately Y = 0.9. The film density D was thus assumed
to be related to exposure by

Dy - Dp = Ylogyy(E;) - Togyqo(E,)] | (3)



where the subscripts 1 and 2 indicate times just before and just after
shock arrival, respectively. Since exposure is defined as the product of
the light intensity and time, equation (3) may be rewritten

_B_ = Ilt = 10(01'02)/Y (4)

Eo Iot

Since the exposure time is the same for each element on the test film,
equation {4) yields the ratio of light intensity before shock arrival to
that after the shock as a function of density difference on film. This
ratio was then used to determine the wavelength dependent extinction
coefficient, Ky. As noted previously, the values of extinction coefficient
determined from the film must be viewed with great caution. However, as
will be shown subsequently, they show quite good repeatability and are in
essential agreement with the data obtained from the Tight pipe-
photomultiplier channels. The two most daring assumptions in the procedure
just described appear to be:

1. The determination of the sTope Y was made using the sensitometer's
xenon flash lamp and this "white" 1ight data was then assumed to apply for
all wavelengths throughout the spectral range of the investigation, and for
all film exposures, even though at Tow film density, the slope was distinctly
Tower.

2. The same calibration data were assumed to apply for all runs, thus
ignoring any differences in film development from run to run,

Absorption Cross Section
the extinction coefficient is defined by the relation
dl = -KA(S)IdS ' (5)

(see ref. 11 for a review of fundamentals in absorbing media). If the
absorbing medium has uniform absorbing and scattering properties along the
length of the light path s, equation (5) may be integrated from o to s

to yield
I
Ky = (lnff>/s (6)

Here, I and Ig denote, respectively, the intensity as the light beam
enters and leaves the absorbing medium of length, s.

In the present study, scattering effects were ignored and the absorption
coefficient was assumed identical to the extinction coefficient. Solid state
particles, if present, would be expected to be a significant scattering
agent. For this reason, the present test conditions avoid the lower temper-
ature range where solid carbon particles might be expected to be present.
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The data are presented as an absorption cross section

o 7 WK';\‘ (7)
C
3
The number density Ng, was obtained by means of the Aerotherm Chemical
Equilibrium (ACE) compater program of reference 12, For the data presented
in the tables, the density is based on a heat of formation of C,, AHF§98 =
196 kilocalories per mode. This value is not very firmly estab]?shed,
although a number of investigators have addressed the subject. Reference 13
reviews the various attempts up to 1969 to determine the heat of formation
of C3. 1In presenting the present data, sufficient information is given in
the tables to permit the recalculation of C3 number density using a
different value of the heat of formation.

Using the value AHf5,, = 196 kilocalories per mole, the ACE program

predicts that C3 will bé one of the most abundant species present in the
postshock flow. Figure B shows the moie fractions of the principal species
which are predicted to be present behind a shock wave as a function of the
shock ve]oci%y. For this example, the initial pressure was held constant
at 1.72 kN/m¢, which is typical for the present data. Argon, which of course
is the most abundant species, has been omitted from figure 8, but the others
are shown to be H, Hp, C, Co, C3, CpH, and C3H. Of these, the first four
have well identified spectra which may be recognized and subtracted out if
they appear in the present data. The spectra of the latter two, CpH and

C3H are not known, however, so any contribution they may make to the
present absorption data may go unrecognized. C3H has a distinctly
different variation of abundance with temperature than C3, so examination
of the absorption profile at different temperatures would help answer the
question of whether or not CgH contributed to the absorption in this
spectral range. The similarity of the temperature variation of CsH and

C3 may not permit this technique to be used. Main and Bauer have
synthesized an electronic spectrum for CpH 1in reference 14. Of the eight
electronic transitions given in reference 14, none fall in the present
spectral range.

RESULTS AND DISCUSSION

The basic experimental results are presented in table II for the
3-percent mixture and table III for the 2-percent mixture. The shock
velocity and postshock temperature and pressure are tabulated as well as
the absorption cross sections obtained from the eight spectrograph channels.
For each channel, the central wavelength for each Tight pipe is noted, and
the corresponding cross-section measurement is given directly below. For
certain wavelength settings of the grating, some "stray light" was noted
on channels 1 and 2. Where this occurred, data from these channels are
not included. Here the term stray 1light refers to light emanating from the
pulsed 1light source, but of the wrong wavelength for that particular channel.
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At each grating position, a check for stray Tight was made by means of a_
series of band-pass filters inserted in the light beam at the enirance slit
to the spectrograph.

Constant Temperature Survey

Figure 9 presents the absorption cross section for seven runs in which
the postshock test state was repeated as closely as possible. The tempera-
ture was 3694 + 28 K for these runs, which are runs 1-7 in table II.

Between these runs, the grating position was changed to move the spectral
setting of the channels by about 35 nanometers. Thus, a complete spectral
survey was obtained at nearly constant test conditions. Figure 9 shows the
photomultiplier data for the seven runs by circular symbols. For three of
these runs, the data from the densitometer readings of the film are shown as
solid 1ines. Also shown, as a dashed curve, are the data of reference 8; this
latter curve has been reduced by a factor of four to facilitate comparison.

Figure 9 shows that the general character of the absorption profile
for the present data at a temperature of 3700 K is very similar to that
obtained by Brewer and Engelke {ref. 8); but their data, obtained at
3200 K, is more than four times greater in amplitude. The absorstion
profile shows no distinctive features except those due to the Violet Band
system of CN and the Swan band system of C2. It might be noted that these
bands were observed also by Brewer and Engelke, but were "faired out" {see
fig. 1 of ref. 8).

No data were presented in :eference 8 for wavelengths shorter than
370 nanometers. For less than 370 nm, the present data show a continuation
of the downward trend to about 300 nm, at which point the ¢ross section
becomes nearly constant. The data for this shortest wavelength region
(below 300 nm) must be viewed with some skepticism. The light output of the
xenon flash lamp was very low in this region, resulting in poor signal-to-
noise ratio on the photomultiplier channels and susceptibility to stray
light contamination. Also, insufficient data were obtained at these wave-
lengths to indicate whether the absorption was due to C3 o some other
species.

Temperature Variation of Absorption Cross Section

For each setting of the spectrograph grating, a number of runs were
made with varying shock strengths and, thus, the temperature effect on
absorption was determined at a number of wavelengths. A total of 26
different wavelengths was available with which to determine the temperature
effect on absorption cross section. In figure 10, eight of these wavelengths
are presented and the experimentally determined absorption cross section is
shown over the temperalure range of the experiment. Also shown for each
wavelength is a Teast-squares curve fit to the data of the form

gy, =3p *ayT + a2T2 + a3T3. (8)
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The curve fit equations may then be used to generate an approximate
spectral absorption profile for any specified temperature within the temper-
ature range of the experiment. In figure 11, such profiles are shown for
four selected temperatures. In figure 11, the value of equation (8) is
shown at each wavelength with a symbol. The vertical bar shows the stan-
dard deviation of the data from the curve for that waveiength setting.
Absence of a bar indicates insufficient data to determine standard deviation.

The spectral absorption curve fits shown in figure 11 indicate that
for the temperature range 3400 to 4000 K, the profiles remain quite similar.
However, there appears to be some change with temperature in the general
amplitude. The amplitude is highest at the low temperature extreme (3400 K)
and decreases to a minimum at about 3800 K. Figure 10 showed that at most
wavelengths, this trend is displayed with the minimum usually occurring near
3800 K. At temperatures of 4000 K and above, the general trend is for the
absorption cross section to rise, but the very limited data in this tempera-
ture range do not permit a firm conclusion.

The fact that the wavelength-integrated cross section (i.e.,the area
under the curve in fig. 11} does not appear to remain constant with
temperature is a matter of some concern with regard to the consistency of
the data. It can be shown (e.g.,ref. 15) that for a given transition,
the integral of the spectral absorption coefficient is independent of
temperature and proportional to the electronic oscillator strength. Thus,

o 2
medw = TN fy (9)

me
o

in which w 1is wave number, f, is the electronic absorption oscillator
strength, and N is the number density of the absorbing state. Since, for
the present transition the absorbing state is the ground state, N may be
taken as the total number density of C3. Equation (9) may then be solved
for fe to give

_ 12 7
fe=1.14 x 10 “/ﬂowdm. {10)

0

For the present results, the integral of the absorption cross section
was approximated by using the curve fits (eq. (8)} for each wavelength
to define o, as a function of temperature and the integral was determined

using the trapezoidal rule. For this calculation, certain wavelength
channels were belijeved to be influenced by the Cp Swan bands, so only 21
channeis were included in the computation. The results of this computation
are presented in figure 12. The computed oscillator strength is seen to vary
from 0.12 to 0.06 over the temperature range 3400 to 4200 K. This may be
compared with the value fs = 0.13 quoted for the single measurement in
reference 8. For the sake of comparison with reference 8, the value of fp
was computed at 1 = 3200 K and is shown in figure 12, but it should be

noted that this temperature is below the range supported by the present
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experimental data and is simply an extrapolation of the temperature-dependent
curve fits. The result at 3200 K is in good agreement with reference 8,
however,

The variation of the computed oscillator strength over the temperature
range of the investigation can be caused either by errors in absorption
measurement or by errors in computing the number density of C3. Although
other absorbers might possibly be contributing to the absorption results, a
more Tikely cause appears to be equilibrium composition error. Computation
of number density is sensitive to the heats of formation and specific heat
variations used for the various species present and the uncertainty in these
quantities is sufficient to account for the apparent temperature variation
of the osciliator strength in the present data.

CONCLUDING REMARKS

The optical absorption of triatomic carbon, C3, has been measured in a
shock tube using a test gas mixture of acetylene diluted with argon. The
temperature behind the incident shock ranged from about 3300 to 4300 K and
the corresponding pressure varied from 0.36 to 2.13 atmospheres. Appreciable
absorption was measured from about 300 nanometers wavelength to about
540 nanometers. Absorption was aiso noted below 300 nanometers, but the Tack
of sufficient data and poor signal-to-noise ratio in this wavelength range
precluded a firm determination that this short wavelength absorption was due
to Cs. :

The absorption profile was very similar to that measured by Brewer and
Engelke ‘in a furnace. But their measurement, which was taken at a
temperature of 3200 K, was about four times greater in terms of absorption
cross section than the present measurements at 3700 K. Also, they did not
make measurements below 370 nanometers and thus did not include the short
wavelength portion of the profile determined in the present study.

Data taken for a narrow passband at specific wavelengths over a range
of temperature and pressure reveal a temperature variation of the spectral
absorption cross section. Curve fits for these data were obtained for
21 wavelengths, and using these curve fits, approximate spectral profiles
can be constructéd for any selected temperature within the valid range of
the data. If such profiles are integrated with respect to wave number, an
electronic oscillator strength is obtained for the transition. This
oscillator strength varied from 0.12 to 0.06 over the temperature range
3400 to 4200 K, which may be compared to a value of 0.13 quoted by Brewer
and Engelke.

The absorption cross section is determined not only by the absorption
coefficient measured, but also by the computed number density of the
absorbing state. This Tatter quantity was computed in the present study
using. an equilibrijum, free-energy minimization computer program which
assumed a value of the heat of formation for Cq of 196 kijocalories per
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mole at a temperature of 298 K, Uncertainties in the correct value of the
heat of formation of C3, the correct thermodynamic properties of C3, and
the heats of formation of other hydrocarbon species present in the test
gas mixture are a major source of concern in the present data, and are a
1ikely cause of the anomalous variation of the oscillator strength with
temperature.
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TABLE [

SHOCK TUBE INSTRUMENTATION PORT LOCATIONS
AND TYPE OF DETECTOR

Distance From

Station Diaphragm (m) Detector
1 2.889 H.T.*
2 4,417 P.*
3 5,925 P.
4 7.447 H.T.
5 8.357 P.M.*
6 8.662 P.
9.566 P.
8 11.092 P.
g | 12.617 H.T.
10 - 14,126 P.
11 14,940 P.M.
12 15.149 P.
Test Window 15,289 . ——

*H.T, Thin-Film heat transfer gage.
P, Pressure transducer
P.M. Photomuitiplier
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Photomultiplier signal
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Figure 2. - Exampie of photomultiplier linearity check,
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Figure 3. - Sample oscillograms shown photomultiplier and pressure
transducers as shock detectors,
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(a) Prerun light pulse,
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absorption parameter r (#),
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Postshock temperature, T2, K
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Figure 8.- Mole fractions of principal species behind a shock wave

into a gas mixture of 97% argon, 3% CoH,.
P " 1.72kN/m2.  (argon not shown)
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! Figure 10. - Variation of absorption cross section with postshock
1 temperature for selected wavelengths.
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Figure 10, - Continued.
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